
Impostor: A Single Sign-On System
for Use from Untrusted Devices.

Andreas Pashalidis and Chris J. Mitchell
Information Security Group

Royal Holloway, University of London
Email: {A.Pashalidis,C.Mitchell}@rhul.ac.uk

Abstract— At present, network users have to manage a set
of authentication credentials (usually a username/password pair)
for every service with which they are registered. Single Sign-On
(SSO) has been proposed as a solution to the usability, security
and management implications of this situation. Under SSO, users
need to manage only one set of authentication credentials in
order to log into the services they subsequently use. This paper
presents the design of an SSO system that is based on a trusted
proxy, and that is suitable for use from an untrusted network
access device. Unlike existing proxy-based SSO schemes, which
require an infrastructure to be in place between the proxy and
the service providers, the one presented here does not. An open-
source implementation of the scheme, called ‘Impostor’, is also
described. The prototype is implemented as an HTTP proxy,
resulting in a system that works with common web browsers.

I. INTRODUCTION

Single Sign-On (SSO) has been proposed as a solution
to the issues that arise from the fact that network users
need to manage a set of authentication credentials (usually
a username/password pair) for every service with which they
are registered. Under SSO, users have to manage only one
set of authentication credentials in order to log into all SSO-
enabled services. Several architectures for SSO have been
developed, each with different properties and underlying in-
frastructures [1]. While some SSO systems are local, others
rely on a trusted third party often called the ‘SSO proxy’. In
a proxy-based architecture the proxy typically authenticates
users once at the beginning of a session (the ‘primary’
authentication), and automatically logs them into the services
they subsequently use.

One advantage of proxy-based SSO systems is that they
have the potential to enable user authentication to a variety
of remote service providers from untrusted network access
devices in a way that does not compromise the secrecy of
long-term user authentication credentials. This applies even
when the authentication methods used by remote service
providers would normally not offer any protection to user
credentials, e.g. the use of passwords. This paper presents
the design of an SSO scheme with this feature. The paper is
organised as follows. The next section defines what we mean
by an ‘untrusted’ network access device in the context of this
paper, and section III presents the objectives, architecture and
properties of the scheme at a design level. Section IV presents
‘Impostor’, a concrete prototype implementation of the scheme
in the form of an HTTP proxy. Section V discusses additional

technical issues and sections VI and VII give an overview of
related work and conclude the paper.

II. WHAT IS AN UNTRUSTED NETWORK ACCESS DEVICE?

A network access device can compromise security in a
number of ways; it can log and disclose all its internal state
(including sent and received messages, cryptographic keys and
passwords), it can spoof (both local and remote) interfaces,
and it can simply deny service. While users do not expect a
trustworthy device to engage in such malicious behaviour, the
meaning of a network access device being ‘untrusted’ has to
be precisely defined and assumptions about it made explicit
in order to provide a clear understanding of the scheme’s
objectives.

In order to clarify matters, consider the following scenario,
around which the scheme is built. Suppose a user needs to
access some network service, say an e-mail account, from
a network access device that he does not particularly trust,
for example a public terminal at an airport or an Internet
café. The user is typically willing to trust the terminal to act
as the communication endpoint and input device during this
particular online session, but for no longer. Now suppose that
the e-mail provider authenticates users using long-term creden-
tials, such as username/password pairs. Providing these long-
term credentials to the public terminal, however, constitutes
a serious risk since knowledge of these credentials enables
the terminal (and its operator) to impersonate the user to the
service provider, even after the session has ended. The primary
purpose of the scheme described here is to avoid this risk.

Based on the above scenario, a network access device is
deemed ‘untrusted’ if the following conditions hold.

• There exists a temporary trust relationship between the
user and the network access device: the former trusts the
latter only for the time period of a particular session, but
for no longer. In particular, during that session, the device
is trusted

– not to spoof local and remote user interfaces, and
– not to hijack communication sessions with individual

services.

• The device is not trusted to protect any long-term secrets,
i.e. secrets that remain valid after a particular online
session has completed, that may be entered or otherwise
made available to it.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Royal Holloway - Pure

https://core.ac.uk/display/28899561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Issues that arise if these conditions are relaxed are briefly
discussed in section V-A. It is worth noting that the use
of secure channels, such as those provided by the Secure
Socket Layer (SSL) or the Transport Layer Security (TLS)
protocols [2], does not help protect sensitive data from the
untrusted device, although a secure channel would offer pro-
tection for exchanged data against third party interception
and/or manipulation.

III. DESCRIPTION OF THE SSO SCHEME

This section describes the objectives, the architecture and
certain key properties of the SSO scheme at a design level.

A. Objectives

Methods exist that enable users to authenticate themselves
to remote entities without having to disclose long-term se-
crets to the access device they are using. Examples include
challenge/response protocols and one-time passwords, see, for
example, [3], and products based on such ideas are widely
available. These authentication mechanisms are suitable for
use from an untrusted device, but, unfortunately, are rarely
used by providers of public network services. The majority of
services authenticate users based on a username and password.

Based on these observations, the primary three objectives
of the SSO scheme are as follows.

1) The scheme should enable users to authenticate them-
selves from an untrusted network access device (as
defined in section II) to remote service providers whose
login mechanisms involve long-term secrets (such as
passwords), without, however, disclosing these long-
term secrets to the access device.

2) The scheme should require users to manage only one set
of authentication credentials, thereby providing SSO.

3) The scheme should be transparent to network service
providers; they should not even need to be aware that it
is in place.

B. Architecture

The architecture of the scheme is based on a trusted SSO
proxy that keeps a copy of the user’s long-term authentication
credentials in a suitably protected credential database. All
network traffic between the untrusted device and the remote
service providers is physically routed though that proxy. The
information flow that occurs in the event of a user trying to
log into a network service is depicted in Figure 1. As shown in
that figure, the user’s login request to a remote network service
provider is recognised and intercepted by the proxy in step 1.
In step 2 the proxy authenticates the user using a suitable one-
time authentication mechanism, typically including a challenge
issued by the proxy (step 2.1) and a response from the user
(step 2.2). Assuming successful user authentication, the proxy
executes the authentication mechanism used by the network
service on behalf of the user in step 3. This would typically
involve employing the user’s long-term secrets that are stored
in the credential database. The secrets, however, never reach
the untrusted network access device, as step 3 occurs directly

Fig. 1. Architecture

between the proxy and the remote service provider. Finally,
assuming that step 3 completes successfully, the service is
provisioned in step 4 and the first objective listed in section III-
A is met.

The second objective is met by differentiating between users
(in step 2) based on a unique identifier which is decoupled
from any particular network service; users have to memorise or
otherwise have available only that one identifier and carry out
the one-time authentication in order to use the system. Finally,
the third objective is met by having the proxy replace the
user’s network address with its own when forwarding requests
to network services. In this way service providers only ‘see’
the proxy and are therefore not aware of step 2 taking place.
Within the various types of SSO scheme, this architecture falls
into the category of proxy-based pseudo-SSO schemes [1].

C. Properties

As a proxy-based pseudo-SSO scheme, the system inherits
all the properties of that particular class of SSO scheme. In
particular, changes in a network service’s proprietary authen-
tication interface have to be reflected at the proxy. This means
that maintenance costs may be relatively high, especially in a
dynamically changing environment. The fact, however, that the
proxy is transparent to service providers enables its immediate
and cost-effective deployment.

As it is the case with any proxy-based SSO scheme,
the proxy constitutes a single point of failure and has to
be protected against service denial attacks. Furthermore, its
credential database has to be properly protected against illegal
access, as it contains long-term secrets that allow imperson-
ation of users to all SSO-enabled network services. However,
this is not as severe an assumption as it might seem; in practise
the proxy might be implemented on the user’s own ‘home
PC’, which would already typically be trusted to store such
secrets (e.g. in the form of cookies), and is not likely to be a
major target for service denial attacks. In the corporate setting,
on the other hand, using proxy chaining and load balancing
techniques could offer an acceptable level of resistance against
service denial attacks. Furthermore, the credential database
could be stored in an encrypted form at a centralised server
within a protected area of the intranet.

As a consequence of the proxy’s need to intercept all traffic
between the user and the rest of the network, no end-to-end



secure channels between the untrusted device and any service
are allowed; if a secure channel is nevertheless required at the
application level, the proxy has to set up two separate secure
channels, one with the user and one with the service, such that
interception can continue.

IV. THE IMPOSTOR PROTOTYPE

This section presents ‘Impostor’, a proof-of-concept imple-
mentation of the SSO architecture described in the previous
section. Although the SSO architecture is generic in the
sense that it could be used for several network services,
such as the File Transfer Protocol [4] or the Simple Mail
Transfer Protocol [5], Impostor is realised as an HTTP (web)
proxy. Thus, the prototype offers SSO for websites only. It
is intended to be started as a continually running process
(also known as ‘service’ or ‘dæmon’) on a trusted ‘SSO
server’ machine. The implementation was written in Java 1.4
and has been successfully tested with a variety of common
web browsers and operating systems, both Unix-based and
Windows-based. It is available as an open source project at
http://impostor.sf.net.

The core of the software consists of an HTTP proxy, aug-
mented with the SSO functionality described in the previous
section; every incoming request to the proxy is analysed
(step 1 in Figure 1) and, if it is recognised as a login request
for a website for which the proxy has been equipped with
user authentication credentials, the proxy presents the user
with a (customisable) login web-page that contains a freshly
generated challenge, and asks the user to provide his/her
unique identifier and a response (step 2). If the identifier is
valid and the response matches the challenge1, the user’s long-
term credentials for the website in question are filled into the
initial HTTP request from the user, which is then forwarded
to the website (step 3). Otherwise, an error page is returned.
If an incoming request is not recognised as a login request the
proxy simply forwards it to the website.

If, at any stage, an SSL/TLS channel is required (via the
HTTPS scheme), the proxy sets up two separate channels:
one with the website and one with the user browser. The
certificate the proxy uses to setup the browser-side SSL/TLS
connection does not, of course, match the website’s certificate,
but, fortunately, this does not disrupt the service as browsers
typically offer the option to accept ‘unknown’ certificates via
a simple yes/no dialogue2. Moreover, users should expect this,
as they will certainly know that Impostor is being used, and
will also know the web page via which the proxy is operating.

Impostor offers an additional privacy protection service by
passing every web page to a method that may filter its content,
before sending it back to the browser. In this way it is possible
to prevent personal information, such as a user’s address or
credit card details, ever reaching the untrusted device. It is

1The proxy rejects replays of previously accepted responses and responses
that are received after a specified timeout period.

2The situation is fortunate in the context of an untrusted network access
device and the SSO scheme of this paper; in other scenarios it is certainly a
weakness [6].

worth emphasising that this filtering service is not disrupted
in the presence of an SSL/TLS channel.

The software is designed in a modular fashion, such that
it is easy to extend or replace individual components without
affecting the functionality of unrelated components. In Java
terminology, the core proxy dæmon classes form a package
that ‘talks’, via well-defined APIs (i.e. Java interfaces), to the
supporting components (i.e. classes) that are responsible for
(1) recognising and ‘filling in’ HTTP requests for websites,
(2) performing the one-time authentication mechanism, (3)
managing the credential database, and (4) performing content
filtering. In other words, the proxy dæmon is logically de-
coupled from these four components; it does not directly im-
plement their functionality. Thus, separate implementations of
these interfaces need to be provided in order to make Impostor
work. The interfaces, along with their current implementations,
are briefly introduced in the remainder of this section.

A. The RequestRecognizer interface

The RequestRecognizer interface provides access to the
methods supporting the identification and processing of user
login requests to websites. Every incoming HTTP request
is passed to a method (called init) of this interface. If
the implementation recognises it as a login request to a
website (step 1 in Figure 1), the proxy is informed (via
the isRecognized method) and invokes the SSO protocol,
as explained above. The implementation of this interface
must also provide a method that ‘fills in’ user credentials
(i.e. usernames and passwords) into the request. The proxy
calls this method (fillInUsernameAndPassword) after
successful one-time user authentication (step 2) in order to
perform the service-specific legacy authentication (step 3). If
an incoming request is not recognised as a login request the
proxy simply forwards it to the website.

The current implementation recognises and ‘fills in’ login
requests for three web-based email providers, namely two
well-known public providers and a university service.

B. The ChallengeResponseManager interface

The proxy uses an implementation of the ChallengeRespon-
seManager interface in order to perform the one-time user au-
thentication; the interface provides methods for issuing a new
challenge (getNewChallenge), determining whether or not
a given user identifier is valid (isValidIdentifier), and
verifying a given response to a previously issued challenge
(verifyResponse).

The challenge/response mechanism of the current imple-
mentation requires users to share a passphrase (at least eight
characters) with the proxy server. The challenge consists of
the proxy asking the user to provide three randomly chosen
characters from his passphrase (e.g. the second, fifth and last).
If the user fails to provide the correct response, the server
keeps asking for the same set of characters until either the
correct response is given, or a maximum number (e.g. five) of
failures has been recorded. In the latter case, the user’s account
at the proxy is disabled. This challenge/response mechanism



could be, in principle, easily replaced with any mechanism
such as one of those mentioned in section III-A.

C. The UserManager interface

The UserManager interface defines the API used by
the proxy dæmon to interact with the credential database
management component. The implementation must provide
the functionality of mapping proxy users to their website-
specific authentication credentials. In particular, methods
must be provided that retrieve the website-specific user-
names (getUsernameForIdentifier) and passwords
(getPasswordForIdentifier) for any valid proxy user
identifier/SSO-enabled website combination.

The current implementation uses a simple, text-based cre-
dential database, but it could be replaced by arbitrarily com-
plex installations.

D. The ContentFilter interface

The ContentFilter interface provides methods used to sup-
port the privacy protection service mentioned above. These
methods filter HTTP headers (filterHTTPHeaders) and
web pages (filterWebPageLine) before the proxy for-
wards them to the browser; the implementation looks for any
kind of information that should not be sent to the untrusted
network access device and substitutes it with a neutral (or
empty) string.

The current implementation looks for a set of strings spec-
ified by the administrator. If any of these ‘sensitive’ strings is
found, it is replaced by a string that is chosen randomly from a
set of substitution strings for the particular sensitive one. This
fairly basic (but nevertheless effective) filtering mechanism
could be replaced with a more sophisticated content filtering
technique.

V. OTHER ISSUES

A. Relaxing the assumptions

As explained in section II, the untrusted network access
device is assumed not to spoof user interfaces or to hijack
communication sessions with individual services. This section
briefly examines the implications of relaxing these assump-
tions.

If the untrusted device spoofs the user interface then there
is no assurance that users are communicating with the entities
they believe they are communicating with, even in the absence
of external attacks. This is because authenticating a remote
entity requires some kind of interface informing the user
whether or not authentication was successful. If this interface
is provided by a trusted device, such as a trusted smartcard
reader, authentication of services (including the SSO proxy)
could be supported in this untrusted environment. The value
of such an authentication, however, is undermined in the
presence of session hijacking. If the untrusted device hijacks
the user’s session (either on its own or colluding with another
entity) it can effectively abuse the user’s authentication status
at any service. This renders any authentication mechanism
(unilateral or mutual) between user and services useless, even

if it results in a key that is supposed to cryptographically
protect subsequent communications (as it is the case with
SSL/TLS channels).

It is clear that, if the untrusted device spoofs its interfaces or
hijacks the communication sessions with individual services,
the user’s entire online session is compromised. A network
access device that engages in such malicious behaviour is not
addressed by the SSO scheme described here. It is nevertheless
worth noting that, even in the presence of interface spoofing
and session hijacking, users of the scheme described here do
not have to disclose long-term secrets to the untrusted device;
as long as those secrets are not disclosed by other sources,
only the current session is compromised.

B. Some technicalities

This section documents some technical issues that arose
during the implementation of the SSO proxy.

1) Setting up Impostor: As explained in section IV above,
the Impostor prototype is independent of its supporting com-
ponents. Therefore, ‘setting up’ the system mainly involves
setting up the components responsible for the one-time user
authentication mechanism and the credential database man-
agement, i.e. populating them with the user’s Impostor and
website-specific authentication credentials. It is also necessary
to generate the asymmetric keypair (and a corresponding
public key certificate) that Impostor will use when setting
up browser-side SSL/TLS connections. Finally, the Impostor
login webpage and error page have to be designed according
to some simple guidelines that allow the proxy to dynamically
insert challenge values (and other details) at runtime.

2) HTTP Authentication: In [7] the “HTTP Authentication”
method is specified that is often used by websites and web
proxies to authenticate users. Although there is provision for
a challenge/response mechanism with the one-time property
(called ‘Digest Access Authentication’), it involves users typ-
ing their usernames and passwords into the access device.
Thus, during user-to-proxy authentication (step 2 in Figure 1),
a standard web form is used to acquire the user’s identifier
and response.

In order to authenticate users to websites (step 3), on the
other hand, the SSO proxy can perform the HTTP Authenti-
cation protocol as long as the RequestRecognizer component
supports it. (In fact, the university web-based email service
mentioned in section IV-A uses HTTP Authentication.)

3) The use of cookies: The web proxy does not, by default,
interfere with the cookies that individual services may store in
the browser. It is possible, however, to filter out cookies using
the content filtering facility described above. The proxy itself
does not save cookies in the browser.

4) Persistence of connections: The proxy does not currently
support persistent connections; every incoming HTTP request
is processed independently of others. This has a number of
side effects: on the one hand, the user has to re-authenticate
every time the proxy is asked to provide long-term credentials;
this reduces the exposure to session hijacking. On the other
hand, the performance is degraded in certain circumstances.



5) Real world applicability: From a practical point of view,
the main drawback of the Impostor prototype is that users
are required to configure their browsers to use the proxy, i.e.
change the settings of the untrusted device’s browser. Some
public terminals impose restrictions on this. Another issue may
arise with firewalls between the untrusted device and the proxy.
Running the proxy on a port that is usually not blocked by
firewalls (such as port 80 or 22) may help circumvent that
problem.

VI. RELATED WORK

There exists a variety of SSO architectures; a detailed
comparison can be found in [1]. The scheme described here
falls into the category of a proxy-based pseudo-SSO scheme.

Web-based SSO schemes that are based on a trusted SSO
proxy, such as the set of the Liberty Alliance [8] specifications
and Microsoft Passport [9], are probably the most closely
related schemes to the Impostor prototype. Liberty in particular
is neutral to any specific authentication method. This means
that, if a suitable mechanism is selected, use from an untrusted
network access device can be supported. However, as pointed
out in [1], Liberty and Passport are true SSO schemes. This
means that explicit relationships between the SSO proxy and
the service providers need to be established and supported
by a (potentially costly) common security infrastructure (such
as a Public Key Infrastructure) that spans the SSO proxy,
all participating websites and eventually even the end-users.
In contrast, as the scheme described here is transparent to
service providers, it does not require explicit relationships or
any common security infrastructure between the proxy and
service providers; the solution is far more flexible and easily
deployed. Furthermore, it can be implemented on a small or
large scale; the proxy can be operated by any organisation,
including individual users, and not just by organisations with
well-established relationships with service providers.

Local SSO schemes, such as Novell’s SecureLogin3, Pass-
logix’ V-GO4 and Protocom’s SecureLogin5 are SSO solutions
that can be deployed transparently to service providers. The
fundamental difference between these systems and the pro-
totype described here is that these systems are not suitable
for use from an untrusted network access device; the local
device necessarily gets access to the user’s service-specific
authentication credentials.

Another area of related work is that of content filtering
proxies. The majority of existing content filtering proxies focus
on the protection of minors from inappropriate content and the
restriction of employees in a business environment. Although
the purpose of the content filtering functionality of the system
presented here is different, the concept is similar.

3www.novell.com/products/securelogin
4www.passlogix.com/sso
5www.protocom.cc

However, one ought to keep in mind that a malicious device
can always ‘switch off’ the proxy without notification.

VII. CONCLUSION

We presented the design of a proxy-based pseudo-SSO
scheme and described a prototype implementation of it. The
scheme essentially overlays a single, one-time authentication
method over legacy authentication mechanisms of individual
service providers, thereby providing SSO. The prototype,
which works ‘in the real world’ as an HTTP proxy in a manner
completely transparent to websites, is easily extensible and
does not specify any particular one-time authentication method
or database component; it may be deployed by individual users
or in a corporate setting.

Looking into the future of ubiquitous computing, where
personal devices with limited (or no) user interfaces might
need to connect to various service providers as users roam,
pseudo-SSO schemes such as the one presented in this paper
might prove useful; all the limited devices are required to
perform is one authentication mechanism with the trusted
proxy. The proxy, as a middleware service, then executes
predefined authentication mechanisms with each individual
service provider, not only circumventing the (costly) need for
system-wide agreements and infrastructures, but also transpar-
ently adapting to a dynamically changing environment.

ACKNOWLEDGMENT

The first author is supported by the State Scholarship
Foundation of Greece.

REFERENCES

[1] A. Pashalidis and C. J. Mitchell, “A taxonomy of single sign-on systems,”
in Information Security and Privacy, 8th Australasian Conference, ACISP
2003, Wollongong, Australia, July 9-11, 2003, Proceedings, ser. Lecture
Notes in Computer Science, R. Safavi-Naini and J. Seberry, Eds., vol.
2727. Springer-Verlag, July 2003, pp. 249–264.

[2] E. Rescorla, SSL and TLS. Reading, Massachusetts: Addison-Wesley,
2001.

[3] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. CRC Press, Boca Raton, 1997.

[4] J. Postel and J. Reynolds, RFC 959: File Transfer Protocol, Internet
Engineering Task Force, October 1985.

[5] RFC 2821: Simple Mail Transfer Protocol, Internet Engineering Task
Force, April 2001.

[6] A. Pashalidis, “A cautionary note on automatic proxy configuration,”
in IASTED International Conference on Communication, Network, and
Information Security, CNIS 2003, New York, USA, December 10-12, 2003,
Proceedings, M. Hamza, Ed. ACTA Press, December 2003, pp. 153–158.

[7] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luoto-
nen, and L. Stewart, RFC 2617: HTTP Authentication: Basic and Digest
Access Authentication, Internet Engineering Task Force, June 1999.

[8] Liberty ID-FF Architecture Overview DRAFT Version 1.2-03, Liberty
Alliance, April 2003.

[9] Microsoft .NET Passport Review Guide, Microsoft, November 2002.


