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ABSTRACT

MODELING NATURAL MICROIMAGE STATISTICS

SEPTEMBER 2000

ALEXEY A. KOLOYDENKO, B.S., NORWICH UNIVERSITY

AND VORONEZH UNIVERSITY

M.S., VORONEZH UNIVERSITY AND UNIVERSITY OF

MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Donald Geman

A large collection of digital images of natural scenes provides a database for

analyzing and modeling small scene patches (e.g., 2 × 2) referred to as natural

microimages. A pivotal finding is the stability of the empirical microimage distri-

bution across scene samples and with respect to scaling. With a view toward po-

tential applications (e.g. classification, clutter modeling, segmentation), we present

a hierarchy of microimage probability models which capture essential local image

statistics. Tools from information theory, algebraic geometry and of course sta-

tistical hypothesis testing are employed to assess the “match” between candidate

models and the empirical distribution. Geometric symmetries play a key role in

the model selection process.
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One central result is that the microimage distribution exhibits reflection and

rotation symmetry and is well-represented by a Gibbs law with only pairwise inter-

actions. However, the acceptance of the up-down reflection symmetry hypothesis

is borderline and intensity inversion symmetry is rejected. Finally, possible exten-

sions to larger patches via entropy maximization and to patch classification via

vector quantization are briefly discussed.
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C H A P T E R 1

INTRODUCTION

With the emergence and fast development of computer technologies, the word

“image” has nowadays acquired yet another common meaning. Thus, an image,

or more precisely, a digital image refers to a representation of visual information

as a discrete array of numbers. Digital imagery deeply penetrates modern human

activities, ranging from medicine to warfare. To one degree or another, many of

us are involved in digital image processing, transmission, and storage on almost

a daily basis; think, for example, of sending electronically a recent photograph to

friends or enhancing and storing a family photo-album on a PC.

Although behind each digitally stored photographic image there stands a nu-

merical matrix, one does not perceive images directly through numbers. In fact,

what we see with our eyes is a result of physical processing (via an electronic display,

for example) of the numerical representation. This representation also becomes in-

dispensable if one wants to automate a certain procedure to transform one image

into another. If, for instance, the goal were to brighten a photograph, this could

typically be achieved by shifting the numerical values of all or some of the image

pixels (a common term for the image matrix entries) to the “brighter” side of the

intensity range. Among the central goals of Image Analysis and Image Process-

ing is the search for and application of mathematical operations on the numerical
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image representations in order to achieve certain desirable effects, e.g. perceptual

quality enhancement and visibility of object boundaries.

Particular studies may focus on images of specific origin or from a specific do-

main. Thus, whereas digitized brain scans obtained by means of magnetic reso-

nance (MRI) are of central interest to researchers automating the process of brain

tumor identification and measurement, forensic image analysts often deal with im-

ages representing human fingerprints. Recognition of cluttered military targets

might involve infrared images of particular geographic locations, whereas industrial

quality control labs often analyze laser images of integrated circuit boards.

Independently of the domain and image origin, some features are common to

almost all digital imagery. In a sense, one can talk about “generic images”. A

simple example of such a feature is the enormous size of a typical representation

space. This leads to rather specific mathematical challenges in many fields of image

analysis. For instance, at the abstract level mathematics provides a very clean and

well-developed theory of operators (here, mappings from the image space to itself)

but this theory encounters significant difficulties when in practice the priority of

the research shifts from mathematical elegance to computational feasibility.

“Natural images”, such as digital representations of visible light photographs of

3D scenes, correspond to a very sparse set of visually meaningful matrices. Such

matrices are extremely “rare” among all possible ones, i.e. they occupy only a tiny

portion of the appropriate representation space. So, if a numerical matrix were se-

lected “at random” and displayed on the computer screen, one would almost surely

not see any meaningful “picture” corresponding to that matrix. To maintain such

compactness of their family, natural images must possess a great deal of inter-

nal structure. In particular, micro parts of images typically appear in a relatively

small number of possible arrangements (described by mathematical relations), by
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far smaller than the total number possible in an arbitrary sub-matrix of the image

space. Whereas the number and precise characterizations of such relations may be

domain dependent, one may argue that an analysis of the generic situation is still

sensible.

In this context, the work presented is an attempt to analyze, model, and explain

microscopic portions of a large class of digital images. The approach is largely based

on probabilistic reasoning. Indeed, studying the relative frequency of occurrence

of images and image functions is now widely recognized as a natural and powerful

approach to most problems in image analysis and modeling.

1.1 Related Research and Motivation

The availability of large data sets of digital images [30],[35] and direct sam-

pling from the world wide web makes it possible to collect various image statistics

relevant to large classes of imagery. This has significantly contributed to the flour-

ishing of the field of “natural image statistics”, pioneered in [19] and [59] and other

work. Our work is partially motivated by the key findings in this area, perhaps

the most important of which is the scale-invariance of many natural image statis-

tics [9],[23],[34],[35],[50],[58]. Besides its theoretical influence on image modeling

(best documented, perhaps, in [50]), statistical scale-invariance has other, some-

what more concrete, applications. For instance, it explains the success of fractal or

wavelet image compression based on multiresolution block coding in the domains

of natural imagery [60]. We also verify some modes of scale invariance in our image

data, though compression is not among our ultimate goals.

Among image statistics commonly reported to exhibit strong scale invariance

are responses of mostly local linear image filters, e.g., directional derivatives, coef-
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ficients of Haar wavelets and Gabor filters. Based on very large data sets, recent

studies of natural images with fine intensity ranges have, in addition to scale-

invariance, also revealed such important properties of natural images as various

symmetries of two pixel differencing operator (discrete derivative) and certain de-

partures from normality in multivariate Haar coefficient statistics [34],[35]. Our

work, while similar in spirit, shifts the emphasis to the analysis and modeling of

the multivariate distribution of raw intensities (i.e. empirical distributions on mi-

croscopic image patches) as opposed to the statistics of linear filter responses. This

is performed under some restrictions (necessitated by relatively small sample sizes),

strongest among which is coarsening of the originally fine intensity range (typically

256-level) to eight levels and sometimes even four levels. Although the coarsening,

or quantization, can also be viewed as filtering, it is essentially different from the

types of filtering referred to above: Coarsening does not alter the patch geometry.

Moreover, we will generally use the “most unbiased” such operator, i.e. separate,

uniform quantization of the intensity range of each variable. At any rate, we never

degenerate to the binary case, and indeed one of our goals has been to extend some

ideas from binary image analysis.

In that regard, the original motivation for this work was quite different from

the pure phenomenology of natural image statistics. It derives from using basic

information-theoretic principles to code 5×5 patches of binary images of handwrit-

ten digits [2],[66]. A highly non-uniform empirical patch distribution was induced

from a large sample of binary patches extracted from training data. The authors

then took advantage of high redundancy in the pixel information under the empiri-

cal patch distribution and efficiently vector-quantized (using decision trees) the set

of 225 binary matrices by sequential application of the “divide-and-conquer” (max-

imization of information gain) strategy. Their method used single pixel indicators

4



as underlying primitive operations, or elementary tests, corresponding to the tree

nodes. The paths of the resulting tree then served as local features for recognition.

In this context, our present work has been driven by the idea of finding stable, el-

ementary features, but now for grey scale images. Work on face detection [1] has

served as an example of potential applications for such features. Chapter 2 docu-

ments some of our early experiments in this direction.

The principle of Maximum Entropy Extension (MEE) or, simply, Entropy Max-

imization will often appear in this work. Borrowed from the statistical physics,

MEE has now been extensively applied to probabilistic modeling. This principle is

also central to statistical learning and has been successfully used in vision-related

learning in particular. Some early applications (e.g. [47]) have gradually developed

into a powerful learning paradigm - Minimax Entropy learning theory [68],[69],[70].

1.2 Objectives and Main Contributions

The essence of this work is a “direct” analysis and modeling of a large class

of multivariate probability distributions carried by tiny (e.g. 2 × 2, 3 × 3) image

blocks, or microimages. The analysis is direct because it is not mediated by special

purpose filters. Despite its seemingly overwhelming complexity and variability,

the microworld of digital images of “natural scenes” does in fact appear to induce

rather universal probability distributions. This is by no means obvious a priori and

to our knowledge little has been reported in this venue. Imagine for example two

distinct domains of digital imagery: vast landscapes and densely populated sites.

Macroscopic image attributes (say, those involving objects and measurements of the

same order of magnitude as the image size) immediately captivate our attention and

are therefore responsible for the formation of a semantic interpretation of the image
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in our brain: In the first case we might see “fields”, “trees” , “lakes”, “animals”, and

so on, and in the second case our eyes register “human faces”, “streets”, “buildings”,

etc. The more dramatic is the semantic difference between the two, the less obvious

it is that any similarities can exist between them. Yet, the human vision system

switches between the two contexts incredibly fast. Must not there then be generic,

reusable tools and resources at the lowest levels of visual processing in order to

maintain such efficiency? If so, then a representation of basic image constituents

must exist which would unify all images of natural scenes regardless of their domain

and origin. It has long been known that the natural processing of 2D signals starts

with intensive sampling of small image areas. Thus, it is natural to think of the basic

image constituents as elements of a virtually infinite population of small blocks or

matrices of intensity values. This population of microimages is at the core of our

work. The natural framework here would necessarily involve probabilistic concepts.

Thus we aim at discovering probabilistic similarities in the micro configurations of

images representing diverse domains.

That such similarities indeed exist can be directly verified when, armed with

our “magnifying glass”, we zoom in to view millions of tiny arrangements of image

pixels. This was essentially the prelude to the present work, which has been driven

by our quest for “structure” in the vagaries of miniature image patches. Among

the first and easy findings of such an excavation is the fully expected one that,

at the microscopic level, all natural images are non-uniformly distributed and, in

particular, are dominated by “flat regions”, or “background”. Perhaps less obvious

is to find that configurations conforming with our intuitive notion of “edge” are

next on the list of the most frequent ones. However, before proposing distributions

that would replicate these and other characteristics observed in experiments, one
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needs to be sure that those characteristics are in fact stable, for example, across

various scenes.

We restrict our universe to the totality of digital imagery stored on the world

wide web. This defines (still rather vaguely) what we mean by images of “natural

scenes”. Of course, we must cope with the vagueness of the very notion of “natural

scene”. To preempt (at least, partially) potential criticism of our broad use of the

term, we state as an assumption (supported by our observations) that “unnatural

scenes”, i.e. meaningful only to the eyes of a very specific category of viewers, are

very rare. Hence, in this work we will think of the degree of being “natural” as

proportional to the frequency of occurrence of the scene (more formally, the exact

numerical array representing a particular view of the scene) in the public domain

of the web. Note that this viewpoint is in a perfect agreement with the one that

“natural images” are digitized visible light photographs of 3D scenes: The latter

do presently dominate the web.

Next, this work delivers a positive answer to the following basic question: “Does

the population of digital microimages of natural scenes have a sensible probability

distribution?” In the course of our studies we explain what we mean by “sensible”

and perform numerous statistical experiments to support our claim, as well as to

illustrate typical difficulties one should expect in further exploration of the subject.

Since its early days and until now, image analysis has naturally been dominated

by vector space-based approaches and statistical image analysis is no exception in

this regard ([5],[30],[43],[44],[48],[51],[60],[68],[69],[70] to name a few). This status-

quo may lead to skepticism about the utility of alternative approaches, in partic-

ular, those not involving linear filtering. We hope to refute the perception that

models built directly on the space of raw image intensities are of limited value and

especially sample-dependent due to the immense variability and complexity of the
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grey scale microimages. What is indeed unrealistic due to variability (when the

sample size is fixed) is accurate estimation of rare point-masses under fine quanti-

zations. However, we also show that the microimage probability laws exhibit some

remarkable properties (in the form of mathematical relations) that can already be

captured with relatively small samples. Naturally, the sample size determines an

appropriate degree of aggregation (quantization) at which these properties exhibit

sufficient statistical significance. We find aggregations appropriate for our sample

sizes, which allows us to model these properties adequately.

Concerned primarily with the trade-off between model complexity (i.e. dimen-

sion of the corresponding space of distributions) and model generality, we grad-

ually explore a hierarchy of distributions that possess properties observed empir-

ically. This is essentially a model selection phase and, as such, it relates to the

Bias-Variance Dilemma: more constrained models promise more stable parameter

estimation at the expense of fine structure of the unknown target distribution.

Our model-building tools include elementary Algebraic Geometry, Entropy Max-

imization Principle and some basic concepts of Information Theory. We adopt a

common approach to modeling discrete multivariate probability laws by imposing

Internal or External Constraints on the set of distributions on a given state space.

Depending on the type of estimation used, these two categories cover log-linear,

linear and even more general models. For example, some of our simpler models are

based on constraining probabilities of a few “heavy” states (or even aggregates of

states) to equal the respective values observed in the data; these are typical exam-

ples of internal constraints. (Shannon’s) Entropy Maximization provides one way

to estimate parameters, and we discuss some other estimation methods as well. We

also study several models based on geometric and photometric symmetries of the

state space. Here, hypotheses are put forward that the microimage distribution

8



respects prescribed symmetries. Equations induced by such symmetries are exam-

ples of external constraints and we perform a series of statistical tests to quantify

the significance of our evidence (data) in regard to these hypotheses.

We also discuss the duality between internal and external constraint problems

in order to enrich our supply of computational methods for model estimation. Nat-

urally, the main tools here are basic Linear Algebra and Information Theory.

Closed-form analytic expressions for some of our model distributions are also

discussed. The purpose is to induce models for microimage quantizations which are

finer than those dictated by the samples available here. Another natural extension

would be to larger microimages, for example 5× 5, a typical size for the support of

local filters. A combination of basic Invariant Theory and Markov Random Fields

provides a natural framework for such generalizations. This is also our point of con-

tact with minimax learning. Of course, presently we focus mainly on microscopic

phenomena of image statistics, as opposed to the far more ambitious aim of min-

imax learning - specifying distributions on larger image lattices. We stay “local”

because we believe that existing knowledge of the image microworld is still rather

incomplete, thus allowing a more systematic analysis than previously attempted

prior to focusing on macroscopic problems. For example, microimage distributions

emerging from our studies can also be naturally represented as maximum entropy

extensions relative to certain local image filters. However, we do not start with a

large supply of generic filters and then solve a massive optimization task in order

to select the most relevant ones, as in minimax learning and texture modeling. In

contrast, the origin of our filters is more algebraic (as opposed to purely analytic):

they are merely bases for the microimage functions with specified symmetries. Due

to the relatively small sizes of the mathematical spaces involved, we can hope to
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better understand the consequences of using one basis or another from our hierarchy

by testing a series of statistical hypotheses.

Finally, it has not been among our goals to develop models dedicated to a specific

imaging task. Nor do we suggest a single universal model, suitable for all practical

situations. Instead, we examine a variety of models, each potentially useful for a

particular category of applications.

1.3 Organization of the Thesis

Chapter 2 presents an account of our preliminary investigations of the natural

image microworld. This chapter is also intended to introduce a concrete framework

which embeds the central part of this work as an important chain.

The proper work begins by defining probability spaces appropriate for our anal-

ysis of microimage distributions. This is done in the first part of Chapter 3. The

central theme of Chapter 3 is a statistical analysis of several types of distributional

stability of natural microimages. The necessary hypothesis testing framework is

briefly introduced in the same chapter, but the technical details of the particular

statistical tests are deferred mainly to Appendix B. Related issues such as mi-

croimage sampling and alternate microimage distributions are supplemented in Ap-

pendix C. The conclusion of Chapter 3 lays the foundation for the rest of the work:

We determine an appropriate, rather coarse (but yet non-trivial) level of quanti-

zation at which distributional stability of natural microimages is apparent. For

example, respective estimators of the microimage distribution vary insignificantly

from sample to sample from scale to scale. Therefore, modeling these distributions

becomes meaningful.
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Chapter 4 introduces a hierarchy of models for the microimage distribution.

Model generation is based on our subjective experience accumulated in preliminary

studies. Some models are inspired by Gibbs-Markov Random Fields. Technical

details of several models are postponed until Chapter 6 and Appendix D in order

to sooner enter the model testing phase.

Chapter 5 is then devoted to statistical testing of symmetry and other hypothe-

ses associated with our models. There, our intuition confronts the facts: some seem-

ingly reasonable models are “rejected”, whereas others (including the one based

on geometric symmetries) are “confirmed”; verification of yet other models proves

somewhat more problematic. In the end, we obtain a detailed quantitative assess-

ment of a variety of models.

In Chapter 6, we discuss the modeling methodologies followed in Chapter 4.

Most of the issues are computational in nature. Some extend beyond stochastic

image modeling, which also justifies placing them late in the presentation. Compu-

tations postponed from Chapter 4 are now properly explained. With the aim of ex-

tending the symmetry models to microimage spaces with finer quantization and/or

larger supports, the second half of Chapter 6 is devoted to analytic representations

for microimage distributions; Appendix D supplies further technical details.

In Chapter 7 we reiterate our key findings about the microworld of natural

images and indicate directions for further work. These include extensions of our

symmetric models to translation invariant Markov Fields (Gibbs Distributions) on

larger lattices and applications of these models to tree-based microimage vector-

quantization, with an eye towards defining efficient elementary features for a range

of imaging tasks. (One possible specific scenario is outlined in §2.2.)

Finally, some statistical and information theoretic background information is

briefly reviewed in Appendix A.
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C H A P T E R 2

EARLY WORK

2.1 Tags

Our earliest experiments with microimage statistics involved large samples of

6 × 6 patches extracted initially from hundreds of leaf images (representing differ-

ent biological species) and later from a large photographic image. The goal was

to analyze the quality of several hand-picked binary local image features based on

edge-detectors, or “tags” [1]. Specifically, we wanted to measure the sensitivity of

the detectors to changes in resolution. We were also interested in the degree of

coherence among the positive responses of a particular detector at multiple reso-

lutions and independent of the image class (i.e. species). Designed to be further

aggregated into more complex and discriminating features, the tags were merely

conjunctions of elementary tests of two types. One type of elementary operation

was thresholding the signed difference between ωs and ωt, the intensities of two

neighboring pixels: Xs,t,δ = I{ωs−ωt≥δ}. The other type involved a comparison of

unsigned differences between two pairs of neighboring pixels with one pixel in com-

mon: Ys,t,u = I{|ωs−ωt|≥|ωt−ωu|}. For example, the six constraints for having a “non-

polar, diagonal tag” are listed in (2.1); the corresponding pixels are depicted in

Figure 1, left.
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|ωs3 − ωs6| > |ωs1 − ωs3|, |ωs3 − ωs6| > |ωs2 − ωs3|,

|ωs3 − ωs6| > |ωs4 − ωs3|, |ωs3 − ωs6| > |ωs6 − ωs5|, (2.1)

|ωs3 − ωs6| > |ωs6 − ωs7|, |ωs3 − ωs6| > |ωs6 − ωs8|,

“Vertical” and “horizontal” tags were defined similarly. Thus in general, a (non-
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Figure 1: Examples of original (left) and new (right) tag configurations

polar) tag is present (say, at s3) if the intensity contrast between s3 and s6, the

two “central sites” is larger than the contrasts in the six adjacent pairs. The tag

polarity was introduced through Xs3,s6,δ, an additional constraining test function.

Thus, a polar tag was a conjunction of seven elementary tests.

We attempted to induce “better” conjunctions, measuring quality by the con-

junction size (i.e. number of elementary tests). Specifically, probabilities of the tag

presence were estimated from patch samples in order to specify the quality criterion:

We wanted to construct test conjunctions of size six and larger whose positive re-

sponses would be at least as high as those of the tags. (Additionally, constraints on

the fractions of the two types of elementary tests were also considered.) We then

also wanted to check if candidate conjunctions that were successful at one scale

would still be reasonably frequent at other scales. Simulations were conducted to
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grow conjunctions by randomly ordering the elementary tests and stopping once

the frequency of the current conjunction fell below that of tags. For example, a

new conjunction defined by (2.2) (see Figure 1, right) was found successful at one

scale but was too rare at other scales.

ωs1 − ωs2 ≥ 8, ωs4 − ωs3 ≥ 8, (2.2)

ωs6 − ωs5 ≥ 8, |ωs3 − ωs1| > |ωs3 − ωs2|,

|ωs1 − ωs2| > |ωs1 − ωs7|, |ωs3 − ωs7| > |ωs3 − ωs2|

In summary, it proved generally difficult to find alternatives that would be bet-

ter than the original tags at several scales simultaneously. This and the somewhat

irregular spatial form of the new conjunctions confirmed the link between the tag

regularity (expressed by multiple symmetries) and stability of their response statis-

tics. It also hinted at the types of microimage symmetries that might be respected

by a natural microimage distribution.

2.2 Microimage Coding and Vector Quantization

Before we present our next attempt to explore statistics of microimages (§2.3),

we discuss a larger, computational framework that has motivated most of our statis-

tical analysis of natural microimages. The main goal in developing this framework

is to define computationally efficient, local image features using tree structured

vector quantization (VQ) of microimages.

There are three main components of this approach. First, we assume the exis-

tence of “universal” microimage codes that partition the appropriate microimage

space into equivalence classes and correspond to perceptually meaningful microim-

age groupings. “Universality” refers to certain types of distributional stability of

14



Cm1

Cm2
Cm3

0 1
Xτk

0 1
Xτj

Cm4
Cm5

0 1
Xτr

0 1
Xτ1

Figure 2: A fragment of a binary classification tree

microimages and the next section (§2.3) begins to explicate the subject and pro-

vides some examples of stable codes. Given such a coding scheme, each image pixel

can, in principle, be transformed to a unique code value C absorbing “essential”

information about its immediate vicinity. In practice, however, computing C ex-

actly may be unnecessary and approximations are then entertained balancing the

amount of detail requested against the amount of computations available. This

leads to the other two components: T = {Xτ}τ , elementary tests that comprise the

computations, and a decision criterion that defines the test selection strategy. Nat-

urally, the three ingredients assemble into a microimage classification tree whose

terminal nodes are the microimage codes C1, C2, . . ., and whose intermediate nodes

are the elementary tests Xτ . Figure 2 depicts a fragment of a binary classification

tree based on some (binary) tests Xτ . Note that any partial (hence approximate)

computation of the original codes C defines another, coarser microimage coding.

In summary, the idea is to effectively replace the unsupervised “divide-and-

conquer” (§1.1 and [2]) approach to feature generation by supervised microimage

classification. The proposed features are still conjunctions of elementary tests along

tree paths. However, the tree induction mechanism that was previously based on

the information theoretic concepts only, is now more flexible due to the introduction

of the perceptual component through the microimage classes C.
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We will return to the general discussion of microimage coding in the next sec-

tion (§2.3) while now we are going to present, in compressed form, one concrete

scenario to illustrate these ideas in the context of grey level microimages. To keep

the exposition concrete, we fix the microimage size at 3×3; generalization to other

sizes will be obvious. In [22] we defined “microimage quantization maps” and pro-

posed a particular map, Fa, referred to as “alternate quantization”, in order to

“meaningfully” partition the microimage space Ω = M3×3({0, . . . , 255}) into “pat-

terns”. The number of patterns is considerably smaller than the number of original

patches; also, the patterns respect only relative brightness and contain no direct in-

formation about absolute intensities. Thus, the corresponding microimage coding

enjoys a degree of photometric invariance. Also, when the patterns were ranked

based on relative frequencies (§2.3) estimated from a large microimage sample, the

ranks were more stable than in similar experiments on uniform intensity quanti-

zation. The alternate, nonlinear quantization also yields a clean perceptual inter-

pretation of the relative frequencies: The “Background” pattern comes first, then

“edge”-like patterns, followed by “T-junctions”, etc.

In this section, we focus on the issue of efficient computation of these pat-

terns, and coarser codes based on them. Just as in the tag experiments (§2.1),

the computations are based on T , a collection of elementary tests of the form

Xs,t,δ = I{ωs−ωt≥δ}, where s, t, and δ are two pixel locations and a fixed thresh-

old, respectively. In the vector quantization framework based on these tests, the

number of tests entertained along a path of the resulting tree serves as a mea-

sure of computational complexity. These tests also reveal another advantage of the

alternate quantization relative to the uniform one: The binary functions defined

by these tests are sufficient to distinguish the Fa-patterns, whereas it can also be

shown that patterns based on uniform quantizations cannot be computed exactly
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with these tests. In other words, the maximal partition attainable by these tests

is at least as fine as the one induced by Fa. Thus, the elementary tests determine

the patterns. We first reproduce the necessary definitions from [22] including that

of Fa, and then prove the last statement.

As before, let CL and CL0
be two intensity ranges with L0 ≤ L. Any map F

from the microimage set ΩL to the pattern set ΩL0
is called a quantization if it

preserves relative brightness. Thus, if ω ∈ ΩL, then

ωs ≤ ωt ⇒ (Fω)s ≤ (Fω)t,

The alternate quantization was defined to allow filtering out gradual intensity

changes. Namely, assign the darkest pixel(s) the value 0, then assign the next

darkest pixel(s) the label 0 if the difference is less than L/L0 and the label 1 oth-

erwise, and so forth. More precisely, suppose L = 256 and L0 = 8; rank the pixels

s1, s2, . . . , s9 by their intensities: ωs1
≤ ωs2

≤ · · · ≤ ωs9
. Put (Faω)s1

= 0. For i =

2, . . . , 9, set (Faω)si
= (Faω)si−1

if ωsi
− ωsi−1

≤ 32 and set (Faω)si
= (Faω)si−1

+ 1

otherwise. Unlike uniform quantization, if (Faω)s 6= (Faω)t then |ωs − ωt| > L/L0.

For the sake of concreteness, suppose that T is ordered from 1 to 72 in some

way so that X(ω) ∈ X = {0, 1}|T | returns the appropriately ordered bit-string of

corresponding test values.

Theorem 2.1 Let X be the 72-dimensional binary vector whose components are

precisely the tests in T with δ = L/L0 as above. Then X(ω) uniquely determines

Fa(ω).

Proof. Fix a pixel enumeration independent of ω: {ω1, . . . , ω9}.

Step 1: Let ω ∈ ΩL be fixed. We first define an equivalence relation on {ωs, s =

1, . . . , 9}, whose equivalence classes [ωs]ω are in one-to-one correspondence with the

set of all labels assigned to ωs’s under Fa:
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Definition 2.2 ωs ∼ω ωt ⇐⇒ either | ωs − ωt |< δ, or ∃i1, .., iK = 1, .., 9, such

that | ωik − ωik+1
|< δ, where k = 0, .., K + 1, and i0 = s, iK+1 = t.

Clearly, the map ω 7→∼ω is computable by the tests X, i.e., ∼ω=∼X(ω). In order

to see this, start, for instance, with Aω1

1
def
= {ω1} and evaluate the appropriate tests

X1,s,δ and Xs,1,δ, s = 2, . . . , 9. This finds Aω1

2 , the subset of [ω1]ω consisting of all ωs

such that | ω1 −ωs |< δ. Repeat the same procedure by evaluating the appropriate

tests for every ωs ∈ Aω1
n \ Aω1

n−1, producing Aω1

n+1 until the expansion terminates:

Aω1

n+1 = Aω1
n = [ω1]ω.

Step 2: Let Eω = {ωs, s = 1, . . . , 9}/∼ω = {Cω
0 , . . . , Cω

z(ω)} be the set of corre-

sponding equivalence classes written, for instance, in accordance with the order in

{ω1, . . . , ω9} (i.e., Cω
0 = [ω1]ω, Cω

1 = [ωs]ω, where ωs is the next pixel after ω1 such

that ωs /∈ Cω
0 , and so on). Furthermore, Eω can now be well-ordered by “≺” defined

as follows:

Definition 2.3 For Cω
1 , Cω

2 ∈ E , Cω
1 ≺ Cω

2 ⇐⇒ ω2 − ω1 ≥ δ, for some (and

therefore, for all) ω1 ∈ Cω
1 , ω2 ∈ Cω

2 .

In order to see that the above relation is well-defined and is indeed a total-order

relation on Eω, it suffices to note that for any two Cω
1 , Cω

2 ∈ Eω and any ω1 ∈ Cω
1 ,

ω2 ∈ Cω
2 , either ω2 − ω1 ≥ δ or ω1 − ω2 ≥ δ holds. Hence, if mi = min Cω

i , and

Mi = max Cω
i , where i = 1, 2 and min and max are taken under the usual “<”,

then either m1 − M2 ≥ δ or m2 − M1 ≥ δ. Thus, in fact, either ω2 − ω1 ≥ δ or

ω1 − ω2 ≥ δ for all pairs ω1 ∈ Cω
1 , ω2 ∈ Cω

2 .

Step 3: Let h(·; ω) : Eω → {0, . . . , 8} be the natural enumeration of (Eω,≺).

By definition of ≺, h depends on ω only through X(ω). Finally, noticing that

Fa(ω)s = h([ωs]ω, X(ω)) concludes the proof. ¦
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It also should be noted that Fa(ω) does not determine X(ω) as seen from the

following example with three pixels: ω1
1 = 0, ω1

2 = 20, ω1
3 = 40

Fa→ 0, 0, 0 with

δ = 32 and also ω2
1 = 0, ω2

2 = 0, ω2
3 = 0

Fa→ 0, 0, 0, while clearly X(ω1) 6= X(ω2).

2.3 In Search for Statistically Stable Microimage Codes

In the course of our search for statistically stable, primitive image codes [22] we

entertained an order-theoretic approach to image analysis [27],[32],[36],[57]. Specif-

ically, the idea was to relate perceptually meaningful groupings to partitions of the

microimage space induced by special microimage operators. One intuitive choice is

the quantizations maps used in [22], i.e. operators that at least preserve the order

of pixel intensities when mapping microimages to patterns. The alternate quanti-

zation map Fa (§2.2) is our central example. Partially ordering such operators by

“fineness” of the constancy classes provides some control over the amount of detail

of the corresponding microimage codes. Probabilistically, these operators are ran-

dom variables, and the partial order “coarser/finer” can be uniquely extended to

a total order determined by information content or simply entropy. The following

well-known elementary result proves useful for this task.

Proposition 2.4 Let F1 and F2 be random variables defined on (Ω, P), a common

discrete probability space, in such a way that the partition P2 induced by F2 is

finer than or equal to the partition P1 induced by F1. Then H(F2) ≥ H(F1).

Proof. That the partitions are nested is just another way of saying that F2 deter-

mines F1 (i.e., F1 = f(F2) for some function f). Hence H(F2) = H(F1, F2). Since

H(F1, F2) = H(F2|F1) + H(F1), it follows that H(F2)−H(F1) = H(F2|F1) ≥ 0, as

entropy is always nonnegative. ¦
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Thus, without the notion of entropy one can only judge about the amount of detail

preserved by two microimage operators if one operator is a deterministic function

of the other. Putting this into the information theoretic framework not only allows

us to rank all such operators by the amount of information they convey about the

underlying distribution, but it also ensures that such a ranking is consistent with

the usual, deterministic order.

This naturally provides quantitative control over information loss due to aggre-

gation. The qualitative, or perceptual, aspect, as well as the utility of the retained

information for a particular imaging task, depends on the definition of the microim-

age operator.

In general, the order-theoretic framework for image analysis can be more flexible

and natural than that of vector spaces. (A comparative discussion of the two,

which predates the boom of wavelet-based techniques in image analysis, is presented

in [57].) For instance, considering non-linear operators allows one to include more

naturally the photometric dimension along with spatial geometry in the design and

analysis of primitive image features with desired degrees and types of invariance.

A common concern is the loss of computational efficiency enjoyed by linear filters.

The vector quantization framework advocated in [22] and outlined in the previous

section (§2.2) provides a sensible alternative to coding schemes based on linear

filters. We have also attempted to address this issue in §6.6, discussing a framework

for efficiently assembling banks of local non-linear, purely algebraic, filters. Such

filters are designed to be invariant under basic symmetry transformations of 2 × 2

microimages, which are also respected by the empirical microimage distribution p.

However, analogous constructions for larger microimages may be significantly less

compact and require additional research.
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We now turn to the issue of “universality” of microimage codes. Specifically, in

order for the VQ-based microimage features (“supervised by” microimage codes) to

be valuable in practice, it is highly desirable that the distribution of the underlying

microimage codes change as little as possible across various image scenes and with

respect to scaling and some global image intensity transformations. (This links

the present work to the study of microimage statistics in [22].) We would then be

able to focus on “the distribution” of natural microimage patterns. This goal, of

course, imposes further conditions on the quantization maps. Intuitively, candidate

quantizations must respect natural microimage coherence, or structure.

In [22], we analyzed two quantization maps, Fa, the alternate quantization

(§2.2), and a simple modification of the standard uniform quantization. Although

not comparable deterministically in the sense of “coarser/finer” relation (i.e. nei-

ther is a function of the other), the “uniform” map resulted in considerably larger

loss of information than that incurred under Fa. This and other statistical exper-

iments involving the two maps were based on a small (40 images) image data set

(yet more diverse than that in the tag experiments in §2.1).

First signs of statistical stability of both types of our patterns were observed in

the following ranking experiments. In short, 3× 3 patterns were ranked from most

frequent to most rare based on a large microimage sample. A “leading” hundred

were identified as patterns present in all the 40 images. Furthermore, most of such

patterns invariably retained their intra-image frequency-based ranks. (The effect

was more pronounced in the case of Fa.) As explicit information about absolute

brightness was eliminated through quantization, all microimages of “negligible”

gradients were grouped into a single pattern (3 × 3 null matrix), naturally called

“background”. Under Fa, the background pattern clearly dominated the empirical

distribution, whereas its closest contenders, should they be named at all, would
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undoubtedly be called “edges”; see Table 1 for fragments of a typical output ordered

by the pattern frequency.

Pattern
0 0 0
0 0 0
0 0 0

1 0 0
0 0 0
0 0 0

0 0 1
0 0 0
0 0 0

1 1 1
1 1 1
1 1 0

1 1 1
0 0 0
0 0 0

1 1 1
1 1 1
0 0 0

0 0 1
0 0 1
0 0 0

1 1 1
1 1 1
0 0 1

Rank 1 2 3 4 9 10 32 33
Pr 0.68678 0.0064 0.0062 0.006 0.0047 0.0047 0.0012 0.0011

Table 1: Fragments of alternate pattern data ranked by frequency.

Next, similarity in the likelihood ranks of patterns that could be identified with

each other by some basic symmetry transformation (e.g. rotation of the square)

amplified our belief in the corresponding symmetry hypotheses. In fact, when

symmetric patterns were aggregated into classes invariant under the corresponding

symmetry transformations, we even observed significant stability of many point

estimates for class probabilities across scenes and with respect to downscaling by

block averaging. (An additional set of 40 images was used to assess these types of

stability.)

We also defined and analyzed a measure of pattern complexity, and its empirical

distribution also appeared very stable in our experiments. The results became even

more striking when we replaced absolute probabilities by conditional ones given

“non-background”.

These results naturally led to connections with related work. First, the research

on statistics of natural images [19],[59],[70] and on scale invariance in natural images

[9],[23],[58] provided evidence and an explanation for universal scaling laws, in

particular regarding the probability distribution of object sizes. We also compared

our microimage statistics for natural images with those generated artificially from

Poisson disk models, sampling the disk radii according to several different densities.
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After adjusting for the amount of “background,” the best statistical match was

achieved in the case of inverse cube laws, as discussed in [9],[42], and [50].

Secondly, a parallel was drawn with work to characterize or even “derive edges”

as “eigen-features” relative to various linear bases for decomposing small images

(e.g., 12 × 12). In Independent Component Analysis (ICA), a natural generaliza-

tion of Principal Component Analysis to higher moments, edges are characterized

as “the most statistically independent” image features and comparisons are drawn

with biological operations in the primary visual cortex ([4],[30],[43],[44],[51]). Our

work suggested a somewhat different characterization of edges as “the most prob-

able non-background” microimage configurations. The idea of efficient coding of

natural images also relates our work to generalizations of ICA (e.g. [44]).

In the same spirit but in the context of image segmentation, textons are pro-

moted as universal microimage patterns, obtained as prototypes or codes under vec-

tor quantization in high dimensional spaces of largely redundant filter responses [48].

The idea of generic subimage classification (“archetype classification”) was also

pursued in fractal image compression (e.g., [8]).

Encouraged by the results on statistical stability of our micro patterns, we

conducted experiments to vector-quantize samples of natural 3 × 3 microimages

along the lines of the VQ-framework of §2.2. The first results were satisfying in

that the greedy strategy based on entropy reduction seemed reasonably efficient. A

possible direction for future research is to consider globally optimal strategies [21].

Replacing on-line microimage classification by an off-line computation of the VQ

tree based on the models presented in this work defines another dimension for the

evolution of this research. Also, the induced tree structures further increased our

confidence in the presence of several distinct features (e.g. symmetries) in the
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natural microimage distributions, and led directly to the work here - a more detailed

analysis and modeling of these distributions.
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C H A P T E R 3

STABILITY ANALYSIS

We are interested in the population of all digital images of natural scenes pub-

licly available from the world-wide web. This is, of course, different from studying

images from a well-defined specific domain, e.g. MRI, urban scenes of a particular

country, or wild life photographs of a particular geographic zone. In fact, we realize

that our findings may be greatly refined and further substantiated by narrowing

the scope of the investigation. Nonetheless, we hope to demonstrate the existence

and practical value of some signatures common to the micro structure of all natural

scenes.

Briefly, the goal of this Chapter is to build a foundation for probabilistic mod-

eling of microimages of natural scenes (Chapters 4 and 6). First, we will develop

a necessary statistical framework, providing definitions of underlying probability

spaces and selecting appropriate sampling schemes. In this framework, we will then

investigate the following three modes of statistical stability of natural microimages:

Inter-Scene Stability, Spatial Scale Invariance, and Photometric Scale Invariance.

Having a degree of stability as above will justify modeling the microimage distribu-

tions without worrying about the origin of the image database or scaling effects.
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3.1 Underlying Probability Spaces

We assume that all images have a common gray scale, CL = {0, . . . , L − 1}.

The (virtually infinite) population of all such images Σim defines the probability

space (Ωim, Pim) in the obvious way: Pim(I) = n(I)
|Σim|

, where n(I) is the number

of instances of image I in the population. Multiple copies of the same image are

indeed existent on the web (i.e. n(I) > 1), albeit rarely observed. The image space

here is Ωim =
⋃

m,n≥1

Mm×n(CL), where Mm×n(CL) is the set of m × n matrices with

coefficients from the set CL. Imposing an upper bound on the matrix dimensions

in the image population renders Ωim finite. Obviously, we declare all the subsets

of Ωim to be measurable and hence will leave aside reference to σ-fields.

The sizes of microimages that we study are 1 × 2, 2 × 1, 2 × 2, and 3 × 3. The

corresponding probability spaces are of the form (Ω, p), where Ω = Mm×n(CL) with

m, n among the cases above.

Sometimes during the modeling phase, we will rescale CL to fit in some stan-

dardized range (e.g. [−0.5, 0.5]), but even then it will always be enumerated by

{0, . . . , L− 1} in accordance with the usual order “<”. If necessary, by default we

will then use the following enumeration of Ω:

Ω = {ω1, . . . , ωK}, where K = |Ω| and

k(ω) = 1 + ωm,1 + Lωm,2 + · · · + Ln−1ωm,n+

· · · + L(m−1)(n−1)+1ω1,1 + · · · + Lmn−1ω1,n,

(3.1)

and refer to k(ω) as the index of ω.

The microimage measure p is naturally induced from Σim through the super

population Σ of all the image blocks of the given size m × n extracted from every

image I of the image population Σim. So, to each microimage ω, p simply assigns
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its relative frequency in population Σ:

p(ω)
def
=

1

|Σ|

∑

I∈Σim

n(ω, I) =

∑

I∈Ωim

n(ω, I)Pim(I)

∑

I∈Ωim

S(I)Pim(I)
=

Eimn(ω, I)

EimS(I)
, (3.2)

where the random (through I) variable n(ω, I) counts the number of occurrences

of ω in image I, and S(I) is the total number of microimages of the given size in

I. If I is of the size v×h, and ω is m × n, then S(I) = (v−m + 1)(h−n + 1).

We emphasize that with this set-up the image size is a random quantity, un-

like in the more usual case of populations with fixed size images (e.g. [30], [34],

[35].) This minor complication slightly affects our microimage sampling mechanism

(§C.1.)

Also, one could alternatively think of images of variable sizes as samples from

a common random field (supported either discretely or continuously). In such an

approach, scaling would need to be modeled explicitly, hence requiring additional

assumptions and leading to even more complications (e.g. microimages would need

to be rescaled accordingly).

3.2 Image Data

Before we describe our data, we emphasize that achieving reasonable accuracy

in estimating Pim or p from a sample typically available with our resources seems

hopeless. Moreover, the former distribution is of little interest itself. Of course,

with the rapid development of the web resources the situation could change soon,

e.g., dynamic samplers may be installed directly connected to the major search

engines. However, here we operate under much scarcer resources (both computer

and human). Still, we hope to capture some interesting properties of p based on

a relatively small sample of four hundred images. These images are diverse in
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origin, scale, and quality; there are landscapes, urban sights, people, animals and

even a galaxy. Among them, there are forty randomly chosen 196× 128 thumbnail

pictures from the database used in [30]. Most of the other images come from public

image resources and personal collections of the author’s friends and colleagues. The

largest single contributor is a personal artistic collection [39], from which more than

a hundred images were sampled. We are going to use Iim for our image sample

{I1, . . . , IN}, N = 400, and I will refer to the set of all patches of a given size

extracted from every image of Iim.

Using standard image processing tools, full color images are converted to a

scalar range fully spanning the 256 grey levels.

As early experiments revealed the usual problem of zero counts, we decided to

coarsen the range to L = 8 for two pixel microimages, and to L = 4 in the 2×2 case.

Unless explicitly stated otherwise, these will be the default values for L throughout

this work. To ameliorate the resulting perceptual degradation, the uniform quan-

tization was preceded by eight-bin intra-image histogram equalization. Figure 3

displays six images from the database before and after the intensity coarsening.

To facilitate a potential comparison of our data with another set, we present some

Figure 3: Image data. Original (top) and coarse (bottom) scales
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crude statistics of image macro parameters. These are displayed in Figures 4. A
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Figure 4: Image parameters. Top: Image height (left) and
width (right). Bottom: Image area (left) and aspect
(height/width) ratio (right)

small sample of 100 2 × 2 microimages extracted from one of the images in Iim is

shown (eight gray levels were rescaled to maximize the contrast for better visual-

ization) in Figure 5.
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Figure 5: A subsample of 2 × 2 microimages from I

3.3 Low Bin Counts and Aggregation of Rare Events

Obviously, our statistical analysis of natural microimages involves (sub)sampling

microimages from I and the relevant discussion is presented in Appendix C. One

of the related technical issues, however, needs to be mentioned right away. Namely,

we will encounter the typical problem of low bin counts. For instance, in estimating

p, sample independence and sufficient bin counts (e.g., five) are competing goals

when N (|Iim|) is fixed. Other resources being exhausted (in particular, L = 4 is

the smallest intensity range we are willing to consider), we will collapse the rare

events to a single cell, Dε = {ω : p̂(ω) < ε}. As long as Dc
ε has a non-degenerate

composition (say, several dozens elements) of total mass close to 1 (e.g., 0.95), we

will not be concerned with the effects of this aggregation and will assume we are

still working with p. Indeed, for practical purposes rare configurations are often

simply not important. Note however, that for a real application, a more intelligent
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and elaborate way to aggregate the rare events should be used; e.g. in the spirit of

bottom-up Huffman Coding ([11],[22]) several, and not just one, aggregate states

might be defined. Nonetheless, whenever we are merely concerned with the behav-

ior of the principal masses of p, we will use the simple aggregation proposed above.

Finally, we assume that we have a sufficiently large, random sample from p.

The corresponding empirical distribution (i.e. the Maximum Likelihood Estimator

for p) is denoted by p̂d. Here, the superscript refers to the sampling rate, which

constitutes one of the technical issues of generating microimage samples discussed

in Appendix C (§C.2). However, in the ensuing presentation of the main work, the

dependence of p̂d on d will often be suppressed.

3.4 Symmetric Aggregation

The central theme of this chapter is the stability analysis of p and we are going

to test a series of statistical hypotheses representing key stability properties. In this

context, we are going to formulate such properties not only for p as a distribution

on Ω, but also for the distribution induced by p on S
def
= Ω/ ∼, a quotient space

of the 2 × 2 microimages (L = 4) under some symmetry equivalence relation ∼.

Thus, in this case we analyze p integrated over elements of the partition S. Still,

we will continue to use “p”, understanding by p(O) the aggregate mass of O ∈ S,

i.e. p(O)
def
=
∑

ω∈O

p(ω). When convenient, we will also refer to classes by a class

representative in square brackets: Thus, if ω ∈ O, [ω] stands for O.

Despite its technical similarity with partitions associated with quantization

maps in §2.2, the ideas behind introduction of S are different from the search for

perceptually meaningful, statistically stable microimage codes. First, any aggre-

gation leads to larger counts, and consequently more robust testing. This purely
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technical reason to consider S is necessitated by our current sampling limitations

(§§3.3,C.1,C.2). However, the aggregation chosen below is also going to be mean-

ingful from the viewpoint of modeling p, since, in Chapter 4, we assign equal prob-

abilities for patches from the same symmetry class O ∈ S, and test the validity

of this symmetrization in Chapter 5. Thus, this aggregation also sets the stage

for modeling p. The particular symmetry equivalence relation is further explained

in §4.4 and also discussed in §6.4.1 in the proper algebraic context of Appendix D. It

now only remains to specify what particular symmetries are entertained. Whereas

in Chapter 4 we will define several models based on different sets of symmetries,

we take but one example here, defined in the following subsection. Also note that

this aggregation is different in principle from collapsing the rare events into a sin-

gle class (§3.3) which we do in §3.6.1. Thus, this aggregation allows us to analyze

the stability of p from a somewhat different perspective.

In Appendix C we will briefly return to the stability question to illustrate how

a good model leads to lower estimation variability and thus more reliable testing

(§C.6).

3.4.1 Rotation, Reflection, and Inversion Symmetries

We assign two patches ω1 and ω2 to one class O if and only if they can be

obtained from each other by any number of the following three symmetry transfor-

mations: rotation by π/2 (e.g. counterclockwise), reflection through the secondary

diagonal, and intensity inversion. The first two types are clearly geometric trans-

formations exploiting the square nature of the patch; the choice of the rotation

direction and the reflection axis is unimportant (Appendix D). Equation (3.3) il-

lustrates the two geometric symmetries.
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




4 3

1 2






rot.
∼






3 2

4 1






refl.
∼






1 2

4 3




 (3.3)

The last symmetry corresponds to replacing the original (micro)image by its “neg-

ative”. With L = 8, for example, 4 7
0 3 is identified with 3 0

7 4 . From now on we will

refer to this particular partition of Ω as “G− Symmetries”, and will later provide

a more complete discussion.

3.5 Stability Analysis via Hypothesis Testing

We are going to analyze stability of the microimage distribution p across scenes

(§3.6), with respect to downscaling by block-averaging (§3.7), and under global,

linear rescaling of the image intensities (§3.8). This analysis is necessary to justify

the ensuing modeling of p, and naturally advances our early, similar analysis ([22])

by putting it in the more rigorous framework of statistical hypothesis testing.

Thus, the goal is to demonstrate a whole group of related properties of p. First,

imagine classifying the natural microimage population Σ by some global image

attribute such as, e.g., type of scenery. This effectively divides Σ into several

subpopulations each with its own variation of the microimage measure p. We would

like to verify our hypothesis that such variations are virtually indistinguishable, that

is p satisfies the property of inter-scene stability. This is only one of the several

modes of universality of p that, if confirmed, would prove that the problem of

modeling p is indeed well-posed, and hence promise a significant practical value. The

other related types of universality of p are the absence of the effective spatial scale

of natural images (scale-invariance) and lack of dependence of p on photometric

transformations undergone by images during preprocessing.
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Common to all these properties is the formulation of the corresponding statisti-

cal hypotheses. Namely, assume p̂(1) and p̂(2) are two estimates of p obtained under

different conditions appropriate for verification of the particular type of stability

(e.g., two different scene types or two different spatial scales). The two estimates

are thus assumed to come from two independent microimage subsamples. We then

test the two sample consistency or homogeneity of proportions hypothesis: “p̂(1) and

p̂(2) are generated by the same distribution”.

In order to test our stability hypotheses, we are going to apply a virtually

infinite class of Power-Divergence Tests studied and advocated in [54]. Essentially

the same tests are used for model testing in Chapter 5. These tests are based on

the Power-Divergence quasi-distance measures I(p, q; λ) between two probability

vectors p and q:

I(p, q; λ) =
1

λ(λ + 1)

∑

k

pk

[(
pk

qk

)λ

− 1

]

λ ∈ R, λ 6= −1, λ 6= 0. (3.4)

I(p, q;−1) and I(p, q; 0) are understood in the limiting sense and coincide with

D(q, p) and D(p, q) (up to the base of the logarithm), respectively. (D(p, q) is

the usual Kullback-Leibler divergence [11],[40], Definition A.5.) Thus, the power-

divergence tests are very natural in the sense that they connect Statistics with

Information Theory. They also prove particularly convenient for our purposes be-

cause of the nature of the hypotheses we are going to test. Specifically, parameter

estimation in these tests is simple in several respects in the current case of homo-

geneity of proportion testing as well as in the case of symmetry hypotheses. Also,

these tests suggest a mechanism to assess validity of the large sample, i.e. asymp-

totic, results; and we will be able to take advantage of this tool. Among alternatives

to these tests is the bootstrap [61],[62]. We do not use bootstrapping in the present
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work, although it would be interesting to further verify our findings by other sta-

tistical means.

The test statistics that we use for testing the stability hypotheses “p(1) = p(2)”

are T (λ) = N1I(p̂(1), q̂(λ); λ) + N2I(p̂(2), q̂(λ); λ), where N1 and N2 are the mi-

croimage subsample sizes and q̂(λ) are the Minimal Power-Divergence Estimators:

q̂(λ)
def
= arg min

q∈Θ+
[N1I(p̂(1), q; λ) + N2I(p̂(2), q; λ)], where Θ+ is the set of all positive

distributions on Ω. Unlike I(·, ·; λ), these statistics incorporate sample sizes which

allows one to build statistical tests based on universal asymptotics. Appendix B

presents the key details from the general theory of these tests. The particulars

relevant to testing the two sample consistency can be found in §B.2 and include

expressions for q̂(λ) (B.7),(B.8). Depending on λ, among our tests are Generalized

Likelihood Ratio and Pearson’s χ2 Tests for two sample consistency (λ = 0 and

λ = 1, respectively). The choice of λ = 2
3

is advocated as “golden mean” ([54],

Appendix B) for several reasons including its suitability to detect a overall lack of

fit in the presence of states with very small counts.

The general issues of obtaining p̂(1) and p̂(2) are essentially the same as in the

case of p̂ (§§C.1,C.2) and the ones specific to particular stability experiments are

presented below in the appropriate contexts.

3.6 Inter-Scene Stability

We split Iim into I1
im and I2

im by the following global criterion: I1
im includes

indoor scenes or distinct outdoor views of buildings. The rest of Iim goes in I2
im.

Thus, in our experiments we say that p exhibits inter-scene stability if the null

hypothesis ”p̂(1) and p̂(2) estimate the same distribution” is not rejected. The

decision is based on the asymptotic approximation to the distribution of the test
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statistics T (λ) under the null hypothesis. The theory of the power-divergence tests

shows that in this case the asymptote is the χ2 distribution with ν degrees of

freedom (§B.2), where ν =“|Ω|”−1. The quotes are because of the adjustments

caused by the state space reduction due to aggregations (e.g., Ω → S).

In these and the ensuing hypothesis testing situations we ran tests several times

to select “typical” results. Namely, most of the test results presented in this work

correspond roughly to the median values of the test statistics observed in multiple

repetitions of the same test. Further discussion of validity of our test results can

be found in §C.3.

Consider first the case of 1 × 2 patches, in which Ω has 64 states (L = 8).

A typical test run (N1 ≈ 7000 and N2 ≈ 1000) with different values of the test

parameter λ is recorded in Table 2, top. Zero counts render the test statistic

λ -2 -1 -0.5 0 0.5 0.67 1 2

T (λ) - 86.17 84.08 80.71 78.15 77.36 75.87 71.79
P -val(λ) - 0.028 0.039 0.066 0.095 0.11 0.13 0.21

T (λ) - 96.65 88.38 77.46 71.1 69.43 66.61 60.22
P -val(λ) - 0.004 0.019 0.104 0.226 0.27 0.354 0.576

Table 2: Power-divergence tests for inter-scene stability. Top: Hori-
zontal pairs. Bottom: Vertical pairs.

undefined for λ < −1 (Appendix B), hence the λ = −2 cell is blank . Al-

though the test statistics T (λ) seem close to each other, their variation around

the asymptotic cut-off point χ2
0.95,63 = 82.531 makes the situation somewhat in-

conclusive: Only five tests (corresponding to λ “large”) accept the null hypoth-

esis at significance level α = 0.05. In Appendix B we cite [54] to explain that

such situations may occur when there are a small number of low count states

1If X is distributed as χ2(ν), then χ2
1−α,ν

def
= c such that P (X > c) = α.
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“spoiling” the match between the data and the null hypothesis. Thus, we iden-

tified and aggregated states with counts consistently below five (indeed, a third

of them were frequently zeros) in order to convince ourselves of the overall good

match between our data and the null hypothesis. The aggregate set (§3.3) is D =

{(0, 4), (4, 0), (0, 5), (5, 0), (0, 6), (6, 0), (0, 7), (7, 0), (1, 5), (5, 1), (1, 6), (6, 1),

(1, 7), (7, 1), (2, 6), (6, 2), (2, 7), (7, 2), (3, 7), (7, 3)} and the corresponding test

results are shown in Table 3, top. Similar results were obtained for the 2 × 1 case

(Tables 2,3 bottom).

λ -2 -1 -0.5 0 0.5 0.67 1 2

T (λ) 58.04 57.98 57.78 57.48 57.11 56.97 56.67 55.66
P -val(λ) 0.076 0.077 0.08 0.084 0.089 0.091 0.095 0.112

T (λ) 55.6 55.46 55.12 54.61 53.95 53.69 53.17 51.36
P -val(λ) 0.1136 0.115 0.121 0.131 0.145 0.15 0.162 0.208

Table 3: Power-divergence tests for inter-scene stability after aggre-
gation. Top: Horizontal pairs. Bottom: Vertical pairs.

We now move to a demonstration of inter-scene stability in the 2 × 2 case.

3.6.1 The 2 × 2 Case

With L = 8 we would have |Ω| = 4096, which is already comparable to our

typical microimage sample sizes (see above). Clearly, no sensible testing is possible

then. This is the reason for choosing L = 4; consequently, |Ω| = 256. Now,

N1 ≈ N2 ≈ 9000. Based on the argument of preventing low counts, and also after

visual inspection of several histograms, we aggregated 136 most rare configurations

in one compound state. A few examples of the collapsed micro configurations are:

3 0
0 1 , 1 0

3 2 , 2 0
0 2 , 2 0

3 3 . Based on the asymptotic cut-off point (χ2
0.95,120 = 146.57) the

null hypothesis is not rejected (Table 4, top) but the significant variation of the
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test statistic with λ suggested a more drastic aggregation to overcome the empty

bin effect. Thus, we additionally collapsed 47 rare states. To our satisfaction, the

results in Table 4, middle, indicate a overall good standing of the null hypothesis

in all the eight tests (χ2
0.95,72 = 92.808).

λ -2 -1 -0.5 0 0.5 0.67 1 2

T (λ) - 145.02 144.9 137.05 131.38 129.7 126.67 118.5
P -val(λ) - 0.06 0.061 0.137 0.225 0.257 0.321 0.522

T (λ) 87.34 88.19 88.17 87.72 87.01 86.71 86.05 83.59
P -val(λ) 0.105 0.095 0.095 0.1 0.11 0.114 0.124 0.165

T (λ) 24.1 24.44 24.43 24.31 24.1 24.01 23.81 23.07
P -val(λ) 0.514 0.495 0.495 0.501 0.514 0.519 0.531 0.574

Table 4: Power-divergence tests for inter-scene stability. Top: Par-
tially aggregated Ω. Middle: More severe aggregation of Ω.
Bottom: G-symmetric aggregation.

Now we perform the power-divergence tests for two-sample consistency in order

to test inter-scene stability of p relative to S (§3.4). In §6.4.1 we present a general

formula (Proposition 6.8) for the size of S as a function of L. With L = 4, |S| = 31

(resp., |Ω| = 256). Low counts are now less of a problem: There are only six rare

classes: 




1 0

0 3




 ,






2 0

0 2




 ,






2 0

0 3




 ,






3 0

0 3




 ,






2 0

1 2




 ,






2 0

1 3




 .

Their aggregate mass is less than 0.02 and these classes contain only 38 microimages

in all. (This should be compared with the previous aggregations of 136 and 183

rare microimages.) Clearly (Table 4, bottom), independently of λ the tests support

the null hypothesis.

In §C.6 we will complement this discussion by showing an increase in test reli-

ability when the raw empirical distributions p̂(i), i = 1, 2 are replaced by a model

(Tables 21 and 22).
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3.7 Scale Invariance

A very thorough mathematical treatment of scale invariance in terms of prob-

ability measures on abstract image spaces can be found in [50]. However, the sub-

ject of our work is more concrete, and we continue to use the hypothesis testing

framework to analyze scale invariance of p. The present analysis substantiates our

previous work on this subject [22].

There are many ways to define “scale invariance” depending, first of all, on how

downscaling (i.e., downsampling) is performed. The most popular downscaling

operators are block-averaging (BA), subsampling (SS), and median filtering (MF ).

Usually, they lead to similar results [34],[42].

Assuming image I has dimensions 2v×2h, downscaling by 2×2 block averaging

transforms I into a v×h image BA(I) where: BA(I)(i, j) = 0.25[I(2i−1, 2j−1)+

I(2i − 1, 2j) + I(2i, 2j − 1) + I(2i, 2j)] for i = 1, . . . ,v and j = 1, . . . ,h. Simple

subsampling of I returns an v×h image SS(I), retaining, for instance, the upper-

left pixel in each 2×2 block: SS(I)(i, j) = I(2i−1, 2j−1). Finally, each pixel value

MF (I)(i, j) in the v×h image obtained via median filtering of I is the median of

the four original intensities {I(2i− 1, 2j − 1), I(2i− 1, 2j), I(2i, 2j − 1), I(2i, 2j)}.

We emphasize that these operations are to be performed prior to any preprocessing

(e.g. histogram-equalization and uniform coarsening of the intensity range).

Next, imagine performing one of these three operations on every image from the

population Σim, thus obtaining a new image population and, consequently, image

distribution P′
im in the same way as Pim is obtained from Σim (§3.1). The new

microimage population and corresponding distribution are Σ′ and p′ respectively.

In principle, one could similarly define Σ′′
im, Σ′′, p′′, etc. We can then define what

we mean by “scale invariance” of natural images:
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Definition 3.1 If p and p′, p′′ etc. are all equal, we will say that p is scale invariant.

Of course, in reality scaling is effectively limited to a reasonable finite range. Thus

the above definition is in practice too restrictive and the strict equality must be

weakened and a distance introduced. In order to be able to test scale invariance,

we restrict our discussion to the two scales only, i.e., the null hypothesis is p = p′.

We will use block-averaging to obtain I ′
im from Iim.

In practice, scale invariance of natural images is often reported by graphing var-

ious statistics (e.g. single pixel histograms) extracted at different scales, and then

appealing to a visually close match between the two such plots [9], [34], and [35].

Thus, visual inspection has been commonly relied on. When image sample sizes are

as large as tens of thousands and a virtually continuous image function (such as the

logarithm of the histogram) is analyzed [34], statistical stability may be sufficiently

apparent to ignore a more formal, numerical analysis of the errors. Our early and

somewhat simplistic attempts to address statistical significance in experiments on

stability in general, and scale invariance in particular, reflect our concern with the

validity of conclusions based on relatively small samples and are documented in [22].

We now take a natural step toward rigorous verification of scale invariance by

testing the hypothesis “p = p′”. Again, we will use the Power-Divergence tests

similar to the analysis of inter-scene stability (§3.6). Thus, we are going to split

Iim into I1
im and I2

im, then downscale one of them, and finally compute p̂1
d and p̂2

d

respectively. To have comparable numbers of microimages contributing to p̂1
d and

p̂2
d (which is desirable in two sample consistency tests §B.2), we can either divide

Iim approximately as 1 : 4, or split it evenly but sample microimages from the

downscaled image subsample at the rate 4d. In order to better control introducing

dependencies in the microimage samples, we choose the former method and thus
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assume that we generate random samples from p and p′. Note that, at any rate,

the downscaling leads to a decrease in the microimage sample size relative to the

inter-scene stability analysis. We also performed similar experiments without the

division of Iim, namely obtaining microimage samples from the entire Iim and its

downscaled version. Of course, there is then the risk of introducing dependence

among the microimage samples from the two different scales.

We now present typical2 test results based first on 1 : 4 splitting of Iim (Table 5)

and second on the entire Iim (Table 3.7). In the latter situation the sampling

rate for the downscaled microimages will be 4d in order to balance the resulting

microimage sample sizes. The actual sampling rate (C.2) in the first situation is

d = 0.0002 and the same aggregations as in §C.2 are in effect for both the 1 × 2

and 2 × 1 cases. Thus, there we have 44 degrees of freedom for the asymptotic

test distribution under the null. Coping with the loss of about half the sample size

that we had in §3.6.1 for the 2 × 2 case, we now aggregate the rare patches more

dramatically. Alternatively, we can lift the testing to the G-symmetric quotient

space S (§3.4.1) and aggregate several more classes in addition to the ones we had

in §3.6.1. We chose the latter method due to more meaningful aggregation. At the

end, we arrive at 15 classes and thus 14 degrees of freedom; the “rare” super class

absorbs less than 3% of the total mass.

In the second situation (i.e., Iim is not divided), we reduce the sampling rate d

to partially compensate for the anticipated gain in inter-sample dependence (C.2).

Specifically, we use d = 0.0001 in both the two-pixel cases, and, guided by stabi-

lization of the test statistics with respect to the parameter λ, we take d = 0.00006

in the 2 × 2 case. In summary, the scale-invariance hypothesis is not rejected.

2Multiple test runs show satisfactory agreement with respective χ2 asymptotics, comparable
with the similar results in §3.6.
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For the rest of the stability analysis we will only use the experiments based on

splitting Iim: Several test reruns confirm that the other set-up is inferior to this

one, namely, dependence among the two microimage samples inevitably leads to

the test data resembling the respective asymptotic distributions less.

λ -2 -1 -0.5 0 0.5 0.67 1 2

T (λ) 56.82 57.71 57.54 56.95 56.07 55.73 55.04 52.91
P -val(λ) 0.09 0.08 0.08 0.09 0.11 0.11 0.12 0.17

T (λ) 48.77 49.83 49.66 49.02 48.02 47.62 46.78 44.04
P -val(λ) 0.29 0.25 0.26 0.28 0.31 0.33 0.36 0.47

T (λ) 12.62 12.78 12.71 12.55 12.32 12.23 12.05 11.47
P -val(λ) 0.56 0.54 0.55 0.56 0.58 0.59 0.6 0.65

Table 5: Scale invariance tests based on I1
im and I2

im. Top: Vertical
pairs. Middle: Horizontal pairs. Bottom: 2 × 2 L = 4.
Partially aggregated S.

λ -2 -1 -0.5 0 0.5 0.67 1 2

T (λ) 57.26 58.08 58.02 57.64 57 56.74 56.18 54.3
P -val(λ) 0.09 0.08 0.08 0.08 0.09 0.09 0.1 0.1

T (λ) 49.24 50.2 50.2 49.76 49.06 48.77 48.14 45.97
P -val(λ) 0.27 0.24 0.24 0.26 0.28 0.29 0.31 0.4

T (λ) 20.87 21.01 20.99 20.93 20.82 20.77 20.67 20.31
P -val(λ) 0.11 0.1 0.1 0.1 0.11 0.11 0.11 0.12

Table 6: Power-divergence tests for scale invariance based on entire
Iim. Top: Vertical pairs. Middle: Horizontal pairs. Bot-
tom: 2 × 2 L = 4. Partially aggregated S.

3.8 Intensity Transforms

Our last experiments on stability of p involve (global) intensity transforms.

Namely, regarding an v×h image I (with the original intensity, i.e. L = 256) as an
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element of the vector space Rvh, we linearly rescale it by some positive α, rounding

the resulting values and truncating them to fit again into CL = {0, . . . , 255}: I →

min(255~1, αI). These transforms take place before the preprocessing (histogram

equalization and uniform quantization). The goal here is to analyze invariance of p

against the induced degradation, inevitable when α 6= 1. Similar experiments were

conducted in our early work but not in a hypothesis testing framework. Thus, any

such transformation replaces the original image population Σim by one consisting of

transformed images, and this finally leads to another measure p′ on the microimage

space Ω. The data in Table 7 provide typical test statistics for testing the hypothesis

p = p′. We only display the results for the more important 2 × 2 case, with

L = 4 and the rarest 17 classes integrated into one, exactly as in §3.7. The image

sample is randomly and almost evenly divided in I1
im and I2

im to generate random

microimage samples from p and p′ under the sampling rate d = 0.0001. The top

rows correspond to α = 0.5 and the bottom ones to α = 1.5. In both cases, the

invariance is evident. Multiple test reruns show good agreement between the test

data and the χ2(14) asymptote.

λ -2 -1 -0.5 0 0.5 0.67 1 2

T (λ) 13.28 13.37 13.36 13.32 13.25 13.22 13.16 12.89
P -val(λ) 0.5 0.5 0.5 0.5 0.51 0.51 0.51 0.54

T (λ) 20.32 20.38 20.36 20.32 20.26 20.23 20.17 19.94
P -val(λ) 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.13

Table 7: Power-divergence tests for invariance under truncated lin-
ear intensity transforms: Top: Contraction. Bottom: Ex-
pansion.
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3.9 Summary

We have introduced a mathematical framework for the analysis and modeling

of natural microimage distributions. The main ingredients of this framework are:

• (Ω, p) - the probability space of microimages (matrices) of appropriate size.

• Minimum Power-Divergence Tests - a parametric family of statistical tests

for evaluating various hypotheses involving p.

• Iim - the random sample of N = 400 “natural” digital images.

• I - the collection of all microimages extracted from Iim.

• p̂d - the (unconstrained) maximum likelihood estimator of p (which is based

on the mean of a random microimage sample; d is the sampling rate and will

often be suppressed).

Also, we have addressed methods of aggregation of elements of Ω in order to

prevent low bin counts. Other technical issues to optimize statistical inference

under current limitations such as the insufficient image sample are addressed in

Appendix C. Most important of those issues is generation of a sufficiently large

but random microimage sample, and specifically, determining the sampling rate d

(§§C.1,C.2,C.3).

Inter-Scene Stability of the microimage distribution p has been introduced as

the property of near independence of p of the particular type of natural image

scenery. This property has passed the appropriate hypothesis tests.

Except in abstract image analysis, Scale Invariance can only be defined in ap-

proximate terms. Nonetheless, we have successfully tested our microimage data at

two different scales: The respective empirical distributions are largely the same.
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We have also observed statistically insignificant variation of our microimage

data under global contraction and expansion of the intensity range.

In summary, we have not rejected the following three hypotheses:

• Inter-Scene Stability

• Spatial Scale Invariance

• Photometric Scale Invariance

Thus, not only have we corroborated our early results [22] and results reported else-

where on stability of microimage statistics, but we have now put the corresponding

analyses in a more rigorous statistical framework. This provides a firm foundation

for the ensuing modeling and analysis of p.
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C H A P T E R 4

PROBABILITY MODELS FOR NATURAL

MICROIMAGES

After a short discussion of probabilistic modeling, we define most of the models

studied in this work. Some of the definitions will be presented at an intuitive level

with formal explanations to follow in Chapter 6 and Appendix D. One reason for

this staggered presentation is to expedite the transition to Chapter 5, where these

models are evaluated in the context of statistical hypothesis testing.

4.1 A Few Words on Probabilistic Modeling

In general, one can argue that probabilistic, or stochastic, modeling is the most

natural approach to the exploration of complex systems on the basis of distorted,

conflicting, incomplete, or overwhelming information. Equipped with the infinite

flexibility of general probability spaces, not only do we employ stochastic models

to explain current observations, but we also expect these models to guide us in

optimal acquisition of new data. Eventually, the most natural framework for the

automation of learning (which, until recently, was an unchallenged prerogative of

the living forms) might also be stochastic.

Among the ultimate goals of probabilistic modeling is efficient data representa-

tion in the sense of a compact yet accurate summary of observed statistics. Whether
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one is interested only in numerical measurements of the system (estimation) or also

in complex decision making based on such measurements, it is imperative to rec-

ognize the sensitivity of the estimates of the system parameters to the particular

sample. A suitable model, therefore, is needed in order to “smooth” or “regu-

larize” this variability. Naturally then, discerning between “essence” and “noise”

determines which models capture the key features of the actual data generation

mechanism. Given sparse data or limited resources for analysis, one is obliged to

consider only primitive models. Even then, an intelligent selection among the can-

didates can make a difference by “learning” some, possibly very coarse, properties

of the system.

Apart from resource limitation (e.g. human labor, computer time and mem-

ory), models are commonly compared with one another in light of the Bias-Variance

Dilemma (see, for example, [7],[24]). Namely, one seeks a balance between intrinsic

model complexity and the amount of data available. High variance in model se-

lection (parameter estimation) results from a model family being too complex. In

terms of statistical learning, this corresponds to overfitting the data and leads to

poor generalization. On the other hand, if the model family is too restrictive, the

risk of large estimation bias is high. Ordering model families by their complexity

is therefore very important to facilitate selection. This is one of the main aspects

of the ensuing investigation of microimage probability models.

The notation we develop in this chapter will be followed throughout the work.

Recall (§3.1) that we can index Ω by, for example, k(ω), k = 1, . . . , K = |Ω|

as in (3.1). Thus we will identify real functions f on Ω with vectors in RK via:

f(ωk) ≡ fk for any such function (vector). We will often use the probability simplex

Θ
def
= {q : q ∈ RK ; qk ≥ 0, k = 1, . . . , K;

∑

k

qk = 1}.
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In order to avoid trivialities in testing hypotheses corresponding to our models,

we add the positivity condition to all our model definitions. (Actually, some of

our models will be originally defined to satisfy this condition.) The other motive

is, of course, the assumption that the positivity also holds for p (i.e. pk > 0

k = 1, . . . , K). In fact, in the testing framework (Chapter 5 and Appendix B) our

saturated, or ground, model subspace is Θ+ def
= Q+ ∩ Θ, the interior of Θ, where

Q+ def
= {v : v ∈ RK ; vk > 0, k = 1, . . . , K} is the positive quadrant. When we later

mention distributions on sets other than Ω (Chapter 6), the appropriate dimensions

should always be clear from the context.

4.2 Modeling by Constraints

Generally, modeling includes two stages - model generation and model selection.

In the first stage, a family of distributions satisfying some properties believed to

be essential is proposed. These properties are often characterized as mathematical

constraints, which are a common representation for prior knowledge. We will refer

to the proposed family as “feasible” and will denote it by F . For the rest of this

chapter, we only discuss modeling finite systems (i.e., finite state spaces).

In the second stage, a particular feasible model must be selected. Depending

on the context, this may involve parameter estimation or global optimization.

From now on, by “data” we mean the empirical microimage distribution p̂

(§§3.3,C.1). Recall that p̂ is simply the unconstrained MLE of p: p̂(ωk) = nk

Nω
, where

the nk’s are the sample frequencies and Nω is the sample size1. In the ensuing dis-

cussion of two typical types of constraints [54] we will emphasize the asymmetry of

1The subscript is only to distinguish Nω, the microimage sample size, from N , the image
sample size.
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Kullback-Leibler divergence D(·, ·) by referring to D(p, q) as the divergence from p

to q.

4.2.1 External Constraints and Maximum Likelihood Estimation

In the external constraints framework (ECP), prior to observing the data, with

each model we associate a subfamily Θ0 ⊂ Θ+, the positive distributions on Ω.

Thus, Θ0 plays the role of the feasible region F above and is usually engendered

by recognizing patterns in multiple data sets or simply speculating about the data-

generation process prior to experimentation.

One example is linear constraints: Θ0 = {q ∈ Θ+ : EqVj = µj, j = 1, 2, . . .},

where both the constraining functions Vj and target values µj are fixed before ob-

serving the data. Most of our models originate in this way, and an important special

case is modeling by symmetry constraints (4.7) (§4.4). Later in the work (§6.1),

we treat this special case in more detail.

The other example that we use from this framework is Θloglin
0 , the log-linear

model with the parameter space Γ:

Γ = {γ ∈ RJ+1 :
K∑

k=1

e
γ0−1+

J
P

j=1

γjVjk

= 1},

Θloglin
0 = {q ∈ RK : qk = e

γ0−1+
J

P

j=1

γjVjk

, γ ∈ Γ}, (4.1)

Symmetry constraints on positive probability vectors can also be represented as a

special case of the log-linear model (§6.1).

Except in trivial cases, the empirical distribution always lies outside the respec-

tive feasible region F = Θ0 defined by such constraints. In the case of the symmetry

models, this is to say that even sampled from a truly symmetric distribution, data,

due to noise, never respect the symmetries exactly.
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At last, a single feasible distribution is usually selected from Θ0 (e.g., via mini-

mization of some distance-like measure of closeness to the data) which corresponds

to estimating the appropriate model parameters. In general, statistical testing is

desirable in order to evaluate the significance of the deviation of the empirical dis-

tribution from the appropriately selected feasible model.

In any such case, a classical tool for parameter estimation is constrained maxi-

mization of the (log)likelihood function, or constrained MLE:

p̂MLE,Θ0
= arg max

q∈Θ0

K∑

k=1

nk log q(ωk) = arg max
q∈Θ0

K∑

k=1

p̂(ωk) log q(ωk) (4.2)

Note also that p̂MLE,Θ0
= arg min

q∈Θ0

K∑

k=1

p̂(ωk) log p̂(ωk)
q(ωk)

. Thus, constrained MLE is

equivalent to constrained minimization of Kullback-Leibler divergence D(p̂, q) (with

the same constraints) from the empirical distribution. We will sometimes refer to

the constrained MLE as “ECP/MLE”.

In §6.1, we compute p̂MLE,Θ0
explicitly in the case of symmetry-based con-

straints (6.4). Given the existence and uniqueness of p̂MLE,Θ0
, it also makes sense

to introduce a deterministic function R mapping an arbitrary positive distribution

ν to arg max
q∈Θ0

K∑

k=1

ν(ωk) log q(ωk). This operator is a key ingredient of Chapter 6.

In the case of symmetry-based constraints, generalized minimum power-divergence

estimators [54],(B.4),(B.5) are also available and are used for hypothesis testing

along with the constrained MLE (Chapters 3 and 5). Naturally, this framework is

suitable for testing hypotheses of the form “p ∈ Θ0” (Chapter 5, Appendix B).

4.2.2 Internal Constraints and Maximum Entropy Estimation

In the previous setup, the model generation and model selection stages are

clearly separated: The feasible region F is defined independent of the data imme-

diately producing a parametric model family Θ0, and the model selection is es-
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sentially parameter estimation. In contrast with the previous framework, internal

constraints (ICP) depend on the data. Consequently, the corresponding feasible

region F is defined relative to the empirical distribution and hence is a function of

the data. Namely: F = F (p̂) = {q ∈ Θ+ : EqVj = Ep̂Vj, j = 1, 2, . . .}. Thus, F

is a (convex) subset of all probability distributions on a given set with certain ex-

pectations equal to their corresponding values observed in the data. The empirical

distribution is then necessarily inside this family: p̂ ∈ F (p̂); hence the characteri-

zation “internal”.

If we believe that F incorporates all the knowledge that we presently have about

the distribution of interest, then selection of the particular feasible member is of-

ten driven by maximizing residual uncertainty as measured, for instance, by Shan-

non’s Entropy H (Definition A.1). Thus, a natural and classical model selection

principle is constrained entropy maximization, or the maximum entropy extension

(MEE, §4.3). We write V for the matrix whose jth row is the function Vj evalu-

ated at each patch ωk, k = 1, . . . , K. Assuming positivity of p̂, the V -constrained

estimator of p

p̂MEE,V = arg max
q∈F (p̂)

H(q) = arg max
q∈F (p̂)

K∑

k=1

q(ωk) log
1

q(ωk)
(4.3)

is well-defined and admits a specific exponential form. (Provided the rows of V are

linearly independent, this form is essentially Gibbs (4.6).) Entropy maximization

is then also said to smooth the empirical distribution.

We are going to consider several models that originate in this way. Central

examples are Potts (§4.6) and pairwise interaction (§4.7) models.

Note that p̂MEE,V = arg min
q∈F (p̂)

K∑

k=1

q̂(ωk) log q(ωk)
uk

, where uk ≡ 1/K is the uni-

form distribution. Thus, MEE under internal constraints is equivalent to con-

strained minimization of the Kullback-Leibler divergence D(q, u) (with the same
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constraints) to the uniform distribution. We will often refer to these two equivalent

statements as “ICP/MEE”. The authors in [54] suggest generalizations of these

methods, replacing D(·, ·) = I(·, ·; 0) by other members of the power divergence

families I(·, ·; λ 6= 0) (Appendix B). Thus, additive models more general than lin-

ear (λ = 1) and log-linear (λ = 0) are engendered by this framework through min-

imization of I(·, u; λ). This naturally extends the entropy maximization principle

and, consequently, gives rise to a whole class of uncertainty measures, generalizing

Shannon’s entropy.

In the case of modeling p, the natural microimage distribution, we place a

higher priority on selection of (internal) constraints than on alternative parameter

estimation methods such as minimization of I(·, ·; λ) with various values of λ 6= 0.

Thus, in modeling by internal constraints we adhere to the usual MEE (λ = 0),

which does not seem to limit our modeling capacity.

Note also that regardless of the particular model selection method, strictly

speaking, we cannot yet talk about parameter estimation in the internal constraints

framework: No parametric model Θ0 has been explicitly introduced so far. (Un-

like in the external constraints case, due to its dependence on the data, F can not

be identified with any fixed set Θ0.) Hence, in order to properly analyze distribu-

tions generated by internal constraints (e.g., by making them suitable for testing

with hypotheses of the form “p ∈ Θ0”), we have to embed them into some para-

metric family. By doing so, we effectively reformulate the problem relative to the

external constraint framework. For instance, p̂MEE,V above (4.3) is known (§4.3)

to belong to the log-linear model family (4.1). It is then straightforward to verify

that p̂MEE,V = p̂MLE,Θloglin
0

provided the same V is used on both sides (Proposi-

tion A.6). Figure 6 illustrates geometrically the relation between the ICP/MEE

and the log-linear ECP/MLE frameworks. The vertical line segment and the planar
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Figure 6: Correspondence between parameter estimation in the ICP
and ECP frameworks
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domain represent the ICP and ECP (i.e., the resulting log-linear family) feasible

families respectively. The unique intersection point corresponds to the MEE (from

the ICP perspective) and the MLE (from the ECP perspective). The former is also

the minimizer of the Kullback-Leibler “distance” from the the ICP segment to the

uniform distribution u and the latter minimizes the same “distance” but from the

empirical distribution p̂ to the log-linear domain.

Other model selection mechanisms (e.g., constrained minimization of I(·, u; λ 6=

0)) lead to different parametric models. Although transformation of internal con-

straints to the external constraints framework is in principle conceivable with any

reasonable model selection mechanism, the resulting parametric family Θ0 need not

necessarily lead to computational gains in estimations.

In summary, for the purpose of testing hypotheses corresponding to models

generated via ICP/MEE, and also in order to analyze model complexity in these

cases, we will always consider these models from the ECP/MLE viewpoint.

Finally, independent of the modeling approach, by a “model” we will gener-

ally mean the appropriate parametric family Θ0, rather than its particular mem-

ber estimated from the data. The corresponding notation will be of the form:

{ptype
class(ω; γ), γ ∈ Γ} = Θ0. For example, we will write pg

symm to refer to the model

family whose members respect all geometric symmetries of the microimage set Ω.

Also, parameters γ as well as their space Γ are often kept implicit, especially in

this chapter, and additional relevant discussions follow in Chapter 6.

4.3 Maximum Entropy Extension

Since we consider several models in the context of ICP with model selec-

tion based on maximization of H, Shannon’s entropy (Definition A.1), we now
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give a brief introduction to the Maximum Entropy Extension Principle (MEE)

([11],[40],[47],[67],[70]) in the finite case. We use our microimage set Ω as a proto-

type for any finite set.

Let µ be a (fixed) positive probability mass function on Ω2, i.e. µ ∈ Θ+, the set

of all positive probability distributions on Ω. Also, let V0, V1, . . . , VJ ∈ RK be a set

of linearly independent real functions on Ω, with V0,1 = · · · = V0,K = 1. Note that

Vjk ≡ Vj(ωk). There is no loss of generality in assuming linear independence: The

excluded trivial cases of redundant or inconsistent constraint equations (the right

hand side of (4.5) below) are not interesting in practice. We also write V for the

(J + 1) × K matrix with rows Vj for j = 0, . . . , J . Hence, rank(V ) = J + 1 ≤ K.

When q ∈ Θ, we write interchangeably V q (matrix multiplication) and EqV

referring to the left hand side of the internal constraints EqV = EµV that define

the feasible region

F (µ)
def
= {q ∈ Θ+ : EqVj = EµVj, j = 1, . . . J} = {q ∈ Q+ : V q = V µ}, (4.4)

just as in §4.2.2.

Thus, we think of V also as a J +1-dimensional random vector on (Ω, q) for any

q ∈ Θ. Generally, we shall assume the constraints are consistent, namely, the fea-

sible family F (µ) (4.4) is nonempty. Note that we enforce this condition by having

the right hand side of the constraining equations (4.4) arise as the expectation of

V under a probability vector.

We say that a probability vector q∗ is the maximal entropy extension of µ con-

strained by V if

q∗ = arg max
q∈F (µ)

H(q), (4.5)

2Recall (§4.2) that we restrict all our modeling to strictly positive probability distributions.
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In the finite case the solution always exists and is unique. (The existence can

be demonstrated constructively by using, for example, iterative proportional fitting

algorithm [54], and the uniqueness follows from the concavity of H [11],[54].) In

a slightly more general statement of the problem, the condition µ ∈ Θ+ is relaxed

to µ ∈ Θ, and Q+ in (4.5) is replaced by the non-negative quadrant, thus allowing

solutions on ∂Θ0 (the boundary of Θ0). The problem is still well-posed, although

when the maximum is attained on the boundary, it does not have an exponential

(i.e. Gibbs) form (4.6). However, the positivity of µ - as assumed here - implies

that the solution to (4.5) always belongs to the interior of Θ (see, for example, [47]).

The method of Lagrange Multipliers is then generally used to derive the general

form of q∗:

q∗k = exp

(

γ0 − 1 +
J∑

j=1

γjVjk

)

, (4.6)

where the parameters γ0, . . . , γJ are uniquely determined by Eq∗(γ0,...,γJ )V = EµV .

Except in special simple cases (e.g., §4.5), these equations require numerical meth-

ods.

4.4 Symmetry

Abstract Algebra via the Group Action formalism (see, for example, [18]) pro-

vides the most natural approach to analysis and modeling of symmetry. In our

context of modeling the microimage distribution p on a finite set Ω, symmetries

(i.e. transforms of Ω into itself) will be examined from the perspective of iden-

tifying those respected by p. Namely, we will search for symmetries under which

symmetric states (microimages mapped to each other by the symmetry transform)

are also p-equiprobable. Clearly, such symmetries should reduce the number of
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parameters in the representation of p. With no constraints3, there are, of course,

|Ω| − 1 free parameters. Assuming a particular set of symmetries (external con-

straints), this number reduces to one less than the number of p-constancy classes

under these symmetries. Naturally, we identify symmetric states into equivalence

classes, p being constant on these classes. Given a set of symmetry transformation,

we denote the set of all equivalence classes by S and individual classes by O, just

as we did in §3.4. We will also say that p is invariant under the given symmetry

transforms, referring to the constancy of p on all O ∈ S.

Evidently, all symmetry models can be defined by sets of linear homogeneous

equations of special form (6.1), (6.2), whose solutions are exactly probability dis-

tributions invariant under given symmetry transformations. Symbolically, the cor-

responding model families can be represented as:

Θ0 = {q ∈ Θ+ : i, j ∈ O ∈ S ⇒ qi = qj}. (4.7)

Apart from statistical testing of the constancy of p on the symmetric states, an

important computational task is to calculate the number and the sizes of the equiv-

alence classes corresponding to the symmetries. Some of the computations needed

to define our models can, in principle, be carried out without the group-theoretic

apparatus; for others, using this elegant machinery is essential. We will try to em-

ploy only the necessary minimum from this theory. Although we will adopt the

group-theoretic language in most of the work relevant to symmetries, most of the

algebraic computations are moved to Appendix D. This decision reflects favoring

generality of the audience over generality of the methods. Namely, despite the exis-

tence of very general and elegant (albeit rather advanced for a non-mathematician)

computational methods, we will use longer, but more intuitive techniques. Also,

3Strictly speaking, with the normalization constraint alone.
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relatively short computations are presented fully in Chapter 6. In this Chapter

we continue to discuss symmetries through the basic notion of equivalence relation.

We already used geometric and intensity inversion symmetries in §3.4.1. There, we

simply aggregated patches into equivalence classes in order to make the stability

analysis more reliable. Consequently, the discussion moved from p as defined on

Ω to the integrated distribution induced on the coarser space of the equivalence

classes. In contrast, the state space here is always Ω (instantiated primarily to the

2 × 2 matrices).

4.4.1 Geometry

Similar to the definitions of rotation and reflection from §3.4.1, we denote by

ph
symm and pv

symm the families of distributions invariant under reflections across the

vertical and horizontal axes respectively. We will also refer to these symmetries

as “Left-Right” and “Up-Down” respectively. Thus, for instance, if Ω is the set of

horizontal pixel pairs, then ph
symm(a, b) = ph

symm(b, a) for any 1× 2 patch (a, b) ∈ Ω

(see also §5.2). These are the most fundamental and intuitive constraints we believe

to be satisfied by p: It is hard to imagine a physical source that would cause, for

instance, the left pixel in the pair to be consistently brighter than its right neighbor.

It is also easy to imagine that the global version of “Left-Right” reflection also

holds: Pim(I) ≈ Pim(Ih−reflected). Attributes of natural scenes such as the “Blue

Sky Effect” [50] surely inject some doubt about “Up-Down” symmetry, which is

obviously not satisfied by (macro) images. Less clear, perhaps, is to what extent the

“Up-Down” symmetry stands at the micro level. Testing the respective hypotheses

(Chapter 5) will provide an answer to these questions.

In the case of 2 × 2 patches (assumed for the rest of this subsection), it still

makes sense to entertain one or both of the above reflections. Any distribution
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on Ω that simultaneously respects these two symmetries will be denoted by pvh
symm.

Note, that transitivity of the symmetry equivalence relation forces pvh
symm to be also

invariant under rotations by π. Next, “r” will stand for the rotation by π/2. Easily

verified and more clearly seen in the group-theoretic context (Appendix D), the

above rotation along with reflection through any of the four axes of 2 × 2 patch

generates one and the same set of symmetries, naturally referred to as geometric:

These are all the geometric symmetries of the square, and pg
symm will stand for the

corresponding invariant distributions (see Equation (3.3) for a visual example).

4.4.2 Photometry

In §3.4.1 we also aggregated patches with their negatives, referring to the cor-

responding symmetry of Ω as intensity inversion. A distribution on Ω that assigns

equal probability to states related in this way, will bear the superscript “n”. Unlike

the geometric symmetries, inversion is a photometric property and is also meaning-

ful for the single pixel distributions. Again, the frequent, heavy presence of the sky,

as well as simply “blank” areas in most of the outdoor scenes, makes the invariance

of p under the intensity negation rather questionable. Moreover, the single pixel

statistics suggest a violation of this symmetry [34]. We will nonetheless consider

this invariance mode and run statistical tests to quantify it. In fact, the decision

to equalize (of course, only approximately) the single pixel histograms was also

motivated by our attempt to give the inversion symmetry “a second chance”.

As already mentioned in §3.4, we will also consider models respecting all of

the above symmetries. Even if this hypothesis is rejected at common levels, the

reduction in model complexity should be acknowledged. We will write pG
symm for

such distributions, where the superscript simply stands for the set (more precisely

group, see Appendix D) generated by all the geometric and the inversion symmetries.
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These are geometric symmetries of Ω as the square-based parallelepiped, the patch

being associated with the base.

Intermediate models will also emerge wherein some proper subsets (subgroups)

of the G-symmetries are respected. For example, pvhn
symm respects the Up-Down,

Left-Right, and the inversion symmetries, but need not respect the rotation by

π/2. Note the reverse correspondence between the set inclusion of the symmetries

and that of the respective invariant distributions (see Figure 7).

4.5 Dominant Mass Constraints

It may be sensible to model highly non-uniform distributions simply by smooth-

ing rare events (e.g. §3.3). Namely, if a set DJ
def
= {ωk1

, . . . , ωkJ
} of J states (J is

in practice relatively small) accounts for most of the mass (determined from pre-

liminary experimentation), then such states are represented precisely by their re-

spective frequencies, whereas all other states are averaged. Where exactly to draw

the line between the “distinguished” states and the averaged tail TJ
def
= Ω \ DJ is,

of course, application dependent. Such models can be viewed from both the ICP

and ECP viewpoints (more on the ICP/ECP duality is in Chapter 6).

When viewed as an ICP/MEE, a dominant mass model derives from a max-

imum entropy extension problem (§4.3) which has, in addition to the normaliza-

tion constraint function V0(ω) ≡ 1, the constraint functions: Vj(ω) = I{ω=ωkj
} for

j = 1, . . . , J < K. Clearly, the privileged states DJ will then inherit their probabil-

ities from µ, i.e. q∗(ωkj
) = µ(ωkj

) for j = 1, . . . , J . In this special case, the original

MEE problem transforms into unconstrained entropy maximization relative to TJ ,

the set of the remaining states. Namely, we now maximize H(q), understanding by

q the conditional distribution q(ω|TJ) restricted to TJ . Recalling the well-known
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fact that in the finite case entropy is maximized by the uniform distribution, we

arrive at:

q∗(ω) = exp

(
J∑

j=1

log µ(ωkj
)I{ω=ωkj

}(ω) + log
µ(TJ)

K − J
ITJ

(ω)

)

Thus, in this case the Gibbs form (4.6) has the following parameters: γ0 = 1 +

log µ(TJ )
K−J

and γj = log µ(ωkj
) + 1 − γ0 = log

µ(ωkj
)(K−J)

µ(TJ )
for j = 1, . . . , J . Of course,

there is no computational benefit in expressing the solution in this form. However,

in order to test these models, we need to view them in the ECP framework via

their equivalent log-linear representations. One such representation is based on the

choice of parameters γ above:

pdom(ω; γ)
def
= e

γ0−1+
J

P

j=1

γjI{ω=ωkj
}(ω)

(4.8)

Evidently, the dimension of the corresponding model space Θ0 is d0 = J .

Note also that Lagrange multipliers are found trivially in this case due to or-

thogonality of V1, . . . , VJ . In Chapter 6, when we discuss duality between ECP

and ICP, we will present a more general and illustrative example of this situation

(Proposition 6.1).

This model can be slightly modified to produce pdom symm, a “symmetry”-

based model with external constraints enforcing constancy of pdom symm on the

tail set TJ . The quotes above are due to that there do not appear any natural

symmetry-like transformations of Ω that would induce the corresponding partition

S
def
= {{ωk1

}, . . . , {ωkJ
}, TJ}.

The corresponding model family in this case is a specialization of (4.7):

Θdom
0 = {q ∈ Θ+ : ωi, ωj ∈ TJ ⇒ qi = qj},

and for the purpose of hypothesis testing this model will be associated with the

rest of our symmetry models. The relation between pdom and pdom symm is a special
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case of p̂MEE,V = p̂MLE,Θloglin
0

(§4.2.2 and Proposition A.6) and will become clear

in the context of §§6.1,6.2.

Mostly for illustration, we will test one such model, pdom symm, in which the

rarest states TJ will absorb about 10% of the total mass. To simplify the notation,

however, we are still going to refer to this model as pdom.

In general, resource limitations may directly influence control over the model

complexity: An upper bound on the number of the original states distinctly rep-

resented in a dominant mass model is one such example. However, aggregating

microimages based only on their rareness in the current sample may endanger fur-

ther insight into the mechanism of their formation, and is certainly unnatural in a

perceptual sense. Imagine that among TJ , the states with smoothed probabilities,

can be representatives of perceptually very different patterns (e.g. “edge-lets”, “T-

junctions”). On the other hand, two “edge-lets” of the same orientation but with

different contrasts may well get separated: The one with the higher gradient (and

consequently lower probability mass) is likely to be smoothed (i.e., appears in TJ),

whereas the other is likely to stay in DJ . Thus note, that the model deficiency may

come not so much from averaging the “light” representatives of disparate classes,

but more from not combining them with their more frequent “true”, or “natural”,

associates. This may occur due to that, in a practical situation, having to distin-

guish between two rare states (i.e., belonging to TJ) may be less likely than facing

a decision involving two states on the opposite sides of the “rareness” demarcation

(i.e., DJ versus TJ). Of course, this also depends on the particular visual selection

strategy.

Primitive dominant mass models may greatly benefit from additional constraints

such as symmetries or more general relations. Depending on the type of these

constraints, the proper framework may be that of ECP or ICP.
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We experimented earlier [22] with Alternate Quantization (Chapter 2) combined

with the geometric symmetries (§4.4.1). (Some of these results are reported in [22]

in the context of stability analysis.) We also considered dominant mass models in

those experiments. Taking into account a very small number of parameters (e.g.

less than ten in the case of |Ω| = 4096), the results were encouraging based on such

measures as Kullback-Leibler divergence, Shannon’s entropy, and Lp norms. Formal

hypothesis testing was not feasible then due to insufficient image data. Other

examples of additional (internal) constraints included absolute intensity difference

of pixel pairs, e.g., V (ω) =| ω11 − ω22 | + | ω12 − ω21 |, where ω = ω11 ω12
ω21 ω22

.

4.6 Potts Model

Motivated by the ideas from statistical physics, and also by visual examination

of several empirical histograms for p, we consider a simple model related to the Potts

potential [6]. The term “potential” is used in the sense of Gibbs - Markov Random

Fields [17],[25],[26],[29],[38],[41],[56]. However, the notion of Gibbs-Markov poten-

tial is not critical for understanding any of our microimage models: Our presen-

tation is largely self-contained. On the other hand, we will appeal to the general

theory of Gibbs-Markov random fields in the discussion of extending our models to

larger lattices in Chapter 7.

Under the Potts models, the microimage distribution is characterized completely

by the number of pairwise matches among pixel intensities, and in particular is in-

sensitive to absolute intensities. These models are originally introduced as maxi-

mum entropy extensions (§4.3) under internal constraints (§4.2.2).
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Consider the following constraint functions:

V1(ω) = I{ω11=ω22} + I{ω12=ω21}

V2(ω) = I{ω11=ω12} + I{ω21=ω22}

V3(ω) = I{ω11=ω21} + I{ω12=ω22}.

(4.9)

Thus, for example, V1q is the expected number of the diagonal pixel intensity

matches relative to q. The solution to the corresponding entropy maximization

problem is of the form:

pvhn
potts(ω) = C(γ1, γ2, γ3) exp (γ1V1(ω) + γ2V2(ω) + γ3V3(ω)) , (4.10)

where we have replaced the cumbersome “exp(γ0 − 1)” by “C”, the multiplicative

normalization constant whose dependence on γ1, γ2, . . . will often be suppressed.

The “vhn”in the superscript refers to respecting the vertical and horizontal reflec-

tion and inversion symmetries (§4.4). Note that the symmetries of the distributions

are inherited from the constraint functions V . This observation also suggests that

in order to enforce all the geometric symmetries, including the π/2-rotation, we

should simply replace the two last constraints by their sum V ′
2(ω)

def
= V2(ω)+V3(ω).

Solving the MEE, we arrive at a more restrictive family defined below in (4.11);

note that the distributions pG
potts fully respect the G-symmetries (§4.4).

pG
potts(ω) = C exp (γ1V1(ω) + γ2V

′
2(ω)) . (4.11)

An interesting question arises: How much more complex is the family pG
symm

(§§4.4,6.4.1) than pG
potts? Note that by model complexity we simply mean the num-

ber of free parameters defining the corresponding family of distributions. Exam-

ple 1 from §6.2 will show that the difference is minimal in the binary case (i.e.

L = 2). Specifically, the four G-classes lead to the complexity of pG
symm being three,
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whereas the parameter space of pG
potts is two-dimensional. Also, since the complex-

ity of pG
potts does not depend on L and the complexity of pG

symm is of the order L4

(§6.4.1), the difference can grow arbitrarily large.

Next, let us denote by S the set of all V -constancy classes O, namely: ∀O ∈ S,

ω, ω′ ∈ O ⇐⇒ V (ω) = V (ω′). Another interesting observation in Exam-

ple 1 will be that in the binary case, the constraints V used to define pG
potts have

their constancy classes O ∈ S exactly equal to the G-symmetric classes (§4.4), i.e.

V (ω) = V (ω′) ⇐⇒ ω
G
∼ ω′. On the other hand, we will see that these constraints

are insufficient to represent all the G-invariant functions (and hence G-invariant

probability vectors) on Ω. (One dimension will be missing.) This suggests a gen-

eral way to refine simple models like pG
potts and pvhn

potts by extending the linear sub-

spaces spanned by their constraint functions V in order for the extended subspace

to include all the functions respecting the constancy classes of V . This is properly

discussed in §6.2. The MEE solution will then gain as many new parameters γ as

the number of the additional constraints. We will refer to the resulting log-linear

Potts distributions as “complete”. For example, for any L, pvhn
potts will be shown to

have nine constancy classes (§6.4.2) and only four (including the normalization)

constraints. We will complete these four constraints so that the new V becomes

a basis for the subspace of all the functions respecting the nine-class partition S.

It will be explained in §6.2 that in situations when functions in V form a basis

for all the functions respecting some partition S, the corresponding maximum en-

tropy extension problem under the internal constraints given by V always admits

an equivalent, “symmetry”-based formulation. This allows us to define pvhnC
potts , “C”

standing for “complete”, based on this nine-class partition S. The corresponding

model space Θ0 is thus of the same form (4.7) as in the case of the symmetry mod-

els. (However, unlike the geometric and inversion symmetry transformations, the
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“symmetry” transformations inducing this partition are implicit and not meaning-

ful by themselves outside this context.) The pvhnC
potts model will also be tested in

Chapter 5 with the model construction details to follow in §§6.2,6.4.2.

4.7 Pairwise Interaction

The models pvhn
potts, pG

potts, and pvhnC
potts from the previous section are examples of the

more general class of the “pairwise interaction” (or “pair-potential”) models. The

Ising model [6],[25],[26],[29],[38] is a well-known member of this family. Recall that

the constraints V1, V2, and V3 used to define pvhn
potts and pG

potts are sums of functions of

two variables only. This is the defining feature of the pairwise interaction models.

More precisely, let D be the linear subspace of RK spanned by all functions on

Ω of (at most) two variables. For example, the constant functions, ω11 − ω22 and

I{ω11=0}(ω) all lie in this subspace4. In general, the dimension of this family (and

therefore the model complexity) is of the order L2 (§6.4.3). For comparison, recall

that the complexity of the Potts-like models is independent of L, and the general

symmetry models of §4.4 all have complexities of the order L4.

The entropy maximization method (and thus, the ICP formulation) still applies

here provided a basis for D is found to play the role of V . Selecting a particular

member from this family may in principle be viewed within the equivalent log-linear

ECP framework, except that parameter estimation is not as simple as in the case

of the symmetric models (Chapter 6). Instead of the full pair-potential family we

will focus on its proper subset, namely the distributions pg
pair that also respect the

geometric symmetries (§4.4.1). One reason for this is that we studied the geometric

4Visual inspection of a function-defining formula may sometimes be misleading in determining
whether the function indeed belongs to D.
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symmetries first and their presence proved significant as will be demonstrated in

Chapter 5. Also, combining constraints of different origins such as symmetry and

pattern of interaction illustrates the power of the duality between the ICP and

ECP frameworks in the context of parameter estimation (Chapter 6).

4.8 Summary

We have used internal and external constraints to define a variety of models

for p, the natural microimage distribution. The proposed models are different in

origin and complexity and encode our prior knowledge about p. In Chapter 5 we

will test most of these models, and in Chapter 6 we will discuss computation and

complexity. These models are classified into the following four categories:

• Dominant Mass: pdom

• Potts-type: pvhn
potts, pG

potts, pvhnC
potts

• Pair-potential: Potts models and pg
pair

• Symmetry-based: ph
symm, pv

symm, pn
symm, pvh

symm, pvhn
symm, pg

symm, pG
symm, and

pairwise interaction models

Figure 7 symbolically depicts the principal symmetries entertained in our modeling.

Higher vertices in the diagram correspond to more restrictive model families.
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Figure 7: Inclusion relations on the symmetry sets. Higher vertices
correspond to more restrictive models
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C H A P T E R 5

STATISTICAL TESTING OF MICROIMAGE MODELS

5.1 Introduction

The ultimate criteria for accepting a particular model should be at least par-

tially application dependent. In particular, results of any statistical hypothesis

testing, however accurate, should not be the only factor in model consideration.

This opinion is commonly acknowledged: For example, based on generalized likeli-

hood ratio tests, various modified information criteria such as AIC, BIC, and NIC

have been suggested to control data-overfitting by adjusting a penalty for model

complexity [46],[54],[56]. However, unless a class of potential applications is clearly

specified, a universal criterion for resolving the bias-variance dilemma based on

subjective penalizing of complexity would be of a limited value. This is one reason

why we neither use the above criteria, nor design our own. We shall also try not to

allow our subjective notions of “mathematical elegance” to influence model evalua-

tion. Instead, we will simply try several existing techniques for testing discrete data

models [28],[40],[54],[61],[62]. The rationale is that the test results should provide

a general filter for further, application-oriented studies (Chapters 2,7).

In exchange for the deferment of a final “accept-reject” judgment of most of

our non-trivial models, we present a careful examination of evidence based on our

image data. Namely, we will discuss the “pros” and “cons” of these models based
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both on test results and on other complexity considerations. In fact, we have

already attempted to order some of the symmetry models by set-inclusion of the

corresponding model families (Figure 7). In this regard, the statistical tests based

on the power-divergence measures (Appendix B), that we also used in Chapter 3,

are particularly convenient: For example, two such tests, the generalized likelihood

ratio test and the modified likelihood ratio test (λ = 0 and λ = −1, respectively) are

related to information theory, and consequently provide a clear interface between

engineering and statistics. These tests, when applied to our models, also allow

relatively simple estimation of model parameters (Chapter 6 and Appendix B).

We consider how model definitions translate into statistical hypotheses and

introduce the necessary notation. Then, we test two symmetric models, ph
symm and

pv
symm, in the 1× 2 and 2× 1 cases respectively. The rest of this chapter is devoted

to testing 2 × 2 models and interpreting test results.

Recall that we have assumed that p is strictly positive on all of Ω. Thus, our

saturated model1 is Θ+ def
= Q+ ∩Θ, the interior of the probability simplex Θ (§4.1).

This assumption is enforced by the aggregation of rare states of Ω. We will perform

the following two types of hypothesis testing:

• “Absolute”: H0 : p ∈ Θ0 and Ha : p ∈ Θ+, where Θ0 ⊂ Θ+ and dim Θ0 <

dim Θ+

• Hierarchical (or nested): H0 : p ∈ Θ0 and Ha : p ∈ Θa, where Θ0 ⊂ Θa ⊂ Θ+

and dim Θ0 < dim Θa < dim Θ+

Additionally, it is always the case in our testing that d0 > 0, hence, prior to

evaluating test statistics, we need to estimate parameters. The two situations only

1Recall that saturation refers to the dimension of the model being equal to that of the embed-
ding probability simplex.
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differ by alternative hypotheses: In the first case, the alternative is “absolutely

unconstrained” and, in the second, it is nested strictly in between the null model

and the saturated model. The same power-divergence tests apply in both cases.

Most of our tests are from the first category and only in §5.3.1, where we assess the

relative merit of nested models, do we use the second setting. In this latter case,

we also refer to the alternative models Θa as less restrictive relative to the more

restrictive null models.

Generally, the particular parameter estimation (model selection) method may

suggest f0 : Γ → Θ0 and fa : Γ → Θa, some convenient parametrizations of Θ0 and

Θa. Note that since Ω is finite, the positivity condition ensures that all our models2

can be viewed as members of the exponential family (e.g., [46],[61],[62]). Thus,

for example, the saturated family, Θ+, admits the following trivial exponential

parametrization:

Γ = {γ ∈ RK : γk < 0, k = 1, . . . , K,

K∑

k=1

e

K
P

j=1

γjδjk

= 1}

Θ+ = {θ ∈ RK : θk = e

K
P

j=1

γjδjk

, γ ∈ Γ}, (5.1)

where the parameters γk are simply the logarithms of the corresponding probabili-

ties, and δjk is the Kronecker symbol. Note also that dim Θ+ = dim Θ = |Ω| − 1 =

K − 1 = dim Γ.

The external constraint frameworks (ECP) considered in §4.2.1 naturally con-

nects to this testing program: The null hypothesis always corresponds to the

constrained (feasible) family Θ0 and, in the absolute testing, the test statistics

T (p̂, p̂′; λ)
def
= 2NωI(p̂, p̂′; λ) (Nω is the microimage sample size and I(p, q; λ) was

defined in (3.4)) provide distance-like measures of closeness between the empiri-

2In the case of symmetry constraints, the positivity condition is added explicitly (4.7).
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cal distribution p̂ and the appropriate (i.e., estimated) feasible distribution p̂′ de-

termined from the data. In the nested testing, the statistics T (λ) also measure

closeness but now between the appropriate member of the less restrictive model

(i.e. corresponding to the alternative hypothesis) and p̂′, the “best”feasible dis-

tribution (as in the absolute testing). From now on we omit reference to obvi-

ous extensions of ensuing statements to the nested testing. It is noteworthy that

T (0) =const×Nω×Kullback-Leibler divergence from p̂, the empirical distribution,

to p̂′, the appropriately estimated feasible distribution (Appendix B), and T (1) is

the classical Pearson’s χ2 goodness-of-fit statistic.

Each of these power-divergence tests (or the statistics T (λ)) gives rise to a dis-

tinct parameter estimation issue, i.e., selection of a particular member from the con-

strained family Θ0. Thus, to each λ there corresponds a minimum power-divergence

estimator defined as a minimizer of the T (λ) “distance” from the empirical distri-

bution:

p̂(λ)
def
= arg min

q∈Θ0

T (p̂, q; λ), (5.2)

and the minimization is generally performed relative to the appropriate parameter

space Γ: p̂(λ) = arg min
γ∈Γ

T (p̂, q(γ); λ). However, the appropriate theory ([54] and

Appendix B) states the asymptotic equivalence of all minimum power-divergence es-

timators under some general conditions. The maximum likelihood estimator (MLE)

p̂(0) is, perhaps, the most famous such estimator, and it corresponds to the general-

ized maximum likelihood ratio test (λ = 0). In [54], the authors appeal to common

sense suggesting to use with T (λ) its true minimizer, but “if only the MLE . . . is

readily available”, not to hesitate using it with other power-divergence statistics.

Depending on the constraints, computation of other estimators may be more
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involved than the MLE, which partly explains why MLE is commonly used in

practice even with tests arising from λ 6= 0.

The general symmetry models (psymm) and the “completed” Potts model (pvhnC
potts )

are naturally defined within the ECP framework and the appropriate feasible fam-

ily (4.7) is best understood in terms of the linear equations forcing constancy of

probability vectors on symmetry classes (§6.1). Since under all such models the

probability distributions are constant on the orbits O ∈ S, these models are com-

pletely characterized by the orbit probability masses. Thus, a natural choice for

the model parameter space is Γ = Θ+
S , the set of all positive probability distribu-

tions on the quotient space S. Γ is then mapped by f0 to Θ0 by dividing the orbit

masses γ(O) uniformly among all ω ∈ O. A detailed explanation follows in §6.1.

For now, however, it suffices to know that in these cases we can easily compute the

“genuine” estimators for each of our tests §B.1. (“Genuine” simply means that,

for each λ, the estimator of the free parameters is the true minimizer of the corre-

sponding power-divergence statistic.)

The dominant mass model (pdom §4.5), although initially introduced as a max-

imum entropy extension (MEE) in the internal constraint (ICP) framework, was

then modified to a similar model but with external constraints (by imposing equal-

ity on the rare probabilities). Thus, as a special case of the symmetry models,

this model is also ready for testing with minimum power-divergence tests and their

genuine estimators (§B.1).

As mentioned in §4.2.2, models, such as ppotts and ppair, originally constructed as

the maximum entropy distributions under internal constraints of the form EqV =

Ep̂V , can also be viewed from the ECP perspective based on p̂MEE,V = p̂MLE,Θloglin
0

(Proposition A.6), where Θloglin
0 is defined by (4.1). Recall (§4.3) that the con-

strained maximum entropy extension is generally of the exponential form (4.6) and
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it is through this exponential form that any MEE with internal constraints relates to

log-linear modeling. Because the ICP framework was shown (§4.2.2) as not immedi-

ately suitable for hypothesis testing, we agreed to formulate the appropriate model

hypotheses relative to the equivalent log-linear families. Correspondingly, the con-

strained MLE is used with ppotts and ppair even with the test statistics T (λ 6= 0).

Figure 6 also illustrates that minimum-power-divergence estimators other than the

MLE (= arg min
q∈Θloglin

0

T (p̂, q; 0)) generally violate the internal constraints EqV = Ep̂V .

This is another reason, in addition to the immediate availability of the MLE (as

the numerical solution to the MEE ICP), why we use the MLE instead of the “gen-

uine” estimators with tests other than the generalized maximum likelihood ratio

one (λ = 0) for assessment of the ppotts and ppair models.

Generally, in this work:

• When tested with power-divergence tests, all models are considered within the

ECP framework.

• Analytical or numerical, parameter estimation is not an issue in any of our

models.

The theory of power-divergence tests ([54] and Appendix B) also provides under

some general regularity conditions satisfied in our setting an asymptotic distribution

for the test statistics T (λ). It turns out that this asymptotic distribution is the χ2

distribution, remarkably independent of the particular test, i.e., the same for all

λ (Appendix B) and for all minimum power-divergence estimators; the number of

degrees of freedom is the difference between the dimensions of Θ+ (or Θa in nested

testing) and Θ0, the ground (or less restrictive) family and (more restrictive) model

family respectively. Whereas validity of the large sample (i.e. asymptotic) results

is always a question in practice, some general guidelines are available; for example,
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a detailed treatment of these tests appears in [54]. We have already followed two

such guidelines in testing the stability of p (Chapter 3) and will continue to do so

in this chapter: First, we have committed ourselves to controlling low counts by

appropriate aggregations. Second, we have performed a series of tests with different

values of the parameter λ aiming to achieve inter-test consistency relative to the

asymptotic significance threshold (which is consequently also the same for all λ).

5.2 Bivariate Reflections

We first consider evidence for reflection (left-right and up-down) symmetries in

the case of two pixel distributions (1×2 and 2×1 with L = 8). These experiments

have served to calibrate our testing procedures in regard to the independence as-

sumptions and other issues. There has already been some evidence of symmetry in

other work. For example, Huang and Mumford have repeatedly demonstrated on

large sets of natural images [34],[35] that the difference of two adjacent intensities

has a symmetric distribution (i.e., the corresponding density function is even). In

contrast to the symmetry of the univariate difference distribution, our claims in-

volve the bivariate intensity distribution and are therefore stronger. Finally, in [33],

results are reported in consonance with ours.

For two configurations ω = (a, b) and ω′ = (a′, b′), a, b, a′, b′ ∈ {0, . . . , 7}, we

write ω
refl.
∼ ω′ if a = b′ and b = a′ (§4.4.1). It is easy to see that there are L(L−1)

2

reflection symmetry classes consisting of two configurations (i.e. a 6= b) and L

singular classes with only one configuration each. With L = 8, we therefore have

dim Θ0 = 28 + 8 − 1 = 35 and dim Θ+ = 63, subtracting one degree of freedom for
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normalization. Thus, in testing the null hypothesis

H0 : p ∈ Θ0 = {q ∈ Θ+ : ω
refl.
∼ ω′ ⇒ q(ω) = q(ω′)}, (5.3)

we use the χ2 distribution with 63− 35 = 28 degrees of freedom in order to obtain

the asymptotic P-values. The test statistic is T (λ) = 2NωI(p̂, p̂(λ); λ), where the

microimage sample size is Nω ≈ 15, 000 and I(p, q; λ) was defined in (3.4). Note

that I(p̂, p̂(λ); 0) = log 2D(p̂, p̂(λ)), where D(·, ·) is the Kullback-Leibler divergence.

Values of T (λ), as well as corresponding P-values, are tabulated in Table 8 for

several values of the test parameter λ. Based on the asymptotic threshold (χ2
0.95,28 =

41.337) we do not reject the null. This result is also strengthened by the apparent

consistency of the T (λ)’s for the seven values of λ: Since varying λ allows the

corresponding test statistics T (λ) to peak its sensitivity at specific departures from

the null, the observed consistency appears to protect us against a range of such

departures [54].

λ -2 -1 0 0.5 0.67 1 2

T (λ) 33.278 33.868 33.624 33.215 33.043 32.676 31.396
P -val(λ) 0.2258 0.2053 0.2135 0.2279 0.2342 0.2479 0.2998

T (λ) 23.347 23.746 23.586 23.319 23.21 22.98 22.216
P -val(λ) 0.7155 0.6949 0.7032 0.7169 0.7225 0.7341 0.7712

Table 8: Power-divergence tests for bivariate reflection symmetries.
Top: Up-Down. Bottom: Left-Right.

5.3 Testing Models in the 2 × 2 Case

Preliminary experiments revealed that additional aggregation was necessary to

further protect against low counts and to stabilize the power-divergence test statis-

tics as function of λ. Hence, we increase the size of the “rare” class from 136 patches
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of total mass of about 0.025 (as in §3.7) to 184 patches of total mass around 0.045.

Unlike in §3.7, this aggregation fully respects the G-partition3. Table 16 (Ap-

pendix C) provides the adjusted model complexities. Aggregation decreases the di-

mensions of the parameter spaces. Thus, for example, by aggregating 184 patches

we reduce the dimension of the ground space from 255 to 72. Consequently, the

degrees of freedom of the asymptotic distributions are also affected; all values are

given in Appendix C. To facilitate comparisons, all these tests were performed

on the same microimage sample, which consists of about 11, 500 microimages (ex-

tracted at the rate d = 0.0002; d is discussed in §C.2).

Now, we present test results for some of the models defined in Chapter 4. Ap-

pendix C provides a complete account of all of our test results. We can classify

these results as follows:

• Strong Rejection: pdom, pG
potts, pvhn

potts, pvhnC
potts

• Rejection: pn
symm, pvhn

symm, pG
symm

• Non-rejection: pv
symm, ph

symm, pvh
symm, pg

symm, pg
pair

Models fall into the “Strong Rejection” category if the corresponding tests consis-

tently yield P-values virtually equal to 0. Table 9 displays two such examples:

p̂G
potts(ω) ≈ 11671 exp [−0.26V1(ω) − 1.77V ′

2(ω)]

V1 = I{ω11=ω22} + I{ω12=ω21}

V ′
2 = I{ω11=ω12} + I{ω21=ω22} + I{ω11=ω21} + I{ω12=ω22}

and pvhnC
potts (see §4.6).

3This means that none of our symmetry models will have a class divided in two by the aggre-
gation: The G-partition is the coarsest among all the partitions induced by the psymm models.
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λ -2 -1 -0.5 0 0.5 0.67 1 2

T (λ) 4799.4 3447.3 3161.5 3073 3195.3 3297.5 3618.6 6783.6

T (λ) 1032.4 1036.5 964.74 872.8 787.97 762.85 719.88 629.82

Table 9: Strong rejection of primitive models. Top: pG
potts, χ2

0.99,70 =
100.43. Bottom: pvhnC

potts , χ2
0.99,66 = 95.626.

Note that the tests take into account both the complexity and accuracy of the

model. In this regard, the dominant mass model is actually relatively accurate (as

measured by the power-divergence measures) but still rather complex, whereas the

Potts models have very low complexity but insufficient accuracy. Not surprisingly,

the pdom captures the entropy of p very well: Both are estimated to be approxi-

mately 4 bits. On the other hand, the Potts models pG
potts and pvhn

potts overestimate

the entropy of p by about half a bit, although the entropy of the “completed” Potts

model pvhnC
potts (this model has eight free parameters) is very close to four bits. Still,

the refinement of pvhn
potts by completion (§4.6) proved insufficient: The gain in accu-

racy is not justified by the increase of complexity. Since all the variations of the

Potts model are strongly rejected, we conclude that information induced only from

equality comparisons is insufficient and some information about absolute intensities

is necessary.

The next category represents models that, despite being rejected at the common

5%-significance level, are not totally unreasonable in the sense of yielding P-values

at least on the order of 10−3 (see Table 10). In the next section (§5.3.1) these

models will be further tested in the context of hierarchical modeling in order to

assess their relative merit. Note that the intensity inversion is part of all these

models as well as of the strongly rejected ones, suggesting its unlikely presence in

the natural microworld.
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λ -2 -1 -0.5 0 0.5 0.67 1 2

T (λ) 97.873 91.108 88.934 87.523 86.662 86.453 86.134 85.522
P − val(λ) 0.0025 0.0094 0.0141 0.0181 0.021 0.0218 0.023 0.0257

Table 10: The G-Symmetric model comes close to being not rejected.
χ2

0.99,62 = 90.802.

The last category are the models which stand very strongly at common sig-

nificance levels. Recall that pg
pair is the pair-potential model respecting all the

geometric symmetries and thus is the most restrictive of these models. Without

aggregation the dimension of this family is 42, whereas the dimension of the most

general geometrically symmetric model is 54. Unfortunately, our aggregation can-

cels the difference rendering pg
symm and pg

pair virtually indistinguishable under the

current testing regime. This is how it happens: The 36 rarest among the 55 total

g-symmetric classes are aggregated into one. Thus, a 20-dimensional linear space

is required to represent all the functions on the resulting set. It turns out that

functions of fewer than three variables already span this subspace. Apart from this

limitation, the fact that the geometrically symmetric states capable of interacting

with degrees higher than two are so rare (less than 0.05) leads us to believe that

the three- and four-pixel interactions may generally be insignificant in the presence

of all pair-wise interactions. Also, L = 4 is too small for the asymptotic complexity

comparison to be meaningful: Recall (§4.7) that the complexity of the pairwise in-

teraction models grows only as L2, whereas for all the symmetry models the growth

rate is L4, the order of |Ω|. (No aggregation is assumed for the moment.) However,

for example, the most general G-symmetric model, pG
symm, now has only 30 free pa-

rameters (Proposition 6.8 from §6.4.1), which is significantly smaller than 54, the

complexity of pg
pair (determined numerically as mentioned in §§6.3,6.4.3), the least
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complex among the non-rejected models, but the situation is already reversed with

L = 8.

We present only one example of test results from the non-rejected category

here; the rest are found in Appendix C. In Table 11 we display the results of our

“absolute winner”, pg
pair.

λ -2 -1 -0.5 0 0.5 0.67 1 2

T (λ) 58.914 45.594 42.651 40.953 40.085 39.934 39.816 40.637
P − val(λ) 0.27 0.76 0.85 0.89 0.91 0.91 0.91 0.89

Table 11: The pair-potential model with all the geometric symme-
tries is not rejected. χ2

0.9,53 = 66.548.

Remark 5.1 Note that the results of the test with λ = −2 is somewhat inconsis-

tent with the others. According to [54], tests with large negative values of λ (e.g.,

λ = −2) help to detect “departures involving ratios of alternative to null expected

frequencies that are close to 0” in a small number of cells. Since all our models

involve some averaging (symmetrization), we see larger T (λ) values (consequently,

smaller P-values) with λ = −2: Averaging p̂ over a rare symmetry class leads to

overestimation of its more rare states. However, in the case of pg
pair T (−2) is still

well below the common significance thresholds, from which we conclude that p̂(−2)

captures the rest of the p̂ values very well.

Remark 5.2 As outlined in §5.1, we use the MLE with T (λ) for all the eight tests

when testing pg
pair. In Appendix C (Remark C.1), we will see the results of testing

essentially the same model pg
symm but using the true minimal power-divergence

estimators with all the tests. With the exception of λ = −2, the results are very

similar. We interpret this as an indication of the asymptotic equivalence of power-

divergence estimators.
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5.3.1 Hierarchical (Nested) Model Testing

Sometimes models are tested relative to each other as opposed to the common

ground space, i.e., the most general alternative. In practice, such “nested” or “hier-

archical” testing may actually be more valuable. For instance, in modeling a large

system, due to prior knowledge or other factors, one can often restrict attention to a

family of distributions which, despite being high-dimensional, is nonetheless much

smaller than the set of all distributions. Given this initial restriction, any further

simplification should consequently be tested against the distinguished family and

not against all alternatives. In this context, the null hypothesis H0 corresponds to

a subspace Θ0 of lower-dimension than the initial family Θa. Therefore, there now

is a non-trivial alternative hypothesis Ha : p ∈ Θa.

We use nested testing primarily to better understand which “dimensions” are

the most important in modeling p. The following example is motivated by the obser-

vations from the previous section (§5.3). Models containing photometric inversion

symmetry are consistently rejected whereas their supersets without inversion sym-

metry are not rejected. Thus, we want to determine if the rejection of these models

is entirely due to the inversion assumption. Namely, we will test pG
symm against

pn
symm in order to see if the geometric symmetries stand as firm in this restricted

case as they did earlier (§5.3). Note that pg
symm not being rejected against a general

alternative does not imply that pG
symm will not be rejected (on the same sample)

against pn
symm: The various subspaces may be oriented in complicated ways relative

to one another. The results below (Table 12, top) show that, indeed, if one initially

accepts pn
symm, then further narrowing the model space to pG

symm is accepted.

Table 12, bottom, shows a strong rejection of pG
symm against pg

symm. Thus, the

decrease in accuracy due to imposition of the inversion constraints is not justified by
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λ -2 -1 -0.5 0 0.5 0.67 1 2

T (λ) 33.139 25.351 23.264 22.409 22.366 22.465 22.758 23.968
P − val(λ) 0.16 0.5 0.62 0.67 0.67 0.66 0.65 0.58

T (λ) 50.62 47.11 46.62 46.58 46.76 46.85 47.06 47.72

Table 12: Nested testing. Top: pG
symm is not rejected in favor of pn

symm;
χ2

0.9,26 = 35.563. Bottom: All P-values≈ 10−7; pG
symm is re-

jected in favor of pg
symm, χ2

0.99,9 = 21.67.

the complexity reduction: The reduced nine dimensions are apparently insufficient.

At last, when tested against pG
symm, the general G-symmetric alternative, the Potts

models are still strongly rejected.

5.4 Summary

We have tested most of our models for the microimage distribution p. From

the test results, we have learned that p respects left-right and up-down reflection

symmetries and, in the case of 2 × 2 patches, rotational symmetry. The left-right

reflection also appears to be the most prevalent among the geometric symmetries.

In contrast, photometric inversion symmetry is consistently rejected by itself as

well as in combination with other symmetries. Also, the most general G-symmetric

model is not rejected when tested against the inversion invariant alternatives.

The Potts models and dominant-mass model are rejected even more dramati-

cally than the models with inversion symmetry, although their entropies are rea-

sonably close to four bits, the estimated entropy of p. The Potts models are also

rejected against the most general G-symmetric model, suggesting some information

about absolute intensities is important.
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The geometrically invariant model determined only by pairwise interactions

(pg
pair) is the most restrictive among the non-rejected models. Even with the present

limitation due to aggregation of rare states, our results suggest that three- and four-

pixel interactions are insignificant in the presence of all pairwise interactions.

We also recognize the need for larger microimage samples in order to verify

extensions of these results to finer quantizations (L > 4).
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C H A P T E R 6

COMPUTATIONS AND ALGEBRAIC

REPRESENTATIONS

The objective of this chapter is twofold: First, we want to discuss systemati-

cally the computational issues alluded to in Chapters 4 and 5, in particular, the

algorithms that compute the minimal power-divergence estimators for our models

and some results that provide additional flexibility for the baseline computations.

The other objective is to obtain algebraic representations for the symmetry-based

models. Both objectives are relevant for extending model computations to larger

intensity ranges, and eventually, to larger patches. The latter extension is also dis-

cussed in Chapter 7.

We first recall (§§4.2,5.1, Figure 6) the well-known equivalence results related

to modeling by constraints.

I Constrained MLE (ECP/MLE) is equivalent to constrained minimization of

Kullback-Leibler divergence D(p̂, q) (with the same constraints) from the em-

pirical distribution: p̂MLE,Θ0
= arg min

q∈Θ0

D(p̂, q), where Θ0 is the model set

induced by the constraints.

II MEE under internal constraints EqV = Ep̂V (MEE/ICP) is equivalent to con-

strained minimization of the Kullback-Leibler divergence D(q, u) (with the
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same constraints) to the uniform distribution: p̂MEE,V = arg max
EqV =Ep̂V

D(q, u),

where V are the constraining functions.

III MEE/ICP as above is also equivalent to maximum likelihood parameter esti-

mation in the log- linear model (4.1) based on the same functions V : p̂MEE,V =

p̂MLE,Θloglin
0

We next consider potentially useful implications of these facts. To start, we con-

sider a special case of the correspondence between I and III, namely a transforma-

tion of a typical symmetry-based ECP/MLE situation into an equivalent ICP/MEE

(Proposition 6.1).

6.1 Translation of Symmetry ECP into ICP

A natural way to analyze real functions on Ω is via the K-dimensional real

vector space RK , which is also an algebra, with the canonical basis {ek}
K
k=1. Due

to our assumption that p and all our model distributions are strictly positive, we

focus on Q+ and Θ+, the set of all positive functions on Ω and the subset of all

positive distributions on Ω, respectively. Symmetry constraints involve independent

(with no loss of generality), homogeneous linear equations, and are a special case

of external constraints. For a trivial example, consider Ω = {ω1, ω2, ω3, ω4} (thus

K = 4) partitioned into two symmetry classes O1 = {ω1, ω3} and O2 = {ω2, ω4}.

The symmetry constraints can then be represented by the equations below:






1 0 −1 0

0 1 0 −1

















q1

q2

q3

q4












=

(

0 0

)
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In general, we define the feasible region Θ0 when modeling by symmetry con-

straints as the restriction to Θ+ of the kernel of the corresponding linear operator.

The special feature of symmetry constraints is that they require functions (vectors)

to be constant on certain subsets of Ω.

Let F : RK → Rm be a symmetry-defining linear operator of rank m, written

as an m×K matrix in its canonical form, i.e., each row of F contains exactly two

non-zero entries, 1 and −1. Then ker(F ) = {h ∈ RK : Fh = 0 ∈ Rm} defines the

linear subspace of RK consisting of all real-valued functions on Ω respecting the

given symmetry. Let S be the set of equivalence classes induced by F on Ω. Thus,

∀O ∈ S we have: ω, ω′ ∈ O ⇐⇒ h(ω) = h(ω′) ∀h ∈ ker(F ). Let J = |S| = K−m.

For clarity of exposition, the rows of F are ordered in accordance with the partition

S; in particular, the classes in S are enumerated from 1 to J and F has the following

block-diagonal structure:

F =












B1 0 · · · 0

0 B2 · · · 0

. . . . . . . . . . . . .

0 · · · 0 BJ












, (6.1)

where Bj has dimension (|Oj| − 1) × |Oj|:

Bj =












1 −1 0 · · · 0

0 1 −1 · · · 0

. . . . . . . . . . . . . . .

0 · · · 0 1 −1












, (6.2)

Since
J∑

j=1

(|Oj| − 1) = K − J = m, F is indeed m × K.

Let IO(ωk) stand for the indicator function of class O. Clearly, the class indica-

tors are linearly independent and form a basis for ker(F ) since ker(F ) = span{IOj
:
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j = 1, . . . , J}. Note that the constant functions belong to ker(F ). Let {Vj}
J−1
j=1 be

any J −1 distinct class indicators: Vjk = IOj
(ωk) for j = 1, . . . , J −1. Recall (§4.2)

that by an empirical distribution p̂ we mean p̂k = nk

Nω
. Next we state the duality of

the two categories of constraints problems:

Proposition 6.1 For any empirical distribution vector p̂ ∈ Θ+, the following ECP

and ICP have identical, unique solutions:

arg min
q∈Θ0

D(p̂, q) = arg max
q∈Θ+:EqV =Ep̂V

H(q), (6.3)

where Θ0 = ker(F ) ∩ Θ+.

Remark 6.2 Recall (§4.3 and [47]) that positivity of p̂ would ensure positivity of

the ICP/MEE solution even if ∂Θ+ were part of the feasible region. Note then that

the ICP conditions above can be replaced by q ∈ RK , qk ≥ 0, k = 1, . . . , K and

EqVj = Ep̂Vj, j = 0, . . . , J − 1 with V0 = ~1. (Writing Eq would still be legitimate

in that case since q is implicitly normalized by V0q = 1.) For compactness, we

will sometimes use the matrix multiplication notation V q = V p̂ for the equality of

expectations: EqV = Ep̂V .

Proof. Step 1 We begin by “solving” the ECP. The constraints Fq = ~0 imply

that we have only J ≤ K parameters, J − 1 of which are “free”. A natural

parametrization is provided by the probability values assumed on the symmetry

classes. Let q′j be the common value of q within the class Oj and let Qj =
∑

k∈Oj

qk =

|Oj|q
′
j and Nj =

∑

k∈Oj

nk. Recall (§4.2.1) that minimizing D(p̂, q) is the same as

maximizing the log-likelihood function
∑

k

nk log qk. Due to the constraints, we

have
∑

k

nk log qk =
∑

j

Nj log
Qj

|Oj |
, and maximizing this is equivalent to maximizing

∑

j

Nj log Qj. This is already in the form of unconstrained MLE, but relative to the
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state space S. The solutions to this and to the original ECP are given, respectively,

by:

Qj =
Nj

Nω

, q′j =
Qj

|Oj |
, j = 1, . . . , J (6.4)

Step 2 Rewrite the solution in (6.4) in exponential form:

qk = exp

(
J∑

j=1

γ′
jIOj

(ωk)

)

, γ′
j = log q′j. (6.5)

This is equivalent to

qk = exp

(

γ0 − 1 +
J−1∑

j=1

γjVjk

)

(6.6)

with γ0 = 1 + γJ and γj = γ′
j − γ′

J for j = 1, . . . , J − 1. By uniqueness of

the Maximum Entropy Extension (§4.3), the γ’s of (6.6) are identified with the

corresponding Lagrange Multipliers of the ICP. Thus, the vector q in (6.5), (6.6) is

the solution of the ICP. This completes the proof. ¦

Remark 6.3 Implicit in the above proof is that ~1 ∈ ker(F ). Thus, adjoining ~1

to any J − 1-dimensional subspace of ker(F ) not containing ~1 recovers the entire

subspace ker(F ). This helps to see why the separation of the normalization con-

straint from other constraints is rather artificial at this point: Suppose {Vj}
J
j=1 is

an arbitrary basis of ker(F ) and the conditions of the above ICP are replaced by

q ∈ RK , qk ≥ 0, k = 1, . . . , K and V q = V p̂. Then the equivalence still holds,

although the normalization constraint may now be implicit. In order to find new

Lagrange multipliers, one would have to solve a system of linear equations corre-

sponding to the change of bases, namely the new {Vj}
J−1
j=0 and {IOj

}J−1
j=0 . Clearly,

{~1, IO1
, . . . , IOJ−1

}, our choice of V in the proposition, trivialized this technicality.
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Remark 6.4 The equivalence in Proposition 6.1 is just a special case of that be-

tween log-linear modeling with MLE (namely ECP/MLE) and ICP/MEE because

symmetry constraints generalize to constraining the vector of log-probabilities to

belong to some linear subspace of functions on Ω. (To avoid the degeneracy of

having only one feasible probability vector, this subspace must contain constant

functions.)

Computationally, the above equivalence implies that in order to find the MEE

in the ICP of (6.3), one can simply obtain maximum likelihood estimates on the

quotient space (of equivalence classes) and then uniformly divide their aggregate

masses among the elements of each class. Consequently, instead of solving a system

of nonlinear equations to find Lagrange multipliers, one averages the empirical dis-

tribution over the symmetry classes. The averaging operator is clearly linear and is

exactly the operator R mentioned in §4.2.1. However, despite its seeming simplic-

ity it plays an important role in the general theory of invariants [12],[52],[64],[65],

one proper framework for studying symmetries. In that context it bears the name

Reynolds Operator. We write R for this operator and, when necessary, use a sub-

script to indicate the origin of the equivalence classes. Thus, the solution to the

ECP/MLE with symmetry classes S and empirical distribution p̂ is RS p̂, or, equiv-

alently RV p̂, where V refers to a basis of RS . We also index R by a group of

symmetries if the group is part of the discussion.

An obvious question is to characterize the MEE/ICPs that originate in this way

from the ECP/MLE. Does any ICP/MEE admit an equivalent symmetry-based

ECP formulation? The answer in general is clearly “no”. Otherwise, in particular,

there would be no distinction between ppotts, Potts models, and pC
potts, their “com-

pleted” versions (§4.6). However, we still hope to demonstrate the practical value
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of attempting such a conversion. One motivation is to enrich the stock of compu-

tational tools for modeling distributions on larger microimage spaces, for instance

3 × 3 patches with L = 8, rendering |Ω| = 227. Choosing between the MEE ap-

proach and the construction of the averaging operator would be one example; of

course, the choice must depend on available resources. Two concrete examples are

estimating parameters in the “completed” Potts model, pvhnC
potts , and in the geomet-

rically invariant pair-potential model, pg
pair.

6.2 From ICP to Symmetry-Based ECP

Before discussing a general result, let us look at a simple example:

Example 1 Consider a binary case Ω = M2×2({0, 1}) = { 0 0
0 0 , 0 0

1 0 , · · · , 1 1
0 1 , 1 1

1 1 },

where our default enumeration of the 16 elements of Ω (3.1) becomes: k(ω) =

1 + ω2,1 + 2ω2,2 + 4ω1,1 + 8ω1,2. We then impose constraints based on Potts-

like potentials (§4.6), i.e. V1 = I{ω1,1=ω2,2} + I{ω1,2=ω2,1}, and V2 = I{ω1,1=ω1,2} +

I{ω1,2=ω2,2} + I{ω2,2=ω2,1} + I{ω2,1=ω1,1}. V0 is again the normalization constraint vec-

tor ~1. Thus, V =
(

V0

V1

V2

)

=
(

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 0 1 0 2 1 1 2 0 1 0 1 1 2
4 2 2 2 2 2 0 2 2 0 2 2 2 2 2 4

)

. Given a positive em-

pirical distribution p̂, the distribution pG
potts is defined as p̂MEE,V , the maximum

entropy extension of p̂ constrained by E.Vj = Ep̂Vj for j = 1, 2. Recall that

the transition from the ECP to ICP in §6.1 was made possible because the vec-

tors {Vj}
J−1
j=0 of the internal constraints spanned the entire subspace of functions

constant on the O’s. Notice that our present V induces the following four con-

stancy classes: O1 = {1, 16}, O2 = {2, 3, 5, 8, 9, 12, 14, 15}, O3 = {4, 6, 11, 13},

O4 = {7, 10}. For example, 0 0
0 0 ∈ O1, 0 0

1 0 ∈ O2, 0 0
1 1 ∈ O3, and 1 0

0 1 ∈ O4. How-

ever, span{V0, V1, V2} $ span{IO1
, IO2

, IO3
, IO4

}. Thus, the feasible region of this
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ICP is strictly larger (by one dimension) than that of the problem with internal

constraints generated by {IOj
}4

j=1. The latter surely admits the ECP/MEE for-

mulation reversing the lines of §6.1, and the corresponding solution is RV p̂, the

version of p̂ averaged over the four constancy classes (see Table 13). Note that

this solution corresponds exactly to pGC
potts, the “completed” version of pG

potts (§4.6).

The distribution p̂ in the table was chosen rather arbitrarily; it is not an estimate

of the microimage distribution. (The last column of this table will be explained

in §6.3.) p̂MEE,V , the solution to the original MEE/ICP indeed “smoothes” p̂ more

than does the simple symmetrization, namely H(p̂MEE,V ) > H(RV p̂).

k(ω) p̂(ω) (RV p̂)(ω) p̂MEE,V q∗

1 0.1641 0.166 0.1588 0.1845
2 0.043 0.0483 0.0556 0.0299
3 0.0508 0.0483 0.0556 0.0299
4 0.0469 0.0508 0.0435 0.0693
5 0.0391 0.0483 0.0556 0.0299
6 0.043 0.0508 0.0435 0.0693
7 0.0312 0.0391 0.0318 0.0575
8 0.0547 0.0483 0.0556 0.0299
9 0.0625 0.0483 0.0556 0.0299
10 0.0469 0.0391 0.0318 0.0575
11 0.0664 0.0508 0.0435 0.0693
12 0.0430 0.0483 0.0556 0.0299
13 0.0469 0.0508 0.0435 0.0693
14 0.0391 0.0483 0.0556 0.0299
15 0.0547 0.0483 0.0556 0.0299
16 0.168 0.166 0.1588 0.1845

H 3.7748 3.7892 3.8009 3.6511

Table 13: Comparison of solutions to related ICP/MEE’s.

This example clearly illustrates why it is not possible in general to translate an

ICP/MEE problem into an equivalent symmetry ECP/MLE: The subspace spanned

by the constraint vectors of the ICP need not in general be large enough to include all
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possible functions respecting the constancy classes of the ICP constraint operator.

Consequently, one generally achieves extra smoothing in the original ICP/MEE

due to additional freedom for mass redistribution (e.g., an extra dimension in the

example above) as compared with the effect of the averaging operator which only

redistributes masses within the constancy classes.

Thus, it now makes sense to call “complete” (§4.6) an ICP/MEE whose con-

straint vectors V span the whole space of functions constant on the constancy

classes of V . In particular, the solution to this problem is given by p̂MEE,V
(4.2)(6.3)

=

p̂MLE,Θ0

(6.4)
= RV p̂, where Θ0 consists of all positive distributions constant on the

constancy classes of V . The computation of V -constancy classes in the case of

pvhnC
potts (§6.4.1) provides another, concrete example for this discussion. The differ-

ence between the original and “completed” models in that case is more noticeable

both in terms of the complexity comparison and the fit to the empirical p̂: The

entropy of p̂vhnC
potts is closer to that of p̂ than to the entropy of p̂vhn

potts.

Of course, such situations are only interesting when the size of the state space

is much larger than the number of constancy classes of the constraint operator V .

We conclude this section by noticing:

Proposition 6.5 The maximum entropy distribution p̂MEE,V constrained by V

always belongs to the “symmetry” subspace Θ0, i.e. it always respects the constancy

classes of its constraints in that RV p̂MEE,V = p̂MEE,V .

Proof. This can be seen directly from the exponential form of p̂MEE,V (4.6). This

is also a consequence of an important information inequality: First, notice that for

any distribution q from the feasibility region F (p̂) = {q ∈ Θ+ : qV = p̂V }, its

symmetrized version RV q (i.e., averaged over the constancy classes) also belongs
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to F (p̂) since V q = V RV q1. But then the smoothed vector has at least the amount

of uncertainty (entropy) of the initial vector. Thus, the solution must also be RV -

invariant. The just quoted inequality H(q) ≤ H(RV q) follows from the so-called

log sum inequality [11]:

n∑

i=1

ai log
ai

bi

≥

(
n∑

i=1

ai

)

log

n∑

i=1

ai

n∑

i=1

bi

, ai, bi > 0 i = 1, . . . , n,

which is in turn an immediate application of Jensen’s inequality to the convex

function x log x. The above inequality needs to be applied to every O, constancy

class of V , producing:

∑

ωi∈O

q(ωi) log
1

q(ωi)
≤

(
∑

ωi∈O

q(ωi)

)

log
|O|

∑

ωi∈O

q(ωi)
.

Summing over all such orbits yields H(q) ≤ H(RV q). ¦

6.3 Factorization effect in ICP/MEE

Next, we discuss reducing an ICP/MEE problem to a “similar” one but for-

mulated relative to the quotient space of the constancy classes of the constraining

operator. The motivation is to reduce the dimension of the space in which the

ICP is to be solved. For example, consider modeling p by pg
pair (§4.7). The con-

straint functions {Vj}
J
j=1 then form a basis for D, the linear subspace spanned by

all geometrically invariant functions on Ω of (at most) two variables. With L = 4

there are 55 g-symmetric orbits, significantly fewer than the 256 states in Ω. In or-

der to obtain the Lagrange multipliers in the MEE, one needs to solve numerically

the exponential constraint equations. In this case, solving these equations directly

1Representing RV as a matrix similar to (6.7) immediately verifies V = V RV .
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necessitates manipulating 256-dimensional vectors2. On the other hand, the prob-

ability distributions on the quotient space S reside entirely inside a 55-dimensional

space. It is naturally tempting to “tunnel through” the coarser space in order to

end up at least “close” to (if not right at) the true p̂MEE,V . How would one do it?

In the following discussion, suppose S is any partition of Ω such that V is constant

on each O ∈ S (i.e., not necessarily the partition of the constancy classes of V ).

One intuitive approach to the above question is to replace V and the origi-

nal (empirical) distribution p̂ by their projections Ṽ and p̃, where p̃ represents

p̂-probabilities integrated over S-classes and Ṽ is obtained from V as follows: For

each O ∈ S, we retain a single column of V representing the value of V on O. Let

us denote a solution to an ICP relative to the quotient space by q̃∗. To return to

the original space, we split q̃∗ uniformly within the classes and thus arrive at some

(symmetric) distribution q∗. Provided the averaging operator RS is easy to con-

struct, all the necessary operations are matrix multiplications, and in general are

computationally cheap. Thus we seek an ICP in the new space that would result

(following the above program) in the same solution as the original ICP/MEE. In

particular, if q̃∗ solves the ICP/MEE determined by Ṽ and p̃ in the quotient space,

how close would q∗ be to the solution of the original ICP/MEE? Some answers are

provided by Theorem 6.6 but first we need to introduce some notation.

Let V be an M ×K matrix whose rows play the role of constraint functions and

are assumed to be linearly independent. V is also assumed to contain a constant

non-zero row corresponding to the normalization constraint. Suppose |S| = J . In

order to clarify the set-up, let J ′ be the number of the constancy classes of V (i.e.,

the size of the coarsest partition respected by V ). Note that M ≤ J ′ ≤ J ≤ K since

2With L = 4, computational problems are not actually encountered, but the situation changes
markedly with L = 8, in which case there are 4096 states. We will explain a more important
computational concern in §6.4.3 in the context of constructing D.
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rank Ṽ = rank V = M , which also equals the rank of the matrix of unique columns

of V . Let π1 be the J × K binary matrix whose rows are the S-class indicators

IOj
for j = 1, . . . J . Therefore p̃ = π1p̂. Let π2 be the K × J matrix whose j-th

column is the j-th class indicator reduced by the class size:
IOj

|Oj |
. Thus, Ṽ = V π2.

The averaging operator RS can then be represented as the K × K matrix:

RS = π2π1, (6.7)

corresponding to the composition of the “integration” (π1) and “differentiation”

(π2) operators. (We do not distinguish here between linear operators and their

matrix representations.) Also, let sj =
|Oj |

K
, the relative size of the j-th class, and

write s̃ for the corresponding J-dimensional probability vector. We will generally

use the superscript ∼ to denote objects relevant to the quotient space S.

Theorem 6.6

arg max
q∈Q+:V q=V p̂

H(q) = π2

(

arg min
q̃∈Q̃+:Ṽ q̃=Ṽ p̃

D(q̃, s̃)

)

(6.8)

Proof. Recall (Proposition 6.5) that in maximizing entropy, q necessarily satisfies

RSq = q; hence

arg max
q∈Q+:V q=V p̂

H(q) = arg max
q∈Q+:

RSq=q
V RSq=V p̂

H(RSq)

= arg max
q∈Q+:

RSq=q
V π2π1q=V π2π1p̂

H(π2π1q)

= π2

(

arg max
q̃∈Q̃+:Ṽ q̃=Ṽ p̃

H(π2q̃)

)

= π2




arg max

q̃∈Q̃+

Ṽ q̃=Ṽ p̃

J∑

j=1

∑

ωk∈Oj

q̃(Oj)

|Oj|
log

|Oj|

q̃(Oj)






= π2




arg min

q̃∈Q̃+

Ṽ q̃=Ṽ p̃

J∑

j=1

q̃(Oj) log
q̃(Oj)K

|Oj|K





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= π2




arg min

q̃∈Q̃+

Ṽ q̃=Ṽ p̃

(D(q̃, s̃) − log K)






= π2

(

arg min
q̃∈Q̃+:Ṽ q̃=Ṽ p̃

D(q̃, s̃)

)

.

Implicit in the second equality is that V = V RS = V π2π1, which restates the fact

that averaging V over subsets of its constancy classes has no effect. The third

equality follows from the parametrization of Θ0 = {q ∈ Θ ⊂ RK : RSq = q}, the

K-dimensional S-symmetric distributions by the J-dimensional distributions ΘJ .

Clearly, π1|Θ0
, the restriction of the linear map π1 to Θ0 yields an isomorphism3:

Θ0
∼= ΘJ , where π−1

1|Θ0

= π2|
ΘJ

, the restriction of the linear map π2 to ΘJ . Finally,

in the fourth equality the summation over {ω1, . . . , ωK} is broken down into the

external summation over S and the internal summation over O’s, the individual

constancy classes. ¦

Remark 6.7 Note that the above problem is in general different from the MEE

on the quotient space:

arg max
q̃∈Q+:Ṽ q̃=Ṽ p̃

H(q̃) = arg min
q̃∈Q+:Ṽ q̃=Ṽ p̃

D(q̃, ũ) (6.9)

Thus, π2

(

arg min
q̃∈Q+:Ṽ q̃=Ṽ p̃

D(q̃, ũ)

)

need not in general equal the solution in the theorem.

A sufficient condition for the two solutions to be the same is to have equal size

classes, i.e. s̃ = ũ.

Another sufficient condition is that J = M . In that case, Ṽ is a non-singular

square matrix and, consequently, the only solution to Ṽ q̃ = Ṽ p̃ is p̃. Hence the

optimization degenerates and the solution to the original problem is given by RS p̂.

3This is exactly the parametrization that allows us to compute the minimum-power divergence
estimators p̂(λ) for our symmetry-based models and verify the (Birch’s) regularity conditions
required for the corresponding power-divergence testing (Appendix B).
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Note also that S must then necessarily be the set of V constancy classes, implying

RS = RV . This is exactly the special case in which an ICP/MEE transforms into

an equivalent ECP/MLE and no optimization need be attempted. Specifically,

p̂MEE,V = p̂MLE,Θ0
(4.2) independently of s̃, where Θ0 is the feasible region of the

equivalent ECP with V -induced symmetries. Clearly, Proposition 6.1 now becomes

a corollary to Theorem 6.6.

This suggests two options for the reduction of dimensionality in ICP/MEE. The

first (6.8) provides the exact solution to the original problem by minimizing the

Kullback-Leibler distance to the distribution of class sizes. Note that this distri-

bution becomes automatically available once the partition S has been identified.

The computations required are essentially identical to those of MEE: Solving (nu-

merically) a system of exponential equations to find the Lagrange multipliers. The

only difference is reweighting of the summands of the equations according to the

class sizes. The second option (6.9) is to disregard any nonuniformity of the class

sizes, and will not in general yield the true solution. The data of Example 1 (see

Table 13) show that this may lead to a poor approximation: The solution to the

“factor”-ICP/MEE “pulled-back” from S to Ω is q∗ which has entropy even smaller

than entropy of the empirical distribution. This is clearly a result of the highly

non-uniform distribution of the class sizes.

In the case of our symmetric models, the proportion of singular orbits (of size less

than the order of the appropriate symmetry group) becomes negligible as L grows

and s̃ is increasingly flattened. As a concrete example, consider L = 8 in which case

|Ω| = 4096 but the number of G-symmetry classes is only 346 (Proposition 6.8).

Imagine estimating parameters of pG
pair. Omitting some technical details concerning

identifying V in this case, it may already seem discouraging that one needs to
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solve a system of about 50 non-linear equations4. Still, manipulating vectors of

dimension 346 instead of 4096 makes a difference. In addition, s̃ is almost uniform:

H(s̃) = 8.3203 ≈ 8.4346 = H(ũ), suggesting little difference between the exact (6.8)

and the approximate (6.9) solutions in this case.

6.4 Quotient Spaces of Invariant Classes

We next revisit some of our models defined in Chapter 4. Since we have explic-

itly introduced symmetries in most of the models (psymm, pC
potts, and pg

pair), compu-

tation of the symmetry classes is a central issue in estimating model parameters.

As a first step, in §6.4.1 we define the symmetry transformations (§4.4) using the

group-theoretic formalism (Appendix D). We then discuss the structure of the quo-

tient space S in the case of the G-invariant model pG
symm and complete Potts model

pvhnC
potts (§6.4.2). In §6.4.3 we also explain how we compute π : Ω → S, a map index-

ing symmetry classes, and lead to the problem of finding analytical representations

for the probability functions of the symmetric models (§6.5).

6.4.1 G-Symmetries

For simplicity, let us relabel the matrix entries {ω2,1, ω2,2, ω1,2, ω1,1} as {ω1, ω2,

ω3, ω4}. The context should always disambiguate between this enumeration and

the indexing of Ω (3.1), where we also use subscripts. Recall from §4.4 that the geo-

metric symmetries consist of rotation and reflections. Let us start with the rotation

group. This group is generated by the four-cycle (1, 2, 3, 4), representing the coun-

terclockwise π/2 rotation r. Hence, the entire rotation group Gr is {1, r, r2, r3}.

4rankV = 48 was only computed numerically. The same numerical computations showed that
the G-symmetric partition is indeed the coarsest one respected by V .
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Adding the reflections through all four axes of the square to this group, we arrive

at the dihedral group D8
5, whose symmetries cover all the geometric symmetries we

have used in our modeling (e.g., pg
symm and pg

pair). This group has the following pre-

sentation in terms of its two generators and the defining relations between them:

〈r, s|r4 = s2 = 1, rs = sr3〉. Let us agree to represent by s the reflection through

the diagonal ω1 − ω3. We use the convention that in a composite symmetry trans-

formation the action develops from right to left; for example, rs means that the

diagonal reflection precedes the rotation. The subgroups of D8 that correspond to

the left-right and up-down reflections are 〈rs〉 〈sr〉 respectively. Combined, the two

groups additionally generate the symmetry with respect to rotation by π, namely

the resulting group 〈rs, sr|(sr)2 = (rs)2 = 1〉 contains r2 = rssr. These are maxi-

mal geometric symmetries of the models pvh.

The last symmetry required to generate G is symmetry with respect to the

photometric inversion. To simplify the ensuing discussion involving this symme-

try, we translate the range {0, . . . , L − 1} to center it at 0. Then, the trans-

formation corresponding to this symmetry is a true negation: i(ω)l = −ωl, for

l = 1, . . . , 4. Finally, the group G generated by all the symmetries above has presen-

tation 〈r, s, i|r4 = s2 = i2 = 1, si = is, ri = ir, rs = sr3〉. Therefore, G ∼= D8 × C2,

where C2 is the cyclic group of order two which is evidently isomorphic to 〈i〉.

The following proposition presents the exact number and sizes of S, the set of

G-equivalence classes (or, simply, G-orbits). A proof of these statements is given

in Appendix D. The case of L odd is practically not interesting and hence not

covered here (its computations would also require several minor modifications).

Similar results for the other symmetry (sub)groups could also be computed analyt-

5We follow the notation of [18] in which D2n stands for the group of all symmetries of a regular
n-gon. Another popular notation for this group is Dn.
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ically. Instead, we induced the necessary information from the action of the aver-

aging operator RS , first encountered in §4.2.1 and further discussed in §§6.3,6.4.3.

Alternative ways of “orbit counting” are also discussed in §6.5.

Proposition 6.8 The size of the partition S of Ω = M2×2(CL) (L = 2n) into the

G-invariant classes (orbits) is |SL| = L4+2L3+6L2+4L
16

= n4 + n3 + n(1+3n)
2

. Among

them, there are L orbits of size two, L2

4
orbits of size four, 2L3+3L2−10L

8
orbits of size

eight, and L4−2L3−4L2+8L
16

orbits of size 16.

This proposition and its proof (Appendix D) suggest the following asymptotic result

for any subgroup H ≤ G: The leading term of |SL| is
|Ω|
|H|

, i.e., |SL||H|
|Ω|

→ 1 as L → ∞.

In particular, the complexity of the corresponding symmetric models psymm grows

as L4 (= |Ω|).

6.4.2 Completion of the Potts Model pvhn
potts

Table 14 presents sizes of the nine constancy classes of the Potts operator V =

(V1, V2, V3)
t:

V1(ω) = I{ω4=ω2} + I{ω3=ω1}

V2(ω) = I{ω4=ω3} + I{ω1=ω2}

V3(ω) = I{ω4=ω1} + I{ω3=ω2}.

In Table 14, P l
L = L!

l!
stands for the number of permutations of L elements taken

l at a time. Recall (§4.6) that V determines pvhn
potts, and then the completed Potts

V1, V2, V3 0,0,0 0,0,1 0,0,2 0,1,0 0,2,0 1,0,0 1,1,1 2,0,0 2,2,2
|O| P 4

L 2P 3
L P 2

L 2P 3
L P 2

L 2P 3
L 4P 2

L P 2
L P 1

L

Table 14: Constancy class sizes of the Potts constraint operator V .
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model, pvhnC
potts , corresponds to expanding V to include the five “missing” dimen-

sions. Namely, we add to V five more constraint vectors so that the expanded set

becomes a basis for the linear subspace of all functions on Ω that are constant on

the constancy classes of V . Thus, pvhnC
potts is originally the MEE under the constraints

that the probabilities of the nine constancy classes equal their p̂ estimates. In prac-

tice, it may be more convenient if the role of constraining functions is assumed

by the nine class indicators. We can also characterize pvhnC
potts as a symmetry ECP

(§§6.1,6.2). This is, in fact, how we treat this model for statistical testing based on

the minimum power-divergence tests. One way or the other, the nine-class parti-

tion is characterized by basic combinatorics used to derive the results in the table

and shows that the complexity of pvhnC
potts (which is eight due to the normalization

condition) is independent of L.

6.4.3 On Computation of Symmetry Partitions

In order to work with models invariant under symmetry transformations such

as those represented by the group G and possibly more general ones, it is impor-

tant to understand the dependence of parameter estimation on the particular rep-

resentation for S, the space of invariant (symmetric) classes6. For example, the

maximum likelihood estimator for symmetry-based models (e.g., pg
symm, pvhnC

potts ) is

just the orbit-averaging operator R (6.7) applied to the empirical distribution p̂.

Although expressions for other minimum power-divergence estimators (see (B.4)

and (B.5)) involve non-linear averaging, computation of the symmetry partition S

is essential in all cases.

We discuss two options for computing this partition in the case of the geomet-

ric and inversion symmetries. It should later become clear that this discussion is

6We now abandon the default L = 4 and, when necessary, will put L in the subscript.
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also relevant to certain other symmetry transformations. The first option is rather

straightforward and involves simulating the action of the appropriate symmetry

group on Ω. For small Ω’s, for example |Ω| = 4096 (L = 8), the inefficiencies (e.g.,

redundant computations) of this method are insignificant relative to available com-

putational resources. Moreover, purely algorithmic modifications could improve

efficiency. With |Ω| as small as 256, the baseline computations performed in Mat-

lab [49] are virtually instantaneous on a Sun Ultra-2 workstation and hence no

improvements are necessary. However, for larger microimage spaces, due to spatial

supports and/or finer quantization, a second option involving analytic representa-

tions may be more sensible. The second half of this section discusses potential ben-

efits associated with this alternative and in §6.5 a concrete example demonstrates

the main ideas of this second approach in the context of the pG
symm model.

In the first approach, the baseline algorithm starts with all patches unlabeled

and then runs over Ω, assigning labels to the elements of the partition S. Patches

whose class has already been computed are skipped. If an unlabeled patch ω is en-

countered, the class counter is incremented, and the algorithm loops over the entire

symmetry group (except for the identity element). Successively applying to ω the

symmetry transformations from the group produces indices of the other members

of ω’s class. The corresponding patches are then labeled appropriately. Thus, the

algorithm constructs the desired map π : Ω → S. Given this map, the operators

π1, π2 and hence the averaging operator R are determined and the MLE is then

constructed. Computer languages that support vectorization (e.g., Matlab [49])

are particularly convenient for using π to compute all minimum power-divergence

estimators. One source of inefficiency in this algorithm is that it ignores the no-

tion of singularities (classes smaller than the order of the group) and unnecessarily

relabels singular orbits.
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Note also that in the case of the group G, and any of its subgroups, the sym-

metry transformations (§6.4.1) can be expressed as matrix multiplications. To see

this, identify 2 × 2 patches with points in R4. (Recall that we have ordered the

patch components as {ω2,1, ω2,2, ω1,2, ω1,1} and translated the intensity range to

{−L−1
2

, . . . ,−1
2
, 1

2
, . . . , L−1

2
}, assuming L is even.) Clearly, our symmetry transfor-

mations r, s, and i extend to transformations on the whole vector space R4. (This

is possible mainly because Ω is invariant under the extended transformations r,

s, and i.) In proper terms, the given G-action admits a linear representation on

R4 (Rn2

in the case of n × n patches): ρ : G ↪→ GL(R4), where GL(R4) is the

group (under composition) of the nonsingular linear transformations from R4 to it-

self. Then, with the standard basis, ρ has the following matrix representation (via

GL(R4) ∼= GL(4, R)):

r
ρ
7→












0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0












s
ρ
7→












1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0












i
ρ
7→












−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1












(6.10)

This correspondence allows us not to distinguish between G and its matrix repre-

sentation in the ensuing discussion. This also shows that the computations needed

to fill in a class in the above algorithm are simply matrix multiplications.

The second approach to calculating S is somewhat more analytic. Roughly, the

idea is to represent S (i.e., construct π) by obtaining algebraic expressions for the

class indicators IO, O ∈ S. Particular computer implementations could, of course,

significantly deviate from the main idea in order to improve efficiency. However, we

do not concern ourselves with such details here. Instead, we only provide the main

ingredients from which π can be assembled in various ways. We will also relate

this discussion to the more general theme of finding analytic, Gibbs representations
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for symmetry-based models. G will provide a concrete example for illustrating

these ideas. In fact, the emphasis of §6.5 will quickly shift from the alternative

construction of π (required to compute model estimators)7 to obtaining analytic

forms for the model distributions.

Another benefit of replacing the orbit indicators in equations such as (6.5) by

explicit functions of the patch components is that the latter representation is more

suitable to identify the degree of interaction among pixels in the patch. For example,

consider computing pg
pair defined in §4.7. We defined D as the linear subspace

spanned by all functions on Ω of (at most) two variables. Using an arbitrary basis

for D to produce internal constraints determines ppair as the maximum entropy

extension of the empirical distribution (independent of the choice for the basis).

However, we are ultimately interested in a smaller subspace Dg of g-symmetric

functions of two variables: {Vm}
M
m=1, an arbitrary basis for Dg playing the role

of internal constraint vectors defines pg
pair via entropy maximization. Here, M =

dimDg.

Presently we construct the constraint functions8 {Vm}
M
m=1 by first obtaining V ′,

a large, possibly redundant, set of vectors spanning D. A crude way to do this is

by exhibiting indicators of all
(
4
2

)
L2 = 6L2 possible states (a, b) ∈ CL × CL of every

pair of variables (ω1, ω2), (ω1, ω3), and so on. (Notice that fixing any two variables

produces L2 linear independent members of D; hence the complexity of ppairs is of

order L2.) Thus, we have: span{V ′
α}α∈A = D, and V ′

α is of the form I{ωi=a,ωj=b}(ω),

where α is some suitable multi-index running over A, the set of all the variable

pairs with their corresponding states.

7We will focus on (constrained) MLE.
8Recall (§§4.3,6.2) that we compactly represent functions on Ω as matrix rows.
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The notation of §6.3 is helpful to follow the next step: We project each V ′
α onto

the space of functions on the g-symmetric orbits, i.e. π1 : V ′
α 7→ Ṽ ′

α, where the

projection π1 simply integrates vectors over the g-invariant classes. This results in

span{Ṽ ′
α}α∈A = D̃g, the space of pair-interacting Ω-functions lifted to the space of

functions on the g-invariant classes.

We then eliminate possible redundancy of {Ṽ ′
α}α∈A in order to produce {Ṽm}

M
m=1,

a basis for D̃g. The elimination is performed numerically and hence is susceptible

to errors. In particular, using linear algebraic tools provided by Matlab [49] already

may lead to unreliable results in the case of |Ω| = 4096 (i.e. L = 8). Supposing

the basis is accurate, we get Vm = π2Ṽm, a set of internal constraints defining pg
pair

via entropy maximization. recall that the linear pull-back map π2 divides each

component of Ṽm uniformly over the corresponding class members.

Of course, once the basis {Ṽm}
M
m=1 is obtained, Theorem 6.6 applies immediately

to produce π2

(

arg min
q̃∈Q̃+:Ṽ q̃=Ṽ p̃

D(q̃, s̃)

)

, the solution that is generally advantageous from

the computational perspective. Recall that s̃ above is the distribution of the g-orbit

sizes.

On the other hand, polynomial expressions for bases of (RΩ)g, the space of the g-

symmetric functions, might allow one to recognize and to eliminate the dimensions

of the higher interactions in a way that is computationally cheaper than the above

construction of D. The idea is to use symbolic as opposed to numeric computations

to obtain a polynomial form for some basis of Dg = D ∩
(
RΩ
)g

. Computational

algebraic geometry (see, for example, [12],[13],[65]) might then provide algorithms

to implement this idea, avoiding numerical methods altogether. Consequently, the

constraint functions V would be computed exactly.

Avoiding explicit class referencing in candidate probability models may be also

more suitable for extending symmetric models to continuous intensity ranges (e.g.
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[0, 1]) A similar but more concrete goal is to minimize the dependence of the models

on L: Presently, the symmetry partition S needs to be recomputed for different

values of L.

Finally, in Chapter 7 we discuss extending our models to larger patches. Explicit

enumeration of individual orbits is then infeasible, and the analytic representation

of the appropriate Gibbs potentials is the only option.

6.5 In Search for Analytical Representation of psymm

We start by discussing the existence of a vector-valued, polynomial patch func-

tion whose range is in one-to-one correspondence with S, the set of G-orbits. For

the moment, G stands for an arbitrary subgroup9 of the appropriate general lin-

ear group. Eventually we specialize to the group of our symmetry transformations

(§6.4.1) on 2 × 2 patches.

Note that polynomials allow one to represent any real function on a finite set

(specifically, Ω). This is different from our working representation of such func-

tions by real, finite dimensional vectors. The two representations are, of course,

closely related, which provides additional flexibility for modeling probability dis-

tributions on Ω. The relation between the two types of representations becomes

apparent when Ω is identified with a real affine variety. Computational algebraic

geometry then provides powerful tools for studying various properties of polyno-

mial functions (essentially all the functions) on Ω. However, we will try to keep

the following discussion self-contained; in particular, we assume no familiarity with

results from algebraic geometry or invariant theory. This does not limit the dis-

9This generality allows inclusion of patch transformations other than the ones from §6.4.1,
which may in principle be useful for models on larger patches.
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cussion of how to search for analytic representations of symmetry-based models.

However, computational algebraic geometry is the proper framework to carry out

these ideas in practice.

Now, suppose that Ω is indeed embedded in the appropriate real vector space

W (e.g., W = R4 in the case of 2 × 2 patches). Consider R[x1, . . . , xm], the ring

(or, algebra) of all polynomials in m = dim W variables with real coefficients.

Alternatively, we sometimes write R[x] or R[W ]. Whenever it is clear from the

context, we will denote n-vectors and m-tuples of indeterminates by single letters

as with x ↔ x1, . . . , xm. The action of G on W by matrix multiplication (6.10)

corresponds to G acting on R[W ] as follows:

(gf)(v) = f(ρ(g−1)v), where g ∈ G and f ∈ R[W ], (6.11)

where the linear representation ρ was introduced in §6.4.3 in the context of (6.10).

The subring of R[W ] consisting of all polynomials that are invariant under this

G action will be denoted by R[W ]G. (Also, when using superscripts with objects

invariant under some group action, we may often reference only the group provided

the action is clear from the context.)

Definition 6.9 Polynomials f1, . . . , fN from R[W ]G are said to be fundamental

integral invariants associated with the above G-action on R[W ] if any other G-

invariant polynomial f (∈ R[W ]G) can be expressed as a polynomial in f1, . . . , fN .

We will also refer to such fundamental invariants as generators.

The following well-known fact is fundamental for our discussion and follows

from more general results in Invariant Theory [12],[52], [64] and [65]. Nonetheless,

below we give a short, basic proof that also leads to a construction of G-invariant

class indicators in terms of fundamental G-invariants (Theorem 6.15).
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Proposition 6.10 Let W be an m-dimensional real vector space (W ∼= Rm with

the standard basis) and let ρ be a (m-dimensional) representation of a finite group

G, ρ : G ↪→ GL(W ). Then there is a bijection between SR

def
= W/G, the orbit set of

the G action on W (associated with ρ), and the image of (f1, . . . , fN) : W → RN ,

fundamental invariants of ρ.

Proof. First observe that, indeed, there always is a finite system of such generators.

This fact was proved by Hilbert for fields of characteristic zero, and later extended

for certain fields of positive characteristic by Noether ([20] and [64]). We briefly

comment on the general problem of exhibiting such generators later in §6.5.1, where

we find them for our special case R[x1, . . . , x4]
G.

The G-invariance of f1, . . . , fN means that these functions are constant on the

orbits of SR. Thus we have a well-defined map from S onto the image of (f1, . . . , fN ).

Therefore, we need only prove that, given any two distinct orbits O1,O2 ∈ S, the

corresponding values of (f1, . . . , fN) must be distinct. We show this by exhibiting

a G-invariant polynomial f that takes distinct values on O1 and O2, and then

conclude that the values assumed by at least one of the N generators on these

orbits must be distinct.

The finite size of the orbits allows the following crude construction of f :

f̃(x) =
∏

g∈G

m∑

l=1

[xl − ρ(g)(ω)l]
2 , ω ∈ O1 (6.12)

f(x) =
∑

g∈G

(gf̃)(x), (6.13)

where gf̃ is computed according to (6.11). The definition (6.12) ensures that f̃(v) =

0 (and consequently f(v) = 0) if and only if v ∈ O1. In (6.13) , we average f̃ over

its orbit in order to guarantee G-invariance. Note that f separates O1 from the
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rest of the orbits, since for each g ∈ G the only roots of gf̃ are the points in O1.

In particular, f assumes distinct values on O1 and O2. ¦

Remark 6.11 Up to normalization by the group order, the operator in (6.13) is

none other than the Reynolds operator. Recall (§6.2) that we defined essentially

the same operator in (6.7), the only difference being that earlier the functions on

Ω were represented by real vectors rather than by polynomials.

The following definition that appears in [12] extends the discussion to k[x1, . . . , xm],

polynomials over an arbitrary field k of zero characteristic:

Definition 6.12 Given a finite matrix group G ⊂ GL(m, k), where the field k has

characteristic zero, the following k-linear map RG : k[x1, . . . , xm] → k[x1, . . . , xm]

is called the Reynolds operator:

RG(f) =
1

|G|

∑

g∈G

gf, for f ∈ k[x1, . . . , xm] (6.14)

The averaging feature of this operator is formally expressed by the fact that RG(f) ∈

k[x1, . . . , xm]G ∀f ∈ k[x1, . . . , xm]. The following property further underlines the

correspondence with probabilistic averaging: ∀f ∈ k[x1, . . . , xm] and ∀h ∈ k[x1, . . . , xm]G,

RG(hf) = hRG(f). The probabilistic interpretation is that a random variable

which is measurable relative to the σ-algebra on which conditioning is performed

can be factorized through the conditional expectation.

6.5.1 Fundamental G-invariants

We now specialize to our group of symmetries generated by the geometric trans-

formations (r and s) and the intensity inversion (i). Before we propose a partic-

ular set of invariant generators for R[x1, x2, x3, x4]
G, let us recall that, according
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to (6.10) and (6.11), the G action on R[x1, x2, x3, x4] can be concisely expressed via

the action of r, s, i, generators of G, on x1, x2, x4, x4, canonical generators of R[x]:

rx1 = x2; rx2 = x3; rx3 = x4; rx4 = x1;

sx1 = x1; sx2 = x4; sx3 = x3; sx4 = x2;

ixk = −xk, k = 1, 2, 3, 4 (6.15)

Theorem 6.13 The following set of polynomials generates R[x1, x2, x3, x4]
G:

f1(x) = (x1 + x3)(x2 + x4),

f2(x) = x1x3 + x2x4,

f3(x) = x2
1 + x2

2 + x2
3 + x2

4, (6.16)

f4(x) = x1x2x3x4,

f5(x) = (x2
1 + x2

3)(x
2
2 + x2

4).

A proof of the theorem is given in §D.1. Although standard algorithms exist to com-

pute such generating sets in a systematic fashion (see, for example, [64] and [65]),

we base our proof on a very intuitive approach, which, in particular, does not re-

quire familiarity with algebraic geometry or invariant theory. The general theory

(e.g., [64]) also shows that m ≤ N ≤
(

m+|G|
|G|

)
. In our case the above upper bound,

due to Noether, is
(
4+16
16

)
= 4845. This is too large for a direct implementation of

the corresponding algorithm to find such generators. Our case turns out to be spe-

cial, however, in that we nearly achieve the lower bound determined by dim R4 = 4.

This small number of generators encourages one to use them in practice for orbit-

indexing.

Also, we obviously need not “index” the entire SR, which is in fact uncountable.

For any L, we need only index SL, a finite subset of all real G-orbits. For this task
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some of the above generators turn out to be redundant as can be seen from the

following statements, which can be verified algorithmically.

Proposition 6.14 For the even size intensity ranges CL with L ≤ 12 and for the

ranges of size L = 3, 5, 7, the four generators f1, f2, f3, f4 (6.16) suffice to enumerate

all the orbits of SL = M2×2(CL)/G. Moreover, for L = 2, 4, 6, or 8, the three

generators f1, f2, f4 are sufficient.

An immediate conjecture is that f1, f2, f3, f4 are sufficient in general if L is even.

In Appendix D we briefly discuss an analytical approach to verification of the main

results and the conjecture.

Finally, we summarize our reasoning. We state results only for our special choice

of G but generalizations to other linear groups acting on Ω are apparent.

Theorem 6.15 Any strictly positive G-invariant probability mass function on Ω

admits the Gibbs form in terms of the invariant generators only:

pG(ω) = exp




∑

|α|≤M

aαfα1

1 (ω) × · · · × fα5

5 (ω)



 , (6.17)

where α = (α1, . . . , α5) is a multi-index of nonnegative integer components and

|α| = α1 + . . . + α5. A crude bound M on the maximum degree is 2(|SL| −

1) max
n=1,...,5

deg fn = 8(|SL| − 1).

Proof. One can quickly exhibit one such representation expressing G-orbit indi-

cators in terms of the fundamental generators f1, . . . , f5 and then substituting the

results in the exponential representation based on the indicators (6.20). First,

let ω∗ ∈ O ∈ S and write [ω] for the orbit represented by ω. We mimic (6.12)

and (6.13) to produce:

f̃(x) =
∏

O′∈S
[ω]6=O

[
(f1(x) − f1(ω))2 + · · · + (f5(x) − f5(ω))2

]
(6.18)
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IO(x) =
f̃(x)

f̃(ω∗)
. (6.19)

The result follows upon substituting (6.19) into

pG(ω) = exp

(
∑

O∈S

γOIO(ω)

)

, (6.20)

where γO = log pG(O)
|O|

, O ∈ S, are the model parameters. The degree bound follows

immediately from this construction and from (6.16). ¦

Recall that for intensity ranges of even size, |SL| was computed in Proposi-

tion 6.8. Therefore, the above upper bound for L = 8 is already large: M =

8 × 345 = 2760. Although Proposition 6.14 suggests that only four generators are

required if L is even, the value of the direct construction used in the proof above is

still in proving the existence rather than providing an efficient construction. One

way to make these ideas more useful (via approximations) is discussed next in §6.6.

However, the fact that the complexity of the general symmetry models is of order

L4 strongly argues for focusing in practice on symmetric subfamilies of lower com-

plexities. Pair-potential families are one example; recall that their complexity is of

order L2. Consequently, a relatively small fraction of the exponential terms in (6.17)

need to be retained in order to represent pG
pair. Computational algebraic geometry

becomes indispensable for obtaining efficient algorithmic characterizations of the

“low-interaction” terms in that case. Finally, this presents an interesting direction

for additional research.

6.6 Sequential MEE

Restricting the degree of interaction among the pixels in the patch is one way

to lower the complexity of models such as pg
symm. Recall (Chapter 5) that we have
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found evidence that p ∈ pg
pair. This suggests that parameter spaces of dimensions

lower than that of pg
symm may generally be sufficient for accurate estimation of p.

In §5.1 we commented on the leading role of applications in accepting particular

models. Thus, a reasonable scenario for a multi-stage modeling might start by

accepting constraints “surely” satisfied by p (i.e., not rejected by the appropriate

statistical tests) and then provide a convenient mechanism to index families of

candidates for further, application-driven reduction of the model complexity. By

“convenience” we mean, first of all, flexibility to expand the model parameter space

on “demand”: For example, higher accuracy and, consequently, a less restrictive

model, may be requested if, say, the application receives additional resources. The

application, of course, may itself be a subtask of a larger optimization problem.

It is conceivable that in a real situation one generally finds only “few” truly

satisfied constraints. Recall that in the case of the models based on the geometric

and intensity inversion symmetries, the number of constraints is |Ω| − |S| (§6.1).

Although this number is of order L4, the order of |Ω|, the complexities of the models

are of the same order. Thus, little reduction of dimensionality is achieved. (Hence

the quotes in “few”.) One can then argue that for large L, the constrained family

is still non-parametric since its dimension is of the same order as the dimension of

the saturated model. Perhaps a proper term for pairwise interacting Gibbs models,

whose complexity is of order L2, should then be semi-parametric. Unfortunately,

“truly” parametric models that have complexities independent of L are likely to be

too restrictive as, for example, ppotts.

We now outline a variation of minimax learning [68],[69],[70] that provides a

mechanism for incremental expansion of model spaces. The expansion occurs en-

tirely within the symmetric family accepted on the basis of statistical hypothesis

testing. (An example is pg
symm.) Based on particular goals, several modifications
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of the baseline program are conceivable. One subtle distinction from the main-

stream of minimax learning applications is the purely algebraic nature of our filter

banks: We are going to consider log-linear models based on linear spaces spanned

by monomials fα1

1 (ω) × · · · × fαN

N (ω) in fundamental generators of the underlying

symmetry group.

Suppose some symmetry group G induces S, a partition of Ω into G-invariant

classes. Assume that a set of G-invariant fundamental polynomial generators

f1(ω), . . . , fN(ω) is available. Assume also that B = {F1, . . . , F|S|}, a basis for

the G-symmetric functions (RΩ)G is found, where Fs, s = 1, . . . , |S| is the eval-

uation on Ω of some monomial fα1

1 (ω) × · · · × fαN

N (ω). Note that such B always

exists: Expressions in (6.18) provide one example. Also note that to each of the

2|S| subsets of B there corresponds a linear subspace spanned by vectors of that

subset. One of such subsets, for example, spans the subspace of pair-interacting

G-invariant functions, similar to Dg discussed in §6.4.3. There may be many other

potentially suitable subspaces of dimensions significantly lower than dim B = |S|.

Suitability of these subspaces for capturing p may, for example, be assessed by

power-divergence tests applied to the corresponding log-linear models, similar to

our tests for pg
pair. Application-dependent adjustments for model complexity are

certainly an option. However, a global search for suitable models of this form is

clearly infeasible as 2|S| is likely to be prohibitively large in practice. If, however,

C is specified as a bound on the subspace dimension (hence, model complexity)

and is small relative to dim B, it may be feasible to search for a “best” subspace of

dim ≤ C.

A local search is another alternative: Start with B0 = ∅ and suppose in the

nth step a subspace Bn has been chosen as best in the sense of, for example, mini-

mizing D(p̂, p̂MEE,Bn
), Kullback-Leibler divergence from the empirical distribution
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p̂ (hence, “minimax”). In the next step, Bn+1 is created by adjoining F ∗
n+1 to Bn

according to

F ∗
n+1 = arg min

F∈B\Bn

D(p̂, p̂MEE,Bn∪{F}). (6.21)

Note that at the end (n = |S|), p̂MEE,Bn
would always become p̂MLE,Θ0

, the

symmetry-constrained MLE, where Θ0 is the set of all positive G-symmetric dis-

tributions.

We performed similar experiments based on this greedy strategy in the case of

G-symmetries and L = 4 and L = 8. The goal, of course, was not to produce

p̂MLE,Θ0
, which is cheaply available as RGp̂ in these cases. Instead, we wanted

to see which F ∗’s would be selected in the first steps. In fact, we did not limit

our B to bases for the space of G-symmetric functions on Ω but instead allowed

redundant sets of monomials in f1, . . . , f5 (Theorem 6.16)10. (As a purely technical

observation, it can be shown that the algorithm maintains linear independence of

Bn’s automatically, which also implies that F ∈ B \ Bn in (6.21) can be replaced

by F ∈ B. )

These experiments were based on an image set much smaller than our present

Iim and may need to be repeated to verify the results based on a more stable p̂.

Nonetheless, they demonstrated certain consistency of the greedy strategies for the

two quantizations after the intensity ranges were appropriately rescaled for stan-

dardization. Recall also that in finding MEE one solves numerically for γ’s, the

Lagrange multipliers (§4.3). Significant regularity was also observed in our experi-

ments in the sense that adding new F ∗’s resulted in rapidly decaying adjustments

of the previously computed γ’s. Finally, a variation of this approach might also be

useful for “on-line” generation of suitable models of prescribed complexity.

10We also explored several different monomial orders [12] in our experiments.
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C H A P T E R 7

CONCLUSION

We have extensively studied microscopic parts of digital, grey level images of

natural scenes. Mathematically, we represent such natural microimages by ω ∈ Ω,

matrices of quantized raw image intensities. The main object of our investigation

is p, the unknown probability distribution induced on Ω by the natural microim-

age population Σ. We have built a proper statistical basis for meaningful analysis

and modeling of p (Chapter 3). Namely, we base our statements involving p on

the grounds of statistical hypothesis testing (Chapters 3 and 5). Refuting scepti-

cism about meaningfulness of image analysis based on raw intensities, and despite

sampling limitations, we demonstrate several non-trivial properties of the natural

image microworld. The list begins with inter-scene stability. This is precisely the

property of the natural microimage distribution to allow estimation from relatively

small samples that is nearly independent of global attributes of natural scenes.

Due to relatively small microimage samples available, we focus on two- and four-

pixel patches and rather coarse intensity quantizations. These limitations are not

principal since they are not necessitated by computational issues. In fact, rapidly

increasing availability of large databases of natural images imminently makes such

limitations obsolete. Consequently, we anticipate rapid intensification of investiga-

tions similar to ours in the near future. Such investigations are likely to focus on

specific imaging domains (e.g., particular terrains, artistic photography, or range
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imagery). In this regard, our present experience provides valuable information that

relates the amount of detail one could infer about the natural image microworld to

(micro)image sample sizes and other sampling issues.

Our local and coarse microimage modeling setting embeds naturally in a more

general, global framework of random fields. For this reason, we view our microim-

age measure p = p(ω; m,n, L) (albeit often implicitly) as a function of both m×n,

the dimensions of the microimage support, and L, the size of the intensity range.

In order to better understand the place of this work in the field of natural image

statistics we recall that the fundamental hypothesis of this field is the existence

of P, a universal probability measure explaining formation of images of natural

scenes. The meaning attached to such “explanation” is rather profound and may

itself require an explanation. The idea is, of course, to model families of natu-

ral (micro)image populations (such as our Σ) in such ways that the appropriate

modeling frameworks are always consistent with (or “derivable” from) P. A sim-

ple example to illustrate the idea is as follows: Suppose P is in some family of a

continuously-valued, continuously-supported random fields. We want to be able to

deduce properties of discrete, local subfields of P from P. And conversely, we also

want to use our coarse and local model-based observations to update our knowledge

about the family containing P.

Also, one seeks an abstract common ground (in the form of families of P) so

that, not only would it be consistent with more concrete, already working mathe-

matical frameworks, but it would also yield these frameworks consistent with one

another. Furthermore, the desired consistency must be insensitive to variations in

transformations (i.e., calibration of imaging devices, preprocessing) which finer or

more global measures undergo in the course of producing their coarser or local rel-

atives, respectively. Evidently, providing appropriate imaging applications with a
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clear, universal hierarchy of computationally-developed alternatives is at the core

of this theory.

This work reflects our belief that the natural approach to fulfilling such an

ambitious program is “bottom-up”, more precisely, “coarse-to-fine” and “local-

to-global”. Thus, starting at the “bottom”, we have discovered the inter-scene

stability of p(·; 1, 2, 8), p(·; 2, 1, 8), and p(·; 2, 2, 4), which is an example of inter-

measure consistency referred to above. Another type of such consistency is scale

invariance, which, with the exception of P, can only be defined in approximate

terms. We also exhibit virtual indistinguishability between estimates of p taken at

two different scales. Unlike in other research on scale invariance in natural images,

including our early efforts, these results are more rigorous due to the hypothesis

testing framework in which they have been obtained.

Our findings at these levels of spatial localization and intensity quantization pro-

vide us with tools and experience necessary to extend and expand (Ω, p(·; m,n, L)),

the subject of our analysis and modeling, to the natural distributions on microim-

ages with larger spatial supports and finer intensity ranges. Moreover, the discov-

ery of geometric symmetries and distinct patterns of pixel interaction in the patch

(Chapter 5) allows us to focus future research on a considerably smaller subset of

microimage distributions that respect such symmetries and patterns of pixel inter-

actions.

Also, our findings complement similar research in which symmetries of mul-

tivariate (up to tri-variate) linear filter-response statistics of two-, and four-pixel

patches of fine intensity natural images are reported [33], [34], [35].

As a future project that could further enrich natural microimage phenomenol-

ogy, we imagine performing our hypothesis testing experiments on synthetic images

generated, for example, according to Poisson disc models [42]. An expectation is
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that synthetic microimages corresponding to models with the “right” scaling pa-

rameters will pass two-sample consistency tests when tested in conjunction with

natural microimages.

Obviously, we do not limit our investigation to phenomenology and are con-

cerned with computationally efficient applications of the discovered properties of

the microimage distribution. A particular framework is that of defining local image

features using tree structured vector quantization of microimages (Chapter 2). A

possible direction for future research is to consider globally optimal strategies [21].

Replacing on-line microimage classification by an off-line VQ computation based

on the models presented in this work defines another dimension for the evolution

of this research.

Certainly, the inter-scene stability observed in this work is not an absolute

law, and with finer intensity quantizations the difference in microimage statistics

obtained from samples of disparate imagery may register as significant. Not only

would this not diminish our modeling results1, but it would also open perspectives

for their application in, for example, image segmentation. In fact, model-based

and application-oriented analysis of local statistics of segmented natural images is

already in progress [33],[35]. Discrimination of terrains or textures based on our

models is, of course, also conceivable, since models result in more robust estimation.

Naturally, a particular application will require revision of our testing results in

order to adjust the balance between the model complexity and the model accuracy

in the manner optimal for the application. Perhaps, even the primitive models

1We strongly believe that universality of models based on fundamental properties of the mi-
croworld (e.g., the geometric symmetries) extends to intensity quantizations much finer than those
tested in this work.
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strongly rejected by our tests may prove adequate for some tasks wherein a higher

accuracy is unnecessary or a higher complexity is unaffordable.

Whether it is supervised microimage classification or any other practical con-

text, extending our models to larger patches is an imperative. Direct replication

of (manual or computer-based) computations of symmetric models may already

prove difficult for patches as large as 4 × 4. However, such computations may

also be unnecessary. In order to substantiate this last hypothesis, we are prepared

to advance our preliminary experiments on modeling microimage distributions on

large patches as maximum entropy extensions under constraints that equate their

2 × 2 marginals to certain 2 × 2 model distributions (e.g., pG
pair). The idea behind

such intentions is as follows. The general theory of Gibbs - Markov Random Fields

(GMRF) [14],[17],[25],[26],[29],[38],[41],[56] explains that in order to correctly spec-

ify a discrete Markov random field on a finite lattice with the square eight-site

neighborhood system (second-order neighbors), it is essentially sufficient to define

the Gibbs potential on the cliques, which, in this case, are all 15 non-empty subsets

of the 2×2 patch (maximal clique). “Essentially” refers to the extra conditions that

such definitions must satisfy in order for the resulting Gibbs - Markov field to be

translation invariant. These are precisely the conditions of horizontal and vertical

reflection invariance that we have accepted in testing our microimage distribution

p(·, 2, 2, 4). These conditions also yield the maximum entropy characterization.

Based on our tests, p is also rotationally invariant, which allows us to consider

a smaller class of isotropic GMRF’s. Finally, the most restrictive hypothesis we

have accepted (Chapter 5) is that p is geometrically invariant and depends only on

pair-wise interactions of pixels in the patch. Under this hypothesis, one- and two-

pixel cliques completely characterize GMRF’s. Thus, we have one readily available

class of models for the natural distribution on large microimages.
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We have also argued in Chapter 6 that explicit functional forms for Gibbs poten-

tials are highly desirable for efficient applications of such models. In fact, we have

proved the existence of representations of Gibbs potentials for symmetric models in

terms of appropriate invariant polynomial generators and outlined an efficient al-

gorithm to compute such representations. A set of invariant polynomial generators

has been computed for the model with geometric and intensity inversion symme-

tries. Such invariant generators can similarly be found for all our less restrictive

symmetry models. However, without the pair-wise interaction condition, general

symmetry models are still too complex to be useful in the GMRF framework of

modeling p on larger lattices. Finally, the rapid development of computational al-

gebraic geometry over the last decade has brought about a multiplicity of symbolic

algorithms that may prove useful for designing efficient methods to control the de-

gree of interaction in polynomial Gibbs potentials with desired symmetries.
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A P P E N D I X A

STATISTICAL AND INFORMATION THEORETIC

PRELIMINARIES

For a detailed presentation of Information Theory and its relation to Statistic

see, for example, [11] and [40]. Let p be a discrete probability measure on a finite

set Ω: p ∈ Θ = {q ∈ RK : qk ≥ 0, k = 1, . . . , K,
K∑

k=1

qk = 1}, where K = |Ω|.

Definition A.1 The Shannon Entropy is

H(p) = −Const
∑

i

pi ln(pi), Const > 0

with the convention to extend the function x ln(x) by continuity at 0. When

Const = 1/ log2 e, (i.e. the base 2 log is used), the measurement unit is bits. When

the choice of Const is not important we write log without specifying its base.

Definition A.2 The entropy of a discrete random variable (vector) X is defined

to be the entropy of the (joint) probability distribution of X:

H(X1, . . . , Xn) = −
∑

x1,...,xn

P(X1 = x1, . . . , Xn = xn) log(P(X1 = x1, . . . , Xn = xn))

Definition A.3 The conditional entropy of X given an event B of positive prob-

ability is:

H(X|B) = H(PX|B) = −
∑

x

P(X = x|B) log(P(X = x|B))
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Definition A.4 The conditional entropy of X given another random variable Y is:

H(X|Y ) = −
∑

x,y

P(X = x, Y = y) log(P(X = x|Y = y))

Definition A.5 The Kullback-Leibler Divergence or pseudo-distance from p to q,

discrete probability distributions and on a common set, is defined by:

D(p, q) =
∑

i

pi log
pi

qi

We now state and prove the well-known equivalence between constrained en-

tropy maximization and the maximum likelihood parameter estimation in the cor-

responding log-linear model [54],[70].

Proposition A.6 Let p̂k = nk

N
be a positive empirical distribution, where nk is the

number of observations of the kth state in a fixed size sample of N observations.

Let V be a (J + 1) × K constraint matrix with columns corresponding to the

states in Ω. Let V0, V1, . . . , VJ , the rows of V , be linearly independent; in particular

J + 1 ≤ K. Suppose also that V0 ≡ 1 corresponds to the normalization constraint.

Define F (p̂) as {q ∈ Θ+ : EqVj = Ep̂Vj, j = 1, . . . , J}, where Θ+ is the set of

positive distributions on Ω. (Equivalently, F (p̂) = {q ∈ Q+ : V q = V p̂}, where

Q+ is the positive quadrant of RK .)

Let p̂MEE,V = arg max
q∈F (p̂)

H(q) be the unique maximum entropy extension of p̂

(§4.3). Thus (4.6),

p̂MEE,V k = exp

(

γ0 − 1 +
J∑

j=1

γjVjk

)

, (A.1)

where the parameters γ0, . . . , γJ are uniquely determined by the constraints:

V p̂MEE,V (γ0, . . . , γJ) = V p̂.
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Let Θ0 be the corresponding log-linear model:

Θ0 = {q ∈ RK : qk = e
γ0−1+

J
P

j=1

γjVjk

, γ ∈ Γ},

Γ = {γ ∈ RJ+1 :
K∑

k=1

e
γ0−1+

J
P

j=1

γjVjk

= 1}.

Finally, let p̂MLE,Θ0
be the Θ0-constrained maximum likelihood estimator:

p̂MLE,Θ0
= arg max

q∈Θ0

K∑

k=1

nk log qk = arg max
q∈Θ0

K∑

k=1

p̂k log qk (A.2)

Then,

p̂MEE,V = p̂MLE,Θ0

Proof. In §4.3 we discussed the existence and uniqueness of p̂MEE,V and now show

that if pMLE,Θ0
exists, then the two are indeed equal. The existence of pMLE,Θ0

in

this context is also a well-known fact and we will give its short proof as well.

First, we reparametrize Γ by g : RJ → Γ as follows:

g(γ1, . . . , γJ) = (1 − log
K∑

k=1

e

J
P

j=1

γjVjk

, γ1, . . . , γJ).

Consequently, this reparametrizes Θ0 as

Θ0 = {q(γ1, . . . , γJ) ∈ RK : qk =
e

J
P

j=1

γjVjk

Z(γ1, . . . , γJ)
, (γ1, . . . , γJ) ∈ RJ},

Z(γ1, . . . , γJ) =
K∑

k=1

e

J
P

j=1

γjVjk

,

which allows us to transform the Θ0-constrained maximization of the log-likelihood

function (A.2) into the equivalent unconstrained maximization of the same function

below:

p̂MLE,Θ0
= arg max

(γ1,...,γJ )∈RJ



−
K∑

k=1

nk log
K∑

k=1

e

J
P

j=1

γjVjk

+
K∑

k=1

nk

J∑

j=1

γjVjk




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The necessary conditions for an extremum to occur at (γ∗
1 , . . . , γ

∗
J) require set-

ting to 0 all J partial derivatives ∂
∂γj

of the parametrized log-likelihood function,

which results in:

−N

K∑

k=1

Vjke

J
P

j=1

γ∗
j Vjk

K∑

k=1

e

J
P

j=1

γ∗
j Vjk

+
K∑

k=1

nkVjk = 0, j = 1, . . . , J. (A.3)

Dividing both sides of (A.3) by N shows that if q(γ∗
1 , . . . , γ

∗
J) exists, it sat-

isfies Eq(γ∗
1
,...,γ∗

J
)Vj = Ep̂Vj, j = 1, . . . , J . Since the same equations characterize

p̂MEE,V , the existence and uniqueness of p̂MEE,V automatically gives the existence

and uniqueness of q(γ∗
1 , . . . , γ

∗
J) that is apparently equal to p̂MEE,V .

However, in order to regard q(γ∗
1 , . . . , γ

∗
J) as p̂MLE,Θ0

, we still need to show

that q(γ∗
1 , . . . , γ

∗
J) is indeed corresponds to a global maximum of the log-likelihood

function.

Taking the second derivatives ∂2

∂γi∂γj
of the reparametrized log-likelihood func-

tion produces a well-known result: H = −NCovq(γ1,...,γJ )(Ṽ , Ṽ ), where H is the

Hessian matrix evaluated at (γ1, . . . , γJ) and Covq(γ1,...,γJ )(Ṽ , Ṽ ) is the covariance

matrix of the random vector Ṽ = (V1, . . . , VJ) relative to q(γ1, . . . , γJ). Finally,

we show that H is indeed negative definite for any (γ1, . . . , γJ) ∈ RJ , the sufficient

condition for q(γ∗
1 , . . . , γ

∗
J) to be the global maximum of the log-likelihood function.

Suppose ξ ∈ RJ and ξ 6= 0 and let us suppress the subscript q(γ1, . . . , γJ) in

the covariance matrix and other ensuing expectations. Next, we show that the

quadratic form
∑

1≤i,j≤J

Cov(Vi, Vj)ξiξj is strictly positive (for all (γ1, . . . , γJ) ∈ RJ):

∑

1≤i,j≤J

Cov(Vi, Vj)ξiξj =
∑

1≤i,j≤J

Cov(ξiVi, ξjVj) =

∑

1≤i,j≤J

E (ξiVi − EξiVi)(ξjVj − EξjVj) = E
∑

1≤i,j≤J

(ξiVi − EξiVi)(ξjVi − EξjVj) =
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E

[
J∑

j=1

(ξjVj − EξjVj)

]2

≥ 0

Since Θ0 ⊂ Θ+, the only way for the equality in the last expression to occur

is if
J∑

j=1

ξjVj =
J∑

j=1

EξjVj. But this would imply linear dependence of V0, . . . , VJ ,

contradicting our assumption of the linear independence of these vectors.

¦
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A P P E N D I X B

POWER-DIVERGENCE STATISTICS AND TESTS

This chapter discusses the Power-Divergence Statistics and based on them sta-

tistical tests [54]. The unifying entity for this family of statistics is the one-

parameter family of the Power-Divergence quasi-distance measures I(p, q; λ)1 be-

tween two probability vectors p and q:

I(p, q; λ) =
1

λ(λ + 1)

∑

k

pk

[(
pk

qk

)λ

− 1

]

λ ∈ R, λ 6= −1, λ 6= 0 (B.1)

Extending the above definition to λ = −1 and λ = 0 by continuity, we obtain

I(p, q;−1) = D(q, p) and I(p, q; 0) = D(p, q), the usual Kullback-Leibler diver-

gences (up to the base of the logarithm) [11],[40], Definition A.5. Positivity of

I(p, q; λ) is perhaps the most basic among the properties making I(p, q; λ) into a

distance-like measure [54]. This property is a simple consequence of Jensen’s in-

equality applied in combination with the convexity of xλ+1 − 1 (in the general case

of λ 6= −1 and λ 6= 0) and − log x (when λ = −1, 0).

The general hypothesis testing framework for the power-divergence statistics

based on the measures above is essentially determined by that of modeling by

external constraints 4.2.1,5.1. Namely, Ω is a finite state space equipped with Θ+,

the set of positive probability distributions on Ω. If Ω represents a real system

1In fact, I(p, q;λ) is a straightforward modification of the Hellinger integral (see, for exam-
ple, [63]), from which it inherits most of its properties.
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to be modeled probabilistically, i.e., by identifying it with a (partially) unknown

distribution p ∈ Θ+, then statements about such a system are formulated in terms

of H0 and Ha, the null and alternative hypotheses respectively:

• H0 : p ∈ Θ0 ⊂ Θ+, and d0 = dim Θ0 < d = dim Θ+

• Ha : p ∈ Θa ⊂ Θ+, and da = dim Θa

Generally, Θ0 is represented by a parametrization f : Γ → Θ0. (Since Ω is

finite, an exponential parametrization is always available (5.1).) The only expo-

nential parametrizations we use in the present work are those arising from entropy

maximization under internal constraints (§§4.2.2,4.3, Proposition A.6) and result-

ing in the log-linear models (4.1). Thus, f is then composed of exponential and

linear maps. With the symmetry-based models, we use linear parametrizations in

which the parameters are the probability values on the symmetry classes (§§5.1,6.1).

Under these latter parametrizations f = π2, using the notation of §6.2 to denote

by π2 the map that divides orbit masses uniformly among orbit elements.

We also restrict our hypothesis testing to the following two special cases, namely,

Θa = Θ+, which is testing with unspecified alternatives, and Θ0 ⊂ Θa ⊂ Θ+,

d0 < da < d, nested testing (§5.1). Moreover, it is always the case in our testing that

d0 > 0, hence, prior to evaluating test statistics, one needs to estimate parameters.

Let X1, . . . , XN be a random sample from p ∈ Θ+. An important ingredient

of the power-divergence tests is the family of the (generalized) power-divergence

estimators parametrized by λ ∈ R. Provided a solution to the minimization below

exists and is unique2, the estimators are defined as follows:

p̂(λ)
def
= arg min

q∈Θ0

I(p̂, q; λ), (B.2)

2In most practical situations the uniqueness follows from the convexity of I(p̂, ·;λ).
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where p̂ = (. . . , pk, . . .) is the empirical distribution of the sample, i.e, p̂k = nk

N
=

1
N

N∑

n=1

I{Xn=k}. Similarly, these can be rewritten by transferring the minimization

to the parameter space as follows: p̂(λ) = arg min
γ∈Γ

I(p̂, f(γ); λ). Note also that p̂ is

also the (unconstrained) maximum likelihood estimator (MLE) of p:

p̂ = arg max
q∈Θ+

∏

k

qnk

k = arg max
q∈Θ+

∑

k

nk log qk.

In the case of unspecified alternatives, power-divergence statistics are of the

form:

T (p̂, p̂′; λ) = 2NI(p̂, p̂′; λ), λ ∈ R,

for some estimator p̂′ of p. The condition that

T (λ) ⇒
N→∞

χ2(d − d0) (B.3)

makes these statistics valuable in practice by effectively defining the class of (con-

strained) estimators p̂′ to be used with corresponding tests. A large and well-

known class of estimators called best asymptotically normal (BAN) satisfy this con-

dition [54]. Moreover, under very general (Birch’s) regularity conditions on Θ0

(more precisely, on its parametrization (Γ, f)), the minimum power-divergence es-

timators are BAN [54]. Among such regularity conditions is the positivity of f(γ∗)

for any γ∗ ∈ Γ actually observable under H0. Restricting our modeling to Θ+

(§4.1), which is enforced by our prevention of zero counts, (§§3.3,3.4) guarantees

that this condition is always satisfied in the model testing experiments. Other im-

portant examples of these conditions are the differentiability and non-singularity

of f . Our two choices of f (i.e., the exponential and linear maps above) satisfy all

these conditions rather trivially.

That the estimators p̂(λ)’s are BAN implies, in particular, that p̂(λ1) with any λ1

may be substituted into T (λ2) with any λ2 and the asymptotic condition (B.3) still
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holds. This last property is referred to as asymptotic equivalence of the minimum

power-divergence estimators.

Nested testing requires a simple modification in which p̂ is replaced by p̂a, some

appropriately constrained BAN estimator:

T (p̂a, p̂
′; λ) = 2NI(p̂a, p̂

′; λ) ⇒
N→∞

χ2(da − d0).

Correspondingly, in order to use minimum power-divergence estimators (constrained

by Θa) as p̂a, Birch’s regularity conditions must also be imposed on Θa. Just as

before, the regularity conditions are always satisfied in these cases.

Several values of λ are special in that the statistics, estimators, or divergence

measures corresponding to them have long been used and have distinct names.

Among such classical statistics are, first of all, the generalized log-likelihood ratio

(λ = 0), Pearson’s goodness of fit, (λ = 1), their modified versions (λ = −1 and

λ = −2 respectively) and also the Freeman-Tukey statistic (λ = −0.5) [54].

Besides the Kullback-Leibler divergence D that corresponds to λ = −1 and

λ = 0, another distinguished example of power-divergence measures is I(p, q;−0.5),

the Hellinger Distance.

Among the most popular minimum power-divergence estimators is the (con-

strained) MLE. In [54], the authors appeal to common sense and suggest using

with T (λ) its true minimizer, but “if only the MLE . . . is readily available”, but

not to hesitate using the MLE with other power-divergence statistics. Depending

on the constraints, computation of other estimators may be more involved than the

MLE, which partly explains why the MLE is commonly used in practice even with

tests arising from λ 6= 0.

Despite the asymptotic equivalence, power-divergence tests may differ signifi-

cantly due to finite sample sizes. In order to select a particular member of the
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family in practice, it is important, among other issues, to understand beforehand

what kinds of departure from the null hypothesis are most significant from the

modeling viewpoint. Thus, for example, according to [54], tests with large nega-

tive values of λ help to detect “departures involving ratios of alternative to null

expected frequencies that are close to zero in one or two cells”.

If the primary goal is to detect overall lack of fit, “choosing |λ| small is advis-

able” [54]. Also, “comparing the computed values of the power-divergence statis-

tic for different values of λ. . . can help to assess the extent of departure from the

model”. In particular, having a range of test statistics consistently lying on one

side relative to the asymptotic significance level increases reliability of the decision

based on such tests.

The choice of λ = −1 is also advocated for nested (hierarchical) testing of

models with external constraints as it leads to the additive partitioning of the test

statistics: I(p̂, p̂m(−1);−1) = I(p̂, p̂l(−1);−1) + I(p̂l(−1), p̂m(−1);−1), where the

subscripts l and m stand, respectively, for “less” and “more” restrictive models.

Under H0,m, all three admit the χ2 asymptotics and the same additivity holds for

the respective degrees of freedom: d − dm = (d − dl) + (dl − dm).

Models arising from internal constraints and parameter estimation by entropy

maximization (ICP/MEE) are identified with their log-linear representations in

the ECP/MLE framework (4.2.2,5.1). This allows one to apply nested testing

to such models. If dm constraining functions V m include a subset of dl < dm

constraining functions V l, then the corresponding feasible regions satisfy Fm ⊂ Fl.

(The normalization constraint is not being counted.) The transformation of the

two corresponding ICP/MEE to the ECP framework evidently reverses this latter

relation: Θloglin
0,l ⊂ Θloglin

0,m . Now, if p̂(λ)m and p̂(λ)l correspond to Θloglin
0,m and

Θloglin
0,l , respectively, then choosing λ = 0 leads to I(p̂, p̂l(0); 0) = I(p̂, p̂m(0); 0) +
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I(p̂m(0), p̂l(0); 0), another information-partitioning property. Under H0,l (i.e., “p ∈

Θloglin
0,l ”), all three statistics have the χ2 asymptotics with d−dl, d−dm, and dm−dl,

the respective degrees of freedom.

Also, in modeling by internal constraints, the (generalized) minimization of

power-divergence leads to a whole class of additive models each for the particular

value of λ: p̂ICP (λ) = arg min
q∈Θ0(p̂)

I(q, u; λ) ([54], §4.2.2), where u is the uniform

distribution. Two central examples are, of course, λ = 0 and λ = 1, log-linear

and linear models respectively. Since for each λ there corresponds an uncertainty

measure (where Shannon’s entropy is the case λ = 0), an analog of the MEE

is conceivable for λ 6= 0. Although uncertainty measures other than Shannon’s

entropy are sometimes advocated for specific tasks3, Shannon’s entropy remains

the universal choice due to its elegant mathematical characterization that connects

Information and Complexity Theories with Statistical Physics.

Some issues of β(q, λ) = P (H0 is rejected|q ∈ Θa), the power of the power-

divergence tests, are discussed in [54]. For example, it is noted that if Θa is uni-

formly bounded away from Θ0, then for any q ∈ Θa and for any λ real, β(q, λ) → 1

as the size of the sample, on which the decision to reject is based, increases. Pittman

Asymptotic Relative Efficiency and Bahadur Efficiency are also discussed among

other issues related to the test power. These issues are clearly important from the

theoretical point of view, and their implications for our testing situations may need

to be studied further, especially if the goal is purely phenomenological aspects of

our hypotheses (e.g., microimage symmetries). Thus, for example, for a fixed sam-

ple size Monte-Carlo simulations may be performed to estimate the test power for a

set of alternative distributions q typically observed in our experiments. In addition

3For example, utility of the measure corresponding to λ = −0.5 was studied in [45]
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to non-parametric estimation, non-central chi2 and normal approximations are also

reasonable [54]. If, on the other hand, the goal of modeling is more application-

oriented, then it is likely that any test results, however reliable from the testing

point of view, will still need revision in the context of the appropriate application.

B.1 Minimum Power-Divergence Estimators for Symmetry

Constraints

In the case of symmetry constraints defining Θ0 (§§4.2.1,5.1,6.1), p̂(λ) is imme-

diately available in a closed form:

p̂(λ)k =

(
P

j∈O
p̂λ+1

j

|O|

) 1

λ+1

∑

O′∈S

|O′|

(
P

j∈O′
p̂λ+1

j

|O′|

) 1

λ+1

, ∀k ∈ O ∈ S (B.4)

The case of λ = −1 must again be understood in the limiting sense, and the cor-

responding estimator is simply the geometric orbit-average of the empirical distri-

bution p̂:

p̂(−1)k =

(

∏

j∈O

p̂j

) 1

|O|

∑

O′∈S

|O′|

(

∏

j∈O′

p̂j

) 1

|O′|

, ∀k ∈ O ∈ S (B.5)

For λ < −1, p̂ must be strictly positive (i.e. no zero counts), and λ = −1 requires

that at least one orbit have non-zero counts for all of its members. Note that

λ = 0 indeed reduces (B.4) to the simple (arithmetic) averaging over the orbits:

p̂(0)k = p̂(MLE,Θ0)k = 1
|O|

∑

j∈O

p̂j, ∀k ∈ O.
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B.2 Testing Two Sample Consistency

Just as generalized likelihood ratio and Pearson’s χ2 statistics can be used to

test if two random samples come from the same distribution [3],[37],[54], any other

member of the power-divergence family is suitable for the same purpose.

Let X
(1)
1 , . . . , X

(1)
N1

and X
(2)
1 , . . . , X

(2)
N2

be two random samples from p1 and p2,

two positive distributions on the same state space Ω, |Ω| = K < ∞. H0 : p1 = p2,

the two sample consistency (or, homogeneity of proportions) hypothesis can then

be tested against the general alternative Ha : p1 6= p2, p1, p2 ∈ Θ+.

In order to parametrize the subspace corresponding to H0, for the moment we

introduce a product state space Ω̄
def
= Ω × Ω equipped with the set of positive

probability distributions Θ̄+. The null and its alternative are then reformulated

relative to the extended framework as follows: H̄0 : p̄ = p1 ⊗p2 ∈ Θ̄0 and H̄a : p̄ ∈

Θ̄+, where

Θ̄0
def
= {q ∈ Θ̄+,

∑

ω∈Ω

q(ω′, ω) =
∑

ω∈Ω

q(ω, ω′), ∀ω′ ∈ Ω} (B.6)

Then the corresponding test statistic is T (λ) = N1I(p̂(1), p̂′; λ)+N2I(p̂(2), p̂′; λ).

Here, p̂(1) and p̂(2) are the empirical distributions obtained from the two samples,

and the minimum power-divergence estimators can again be used as p̂′. Due to

linearity of the constraints defining Θ̄0, Birch’s regularity conditions are again sat-

isfied and hence the minimum-power-divergence estimators (B.7),(B.8) are again

best asymptotically normal.

q̂(λ)i =

(

N1(p
(1)
i )λ+1 + N2(p

(2)
i )λ+1

) 1

λ+1

K∑

k=1

(

N1(p
(1)
k )λ+1 + N2(p

(2)
k )λ+1

) 1

λ+1

, i = 1, . . . , K, λ 6= −1 (B.7)

q̂(−1)i =
(p

(1)
i )

N1
N1+N2 (p

(2)
i )

N2
N1+N2

K∑

k=1

(p
(1)
k )

N1
N1+N2 (p

(2)
k )

N2
N1+N2

, i = 1, . . . , K, (B.8)
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Consequently, with any such estimator T (λ) ⇒
min{N1,N2}→∞

χ2(K − 1). It can be

shown that the K homogeneous equations in the right side of (B.6) contain a subset

of K − 1 independent equations, which are also independent of the normalization

constraint
∑

ω,ω′∈Ω

q(ω, ω′) = 1. Therefore, dim Θ̄0 = K2 − K and there are indeed

K − 1 degrees of freedom.
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A P P E N D I X C

MICROIMAGE SAMPLING AND SUPPLEMENTARY

RESULTS

C.1 Microimage Sampling and Alternate Distribution

Since we allow the natural image population Σim to contain images of variable

sizes (§3.1), our definition of the microimage distribution p (3.2) has a sensible

alternative (C.1):

palt(ω)
def
= 1

|Σim|

∑

I∈Σim

n(ω,I)
S(I)

= Eim
n(ω, I)

S(I)
(C.1)

(It is straightforward to verify that palt(ω) is indeed a probability mass function on

Ω.) One may interpret n(ω,I)
S(I)

as defining the conditional probability of ω given image

I, palt(ω|I), so that palt(ω) =
∑

I∈Ωim

palt(ω|I)Pim(I). On the other hand, p does

not lead to a meaningful conditional measure. Practically, the difference between

the two definitions is simple: Sampling according to p amounts to first mixing all

patches from all images from Σim, and then selecting one patch at random from

Σ, the resulting microimage population. Sampling under palt, on the other hand,

consists of first sampling a random image from Σim, and then sampling a random

patch from that image. Obviously, the difference would be nonexistent if all the

images in Σim were of the same size.
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We will shortly return to the discussion of choosing between p and palt, and for

now only say that our experience from this and other works indicates little difference

between the two in terms of their key properties (such as symmetry relations).

We now seek an answer to the following basic question: How can we generate

a sufficiently large and random sample from p? One reason why we want such a

sample is to base our statistical inference on the theory of Power-Divergence Tests

(see [54], Appendix B, Chapters 3,5).

First, we assume that we obtained our N = 400 images through random sam-

pling (without replacement) from the population Σim
1. Presently, considerably

larger image samples are available and the decision to limit Iim by 400 images was

somewhat arbitrary. We anticipate that with N = 1000, most of the technical dif-

ficulties faced in this work (e.g., aggregation of rare states (§3.3)) become obsolete.

However, prior to the experimentation, little knowledge was available about how

large a random (micro)image sample would be needed to avoid these difficulties

altogether. On the other hand, while coping with these technicalities some inter-

esting properties of natural images were observed (see §C.2 below).

Note that we know neither |Σim|, the size of the image population, nor |Σ|, the

size of the microimage population. This makes our situation somewhat more com-

plicated than that of cluster sampling [15],[53]. Recall, that, if at least the average

number of microimages per image, EimS = |Σ|
|Σim|

, were known, the single stage

cluster-sampling estimator
PN

i=1 n(ω,Ii)

NEimS
, which is unbiased for p(ω), would be avail-

able. Of course, replacing EimS with its sample estimate N−1
∑N

i=1 S(Ii) produces

1Recall that when the sample size is very small relative to the population size, which will almost
always be the case in our experiments, the effect of non-replacement in the sampling is negligible.
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the consistent (asymptotically unbiased) estimator for p(ω) defined in (C.2).

p̂N(ω)
def
=

N∑

i=1

n(ω, Ii)

N∑

i=1

S(Ii)

, (C.2)

The consistency of p̂N is a simple consequence of the Law of Large Numbers. Also

note that, due to variable image sizes, the relative frequencies (C.3) obtained by

extracting a single random microimage ω(I) from each of the N images do not in

general lead to a consistent estimator for p. They do, though, estimate palt(ω) with

no bias2:

p̂alt(ω)
def
= 1

N

N∑

i=1

I{ω(Ii)=ω}
a.s.

−−−→
N→∞

palt(ω). (C.3)

Unfortunately, although p̂N is a sample mean for I (the set of all the patches

extracted from every image of Iim), we cannot treat I as a random sample from

p. That is to say, the
N∑

i=1

S(Ii) patch indicators are not i.i.d. random variables.

The reason is, of course, high dependence among microimages within an image: In

order to realize the extent of this dependence note, for example, that any exhaustive

collection of non-overlapping microimages already determines its image completely.

Again, this occurs because we are not sampling directly from the population of

interest, namely Σ (natural microimages), but instead from the population Σim of

natural images. (We consider this “administrative” inconvenience as rather minor

when compared to similar problems in social sampling.) Thus, since N = 400 is

certainly “small” relative to both current web resources and average image size

EimS, we expect p̂N to be significantly biased towards our image sample. In the

next section (§C.2) we present evidence of long-range dependence in natural images

that further explains our concern about bias in p̂N .

2This is again due to the law of large numbers and the fact that under this sampling, the
probability of {ω(Ii) = ω} = palt(ω) (C.1).
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In the case of palt, the obvious modification of p̂N would be p̂alt
N (ω)= 1

N

N∑

i=1

n(ω,Ii)
S(Ii)

.

This estimator is already unbiased. We will carry out some experiments (see §C.4)

to test microimage symmetries under palt, and, in particular, using p̂alt
N . However,

our principal measure on Ω is p. At this point, we mention only half of the reason

why we prefer p to palt; and after we propose a “satisfactory” estimator for p, we

will complete this argument. Recall that, regardless of the microimage measure,

we need to estimate a 255-dimensional vector in the case of 2 × 2 patches (with

L = 4, |Ω| = 256). We have assumed that Iim is a random sample from Σim,

thus subsampling one patch per image in order to obtain p̂alt produces a random

microimage sample from palt. This microimage sample is as large as the image

sample, namely N = 400, and consequently accuracy of estimating 255 parameters

in this case is doubtful. Using p̂alt
N instead, which is also unbiased for palt, does not

resolve the issue either: Relative to the number of parameters, N = 400 is just too

small to rely on large sample results needed for hypothesis testing. Also, p̂alt
N is a

random vector on Ωim, and in particular it is not constructed as mean of a random

microimage sample. For this reason, using p̂alt
N in order to test hypotheses about

palt, one would need a framework (see §C.4) different from the power-divergence

tests.

We now explain how we generate a sufficiently large but (approximately) ran-

dom sample from p. It will then also become clear why the same approach is not

desirable in the case of palt.

Since problems with p̂N stem from a potentially strong bias relative to p, we

attempt to reduce the bias by randomizing p̂400. The approach is intuitive and

simple: Extract at random a relatively small fraction d (the “sampling rate”) of

all the microimages from each of the N images of our sample. (Except for the
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unavailability of EimS, this is two stage cluster sampling [10],[53].) With d small

enough the independence assumption should be valid due to large spatial distances

between individual microimages, and we can still generate “large” samples. Let

M be the total number of microimages of the given size in our image sample, i.e.,

M = |I| =
N∑

i=1

S(Ii). Then the effective microimage sample size Nωis approximately

dM , and we denote the microimage sample mean estimator of p by p̂d (C.4):

p̂d(ω)
def
=

1

Nω

Nω∑

i=1

I{ωi=ω} (C.4)

Relative to the distribution p̂N (assumed fixed for the moment, i.e., replacing Σ

by I), this way of subsampling microimages is essentially simple stratified random

sampling [10],[15],[55],[62]. (The strata are, of course, the individual images in Iim.)

Note that instead of stratified, one could also use simple (sub)sampling, i.e., just

sampling dK microimages with (or without) replacement from I. Iim being fixed,

both schemes are unbiased for p̂N
3. The difference between these schemes (see [10])

is unimportant in our situation of estimating p as compared, for example, with the

bias in p̂N relative to p (and the computational costs of the two schemes are almost

the same).

Notice also that we can think of the proposed subsampling as effectively break-

ing down original images into subimages (still large enough to have a global se-

mantic interpretation) of almost equal size and sampling one microimage from ev-

ery subimage. It might even be reasonable to assume that the new collection of

(sub)images is still a random sample from Iim.

Now imagine carrying the idea of sparse microimage subsampling to palt. Instead

of sampling with the fixed rate d (i.e., with probability proportional to the image

size), one would need to extract an equal number of microimages from each image

3Strictly speaking, stratification may have a bias due to rounding of dS(I), but such bias is
obviously negligible.
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to obtain p̂alt
d , defined by analogy with p̂d (C.4) as microimage sample mean. The

previous argument of dividing images into several subimages suggests a potential

difficulty in controlling microimage sample independence: For independence to be

valid in all images of Iim, the number of patches extracted from each image would

need to be determined by the size of the smallest image(s) of Iim. This would

result in under-sampling relative to the case of p̂d, where the number of extracted

microimages per image is proportional to the image size.

On the other hand, some of our earlier experiments [22] showed that coarse

properties (e.g. symmetry relations) of microimage statistics are not sensitive to

whether a constant fraction or a constant number of microimages are subsampled

from variable-sized images as long as the subsampling is very sparse. Thus, we

find the difference between p and palt to be too abstract and artificial for practical

purposes, and expect it to prove insignificant when tested on sufficiently large

samples.

Finally, then, the estimator of choice is p̂d, obtained by randomly subsampling

dS(I) (more precisely, bdS(I)c) patches from each image I ∈ Iim. Summarizing

the above considerations, we have argued that p̂d, a randomized version of p̂N , is a

more satisfactory estimator of p than p̂N due to ameliorating the bias in sampling

microimages from Σ. We also conjecture that the bias in Iim will largely disappear

with N ≈ 10, 000, namely the scale of S(I) (as estimated from Iim). Should this

be true, and in the near future we will have the resources to check it, the whole

issue of adjusting p̂N will become obsolete.
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C.2 Sampling Rate

We now turn to the question of selecting “the right” value for d, the microimage

sampling rate, the first step of which is a demonstration of the long-range depen-

dence in natural images. Let ρ(ω1, ω2) count the number of identical pixels in ω1

and ω2. Considering (sub)populations of all patch pairs from I that are r pixels

apart in their respective images makes the random variable ρ(ω1, ω2) a function of

r. We then estimate probabilities of the events ρ(ω1, ω2; r) = n, where n = 0, 1, . . . ,

the number of pixels in the patch. The most illustrative observations correspond to

the probabilities that two patches in the pair are identical; the relevant estimates as

well as their linear fits are presented in Figure 8. The “independence” benchmarks

are obtained when patches in the pair are sampled from different images.

This phenomenon suggests that the bias in p̂N does not disappear abruptly

when the sampling rate falls below some critical level, but instead decreases with d

gradually. The dependence introduced by sampling more than one patch per image

is likely to behave similarly. According to the graphs of Figure 8, we would roughly

have to sample one 2 × 2 patch from a 200 × 200 image in order to secure full

independence and hence produce a truly random microimage sample. Of course,

such sample would be too small (comparable to N = 400). Naturally then, we want

to assess the within sample dependence effects on our testing schemes. Namely,

we would like to know how large d could be so that the non-randomness effect is

negligible for the purpose of our testing.

We begin with the following crude reasoning: For simplicity, assume that patches

are subsampled at points of a regular grid. There are 9, 801 2 × 2 patches in a

100 × 100 image. Extracting, say, four such microimages (i.e. d ≈ 0.0004) would

correspond to a 2×2 grid, and two extracted patches would be more than 30 pixels
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Figure 8: Long-range dependence in natural images. Top: Horizon-
tal pairs. Bottom: The 2 × 2 case
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apart on average. Recalling the argument (§C.1) about virtual subdivision of large

images, we can regard the four patches as arising from four 50× 50 subimages (one

patch per image) which, we would like to assume, represent a random sample from

Pim.

We now offer an experimental argument in support of the assertion that d of the

order of magnitude of 10−4 still allows us to generate sufficiently random microimage

samples. Naturally, the argument is in the context of hypothesis testing with the

power-divergence tests.

Divide the image sample I at random into I1
im and I2

im and generate two mi-

croimage samples one from each of the new image subsamples. Similar to the set-up

of the stability hypothesis testing (§3.5), we formulate a two sample consistency hy-

pothesis “p̂
(1)
d and p̂

(2)
d estimate the same distribution”, where p̂

(1)
d and p̂

(2)
d are the

empirical distributions of the two microimage samples. If the microimage sample

sizes are sufficiently large and the non-randomness effects are weak, the distribu-

tion of the power divergence test statistic T (λ) should resemble the χ2 distribution

with the appropriate degrees of freedom, which is theoretically predicted under the

null hypothesis (§B.2). In short, supposing the null holds, we vary d and rerun

the tests several times (for each value of d). Next, for each of these values of d we

plot the histogram of the test statistic. We then inspect the histograms to obtain

a decent match with the asymptote. Note that the number of test runs cannot be

arbitrarily large (our experiments use 100) since we implicitly assume independent

test statistics. Also, in order to assess validity of using the asymptotic results, we

appeal to the property of asymptotic equivalence of the power divergence tests (see

Appendix B): Test statistics T (λ) evaluated on a common microimage sample and

yielding nearly the same values independently of the test parameter λ (e.g., Table 8)

indicate that their distributions are indeed close the theoretical asymptote [54].
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The case of 1× 2 patches is considered first, just like in §3.6. (L = 8 and Ω has

64 states.) Using d ≈ 0.0004 generates about 14,000 patches for each of the two

microimage samples. A typical test run with different values of the test parameter

λ is recorded in Table 15. Relative to the asymptotic cut-off point χ2
0.95,63 = 82.53,

the test statistics T (λ) are indeed close to each other, thus indicating validity of

the asymptotic. The lowest bin count recorded in these experiments is six, whereas

five is commonly thought to be sufficient [54].

λ -2 -1 -0.5 0 0.5 0.67 1 2

T (λ) 64.47 65.11 65.06 64.76 64.22 63.99 63.5 61.68
P -val(λ) 0.4251 0.403 0.4048 0.4152 0.4335 0.4414 0.4587 0.5236

Table 15: Power-divergence tests for two sample consistency. Hori-
zontal pairs.

We also collected one hundred observations of the test statistic for each of the

eight values of λ used in Table 15 and compared the empirical distributions with

that of the expected χ2(63). Whereas in all the eight cases, in more than 60 out 100

runs the null was not rejected, the test statistic histograms only vaguely resembled

the (theoretical) χ2(63) curve. We attribute this to dependence among the hundred

observations: 100 runs of the test necessitates a 100-fold increase in the sampling

rate d.

With d ≈ 0.0001, on the other hand, we run into the empty bin problem.

Despite this difficulty, the top graph of Figure 9 indicates a reasonable match

with d ≈ 0.0001 between the χ2(63) curve and the test histogram with λ = 0.67

(strongly advocated in [54] as “golden mean”). Nonetheless, we decided to lump the

rare states (counts consistently below five) together: the aggregate set D is exactly

the same as in §3.6. The empirical histograms now better match the appropriate
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theoretical one (χ2(44)) as can be seen from Figure 10 (top and middle). Similar

results were obtained for the 2 × 1 case (Figure 10, bottom).

In these and ensuing graphs, the index r in the legend is a crude indicator of

the error in the sense of (Pearson’s χ2) goodness of fit, wherein χ2- distributions

are fit to the 100 observations of the test statistic. In addition to the asymptotic

curve, we display two more χ2 curves corresponding to estimation of the degrees

of freedom using the sample mean and using one-half the sample variance (both

rounded to nearest integers). The two estimated curves usually give tight bounds

on the location of the actual best fit.

The average minimum count is reported as “lbc” in the upper left corner under

the sample mean and variance. The top caption reports the value of λ along with

the sampling rate d and microimage sample size. Observations of the test statistics

are grouped optimally in ten bins whose size is also reported in the top caption.

In the 2 × 2 case (L = 4), we aggregate the same 136 rare states as in §3.6.1.

Again, based on the asymptotic cut-off point (χ2
0.95,120 = 146.57) the null stands

firm, although it is obviously harder to validate this conclusion by test repetition.

The test results are presented in Figure 11.

Under the G-symmetric aggregation (§§3.4,3.6.1) d = 0.0001 allows sufficient

flexibility for repeating the tests one hundred times and obtaining a good match

with the appropriate asymptotic χ2(25) distribution (Figure 12).

In summary, we elicit 10−4 as an upper bound on d under which our microimage

samples are sufficiently random.
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Figure 9: Low count effect in validation of two sample consistency
tests. Top: λ = 0.67. Bottom: λ = 2
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Figure 10: More satisfactory validation of two sample consistency
tests after aggregation. Top and middle: Horizontal pairs
with λ = 0 and λ = 0.67 respectively. Bottom: Vertical
pairs, λ = 0.67
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Figure 11: Validation of two sample consistency tests for 2×2 patches
with L = 4. Top: λ = 0.5. Middle: λ = 0.67, and bottom:
λ = 2

149



5 10 15 20 25 30 37.6525 50 55
0

0.1

0.2

100 Runs of  Two Sample Consistency  MPDT (λ =0) based on 2×2 blocks.
Sampling Density = 0.0001.  Joint Sample Size = 5901. Bin Size =3.192

T(λ)

bi
n−

pr
ob

ab
ili

ty

 µ  = 27.74
 σ2 = 48.75
 lbc= 1.33

                                      

χ2(25)  r=12806

χ2(28)  r=10975

χ2(24)  r=14551
α=0.05        
                                      

5 10 15 20 25 30 37.6525 50
0

0.1

0.2

0.3

100 Runs of  Two Sample Consistency  MPDT (λ =0.67) based on 2×2 blocks.
Sampling Density = 0.0001.  Joint Sample Size = 5901. Bin Size =2.91

T(λ)

bi
n−

pr
ob

ab
ili

ty

 µ  = 25.91
 σ2 = 41.02
 lbc= 1.33

                                      

χ2(25)  r=12398

χ2(26)  r=12102

χ2(21)  r=19803
α=0.05        
                                      

Figure 12: Validation of two sample consistency tests on the G-
symmetric classes. Top: λ = 0. Bottom: λ = 0.67
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C.3 Validity of Testing of Symmetry Hypotheses

We choose the case of the bivariate reflection symmetries (§5.2) for our final dis-

cussion of the sampling rate and the test validity. Two indications of the validity

of the results in §5.2 are as follows. First, the lowest count in these experiments is

two, which is generally acceptable with the most common power-divergence tests

covered by our range of λ. In particular, the divergence test for λ = 2
3

is advocated

for its relative insensitivity to low bin counts ([54]). Second, we observe very con-

sistent statistics from seven distinct power-divergence tests (Table 8). Specifically,

the values of T (λ) for λ = −2,−1, 0, 0.5, 0.67, 1, 2 always lie much closer to each

other than to the asymptotic threshold χ2
0.95,28. The following discussion further

supports our previous conclusion that d ≈ 10−4 is satisfactory.

Note that testing of the left-right reflection symmetry on horizontally adjacent

pairs on 1 × 2 patches helps us to calibrate testing of hypotheses on other patch

spaces. The reason is that the left-right symmetry is a priori the most compelling.

Thus supposing this hypothesis holds, we then repeat tests in order to compare

a simulated test statistic histogram with the theoretically predicted χ2(28) curve.

Recall (beginning of §C.2) that small values of d are desired to enforce sample

independence. However, they also lead to small sample sizes and, consequently, to

questionable large sample approximations. Correspondingly, large values of d could

eventually introduce strong dependence in the sample, also undermining the use of

the asymptotics.

An extreme case (d = 0.25) with high intra-sample dependence is presented in

the top graph of Figure 13. This value of d leads to microimage overlaps being

very likely. A serious departure from the χ2(28) curve is apparent. In fact, when

running the tests multiple times, the statistics T (0)i (i = 1, . . . , 100) are also likely
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Figure 13: Significance of the independence assumption in GLRT.
The asymptotic threshold χ2

0.95,28 is marked at ≈ 41.337
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to be dependent. Consequently, the sample histogram may poorly estimate the true

distribution of T (0). Thus we were seeking a range of values for d that would allow

sufficiently large but random microimage samples as well as several (we use 100)

independent test runs. Gradually decreasing d (e.g. d = 0.001, as in the middle

graph of Figure 13), we arrive at d = 0.00025 (Figure 13, bottom). Decreasing

d further led to zero counts and considerable departures from the χ2 shape. For

instance, two estimates of the number of degrees of freedom (i.e. 28), namely half

the sample variance and the sample mean, then diverged. In these and other tests

(i.e. λ 6= 0) optimality of d ∈ (0.0001, 0.0005) was also confirmed by minimization

of the fit-error index r (which corresponds to the Pearson’s goodness of fit between

the tests histograms and the asymptote); see the legends in the right of Figure 13.

The graphs in Figure 14 uphold the hypothesis of up-down reflection symmetry

on 2 × 1 blocks. However, the match between the empirical and asymptotic dis-

tributions is slightly less convincing than that in the case of left-right symmetry.

This can partly be explained by the weaker presence of this symmetry in the mi-

croworld as compared with left-right symmetry. In fact, we argued in §4.4 that the

latter may also be present at macroscopic scales, clearly an unreasonable assump-

tion in the case of up-down symmetry due to the heavy presence of the sky and

other vertical anomalies in natural images.

C.4 Another Interpretation of Symmetry

Recall (§C.1) that we chose the microimage measure p over the alternative

definition palt. In this section we further support this choice by examining the

validity of hypothesis testing based on palt.

In fact, instead of seeking a large random sample in order to work with the
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Figure 14: Validation of tests for the up-down symmetry on 2 × 1
patches. The asymptotic threshold χ2

0.95,28 is marked at
≈ 41.337
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empirical distributions corresponding to either p or palt, we will define a vector-

valued random variable Z in order to measure deviations from the exact symmetry

for each of the 28 symmetry classes {(a, b), (b, a)}, 0 ≤ a < b ≤ 7. Specifically, we

first define a deterministic, multidimensional function z on the image space Ωim

as follows: Enumerate all the classes from 1 − 28 in some order and suppose class

{(a, b), (b, a)} has index m. Then

zm(I)
def
= n((am, bm), I) − n((bm, am), I). (C.5)

Thus the components of z are the 28 differences between the number of pairs of

type (a, b) and the number of pairs of type (b, a). This definition leads to a 28-

dimensional random variable Z(I) = (Z1(I), . . . , Z28(I)) on the image probability

space (Ωim, Pim).

Consider the null hypothesis H0 : EimZ = ~0. Note that this formulation of

symmetry completely eliminates the need for microimage subsampling by allowing

every (non-singular) microimage to contribute to the appropriate component of Z.

Thus, the relevant space to sample is Ωim, the image space, instead of Ω, the space

of microimages . In particular, the sample size is now invariably N = 400. We

assume that we are given i.i.d. random vectors Z1, . . . , Z400 and that N = 400 is

sufficiently large for the sample average (vector sum) to be normally distributed.

This latter assumption could be questioned, especially in the 2 × 2 case where Z

already has 120 dimensions in the case of reflection symmetries. More complex

symmetries lead to even higher dimensions of Z, namely |Ω| − |S|, where |S| is the

appropriate set of symmetry classes O.

Recognizing the possible insufficiency of our sample size, we nonetheless test the

two-pixel reflection symmetries as measured by Z, using the asymptotic normality
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in order to obtain 28 simultaneous confidence intervals:

Ẑm ±

√

χ2
1−α,28

σ̂2
m

N
(C.6)

The above approximation for the level-α confidence region is an extension of Scheffé’s

method [31]. (For the original Scheffé’s method, see, for example, [61] and [62].)

Note that we could similarly test the hypothesis H0 : Eim
Z
S

= ~0, recalling that

S(I) is the number of microimages of a given size (currently pixel pairs) in image

I. This is none other than the hypothesis that palt respects reflection symmetry.

The graphs in Figures 15 and 16 display almost perfect results in the left-

right case but the overall rejection of the up-down symmetry hypotheses due to

seven of the 28 pairs. In order to understand the source(s) of asymmetry, we

attempted to visualize the “abnormal” pairs. However, due to the frequent and

spatially dispersed presence of these classes in most of our images, associating

them with particular larger structures proved difficult. A subjective opinion is that

the rejection of the up-down reflection symmetry is mostly due to the insufficient

sample size. However, it is noteworthy that the observed vertical asymmetry has a

distinct and stable signature. First, rejecting (a, a + 1) is certainly less surprising

than rejecting (a, a + 2); recall that this minimal gradient under uniform 3−bit

quantization corresponds to 32 grey levels in the original 256-level intensity range.

Second, due to blue sky all such pairs have the brighter pixel on top. We also

suspect that redefining Z to include only non-overlapping patches would mask this

effect, even with sample sizes on the order of 1000.
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Figure 15: Alternate tests based on Z for left-right (top) and up-
down (bottom) reflection symmetries
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Figure 16: Alternate tests based on Z/S for left-right (top) and up-
down (bottom) reflection symmetries
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C.5 Other Model Testing Results

Table 16 provides adjusted model complexities corresponding to the aggregation

of 184 most rare states in one state (§5.3). Thus, since this aggregation reduces

dimension of the unconstrained model space from 256 to 73, the number of degrees

of freedom is simply 72− adjusted complexity, the difference between the adjusted

number of free parameters of the ground model and the adjusted model complexity.

Models Original complexity Adjusted complexity Degrees of Freedom

pdom 43 43 29
pG

potts 2 2 70

pvhn
potts 3 3 69

pvhnC
potts 8 6 66

pg
pair 42 19 53

ph
symm 135 43 29

pv
symm 135 43 29

pvh
symm 75 26 46

pn
symm 127 36 36

pvhn
symm 43 14 58

pg
symm 54 19 53

pG
symm 30 10 62

Table 16: Model testing parameters for the 2 × 2 case.

λ -2 -1 -0.5 0 0.5 0.67 1 2

T (λ) 921.9 1187.6 1315.8 1372 1351.4 1333.1 1289.6 1151.6

T (λ) 4801 3448 3162 3073 3196 3298 3619 6785

Table 17: Strong rejection of primitive models. Top: pdom, χ2
0.99,29 =

49.588. Bottom: pvhn
potts, χ2

0.99,69 = 99.228.

Remark C.1 Recall (§5.3) that under present sample size limitations, the differ-

ence between pg
pair and pg

symm is cancelled due to the aggregation. The difference
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λ -2 -1 -0.5 0 0.5 0.67 1 2

T (λ) 64.55 65.76 65.69 65.12 64.25 63.92 63.25 61.17
P − val(λ) 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.006

T (λ) 91.66 88.76 87.24 86.01 85.01 84.7 84.13 82.48
P − val(λ) 0.003 0.006 0.008 0.01 0.012 0.013 0.014 0.019

Table 18: Models close to being not rejected. Top: pn
symm, χ2

0.99,36 =
58.619. Bottom: pvhn

symm, χ2
0.99,58 = 85.95.

λ -2 -1 -0.5 0 0.5 0.67 1 2

T (λ) 32.24 34.94 34.92 33.84 32.26 31.69 30.6 27.65
P − val(λ) 0.31 0.207 0.207 0.245 0.309 0.334 0.384 0.537

T (λ) 19.05 19.82 19.82 19.52 19.05 18.87 18.51 17.47
P − val(λ) 0.92 0.898 0.899 0.907 0.92 0.925 0.933 0.954

Table 19: Non-rejected models. Top: pv
symm, χ2

0.95,29 = 42.557. Bottom:
ph

symm, χ2
0.95,29 = 42.557.

λ -2 -1 -0.5 0 0.5 0.67 1 2

T (λ) 41.6 41.43 40.08 38.47 36.86 36.34 35.38 32.85
P − val(λ) 0.657 0.664 0.717 0.777 0.83 0.845 0.872 0.928

T (λ) 47.04 44 42.33 40.95 39.84 39.51 38.92 37.33
P − val(λ) 0.704 0.806 0.853 0.886 0.909 0.916 0.926 0.949

Table 20: Non-rejected models. Top: pvh
symm, χ2

0.9,46 = 58.641. Bottom:
pg

symm, χ2
0.9,53 = 66.548.
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between the values in Table 11 and Table 20 (bottom) is only due to using different

estimators (Remark 5.2 from §5.3): In the former case we used the constrained MLE

(minimum power-divergence estimator with λ = 0) with all eight tests, whereas in

the latter case the genuine minimum power-divergence estimators are used (i.e., the

values of the parameter λ in the test statistic T (λ) and that used for estimation

are the same). Naturally, we attribute the overall close match between the corre-

sponding table entries to the property of asymptotic equivalence of the minimum

power divergence estimators (Appendix B).

C.6 More on Stability

In §§3.6,3.6.1,3.7 we analyzed the stability of p on 2×2 patches across scenes and

with respect to scale invariance. It was necessary to aggregate patches into either

one large, “rare” class, or to do the analysis on the G-invariant classes. In the first

case (§3.6.1), we had to collapse at least 136 patches into one to minimize the effect

of low bin counts, thus leaving 120 free parameters to estimate. Since even more

extreme aggregation would have been necessary in the scaling experiments, we chose

alternatively to work with an integrated version of p, namely the one induced on the

space of G-invariant classes. We now can complete this discussion by demonstrating

a gain in test reliability (as measured, for example, by low dependence on λ) when

raw, unconstrained estimates of p are replaced by those constrained by the G-

symmetries. To make the comparison fair, we first aggregate the 17 rare classes

exactly as we did in the scaling experiments (§3.7), leaving only 14 free parameters

to estimate. (Recall (§6.4.1) that there are exactly 31 G-symmetric orbits.) In

order to return from the quotient space of G-classes to the original patch space Ω
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(except for the “rare” super-state that contains 136 patches and is not affected), the

14 non-collapsed probabilities must be uniformly divided among the class members

(§6.1 and Appendix B). Although the composition of the present compound class

slightly differs from that of its sibling in §3.6.1 (where we aggregated rare patches

intuitively and independently of the G partition), the two have exactly the same

size (136) and nearly identical masses (≈ 0.025).

Tables 21 and 22 demonstrate the point: Under the G-invariant model, the

testing for cross scenes stability and scale invariance becomes more reliable as the

contribution of all the states to the divergence measures (equivalently, the statistics

T (λ)) is more uniform [54]. This can be deduced from similarity in the statistics

λ -2 -1 -0.5 0 0.5 0.67 1 2

T (λ) - 142.78 141.43 129.291 121.188 118.93 115.01 105.24
P − val(λ) - 0.077 0.088 0.265 0.453 0.51 0.612 0.829

T (λ) 10.63 10.7 10.73 10.75 10.76 10.76 10.76 10.75
P − val(λ) 0.715 0.709 0.707 0.706 0.705 0.705 0.705 0.706

Table 21: Comparison of inter-scene stability testing based on raw
empirical (top) and on the G-symmetric model.

λ -2 -1 -0.5 0 0.5 0.67 1 2

T (λ) - 159.95 158.14 132.29 116.48 112.42 105.73 91.41
P − val(λ) - 0.009 0.011 0.209 0.574 0.676 0.821 0.976

T (λ) 22.32 22.31 22.28 22.22 22.13 22.1 22.03 21.78
P − val(λ) 0.072 0.072 0.073 0.074 0.076 0.077 0.078 0.083

Table 22: Comparison of scale invariance testing based on raw em-
pirical (top) and on the G-symmetric model.

and P -values for different values of λ. We emphasize that all the figures in each

table are based on the same patch sample. Blank entries indicate the presence
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(despite the aggregation) of zero counts, rendering T (λ) undefined for λ < −1

(Appendix B). The uniform redistribution of mass within the G-classes eliminates

this problem (the bottom rows) as we collapse into one all the classes consistently

showing counts less than five.
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A P P E N D I X D

ALGEBRAIC PRELIMINARIES AND COMPUTATIONS

In this work G is always a finite group; we also write 1 for its identity element

and the relation “subgroup of” is denoted by “≤”. The following definition of group

action appears in [18]:

Definition D.1 A group action of a group G on a set A is a map from G × A to

A (written as g · a, for all g ∈ G and a ∈ A) satisfying the following properties:

(1) g1 · (g2 · a) = (g1g2) · a, for all g1, g2 ∈ G, a ∈ A, and

(2) 1 · a = a, for all a ∈ A.

If G acts on A, then each g ∈ G defines a function σg A → A by σg(a) = g · a.

Based on this observation and in order to avoid confusion with the group operation,

we will write “g(a)” for g · a.

In the following definitions, suppose G acts on A.

Definition D.2 Let O ⊂ A. O is said to be an orbit under the action of G on A

if for any a, b ∈ O, ∃g ∈ G, such that g(a) = b.

Also, it is easy to see that the set of orbits partitions A.

Definition D.3 For each a ∈ A, the set {g ∈ G : g(a) = a} is called the stabilizer

of a and is denoted by Ga.
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In the context of this work, the central example of group action is the action

of the group G (§4.4) on a microimage space ΩL = M2×2(CL) (§3.1). In order to

simplify certain computations and assuming L is even, we rescaled the intensity

range as follows: CL
∼= {−L−1

2
, . . . ,−1

2
, 1

2
, . . . , L−1

2
} (§6.4.3). We also observed that

this action is the restriction of a “larger” action of G on the vector space R4 ⊃ ΩL.

The embedding of ΩL in R4 was carried out by ordering the components of ω ∈ ΩL

as {ω2,1, ω2,2, ω1,2, ω1,1}. ΩL/G, the partition of ΩL into G-orbits is denoted by SL,

whereas the embedding partition R4/G is written as SR.

Next, we prove Proposition 6.8 which states:

The size of the partition S of Ω = M2×2(CL) (L = 2n) into the G-invariant

classes (orbits) is |SL| = L4+2L3+6L2+4L
16

= n4 + n3 + n(1+3n)
2

. Among them, there

are L orbits of size two, L2

4
orbits of size four, 2L3+3L2−10L

8
orbits of size eight, and

L4−2L3−4L2+8L
16

orbits of size 16.

Proof. The n = 1 case is special but trivial. There are two orbits of size two:
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and one orbit of size eight:
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To prove the general case, one first recalls that ∀O,∀ω ∈ O, |O| = |G : Gω|,

the size of the orbit O equals the index of the stabilizer Gω.

Since |G| = 16, |O| can only be 1, 2, 4, 8, 16. Clearly, there is no ω with Gω = G

because i(ω) = ω has no solution. For the same reason Gω can not contain i, si, or

r2si among its generators. This leaves only two copies of D8 (i.e. 〈r, s|r4 = s2 =
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1, rs = sr3〉 and 〈ri, s|(ri)4 = s2 = 1, (ri)s = s(ri)3〉) as possible stabilizers of index

two. The first group gives rise to the two equations r(ω) = ω and s(ω) = ω with

L solutions of the form ( λ λ
λ λ ) , λ ∈ CL, thus yielding L/2 orbits of size two. The

second choice implies that (ri)(ω) = ω and s(ω) = ω, resulting in the 2n patches

of the form
(
−λ λ
λ −λ

)
, λ ∈ CL that are partitioned into L/2 size-two orbits. Hence,

the total number of size-two orbits becomes L.

We now count orbits of size four. The following subgroups are the only sub-

groups of G of index four not containing i, si, or r2si: 〈r〉, 〈ri〉, 〈r3i〉, 〈r2, s〉, 〈r2, rs〉,

〈r2, rsi〉, 〈r2i, rs〉, 〈r2i, rsi〉. Since all the ω’s fixed by the rotation group are neces-

sarily fixed by the entire 〈r, s|r4 = s2 = 1, rs = sr3〉 group, the rotation group can

not be a proper stabilizer itself. Similarly, (ri)(ω) = ω ⇒ s(ω) = ω implies that 〈ri〉

is a proper subgroup of a larger stabilizer, and for the same reason (r3i)(ω) = ω ⇒

s(ω) = ω makes it impossible for 〈r3i〉 to be a stabilizer. Now notice, 〈r2, rs〉 can not

be a proper stabilizer since [(r2)(ω) = ω]∧ [(rs)(ω) = ω] ⇒ r(ω) = ω1; 〈r2, rsi〉 can

not be a proper stabilizer because [(r2)(ω) = ω]∧ [(rsi)(ω) = ω] ⇒ (ri)(ω) = ω. Fi-

nally, 〈rs, r3s〉 fails to be a stabilizer since [(rs)(ω) = ω]∧ [r2(ω) = ω] ⇒ r(ω) = ω.

Next, 〈r2, s〉 is a stabilizer for all elements of the form:
(

λ γ
γ λ

)
, where γ, λ ∈

CL, γ 6= λ, γ 6= −λ. Since there are L(L − 2) such matrices, and the orbit of each

of them consists of matrices of the same form (up to renaming of λ and γ), they

must form exactly L(L − 2)/4 size-four orbits.

Matrices of the form
(
−λ −λ
λ λ

)
, with λ ∈ CL are stabilized by 〈r2i, rs〉. In fact,

these will represent only L/2 distinct matrices as λ runs effectively only through

half of the range CL. Since no two distinct such matrices fall into the same orbit,

we obtain L2/4 as the total number of size-four orbits. We also notice that the

1We use “∧” to denote the logical and.
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subgroup 〈r2i, rsi〉 is a stabilizer for the elements of the form
(

λ −λ
λ −λ

)
, which are

rotationally equivalent to the previous matrices, hence adding no new orbits.

The last task is to compute the number of orbits of size eight. First, we list all

the subgroups of index eight (thus, order two) not containing i, si, or r2si. These

are: 〈r2〉, 〈r2〉, 〈r2i〉, 〈s〉, 〈r2s〉, 〈rs〉, 〈r3s〉, 〈rsi〉, and 〈r3si〉. 〈r2〉 immediately

leaves the list since it is a proper subgroup of a larger stabilizer (r2(ω) = ω ⇒

s(ω) = ω). Matrices of the form
(

λ δ
γ λ

)
, where δ, γ, λ ∈ CL, γ 6= δ, are stabilized

by 〈s〉, whereas rotationally equivalent to them matrices of the form
(

δ λ
λ γ

)
are

stabilized by 〈r2s〉. Since size-eight orbits generated by these 2L2(L − 1) matrices

are composed of these matrices only, we arrive at L2(L − 1)/4 distinct orbits of

size eight. Next, observe that 〈rs〉 fixes L(L − 2) matrices of the form ( γ γ
λ λ ), with

γ, λ ∈ CL, γ 6= λ, γ 6= −λ, whereas their L(L− 2) rotational equivalents
(

λ γ
λ γ

)
are

fixed by 〈r3s〉. Since all the matrices inside the corresponding orbits of size eight

are of either of the two forms, we add L(L − 2)/4 orbits of size eight. The same

number of L(L − 2)/4 size-eight orbits come from L(L − 2) matrices of the form
(
−λ −γ
λ γ

)
fixed by 〈r3si〉, with γ, λ ∈ CL, γ 6= λ, γ 6= −λ, and from their L(L − 2)

rotational equivalents of the form
(

γ −γ
λ −λ

)
fixed by 〈rsi〉. The last source of size-

eight orbits is matrices stabilized by 〈r2i〉. They are represented by
(
−γ −λ
λ γ

)
, where

γ 6= λ, γ 6= −λ. There are exactly L(L − 2) such matrices, producing the last

L(L − 2)/8 orbits of size eight.

Summing over orbits of sizes less than 16, we get 2×L+4×L2/4+8× (L3/4+

3L2/8− 5L/4) as the total number of elements in these orbits. Hence, the number

of orbits of size 16 is (L4 − 2L3 − 4L2 + 8L)/16 = n4 − n3 − n2 + n. Finally, the

total number of orbits is L4+2L3+6L2+4L
16

= n4 + n3 + n(3n+1)
2

. ¦
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D.1 Fundamental Invariants of R[x1, x2, x3, x4]
G

We now provide an inductive proof of Lemma 6.13, which states:

The following set of polynomials generates R[x1, x2, x3, x4]
G:

f1(x) = (x1 + x3)(x2 + x4),

f2(x) = x1x3 + x2x4,

f3(x) = x2
1 + x2

2 + x2
3 + x2

4, (D.1)

f4(x) = x1x2x3x4,

f5(x) = (x2
1 + x2

3)(x
2
2 + x2

4).

Proof. It is immediate to see that f1, . . . , f5 respect the action of r, s, i, generators

of G. Therefore, they f1, . . . , f5 ∈ R[x1, x2, x3, x4]
G. We base our computations on

a sequence of decompositions of the original G action, first step of which is given by:

SR
∼= (R4/G1)

/
(G/G1) ,

where G1 = 〈s, r2|s2 = (r2)2 = 1, r2s = sr2〉£G (D.2)

The equation above simply says that the original action of G on R4 decomposes into

two actions as follows: First, G1, a normal subgroup of G, acts on R4, producing

the orbit set R4/G1, and then the quotient group G/G1 acts on R4/G1, resulting

in “the same” orbits SR, just as if G acted on R4 directly. Thus, we first aim to

find y1(x), . . . , yk(x) for some k, generators for R[x]G1 , and then will focus on the

polynomials (in those generators) that are invariant under G/G1.

Claim D.4 R[x]G1 = R[x1 + x3, x2 + x4, x1x3, x2x4].

Proof. It suffices to prove that R[x]〈r
2s〉 = R[x1 + x3, x2, x1x3, x4] and R[x]〈s〉 =

R[x1, x2+x4, x3, x2x4], since R[x1+x3, x2+x4, x1x3, x2x4] = R[x1+x3, x2, x1x3, x4]∩
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R[x1, x2 +x4, x3, x2x4]. In fact, we only prove the first of these statements since the

second one proves along the same lines interchanging x1 with x2 and x3 with x4. We

argue by induction on the degree function, deg = deg1 + deg2 + deg3 + deg4, where

degk is the highest power of xk (k = 1, 2, 3, 4) in a given polynomial. Let us begin

by noticing that the result holds for all polynomials of deg = 0 (i.e. constants.)

Assume now that the result is true for deg ≤ N, N ≥ 0 and show that it also

holds for deg = N + 1. A generic polynomial r(x1, x2, x3, x4) ∈ R〈r2s〉[x] such that

deg(r) ≤ N + 1 has the form:

∑

i,j,k,l≥0

i+j+k+l≤N+1

ai,j,k,lx
i
1x

j
2x

k
3x

l
4 =

1
︷ ︸︸ ︷
∑

i,k≥0

i+k≤N

ai,0,k,0x
i
1x

k
3 +

2
︷ ︸︸ ︷

aN+1,0,0,0x
N+1
1 + a0,0,N+1,0x

N+1
3 +

(D.3)
3

︷ ︸︸ ︷

x1x3

∑

i,k>0

i+k=N+1

ai,0,k,0x
i−1
1 xk−1

3 +
∑

j,l≥0

0<j+l≤N+1






4
︷ ︸︸ ︷

∑

i,k≥0

0≤i+k≤N+1−j−l

ai,j,k,lx
i
1x

k
3




 xj

2x
l
4 (D.4)

In order for the left hand side to be invariant under x1 ↔ x3, each of the terms

1 − 4 in (D.3)-D.4 must be invariant under the same action. By the induction

argument, terms of degree N and below are already in the desired form. Thus, the

first sum and all the sums labeled 4 belong to R[x1 + x3, x2, x1x3, x4]. This implies

that the entire double sum of (D.4) is in R[x1 + x3, x2, x1x3, x4]. The cofactor of

x1x3 in the third term of (D.4) is also invariant and has degree N , hence lies in

R[x1 + x3, x2, x1x3, x4] as well. The invariance of the second term of (D.3) forces

aN+1,0,0,0 = a0,0,N+1,0. We now notice that if N = 0, then

aN+1,0,0,0x
N+1
1 + a0,0,N+1,0x

N+1
3 = a1,0,0,0(x1 + x3) ∈ R[x1 + x3, x2, x1x3, x4]

For N ≥ 1, on the other hand,

xN+1
1 + xN+1

3 = (x1 + x3)(x
N
1 + xN

3 ) − x1x3(x
N−1
1 + xN−1

3 ) ∈ R[x1 + x3, x2, x1x3, x4]
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by the induction argument. This shows that the left hand side of (D.3),(D.4)

belongs to R[x1 + x3, x2, x1x3, x4]. ¦

Thus, we have obtained a set of generators for R[x]G1 :

y1 = x1 + x3, y2 = x2 + x4, y3 = x3x4, y4 = x2x4, (D.5)

which are algebraically independent. We now want to find RG/G1 [y1, y2, y3, y4].

Recall that

G/G1 = {1, r, ı, ır}

and that its action on the orbit set R4/G1 translates into

r : y1 ↔ y2, y3 ↔ y4

ı : y1 7→ −y1, y2 7→ −y2, y3 ↔ y3, y4 ↔ y4

Continuing (D.2) to decompose the original G action, we write:

(R4/G1)
/
(G/G1) ∼=

(
(R4/G1)

/
G2

)/(
G/G1

/
G2

)
, where G2 = 〈ı〉£G/G1 (D.6)

Claim D.5 R[y1, y2, y3, y4]
G2 = R[y2

1, y
2
2, y1y2, y3, y4]

Proof. Using induction just as in the proof of Claim D.4, we can simply imagine

replacing x1 with y1, x3 with y2, x2 with y3, and x4 with y4, which yields equations

essentially identical to (D.3),(D.4):

∑

i,j,k,l≥0

i+j+k+l≤N+1

ai,j,k,ly
i
1y

j
2y

k
3y

l
4 =

∑

i,j≥0

i+j≤N

ai,j,0,0y
i
1y

j
2 +

2
︷ ︸︸ ︷

aN+1,0,0,0y
N+1
1 + a0,N+1,0,0y

N+1
2 +

(D.7)

y1y2

∑

i,j>0

i+j=N+1

ai,j,0,0y
i−1
1 yj−1

2 +
∑

k,l≥0

0<k+l≤N+1






∑

i,j≥0

0≤i+j≤N+1−k−l

ai,j,k,ly
i
1y

j
2




 yk

3y
l
4
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The only other difference from the previous proof is as follows: The new second

term D.7 disappears if N + 1 is odd, whereas even N + 1 immediately yields the

needed form, i.e. yN+1
1,2 = (y2

1,2)
(N+1)/2. ¦

Next, notice:

R[y2
1, y

2
2, y1y2, y3, y4] ∼= R[z1, z2, z3, z4, z5]

/
〈z1z2 − z2

5〉,

under:

y2
1 → z1, y2

2 → z2, y3 → z3, y4 → z4, y1y2 → z5.

We now show by induction that

(
R[z1, z2, z3, z4, z5]

/
〈z1z2−z2

5〉
)(G/G1)

/
G2= R[z1 + z2, z3 + z4, z3z4, z1z3 + z2z4, z5],

(D.8)

where (G/G1)
/
G2 = 〈r〉, and its action results in exchanging z1 with z2 and z3

with z4. First, denote the right hand side of (D.8) by R and focus on the inductive

transition from deg ≤ N to deg = N + 1. A generic polynomial of interest splits

into two sums, one with deg ≤ N and the other - with deg = N + 1, each of which

is separately invariant under the action of r. Since the first sum is in R by the

induction assumption, we continue on to decompose the second one as follows:

∑

i,j,k,l≥0

i+j+k+l=N+1

ai,j,k,lz
i
1z

j
2z

k
3z

l
4 =

1
︷ ︸︸ ︷

z1z2z3z4

∑

i,j,k,l>0

i+j+k+l=N+1

ai,j,k,lz
i−1
1 zj−1

2 zk−1
3 zl−1

4 + (D.9)

2
︷ ︸︸ ︷

z1z2






∑

i,j,k>0

i+j+k=N+1

ai,j,k,0z
i−1
1 zj−1

2 zk
3 +

∑

i,j,l>0

i+j+l=N+1

ai,j,0,lz
i−1
1 zj−1

2 zl
4




+

3
︷ ︸︸ ︷

z3z4






∑

i,k,l>0

i+k+l=N+1

ai,0,k,lz
i
1z

k−1
3 zl−1

4 +
∑

j,k,l>0

j+k+l=N+1

a0,j,k,lz
j
2z

k−1
3 zl−1

4




+
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4
︷ ︸︸ ︷

z1z2

∑

i,j>0

i+j=N+1

ai,j,0,0z
i−1
1 zj−1

2 +

5
︷ ︸︸ ︷

z3z4

∑

k,l>0

k+l=N+1

a0,0,k,lz
k−1
3 zl−1

4 +

6
︷ ︸︸ ︷
∑

i,k>0

i+k=N+1

ai,0,k,0z
i
1z

k
3 +

∑

j,l>0

j+l=N+1

a0,j,0,lz
j
2z

l
4 +

7
︷ ︸︸ ︷
∑

i,l>0

i+l=N+1

ai,0,0,lz
i
1z

l
4 +

∑

j,k>0

j+k=N+1

a0,j,k,0z
j
2z

k
3 +

8
︷ ︸︸ ︷

aN+1,0,0,0z
N+1
1 + a0,N+1,0,0z

N+1
2 +

9
︷ ︸︸ ︷

a0,0,N+1,0z
N+1
3 + a0,0,0,N+1z

N+1
4

An immediate inspection of (D.9) combined with the symmetry of the coefficients

ai,j,k,l = aj,i,l,k reveals that each of the terms numbered one through nine is indi-

vidually invariant under the the given action. By the inductive argument, terms

one through five are already in R, and following the pattern of the second term

of (D.3) eventually shows that terms eight and nine are also in R. We now rewrite

the sum of terms six and seven as follows:

∑

i,k>0

i+k=N+1

ai,0,k,0

(
zi
1z

k
3 + zi

2z
k
4

)
+

∑

i,k>0

i+k=N+1

ai,0,0,k

(
zi
1z

k
4 + zi

2z
k
3

)

Observe that for i, k > 0:

zi
1z

k
3 +zi

2z
k
4 = (z1z3+z2z4)(z

i−1
1 zk−1

3 +zi−1
2 zk−1

4 )−zi−1
1 z2z

k−1
3 z4−z1z

i−1
2 z3z

k−1
4 (D.10)

zi
1z

k
4 + zi

2z
k
3 = (z1z4 + z2z3)(z

i−1
1 zk−1

4 + zi−1
2 zk−1

3 ) − z1z
i−1
2 zk−1

3 z4 − zi−1
1 z2z3z

k−1
4

We conclude by considering the first of the two equations above and noticing that

the second equation can be treated similarly due to that z1z4 + z2z3 equals (z1 +

z2)(z3+z4)−(z1z3+z2z4), and thus lies in R. The following expression in conjunction

with the induction argument helps to see why the left hand side of (D.10) belongs

to R:
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zi−1
1 z2z

k−1
3 z4+z1z

i−1
2 z3z

k−1
4 =







z1z3 + z2z4, if i − 1 = k − 1 = 0

z3z4(z2z
k−2
3 + z1z

k−2
4 ), if i − 1 = 0, k − 1 > 0

z1z2(z
i−2
1 z4 + zi−2

2 z3), if i − 1 > 0, k − 1 = 0

z1z2z3z4(z
i−2
1 zk−2

3 + zi−2
2 zk−2

4 ), if i − 1, k − 1 > 0.

Summarizing the results proved to this point, we return to the initial x indetermi-

nates:

R[x1, x2, x3, x4]
G = R[(x1 + x3)

2 + (x2 + x4)
2, x1x3 + x2x4, (D.11)

x1x2x3x4, (x1 + x3)
2x1x3 + (x2 + x4)

2x2x4, (x1 + x3)(x2 + x4)]

These generators are not unique, and recognizing that

(x1 + x3)
2 + (x2 + x4)

2 = f3(x) + 2f2(x),

(x1 + x3)
2x1x3 + (x2 + x4)

2x2x4 = 1
2
[f5(x) − f 2

1 (x)]+

f2(x)f3(x) + 2f 2
2 (x) − 2f4(x),

with f1, f2, f3, f4, f5 as in (6.16), makes it clear that

R[x1, x2, x3, x4]
G = R[f1(x), f2(x), f3(x), f4(x), f5(x)].

A straightforward computation verifies that none of the above five generators

can be expressed as a real polynomial in the remaining four. We conclude by

instantiating a well-known fact (see, for example, [12]):

R[x1, x2, x3, x4]
G ∼= R[w1, w2, w3, w4, w5]/JF , where (D.12)

JF = {h ∈ R[w1, w2, w3, w4, w5] : h(f1, f2, f3, f4, f5) = 0 ∈ R[x1, x2, x3, x4]} =

〈q〉, and q(w1, w2, w3, w4, w5) = 4w2
1w3 + 8w1w2w5 + 2w1w3w5 − 2w1w

2
4w5+
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16w2
2 − 8w2w3 − 8w2w

2
4 + 4w2w

2
5 + w2

3 − 2w3w
2
4 + w4

4 (D.13)

In order to compute JF , the syzygy ideal, one can use, for example, the elimination

method based on computation of a Gröbner basis for the ideal JF = 〈f2 − w1, f4 −

w2, f5 − w3, f1 − w4, f3 − w5〉 ⊂ R[x1, x2, x3, x4, w1, w2, w3, w4, w5] [12]. The above

generator for JF was computed analytically and later verified using Macaulay2 [16].

¦

D.2 Comments on Proposition 6.14

In Proposition 6.14 we stated that f1, f2, f3, f4 (6.16) suffice to enumerate SL =

M2×2(CL)/G for L ≤ 8 and L = 10, 12, and that f1, f2, f4 fully enumerate S2n

for n ≤ 4. These statements were observed by means of a straightforward range

counting: Since f1, f2, f3, f4, f5 are constant on the orbits of SL, we defined, for

example, the map F̄ = (f̄1, f̄2, f̄4) : SL → R3 by setting each component of F̄ (O)

to equal the common value of the respective generator f on O. The size of the

range of F̄ was calculated to be equal to |S2n| for n ≤ 4. The other statement was

verified in the same manner.

These and other properties of the generators f1, f2, f3, f4, f5 in the context of

restricting R[x1, x2, x3, x4]
G to the G-symmetric functions on ΩL can also be ana-

lyzed using symbolic computations provided by algebraic geometry. We conclude

this supplement by briefly outlining the framework of such computations.

Observe that we can identify all G-invariant functions on ΩL with the el-

ements of the quotient ring (algebra) R[x1, x2, x3, x4]
G/JL, where JL = {f ∈

R[x1, x2, x3, x4]
G : f(ω) = 0 ∀ω ∈ ΩL} is the ideal of G-invariant polynomials van-
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ishing on all the orbits. (JL is also the ideal of the real affine variety ΩL.) Since the

number of orbits in SL is finite, JL % {0} is no longer trivial as in the case of SR.

Now, let φ be the ring isomorphism of (D.12). We then have an isomorphism

of the corresponding quotients:

R[x1, x2, x3, x4]
G/JL

∼= R[w1, w2, w3, w4, w5]/JF

/
φ(JL) (D.14)

For the value of L of interest, computations to support the respective claim of

Proposition 6.14 (or the conjecture) are likely to involve finding a Gröbner basis

for the right hand side of (D.14).
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A P P E N D I X E

SOME CORRECTIONS

After the thesis had already been processed by the University, I discovered a

mistake in one of the models by an analytic verification of the previously used nu-

merical computations: In §4.7, pg
pair is introduced as the ”pair-potential geometri-

cally symmetric” model, but the computation of the corresponding parameter space

was wrong and produced a more complex model of dimension 42 (see Table 16) in-

stead of 15, the true number of independent parameters of pg
pair. Consequently, the

results reported in §5.3 (Table 11) do not correspond to pg
pair.
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