
A SECURITY ARCHITECTURE FOR AGENT-BASED MOBILE SYSTEMS

N. Borselius1, N. Hur1, M. Kaprynski2 and C.J. Mitchell1

1Royal Holloway, University of London 2University of Strathclyde

ABSTRACT

Future mobile systems are expected to exploit the
flexibility of agent-based software in a variety of
ways. This will include agents providing both
middleware and application-level functionality.
Realising the full benefits of this innovative
approach will require that security issues are
properly addressed.

There are many security issues associated with
agent-based systems; some of the most difficult to
deal with arise when agents themselves can be
mobile. There has been much recent interest in
developing cryptographic protocols designed
especially for securing mobile agents. However,
this work has mainly been ad hoc in nature, i.e. it
has not been developed in response to a thorough
analysis of the security requirements for a
particular agent application. This paper describes
research intended to help rectify this gap by
providing a detailed security architecture including
a security model and a specification of security
services provided within the model.

INTRODUCTION

In order for agent technology to be a viable
solution for wide scale commercial applications,
the associated security issues need to be properly
addressed. Current work within the Mobile VCE
Core 2 programme includes the development of a
security model and architecture for agent-based
mobile middleware and its management.

This paper describes results of this work, including
a security model for an agent-based mobile
system. This model is used as the basis of a
security architecture for such systems. This in
turn will be used as a framework to develop
specific mechanisms and protocols to support
security in this future mobile environment. These
security techniques will provide security services
designed to counter threats identified within the
context of the security model.

The Mobile VCE model uses agent technology.
Agents can exist on all kinds of hosts in the
infrastructure, from the smallest devices (e.g.
watch, PDA, or phone) to application servers and
communications devices. While some agents will
be able to move between platforms, others will
always reside on the same platform. Whichever is
the case, certain security functionality is required.

The envisioned system will also include, and allow,
devices not using agent technology.

FIPA (the Foundation for Intelligent Physical
Agents) is a non-profit organisation aimed at
producing standards for the interoperation of
heterogeneous software agents. FIPA (1) has
produced a high-level abstract architecture
specification, which currently is in experimental
stage. Security aspects are omitted from the FIPA
model. The security model presented in this
document is specified such that it will fit within the
FIPA model when deployed in a
telecommunications environment.

Contents of paper

This document contains two main sections. The
first section specifies a detailed security model.
The second section discusses some of the
security services that need to be provided within
the context of this model.

The security model is specified at four different
levels of abstraction. This enables all types of
interactions, including those within a device and
those spanning the entire mobile system, to be
modelled. The entities identified may sometimes
coincide. However, it is important to ensure that
different functionalities are separated within the
security model, to ensure that it has sufficient
generality. Note that our objective here is to
model only those parts of security significance.
The four levels of the model are as follows.

At the highest level are the Involved parties,
including the mobile device user, the mobile
device owner, and various service providers. At
the next level down we consider the Device
structure, including agents, an agent execution
environment, a subscription module (as in a GSM
SIM), and communication services. The next level
of the model covers the Agent execution
environment; this will include agent
communications services, an agent management
entity, and agent security services. Finally we
consider the various parts of an Agent and how it
interacts with its environment.

THE SECURITY MODEL

Involved parties

We first describe the high level entities that can be
distinguished in the security model. The parties

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28899835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

can be thought of as distinct individuals or
organisations. However, in practice one
organisation can take the roles of more than one
entity. It is also possible that not every party would
be involved in a particular scenario.

Device user: also referred to as the user. The
user is assumed to have physical control over the
device, but may not necessarily be the same entity
as the device owner.

Device provider: the manufacturer of the device.
In order for the manufacturer to offer upgrades or
additional services, the device provider will
typically share a security context with the device.
This security context will typically involve shared
secrets and/or the provision of ‘root’ public keys.

Device owner: which might, for example, be the
user or might be the employer of the user. Again
there is a trust and possibly a cryptographic
relationship with the device. The rationale for
distinguishing the device owner from the device
user is the fact that they might have different
objectives. An employer might, for example, want
to restrict the use of a device in order to protect
itself from various threats, such as malicious code.

Service provider (SP): provides some kind of
service, (e.g. transport service, information
service, payment service, etc) including directory
services and remote agent execution
environments, to users and other SPs. A service
provider may or may not have a pre-established
contract with its clients.

'Home' service provider (HSP): i.e. an entity with
which the device owner or user has a contractual
relationship. This gives the provider of services to
the device an identifiable entity from which he can
extract payment (the HSP will then present a bill
for all services provided to the device owner).
Note that a device owner may have many HSPs.

Trust service provider (TSP): a special class of
service provider providing trusted third party
services, e.g. a CA (Certification Authority), an RA
(Registration Authority), a timestamping service,
an electronic notary, etc.

Agent provider: provides other parties with
agents. The agent provider would typically be the
developer of the agent. The agent provider can
rely on its reputation or issue other guarantees
concerning provided agents’ behaviour. The
agent provider and the agent owner can be
different entities. One can envision a scenario
where software developers provide (e.g. sell)
agents to users. The users would then only need
to provide the agent with certain credentials.

Agent owner: the entity on whose behalf an agent
is executing. All parties can deploy agents to act
on their behalf. These agents can execute on a
device under the control of the agent owner as
well as in other places within the infrastructure.

Device s tructure

We now describe the different parts of a device,
including most importantly agents and the agent
execution environment. It should be noted that
devices and their resources can vary greatly, and
depending on their purpose might not include all
the components described here. The device
described is a mobile one, but a similar structure
can be assumed to exist within other devices in
the infrastructure in which agents are executed.

A diagram of the device model is given in Figure
1. Only one agent is shown in the picture, but a
device would typically have multiple agents
executing in the agent execution environment.

non-agent
software

agent
agent

execution
environment

remote resources

device resources subscription
module

Figure 1 – Model for elements within a device

The elements of the device model are as follows.

Agent: executable code which is acting on behalf
of its owner. All parties can use agents to
represent themselves. An agent can execute in
an environment that is under the control of its (i.e.
the agent’s) owner, or it may execute in an
environment provided by another party. Agents
may or may not be mobile. As illustrated in Figure
1, an agent can communicate with other entities
over a network as well as with other functional
blocks within the same device, including device
resources, a subscription module, other agents,
and other device software.

Agent execution environment: provides the
resources needed for agents to execute and
communicate with other agents as well as with
other resources and entities. The agent execution
environment, further described below, is regulated
and controlled via mechanisms here referred to as
agent control. Several agents can execute
simultaneously within one environment.

Subscription modu le: a hardware device (e.g.
smart card, USB token) which may interact with
the device. An example of such a module is the
GSM SIM. This module would typically be
provided by an HSP, and share secret keys with a
HSP and/or possess HSP-provided root public
keys. Not every mobile device will be capable of
directly interacting with such a module.

Remote resources : agents executing in a device
can communicate with resources (e.g. agents and
services) on other devices.

Non-agent software: software (applications and
middleware functions) residing on the same
device but not under the control of the agent
platform control. Agents can communicate with
such software just as such software would be able
to access middleware services.

Device resources : refers to other resources
residing in the device. Examples of such
resources include a user interface, a hardware
cryptographic processor, various cryptographic
primitives that might be bound to the device (e.g.
in the form of a cryptographic API), and
communication resources.

Agent execution environment

The security functionality of the agent execution
environment is now described. We only consider
security functionality here, and a complete
execution environment would be more complex. A
diagram of the agent execution environment is
given in Figure 2. It should be noted that,
depending on the device on which the agent
execution environment is residing, not all the
elements of this model may exist. A device might,
for example, not support the downloading of
agents – in which case the agent mobility service
would not exist. The complete agent execution
environment will include the following elements.

Agent management and control: governs the
security platform. This element is responsible for

managing all agents executing on the platform
including monitoring and controlling access to
resources as well as communication between
agents executing on the local platform.

Agent communications service: provides
communications facilities to agents executing
within the environment. This includes secure
communication services.

Agent security service: includes security
services provided by the environment to executing
agents. For example, the environment may add a
digital signature to data (signed with the private
device signature key) at the request of an agent.

Agent mobili ty service: enables agents to send
themselves (and associated stored state) to other
devices. The service also includes functionality to
assess received agents and any associated
security information to decide if an agent shall be
granted permission to execute on the platform.
Agents requesting transfer to another platform will
also be assessed for appropriate privileges here.
If required, the agent mobility service can add
platform specific information (e.g. agent trail)
before transmission. The agent mobility service is
responsible for setting up secure transmission
channels when required for agent transfers.

Event logg ing service: logs security relevant
events for storage in an audit trail. It may also
provide security intrusion detection based on
processing of recorded events.

agent management & control

agent mobility service

event logging service

agent security services

agent communication
services

agent execution area

access
control

database

security
policy

Storage
and post

processing

device
resources

and
subscription

module

other agent
execution

environments

TSP
remote resources

(inc. remote agents)

Figure 2 – Agent execution environment architecture

In addition to the described elements making up
the execution environment, the following
elements/functionality (which also appear in Figure
2) are part of the architecture.

The security policy and access control
database regulate the behaviour of the security
mechanisms. Information making up the security
policy could include a rule base describing how,
and when agents can be given access to the
execution environment, and can interact with each
other and their environment. Other examples
include the specification of security related events
for which log entries should be generated, and
what controls should be implemented in order for
an agent to start execution. The access control
database contains information governing how
various resources can be accessed by the various
parties (this information could, for example, be in
the form of an Access Control List (ACL) or a set
of capabilities, or some combination of the two).

Remote systems can dispatch agents to the
platform for execution. In the same manner, the
agent execution environment can dispatch agents
to execute in other environments.

Log storage and post processing manages and
processes log data once generated.

Device resources and subscription module
includes all kinds of resources (hardware and
software) residing on the device.

Trust Service Provider (TSP) provides various
trust services.

Remote resources are resources residing on
other platforms with which agents can
communicate, including other agents.

An agent

The various agent parts are likely to have different
properties that need to be addressed via
appropriate security mechanisms. The following
distinctions between component parts of an agent
can be made. Note that this agent model is
designed for the purposes of security analysis
only. As a result, important agent functionality
may not be covered within this model.

Core executable part: executable information.
This information is distinguished from other
information to allow a user to obtain an agent from
an independent party (agent provider).

Payloads: An agent is likely to have various kinds
of payloads. Payloads can consist of non-
executable data as well as executable information
required by the agent to fulfil its task. Execution
state, information supplied by the agent owner,
and information collected at various hosts (for
mobile agents), are all examples of payloads of an
agent. In addition to this, an agent can obtain
executable payloads to add agent functionality that
is not part of the core executable part.

By separating agent parts in this way integrity
verification values can be created where
appropriate. The use of the above distinctions
becomes particular apparent for mobile agents,
but is also relevant for agents that are transferred
to be executed on a platform not belonging to the
agent provider. (We are here defining a mobile
agent to be an agent that can move ‘on its own
initiative’ and continue execution in the
environment where it arrives.)

SECURITY SERVICES

Various classes of security services can be
identified in the context of the security model. We
focus on one such class, namely services to
protect the execution platform. However, we also
briefly review services to protect the agents.

Platform protection

We now describe security functionality addressing
the protection of the execution environment. Note
that agent execution environments will exist in
various kinds of devices and the precise
functionality, including security functionality,
provided by the environment will also vary.
Hence, the functionality described here may not
be implemented in every device.

Logical Access Control. The platform needs to
protect itself and its hosted agents against
unauthorised access. Such functionality is often
implemented in existing operating systems and
execution environments. It can be implemented
by using the sandbox concept, where executable
code (e.g. an agent) would be able to do anything
within the sandbox while any actions involving
resources outside the sandbox are closely
regulated and monitored. With this approach, the
effort necessary to ensure the correctness of code
received from outside the platform can be limited.
However, in order to make full use of agents they
need to be able to access resources outside the
sandbox. Resources outside the sandbox include
resources located on the same physical device as
well as the ability to communicate with other
devices/hosts/agents.

The execution environment has a security policy
that regulates the requirements under which an
access request will be granted. At this stage of
the system design process it appears possible that
an access control list (ACL) in combination with a
capability-based scheme may be required for the
provision of access control information. While an
ACL is rather static in its nature, although dynamic
changes to the list can be made, a capability
scheme allows a subject to provide the required
information at the point of an access request. A
capability scheme based on public key

cryptography and a PKI will allow for the required
delegation and transfer of rights between parties.

The agent management and control element is the
main entity within the agent environment
architecture enforcing access control. However
access control is also part of the functionality of
mobility, event logging, agent security, and agent
communication services.

Authentication of foreign code. To provide
flexibility a host needs to be able to receive,
retrieve and execute agents. In fact, this applies
to any downloadable code, and not only agents.
In a mobile environment, with constant changes
taking place, the ability to receive and execute
software is likely to be very important.

As mentioned above, limited access can be given
to an untrusted program in such a way that its
behaviour can be regulated to prevent any
potentially harmful behaviour. However, this is not
enough to provide more powerful functionality.
Applications will need to be given access to
resources that, if misused, can result in
unauthorised and potentially harmful actions.

Research on ‘provably secure code’ has been
undertaken for several years. This research aims
to verify that a piece of code is secure before it
begins execution. However useful this would be,
this is still very much an emerging area, and it is
not clear how feasible it would be to restrict agents
to those which have formal proofs of security. A
more pragmatic approach is to trust a particular
piece of software because one decides to trust the
developer/supplier of the software. This technique
is used in Java as well as in MExE (2). Using this
technique we need ways of verifying that a
particular piece of software does originate from a
particular party. This can be done through
cryptographic means.

When an agent arrives at the execution
environment, various security checks are made by
the mobility service. The following information
associated with the agent can be verified and used
by the mobility service in order to decide whether
an agent should be granted execution rights:
Agent owner, Agent provider, Required resources,
Submitting host, Agent trail.

Platform communication. The platform will
communicate with other entities in the
infrastructure. For example, agents will be
transferred between platforms and various trusted
service providers will be contacted. Depending on
the nature and sensitivity of the communication,
various levels of protection are required.

Event logging. Unlike most security features
which prevent security breaches, auditing enables
follow-up when something goes wrong. The main
purpose of an audit trail is to store information for

later examination. Examples of applications for
audit data include fraud detection, intrusion
detection, and follow-up in case of failure or
security breach. Audit information can also be
used for real-time monitoring in order to take
immediate actions in case of security violation.

The event logging service within the agent
execution environment is responsible for
generating audit trails. The security policy governs
what is regarded as a security event to be logged.
(Audit events can also be generated through the
initiative of an agent.)

Once audit data is generated it needs to be stored
and properly protected. Storage can be at the
local platform but can also be at a trusted party or
other remote site. If security of the platform is
compromised it can be valuable to have
transferred the audit data prior to the point of
attack. This does, of course, involve network
traffic, and hence is not always the best option.

Once stored, audit data can be analysed. The
analysis can be automatic, e.g. by looking for
known patterns or anomalies, or manual. The
latter would apply particularly in the case of a
security breach.

Agent protection

Analogously, security functionality is needed to
protect agents executing in the agent execution
environment. Issues to be addressed include:
physical security, agent/platform authentication,
agent mobility, agent communication, non-
repudiation and event logging.

CONCLUSIONS AND ACKNOWLEDGEMENTS

In future work within Mobile VCE Core 2 we will
develop specifications for security mechanisms
and protocols to provide the security services
specified in this security architecture.

The work reported in this paper has formed part of
the Software Based Systems area of the Core 2
Research Programme of the Virtual Centre of
Excellence in Mobile & Personal Communications,
Mobile VCE, www.mobilevce.com, whose
funding support, including that of the EPSRC, is
gratefully acknowledged. More detailed technical
reports on this research are available to Industrial
Members of Mobile VCE.

REFERENCES

1. FIPA, FIPA Abstract Architecture Specification.
Document number: XC00001J, 10/08/2001,
Available online from www.fipa.org.
2. ETSI, Mobile station application execution
environment (MExE), Functional description,
Stage 2, 3GPP TS23.057 version 4.3. Release 4,
October 2001.

