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Abstract

In this paper we consider a wide class of truncated stochastic approxima-
tion procedures. These procedures have three main characteristics: trunca-
tions with random moving bounds, a matrix valued random step-size sequence,
and a dynamically changing random regression function. We establish con-
vergence and consider several examples to illustrate the results.
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1 Introduction

Stochastic approximation (SA) introduced by Robbins and Monro in 1951 ([21]) was
created to locate a root of an unknown function when only noisy measurements of the
function can be observed. SA quickly became very popular, resulting in interesting
new developments and numerous applications across a wide range of disciplines.
Comprehensive surveys of the SA technique including some recent developments
can be found in [3], [4], [14], [15], [16], [17].

In this paper we consider a wide class of truncated SA procedures with moving
random bounds. While we believe that the proposed class of procedures will find
its way to a wider range of applications, the main motivation is to accommodate
applications to parametric statistical estimation theory. Our class of SA procedures
has three main characteristics: truncations with random moving bounds, a matrix-
valued random step-size sequence, and a dynamically changing random regression
function.

To introduce the main idea, let us first consider the classical problem of finding
a unique zero, say z0, of a real valued function R(z) : R→ R when only noisy mea-
surements of R are available. To estimate z0, consider a sequence defined recursively
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as
Zt =

[
Zt−1 + γt (R(Zt−1) + εt)

]βt
αt
, t = 1, 2, . . . (1.1)

where εt is a sequence of zero-mean random variables and γt is a deterministic
sequence of positive numbers. Here αt and βt are random variables with −∞ ≤
αt ≤ βt ≤ ∞ and [v]ba is the truncation operator, that is,

[v]ba =


a if v < a,

v if a ≤ v ≤ b,

b if v > b.

We assume that the truncation sequence [αt, βt] contains z0 for large values of
t. For example, if it is known that z0 belongs to (α, β), with −∞ ≤ α ≤ β ≤ ∞,
one can consider truncations with expanding bounds to avoid possible singularities
at the endpoints of the interval. That is, we can take [αt, βt] with some sequences
αt ↓ α and βt ↑ β. Truncations with expanding bounds may also be useful to
overcome standard restrictions on growth of the corresponding functions.

The most interesting case arises when the truncation interval [αt, βt] represents
our auxiliary knowledge about z0 at step t, which is incorporated into the procedure
through the truncation operator. Consider for example a parametric statistical
model. Suppose that X1, . . . , Xt are independent and identically distributed random
variables and f(x, θ) is the common probability density function (w.r.t. some σ-finite
measure) depending on an unknown parameter θ ∈ Rm. Consider the recursive
estimation procedure for θ defined by

θ̂t = θ̂t−1 +
1

t
i(θ̂t−1)

−1 f
′T (Xt, θ̂t−1)

f(Xt, θ̂t−1)
, t ≥ 1. (1.2)

where f ′ is the row-vector of partial derivatives of f w.r.t. the components of θ, i(θ)
is the one-step Fisher information matrix, and θ̂0 ∈ Rm is some initial value. This
estimator was introduced in [23] and studied in [10], [13] and [20]. In particular, it
has been shown that under certain conditions the recursive estimator θ̂t is asymp-
totically equivalent to the maximum likelihood estimator, i.e., it is consistent and
asymptotically efficient. The analysis of (1.2) can be conducted by rewriting it in
the form of stochastic approximation. Indeed, in the case of (1.2), let us fix θ and
let γt = 1/t,

R(z) = i(z)−1Eθ

{
f ′T (Xt, z)

f(Xt, z)

}
and εt = i(θ̂t−1)

−1

(
f ′T (Xt, θ̂t−1)

f(Xt, θ̂t−1)
−R(θ̂t−1)

)

(Eθ is expectation w.r.t. f(x, θ)). Then, under the usual regularity assumptions,
R(θ) = 0 and εt is a martingale difference (w.r.t. the filtration Ft generated by the
observations). So, (1.2) is a standard SA of type (1.1) without truncations (i.e., in
the one dimensional case, −αt = βt =∞).
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However, the need of truncations may naturally arise from various reasons. One
obvious consideration is that the functions in the procedure may only be defined
for certain values of the parameter. In this case one would want the procedure
to produce points only from this set. Truncations may also be useful when the
standard assumptions such as restrictions on the growth rate of the relevant func-
tions are not satisfied. More importantly, truncations may provide a simple tool
to achieve an efficient use of information available in the estimation process. This
information can be auxiliary information about the parameters, e.g. a set, possi-
bly time dependent, that is known to contain the value of the unknown parameter.
Suppose for instance that a consistent (i.e., convergent), but not necessarily effi-
cient auxiliary estimator θ̃t is available having a rate dt. Then one can consider a
truncated procedure with shrinking bounds. The idea is to obtain asymptotically
efficient estimator by truncating the recursive procedure in a neighbourhood of θ
with [αt, βt] = [θ̃t − δt, θ̃t + δt], δt → 0. Such a procedure is obviously consistent
since θ̂t ∈ [θ̃t − δt, θ̃t + δt] and θ̃t ± δt → θ. However, to construct an efficient esti-
mator, care should be taken to ensure that the truncation intervals do not shrink to
θ̃t too rapidly, for otherwise θ̂t will have the same asymptotic properties as θ̃t (see
[29] for details in the case of AR processes). Since this paper is concerned with the
convergence, details of this application is not discussed here. However, since the
procedures with shrinking bounds are particular cases of the general SA procedure
below (see (2.1)), asymptotic distribution and efficiency can be studied in an unified
manner using ideas of SA.

Note that the idea of truncations with moving bounds is not new. For example,
an idea of truncations with shrinking bounds goes back to [13] and [10]. Truncations
with expanding bounds were considered in [1] and also, in the context of recursive
parametric estimation, in [24] (see also [29]). Truncations with adaptive truncation
sets of the Robbins-Monro SA were introduced in [5], and further explored and
extended in [6], [2], [31], [32], [18]. The latter algorithms are designed in such a
way, that the procedure is pulled back to a certain pre-specified point or a set, every
time the sequence leaves the truncation region. As one can see from (1.1) and (2.1),
truncation procedures considered in this paper are quite different from the latter
ones and are similar to the the ones introduced in [13], [10] and [1]. A detailed
comparison of these two different approaches is given in [1].

Let us now consider a discrete time stochastic processes X1, X2, . . . with the joint
distribution depending on an unknown parameter θ ∈ Rm. Then one can consider
the recursive estimator of θ defined by

θ̂t = θ̂t−1 + γt(θ̂t−1)ψt(θ̂t−1), t ≥ 1, (1.3)

where ψt(v) = ψt(X1, . . . , Xt; v), t = 1, 2, . . . , are suitably chosen functions which
may, in general, depend on the vector of all past and present random variables
and have the property that the process ψt(θ) is P θ- martingale difference, i.e.,
Eθ {ψt(θ) | Ft−1} = 0 for each t. For example, if ft(x, θ) = ft(x, θ|X1, . . . , Xt−1) is
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the conditional probability density function of the observationXt givenX1, . . . , Xt−1,
then one can obtain a likelihood type estimation procedure by choosing ψt(v) =
lt(v) = f ′t(Xt, v)/ft(Xt, v). Asymptotic behaviour of this type of procedures for non
i.i.d. models was studied by a number of authors, see e.g., [7], [9], [19], [25] –
[28]. Results in [28] show that to obtain an estimator with asymptotically optimal
properties, one has to consider a state-dependent matrix-valued random step-size
sequence. One possible choice is γt(u) with the property

γ−1t (v)− γ−1t−1(v) = Eθ{ψt(v)lTt (v) | Ft−1}

In particular, to obtain a recursive procedure which is asymptotically equivalent to
the maximum likelihood estimator, one has to consider lt(v) = f ′t(Xt, v)/ft(Xt, v)
and γt(v) = I−1t (v), where It(v) is the conditional Fisher information matrix (see
[28] for details). To rewrite (1.3) in a SA form, let us assume that θ is an arbitrary
but fixed value of the parameter and define

Rt(z) = Eθ {ψt(Xt, z) | Ft−1} and εt(z) = (ψt(Xt, z)−Rt(z)) .

Obviously, Rt(θ) = 0 for each t, and εt(z) is a martingale difference.
Therefore, to be able to study these procedures in an unified manner, one needs

to consider a SA of the following form

Zt =
[
Zt−1 + γt(Zt−1)

{
Rt(Zt−1) + εt(Zt−1)

}]
Ut
, t = 1, 2, . . .

where Rt(z) is predictable with the property that Rt(z
0) = 0 for all t’s, γt(z) is

a matrix-valued predictable step-size sequence, Ut ⊂ Rm is a random sequence of
truncation sets, and Z0 ∈ Rm is some starting value (see Section 2 for more details).

To summarise the above, the procedures introduced in this paper have the follow-
ing features: (1) inhomogeneous random functions Rt; (2) state dependent matrix
valued random step sizes; (3) truncations with random and moving (shrinking or
expanding) bounds. These are mainly motivated by parametric statistical appli-
cations. In particular, (1) is required to include recursive parameter estimation
procedures for non i.i.d. models, (2) is needed to guarantee asymptotic optimal-
ity and efficiency of statistical estimation, (3) is required to accommodate various
different adaptive truncations, including the ones arising by auxiliary estimators.
Also, the convergence of these procedures is studied under very general conditions
and the results might be of interest even for the procedures without truncations
(i.e., when Ut = Rm) and with a deterministic and homogeneous regression function
Rt(z) = R(z).

The paper is organised as follows. In Sections 2.2 we prove two theorems on
the convergence. The analysis is based on the method of using convergence sets of
nonnegative semimartingales. The decomposition into negative and positive parts in
these theorems turns out to be very useful in applications (see Example 3 in Section
2.4). In Section 2.3 we give several corollaries in the case of state independent scalar
random step-size sequences. In Section 2.4 we consider examples. Proofs of some
technical parts are postponed to Section 3.
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2 Convergence

2.1 Main objects and notation

Let (Ω, F , F = (Ft)t≥0, P ) be a stochastic basis satisfying the usual conditions.
Suppose that for each t = 1, 2, . . . , we have (B(Rm)×F)-measurable functions

Rt(z) = Rt(z, ω) : Rm × Ω→ Rm

εt(z) = εt(z, ω) : Rm × Ω→ Rm

γt(z) = γt(z, ω) : Rm × Ω→ Rm×m

such that for each z ∈ Rm, the processes Rt(z) and γt(z) are predictable, i.e.,
Rt(z) and γt(z) are Ft−1 measurable for each t. Suppose also that for each z ∈
Rm, the process εt(z) is a martingale difference, i.e., εt(z) is Ft measurable and
E {εt(z) | Ft−1} = 0. We also assume that

Rt(z
0) = 0

for each t = 1, 2, . . . , where z0 ∈ Rm is a non-random vector.

Suppose that h = h(z) is a real valued function of z ∈ Rm. We denote by h′(z)
the row-vector of partial derivatives of h with respect to the components of z, that
is,

h′(z) =

(
∂

∂z1
h(z), . . . ,

∂

∂zm
h(z)

)
.

Also, we denote by h′′(z) the matrix of second partial derivatives. The m × m
identity matrix is denoted by 1.

Let U ⊂ Rm is a closed convex set and define a truncation operator as a function[
z
]
U

: Rm −→ Rm, such that

[
z
]
U

=

{
z if z ∈ U
z∗ if z /∈ U,

where z∗ is a point in U , that minimizes the distance to z.
Suppose that z0 ∈ Rm. We say that a random sequence of sets Ut = Ut(ω)

(t = 1, 2, . . . ) from Rm is admissible for z0 if

• for each t and ω, Ut(ω) is a closed convex subset of Rm;

• for each t and z ∈ Rm, the truncation
[
z
]
Ut

is Ft measurable;

• z0 ∈ Ut eventually, i.e., for almost all ω there exist t0(ω) < ∞ such that z0 ∈
Ut(ω) whenever t > t0(ω).
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Assume that Z0 ∈ Rm is some starting value and consider the procedure

Zt =
[
Zt−1 + γt(Zt−1)Ψt(Zt−1)

]
Ut
, t = 1, 2, . . . (2.1)

where Ut is admissible for z0,

Ψt(z) = Rt(z) + εt(z),

Rt(z), εt(z), γt(z) are random fields defined above,

E {Ψt(Zt−1) | Ft−1} = Rt(Zt−1), (2.2)

E
{
εTt (Zt−1)εt(Zt−1) | Ft−1

}
=
[
E
{
εTt (z)εt(z) | Ft−1

}]
z=Zt−1

, (2.3)

and the conditional expectations (2.2) and (2.3) are assumed to be finite.

Remark 2.1 Note that (2.2) in fact means that the sequence εt(Zt−1) is a martin-
gale difference. Conditions (2.2) and (2.3) obviously hold if, e.g., the measurement
errors εt(u) are independent random variables, or if they are state independent. In
general, since we assume that all conditional expectations are calculated as integrals
w.r.t. corresponding regular conditional probability measures (see the convention
below), these conditions can be checked using disintegration formula (see, e.g., The-
orem 5.4 in [12]).

Convention.
• Everywhere in the present work convergence and all relations between random vari-
ables are meant with probability one w.r.t. the measure P unless specified otherwise.
• A sequence of random variables (ζt)t≥1 has some property eventually if for every
ω in a set Ω0 of P probability 1, the realisation ζt(ω) has this property for all t
greater than some t0(ω) <∞.
•We assume that all conditional expectations are calculated as integrals w.r.t. cor-
responding regular conditional probability measures.
• We will also assume that the infz∈U h(z) of a real valued function h(z) is 1 when-
ever U = ∅.

2.2 Convergence theorems

Theorem 2.2 Let Zt be a process defined by (2.1), (2.2) and (2.3), with an admis-
sible for z0 ∈ Rm truncation sequence Ut. Let V (u) : Rm −→ R be a real valued
nonnegative function having continuous and bounded partial second derivatives. De-
note

Mt = Zt − z0

and suppose that the following conditions are satisfied.
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(L)

V
(
Mt

)
≤ V

(
Mt−1 + γt(Zt−1)Ψt(Zt−1)

)
eventually.

(S)
∞∑
t=1

(1 + V (Mt−1))
−1 [Nt(Mt−1)]

+ <∞, P -a.s. (2.4)

where

Nt(u) = V ′(u)γt(z
0 + u)Rt(z

0 + u)

+
1

2
sup
v
‖V ′′(v)‖E

{
‖γt(z0 + u)Ψt(z

0 + u)‖2 | Ft−1
}
.

Then V (Zt − z0) converges (P -a.s.) to a finite limit for any initial value Z0. Fur-
thermore,

∞∑
t=1

[Nt(Mt−1)]
− <∞, P -a.s. (2.5)

Proof. As always (see the convention in 2.1), convergence and all relations be-
tween random variables are meant with probability one w.r.t. the measure P unless
specified otherwise.

From condition (L), using the Taylor expansion,

V (Mt) ≤ V (Mt−1) + V ′(Mt−1)γt(z
0 + Mt−1)Ψt(z

0 + Mt−1)

+
1

2

[
γt(z

0 + Mt−1)Ψt(z
0 + Mt−1)

]T
V ′′(M̃t−1)γt(z

0 + Mt−1)Ψt(z
0 + Mt−1),

where M̃t−1 ∈ Rm is Ft−1-measurable. Using (2.2) and (2.3) and taking the condi-
tional expectation w.r.t. Ft−1 yields

E {V (Mt) | Ft−1} ≤ V (Mt−1) +Nt(Mt−1). (2.6)

Using the obvious decomposition Nt(Mt−1) = [Nt(Mt−1)]
+ − [Nt(Mt−1)]

−, we can
write

Nt(Mt−1) = (1 + V (Mt−1))
−1 [Nt(Mt−1)]

+ (1 + V (Mt−1))− [Nt(Mt−1)]
−

= Bt (1 + V (Mt−1))− [Nt(Mt−1)]
−.

where
Bt = (1 + V (Mt−1))

−1 [Nt(Mt−1)]
+.

Hence (2.6) implies that

E {V (Mt) | Ft−1} ≤ V (Mt−1)(1 +Bt) +Bt − [Nt(Mt−1)]
−, (2.7)
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eventually and, by (2.4),
∞∑
t=1

Bt <∞. (2.8)

According to the Robbins-Siegmund Lemma (see e.g., [22]) inequalities (2.7) and
(2.8) imply that (2.5) holds and V (Mt) converges to some finite limit. ♦

Remark 2.3 To describe the meaning of the conditions, let us consider a one di-
mensional case and assume for simplicity that the step-size sequence is state inde-
pendent and positive, i.e. γt(u) = γt > 0. Assume also that V (u) = u2, which is
the most common choice of the function V . Then, the definition of the truncation
operator ensures that condition (L) holds. Also, since V ′(u) = 2u and V ′′(u) = 2,

Nt(u) = 2uγtRt(z
0 + u) + γ2tE

{
Ψ2
t (z

0 + u) | Ft−1
}

(2.9)

and since E {εt(z) | Ft−1} = 0 and Rt(z) is Ft−1-measurable, the second term of N
can be written as

γ2tE
{

Ψ2
t (z

0 + u) | Ft−1
}

= γ2tR
2
t (z

0 + u) + γ2tE
{
ε2t (z

0 + u) | Ft−1
}
. (2.10)

Now recall that a typical assumption in SA is that the derivative of R function at
the root z0 is negative. So, the first term of N is expected to be negative at least for
small values of u. It therefore follows that in (2.4), [Nt(u)]+ can be replaced by its
second term (2.10) implying that (2.4) holds if

∞∑
t=1

γ2t
R2
t (Mt−1)

1 + M2
t−1

<∞ and
∞∑
t=1

γ2t
E {εt(Mt−1)

2 | Ft−1}
1 + M2

t−1
<∞ (2.11)

Assuming that
∑∞

t=1 γ
2
t < ∞ , the two conditions above are very similar to the

classical ones in SA. Recall that in the classical case when Rt(u) = R(u), a standard
assumption is that R2(u) ≤ B(1 + u2) for some positive B. So, the first condition
in (2.11) restricts the rate of growth of R functions w.r.t. u at infinity. The second
part of (2.11) is also a natural generalisation of the corresponding condition in the
classical SA. If for example, the error terms are state independent, then it reduces to
(2.17) below. This implies that the variances (or conditional variances) of the error
terms can even go to infinity, as far as the finiteness of the sum in (2.17) holds. It
also follows from the above analysis that the step-size sequence can go to zero at any
rate as far as

∑∞
t=1 γ

2
t <∞. Note that Theorem 2.2 does not assert convergence of

the procedure to the root z0. It establishes a stability type result stating that |Zt−z0|
converges to a finite limit. Note also that in Theorem 2.2, a rapidly decreasing step-
size sequence is preferred. However, to have the convergence of the procedure to the
root z0, one must ensure that the convergence of γt is not too fast, similarly to the
case of the classical SA. The requirements in Theorem 2.4 below put a certain limit
to the rate at which the step-size sequence decreases to zero (see also Remark 2.5
below).
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Everywhere below, we assume that the infu∈U v(u) of a function v(u) is 1 when-
ever U = ∅.

Theorem 2.4 Suppose that V (Zt − z0) converges (P -a.s.) to a finite limit for
any initial value Z0, where Zt and V are defined in Theorem 2.2, and (2.5) holds.
Suppose also that for each ε ∈ (0, 1),

inf
‖u‖≥ε

z0+u∈Ut

V (u) > δ > 0 (2.12)

eventually, for some δ. Suppose also that

(C) For each ε ∈ (0, 1),

∞∑
t=1

inf
u

[Nt(u)]− =∞, P -a.s.

where the infimum is taken over the set {u : ε ≤ V (u) ≤ 1/ε; z0 + u ∈ Ut−1}.
Then Zt → z0 (P -a.s.), for any initial value Z0.

Proof. As always (see the convention in 2.1), convergence and all relations between
random variables are meant with probability one w.r.t. the measure P unless speci-
fied otherwise. Suppose that V (Mt)→ r ≥ 0 and there exists a set A with P (A) > 0,
such that r > 0 on A. Then there exists ε > 0 and (possibly random) t0, such that
if t ≥ t0, ε ≤ V (Mt−1) ≤ 1/ε on A. Note also that z0 + Mt−1 = Zt−1 ∈ Ut−1. By
(C), these would imply that

∞∑
s=t0

[Ns(Ms−1)]
− ≥

∞∑
s=t0

inf
u

[Ns(u)]− =∞

on the set A, where the infimums are taken over the sets specified in condition (C).
This contradicts (2.5). Hence, r = 0 and so, V (Mt)→ 0. Now, Mt → 0 follows from
(2.12) by contradiction. Indeed, suppose that Mt 6→ 0 on a set, say B of positive
probability. Then, for any fixed ω from this set, there would exist a sequence tk →∞
such that ‖Mtk‖ ≥ ε for some ε > 0, and (2.12) would imply that V (Mtk) > δ > 0
for large k-s, which contradicts the P -a.s. convergence V (Mt)→ 0. ♦

Remark 2.5 As in Remark 2.3, let us assume that V (u) = u2 and the step-size
sequence is state independent and positive. Then the Nt sequence can be written
as (2.9). Condition (S) in Theorem 2.2 ensures that the second term in (2.9) is
small (see Remark 2.3). To have the convergence of the procedure to the root z0,
condition (C) in Theorem 2.4 ensures that the first term, which should be negative,
does not vanish too rapidly. For the classical SA, with a smooth R function having
the property that uR(z0 + u) < 0, this condition holds if

∑∞
t=1 γt = ∞. In general,

one must ensure that the derivatives of the Rt functions at z0 do not decrease in
absolute value too rapidly as t goes to infinity.
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2.3 Sufficient conditions

Remark 2.6 Convergence results in the theorems of the previous section are global
in the sense that they establish convergence of procedure (2.1) for any starting point.
The role of the truncation operator, which is not immediately evident, can be seen
by noting that the conditions in these theorems are formulated along the sequence
Mt = Zt − z0. Since for each t, Zt belongs to the truncation set Ut, sufficient
conditions can be written taking into account that the arguments of the corresponding
functions belong to Ut. This can weaken some requirements considerably, if for
example Ut is bounded (see e.g., examples 1 and 2 below).

Everywhere in this subsection we assume that γt is state independent (i.e., con-
stant w.r.t. z) non-negative scalar predictable process.

Corollary 2.7 Let Zt be a process defined by (2.1), (2.2) and (2.3), with an ad-
missible for z0 ∈ Rm truncation sequence Ut. Suppose also that γt is a non-negative
predictable scalar process and

(C1)

sup
z∈Ut−1

[
2(z − z0)TRt(z) + γtE {‖Ψt(z)‖2 | Ft−1}

]+
1 + ‖z − z0‖2

≤ qt (2.13)

eventually, where
∞∑
t=1

qtγt <∞, P -a.s.

Then ‖Zt − z0‖ converges (P -a.s.) to a finite limit.

Proof. Let us show that the conditions of Theorem 2.2 are satisfied with V (u) =
uTu = ‖u‖2 and the step-size sequence γt(z) = γtI. Since z0 ∈ Ut for large t-s, the
definition of the truncation (see 2.1) implies that

‖Zt − z0‖ ≤
∥∥Zt−1 + γtΨt(Zt−1)− z0

∥∥ ,
eventually. Therefore (L) holds. Then, V ′(u) = 2uT and V ′′(u) = 2I, and so, for
the process Nt(u) in (2.4) we have

Nt(u) = 2uTγtRt(z
0 + u) + γ2tE

{
‖Ψt(z

0 + u)‖2 | Ft−1
}

(2.14)

and

[Nt(Mt−1)]
+

1 + V (Mt−1)
= γt

[
2MT

t−1Rt(z
0 + Mt−1) + γtE {‖Ψt(z

0 + Mt−1)‖2 | Ft−1}
]+

1 + ‖Mt−1‖2

Since z0 + Mt−1 = Zt−1 ∈ Ut−1, (2.4) follows from (C1). ♦
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Corollary 2.8 Suppose that the conditions of Corollary 2.7 hold and

(C2) for each ε ∈ (0, 1),

∞∑
t=1

inf
u

[Nt(u)]− =∞, P -a.s.

where
Nt(u) = 2uTγtRt(z

0 + u) + γ2tE
{
‖Ψt(z

0 + u)‖2 | Ft−1
}

and the infimum is taken over the set {u : ε ≤ ‖u‖ ≤ 1/ε; z0 + u ∈ Ut−1}. Then

Zt → z0 (P -a.s.), for any initial value Z0.

Proof. Let us show that the conditions of Theorem 2.4 are satisfied with V (u) =
uTu = ‖u‖2 and γt(z) = γtI. It follows from the proof of Corollary 2.7 that all the
conditions of Theorem 2.2 hold with V (u) = uTu. Hence, ‖Zt − z0‖ converges and
(2.5) holds. Since

inf
‖u‖≥ε

z0+u∈Ut

‖u‖2 ≥ ε2,

condition (2.12) also trivially holds. Finally, (C) is a consequence of (C2). ♦

Remark 2.9 The corollaries below show that, under the condition (z−z0)Rt(z) < 0,
convergence of |Zt − z0| to a finite limit is determined by the statistical properties
of the error terms, and the behaviour of the Rt functions at the points that are far
away from z0 (see Corollary 2.10 below). On the other hand, convergence to the root
z0 is largely determined by the local properties of the Rt functions at z0.

Corollary 2.10 Suppose that Zt is a process defined by (2.1), (2.2) and (2.3), with
an admissible for z0 ∈ Rm truncation sequence Ut and

(1)
(z − z0)TRt(z) ≤ 0 for any z ∈ Ut,

eventually;

(2)

sup
z∈Ut−1

‖Rt(z)‖2

1 + ‖z − z0‖2
≤ rt

eventually, where
∞∑
t=1

rtγ
2
t <∞, P -a.s.,
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(3)

sup
z∈Ut−1

E {‖εt(z)‖2 | Ft−1}
1 + ‖z − z0‖2

≤ et

eventually, where
∞∑
t=1

etγ
2
t <∞, P -a.s..

Then ‖Zt − z0‖ converges (P -a.s.) to a finite limit.

Proof. Using condition (1),[
2(z − z0)TRt(z) + γtE

{
‖Ψt(z)‖2 | Ft−1

}]+ ≤ γtE
{
‖Ψt(z)‖2 | Ft−1

}
eventually. Since E {εt(z) | Ft−1} = 0 and Rt(z) is Ft−1-measurable, we have

E
{
‖Ψt(z)‖2 | Ft−1

}
= ‖Rt(z)‖2 + E

{
‖εt(z)‖2 | Ft−1

}
. (2.15)

So, by conditions (2) and (3), the left hand side of (2.13) does not exceed (rt+et)γt.
Hence conditions of Corollary 2.7 hold with qt = (rt + et)γt and the result follows.
♦

Corollary 2.11 Suppose that the conditions of Corollary 2.10 are satisfied and

(CC) for each ε ∈ (0, 1),

inf
ε≤‖z−z0‖≤1/ε

z∈Ut−1

−(z − z0)TRt(z) > νt (2.16)

eventually, where
∞∑
t=1

νtγt =∞, P -a.s.

Then Zt converges (P -a.s.) to z0.

Proof. It follows from the poof of Corollary 2.10 that conditions of Corollary 2.7
hold. Let us prove that (C2) of Corollary 2.8 holds. Using the obvious inequality
[a]− ≥ −a, we have

[Nt(u)]− ≥ −2uTγtR(z0 + u)− γ2tE
{
‖Ψt(z

0 + u)‖2 | Ft−1
}
.

Using (2.15) and conditions (2) and (3) of Corollary 2.10, and taking the supremum
of the conditional expectation above over the set {u : ε ≤ ‖u‖ ≤ 1/ε; z0 + u ∈ Ut−1},
we obtain

sup
E {‖Ψt(z

0 + u)‖2 | Ft−1}
1 + ‖u‖2

(1 + ‖u‖2) ≤ (rt + et)(1 + ‖1/ε‖2).

12



Then, by (2.16), taking the infimum over the same set,

inf [Nt(u)]− ≥ 2γtνt − γ2t (rt + et)(1 + ‖1/ε‖2).

Condition (C2) is now immediate from (CC) and conditions (2) and (3) of Corollary
2.10. Hence, by Corollary 2.8, Zt converges (P -a.s.) to z0. ♦

Remark 2.12 Suppose that εt is an error term which does not depend on z and
denote

σ2
t = E

{
‖εt‖2 | Ft−1

}
Then condition (3) holds if

∞∑
t=1

σ2
t γ

2
t <∞, P -a.s.. (2.17)

This shows that the requirement on the error terms are quite weak. In particular,
the conditional variances do not have to be bounded w.r.t. t.

Remark 2.13 As it was mentioned in the introduction, our procedure is similar
to the one considered in [1]. Let us compare these two in the cases when the com-
parisons are possible. Hence, consider truncations on increasing non-random sets,
non-random and homogeneous Rt(u) = R(u), and scalar and state-independent γt in
Corollaries 2.10 and 2.11. Also, in Theorem 2 of [1] take βn = 0. Then the resulting
two sets of conditions are in fact equivalent. In particular, in terms of notation in
[1],

an = γn,
1

c2n
= en, M2

n = rn.

Now it is clear that conditions 2. and 3. in Theorem 2 of [1] are equivalent to (3)
and (2) respectively in Corollary 2.10. Note that although condition (CC) in 2.11
is formally more general than Condition 2 in Theorem 2 of [1], in any meaningful
applications they are equivalent.

2.4 Examples

Example 1 Let l be an odd integer and

R(z) = −(z − z0)l,

z, z0 ∈ R. Consider a truncation sequence [−αt, αt], where αt →∞ is a sequence of
positive numbers. Suppose that

∞∑
t=1

γt =∞ and
∞∑
t=1

α2l
t−1 γ

2
t <∞.
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Then, provided that the measurement errors satisfy (2.17) (or condition (3) of Corol-
lary 2.10 in the case of state-dependent errors), the truncated procedure

Zt =
[
Zt−1 + γt (R(Zt−1) + εt)

]αt
−αt

, t = 1, 2, . . .

converges a.s. to z0.
Indeed, condition (1) of Corollary 2.10 trivially holds. For large t’s,

sup
z∈[−αt−1,αt−1]

‖R(z)‖2

1 + ‖z − z0‖2
≤ sup

z∈[−αt−1,αt−1]

(z − z0)2l ≤ 4lα2l
t−1

which implies condition (2) of Corollary 2.10. Condition (CC) of Corollary 2.11
also trivially holds with νt = εl+1.

For example, if the degree of the polynomial is known to be l (or at most l), and

γt = 1/t, then one can take αt = Ct
1
2l
−δ, where C and δ are some positive constants

and δ < 1
2l

. One can also take a truncation sequence which is independent of l, e.g.,
αt = C log t, where C is a positive constant.

Example 2 Let X1, X2, . . . , be i.i.d. Gamma(θ, 1), θ > 0. Then the the
common probability density function is

f(x, θ) =
1

Γ(θ)
xθ−1e−x, θ > 0, x > 0,

where Γ(θ) is the Gamma function. Then

f ′(x, θ)

f(x, θ)
= logx− d

dθ
logΓ(θ)︸ ︷︷ ︸
log′Γ(θ)

, i(θ) =
d2

dθ2
logΓ(θ)︸ ︷︷ ︸

log′′Γ(θ)

,

where i(θ) is the one-step Fisher information. Then a likelihood type recursive
estimation procedure (see also (1.2)) can be defined as

θ̂t =

[
θ̂t−1 +

1

t log′′Γ(θ̂t−1)

(
logXt − log′Γ(θ̂t−1)

)]βt
αt

, t = 1, 2, . . . (2.18)

where αt ↓ 0 and βt ↑ ∞ are sequences of positive numbers.
Everywhere in this example, Ft is the sigma algebra generated by X1, . . . , Xt, P

θ

is the family of corresponding measures, and θ > 0 is an arbitrary but fixed value
of the parameter.

Let us rewrite (2.18) in the form of the stochastic approximation, i.e.,

θ̂t =

[
θ̂t−1 +

1

t

(
R(θ̂t−1) + εt(θ̂t−1)

)]βt
αt

, t = 1, 2, . . . (2.19)
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where (see Section 4 for details)

R(u) = Rθ(u) =
1

log′′Γ(u)
Eθ{lnXt − log′ Γ(u)} =

1

log′′Γ(u)
(log′ Γ(θ)− log′ Γ(u))

and

εt(u) =
1

log′′Γ(u)
(logXt − log′Γ(u))−R(u).

Since Eθ {logXt | Ft−1} = Eθ {logXt} = log′ Γ(θ) and θ̂t−1 is Ft−1 - measurable,

we have Eθ
{
εt(θ̂t−1) | Ft−1

}
= 0 and hence (2.2) holds. Since Eθ

{
log2Xt

}
< ∞,

condition (2.3) can be checked in the similar way. Obviously, R(θ) = 0, and since
log′ Γ is increasing (see, e.g., [33], 12.16), condition (1) of Corollary 2.10 holds with
z0 = θ. Based on the well known properties of the logarithmic derivatives of the
gamma function, it is not difficult to show (see Section 4) that if

∞∑
t=1

α2
t−1

t
=∞ and

∞∑
t=1

log2 αt−1 + log2 βt−1
t2

<∞, (2.20)

then all the conditions of Corollary 2.10 and 2.11 hold and therefore, θ̂t is consistent,
i.e.,

θ̂t → θ as t→∞ (P θ-a.s.).

For instance, the sequences

αt = C1(log (t+ 2))−
1
2 and βt = C2(t+ 2)

with some positive constants C1 and C2, obviously satisfy (2.20).
Note also, that since θ ∈ (0,∞), it may seem unnecessary to use the upper

truncations βt < ∞. However, without upper truncations (i.e. if βt = ∞), the
standard restriction on the growth does not hold. Also, with βt =∞ the procedure
fails condition (2) of Corollary 2.10 (see (4.7)).

Example 3 Consider an AR(1) process

Xt = θXt−1 + ξt, (2.21)

where ξt is a sequence of random variables with mean zero. Taking

Ψt(z) = Xt−1 (Xt − zXt−1)

γt(z) = γt = Ît = Î0 +
∑t

s=1X
2
t−1, and Ut = R, procedure (2.1) reduces to the

recursive least squares (LS) estimator of θ, i.e.,

θ̂t = θ̂t−1 + Î−1t Xt−1

(
Xt − θ̂t−1Xt−1

)
, (2.22)

Ît = Ît−1 +X2
t−1, t = 1, 2, . . .
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where θ̂0 and Î0 > 0 are any starting points.
For simplicity let us assume that ξt is a sequence of i.i.d. r.v.’s with mean zero

and variance 1. Consistency of (2.22) can be derived from our results for any θ ∈ R
and without any further moment assumptions on the innovation process ξt. Indeed,
assume that θ is an arbitrary but fixed value of the parameter. Then, using (2.21),
we obtain

Xt − θ̂t−1Xt−1 = ξt +Xt−1(θ − θ̂t−1).
and (2.22) can be rewritten as

θ̂t = θ̂t−1 + Î−1t

(
X2
t−1(θ − θ̂t−1) +Xt−1ξt

)
. (2.23)

So, (2.23) is a SA procedure with

Rt(z) = X2
t−1(θ − z), (2.24)

εt(z) = εt = Xt−1ξt, γt = Î−1t and Ut = R. Let us check condition (C1) of
Corrolary 2.7 with z0 = θ and Ut = R. Since E {εt | Ft−1} = 0 and Rt(z) is Ft−1
measurable, (2.2) and (2.3) trivially hold. Also,

E
{
‖Ψt(z)‖2 | Ft−1

}
= ‖Rt(z)‖2 + E

{
‖εt‖2 | Ft−1

}
= X4

t−1(θ − z)2 +X2
t−1, (2.25)

denoting the expression in the square brackets in (2.13) by wt(z) (with z0 = θ),we
obtain

wt(z) = −2X2
t−1(z − θ)2 + Î−1t X4

t−1(θ − z)2 + Î−1t X2
t−1 (2.26)

= −δX2
t−1(z − θ)2 −X2

t−1(z − θ)2
(

(2− δ)− Î−1t X2
t−1

)
+ Î−1t X2

t−1 (2.27)

for some 0 < δ < 1. Since Î−1t X2
t−1 ≤ 1, the positive part of the above expression

does not exceed Î−1t X2
t−1. This implies that (2.13) holds with qt = Î−1t X2

t−1. Now,
note that if dn is a nondecreasing sequence of positive numbers such that dt → +∞
and Mdt = dt − dt−1, then

∑∞
t=1Mdt/dt = +∞ and

∑∞
t=1 Mdt/d

2
t < +∞. So, for

X2
t−1 = MÎt, since Ît → ∞ for any θ ∈ R (see, e.g, Shiryayev [30], Ch.VII, §5) , we

have
∞∑
t=1

Î−2t X2
t−1 <∞ and

∞∑
t=1

Î−1t X2
t−1 =∞. (2.28)

Hence, taking qtγt = Î−2t X2
t−1, (C1) follows. Therefore, (θ̂t − θ)2 converges to a

finite limit. To show convergence to θ, let us check condition (C2) of of Corrolary
2.8 with z0 = θ and Ut = R. Using (2.24) and (2.25), we have

Nt(u) = −2Î−1t X2
t−1u

2 + Î−2t X4
t−1u

2 + Î−2t X2
t−1 = Î−1t wt(θ + u),

where wt is defined in (2.26). Since the middle term in (2.27) is non-positive, using
the obvious inequality [a]− ≥ −a, we can write

[Nt(u)]− ≥ δÎ−1t X2
t−1u

2 − Î−2t X2
t−1,
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and
∞∑
t=1

inf
ε≤|u|≤1/ε

[Nt(u)]− =∞

now follows from (2.28). So, by Corollary 2.7, θ̂t → θ (P θ− a.s.).
Note that the convergence of the LS estimator is well known under these as-

sumptions. (see e.g., [30], Ch.VII, §5). This example is presented to demonstrate
that the assumptions made here are minimal. That is, in well know model cases,
the results of the paper do not assume any additional restrictions.

3 Concluding remarks

The paper establishes convergence of SA procedures with the following features:

• inhomogeneous random functions Rt,

• state dependent matrix valued random step sizes,

• truncations with random and moving (shrinking or expanding) bounds.

Conditions introduced in the paper can be divided into two main groups. The first
group is concerned with statistical properties of the error terms, and the behaviour
of the Rt functions at the points that are far away from the root z0. They guarantee
a stability type property of the SA procedure ensuring that ‖Zt − z0‖ converges
to a finite limit. The second group of conditions is mostly concerned with local
properties of the Rt functions at z0. These conditions ensure convergence of the
procedure to the root z0. While in the first group, a rapidly decreasing step-size
sequence is preferred, the second group puts a certain limit to the rate at which the
step-size sequence decreases to zero.

4 Appendix

We will need the following properties of the Gamma function (see, e.g., [33], 12.16).
log′Γ is increasing, log′′Γ is decreasing and continuous, and

log′′Γ(x) =
1

x2
+
∞∑
n=1

1

(x+ n)2
.

The latter implies that

log′′Γ(x) ≤ 1

x2
+
∞∑
n=1

∫ n

n−1

dz

(x+ z)2
=

1

x2
+

1

x
=

1 + x

x2
(4.1)
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and

log′′Γ(x) ≥
∞∑
n=0

∫ n+1

n

dz

(x+ z)2
=

1

x
. (4.2)

Also (see [8], 12.5.4),
log′Γ(x) ≤ ln(x). (4.3)

Then,

Eθ {logX1} = log′Γ(θ) and Eθ
{

(logX1)
2} = log′′Γ(θ) + (log′Γ(θ))

2
(4.4)

and
Eθ
{

(logX1 − log′Γ(θ))
2
}

= log′′Γ(θ).

Let us show that the conditions of Corollary 2.10 hold. Since

Ψt(u) =
1

log′′Γ(u)
(logXt − log′Γ(u)) ,

using (4.4) and (4.2) we obtain

E {‖Ψt(u)‖2 | Ft−1}
1 + ‖u− θ‖2

=
log′′Γ(θ) + (log′ Γ(θ)− log′ Γ(u))

2

(log′′Γ(u))2(1 + ‖u− θ‖2)
(4.5)

≤ u2

1 + (u− θ)2
(

log′′Γ(θ) + (log′ Γ(θ)− log′ Γ(u))
2
)
.

Now, u2/(1 + (u− θ)2) ≤ C. Here and further on in this subsection, C denotes
various constants which may depend on θ. So, using (4.3) we obtain

E {‖Ψt(u)‖2 | Ft−1}
1 + ‖u− θ‖2

≤ C
(
log′′Γ(θ) + log′ Γ(θ)2 + log′ Γ(u)2

)
≤ C(1 + log2(u)).

For large t’s, since αt < 1 < βt, we have

sup
u∈[αt,βt]

log2(u) ≤
{

sup
αt≤u<1

log2(u)+ sup
1<u≤βt

log2(u)

}
≤ log2αt + log2βt.

Condition (2) of Corollary 2.10 is now immediate from the second part of (2.20). It
remains to check that (CC) of Corollary 2.11 holds. Indeed,

−(u− θ)R(u) =
(u− θ) (log′ Γ(u)− log′ Γ(θ))

log′′Γ(u)
.

Since log′Γ is increasing and log′′Γ is decreasing and continuous, we have that for
each ε ∈ (0, 1),

inf
ε≤‖u−θ‖≤1/ε

u∈Ut−1

−(u−θ)R(u) ≥
infε≤‖u−θ‖≤1/ε (log′ Γ(u)− log′ Γ(θ)) (u− θ)

supu∈Ut−1
log′′Γ(u)

≥ C

log′′Γ(αt−1)

(4.6)

18



where C is a constant that my depend on ε and θ. Since αt−1 < 1 for large t’s, it
follows (4.1) that 1/log′′Γ(αt−1) ≥ α2

t−1/2. Condition (CC) of Corollary 2.11 is now
immediate from the first part of (2.20).

Note that with βt = ∞ the procedure fails condition (2) of Corollary 2.10.
Indeed, (4.5) and (4.1) implies that

sup
αt≤u

E {Ψ2
t (u) | Ft−1}

1 + (u− θ)2
≥ sup

αt≤u

{
log′′Γ(θ) + (log′ Γ(θ)− log′ Γ(u))

2
}
u4

(1 + u)2(1 + (u− θ)2)
=∞ (4.7)

References
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