
An analysis of the 3gpp-MAC scheme

Lars R. Knudsen a Chris J. Mitchell b

aDepartment of Informatics, University of Bergen, N-5020, Bergen, Norway,
lars.knudsen@ii.uib.no; http://www.ii.uib.no/∼larsr

bISG, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK,
c.mitchell@rhul.ac.uk; http://www.isg.rhul.ac.uk/cjm

Abstract

Key recovery attacks are described on the 3gpp-MAC scheme, proposed for inclusion
in the 3gpp specification. Three main attacks are given, all of which operate whether
or not truncation is applied to the MAC value. The first type of attack uses a large
number of ‘chosen MACs’, the second type of attack a large number of ‘known
MACs’, whereas the third attack requires a large number of MAC verifications, but
very few known MACs and no chosen MACs.

1 Introduction

We are concerned here with the security of a CBC-MAC scheme proposed for
inclusion in the 3gpp specification, see e.g., the home page of ETSI (the Eu-
ropean Telecommunications Standards Institute), www.etsi.org. Specifically
we consider a range of possible key recovery attacks, which provide upper
bounds on the level of security offered by the scheme.

The 3gpp-MAC scheme operates as follows. Suppose the underlying block
cipher has n-bit blocks and uses a key of k bits. If X is an n-bit block then
we write eK(X) for the encryption of X using key K. A message D is first
padded and split into a sequence of q n-bit blocks: D1, D2, . . . , Dq. The MAC
scheme uses a pair of keys K, K ′, where K ′ may be derived from K. The MAC
computation is as follows.

H1 = eK(D1),

Hi = eK(Di ⊕Hi−1), (2 ≤ i ≤ q), and

MAC = eK′(H1 ⊕H2 ⊕ · · · ⊕Hq).

Preprint submitted to Elsevier Preprint 5 January 2002

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Royal Holloway - Pure

https://core.ac.uk/display/28899938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


We refer to Hi as the chaining variable. For the purposes of this paper we
assume that the padding method does not involve prefixing the data with a
length block. Note that the MAC used will be truncated to the left-most m
bits of the MAC value given in the above equation, where m ≤ n.

Following the approach used in [1], we use a four-tuple [a, b, c, d] to quantify the
resources needed for an attack, where a denotes the number of off-line block
cipher encipherments (or decipherments), b denotes the number of known data
string/MAC pairs, c denotes the number of chosen data string/MAC pairs,
and d denotes the number of on-line MAC verifications. Note c and d are
distinguished because, in some environments, it may be easier for an attacker
to obtain MAC verifications (i.e. to submit a data string/MAC pair and learn
whether the MAC is valid) than to obtain the MAC for a chosen message.

Observe that if the two k-bit MAC keys K,K ′ are related, i.e. one is derived
from the other, or they are both derived from a single k-bit key, then a sim-
ple exhaustive search can be performed using a very small number of known
MACs. The total complexity is [(q + 3)2k, d(k + 1)/me, 0, 0], where q is the
number of blocks in the shortest message for which a MAC is known. Because
of this simple attack, in the remainder of this paper we concentrate on the
case where the two keys are chosen independently.

2 Attacks using chosen MACs

Since the internal memory of 3gpp-MAC is 2n one might expect that a collision
attack will require 2n operations. But, as we will show, this is not the case.
We first consider a chosen-text scenario, where we give two forgery attacks
and then a key recovery attack derived from them.

Following [3], most of the attacks are based on finding collisions, i.e. two
message with the same MAC. We also refer to internal collisions, where this
describes two messages with both the same MAC and the same final chaining
variable, and external collisions, i.e. collisions that are not internal collisions.

A forgery attack

We distinguish between the cases where m = n and m < n.

The case m = n. Collect
√

2 · 2n/2 messages of q blocks, where q ≥ 2, and
get the corresponding MAC values. (If the attacker has full control over q, he
chooses q = 2.) One expects to find a single collision, that is, two different
messages with the same MAC value; denote these by D = D1, . . . , Dq and
D′ = D′

1, . . . , D
′
q. These messages collide in n of the 2n bits of internal memory.

2



In the next step a collision is found also in the other n bits.

Choose 2n/2 messages of the form D(i) = D1, . . . , Dq, E(i) and 2n/2 messages
of the form D′(j) = D′

1, . . . , D
′
q, E

′(j), where E(i) and E ′(j) are randomly
chosen n-bit blocks, and get the corresponding MAC values. One expects to
find a single internal collision, say D(i) and D′(j). Define ∆ = E(i)⊕ E ′(j).

It follows that for any n-bit block Z the messages D(i), Z and D′(j), Z⊕∆ will
have the same MAC value. Therefore, one can forge the MAC of D′(j), Z⊕∆
by observing or requesting the MAC of D(i), Z. The complexity of this attack
is [0, 0, 2n/2+1, 0].

The case m < n. A first attack is a simple extension of the above attack.
Collect

√
2 · 2n/2 messages and their corresponding MACs. One can expect to

find 2n−m pairs of messages with matching MACs, one of which will collide
also in the n−m discarded bits. For each of these pairs, D and D′ say, choose
2n/2 messages of the form D(i) = D, E(i) and 2n/2 messages of the form
D′(j) = D′, E ′(j), where E(i) and E ′(j) are randomly chosen n-bit blocks,
and get the corresponding MAC values. One expects to find 2n−m pairs of
messages D(i) and D′(j) with matching MACs.

Define ∆i,j = E(i)⊕E ′(j). It remains to test whether ∆i,j can be used to forge
MACs as in the case for m = n. Simply get the MACs of the messages D,Z and
D′, Z⊕∆ for some value of Z, and check whether the MACs are equal. In total,
n/m such tests suffice to distinguish external collisions and internal collisions.
Thus, this attack requires 2n−m(2n/2+1 + (n/m)2n−m) chosen messages, which
for m > n/2 is approximately 2n−m2n/2+1 = 23n/2−m+1. The complexity of this
attack is [0, 0, 23n/2−m+1, 0], when m > n/2.

A second attack is the following. The attacker first collects 2(m+n)/2 messages
and their MAC values. Divide the 2(m+n)/2 known MACs into 2m classes ac-
cording to the value of the truncated MAC. It follows that at least one class
will contain 2(n−m)/2 messages or more, all with the same MAC value. Two of
these messages are expected to also collide in the discarded n−m bits. Sup-
pose the messages are (E1, E2, ..., Eq) and (F1, F2, ...Fr) and that the internal
part MACs for these two messages are Hq and H ′

r.

For every message (D1, D2, ..., Ds) in the class, get the MAC on message
(D1, D2, ..., Ds, X) for 2n/2 different randomly chosen values of X. This is a to-
tal of 2n/22(n−m)/2 = 2n−m/2 chosen MACs. By the usual birthday arguments,
there is a good chance that MACs will have been computed for messages
(E1, E2, ..., Eq, X) and (F1, F2, ...Fr, Y ) where Hq ⊕X = H ′

r ⊕ Y.

That is, somewhere amongst the set of 2n−m/2 chosen MACs is an internal
collision. Finding the internal collision from amongst the many other collisions

3



will require another set of chosen MACs for messages constructed by adding a
fixed block to the end (of some) of the 2n−m/2 messages. However, the number
involved will be less than 2n−m/2, since we only consider those messages which
give rise to a collision. Hence we shall ignore this number.

We can use this internal collision to forge MACs in much the same vein as in
the case m = n. The total complexity of the attack is [0, 2(m+n)/2, 2n−m/2, 0]. It
follows that the number of known MACs increases and the number of chosen
MACs decreases for increasing values of m.

In summary, if m > 2n/3 the first attack is faster, if m < 2n/3 the second
attack is faster, and the complexities of the two attacks are similar if m = 2n/3.

A key-recovery attack

The internal collisions of the previous section can also be used in key-recovery
attacks. Take the pair of messages giving the internal collision from the forgery
attack. For all values of the key K, compute the MACs of the two messages
and check for collisions in the 2n bits. For a wrong value of the key each
of these collision checks will succeed with probability 2−2n. If more than one
key candidate passes this test, it is repeated for chosen MACs on messages
constructed by adding a fixed block to the end of the two messages in the
internal collision. Once K is known, K ′ can be found by exhaustive search.

The attack requires approximately 2k+1q operations where q is the average
length of the messages involved. In a chosen plaintext attack the attacker
chooses q = 2 in which case the complexity is that of the forgery attack plus
2k+2 block cipher operations.

3 Key recovery attacks using known MACs

The ‘basic’ Preneel-van Oorschot attack

If m = n then the attack of [3] applies with complexity [s×2k, 2n/2, 0, 0], where
s is a small positive integer approximately equal to 2q, and q is the average
block-length of the messages for which the MAC is known.

Consider (padded) messages D1, D2, . . . , Dq and E1, E2, . . . , Er. Also let

H1 = eK(D1),

Hi = eK(Di ⊕Hi−1), (2 ≤ i ≤ q),

H ′
1 = eK(E1), and

4



H ′
i = eK(Ei ⊕H ′

i−1), (2 ≤ i ≤ r),

The messages will give the same MAC if and only if
⊕q

i=1 Hi =
⊕r

i=1 H ′
i. Hence

a collision gives a means to eliminate candidates for K independently of the
value of K ′, i.e. a collision can be used as the basis of an exhaustive search
for K. A separate exhaustive search can be used to find K ′.

Unfortunately, if m is significantly less than n, then this attack becomes much
more complex, since it becomes difficult to distinguish full n-bit collisions
from m-bit ones. More precisely, the number of messages within the set of
size 2n/2 for which another message exists within the set with the same MAC
will be (very) approximately max{2n/2, 2n−m}. Hence, when the exhaustive
search is performed, the number of encryption operations necessary will be
very approximately 2k+n−mq if m > n/2 and 2k+n/2q if m ≤ n/2, where q is the
average block-length of the messages. (Note that extra collisions and searches
will be required to eliminate the remaining key candidates if m ≤ k, although
the numbers of calculations involved will not affect the overall complexity).

This is potentially a very large number of encryption operations. As a re-
sult, in the next section we consider a generalised version of the Preneel-van
Oorschot attack which reduces the number of encryption operations at the
cost of increasing the number of known MACs required.

A generalised Preneel-van Oorschot attack

The generalised attack operates in a series of three stages.

Stage 1: Processing the known MACs. Suppose the attacker has 2(n+m)/2 known
MACs. The attacker divides these messages into 2m classes according to the
value of the MAC. Each class will contain approximately 2(n−m)/2 messages,
all with the same MAC value, i.e. for which the first m bits of the ‘untrun-
cated MAC’ are equal. Since there are 2n−m possibilities for the n − m bits
discarded during MAC truncation, there is a good chance that, within any
one class, there is at least one pair of messages whose ‘untruncated MACs’
agree. To maximise this probability, we work with the classes containing the
most messages.

Stage 2: Exhaustive search to find K. Choose the dk/me largest classes of mes-
sages (as constructed in Stage 1). For each such class perform an exhaustive
search as follows.

For every key compute the value
⊕q

i=1 Hi for each message in the class (where
Hi is defined as above, and q is the number of blocks in the padded message).
This involves approximately 2k2(n−m)/2q encryption operations, where q is the
average block-length of the messages. The values resulting are then examined
to see if there is a collision. For the correct key K there is a good chance that

5



there will be a collision, whereas for a randomly selected key the probability
of a collision will be approximately 2−m−1.

After this search has been performed for each of the message classes, each key
will have an associated ‘count’, indicating the number of message classes for
which a collision was found. A simple probabilistic analysis reveals that the
key with the greatest count is likely to be the ‘correct’ value of K.

Note that the first exhaustive search (using the largest class) could be used
to eliminate all but a small fraction of keys, by only proceeding with those
keys for which a collision is found. This reduces the complexity of subsequent
seaches dramatically, meaning that the overall cost of this stage is reduced
to approximately 2k+(n−m)/2q encryption operations. The downside of such an
approach is that it would increase the risk that the ‘correct’ key is missed. In
the complexity analysis we assume that such an approach is used.

Stage 3: Exhaustive search to find K ′. The final stage is the simplest. Armed
with the correct value of K, a set of any d(k + 1)/me messages with known
MACs can be used as the basis of an exhaustive search to find K ′.

An analysis of the generalised attack

We start by considering the complexity of the attack. The costs of stage 1–
3 are 2(n+m)/2 known MACs, 2k+(n−m)/2q encryptions, and 2kq encryptions
respectively. This means that the total attack complexity is approximately
[2k+(n−m)/2q, 2(n+m)/2, 0, 0]. Thus, by comparison with the ‘basic’ Preneel-van
Oorschot attack, and assuming that m ≤ n/2, the number of known MACs
has increased from 2n/2 to 2(n+m)/2, whereas the number of off-line encryptions
has decreased from 2k+n/2q to 2k+(n−m)/2q.

Finally note that, if less then 2(n+m)/2 known MACs are available, then the
attack still works. However, more classes of messages will need to be examined,
i.e. there is a trade off between decreasing the number of known MACs and
increasing the number of off-line encryption operations. In the limit, if only
2n/2 known MACs are available, all classes containing more than one message
will need to be examined, and the attack becomes identical to the Preneel-van
Oorschot attack discussed in the previous section. This justifies the use of the
term ‘generalised’ in the name of the attack.

4 A key recovery attack using MAC verifications

We now consider a different type of key recovery attack, analogous to the
Knudsen-Preneel attack, [2]. Instead of using a large number of known MACs,

6



these attacks require only one (or at most a very small number) of known
MACs combined with a large number of MAC verifications.

The case m = n

First suppose m = n, i.e. there is no truncation, and suppose also that k < n.
Now suppose the attacker knows the MAC for some message, i.e. the attacker
knows that MAC(D1, D2, . . . , Dq) = M for some (padded) sequence of message
blocks D1, D2, . . . , Dq.

The attacker now assembles the set of all 2n (q + 1)-block padded messages
of the form X, D1, D2, . . . , Dq, where X ranges over all possible n-bit blocks,
and for each finds out whether or not the valid MAC is M (thus requiring 2n

‘MAC verifications’). This will be true for the unique case where eK(X) = 0
(the all-zero n-bit block), and also ‘by chance’ for approximately one value of
X. Thus, if a unique value of X results from this test then the attacker can be
sure that this is the desired value, i.e. the one for which eK(X) = 0. If more
than one value of X ‘passes’ the test, then a second known MAC can be used
to eliminate the remaining false candidates by repeating the above test but
with only the remaining candidate values of X.

Armed with the desired equation eK(X) = 0, the attacker can do an exhaustive
search for K, which will probably only yield the correct value of K since we
assumed that k < n. Finally, once K is known, the known MAC can be used
as the basis of an exhaustive search for K ′, which will again probably only
yield the correct value of K ′ since k < n.

If the attacker is lucky, and only one known MAC is needed to find the desired
X, the total complexity of the above attack is [2k+1, 1, 0, 2n], since the exhaus-
tive searches for K and K ′ will require 2k encryptions each. If the attacker is
unlucky and requires a second known MAC in the initial part of the attack
then the complexity will increase to at most [2k+1, 2, 0, 2n].

The case m < n

If the MAC is truncated, i.e. if m < n, then a very similar attack approach
will work, although a small number of additional known MACs are needed.

The case k < n. In this case the attacker starts the attack exactly as in
the m = n case, although, after the initial set of 2n MAC verifications, a
total of approximately 2n−m + 1 candidates for X will remain. The MAC
verification step can be repeated with a second known MAC (and the set of
remaining candidates for X), after which approximately 2n−2m +1 candidates
will remain. The process can be repeated as many times as necessary until a
single candidate for X satisfying eK(X) = 0 remains.

7



Thus, given a set of around d(n + 1)/me known MACs, the required block X
satisfying eK(X) = 0 can be found. The total number of MAC verifications
required will be approximately 2n+2n−m+2n−2m+· · ·, which is approximately
the same as 2n (given that, in practice, m will always be at least 8).

The exhaustive search for K will be exactly as in the previous case, and the
search for K ′ may require use of up to d(k + 1)/me known MACs (which can
be the same as those used in the first stage of the attack). Again as previously,
the search for K will probably yield a unique result because we assumed that
k < n.

Given that we assumed that k < n, and hence (k+1)/m < (n+1)/m, the total
complexity of the attack will thus be approximately [2k+1, d(n + 1)/me, 0, 2n].

The case k ≥ n. In this case the attacker proceeds as when k < n, and we
suppose that, given around d(n + 1)/me known MACs, the required block X
satisfying eK(X) = 0 can be found. The total number of MAC verifications
required will be approximately 2n. The complexity of this first part of the
attack will therefore be approximately [0, d(n + 1)/me, 0, 2n].

However, the next stage is a little more complex in that, when the exhaustive
search for K is performed using the equation eK(x) = 0, approximately 2k−n+1
candidates for the key K will remain. It will thus be necessary to obtain
further equations involving K to eliminate all but the correct candidate for K.
Such equations can be obtained as follows. Suppose the attacker knows that
MAC(D1, D2, . . . , Dq) = M for some (padded) sequence of message blocks
D1, D2, . . . , Dq. (This can be the same as one of the ‘known MACs’ previously
used). The attacker now assembles the set of all 2n (q + 1)-block padded
messages of the form D1, D2, . . . , Dq, Y , where Y ranges over all possible n-
bit blocks, and for each finds out whether or not the valid MAC is M (thus
requiring 2n ‘MAC verifications’). This will be true for the unique case where
Hq ⊕ Y = X, where Hq is the chaining variable as defined in Section 1, and
also ‘by chance’ for approximately 2n−m values of X. We will thus obtain a set
of approximately 2n−m +1 candidate values Z for the solution to the equation
Hq = Z.

This set of candidate values of Z can be used to eliminate a large fraction of
the remaining candidates for K, i.e. after performing one such search we would
expect the number of candidate values for K to be reduced from approximately
2k−n + 1 to approximately 2k−n−m + 1. The above procedure can be repeated
as many times as necessary until just one candidate value for K remains; the
number of iterations will be approximately d(k − n + 1)/me. Each iteration
will require use of a single ‘known MAC’, 2n MAC verifications, and q2x block
cipher encryptions, where q is the length of the ‘known MAC’ message and 2x

is the number of candidate keys remaining at this stage of the attack. Note

8



that it is reasonable to assume that q2x will be orders of magnitude smaller
than 2k, and hence we ignore the cost of these calculations.

Hence the total complexity of this stage of the attack will be

[2k, d(k − n + 1)/me, 0, d(k − n + 1)/me2n]

where the set of d(k − n + 1)/me known MACs can overlap with the set of
known MACs used in the search for X.

Finally, as when k < n, the exhaustive search for K ′ will require use of ap-
proximately d(k + 1)/me known MACs, i.e. the complexity of this last part of
the attack will therefore be approximately [2k, d(k + 1)/me, 0, 0].

Thus the total attack complexity will be approximately

[2k+1, d(max(k, n) + 1)/me, 0, d(k − n + m + 1)/me2n].

Applying the attack to other MAC schemes

It should be clear that the above attacks (for m < n) will also work in almost
exactly the same way against any of MAC algorithms 1, 2 or 3 from ISO/IEC
9797-1, [1], with the exception that the ‘extra iterations’ needed to deal with
the case k ≥ n will need to be modified slightly, since for these schemes we
know that MAC(D1, D2, . . . , Dq) = MAC(D1, D2, . . . , Dq, Y ) when eK(Hq ⊕
Y ) = Hq (as opposed to Hq ⊕ Y = X).

Of course, for these algorithms the attack of Knudsen and Preneel, [2], also ap-
plies, and the two attacks have very similar complexities. The main difference
is that the Knudsen-Preneel attack requires 2k MAC verifications, whereas
the attack described here requires d(k− n + m + 1)/me2n MAC verifications.
Hence, if k ≤ n, the new attack is somewhat less efficient, although if k > n+1
the new attack requires less MAC verifications.

5 Conclusions

We have described three different types of key recovery attack on the 3gpp-
MAC scheme. In doing so we have also described methods for forging 3gpp-
MACs. Table 1 summarises the complexities of the various key-recovery at-
tacks, and Table 2 summarises the complexities of the forgery attacks. In both
tables k and n denote the size of the key and the block, respectively, of the
underlying block cipher, m denotes the number of bits in the MAC, a, b, c,

9



and d denote resources required for the attack (as in Section 1), and q denotes
the number of blocks in the known messages of the particular attack.

Table 1
Key-recovery attack complexities

a b c d Condition Section

2k+2 0 2n/2+1 0 m = n 2

2k+2 0 23n/2−m+1 0 m < n 2

2k+2 2(n+m)/2 2n−m/2 0 m < n 2

2k+(n−m)/2q 2(n+m)/2 0 0 3

2k+1 1 0 2n m = n 4

2k+1 d(n + 1)/me 0 2n k < n 4

2k+1 d(k + 1)/me 0 2n k ≥ n 4
Table 2
Forgery attack complexities

a b c d Condition Section

0 0 2n/2+1 0 m = n 2

0 0 23n/2−m+1 0 m < n 2

0 2(n+m)/2 2n−m/2 0 m < n 2

Our results show that in the case where the MACs are not truncated the
complexities of key-recovery attacks and forgery attacks are comparable to
those of the standard CBC-MAC. Thus in this case the extra effort in the
computation of 3gpp-MACs does not pay off in terms of increased security.

Finally note that for the 3gpp application we have k = 128, n = 64 and
m = 32, which makes the key recovery attacks infeasible, and also means that
the most efficient forgery attack requires around 248 chosen messages. This is
unlikely to pose a problem in practice.

References

[1] ISO/IEC 9797-1, Information technology — Security techniques — Message
Authentication Codes (MACs) — Part 1: Mechanisms using a block cipher,
International Organization for Standardization, Genève, Switzerland, 1999.

[2] L.R. Knudsen and B. Preneel, MacDES: MAC algorithm based on DES,
Electronics Letters 34 (1998), 871–873.

[3] B. Preneel and P.C. van Oorschot, A key recovery attack on the ANSI X9.19
retail MAC, Electronics Letters 32 (1996), 1568–1569.

10


