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Abstract

The Guilt-by-Association (GBA) principle, according to which genes with
similar expression profiles are functionally associated, is widely applied for
functional analyses using large heterogeneous collections of transcriptomics
data. In this thesis we show that using such large collections could hamper
GBA functional analysis for genes whose expression is condition specific. In
these cases a smaller set of condition related experiments should instead be
used, but identifying such functionally relevant experiments from large

collections based on literature knowledge alone is an impractical task.

The study begins by discussing the basic principles underlying the definition
of gene function and the use of large microarray collections for GBA based
gene function analyses. We look at the effects of condition specific gene
expression on GBA analyses and provide a mathematical and biological
perspective. We show that using large microarray collections to calculate
correlation can mask the effectiveness of the GBA principle. We suggest that
using only those experiments that are relevant to the biological function
under analysis can significantly improve GBA based gene functional

analyses.

We then present a semi-supervised algorithm that can select functionally
relevant experiments from large collections of transcriptomics experiments.
The algorithm is able to select experiments relevant to a given GO term,
MIPS FunCat term or even KEGG pathways. We extensively test our
algorithm on large dataset collections for Yeast and Arabidopsis. We
demonstrate that: (i) using the selected experiments there is a statistically

significant improvement both in correlation between genes in the functional
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category of interest and in GBA based function predictions; (i) the
effectiveness of the selected experiments increases with annotation
specificity; (iii) our algorithm can be successfully applied to GBA based

pathway reconstruction.

We conclude by discussing the potential applications of our technique. We
outline several developments that could be implemented in the future to

improve the efficiency of the experiment selection procedure.
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Introduction

1.1 Context of the thesis

Proteins are widely recognised as the building blocks and functional
components of the cell. Proteins are omnipresent; structural proteins form
tissues of organisms, enzymes and other proteins regulate biochemical
reactions and trans-membrane proteins act as transporters that maintain the
cellular environment. Therefore, the knowledge of functions of proteins and
the properties of genes which transcribe them are essential for
understanding the mechanisms of biology. Gaining an insight into gene or
protein function is essential for the development of new drugs, improving
crop yield and development of essential biochemicals such as insulin and

enzymes.

The early efforts to elucidate gene or protein function were mostly
experimental and generally involved focussing on a small set of genes or a
protein complex. These experiments were low-throughput in nature due to
the enormous experimental resources, time and human effort required.
However, the arrival of high-throughput experimental techniques such as

rapid DNA Sequencing has changed the outlook of modern biology. In the



subsequent phase now known as the post-genomic era, numerous high-
throughput techniques have been developed, each offering a new
perspective of the mechanisms by which a gene or protein executes its
function. These high-throughput techniques provide wus with an
unprecedented opportunity to understand complex biological systems by
providing insights into myriad facets of a gene’s function and its dynamic
interaction with other molecular components. These insights enable us to
build increasingly complex models of regulatory interactions, helping us

understand gene function.

1.2 Problem statement

Among the various high-throughput data available, microarrays for
transcription profiling are currently the most abundant due to their
accessibility, interpretability and decreasing experimental costs (Yeung,
Medvedovic, & Bumgarner, 2004; Zien, Fluck, Zimmer, & Lengauer, 2003).
The large quantities of data generated by microarray experiments have made
manual analysis of the data impractical and a large number of computational
tools and protocols have been developed to extract functional information
from microarrays. Generally, most of the techniques developed to extract
functional information from microarrays are based on the principle of Guilt-
by-Association (GBA). The GBA principle suggests that genes that have a
similar expression profile are suggested to share similar functions. This is
largely based on the fact that genes which encode proteins that participate in
a pathway are found to be co-regulated. GBA driven microarray analysis
approaches include various clustering techniques such as hierarchical
clustering, k-means clustering, biclustering and various co-expression based

network analyses techniques. Generally, these techniques aim to group genes



based on their expression profiles. The ways by which the genes relate to

each other or the membership in a group of genes determine the function.

GBA-based microarray analyses approaches calculate similarity between
gene expression profiles using a similarity metric such as Pearson
correlation. Often, this has been done over a large heterogeneous collection
of datasets (Manfield et al., 2006; Obayashi, Hayashi, Saeki, Ohta, &
Kinoshita, 2009a; Zimmermann, Hirsch-Hoffmann, Hennig, & Gruissem,
2004). One reason behind this approach is that a large number of data points
would result in a more robust correlation by combining weak expression
signatures over many datasets. Formally, the significance of the correlation

between the vectors is likely to increase with the size of the vector.

Generally, co-expression studies over large heterogeneous collections of
datasets were aimed to reveal a global transcriptional response (Wu et al.
2002). Studies such as Zien et al. (2003) and Yeung et. al (2004) have shown
that the size of the dataset has an upper limit of approx. 80 data points above
which there is no discernable improvement in the quality of the analysis. We
hypothesized that working with such large datasets may not always be

beneficial to the functional analyses at hand.

For the principle of GBA to be effective for elucidating gene function or to
perform any other functional analyses, genes which belong to the same
functional category would be expected to have similar expression profiles.
Consequently, the genes belonging to the same functional category are
expected to be highly correlated. This property remains the cornerstone of
GBA-based microarray data analyses. To verify this property, we looked at

the distribution of correlation coefficients for genes which belong to the same



functional category! such as genes annotated to the Gene Ontology
Biological Process category “Response to Jasmonic Acid Stimulus”. We
prepared a microarray data collection containing 756 arrays from 44
individual experiments based on wild-type Arabidopsis thaliana. The data was
sourced from NASCarrays (Craigon et al.,, 2004) and represented various
experimental backgrounds such as stresses and developmental stages. Only
Affymetrix ATH1 GeneChip data with MAS5.0 normalization was used. The
processed data was normalized to a mean of zero and a standard deviation
of 1. Further details regarding the experiments and the normalization

pipeline can be found in Chapter 5 (Section 5.3.3) and Appendix L.
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Figure 1: Distribution of correlation coefficients among genes in the GO
category “Response to Jasmonic Acid Stimulus” obtained when a large
collection of 44 microarray experiments (756 microarrays) were used to
calculate the correlation. This result was found to be typical for most GO

Biological Process categories.

! Only experimentally annotated genes were considered to ensure the reliability of the annotation.
Details of the GO Evidence Codes used in this thesis are presented in Section 5.3.3.
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Surprisingly, although the genes belonged to the same functional category
we observed very poor correlation between the genes, with 81.4% of the
correlation closer to zero (Fig.1l). Such a distribution of correlation
coefficients would limit the effectiveness of the GBA principle for functional
analyses. If the correlation among genes in the same functional category is
near zero, then putative genes that may belong to that functional category
cannot be inferred based on correlation among genes already annotated to
that category. We obtained similar results for most of the GO Biological
Process categories and this was also replicated across functional

classification systems such as MIPS and in other organisms such as Yeast.

We wanted to understand the causes of such poor correlation and investigate
ways of limiting its effects on GBA-based analyses. We hypothesized that
there could be two causes for observing such poor correlation. The first
source of poor correlation could be an experimental artefact due to the noise
inherent in the measurement. The second source of poor correlation could be
biological phenomena such as cross-talk in the biological pathway of interest.
We examine this in detail in Chapter 6. Gene function and gene expression
are acknowledged to be condition-specific. Therefore, genes are also
expected to be correlated based on the experimental conditions. In
experiments where the pathways of interest are not activated, the genes in
the pathway could show poor correlation. In cases where a large
heterogeneous collection of microarrays is used for functional analyses, the
poor correlations from functionally wunrelated experiments could
significantly dilute the high correlations observed in experiments where the

pathways are sufficiently activated.

To limit the dilution of correlation, it is important that the sources of poor

correlation are minimized. This would mean that in a functional analysis, the
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experiments where the genes of interest are poorly correlated are eliminated.
However, identifying microarray experiments relevant to a functional
category of interest is a non-trivial task as literature knowledge relevant to a
biological process is seldom exhaustive. Further, the relevance of an
experiment to a biological process may not be obvious and experiments that
are deemed irrelevant by a researcher could in fact withhold significant

information regarding the biological process of interest.
1.3 Objectives of the study

From the problem statement presented earlier in Section 1.2, it is clear that
the using large collections of microarrays in GBA-based analyses can result
in poor correlation among genes that are deemed functionally related. This
poor correlation among functionally related genes could undermine the
effectiveness of GBA-based functional analyses because it would be difficult
to determine the function of a gene based on its correlation with genes with
known functions. In this thesis, we aim to present a comprehensive
investigation of the problem of poor correlation among functionally related
genes and also present a methodology for improving the correlation. The

objectives of this study are summarized as follows:

1. We want to investigate the limitations of performing GBA-based
functional analyses using large collections of microarrays. Specifically,
we want to discuss some of the causes of poor correlation among
genes involved in the same biological process.

2. We want to show that correlation among genes involved in the same
process can be improved by using only functionally relevant sets of
experiments. This is in contrast to the traditional approach where

large numbers of experiments are used.



3. We want to show that selecting such functionally relevant
experiments is a non-trivial task and we underline the need for an
automated technique for identifying experiments that are relevant to a
GBA-based functional analysis.

4. To address this need, we want to develop a method that is able to
select from a large collection of experiments, a set of functionally
relevant experiments.

5. We want to show that experiments selected using such a method
would be able to improve GBA-based functional analyses. We would
like to illustrate this by showing that,

a. The selected experiments improve correlation among genes in
the same functional category.

b. The correlation resulting from the selected experiments is a
better feature for classifying genes into a functional category.

c. The effectiveness of the feature varies with the specificity of
annotation.

d. The selected experiments improve transcriptomics-based

pathway reconstruction.
1.4 Overview of the thesis

Chapter 2: We discuss the concept of gene function and its interpretation in
the context of post-genomic high-throughput biology. We briefly look at a
few of the high-throughput experimental data types available for extracting
functional information. We then briefly discuss the need for machine-
friendly ontologies for organizing functional information. We outline the
salient features of two widely used functional classification systems: Gene

Ontology and MIPS FunCat.



Chapter 3: We investigate the principles employed for extracting functional
information from microarrays. Primarily, we discuss the principle of Guilt-
by-Association and its application in microarray-based functional analyses.
We then highlight the importance of similarity metrics such as Pearson
correlation, Mutual Information and Euclidean distance in GBA-based
functional analyses. Lastly, we discuss the major functional analyses
techniques that are based on the principle of GBA such as clustering,

network-based approaches and basic co-expression based analytical tools.

Chapter 4: In this chapter, we investigate the reasons for observing poor
correlation among genes which belong to the same functional category. We
outline potential sources of noise in microarray data and suggest that these
could have a far-reaching effect on any GBA-based functional analyses. We
illustrate how in GBA analyses based on large heterogeneous datasets, poor
correlation between genes in the same functional category can be limited by
using only those experiments which are found to be relevant to the
functional category of interest. We suggest that the identification of relevant
datasets based on literature knowledge alone may not be efficient and
propose the development of a computationally-driven method for the

identification of functionally relevant experiments.

Chapter 5: In this chapter, we illustrate our experiment selection algorithm
and prove its effectiveness for GBA analyses. We demonstrate that the
algorithm is able to select experiments for a group of genes independent of
their functional classification. We also show that the selection performance is
replicable across various organisms. We demonstrate that the selected
experiments lead to substantially improved correlation between genes in a
functional category compared to using a large compendium of data. As a

consequence, we show that using correlation obtained from the selected set
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of experiments leads to substantial improvements in GBA-based functional

prediction.

Chapter 6: We outline the conclusions that can be drawn from the study and
look at the future prospects and possible improvements of the experiment

selection technique.



Understanding gene
function

The concept of the “gene” as a discrete unit of heredity was first put forward
by Gregor Mendel in 1866. The word “gene”, the etymology of which can be
traced to the Greek word “genos” (origin), was first used by Wilhem
Johansson in the 1900s. The early concept of the gene considered it to be an
abstract entity which was responsible for transmitting one or many
phenotypes over generations. Subsequently a gene was seen as a physical
molecule which is a blueprint for a protein. However, with the ever-
increasing complexity of the insights into molecular biology, there is a need
for a comprehensive framework to define a gene. Recently, Gerstein et al.
(2007) defined a gene as “a union of genomic sequences encoding a coherent set of
potentially overlapping functional products”. Although the definition of the gene
has continuously evolved, the intrinsic idea that a gene is responsible for a
phenotype has remained constant. At the molecular level, this could mean
that the DNA sequence of the gene determines the sequence and therefore
the structure of the functional molecules that implement a specific
phenotype. Regardless of the perspective, the identity of a gene is coupled to

the corresponding functional products or phenotype.



Understanding the function of all known gene products has become the
primary goal of modern molecular biology. It is widely recognized that
elucidating the functions of various genes and gene products and the
complex interactions between them is the key to understanding a biological
system. The approaches for elucidating gene function have evolved
dramatically over the past decades. Traditional approaches for elucidating
gene function focussed on individual genes and were largely a single gene
approach. These approaches were highly resource intensive and hence not
very scalable. However, in the post-genomic era, there is a deluge of
functional data from high-throughput experimentation techniques such as
gene expression microarrays, protein-protein interaction experiments and
genome-wide phenotype screens. The high-throughput data has necessitated
novel ideas for functional analyses often adapted from computer sciences

and statistics.

In this chapter, we look at gene function in the context of the changing
experimental paradigms. We look at two state-of-the-art frameworks for
organizing functional information, MIPS FunCat and Gene Ontology, and
discuss their properties. Finally, we briefly discuss some of the few high-
throughput data types available that can be exploited for linking a gene to its

function.

2.1 What is Gene Function?

Traditionally, gene function elucidation techniques focussed on a single or a
very small set of genes at a time. The notion of gene function was very

conservative with every gene or protein having specific biological and
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molecular identities. For example, the molecular function of an enzyme
would be its specific role in the catalysis of the reaction. Its biological
function would be the pathway in which it participated. Therefore, the
characterization of a gene or a protein would not be complete without
elucidating the biological and molecular aspects. However, with the rapidly
accumulating high-throughput experimental data, there is an unprecedented

opportunity to automate gene function elucidation.

For instance, bioinformatic techniques have been successfully applied to
annotate and characterize genes (Eddy, 1998; Mulder, 2003). For a gene
whose functions cannot be predicted using sequence alone, a wide array of
high-throughput data such as protein-protein interaction (PPI) data and co-
expression data are available that can be exploited for functional analyses
(Huynen, Snel, von Mering, & Bork, 2003; Vazquez, Flammini, Maritan, &
Vespignani, 2003). The amount of PPI data available for the various model
organisms is growing exponentially due to advances in techniques such
yeast-2-hybrid (Y2H), Tandem Affinity Propagation (TAP) and Mass Spec
Protein Complex Identification (HMS-PCI) (Gavin et al., 2002; Ito et al., 2001;
H. Wang et al., 2007). However, data produced by these techniques suffer
from high levels of false positives and false negatives. Typically, the false
positive rates for Y2H are as high as 64% and TAP the false positive rate is as
high as 77%. Similarly, the false negative rates could be as high as 71% and
50% respectively (Edwards et al., 2002).

Importantly, genes or proteins are no longer viewed in isolation but are
recognized to be part of a complex network of interactions. A single gene can
take part in multiple biological processes by having multiple collaborators

and this has been recognized as the fundamental mechanism by which single

11



genes control multiple traits. Thus the function of a gene is being defined by
its interaction partners in a large network of interactions. Unlike the
traditional view of gene function this new notion of gene function is fuzzy
and encompasses a wide range of phenomena such as physical interaction,
regulator-target interaction and co-expression. This has been termed the
“probabilistic view” of gene function (Fraser & Marcotte, 2004; 1. Lee, 2011) as

opposed to the more deterministic traditional approach.

Although a rigorous definition of gene function has yet to emerge, it is
appreciated that a general framework is necessary which is sufficiently
robust to contain all the features of gene function (Fraser & Marcotte, 2004).
One such feature is the promiscuous nature of gene function. Gene function
is highly context sensitive as genes are known to be involved in multiple
roles depending upon the biological process to be executed. For example,
Transcription Associated Factors (TAF) have a role in DNA repair and
transcriptional initiation; RAS protein regulates both mitogenesis and
cytoskeletal rearrangement. Additionally, the framework also needs to keep
up with the rapid pace of high-throughput analyses and accommodate new
gene functions as they are discovered. With the development of
computational approaches for elucidating gene function there has been a
need for organizing gene functional information in a machine-friendly
hierarchical ontology. Fraser and Marcotte (2004) outlined the two
perspectives for organizing gene function, called the “top down” and the
“bottom up” approaches. The top-down approach involves organizing all
known functional information into a standardized vocabulary and
organizing them into a hierarchical tree. This is similar to the current

ontological projects such as the Gene Ontology (Ashburner et al., 2000a). In
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the top-down view, the function of a gene is defined by all the terms it is
associated with in the ontology. However, in the bottom-up approach, genes
or proteins are first organized into networks based on their interaction with
each other. The interactions are determined using high-throughput data such
as co-expression and PPI data. Here, the function of a gene is determined by
its collaborators(C. v. Mering et al., 2003).Thus, the concept of gene function

is fluid depending upon the nature of the investigation.
2.2 Organizing functional information: Ontologies

The need for building ontologies for describing gene function was realised at
the beginning of the post-genomic era when functional analyses became
increasingly driven by high-throughput data. Traditionally, functional
information for genes in the various model organisms was maintained by the
organism-specific databases such as Flybase (Gelbart et al. 1997) for
Drosophila and the Saccharomyces Genome Database (SGD) (J. Cherry,
1998a) for Yeast. Although, such databases were very successful in their
respective communities they were independent with no co-ordination
between them. The potential of large scale functional analyses enabled by
technologies such as microarrays revealed the potential for meta-analyses or
interconnecting biological information on a global scale. A global functional
ontology would enable easy access to functional information integrated in an

unambiguous way.

The early approaches to describing function of a gene or a protein was based
upon natural language where the functional label depended on the
discretion of the investigator. Generally the functional annotation tended to

be simple phrases, that are non-standard with no organizational structure
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(Lan, Montelione, & Gerstein, 2003). Typical examples included gene names
such as redtape, roadblock, radish and turnip. In addition to the obvious lack of
organizational rule for naming, with thousands of new genes being
discovered on a regular basis, not all genes could be named inventively.
There is indeed a practical limitation to the number of gene names one can
come up with. Evidently, due to the large variability, such a naming system
was not amenable to analysis by a computer or even humans. The need for a
machine-friendly, standardized, functional naming system was paramount.
Some of the desirable characteristics of a potential functional naming scheme

are listed below (Pandey, 2006):

1. Wide coverage: The functional scheme should cover the entire gamut
of functions across as many organisms as possible. This is possibly the
most desired characteristic.

2. Standardized structure: Adopting a standard data structure for the
functional labels is imperative for minimizing variability between
labels. This also results in easy readability and makes the label
relatively computer friendly.

3. Hierarchical structure: Arranging the functional labels in a
hierarchical arrangement starting from a general functional category
leading to a specific function allows the researcher to select the
relevant functional granularity for the analysis.

4. Multiple functions: As discussed earlier, it is well acknowledged that
gene function is highly context-specific. To reflect the condition-
specific nature of gene function, any functional labelling scheme

would have to allow multiple labels for the same gene.
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5. Future proof: The functional labelling scheme would be expected to
be amenable to future additions. This would allow users to append

new functional information as and when available.

The idea of a standard system for organizing biological knowledge was first
proposed in the early 1990s with the introduction of the Enzyme
Classification (E.C) numbers (Bairoch, 2000). Since then several functional
classification schemes have been proposed such as EcoCyc (Keseler et al.,
2005) and SNOMED (Spackman, 1997)with a majority of them being
organism-specific systems. One of the early functional labelling schemes was
the MIPSFunCat (Mewes et al., 2004). MIPS was one of the first
classifications schemes to develop a machine-readable, standardized
vocabulary for organizing functional information which was organism-
independent. MIPS is widely used in bioinformatics-driven functional
analyses due to its wide coverage and standardized hierarchical structure.
However, one of the largest and the most comprehensive efforts in
organizing functional information is the Gene Ontology Project (Ashburner
et al., 2000b). The GO project was founded on strong ontological principles
and is currently the most widely used functional labelling scheme with more
than 7000 citations. In this thesis, generally, all the functional analyses and
results are reported based on GO and MIPS functional classifications. In the
following sections, we discuss the salient features of the two functional

classification schemes.

2.2.1 MIPS FunCat

MIPS Functional Catalogue (H.W. Mewes et al. 2004; Andreas Ruepp et al.
2004) was one of the early attempts to generate a standardized, functional

vocabulary. Unlike other functional schemes at the time such as EC (contd...)
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Chapter 2: Understanding Gene Function

Metabolism

01 Metabolism

02 Energy

04 Storage Protein

Information pathways

10 Cell cycle and DNA processing

11 Transcription

12 Protein synthesis

14 Protein fate
(folding, modification and destination)

16 Protein with binding function or cofactor requirement
(structural or catalytic)

18 Protein activity regulation

Transport

20 | Cellular transport, transport facilitation and transport routes

Perception and response to stimuli

30 Cellular communication/signal transduction mechanism
32 Cell rescue, defence and virulence

34 Interaction with the cellular environment

36 Interaction with the environment (systemic)

38 Transposable elements, viral and plasmid proteins
Developmental processes

40 Cell fate

41 Development (systemic)

42 Biogenesis of cellular components

43 Cell type differentiation

45 Tissue differentiation

47 Organ differentiation

Localization

70 Subcellular localization

73 Cell type localization

75 Tissue localization

77 Organ localization

78 Ubiquitous expression

Experimentally uncharacterized proteins

98

Classification not yet clear-cut

99

Unclassified proteins

Table 1: Major functional categories in MIPS FunCat

and the

corresponding category numbers. The numbers represent the main

category identifiers.
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nomenclature and SWISS-PROT (Boeckmann, 2003), MIPSFunCat focussed
solely on associating gene products and functional information. Here,
hierarchically structured keywords or a controlled vocabulary is used to
describe gene function. The MIPSFunCat scheme was initially designed for
Saccharomyces cerevisiae and was later extended to cover 11 other organisms
including Arabidopsis thaliana, Neurosporacrassa and Bacillus subtilis. To
account for the broad spectrum of biological processes found in the various
organisms, the FunCat annotation scheme consists of 28 main functional
categories that cover general functions such as cellular transport, metabolism
and protein activity regulation (Andreas Ruepp et al., 2004). Each of the
main functional categories is organized as a hierarchical tree-like structure.

The main functional categories of the FunCat are listed in Table 1.

As discussed earlier, an important consideration for a new ontology or
annotation scheme is machine readability and human usability. The FunCat
scheme was aimed to find a balance between the two contrasting
requirements. By design, the FunCat scheme is compact with a limited
number of terms. The FunCat terms generally offer a broad classification of
the gene of interest compared to similar vocabularies such as the Gene
Ontology Project. Each of the functional categories is assigned a unique two
digit number, as indicated in Table 1. The hierarchy between the functional
categories is depicted by using a dot between the two digit category
numbers e.g. 10 Cell cycle and DNA processing=>10.01 DNA Processing
—10.01.09 DNA restriction and modification=10.01.09.05 DNA conformation and
modification. The FunCat scheme allows for assigning a gene to multiple
categories to accommodate for the condition-specific nature of gene

functions.
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2.2.2 The Gene Ontology Project

The Gene Ontology (GO)(Ashburner et al. 2000a) is the most widely used
biological ontology for describing gene function and covers over 28 different
organisms. The current version of the GO has over 30,000 terms and over
50,000 relationships (The Gene Ontology Consortium, 2010). The GO was
developed in collaboration with a variety of biological databases such as
SwissPROT (Boeckmann, 2003), GenBank (Benson, Karsch-Mizrachi,
Lipman, Ostell, & Wheeler, 2008), MIPS (H W Mewes et al., 2004) and Pfam
(Bateman et al., 2004). The GO consists of two discrete parts; firstly, the
annotation of genes with GO vocabulary and secondly the vocabulary and
the relationships between the terms in the vocabulary. The annotation of the
genes to the terms is maintained by the individual organism-specific
databases such as TAIR (Rhee et al., 2003) for Arabidopsis. The GO terms are

created, organized and maintained exclusively by the GO consortium.

The GO is based on the Open Biological Ontologies (OBO) (Camon et al.,
2004) framework and consists of three discrete classification systems called
Biological Process, Cellular Component and Molecular Function. Each
classification system addresses a different aspect of a gene’s function.
Cellular Component describes the location of the gene products in the cell. It
is designed to describe the physical structure with which a gene or a gene
product is associated e.g. extra-cellular matrix, golgi apparatus. Molecular
Function is defined by GO as “the biochemical action characteristic of a gene
product”. The Molecular Function ontology describes the action without
specifying the locality of action or the time of action e.g. transporter, protein
stabilization. Biological Process is defined as “A phenomenon marked by
changes that lead to a particular result, mediated by one or more gene

products”. Biological Process terms refer to a biological event to which a
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gene product contributes. The process may involve physical or chemical
transformation i.e. the nature of the products before the event can be very
different from the end product. Typical Biological Process terms include

response to stress, translation and cell cycle.

biological process

is_a is_a
physiological process cellular process

N

cellular physiological process

iS_a is a

cell cycle cell division

pa rt_df/ &_a
M phase meiotic cell cycle o

part_of cytokinesis
is_a -

M phase of meiotic cell cycle

pzbﬂ '

s_a
cytokinesis after meiosis |

Figure 2: Structure of the Gene Ontology Biological Process Tree. The
example shown above is the GO structure for the term “cytokinesis after
meiosis I”. Only two (is_a and part_of) of the 5 types of relationships are

depicted in the figure.

The terms are arranged as a hierarchically arranged Directed Acyclic Graph
(DAG) with increasing levels of granularity or specificity. The broadest term
sits at the root of the DAG and the specificity increases with the distance

from the root. The relation between the terms can be one of the 5 types: is_a,
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part_of, requlates, negatively requlates and positively requlates. Although in the
earlier versions of GO, the Biological Process (BP), Molecular Function (MF)
and Cellular Component (CC) trees were discrete with no links between
them, the recent versions of the GO can accommodate links between the
trees e.g. A gene can be annotated to a MF term and can have a “regulates”

relationship to a BP term (The Gene Ontology Consortium, 2010).

The GO was designed to possess all the desirable properties for a biological
ontology discussed earlier in the beginning of this chapter. The GO has a
very wide coverage with nearly 28 databases such as SGD (J. Cherry, 1998b),
EcoCyc (Keseler et al., 2005) and TAIR (Rhee et al., 2003). The terms in the
GO follow a standardized format with each node having a unique GO id of
the form GO:XXXXXXX e.g. GO:0009560. The terms are arranged in a DAG
with well-defined relationship between them e.g. is_a. This allows the gene
products to have multiple parents and multiple children; this design allows
for denoting multiple functions for the same gene. The well-defined
structure makes GO relatively better suited for computational applications
and also for human readability. The three disjoint ontologies provide a
multi-dimensional view of gene function. Finally, the GO is designed to be
dynamic. As new research uncovers novel functions, the curators can easily
incorporate the knowledge into the GO. These features have heavily

contributed in making the GO the de facto standard for functional annotation.
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Functional analyses using
gene expression data

Functional analyses of genes and elucidation of gene function is central to
the aims of Systems Biology. This includes understanding biological systems
by uncovering novel gene interactions, reconstructing regulatory and
metabolic pathways and characterizing novel genes or proteins that may be

involved in these biological processes (Kitano, 2002).

Systems biology has adopted two main ideologies for functional analyses;
“top-down” and “bottom-up” approaches?’(Bruggeman & Westerhoff, 2007;
Noble, 2002). The bottom-up approach is largely based on prior knowledge.
Prior knowledge about various biological components such as a gene
regulatory pathway or reaction kinetics of enzymes is integrated and used to

model the behaviour of the biological systems of interest. In contrast, the

® Not to be confused with the “top-down” and “bottom-up” principles of organizing gene function
discussed in Chapter 2.
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Top-down approach is based on sampling data concerning the various
biological components in various experimental conditions. This is a generic
approach and does not require any prior knowledge regarding the biological
systems under investigation. Responses to experimental conditions can be
sampled at various levels such as the transcriptome using microarrays, the
proteome using the yeast 2-hybrid technique (Ito et al, 2001) or the
metabolome using mass-spectrometry (Fiehn, 2002). The choice of data
source depends entirely on the nature of the biological phenomena under
investigation. Large quantities of data obtained from these techniques are
mined using analytical techniques which are designed to look for patterns in

the data that may support a prior formed hypothesis.

Gene expression data-based functional analyses are based on the top-down
perspective of systems biology. The primary aim is to mine gene expression
data to characterize novel genes and uncover novel relationships between
genes. These interactions are summarized to form biological processes and
pathways. The Guilt-by-Association (GBA) principle has been the most
successful approach for mining functional information from gene expression
data. In the following sections, we will take a closer look at the GBA
principle and its general applicability in microarray data analyses.
Subsequently, we investigate the role of similarity metrics in GBA-based
analyses. These concepts are crucial for understanding the problem

presented in this thesis.
3.1 Guilt-by-association in microarray data analyses

Microarray experiments focus on identifying patterns of gene expression in
response to a treatment or stimulus such as chemical treatment or stress time

course or simply a comparison between two or more tissue types such as
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wild-type and mutant. The gene expression profiles from these microarray
experiments can be exploited for uncovering cellular pathways and the
interaction between the myriad pathways in a biological system. Appendix I
provides an overview of widely used microarray technologies and discusses
the strategies used in extracting functional information from raw microarray

data.

From the very beginning of the age of microarrays, it was evident that the
biological functions of genes could be uncovered by applying the principle of
guilt-by-association (GBA) (Quackenbush, 2003; Wolfe, Kohane, & Butte,
2005). In the context of gene expression data analysis, the GBA principle
states that genes with similar expression profiles may share similar functions. This
is based on the observation that genes encoding proteins that participate in a
metabolic pathway are generally found to be co-regulated. Also clusters of
genes with related functions often exhibit expression profiles that are
correlated under several experimental conditions (Eisen, 1998; Ihmels,
Bergmann, & Barkai, 2004; Stuart, Segal, Koller, & Kim, 2003). Therefore, the
principle of GBA is based on the idea that a co-ordinated gene expression
profile across several experimental conditions suggests the presence of a

functional linkage.

Although the GBA approach, in the context of gene expression, holds great
promise in the quest for uncovering gene function, its application is not
without criticisms. It is important to note that the ideal end point for the
description of a biological system would involve measuring protein levels
and their respective activities rather than being limited to mRNA expression
measurements alone. Studies by Gygi et al. (1999) have found that the
correlation between mRNA and protein levels is insufficient to predict

protein expression levels from quantitative mRNA measurements. In other
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words, the protein and mRNA abundance were found to be poorly
correlated. Studies such as the ones by Clare & King (2002) clustered yeast
microarrays and found poor correlation between the genes in the clusters
and the functional annotations. Based on such reports, it was argued that
GBA may be an unsatisfactory approach for understanding biological
systems. Also, it can be observed that genes that are co-regulated may not
necessarily be co-expressed and genes which are co-expressed are not
necessarily functionally related. For example, it is well known that gene
regulation is dependent on the presence of sequence motifs such as cis
elements. However, cis-regulatory motifs have been shown to occur by
chance in the genome leading to unexpected gene regulatory events. Events
such as these would be hard to detect when analyzing gene expression data

from single organisms.

Additionally, phenomena such as post-translational modifications of
proteins heavily influence protein structure and functions. Such
modifications cannot be detected by measuring gene expression alone. In
such instances, GBA would not be effective for elucidating the functional

roles of the genes.

Regardless of the criticisms, GBA has proven to be the most effective
approach for the functional analyses of microarrays. Allocco, Kohane, &
Butte (2004) show that there is a high degree of agreement between clusters
of gene expression profiles and GO-based functional categories. This result is
in contradiction to the results obtained by Clare & King (2002). Allocco et al.
(2004) explain the discrepancy by suggesting that their more comprehensive
approach is better suited for analyzing subtle similarities in gene expression
profiles. They also attribute their superior results to the use of a larger and

more comprehensive microarray collection. Regardless of the conflicts, a
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large corpus of microarray-based functional analyses techniques have been
leveraged based on the idea of GBA. The techniques vary in their complexity
ranging from simple correlation-based analyses (Manfield et al. 2006;
Obayashi et al. 2009; Steinhauser et al. 2004; Usadel et al. 2009), gene
expression profile clustering approaches (Andreopoulos, An, Wang, &
Schroeder, 2009)to the recent network-based approaches (Babu, Luscombe,
Aravind, Gerstein, & Teichmann, 2004; Long, Brady, & Benfey, 2008; Y.
Wang, Joshi, Zhang, Xu, & Chen, 2006; Wolfe et al., 2005; Zhou et al., 2005).

These techniques are briefly outlined later in section 4.2.
3.2 Similarity metrics for GBA analyses

At the core of the GBA principle lays the question of assessing the similarity
between gene expression profiles found in microarray experiments.
Microarray experiments take the form of a series of measurements taken at
various points in time, response to treatments, as a comparison between
biological samples or as a combination of the above. The vector containing
the set of measurements is called the gene expression vector or gene
expression profile. The primary step in any microarray-based functional
analysis is to calculate the distance or the similarity between every pair of
genes in the dataset. The resulting matrix of distance or similarity metrics is
the starting point for nearly all data mining methods such as clustering and

network construction.

The commonly used similarity measures can be divided into two main
classes; Distance metrics and Similarity metrics. Distance metrics include
Euclidean distance and City Block distance. Often used similarity metrics
include Pearson correlation coefficient, Spearman’s rank correlation

coefficient and Mutual Information. Among the various similarity and
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distance metrics available, Pearson correlation, Euclidean distance is more
widely used in microarray literature (Wen 1998; Khan et al. 2001; S K Kim et
al. 2001; Lein et al. 2007; Eisen et al. 1998) although recently Mutual
Information has also been applied in gene expression analysis (Margolin et
al., 2006; Priness, Maimon, & Ben-Gal, 2007). Each of the similarity metrics
has unique characteristics and the choice of the metric solely depends on the
nature of the analysis. One commonly used approach in gene expression
analyses is to select the distance measure which yields the best proportion of
functionally related genes (Gibbons & Roth, 2002). In following sections, we

present the properties of Pearson correlation and Euclidean distance.
3.2.1  Euclidean Distance

Euclidean distance is one of the most widely used distance measures in gene
expression analyses. It is simply the straight line distance between two

points (Fig.3).

In two dimensions, the distance is calculated using the Pythagorean

Theorem (Eq. 1).

dX,Y) = \/(xl —y1)? + (X2 — y2)?

(Eq.1)
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Y-axis

X1 V1

X-ax1s

Figure 3: The Euclidean distance between two points x and y in a two

dimensional space.

This concept is easily extended to higher dimensions found in gene
expression profiles. Considering two gene expression profiles X and Y
containing 7 measurements or dimensions, the distance between X and Y can

be calculated using the formula illustrated in Equation 2.

d(X,Y) =

Zn:(xi — ¥i)?

(Eq2)

Together with most distance measures, Euclidean distance follows a

common set of ground rules (Stekel, 2003) which are as outlined below:
Given two vectors x and v,

1. Distance between x and itself must be zero.
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d(x,x) =0

2. Distance between x and y must be equal to the distance between y and

X.

d(x,y) = d(y,x)

3. Distance between x and y cannot be negative.

d(x,y) >0 V(xy)

4. Given another vector z, the distance between x and y must be less than
the sum of the distances between x and z and y and z. This is also

called the law of Triangle Inequality.
d(x,y) <d(x,z) +d(y,z)

Euclidean distance measures the similarity between two expression profiles
based on the intensity of expression or the magnitude of the curve. In the
context of gene functional analyses where the aim is to identify genes with
similar expression profiles without considering the magnitude of expression,
this property of Euclidean distance can be viewed as a limitation. The
problem is illustrated in Fig.4, where we have three gene expression profiles
measured over 5 data points. In this example, Euclidean distance would
classify Profile B and Profile C as similar and Profile A would be considered
as dissimilar. Although Profile A and Profile B have similar expression

dynamics, they would be considered dissimilar.
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Figure 4: Hypothetical expression profiles of three genes over 5 data
points. The choice of similarity metric dictates the similarity between the
three expression profiles. Profile A and B would be considered similar
according to Pearson correlation whereas Profiles B and C would be

consider similar according to Euclidean distance.
3.2.2  Pearson correlation coefficient

Pearson correlation quantifies the similarity between two sets of gene
expression measurements. If we denote the two sets of measurements with
the notation (xi) and (yi), where iis an index from 1 to the total number of
measurements (denoted by 1), then the correlation coefficient r is given by

the formula (Eq. 3):

=1 (i =)y — ¥)
VI (g — )2 X (Vi — §)?

r(x,y) =

(Eq.3)
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The Pearson correlation coefficient is bound between -1 and +1. A correlation
coefficient of -1 between two gene expression profiles indicates that the
shape of one expression profile is the exact mirror of the other i.e. in cases
where one gene is activated and the other gene is correspondingly repressed.
A coefficient of +1 indicates that the shapes of the two expression profiles are
very similar to each other i.e. when two genes are similarly activated or
repressed. A correlation coefficient of zero indicates that there is no
similarity between the two expression profiles. Generally, in clustering
applications where distance metrics are used, the absolute value of the
Pearson correlation coefficient is subtracted from 1 to obtain a correlation

distance (Eq.4).
d=1-—|c|
where:

¢ is the correlation coefficient

(Eq.4)

In Pearson correlation, the significance of the correlation between two
vectors or expression profiles can be calculated to obtain a p-value. The
significance refers to the likelihood of having observed the correlation
simply by chance alone. The p-values are obtained by transforming the

correlation values to follow a t distribution using the formula in Eq. 5:

where:
r is the correlation coefficient

n is the number of pairs of data
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source: (Neter, Wasserman, Kutner, & Li, 1996)

(Eq.5)

Unlike Euclidean distance, Pearson correlation depends on the shape of the
curve rather than the intensity or magnitude. In Fig.4, profile A and profile B
would be classified as similar and profile C would be relatively dissimilar to
profile A and B. This key property makes Pearson correlation well suited for
clustering gene expression profiles. For this reason, we use Pearson

correlation coefficient for our analyses.

It is reasonable to believe that genes that belong to a biological pathway or
process can be positively or negatively correlated due to phenomena such as
negative feedback loops in biological pathways. One such example would be
the negative feedback loop found in the plant circadian clock machinery
where (Alabadi et al., 2001) have shown that two MYB transcription factors
called LHY and CCAL1 repress the activation of their activator TOC1. For
these core circadian genes, we retrieved microarray data from a time-series
experiment conducted on wild-type Arabidopsis (NASCArray Database ID
137). Here, gene expression was measured at 30 min, 1h, 3h, 6h, 12h and 24h.
We found that the LHY was positively correlated with CCA1 (r = 0.92) and
TOC1 was negatively correlated with LHY (r = -0.85) and CCA1 (r = -0.78).
For this reason, in this thesis, when considering the correlation between
genes belonging to the same functional category we use the absolute value of

the correlation coefficient (r = Icl).
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Limitations of
compendium-based
correlation analyses

4.1 The emergence of microarray repositories

There has been a dramatic increase in the number of published microarrays
for model organisms such as Yeast, Arabidopsis and E.coli in the recent
times. A PubMed search reveals that over 20,000 papers have been published
presenting microarray data in the last decade compared to just over a
hundred at the end of the 90’s. The earliest efforts to setup microarray
repositories were led by consortiums that had earlier collaborated on
sequencing projects. Some of the most comprehensive microarray
repositories include NCBI's Gene Expression Omnibus (Edgar, Domrachev,
& Lash, 2002) and EBI's Arrayexpress (Brazma, 2003) which are not limited

to specific organisms. The number of microarrays currently available for a
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few model organisms has been listed in the Table 2. In addition to these,
several organism-specific repositories have been set up such as NASCarrays
for A.thaliana, SGD for Yeast and Flybase for D.melanogaster. Generally, these
databases contain thousands of arrays from a wide spectrum of experimental
backgrounds such as time courses, treatments, tissues and phenotype
comparisons. Such organism-specific collections of microarrays are often

termed as a “compendium”, a term first used by T. R. Hughes et al.(2000).

S. no. Organism Number of Experiments
1 Arabidopsis thaliana 1349
2 Saccharomyces cerevisiae 1031
3 Mus musculus 6093
4 Escherichia coli 316
5 Homo sapiens 8913

Table 2: Number of microarray experiments available for model organisms

in NCBI's GEO repository as of 2011.

4.2 Co-expression analyses tools for microarray

compendia

Co-expression analysis simply involves identifying similarity in gene
expression over a set of experimental conditions. The classical approach to
microarray analyses involves identifying and comparing genes which have
been expressed or repressed at a given experimental condition. However,
instead of being limited to isolated experimental conditions, co-expression
analysis takes a global view where the gene expression dynamics are

considered over many experimental conditions.
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In the post-genomics era, the high-throughput sequencing efforts have
resulted in over 1200 organisms being sequenced till date (Szklarczyk et al.,
2011). However, even in well studied organisms such as Yeast and
Arabidopsis, the functional roles of only a fraction of the genes have been
experimentally ascertained. In the previous chapter, we presented how GBA
principle has been widely used in exploratory analyses of genes with
unknown functions. Co-expression analysis is one of the simplest
implementation of the GBA principle in microarray data analysis and can
reveal the functional and the organizational relationship between genes.
Although co-expression does not necessarily imply co-regulation of genes
(Joshua M. Stuart et al., 2003), a large number of studies have been presented
that support the applicability of co-expression analyses (e.g. Horan et al.
2008) used a co-expression based approach to identify 104 genes of
previously unknown gene function as being involved in abiotic stress

response in A.thaliana).

In this thesis, a microarray experiment is a set of microarrays measuring
gene expression over a time course or a series of treatments (as shown in Fig.
5A). A microarray compendium is a collection of such microarray
experiments (Fig. 5B). The primary step in a co-expression analysis is to
calculate the similarity between gene expression profiles over a set of
experimental conditions. This is generally done using various similarity
metrics such as the ones discussed in Chapter 3. However, Pearson
Correlation Coefficient is the most commonly used similarity metric in co-

expression analysis.

At the outset, co-expression analysis was performed on single microarray

datasets, where co-expression was measured over all the conditions (contd...)
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Figure 5:A. Microarray datasets are in matrix form, where the rows are
genes and columns are experimental conditions. In the figure, n is the
number of genes and m is the number of experimental conditions. B.
Several such matrices, each representing a microarray experiment are

appended together to form a microarray compendium.

in the experiment (Eisen et al. 1998). The aim was to uncover genes which
showed co-ordinated responses in the given experiment. However, with the
proliferation of microarray technology and easy availability of hundreds of
datasets as a compendium, it was realized that co-expression could be
measured over multiple experiments. Aggregating multiple microarray
experiments allowed investigators to uncover a global co-expression pattern.
The increased number of data points results in a more robust correlation as
any weak correlation signatures are combined over many datasets.
Importantly, the significance of the correlation between two gene expression

profiles increases with the size of the experiment (denoted by m in Fig.5A).

Often, co-expression analysis does not require any programming expertise as
a large number of microarray databases have integrated co-expression tools.

Based on the data used, co-expression tools are of two types:

A. Condition-independent co-expression
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In condition-independent co-expression analysis, the user inputs
microarray datasets without any discrimination between tissue types
and experimental conditions with the aim of using as many datasets
as possible. This approach is suitable for illustrating a more general
relationship between the genes and is for a general exploratory
investigation of gene function. Most of the co-expression tools and
resources available perform condition-independent co-expression
analysis. Examples of some of the condition independent co-
expression tools available are presented in the Table 3.

. Condition-dependent co-expression

Condition dependent co-expression analysis uses user-selected sets of
data for calculating co-expression. This approach is based on the
condition-specific nature of gene expression and also gene function.
The promiscuous nature of gene interaction and its effect on co-
expression based function elucidation is discussed in detail in the later
sections of this chapter. Generally, condition-dependent co-expression
tools allow users to specify the type of experiments they would like to
use in the analysis. Users can choose experiments with common
biological themes such as specific plant organelles or cell lines
allowing users to analyze co-expression in the context of the pre-
defined biological backgrounds. Table 3 presents examples of

condition-specific co-expression tools available online.

Regardless of the type of data available, a co-expression database can be

queried either using a single gene or multiple genes or a gene list. Most co-

expression databases allow both single and multiple genes as queries. In the

single gene approach, the query gene is often called the “bait”. The bait gene

may be a transcription factor or a key member of a gene regulatory pathway
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of interest. The bait is used to retrieve a list of genes which are correlated
with the bait. The size of the list is generally limited by a correlation
threshold or simply by a limit on the length of the list such as top N
correlated genes. In the multiple gene query, a list of genes of interest can be
used to query the co-expression database. The aim of performing a multiple
gene query is to retrieve co-expression information between the query genes
themselves. This approach can be used to search for co-expressed gene
combinations between two gene families (Usadel et al. 2009). Multiple gene
querying technique can also be used to illustrate any co-expression between
genes involved in a protein-protein interaction dataset. Ma, Gong, & Bohnert
(2007) adapted multiple gene co-expression analysis to retrieve a list of bait
genes that were then used to re-query the co-expression database. This
approach was able to retrieve functional relationships between genes which

were previously undetected using primary correlators alone.

SI.No Tool Condition dependent Author
ACT No (Manfield et al., 2006)
2 Genevestigator No (Zimmermann et al., 2004)
(Obayashi, Hayashi, Saeki, Ohta, &
3 ATTED-II Yes o
Kinoshita, 2009b)
. (Toufighi, Brady, Austin, Ly, &
4 BAR Expression Angler Yes
Provart, 2005)
(Srinivasasainagendra, Page,
5 Cress-Express No . .
Mehta, Coulibaly, & Loraine, 2008)
6 CSB.DB Yes (Steinhauser et al., 2004)
(Mutwil, Obro, Willats, & Persson,
7 GeneCAT No
2008)
8 PED No (Horan et al., 2008)

Table 3: List of condition-dependent and independent tools available for

co-expression analyses

In gene functional analysis, co-expression data is generally subjected to

downstream analyses such as Gene Ontology term enrichment analysis (Al-

Shahrour, D’iaz-Uriarte, & Dopazo, 2004; Eden, Navon, Steinfeld, Lipson,
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&Yakhini, 2009; D. W. Huang, Sherman, & Lempicki, 2009; Maere, Heymans,
& Kuiper, 2005; Q. Zheng & Wang, 2008) on the members of the correlated
genes list. This can provide an abstracted view on the biological roles of the

genes in the correlated genes list.

An emerging form of co-expression analysis is the construction of gene
networks from co-expression data. In gene interaction networks, genes are
represented as nodes in a fully connected graph where the edges are
weighted by the co-expression scores. The central aim of this approach is to
illustrate the organizational and functional relationships between genes of
interest. Co-expression data can be visualized as networks using network
drawing tools such as Pajek (Batagelj & Mrvar, 1998), Cytoscape (Shannon et
al., 2003a), BioLayout (Enright & Ouzounis, 2001) and Gephi (Bastian,
Heymann, & Jacomy, 2009). Co-expression networks, along with many other
forms of biological networks, have been shown to exhibit a scale free
architecture similar to the Internet or Social networks (A.-L. Barabasi &
Oltvai, 2004; Jeong et al., 2000). The scale-free nature of biological networks
presents certain interesting characteristics. One such property is the presence
of a large number of genes (hubs) with small number of interactions (edges)
and similarly a small number of genes have a large number of connections.
Also, biological networks are very robust and not susceptible to a
breakdown when nodes are deleted randomly (Albert, Jeong, & Barabasi,
2000). Importantly, representing co-expression data as networks allows for
the application of graph theoretical approaches for elucidating gene function

e.g. GeneMANIA (Mostafavi, Ray, Warde-Farley, Grouios, & Morris, 2008).
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4.3 Poor correlation between functionally related

genes

Following the discussions in the preceding chapter (Section 3.1), it is evident
that microarray data based functional analyses are predominantly based on
the GBA principle. The majority of the techniques developed for gene
function elucidation are aimed at identifying groups of genes that are co-
expressed. This is based on the assumption that genes that are co-expressed
could be co-regulated. This assumption is indirectly supported by studies
such as (T Ideker et al., 2001; Tavazoie, Hughes, Campbell, Cho, & Church,
1999; Wolfsberg et al., 1999) that show that clusters of similar gene
expression profiles often share common upstream sequence motifs.
Therefore, high correlation is accepted as an important indicator of

functional similarity.

Drawing from the principle of GBA, it is reasonable to expect that the
distribution of correlation coefficients between genes belonging to the same
functional category show high positive correlation or both positive and
negative correlation. However this is not the case. As presented previously
in Chapter 1, for A.thaliana genes belonging to the GO Biological Process
category GO:009753 “Response to Jasmonic acid stimulus”, we retrieved
microarray data from a compendium of 44 microarray experiments

containing 756 arrays.
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Figure 6: Distribution of correlation coefficients among genes in the GO
Biological Process category GO:009753 “Response to Jasmonic acid
stimulus” shows poor correlation overall. The correlation was calculated
using data from 44 experiments (756 microarrays). The distribution is

clearly enriched with low correlations.

The details of the experiments contained in the compendium are outlined in
Chapter 5. Correlation coefficient between the expression profiles of every
gene-gene pair were calculated over all the experiments in the compendium
(the compendium contains 44 microarray experiments, containing 756
microarrays in total). The correlation coefficients were filtered for significant
correlations (p<0.05) and were plotted as a histogram, shown in Figure 6. We
found that only 18.6% of the gene pairs showed an absolute correlation
above 0.5. In general, most of the gene pairs were found to share poor
correlation despite being annotated to the same functional category. The
poor correlation between the genes limits the effectiveness of GBA in gene
expression-based functional analyses. In fact, if the correlation among genes
in the same functional category is close to zero, the genes that may belong to

that functional category may not be inferred based on correlation among
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genes already annotated to that functional category. Importantly, we found
this effect across over 30 GO Biological Process categories we tested (data not
shown); we also found it to be independent of the functional classification
systems (e.g. GO Biological Process, MIPS) and organisms (e.g.Yeast,
A.thaliana).

4.4 Causes of poor correlation among genes

annotated to the same functional category

In this section, we explain how there could be poor correlation among genes
which belong to the same functional category. We hypothesized two possible

sources of poor correlation.
A. The extensive cross-talk present between various biological processes

Biological processes such as signalling, gene regulation and metabolic
pathways involve cascading events and seldom occur in isolation. The
cascade may contain a number of genes or proteins interacting with other
genes or proteins downstream. Cascading events such as signalling do not
necessarily occur linearly but rather through a complex web of interactions
where genes are shared between pathways to bring about a non-linear
response. These specific interactions between genes of multiple pathways are
termed as Crosstalk. The phenomenon of signalling crosstalk has received
much attention in biology as it has been observed that the specificity of
biological responses to cues is largely due to the combinatorial integration of
crosstalk. This phenomenon is salient in the plant defence response where in
the absence of a dedicated immune system, plants activate a series of
complex responses that lead to local and systemic induction of anti-

pathogenic defences (Hammond-Kosack & Jones, 1996). Inherently, crosstalk
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is highly condition-dependent. Based on the condition, genes may interact or
not interact with other genes in the same biological pathway. An example
would be the crosstalk between phytochrome and cryptochrome signalling
in A.thaliana where the proportion of blue, red and far red light in white light
is interpreted by the organism is different ways (Casal & Mazzella, 1998). In
experiments studying hypocotyl elongation, under short exposures of blue
light in a red light background, the activity of the cryl gene and phyB are
related. However, during prolonged exposure to blue light the activity of
cryl and phyB are seen to be independent. Therefore, although cryl and
phyB participate in the same biological process, the correlation between
them would be condition (i.e. blue light in a red light background) specific.
Similar examples can be found in various other organisms such as the
crosstalk in the glucose signal transduction pathways in Yeast (Kaniak, Xue,

Macool, Kim, & Johnston, 2004).
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Figure 7: Phenomenon such as biological cross-talk can lead to poor

correlation between genes in the same biological pathway. In condition 1,
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genes in pathway1 are highly correlated and the same applies to genes in
pathway2. However, in condition 2, as pathway?2 is only partially activated

the overall correlation could be lower.

To understand the effect of the condition dependent-nature of signalling
crosstalk on correlation based functional analyses, consider two pathways
(as shown in Fig. 7), pathwayl with genes A, B, C and pathway2 with genes
D, E and F. Consider a condition, condition 1, where pathwayl and
pathway?2 are independent of each other. In this case, correlation between
genes D, E and F can be expected to be high. Consider another condition,
condition 2, where gene B from pathway2 interacts with gene C from
pathwayl. In such a scenario, the correlation between genes D, E and F

would be lower as gene F would not have been activated.
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Figure 8: Simulated gene expression profiles for GeneX and GeneY over 12
data points. A. In the ideal case, GeneX and GeneY would be highly
correlated even in the presence of noise. B. In the absence of a signal, only

the inherent noise remains which is often very poorly correlated.

Therefore, it is possible that the compendium of microarray experiments
used to calculate the correlation coefficients for the genes in Fig.6 contained a
large number of experiments that are functionally unrelated to the functional

category of interest.
B. Noise contributes to poor correlation

We hypothesized that another reason for the poor correlation between genes
from the same functional category it could be experimental artefact due to
noise in the amount of mRNA measured in the experiment. Consider a
condition where two functionally similar genes are induced over a time
course. The expression profiles of the two genes would be highly correlated

regardless of the presence of a reasonable amount of noise. Consider a
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different condition, where the two genes have not been induced. Ideally, one
would expect an absence of any signal, resulting in high correlation between
the two genes. However, in the absence of any signal, only the noise is
recorded which results in poor correlation between the two genes. To
understand this better, we ran a simulation with artificial data where two
genes, GeneX and GeneY, had been induced and their expression profile was
been measured over 12 time points. Under ideal conditions, the two genes
were found to be highly correlated with an r value of 0.99 (Fig. 8A). Noise
was introduced by adding random values drawn from a Gaussian
distribution to each of the measurements in the signal. However, even when
the signals were noisy, the two genes were highly correlated with an r of 0.95

(illustrated by Eq.6).
c(s; +nq, s, +ny) =0.95
(Eq. 6)

Where, s1 and sz are the signal vectors corresponding to GeneX and GeneY.

n1 and nzare the corresponding noise vectors.

Consider an experimental condition where GeneX and GeneY have not been
activated (Fig. 8B). In the ideal case, no mRNA would be recorded and hence
there would be no signal. In this case, the two genes were found to be highly
correlated with r = 1. However, in the real world, in the absence of any signal
only noise is recorded resulting in a very low r value of 0.1(illustrated by Eq.

7.
C(®1 + nl, @2 + le) = 01

(Eq.7)
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Where, @1 and @: are the signal vectors corresponding to GeneX and GeneY.

n: and nzare the corresponding noise vectors.

4.5 Poor correlation can rapidly dilute overall

correlation in the compendium

The high level of technical noise due to the sensitivity of microarray
technology has been widely discussed in literature (Klebanov & Yakovlev,
2007; E. Marshall, 2004). Several techniques such as various normalization
techniques such as the ones discussed in Appendix I have been incorporated
into microarray data analysis to limit the effect of noise on the experimental
outcome. However, the effects of noise on the overall analysis when
microarray data are pooled together such as in a compendium has not been
very well investigated. We believe that for reasons discussed in section 5.4,
genes annotated to the same functional category could be poorly correlated
in certain experiments contained in the compendium. We believe that the
instances of poor correlation can have a diluting effect on the overall
correlation. We demonstrated the diluting effect using artificial data.
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Figure 9: Plot showing the change in average correlation as the number of
data points is increased. It can be clearly observed that there is high
average correlation up till the 200* data point. As the noisy data points are
added, the average correlation drops rapidly.

The artificial dataset contained 10 vectors representing genes, each with 1000
data points representing measurements from experiments. The first 200 data
points were generated to produce a high correlation between the 10 genes
and the next 800 data points were generated at random to represent noisy
experiments. We measured the average correlation between the genes as
each of the data points were added incrementally (Fig.9). As expected, the
first 200 data points showed a high average correlation (r = 1). However, as
the noisy data points were added, the average dropped dramatically to a
very low value (r = 0.2). This result suggests that correlating genes over a
large number of arbitrarily chosen experiments may not necessarily be

optimal.

4.6 Disregarding functionally irrelevant experiments

improves correlation

For the reasons outlined in the previous sections, we believe that correlation
between genes annotated to the same functional category could be improved
by limiting the sources of noise. In order to limit noise, we propose using
only those experiments that hold some relevance to the functional category
of interest and eliminating any irrelevant experiments from the analysis. We
believe that using only the biologically relevant experiments in the analysis
can have a significant impact on the correlation between the genes in the
same functional category. To demonstrate the improvement in the

correlation, we again consider the distribution of correlation, presented in
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Fig.10. Here, for genes belonging to the GO category “Response to Jasmonic
acid stimulus”, we calculated the correlation coefficients using all the
experiments in the compendium without any discrimination in the choice of
the experiments. We observed that this resulted in very poor correlation
between the genes, even though they belonged to the same functional
category. We repeated this experiment; however, we calculated the
correlation between the genes using data from only those experiments that
are deemed functionally relevant. We selected the experiments based on
literature knowledge. For the GO category “Response to JA stimulus”
presented in the example, we selected the Wounding Times Series

experiment and the M] (Methyl Jasmonate) treatment Time Series

experiment.
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Figure 10: A. The distribution of correlation coefficients for genes in the
GO category “Response to JA stimulus” was enriched with low
correlations with much of the correlations around zero when a large
functionally hetergeneous collection of microarrays was used. B. Using
only functionally relevant datasets, there is an enrichment of higher
correlation values. To account for the shorter vector length, all the

correlation coefficients were filtered by a p-value threshold of 0.05.
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From Fig.10B we can see that the distribution of the correlation coefficients is
enriched with higher correlations. By visual inspection, we see that this
distribution is significantly different from the one presented in Fig.10A
where all experiments were used in the correlation. This was also confirmed
by a t-test performed to test whether the two distributions were significantly
different, which resulted in a very significant p-value of 9.8245e-15. It could
reasonably be argued that the improvement in correlation observed when
selected experiments are used is down to the smaller number of dimensions
of data points to correlate. To account for this bias, we applied a p-value
threshold (p< 0.05) and considered only those gene pairs that passed this
threshold.

We believe that the improvement in correlation in the functional category of
interest (as observed in Fig.10B) is due to the use of experiments functionally
relevant to that category. To demonstrate that the improvement was not just
due to shorter vector length in the chosen experiments compared to using all
experiments, we paired GO categories that we deemed to be functionally
dissimilar to each other e.g. Cell wall biogenesis - Response to osmotic stress,
Root hair elongation- Response to fungus, and Cell wall assembly — Glucose
metabolic process. By selecting experiments relevant to only one GO
category in the pair, we can show that the improvement in correlation is
relatively greater in the GO category for which the relevant experiments
were selected. For each pair of functional categories, we retrieved genes
belonging to the categories and calculated correlation using all the
experiments in the compendium (The details of the experiments contained in
the microarray compendium are reported in Section 5.3.1 of Chapter 5).

The correlation matrix for genes belonging to each GO category in the pair

was visualized as a heatmap (Fig.11A). Subsequently, the correlation matrix
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was re-constructed using only those experiments that were functionally
relevant to one of the GO categories in the pair ( e.g. For the GO category
pair “Cell wall biogenesis- Response to osmotic stress”, we select
experiments that are relevant only to Response to osmotic stress). The
heatmap of the correlation matrix highlights the selective improvement in
correlation among genes in the GO category pairs (Fig. 11B). The results from
various GO category pairs selected from A.thaliana and Yeast are presented in
Fig.11, where it can be observed that when all experiments were used for
calculating the correlation, the correlation is generally lower among both the
GO categories in the pair. However, in the second instance, where
experiments relevant to one of the GO categories in the pair were used,
although an increase in correlation was observed in both GO categories,

there was a greater increase in the GO category of interest.

We quantified the change in correlation when biologically relevant
experiments are used as compared to all the experiments in the dataset. The
results are presented in Table 4. We computed the ratio of the averages of the
absolute value of the correlations obtained between genes in the GO category
of interest and the rest of the gene pairs in the test. In other words,
considering the four quadrants in which the heat maps of the correlation
matrices are divided (see Fig.11), we computed the ratio between the average
of absolute values in the first quadrant and in the remaining three quadrants
(termed ‘background’). As expected, the ratio is much greater when
biologically relevant experiments are used in the calculation.

Figure 11: Figure 11. Heatmap of the correlation matrix for pairs of Gene
Ontology terms. A. Correlation calculated using all experiments in the
microarray collection. B. Correlation calculated using experiments relevant

to only one of the GO terms in the pair (marked in bold). In both Fig.11A

50



and Fig.11B, warmer colours indicate stronger correlation. The heatmaps
are demarcated by green lines to indicate portions representing the two
GO categories in the pair. Results for both Arabidopsis and Yeast are

presented (Figure is presented in the following page)
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Chapter 4: Limitations Of Compendium-Based Correlation Analyses

ARABIDOPSIS THALIANA

All Experiments Selected Experiments
. . Ratio of .
GO:1D Ratio of correlation atio o . Experiments
t-test p-value correlation | t-test p-value
averages selected
averages
Response Methy|
Jasmonate
to fungus treatment;
vs. Root 4.147 0.5625 6.233 0.1443 Y
. Wounding;
hair
. Psuedomonas
elongation . .
infection
f:g:l’:t Cold stress
122 0.1040 4.147 0.1270 time series in
Cell wall
. . shoots
biogenesis
Response
to heat vs. Heat stress
Anatomical | 1.414 0.9986 2.639 6.62E-06 time series in
structure shoots
formation
Response Osmotic stress
to salt in shoots; Salt
stress vs. 3.081 0.9938 3.797 0.2087 Y
stress in
Cell wall
. . shoots;
biogenesis
YEAST
Glucose
metabolic Two glucose
process vs. | 2.057 0.0673 3.147 0.0481 time series
Cell wall experiments
assembly
Response
to osmotic Hydrogen
stress vs. 2.492 0.9091 5.143 0.7273 peroxide
Cell wall treatment
biogenesis
Aerobic
Aerobic Phosphorus,
Respiration Nitrogen,
vs. Cell 3.459 0.7180 4.751 0.5042 Sulphur time
’ series; Aerobic
Death .
anaerobic
transition

Table 4: The ratio of average correlation among genes in the GO category

of interest (in bold) and the genes in the other GO category in the pair is

shown. A t-test was performed between the two sets of correlation and the
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p-values are presented. Results are presented for both selected
experiments and all experiments in the collection.
ARABIDOPSIS THALIANA
GO:ID All Experiments Selected Experiments
. No. of Average No. of No. of Average
No. of positive . . .
eorrelations negatlvg absqutt.e p05|t|ve. negatlvg absolutt.a
correlations | correlation | correlations | correlations | correlation
1. | Response to
Abscisic acid 21 0 0.184 474 314 0.237
stimulus
2. | Response to water
deprivation 14 |2 0.198 318 234 0.340
3. | Response to
Jasmonic acid 14 0 0.214 57 22 0.256
stimulus
4. | ResponsetoHeat |, |, 0.200 73 24 0.244
shock
5. | Response to
Hyper-osmotic salt | 0 0 0.177 6 3 0.227
stress
YEAST
1. [ Antibiotic o |o 0.130 2 0 0.158
resistance
2. | Cellular glucose
metabolic process | 49 15 0.273 198 102 0.311
3. [Hexose 73 |24 0.267 251 160 0.258
metabolism
4. | Aerobic respiration | 34 1 0.269 206 30 0.320

Table 5: Increase

in the number of significant (Ir| > 0.7) positive and

negative correlations and the average correlation when selected relevant

data are used.

As illustrated by Figure 11, the improvement in correlation is specific to the

GO category for which the experiments are selected. To quantify this, we

perform a one tailed t-test between the distribution of correlation obtained

when selected experiments (experiments relevant to GO categories indicated

in bold in Figure 11 and Table 4) are used and the distribution when all
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experiments are used. The t-test p-values (shown in Table 4) indicate that the
distribution of correlation among genes in the GO category of interest is
greater compared to the other GO category. Here a higher p-value means
that when functionally diverse experiments are used the functional
categories are less distinguishable from each other. It is interesting to note
that in Table 4, although the p-values reported are not significant, there is a
relative decrease in the p-values when the biologically relevant experiments

are used.

We see that selecting experiments improves correlation generally in most GO
Biological Process categories both in Yeast and Arabidopsis. To highlight the
improvement in correlation, we compare it with the correlations obtained by
using all experiments in the collection. We counted the number of gene pairs
with a correlation of 0.7 and also for gene pairs with correlation below -0.7.
Additionally, we also measured the average correlation among genes when
selected experiments are used and when all experiments are used. The
results are presented in Table. From the results it is clear that selecting
experiments improves correlation among genes belonging to a functional

category.

The difference in distributions found in Fig. 11A and Fig. 11B reflects the
findings of (Adler et al., 2009) that acknowledged the pitfalls of using large
microarray collections in co-expression analyses. Our results suggest that it
is imperative to identify experiments which are relevant to the functional
category of interest. However, manually identifying the relevant
experiments may not be straight forward due to many factors. Firstly, in a
typical compendium containing thousands of arrays it would be non-trivial
to consider their literature individually. Secondly, literature knowledge is

seldom exhaustive; the relevant experiment may not be obvious as biological
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process of interest may have been induced even in experiments where they
are not the primary focus of investigation. These factors underline the need
for a method to automate the selection of relevant experiments from a

compendium of microarray experiments.
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A novel method for
selecting relevant
experiments

5.1 State-of-the-art

In Section 4.4 of Chapter 4, we discussed how natural phenomena such as
condition-specific gene expression can lead to poor correlation among genes,
especially when large collections of microarray experiments are used. In
correlation-based GBA analyses, several approaches were developed to
account for the condition-specific nature of gene expression. Primarily, these
approaches were based on the idea of biclustering. In the following section,
we describe the concepts behind biclustering and outline some of the widely

used biclustering algorithms.
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5.1.1 Biclustering

In the functional analysis of gene expression data, the goal is to identify sets
of genes or experimental conditions with similar expression profiles.
Generally for this task, clustering techniques are applied that allow grouping
of objects based on a selected feature. In case of gene expression data, genes
are grouped based on correlation between gene expression profiles as the
teature. Although classical single dimension clustering has been successfully
applied for various functional analyses (Ben-Dor, Shamir, & Yakhini, 2004;

D’haeseleer, 2005; Eisen, 1998), they suffer from two major drawbacks:

1. Single dimension clustering techniques such as k-means and
hierarchical clustering (Tibshirani et al., 1999) and Self-organizing
Maps (SOM) (Toronen, 1999) applied to gene expression data, find
groups based on the global similarities between the expression
profiles. When applied to large collections of microarray data, any
similarity between the gene expression profiles in a subset of
experimental conditions is lost (J. Wang, Delabie, Aasheim, Smeland,
& Myklebost, 2002).

2. Single dimension clustering techniques do not allow for over-lapping
clusters. However, as discussed in Chapter 2 and in Chapter 5, genes
are co-expressed depending on the experimental condition. Therefore,
it is reasonable to expect that genes can be in different clusters under

different experimental conditions (Madeira & Oliveira, 2004).

Uncovering local patterns of expression similarities is considered vital to
gene expression analyses, which led to the application of biclustering
techniques in gene expression data analyses (Cheng & Church, 2000). In

contrast to the single dimension clustering algorithms, biclustering
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algorithms are designed to cluster in two dimensions. Biclustering
techniques when applied to gene expression data aims to cluster both genes
and experimental conditions simultaneously. The concept of biclustering

gene expression data was first proposed by Cheng and Church (2000).

The conceptual difference between clustering techniques and biclustering is
illustrated in Fig.12. Single dimension clustering can be applied to group
genes (Fig. 12A) or can be applied to group experimental conditions

(Fig.12B). In both cases, the clusters are discrete with no overlap between the

clusters.
experiments experiments experiments
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Figure 12: Illustration of the three basic approaches for clustering a matrix
of gene expression profiles. A. Genes (rows) are grouped into clusters C1,
C2, C3 and C4 based on similar expression in the experimental conditions.
B. Experimental conditions (columns) are grouped into clusters C1, C2, C3
and C4 based on similar genes. C. Groups of genes and groups of
experiments overlap to identify sub-groups where both genes and
experimental conditions are similar. Clusters C1 and C3 overlap to form a
sub-cluster represented by C2. C4 is a cluster with no overlaps, but is a

discrete cluster of similar genes in similar experimental conditions.
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Biclustering techniques aim to identify subgroups of experimental conditions
where a subgroup of genes is co-expressed (Fig. 12C). Also, the clusters can
overlap allowing for genes to associate with multiple clusters of conditions.
Biclustering algorithms can find either one or multiple biclusters within a
given gene expression dataset. Generally, biclustering techniques can handle
multiple biclusters and allow for apriori definition of the number of clusters
(A Califano, Stolovitzky, & Tu, 2000; Getz, Levine, & Domany, 2000;
Ramanathan, 2001; Tanay, Sharan, & Shamir, 2002; Yu, 2003). Madeira &
Oliveira(2004) provide an exhaustive review of biclustering techniques

applicable to gene expression data.

5.2 Motivation for a novel experiment selection

technique

In this work, the aim is to identify microarray experiments that are
functionally relevant to a functional category of interest as genes in the
functional category of interest are expected to be co-expressed in the
experiments identified as relevant. Although the application of biclustering
techniques in gene functional analyses was aimed at uncovering condition-
specific co-expression, it is not designed to identify microarray experiments
as a whole but only the experimental conditions that lead to a high clustering
metric. Biclustering techniques when applied to microarray collections will
identify clusters which may contain experimental conditions from different
microarray experiments disregarding the integrity of the experiment. This is
a limitation in biclustering experiments measuring time-courses where a
bicluster containing a group of time points from different time-course
experiments would be unreasonable. Further, biclustering is less effective on

large microarray collections as the tendency to find local patterns due to
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noise also increases. Importantly, biclustering techniques are inapplicable in
network-based analyses such as (Long et al., 2008; Mostafavi et al., 2008). It is
important to note that although biclustering techniques have been applied
with the aim of identifying condition-specific gene expression, it is distinct
from our aim of identifying microarray experiments where genes belonging
to a particular functional category are co-expressed.

In Section 4.3 of Chapter 4, we demonstrated that large functional
heterogeneous collections of microarray datasets can lead to poor correlation
among genes in the same functional category. In order to understand the
causes of the poor correlation in the above mentioned scenario, we presented
two hypotheses. Firstly, the poor correlation observed could be noise from
the experimental technique. Secondly, we believe that the cause of the poor
correlation lies in the nature of gene function itself. It is well known that
gene expression and subsequently gene function are highly-condition
dependent. Therefore, genes belonging to the same functional category may
correlate only when the right biological conditions are considered.

In our investigations, we saw that when a large number of heterogeneous
experiments are pooled together, the condition-specific nature of gene
expression may have a significant influence on the overall correlation
between the genes. We saw that, poor correlation between genes in
functionally irrelevant conditions can rapidly dilute the overall correlation
between the genes. Therefore, any functional relationship between the genes
indicated by higher correlation would be masked. From our investigations, it
was evident that choosing the right experiments was critical to the efficacy of

GBA-based gene functional analyses.

However, identifying experiments relevant to a functional category is a non-

trivial task. The obvious method would be to assess the relevance of a given
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microarray experiment using literature information. However, it is well
known that literature knowledge is seldom exhaustive. Furthermore, the
relevance of an experiment to a certain gene function or a biological process
may not be immediately obvious. Experiments that are deemed irrelevant by
an investigator could in fact withhold significant information regarding the
biological process of interest as well as cross-talk between pathways. Also,
the analysis of literature becomes increasingly impractical with the size of
the microarray collection. These limitations provide a firm motivation for a
computationally-driven method for identifying experiments relevant to a
gene functional category or a pathway. In the following sections, we present
a novel algorithm for systematically identifying experiments relevant to a
functional category or a pathway. Importantly, this algorithm is able to
identify relevant experiments not obvious by searching the literature on the

experiments.

5.3 A novel algorithm for the selection of relevant

experiments

5.3.1 Understanding functional relevance

Prior to the task of identifying experiments relevant to a functional category
of interest, it is necessary to understand the concept of “relevance” in the
context of correlation-based functional analyses. Let us consider the
fundamental aim of a GBA analysis. Given a functional category of interest,
the aim is to identify novel genes which may belong to that category.
Therefore, it can be stated that relevant experiments are those which are
“best” for identifying genes which may belong to that category. However,

this definition serves as only an abstract description of “relevance”.

62



For the task of developing an automated approach for identifying relevant
experiments, one could simply consider relevant experiments as those where
genes annotated to the functional category of interest are perturbed. It is
reasonable to expect that in experiments where the functional category of
interest has been perturbed, it is likely that the genes would show high
correlation. However, simply searching for experiments where genes in the
functional category of interest show high correlation is an inadequate
approach. To understand this better, let us consider a correlation matrix
constructed using data from an experiment of interest (Fig. 13).The area of
the matrix denoted by A represents the correlation among genes annotated
to the functional category of interest and B represents the correlation
between genes annotated to all other functional categories and the genes
annotated to the functional category of interest.

Functional category
of interest Background

Functional category

of interest

Figure 13: Correlation matrix for functional category of interest and the
background. The area A represents correlation among genes in category of
interest and B represents correlation between functional category of
interest and the background. Note: In the correlation matrix for the
functional category of interest only the area above the diagonal (indicated
in green) is considered as the correlation matrix symmetrical.

Let us consider an experiment where genes in the functional category of

interest are perturbed, and A (Fig.14) contains highly correlated gene pairs.
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However, in such an experiment it is highly likely several other biological
functions were perturbed and as a result B would be populated by a
significant number of highly correlated gene pairs. This could be due to
cross-talk between various biological processes, processes that act in tandem
with the functional category of interest or simply due to noise. In a GBA
analysis where novel genes belonging to the functional category of interest
are to be identified, the above outlined scenario would generate a large
number of false positives ie. many genes which belong to different
functional categories may be falsely identified as belonging to the functional
category of interest due to the existence of high correlation. Thus, selecting
experiments simply based on the correlation between the genes in the
functional category of interest would be unreliable. For this reason, prior to
defining the “relevance” of an experiment to a functional category, we define
a set of genes that we term as the Background set (as illustrated in Fig.14). For
GO functional terms, the background set is defined as the genes annotated to
all the GO terms except the GO term of interest and its children in the GO
tree. The root of the GO tree is not considered part of the background set.
Similar to the GO terms, for MIPS functional classification, all genes
annotated to MIPS terms except to the MIPS term of interest is considered as
the background. For KEGG pathways, the background set is simply all genes
annotated to all the pathways described in the KEGG database except the
pathway of interest. An experiment would be considered relevant if it can
differentiate between the genes in the functional category of interest and the

background set.
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Gene Ontology Biclogical Process

Root

. Background set

. GO term of interest

Figure 14: The contents of the background set with respect to the
functional category of interest are illustrated in this figure. The dark green
node depicts the chosen functional category of interest. The child nodes
(coloured light green) are automatically considered to be part of the
functional category of interest. The background set (in blue) is made of all
the other nodes in the GO DAG that do not belong to the set containing

the functional category of interest.

5.3.2 The experiment selection algorithm

Given a functional category of interest and a collection of microarray
datasets, the task of the algorithm would be to select a subset of experiments
that are optimal at differentiating between the genes in that functional
category and those from the background. Our idea was to choose a feature
that, if an experiment is relevant, would be able to differentiate the genes in
the category of interest from those genes in the background set. The set of
relevant experiments can then be found by maximizing the discriminative

ability of the chosen feature. In other words, the set of relevant experiments
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will be the one for which the feature is best at discriminating the genes in the
category of interests from the background ones. Since, we were primarily
dealing with gene expression data, we chose the Pearson Correlation
Coefficient (PCC) as the feature. We used the t-test to measure the
discriminatory ability of the PCC in a given experiment. The t-test measures
whether the distribution of correlation coefficient for the genes in the
functional category of interest is higher than the correlation among genes in
the background. The t-test is based on the null hypothesis that the two
distributions of correlations are the same and it is assumed that the
distributions are independent.

With typical microarray collections containing hundreds of experiments,
clearly, an exhaustive search of the space of the possible subsets of the
experiments is computationally intractable (the number of possible subsets
of a set of n experiments is 2#-V). Thus a ‘brute force’ approach that analyzes
every combination of experiments would not be feasible for typical
microarray collections containing a large number of experiments — for
example, for the set of 44 Arabidopsis microarray experiments which we
present in the Results section (Section 5.4 — Section 5.8), this would require
analysing over 8,000 billion combinations. Therefore we devised an efficient
greedy heuristic which was able to select a set of experiments with high
discriminatory ability while retaining a quadratic complexity. An informal
description of the algorithm is presented below and the pseudo-code of the
algorithm is presented in Fig.15. Our analysis assumes that we are given a
certain functional category and a set of n microarray experiments, each
comprising of several time-points or conditions. The procedure begins by
performing a t-test for every experiment in the microarray collection

assessing whether the distribution of the correlation among genes belonging
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to the label of interest (denoted by A in Fig.14) is significantly higher than
the background (denoted by B in Fig. 14).

{Input: n experiments (1,....n), K seeds, significance level L}
{Output: Subset S of experiments}
for each exrperiment do
{Perform t-test and record their p-values}
end for
SeedSet +— K erperiments with smallest p— values
for each experiment i € SeedSet do
list; + {i}
{R is the remaining set}
R+ {1.2,....,n}— list;
while F £ (| do
(' + concatenate experiment j € R to list,
{Perform t-test}
if p < L then
{Record the p-value}
list; + j
end if
RS =RS - {;j}
end while
end for
S+ list;

Figure 15: Pseudo-code describing the experiment selection algorithm. The
t-tests are performed between the distributions of correlation among genes

in the functional category of interest and the background set.

We then select a fixed number (K) of seed experiments with the best p-values
from the t-tests. The algorithm builds experiment lists iteratively starting
from these seed experiments. For a given list, at every iteration, an
experiment is selected at random among those not already contained in the
list and this experiment is tentatively added to the existing list. With the
newly added experiment, the correlation matrix is reconstructed. A t-test is
then performed to check whether this expanded list of experiments exhibits a
distribution in the label of interest which is significantly higher than the
background. The test is based on the assumption that the correlation among

genes in the functional category of interest is independent of the correlation
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among genes in the background. If the p-value is smaller than a pre-defined
threshold, the experiment is permanently added to the list; otherwise it is
removed. This iterative procedure terminates when all experiments have
been considered for every seed experiment for every list. Once the lists have
all been created, the list with the overall final best p-value is kept as the

optimal list of experiments that the algorithm returns.

Although this algorithm cannot guarantee that the selected set of
experiments is optimal, in practice we found that this heuristic selected sets
of experiments with high discriminatory ability while providing
computational tractability. The number of t-tests our algorithm needs to

consider at most is given by (Eq. 8):

n+K+x[m-D+m—-2)+-+1]=K/2*nx(n—1)+n=0(n?

(Eq.8)
This quadratic complexity allowed us to run all the experiments presented
here in a few minutes on a regular desktop machine.
The algorithm has only two parameters: the significance level of the t-tests
(denoted by L in the pseudo code) and the number of seed experiments (K).
When testing our algorithm we set the significance level to the standard
value of 0.05%. Importantly, we found that our algorithm is quite insensitive
to the number of seed experiments — in the experiment presented below, in
which we tested the procedure on different species and different sets of
microarray experiments a value of K =25 + 15 gave similar results.
Compared to large collections of microarrays, smaller subsets of experiments
may lead to higher correlation values purely because of the shorter length of

the vectors. In all our analyses we account for this bias by filtering the

* We also tested the algorithm using a lower p-value threshold of 0.01 and obtained similar results.
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correlation by a p-value threshold. This ensured that only statistically
significant correlations are considered.
We tested our algorithm on publicly available microarray data collections.
Here we present results obtained using 44 individual experiments in
Arabidopsis thaliana from the NASCArrays collection and the M3D collection
of 31 individual experiments in Saccharomyces cerevisiae. A full list and details
of the microarray experiments can be found in Materials section in this
chapter. Our experiments on both yeast and Arabidopsis prove that our
procedure is also species-independent. To prove that our selection procedure
is independent of the functional classification system adopted, we applied
our algorithm for selecting experiments relevant to both GO Biological
Process terms and MIPS FunCat terms.
In the following sections we will prove the effectiveness of the algorithm by
showing that the selected set of experiments:
A. Result in higher correlations between genes in the same functional
category (Section 5.4).
B. Improve the performance of a GBA-based classifier (Section 5.5).
C. Provide a discriminatory ability for a given functional category which
increases with the specificity of the annotation (Section 5.6).
D. Lead to a better reconstruction of gene regulatory pathways (Section
5.7).
5.3.3 Materials

For Arabidopsis thaliana, our microarray data collection consisted of 756
Affymetrix ATH1-501 arrays from 44 experiments. The microarrays were
sourced from NASCArrays (Craigon et al, 2004) Pathogen Series,
Developmental Series, Stress series and Chemical and Hormone treatment

series.
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Serial. No NASCARRAY ID Experiment
1 152 Developmental series
2 137 Control (Shoot)
3 137 Control (Root)
4 138 Cold (Shoot)
5 138 Cold (Root)
6 139 Osmotic Stress (Shoot)
7 139 Osmotic Stress (Root)
8 140 Salt stress (Shoot)
9 140 Salt stress (Root)
10 141 Drought stress (Shoot)
11 141 Drought stress (Root)
12 142 Genotoxic stress (Shoot)
13 142 Genotoxic stress (Root)
14 143 Oxidative stress (Shoot)
15 143 Oxidative stress (root)
16 144 UV-B stress (Shoot)
17 144 UV-B stress (Root)
18 145 Wounding Stress (Shoot)
19 145 Wounding Stress (Root)
20 146 Heat Stress (Shoot)
21 146 Heat Stress (root)
22 120 Response to virulent, avirulent bacteria
93 122 Response to bacterial-(LPSf HrpZ,.F.IgZZ) and

oomycete-(NPP1) derived elicitors

24 123 Response to Phytophthorainfestans
25 167 Response to Botrytis cinerea infection
26 168 Pseudomonas half leaf injection
27 169 Response to Erysipheorontii infection
28 172 ACC time course in wildtype seedlings
29 173 Zeatin time course in wildtype seedlings
30 174 Methyl Jasmonate time course in wildtype
31 175 IAA time course in wildtype seedlings
32 176 ABA time course in wildtype seedlings
33 179 Effect of brassinosteroids in seedlings
34 181 Cytokinin treatment of seedlings
35 183 Effect of ABA during seed imbibition
36 184 Basic hormone treatment of seeds
37 185 Effect of gibberellic acid inhibitors on seedlings
38 186 Effect of auxin inhibitors on seedlings
39 187 Effect of brassinosteroid inhibitors on seedlings
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40 188 Effect of ethylene inhibitors on seedlings

41 189 Effect of cycloheximide on seedlings

42 190 Effect of proteasome inhibitor MG13 on seedlings

43 191 Effect of photosynthesis inhibitor PNO8 on seedlings

a4 192 Effect of ibuprofen, salicyIiF acid and daminozide on
seedlings

Table 6: The complete list of microarray experiments used in the
Arabidopsis microarray compendium used for selecting functionally

relevant experiments.

Raw data was downloaded, pre-processed and normalized by MAS 5.0 using
R Bioconductor packages (Gentleman et al., 2004) as outlined in Appendix I.
All the data used were from experiments based on Wild-type plants only.
Experiments conducted on multiple organs such as Roots and Shoots were
considered as separate experiments. The experiments used to construct the

Arabidopsis microarray compendium are presented in Table 6 above.

For Yeast, the microarray collection consisted of 537 Affymetrix microarrays
from 31 individual experiments. The data was downloaded from the Many
Microbes Database (Faith et al., 2007) and consists of a mix of wild-type and
mutant-based experiments under various stresses, growth, chemical and
hormone treatments. The details of the individual experiments in the Yeast

collection can be accessed at the web address: http://m3d.bu.edu/cgi-

bin/web/array/index.pl?section=home.

Throughout our analysis, GO Biological Process annotations with only non-
electronic evidence codes were considered; EXP, IDA, IPI, IMP, I1GI, IEP, ISS,
IC, ISO, ISA, ISM and IGC. Further, only ‘is_a” and ‘“part_of” relationships
were considered. This is because in the current framework of the algorithm,
genes can only belong to a subset or a superset of a functional category.

Other relationships such as “negatively_regulates” or “positively_regulates”
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do not necessarily satisfy this requirement. However, we hope to incorporate
other such GO relationships in the future. While considering genes
belonging to a GO term of interest, all genes belonging to the child terms
were also included. Genes which belonged to all the other GO terms in the
tree were considered as the Background. While selecting the GO terms for
analyses, only terms with at least 25 genes were considered. This was done
to afford sufficient number of genes for a statistically significant ¢-test and
cross-validation. Similarly, for MIPS FunCat, terms of interest included all
child terms and the Background included all the remaining terms. Pathways
and genes annotated to the pathways were obtained from KEGG (Kanehisa,

2000).

5.4 Selected experiments improve overall correlation

in the functional category

Earlier in Chapter 1 and Chapter 4, we discussed that, for effective GBA-
based analyses, it is essential that genes belonging to the same functional
category exhibit high correlation. However, we saw that this is not
necessarily true when large microarray collections are used for calculating
the correlation. Nevertheless, for a given functional category, we observed
that the experiments selected by our algorithm uncover significantly higher
correlation. For genes which belong to the same functional category, we
compared the distribution of correlation coefficients obtained from
experiments selected by the algorithm with the distribution obtained from
using all experiments in the collection. Fig. 16 shows representative
histograms of the distributions for both Arabidopsis and yeast GO terms. As
expected, the distribution of correlation coefficients obtained from using all

experiments is enriched with low correlations with a relatively low number
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of high correlation values. However, when experiments selected by the
algorithm are used, the distribution is enriched with higher positive and
negative correlations. We perform a t-test between the two distributions to
test whether the distribution obtained by using selected experiments is
greater than when all experiments are used. The t-test was performed using
the absolute values in the two distributions. The low t-test p-values
(indicated in Fig. 16) confirm that the distribution obtained with selected

experiments is significantly higher than when all experiments are used.
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Figure 16: Comparison of distribution of correlation coefficients among
genes in GO categories. It can be clearly observed that the distribution is
enriched with higher correlations when experiments selected by our

algorithm are used. The t-test p-values indicate that there is significant
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difference between the distributions when selected and all experiments

are used.

5.5 Quantifying the effectiveness of the selected

experiments for function prediction

In order to evaluate the effectiveness of the experiments selected by the
algorithm, we formulated a classification problem in Machine Learning. In
this classification problem, genes are classified as belonging to a functional
category of interest using Pearson Correlation between gene expression
profiles as the featuret. In other words, a gene would be classified as
belonging to the functional category of interest if it shares high correlation
with the existing genes in the functional category. It is reasonable to state
that the performance of a classifier depends on the quality of the input data
i.e. if good quality data is provided the performance of the classifier should
be better than if the input data is of poor quality. Therefore, evaluating the
performance of the classifier allows us to evaluate the quality of the input
data. In our case, we assess the performance of the classifier when the
algorithm selected set of experiments is used as input data, compared to
when all experiments in the microarray compendium are used as the input.
Formulating the evaluation of the selected experiments as a classification
problem allows us to use standard machine learning tools for evaluating
classifier performance. The strategies adopted to measure and evaluate the
performance of the machine learning classifier are detailed in the following

sections. Two important tools that we have adopted for measuring and

* In Machine Learning, a classification is defined as an algorithmic procedure which assigns the input
data into one or more categories (Bishop, 2007). The algorithm or the abstract machine which
performs the classification is simply known as a Classifier.
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evaluating the performance of our machine learning classifier are: Training
and testing and Receiver Operating Characteristic (ROC) Curves. We have

detailed these techniques in the following sections.

5.5.1 Training and Testing

A classifier learns the predictive relationships in the dataset, often called the
training set. The performance of the classifier on the dataset where it
“trained” is expected to be exaggerated. Hence, to evaluate the performance
of a classifier, it is important to assess its predictive performance on new
data that had no role in training the classifier. Such an independent dataset is
called the test set. A central assumption is that both the training and the test
set are representative of the data to be classified.

In the ideal case, where a large amount of data is available, a large sample is
used for training. Another large sample is drawn which would then be used
for testing. This would provide a reliable estimate of the performance of the
classifier. However, in real cases such as the one we consider, the amount of
data to be classified is small. In our case, for classifying a gene into a
functional category, the total number of genes already annotated to that
category (that can be used for training or testing) can be as low as 20. For this
reason, a holdout procedure is preferred where a portion of the data available
is held-out; the held-out portion of the dataset is used as the test set and the
remaining portion is used as the training set. However, it is possible that the
held-out portion or the data used as training set may not be representative of
the dataset. Generally, it is difficult to verify whether every instance of the
data is truly representative of the dataset. To counter this problem a cross-
validation technique is adopted. In cross-validation, the user decides on a
fixed number of portions or folds to divide the dataset. For example, if the

user decides on a ten-fold cross-validation, the data is divided into ten
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approximately equal portions and each in turn is used as a testing set and the
remaining portions are used for training. Therefore, in each turn 9/10% of the
dataset is used for training and 1/10% is used for testing. The training and
testing routine is repeated 10 times so that each portion of the dataset has
served as a training set and a testing set. The performance of the classifier is
recorded for each of the ten turns and it is averaged to obtain an overall
performance figure. In our experiments, suppose a functional category of
interest has 40 genes annotated to it, the 40 genes would be divided into 10
portions of 4 genes each. 36 genes would be used for training and 4 genes
would be used for testing. This would be repeated 10 times and the average
performance over the 10 repeats is considered as an estimate of the classifier
performance.

Although the ten-fold cross validation procedure is often used for
performance evaluation, the leave-one-outcross-validation (LOO cross
validation) provides a more stringent estimate of the performance of the
classifier. LOO cross-validation is simply an n-fold cross validation, where n
is the number of instances in the dataset. In this approach, each instance
present in the dataset is held out and used as the test set while the remaining
instances are used for training. The performance of the classifier is averaged
over the n-repetitions and an overall performance is obtained. LOO cross
validation is stringent for two reasons (Bishop, 2007). Firstly, since every
instance is considered, there is no random partitioning of the dataset.
Secondly, this method uses the largest number of instances possible for
training. It is presumed that this will increase the accuracy of the classifier. In
our experiments, let us suppose the functional category of interest has 40
genes annotated to the category. 39 genes would be used for training and 1

gene for testing. The training and testing routine would be repeated 40 times.
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5.5.2 Measuring the performance of the classifier using ROC
curves

Let us consider a two-class classification problem such as the one in our
experiment. Here, a gene can either be classified as belonging to the
functional category of interest or as not belonging to the functional category
of interest. Simply counting the number of wrong classifications will give us
an error rate for the classifier. Lower the error rate, better the performance of
the classifier.

Often, the “cost” of making a right classification is not equal to the cost of
making a wrong classification. For example, let us consider a bank which has
to make a decision on loan applications. The classifier employed by the bank
has to classify the loan applications into two classes namely “defaulter” (a
person unlikely to pay back the loan) and “non-defaulter” (a person very
likely to pay back the loan). Here, the cost of paying out a loan to a defaulter
could be far greater than losing business with a non-defaulter. However,
evaluation of the classifier based on the error rate or the classification
accuracy alone will deem both the cases as having equal costs. Therefore, a

more comprehensive analysis of the cost of making a wrong classification is

required.
Predicted class

wv

@

< yes No

g Yes True positive False negative
J

< No False positive True negative

Table 7: Confusion matrix for recording the performance of a classifier
In a classification exercise such as our experiment, a gene either belongs to a

class or it does not. In such a two-class case, there are four possible outcomes
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in every classification. A gene can be correctly identified as belonging to the
class of interest (true positive) or can be correctly identified as not belonging
to the class (true negative). Also a gene can be wrongly classified as
belonging to the class (false positive) or can be wrongly identified as not
belonging to the class of interest (false negative). The possible outcomes are
summarized in a table called the confusion matrix (Table 7). An ideal
classification will have large numbers in the true positives and true negatives
and smaller numbers in the false positive and false negative.

The confusion matrix summarizes the cost of a classification based on a
single threshold. In our classification experiment, this would translate to
classifying the genes based on a single threshold of correlation between the
gene expression profiles. Often it is not trivial to decide on a single optimal
threshold. Hence it could be useful to analyze the performance of the
classifier as the threshold is varied.

Receiver Operating Characteristic (ROC) curves are a graphical way of
representing the performance of a classifier and the costs involved as the
threshold is varied. In our experiments, ROC curves illustrate the trade-off
between a true positive and a false positive as the correlation threshold is
varied in the classifier. Each point on the ROC curve is given by the true
positive rate (TPR) and the false positive rate (FPR).

The TPR is given by the formula:

TPR = TP
~ TP+FN
The FPR is given by the formula:
FPR = Fp
~ FP+TN

Where:

TP is true positive, TN is true negative, FP is false positive and FN is false negative
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A sample ROC curve has been presented in Fig.17. The blue line represents
the performance of the classifier if the instances in the data were classified
randomly. The orange line represents the actual performance of the classifier.
In the ROC curve for a given classifier, the top left corner of the plot
represents the preferred case, where there are a large number of true
positives and a minimal amount of false positives. The ROC curve can be
quantified by calculating the area under the curve (AUC). The AUC serves as
a quantification of the performance of the classifier under a range of
thresholds. In our experiments, we calculate the area above the curve (1-

AUC). Smaller the 1-AUC, better the performance of the classifier.

0.8 >

0.4 #

0.2 .
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Figure 17: An example of a ROC curve (indicated in orange). The blue
dotted line indicates the performance of the classifier if the input data is

classified randomly.
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5.5.3 Results from the evaluation and measurement of classifier

performance

In our classification problem, the classifier’s task is to use correlation to
distinguish between pairs of genes which both belong to the category of
interest and pairs of genes in which only one does. The rationale here is that
a GBA analysis would be more effective if higher correlation values were
obtained for gene pairs in which both genes belong to the same functional

category.

For calculating the ROC curves, gene pairs in which both genes belong to the
functional category of interest were considered the Positive Set; and gene
pairs, in which only one gene belongs to the functional category of interest,
were considered the Negative Set. To evaluate the performance of the
selected experiments, we performed a ten-fold cross validation (as detailed
in Section 5.5.1). Fig.18A shows four ROC curves which were calculated in
this way. We can see that the ROC curves for selected experiments (shown in
green) have a greater AUC compared to all experiments (shown in red).
Following common practice, we also present the average (1-AUC) for both
selected and non-selected datasets over the ten-folds (Fig. 18B). The average
(1I-AUC) is remarkably lower for the selected set of experiments. The
superior performance of the selected set of experiments was observed for
both Arabidopsis and Yeast GO Biological Process terms (Fig. 18B) and MIPS
FunCat terms (Fig. 18C). For many examples of MIPS FunCat terms, we
found that the difference in performance between the selected set and all
experiments was lower compared to GO Biological Process terms. We
believe that this could be due to the broad functional classification found in

MIPS FunCat when compared to the more advanced GO (We discuss the
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relation between specificity of annotation and performance of the selected set

of experiments in the next section.)
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Figure 18: Evaluation of performance of the datasets selected by the
algorithm compared to no selection (i.e. all experiments). Experiments
were selected for both GO and MIPS FunCat terms. A. The ROC curves
show a large improvement in classifier performance when the algorithm
selected set of experiments is used. B. Average of the 1-AUC scores from
each of the ten-fold cross validation show that the selected set of
experiments are reliably better than using all experiments. The p-values
from the t-test between the both the sets of 1-AUC show that the scores for
the selected set are significantly better. C. Similar results can be observed

for MIPS FunCat terms as well.

5.6 Effectiveness of the selected experiments

increases with annotation specificity

The experiment selection algorithm is based on the idea that a functionally
relevant set of experiments should be able to effectively differentiate the
genes in the functional category of interest from all the other functional
categories. Therefore, we expect the performance of the selected set of
experiments to improve with the specificity of the functional annotation.
Gene expression in a specific biological process could be expected to be
relatively correlated compared to a broader category which includes several
biological processes. As a result, it would be harder to differentiate a broad
functional category from all the other processes. This gives us another way to
prove the effectiveness of our experiment selection procedure where we
show that the performance of the selected experiments at our classification
task is higher as the functional category becomes more specific. For the GO

BP term GO:0009861 “Jasmonic acid and ethylene dependent systemic
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resistance”, at every level of the tree leading up to the root term, we selected

experiments using our algorithm.

Biological Process O
Immune system process Q 0.028
Immune response Q 0.045
Innate immune response O 0.048
Defense response, incompatible
interaction 0.055
Jasmonic acid and ethylene
dependent systemic resistance 0.171

Figure 19: Increase in difference in 1-AUC between the selected set and all

experiments when the specificity of annotation is increased.

To evaluate the performance of the selections, we constructed ROC curves
for both selected and all experiments as described earlier (data not shown). If
the performance of the selected experiments is no different to using all
experiments, the difference in their 1-AUC was expected to be zero. Fig.19
reports the difference in 1-AUC between selected and all experiments. As
expected, the specific annotation shows the largest gain in performance
when selected experiments are used. The performance difference between
the selected experiments and all experiments decreases as the functional
classification gets broader. We have obtained similar results for several GO

categories for both Arabidopsis and Yeast (data not shown).
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5.7 Selecting relevant experiments: implications on

pathway reconstruction

Reconstructing and modelling gene regulatory pathways using high-
throughput data is a challenging problem in post-genomic biology. The GBA
principle has been successfully applied to identify putative members of
partially characterized pathways and gene networks using transcriptional
data (Basso et al., 2005; Soinov, Krestyaninova, & Brazma, 2003). Identifying
experiments relevant to the pathway of interest can be crucial for pathway
reconstruction where the objective is to identify potential members of the
pathway. The same idea we applied to select relevant experiments to
functional categories can also be used to select experiments relevant to
pathways. Here, all other pathways except the pathway of interest can be
considered as the background and the set of relevant experiments are the
ones which can best discriminate the pathway of interest from the
background. We believe that the relevant experiments can uncover greater
correlation between the genes in the pathway of interest and is a better
predictor of potential membership of a gene in the pathway of interest. To
demonstrate this, we hypothesized that a potential candidate would show
greater correlation to the pathway of interest compared to all other pathways

when only relevant experiments are used to calculate the correlation.

To verify this we obtained the “Alpha linolenic acid metabolic pathway” (ID:
ath00592) from KEGG. Alpha linolenic acid is a precursor of a class of fatty
acid derived regulators called Jasmonates. The main biosynthetic derivative
of alpha linolenic acid is Jasmonic acid (JA). In plants, JA is known to be an
important mediator of the defence response and other stress related

signalling pathways (Avanci, Luche, Goldman, & Goldman, 2010; Balbi
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&Devoto, 2008). The KEGG annotation of the pathway in A.thaliana consists
of 30 genes of which 26 were found in our microarray collection. To
demonstrate that the correlation obtained from the selected set of
experiments is a better predictor of pathway membership, we framed this as
a classification problem between two classes of genes: those in the pathway
and those in the background. This classification is performed using very
simple GBA-inspired classifiers that use only the Pearson correlation
between the genes. The simplest possible classifier of this kind is one that
classifies a gene using the sum of the correlations between that gene and the
genes in the training set that belong to the category of interest: if this sum is
above a certain threshold, it classifies the gene as belonging to the category

of interest; otherwise it assigns it to the background.

Alpha-linolenic acid metabolism
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Figure 20: ROC curve analysis for genes in the “Alpha linolenic acid
metabolic pathway” (KEGG ID: ath00592) from the KEGG Pathway
Database. (A) Average ROC curves from the ten-fold cross-validation
show the performance of the GBA-based classifier for predicting genes
belonging to “Alpha-linolenic acid metabolism” pathway. (B) average (1-
AUC) scores from 10-fold cross validation. The p-value for the t-test
between the ten (1-AUC) values from the ten-fold cross-validation
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obtained using the selected experiments and those obtained using all

experiments is also reported (shown in blue).

As before, the performance of the classifier was evaluated by 10-fold cross-
validation and average ROC curves were calculated over the ten folds. We
compared the performance of the classifier when using correlations from the
selected experiments and all experiments in the collection. The average ROC
curves (Figure 20) and the average (1-AUC) bar plots (Figure 20) clearly
show that the classifier using correlations from the selected set outperform
the classifier using correlations from all experiments in the collection. This
result clearly highlights the potential of the experiment selection algorithm
in pathway modelling and reconstruction approaches. Similar results have
been obtained for several pathways in Arabidopsis and Yeast (data not
shown). This result demonstrates the potential of the experiment selection

algorithm in pathway reconstruction.

5.8 Selected experiments generally agree with

literature-based knowledge

Reassuringly, we found that the majority of experiments selected as relevant
by our algorithm reflected the biological background of the functional
category of interest. Some of the GO Biological Process terms and
corresponding experiments selected as relevant by our algorithm are listed
in (Table 8). For example, in the results obtained for Arabidopsis, the
selection of experiments for “Ethylene mediated signalling pathway” seems
relevant as ethylene is a well-studied mediator of osmotic stress and salt
related responses (M. Fujita et al., 2006). Also, ethylene along with hormones
such as abscisic acid has been shown to control many of the drought-related
responses (Wilkinson & Davies, 2010). For growth-related terms such as
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“Regulation of cell cycle process” and “Trichoblast maturation”, growth-
related experiments such as the Weigel developmental stages experiments
were selected. Similarly, experiments identified as relevant to plant defence
were found to contain stress-related and pathogen infection-related
experiments. For the GO term “Root epidermal cell differentiation” (data not
shown), experiments related to abscisic acid treatment and ethylene
treatment were selected. These selections are reasonable as studies such as
(van Hengel, Barber, & Roberts, 2004) have demonstrated the role of abscisic
acid, along with hormones such as ethylene in regulating epidermal cell-
specific gene expression in Arabidopsis thaliana roots. Also it is interesting to
note that, in general, the experiments were selected for a given GO term are
plant organ-specific with no mixed sets of experiments such as from roots
and shoots. This is particularly interesting as in a compendium of
Arabidopsis abiotic stress experiments it has been observed that distinct

clusters are formed for different organ types (Simon Barak, pers. comm.).

Similarly, yeast experiment selections also generally reflect the functional
backgrounds of the GO terms such as in the case of “Response to reactive
oxygen species”. Here, the experiment Hydrogen Peroxide treatment is
relevant as hydrogen peroxide is widely used to mimic reactive oxygen

species (Apel & Hirt, 2004).

A minority of experiments selected by the algorithm seemed to be unrelated
to the GO terms of interest. We found this reasonable as the Biological
Process of interest could also be activated in experiments originally designed

to study a seemingly unrelated phenomena i.e. it could be a (contd...)
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Arabidopsis thaliana

Sl. No.

GO Identifier

Description

Selected experiments

G0009873

Ethylene
mediated
signalling
pathway

Osmotic stress (shoot) TS
Cold stress (shoot) TS
Oxidative stress (shoot) TS
Salt stress (shoot) TS
Drought stress (shoot) TS

G0009817

Defense response
to fungus,
incompatible
interaction

Developmental series (Flowers and Pollen)

Virulent and avirulent bacterial infection (leaf)

Gibberelic acid treatment (seed) TS
Hormone treatment (seed) TS

Cold stress (shoot) TS

Cytokinin treatment (seed) TS

ABA treatment (seed) TS

G0010564

Regulation of cell
cycle process

Developmental series (Flowers and Pollen)
Bacterial, elicitor treatment (leaf)

Osmotic stress (shoot) TS

No treatment (shoot) TS

Methyl jasmonate (shoot) TS

G0048764

Trichoblast
maturation

Ibuprofen, Salicylic acid treatment (seed) TS
Heat stress (shoot) TS

Brassinosteroid treatment (seed) TS
P.infestans infection (leaf) TS

Cold stress (shoot) TS

GA treatment (seed) TS

Osmotic stress (root) TS

UV-B stress (shoot) TS

B.cinerea infection (leaf) TS

Yeast

GO000097

Sulphur amino
acid biosynthesis

Carbon limitation TS
Antibiotic treatment TS
Aging TS

G0000302

Response to
reactive oxygen
species

Thiolutin s288c treatment
Antibiotic (Doxycycline) treatment
Hydrogen Peroxide treatment TS
Histone deacytelase mutant

GO006096

Glycolysis

UV and IR treatment TS
Thiolutin upfl

Mannose treatment TS
Hydrogen peroxide treatment TS
Antibiotic (doxycycline) TS
Antibiotic treatment TS

Histone deacytelase mutant
Carbon limitation TS

Dough fermentation TS

Aerobic respiration, Glucose P, Nand S
Mannose

G0O006113

Fermentation

Hydrogen peroxide treatment TS
Aerobic respiration, Glucose Phosphorus,
Nitrogen and Sulphur utilization TS

Aging TS

Carbon limitation TS
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Table 8: GO Biological Process terms and corresponding selected set of
relevant experiments for Arabidopsis thaliana and Yeast. TS indicates time

series.

A B

—

Figure 21: A collection of objects with multiple features such as colour and
the number of edges. In a problem where circles have to be identified
from the collection of objects, the feature that is useful to make the
decision depends on the other members in the collection. A. Here, lack of
edges is a useful feature for identifying the circles. B. Here, the lack of

edges is no more a useful feature to identify the circles.

limitation of current literature. Importantly, viewing the experiment

selection procedure as a classification problem provides an insight into the
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role of the seemingly irrelevant experiments in the selected set discussed in

the previous section.

It is possible that such experiments may not have any biological relevance to
the functional category of interest. However, they may be effective
discriminators of the functional category of interest from the background. To
understand this, let us consider a classification problem, where circles have
to be identified from a collection of objects containing cubes, pyramids and
circles (Fig.21). Several features exist that can effectively describe the circles
in the collection e.g. colour, lack of edges etc. Let us consider the collection of
objects presented in Fig. 21A. Here, a feature such as “colour”, although a
feature of the circle, will not be able to discriminate the circle from the other
objects. Instead, the feature “lack of edges” is an effective discriminator of
the circles in the collection. Now let us compare this with the collection of
objects presented in Fig. 21B. Here, the feature “lack of edges” is no longer
an effective feature to identify the circles in the collection as it also applies to
the oval. Therefore, the choice of feature that can help in effectively

classifying the circle depends on the other objects that are in the collection.

Similarly, the set of experiments selected as relevant to a functional category
of interest may contain experiments which do not suggest any biological
relevance but nonetheless be very relevant in GBA-based functional
analyses. The choice of experiments selected as relevant depends on the
other experiments in the microarray collection. We note that it would not be

possible to identify such experiments based on literature knowledge alone.
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5.9 Discussion

Previously, we have discussed the significance of using only relevant
microarray datasets in functional analyses based on similarity metrics such
as correlation. The idea of identifying relevant experiments follows from the
discussion by Adler et al.(2009) who acknowledge the pitfalls of using large
microarray collections in co-expression analyses and proposes manually
selecting relevant datasets based on literature knowledge. However, this is
increasingly impractical with the ever-increasing size of microarray
databases. Additionally, experiments identified as relevant based on
literature knowledge alone may not be sufficient to uncover co-expression

between the genes of interest.

In this chapter we have presented an algorithm which is able to identify a set
of experiments from a microarray collection which maximize the correlation
between genes belonging to a process. The algorithm selected several
experiments which have biological backgrounds relevant to the functional
category of interest and in agreement with literature knowledge. For
example, the experiments selected for defence-related terms were related to
pathogen infection and stress signalling. Similarly, for growth-related terms
such as regulation of cell cycle process and trichoblast maturation, growth-
related experiment such as the Weigel developmental series experiment

were selected.

Regardless of the biological background of the experiments in the selected
set, the histograms of correlation coefficients show an enrichment of higher
correlation coefficients. In the classification exercise, the significantly better
1-AUC scores in the ten-fold cross validation procedure show that the

selections made by the algorithm are consistently superior to using
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experiments without selection. In Fig. 19, we observed that the performance
of the selected set varied with the specificity of the functional annotation. As
broader process annotations contain several smaller more specific processes,
the overall correlation between the genes would be relatively lower than in
specific processes. As a result, it is harder to differentiate the process from

the background.

The conditional nature of co-expression has been the motivation for
techniques such as Biclustering, first introduced by (Cheng & Church, 2000)
and later developed by (Madeira & Oliveira, 2004). However, biclustering
seeks to identify subsets with high correlation disregarding the biological
background of the experiments. This is often unreasonable where the subsets
are a part of larger experiments such as time courses. Further, biclustering is
less effective on large microarray collections as the tendency to find local
patterns due to noise also increases. Additionally, biclustering techniques are
inapplicable in the graph-based functional analyses approaches such as

(Long et al., 2008; Mostafavi et al., 2008).

The concept of a functional category is central to the idea of selecting
relevant experiments. In this study we assume that genes assigned to a
functional category are true members of the functional category. However, it
is widely acknowledged that the overall error rates in Gene Ontology and
MIPS is estimated to be 30% (C. E. Jones, Brown, & Baumann, 2007). The
error rates can be even higher (up to 40%) in case of annotations assigned
based on sequence and structure homology (C. E. Jones et al., 2007; Todd,
Orengo, & Thornton, 2001).Therefore, it is reasonable that a given functional
category is not functionally homogeneous because of wrongly assigned
annotations. We believe that the performance of the algorithm would be

lower as the error rate in annotation increases. The wrongly assigned genes
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are likely to lower the overall correlation in the functional category, thus
making it difficult to differentiate the background set from the functional

category of interest.

In this study we present experiment selections relevant to single functional
categories only, the algorithm can be easily applied to select experiments
relevant to multiple functional categories. This is based on the fact that
fundamentally the algorithm is designed to select experiments relevant to a
list of genes. Therefore by merging multiple functional categories, the
algorithm can be easily applied to select experiments. The selected
experiments would essentially be “best” datasets for discriminating the

genes in the merged list from the background.

Our results for A.thaliana and Yeast show that the algorithm performs
consistently independent of the type of organism. We also see that the
selection performance is comparable regardless of GO or MIPSFunCat
classification system. The algorithm is highly scalable and can be efficiently
deployed to select experiments from large microarray collections. Currently,
the run times of selection procedure increases exponentially with the number

of microarray experiments in the selection.

One of the important applications of the experiment selection algorithm
would be for selecting relevant datasets for modelling biochemical
pathways. We believe that the experiments selected by the algorithm
describe the co-relationships in a pathway better than without selection. We
observe that with the selected set of experiments, the members of the
pathway exhibit stronger edges among themselves compared to the edges in
the background and the edges leading to the background genes. The selected

set increases the likelihood of detecting true members of the pathway of
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interest. We believe, our semi-supervised experiment selection method can
have a wide-reaching impact on the way datasets are selected for gene
network construction, gene function prediction and biochemical pathway

modelling.
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Conclusions and Outlook

6.1 Conclusions

The context of this thesis is the elucidation of gene function using high-
throughput transcriptomics data such as microarrays. An often used
approach for characterising genes whose function is unknown is by using
the principle of GBA. GBA-based approaches often use large collections of
microarrays for calculating similarity between gene expression profiles. With

this background, in this thesis we establish three facts:

1. Using large collections of microarrays in GBA-based functional
analyses may not always be the optimal approach. We see that this
approach may lead to poor correlation between genes in the same

functional category.
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2. Correlation between genes in the same functional category can be
improved by limiting the dataset to functionally relevant experiments.
However, selecting relevant experiments based on literature
knowledge alone is a non-trivial task.

3. We have developed a greedy semi-supervised algorithm (Bhat et al.
2011, under review) that can select functionally relevant experiments

for a given functional category.

In the first stage of the project we have closely looked at the idea of gene
function and its organization in the post-genomic era. We discuss the
principle of GBA and its application in analysing gene function. The
motivation for using large collections of microarrays for calculating
similarities between expression profiles is motivated by factors such as a
longer gene expression profile will lead to a more robust correlation.
However, previous studies have shown that this approach may not be suited
to the functional analysis of genes whose expression is very condition-

specific.

A pre-requisite of using gene expression data for functional analysis is that
genes which belong to the same functional category should be highly
correlated. Therefore, genes with unknown function could be characterized
based on the similarity of their expression profile with the expression profile
of genes with known functions. Hence, to set the stage for our work, we
looked at the distribution of correlation coefficients among genes belonging
to the same functional category. Here, the correlation between the genes was
calculated with the often used approach of using a large collection of
microarrays. We found that a majority of the functional categories we

analyzed contained very low correlation between the genes.
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We hypothesized that there could be at least two reasons for observing the
poor correlations. Firstly, it could be an artefact due to the noisy nature of
microarrays. The nature of technical noise in microarrays has been widely
discussed in literature and numerous normalization pipelines have been
proposed (B. M. Bolstad, Irizarry, Astrand, & Speed, 2003). A sophisticated
normalization technique such as VSN (Qin et al., 2006) coupled with a
customised quality monitoring such as M/A plots, RNA degradation curves
and Normalized Unscaled Standard Error (NUSE) (B. Bolstad et al., 2005) is

expected to limit the noise in the microarray datasets.

Secondly, the poor correlation could be due to cross-talk between the various
biological processes. For these reasons, we hypothesized that using only
functionally relevant experiments could limit noise and improve correlation
between the genes. To verify this assumption, for functional categories of
interest, from a large collection of microarrays, we selected experiments
which we found relevant based on literature knowledge. The distribution of
correlation between expression profiles improved significantly when only
these experiments were used instead of a large microarray compendium.
However, we realized that the distribution of correlation between genes in
the same functional category is highly sensitive to the nature of experiments
selected. To ensure the best distribution, selecting the right set of
experiments was very important. However, identifying such a set of
experiments was a non-trivial task as literature knowledge about a
functional category was seldom exhaustive. Further, the relevance of an
experiment to a given functional category may not be immediately obvious
and experiments which are deemed irrelevant by a researcher could in fact

withhold significant information.
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In the second phase of the project, we developed a novel algorithm for
systematically selecting from large collections those experiments which are
relevant to a given functional category or pathway. A key concept behind the
algorithm was the idea of “relevance” itself. We defined that an experiment
would be relevant if it is able to clearly differentiate between the genes
which belong to the category of interest and those which do not (called
background), based on their gene expression profiles. The rationale behind
this idea was that genes which belong to the same functional category would
exhibit a high correlation between themselves compared to genes that belong
to any other functional categories. The set of experiments selected by the
algorithm maximize the differentiating ability between the functional

category and background.

Importantly, the algorithm is able to identify relevant experiments not
obvious by searching the literature on the experiment. Our results show that
using experiments selected by the algorithm leads to substantially improved
correlation between genes in the same functional category compared to
using large heterogeneous collections of experiments. As a consequence, we
also demonstrate that using correlation obtained with the selected
experiments leads to substantial improvements in GBA-based function
prediction. We are able to show that the improved performance of GBA-
based analyses is independent of the species or functional classification
systems. Finally, we have presented an example of how the algorithm can be
applied for reconstructing biological pathways. Our algorithm is highly
scalable and can be efficiently deployed to select experiments from large
microarray collections. In conclusion, we believe that our semi-supervised

experiments selection method can have a wide-reaching impact on the way
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datasets are selected for gene network reconstruction, gene function

prediction and biochemical pathway modelling.

6.2 Future Perspectives

6.2.1 Improvements to the algorithm

In the current development of the algorithm, a limiting factor of the
performance is the complexity of the search space. The nature of the
complexity has been discussed in detail in Chapter 5. An important factor
that is affecting the speed of the computation is calculation of the correlation
matrices. In its current form, we use the full set of genes from the functional
categories in the Background set in calculation. However, we believe that
instead of the full set of genes, sampling only a few genes per functional
category could also provide good results. As this will significantly trim the
size of the correlation matrices to be computed, it can improve the run time

by many magnitudes.
6.2.2 Selecting RNA-seq datasets for GBA analyses

In this thesis, our experiment selection algorithm was tested on microarray
datasets. However, the application of the algorithm can be easily extended to
other types of high-throughput transcriptomics datasets such as RNA-Seq
data. This is feasible as the biological assumptions behind performing RNA-
Seq experiments are similar to that of microarrays. In either of the cases,
measured mRNA levels serve as a proxy for biological activity and
correlation between gene expression profiles suggest a shared biological
function. Additionally, the format of RNA-Seq data is also similar to
processed microarray datasets, where rows of the data matrix represent

genes and columns represent experimental conditions. With the increasing
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application of the RNA-seq method for Transcriptomics (Shendure, 2008),
our algorithm could have a wide reaching impact on the way transcriptomics

datasets are used in GBA-based functional analyses.

6.2.3 Mapping gene expression as a novel functional analysis

technique

As discussed throughout this thesis, microarrays remain the single largest
source of functional information. As discussed in Chapter 3, the core aim of
performing microarray experiments is to assay the biological processes that
are perturbed in response to a treatment. This has been achieved by
following various levels of information extraction. These steps include
identifying the differentially expressed genes in the dataset and clustering
the differentially expressed genes to identify groups of genes with similar
expression dynamics. Once the groups are identified , a typical analysis
would be to perform a functional term enrichment analysis such as the ones
presented in (D. W. Huang et al., 2009). Term enrichment methods look for
functional categories that are over-represented in a list of genes such as a
cluster. These methods provide a summarization of the various biological

processes in a dataset.

We believe that the ideas developed during the course of this thesis could be
applied to develop a novel functional analysis technique that is capable of
illustrating the various biological processes in a microarray dataset. In this
thesis, we have presented a method that is able to identify experiments that
are relevant to a functional category of interest. Conversely, it is also possible
to identify the relevant functional categories given a microarray experiment.
Similar to the assumptions of a GBA analysis, genes in functional categories

that have been perturbed by the treatment would be expected to have high

100



overall correlation. However, a simple listing of functional categories with
high overall correlation would lead to spurious results due to compounding
factors such as variations in the number of genes in functional categories and
redundancies in functional terms due to parent-child relationships. Based on
this idea, we hope to develop an intelligent search technique that is able to
identify a non-redundant list of functional categories that have been
perturbed by the microarray experiment of interest. This technique can be
used to map out the various biological processes that have been perturbed in
response to a stimulus and can be visualized on a template of the GO tree.
This approach would provide a completely novel perspective on the

biological processes perturbed in a microarray.
6.2.4 Applications in modelling regulatory pathways

Systems approaches are increasingly becoming mainstream in various fields,
particularly for modelling gene regulatory pathways and elucidation of gene
function. Several techniques such as (Margolin et al., 2006) and (Zhou et al.,
2005) have been developed for reconstructing gene regulatory networks
from transcriptomics data. (W.P. Lee & Tzou 2009) is a recent review of the
state-of-the-art in gene regulatory network reconstruction using
transcriptomics data. These approaches generally employ large collections of
microarrays to build an interaction networks. A common hurdle faced by
these techniques is that genes which are known to be involved in the same
pathway or process are not found to be co-expressed. This results in
correlation-based interaction networks that do not reliably reflect regulatory
relationships. We believe that by selecting datasets using our algorithm, the

quality of the interaction networks can be significantly improved.
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Appendix |

Microarray Data Analysis

Genes are transcribed into single stranded RNA molecules called the
mRNA. Subsequently, the mRNA molecules are translated into
sequences of amino acids which may undergo post-translational
modifications to form proteins. Due to the central role played by
mRNA in the above process, mRNA measurements are used as a proxy
for protein production and subsequently biological function. Hence,
microarray application is generally known as Expression Analyses.
mRNA levels when measured over various time points or treatments
are known as Expression Profiles. Although several techniques have been
developed for measuring mRNA such as Northern Blot (Kevil et al,,
1997), Quantitative Real-time Polymerase Chain Reaction (Higuchi,
Fockler, Dollinger, & Watson, 1993), they remain low-throughput with
a typical experiment measuring tens of genes. In contrast, DNA
microarrays enable large-scale monitoring the activity of thousands of
genes or the entire genome simultaneously, easily dwarfing the amount

of data generated by any of the post-genomic experimental techniques.

The basic technology behind DNA microarrays is the process of
hybridization (Stekel, 2003). Two DNA strands (and also RNA) will
hybridize only if they are complementary to each other. The principles
of hybridization were first used in the Northern and Southern Blotting

to measure gene expression. In fact, DNA microarrays can be viewed as
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a high-throughput version of the Northern and Southern blotting. The
general scheme of a microarray is a glass or a silicon slide on which
thousands of DNA molecules are attached at specific locations called
spots. Each spot may contain thousands of copies of DNA molecules
and a typical microarray has thousands of spots where each spot is
specific to a single gene. The spots are placed within micrometers of
each other enabling entire genomes to be represented on a single chip.
The mRNA sample to be tested is labelled with fluorescent dyes such as
Cy3 and Cy5 and then incubated on the chip for hybridization. Any
excess unhybridized sample is washed away. Subsequently, the
fluorescent dyes attached to the sample are excited using lasers that
scan the surface of the chip. Generally, the intensity of fluorescence is
considered directly proportional to the amount of mRNA hybridized at
a given spot. The intensity is recorded to obtain a quantification which
serves as a proxy for the amount of the specific mRNA present in the

sample.

Although several competing microarray technologies are available,
they can be divided into two major categories; Single-colour arrays and
Two-colour arrays. In the following sections, we discuss the general
principles involved in a single colour array such as the Affymetrix
GeneChip and a spotted two-colour array such the CATMA project
(Crowe et al, 2003). We also outline the general protocols for data
extraction and quality control for the two types of microarrays and

apply the protocols in case studies.
3.1.1 Oligonucleotide arrays

Affymetrix GeneChip® is the most efficient and widely-used single

colour, oligonucleotide microarrays (Lenoir & Giannella, 2006). The
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GeneChip technology is based on principles perfected in the
semiconductor industry where a light beam is used to control the
deposition or removal of silicon. This process is known as
Photolithography. Affymetrix uses lithographic masks to control the
synthesis of nucleotides on a predetermined site on the array surface.
The masks control the synthesis on several thousand squares (or spots)
on the array, each containing several copies of the oligonucleotides.
Each oligo is several nucleotides long and each gene is represented by
up to 40 oligos. Affymetrix chooses 11 to 20 oligos to be perfect matches
(PM) i.e. to be fully complementary to the incoming mRNA of the gene.
In addition, 11 to 20 oligos, identical to the PM except for position 13
where one nucleotide has been changed from its complementary
nucleotide to generate a mismatch (MM) are chosen. This system of PM
and MMs was designed to deal with background and non-specific
hybridization which make it harder to detect weakly expressed genes.
GeneChip technology uses only a single fluorochrome. This
necessitates the use of separate chips for the control and test in every
control vs. test comparison. The intensity of fluorescence is considered
proportional to the amount of mRNA bound to its complementary
oligo. The intensity of fluorescence from each spot or square in the

array is quantified by a sensor and used for subsequent analysis.

Before extracting a differentially expressed genes list from microarray
data, the data is subjected to a data pre-processing pipeline. These steps
are designed to prepare the raw microarray data for the subsequent
statistical analyses. In the next section, we present some of the basic
methods involved in the processing of raw data from Affymetrix

GeneChip microarrays.
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3.1.1.1 Data pre-processing and Summarization

Generally, the aim of a microarray analysis is to identify a set of genes
that have been perturbed in response to the experimental conditions
imposed on an organism or a sample of interest. The first step towards
this goal is to ensure the integrity of the raw data obtained from the
microarray as microarrays are very sensitive to technical variation and
experimental noise which can lead to spurious results. It is important
that the sources of variation in the experiments are corrected to achieve
acceptable levels of accuracy of the data. The steps taken for correcting
for technical variation depends on the microarray technology. The steps
taken for Affymetrix GeneChips are relatively elaborate when

compared to two-colour microarrays.
Step 1: Background correction

As soon as the fluorescence signal is obtained from the chip, the first
step involves correcting the intensity reading in relation to any
fluorescence in the background. An ideal case in the hybridization
process on a microarray would be that the labelled sample binds
specifically to the complementary oligonucleotides on the spots and
nowhere else on the array surface. This would result in zero
fluorescence from the background or the non-spot area. However,
various factors such as non-specific binding of the labelled samples to
the chip surface, inefficient washing after the hybridization or simply
noise from the optical sensors can lead to varying levels of fluorescence
from the background. For accurate quantification of signal intensity, it
is necessary that microarray pre-processing algorithms make robust
estimation of technical noise. Several pre-processing algorithms have

been developed for GeneChip data such as MAS5.0, RMA and GC-
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RMA. The salient features of each of the algorithms will be outlined

later.
Step 2: Normalization

The normalization process is designed to account for any technical
variation between the arrays used in an experiment. Technical
variations between arrays occur due to subtle variations in the
prevailing experimental conditions such as any mild variations in
temperature, quantity of mRNA hybridized on the sample and even
any slight difference in hybridization times. Such discrepancies lead to
scaling differences in the fluorescence intensities between the various
chips. This can potentially render the intensities from different chips
incomparable. The normalization procedure ensures that gene

expression levels recorded by the various chips are comparable.
Step 3: Perfect Match (PM) correction

As discussed earlier, the system of Perfect Match (PM) and Mis-match
(MM) are unique to the Affymetrix GeneChip technology. This system
was designed to measure both the relative abundance of the
corresponding gene and the level of non-specific binding. Each MM
probe reports the amount of non-specific binding for the gene
represented by the PM probe. The PM corrections are handled
differently by the various microarray pre-processing algorithms. The
simplest procedure implemented by the early Affymetrix MAS
algorithms involves simply subtracting the intensity of the MM probes

from the intensity of the corresponding PM probes.

Step 4: Summarization
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The GeneChip arrays have a unique design of 11 different PM probes,
each targeting 11 separate sections of the target mRNA. Due to this
unique design feature, it is necessary that the intensities for each of the
11 different PM probes are combined to obtain a single signal value for
the corresponding gene. This process is called Summarization and is

unique to GeneChip arrays.

3.1.1.2 Pre-processing pipelines developed for the Affymetrix
GeneChip microarray

In the previous section, we introduced the basic concepts involved in
the pre-processing of raw microarray data. Several pre-processing
pipelines are available for processing GeneChip data. In the following,
we present the three widely used systems.

Microarray Suite 5.0 (MAS5.0)

MAS 5.0 system was developed by Affymetrix when they first
introduced the GeneChip technology in early 2000. The MAS 5.0
algorithm performs background correction on every PM and MM
probes. As mentioned earlier, it is possible that the hybridization at the
MM probes produces a greater intensity than the corresponding PM
probe. For this reason, the MM intensity values are converted to ideal
MM values that are always smaller than the values obtained from the
corresponding PM probe. The robust mean (Tukey Bi-weight method)
of the log: transformed differences between the various PM and the
MM values is recorded. The expression values obtained from each spot
are then normalized by adjusting the mean of the signal value to a
preset or a user-specified value. This normalized value is used as the

processed microarray data.
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Robust Multi-array Analysis (RMA)

The RMA algorithm (Rafael A Irizarry et al.,, 2003) is an open source
effort for quantifying probe level signal intensities to gene expression
data. In the hybridization step outlined earlier, it was assumed that the
signal intensities at the PM probes would always be higher than at the
MM probes. However, it was observed that in a significant number of
cases, the signal intensities at the PM probes was found to be less than
the corresponding MM probes. The developers behind the RMA
algorithm argued that although the MM values are useful, it introduces
a significant amount of noise. For this reason, the RMA algorithm
completely ignores the MM values and considers only the PM values in
the pre-processing. The algorithm works by adjusting for the
background noise to ensure that the PM values are greater than the
background intensities. The log: transformed value of each
background-corrected PM probe is obtained and these values are
normalized using Quantile normalization (B.M. Bolstad et al., 2003).

The RMA algorithm is then applied on the quantile normalized values.
GeneChip RMA (GC-RMA)

GC-RMA method is largely based on RMA. However, unlike RMA, in
the background correction step the MM values are not discarded.
Along with the MM values, Guanine and Cytosine content of the probe
sequence are used to estimate the background (Z. Wu, Irizarry,

Gentleman, Martinez-Murillo, & Spencer, 2004).

3.1.2 Two-colour arrays

Developed in the 1980’s, the two-colour arrays are one of the earliest
microarray technologies. Two-colour arrays were developed on open-

source principles and as a result various approaches exist for its
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manufacture. Perhaps the most prolific microarray technique is the
Spotted Array. Spotted Array technology is used by consortia such as
CATMA (Complete Arabidopsis Transcriptome Microarray) for
making both custom arrays and complete genome arrays. Primarily,
manufacturing spotted arrays involves using automated (robot)
spotters to place picoliter quantities of probes in solution onto a glass or
a silicon surface. The probes used for spotting can be cDNA or
oligonucleotides where each probe is complementary to a gene. The
probes are attached to the surface by non-specific binding to poly-
lysine coated glass or using processes such silanization. Primarily, each
probe contains two channels where separate fluorochromes are used
for two different biological samples such as control and test. Equal
quantities of control and test samples are used. Generally, the
fluorochromes Cy3 (green) and Cy5 (red) are incubated with one of the
samples and spotted as a probe. The fluorescence intensity from each
probe is quantified via a scanner. The ratio between the green and the
red intensities is used as the quantification of gene expression. The
greater the ratio, greater is the differential expression between the two
biological samples. Visually, a red spot indicates up-regulation, green
spot indicates down-regulation and a yellow spot indicates no change
in gene expression between the test and the control samples.

Spotted arrays are well suited for manufacturing arrays with small
number of probes (Stekel, 2003). Therefore, spotted arrays are widely
used to make custom arrays such as partial genome arrays and
pathway-specific arrays. Compared to in-situ synthesis in GeneChips,
the accuracy of the spotted arrays decreases with the increase in the
size of the array. This makes them more suitable for manufacturing
smaller custom arrays rather than whole genome arrays.

3.1.2.1 Pre-processing two-colour microarray data
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Similar to the Affymetrix GeneChip arrays, all two-colour microarray
data require pre-processing to minimize technical noise and correct any
bias in the signal measurements. However, due to the nature of the
technology the pre-processing varies from single colour arrays. A brief

outline of the data pre-processing pipeline has been presented below.
Step 1: Background correction

Following image analysis and quantification of the signal intensities
from the two channels, the data needs to undergo a background
correction step. Similar to the process in GeneChips, the aim of this step
is to eliminate poor quality spots. Background fluorescence occurs due
to non-specific binding of the labelled samples onto the chip surface in
the non-spot area. The first step in background correction process is to
eliminate any spot with intensity lower than the background plus two
times the standard deviation (Leung & Cavalieri, 2003). The ratio of the
intensities from the two channels is log transformed to make the control

and the test signals comparable (Quackenbush, 2002).
Step 2: Normalization

Unlike GeneChip data, there are no Mismatch and Perfect Match values
for each probe and hence no summarization step. The background
corrected data are directly subjected to normalization routines to adjust
for systematic biases in the data that might compromise the
downstream analyses of the data. Major sources of such bias are the
dyes used in the array. The dye bias can come from a variety of sources
such as variation in dye and cDNA sample binding efficiencies,
differences in heat and light sensitivities of Cy5 and Cy3 and also
sensitivity of the scanner to the different wavelengths involved. Some

of the commonly used normalization routines used in cDNA or two-
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colour microarray data analyses are the Loess normalization and the

dye-swap normalization.
3.1.2.2 Information extraction: Case study

The data and analysis presented here are a part of a manuscript

currently being prepared for publication.

Meristem outgrowth is repressed by a stress activated MAPK kinase
pathway through regulation of auxin transport (2011), Hatzimasoura E,
Doczi R, Ditengou F, Bhat P, Magyar Z, Helfer A., Menke F, Hirt H, ,

Lopez, E, Paccanaro A, Palme K, Bogre L.

Introduction

Organ growth and morphogenesis in plants show extraordinary
plasticity in response to environmental factors such as light, nutrients,
temperature and biotic factors such as pathogen attack. Delaying
growth is a common response in plants to environmental stresses. In
Arabidopsis, meristem initiation is considered highly sensitive to
environmental stresses. Most of the insights into environmental growth
inhibition come from studies on various plant hormones, while little is
known about the actual signalling interactions involved.
Physiologically, hormones regulate systemic responses to signals
perceived by cellular receptor and signalling mechanisms and
conversely systemic hormonal signals are translated into cellular
responses by perception and signal transduction. The mitogen-
activated protein (MAP) kinase phosphorylation cascades are
conserved signalling modules in all eukaryotes and known to have
pivotal roles to regulate cell division, cell growth and stress responses
in animals. The aim of the study is to adopt an experimental approach

to uncover a negative regulatory function of MKK7/MKK9-MPK6
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modules of the MAPK family. The study shows that meristem de-
repression in response to exposure to light is accelerated in both the
mkk7 and mpké mutant seedlings. Gene expression analysis was
performed to reveal that MKK7 and MKKY regulate a transcriptional
reprogramming diverting the plant from photosynthetic growth to

defence response.
Materials

A time course induction was performed on seedlings carrying the
empty pERSGW vector, pERSGW:myc:MKK7 and pERSGW:myc:MKK9
constructs for 0, 2 and 8 hours using 1 uM B-estradiol, as well as 0.5 and
1 hour induction samples for empty vector and myc:MKK7 seedlings.
This arrangement was designed to exclude any changes due to
circadian rthythm to be detected as differential gene expression. Three

biological replicas were obtained for each sample.

The whole genome expression profiling was performed using seedlings
at the 1.02 developmental stage. 6-day-old seedlings grown on 0.5x MS
media were transferred to liquid 0.5x MS media and rested overnight.
For transgene induction the media was drained and replaced by 0.5x
MS supplemented with 1 uM (-estradiol. Each sample was obtained by
pooling three biological replicas of approximately 50 seedlings. Total
RNA was isolated by the RNeasy Plant Mini Kit (Qiagen), DNase
treatment was performed by DNase away (Qiagen). The Cy3 and Cy5
dye labelled cDNA samples were hybridised to CATMA (Complete
Arabidopsis Transcript MicroArrays) microarrays(Crowe et al., 2003),
produced at the University of Utrecht. The microarrays were scanned
using the Scanarray software (Perkin Elmer). The scanned arrays were

then quantified using the Imagene software (Biodiscovery). Microarray
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preparation, scanning and image quantification were performed by

Elizabeth Hatzimasoura.
Results
1. Data pre-processing

Microarray was pre-processed using the GeneSpring GX10 Suite
(Agilent Technologies) and all the subsequent data analyses were
performed in MATLAB (The Mathworks). Following quantification, the
text files containing the signal intensities from each of the 48 individual
chips was imported into GeneSpring. The imported CATMA data is
arranged in the matrix format by GeneSpring where each row is a
probe/gene and every column is a chip. The first step is a normalization
procedure where the background signal intensity was subtracted from
the foreground. Subsequently, the data was log-transformed and
normalized using Loess-normalization for each print-tip individually
(also known as Print-tip normalization). The data was then log:
transformed and averaged over the two dye-swaps. The normalization
routine followed is similar to the one outlined in (Allemeersch et al.,

2005).

To remove unreliable measurements, a filter on expression was applied
where we assumed that the signal intensity of an expressed gene would
be greater than the 20 percentile of all signal intensity values of the
sample. A lower percentile cut-off of 20 and an upper percentile cut-off
of 100 were applied. Genes with expression values out of this range in
any of the time points were filtered out. Genes with Present and
Marginal flags (assigned by GeneSpring) were retained and the rest
were filtered out. This resulted in 21,871 probes out of a total of 27,649

probes. The data were then exported for downstream analysis.
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Functional analysis of microarray data

Subsequent to the quality control measures, all downstream analyses
was performed using MATLAB (The Mathworks). To detect the
significantly differentially expressed genes, we performed a 1-way
ANOVA with Time as the factor. The p-values of the ANOVA were
adjusted for false discovery using the Benjamini-Hochberg method

with a cut-off value of 0.05. This resulted in 6447 genes.

To identify the dominant patterns in the differentially expressed genes,
firstly we applied k-means clustering with k= 20. The value of k was
arbitrarily determined based on several trials ranging from k= 15 to
k=30, where k =20 was found to be appropriate. Additionally, we also
applied the Quality-Threshold clustering technique (Heyer, Kruglyak,
& Yooseph, 1999). The QT clustering algorithm has several advantages
compared to k-means approach. Importantly, the number of clusters is
not decided apriori in contrast to k-means. We chose a maximum cluster
diameter of 0.4, which resulted in 31 clusters (Fig.22). Compared to the
clusters obtained by applying the k-means technique, the clusters
obtained by QT algorithm were found to be qualitatively superior. This
is based on the observation that in the downstream functional term
enrichment analysis, clusters obtained from QT algorithm showed
higher GO term enrichment scores. This suggested that clusters
obtained from QT clustering could be functionally more homogenous
compared to k-means. In addition to clustering, gene lists were also
produced based on fold-change in gene expression between zero hour
and the subsequent time points e.g. 0 hour vs. 1 hour and 0 hour vs. 8
hour. These lists were further sorted based on the gene expression
dynamics e.g. two-fold late up-regulated and two-fold late down-

regulated.

114



Subsequent to the clustering of the differentially expressed genes, in
order to characterise the functional themes inherent in the clusters we
performed GO term enrichment analysis using the BiNGO plug-in
(Maere et al.,, 2005) of Cytoscape (Shannon, Markiel, Ozier, Baliga,
Wang, Ramage, Amin, Schwikowski, & Ideker, 2003b). The term
enrichment p-values were adjusted for multiple testing corrections
using the Benjamini-Hochberg method. Gene lists prepared based on
fold-change in expression were also tested for GO term enrichment.
Genes which were found to be many-fold down-regulated at the 8 hour
time point compared to 0 hour were found to be enriched in terms
related to photosynthesis. Additionally, the list was also significantly
enriched with cold-responsive genes. Genes that were found up-
regulated by MKK?7 were found to be enriched with genes related to
defence response. This result was echoed by the clusters generated by
QT clustering technique as well as k-means (result not shown):
development and photosynthesis enrichment in down-regulated
clusters (e.g. QT clusters 1, 2 and 4) while defence and catabolism was
enriched in up-regulated clusters (e.g. QT clusters 3, 7 and 10). Selected
overrepresented GO terms of the major co-regulated gene clusters by

the QT algorithm are summarised in Table 9.

Downregulated clusters

Upregulated clusters

cluster p GO term cluster p GO term
value value
1 4.15E-03 protein folding 6.83E-07 Phosphorylation
1 6.52E-03 Photosynthesis 1.79E-06 protein amino acid
phosphorylation
1 8.03E-03 multicellular organismal 2.76E-06 post-translational protein
development modification
1 8.79E-03 embryonic development 1.58E-05 response to stimulus
1 9.35E-03 chloroplast organization and 1.92E-05 response to other
biogenesis organism
1.81E-04 regulation of biological quality 1.31E-04 response to stress
3.90E-04 cellular homeostasis 7.88E-04 signal transduction
1.79E-03 response to brassinosteroid 8.77E-04 immune response
stimulus
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2 2.91E-03 plastid organization and 3 1.07E-03 defense response
biogenesis
2 5.72E-03 lipid biosynthetic process 3  1.70E-03 second-messenger-
mediated signaling
2 8.36E-03 chlorophyll biosynthetic process | 3 3.22E-03 intracellular signaling
cascade
2 9.85E-03 response to hormone stimulus 3 3.34E-03 response to unfolded
protein
4  6.51E-07 pigment metabolic process 3  3.54E-03 response to chemical
stimulus
4  2.05E-05 pigment biosynthetic process 3 4.09E-03 establishment of
localization
4  8.14E-05 cofactor metabolic process 5.72E-03 Aging
4  3.03E-04 plastid organization and 6.57E-03 innate immune response
biogenesis
4  7.30E-04 lipid metabolic process 7  4.55E-06 vesicle-mediated
transport
1.31E-03 steroid biosynthetic process 6.78E-06 catabolic process
4 1.94E-03 chloroplast organization and 3.22E-04 response to misfolded
biogenesis protein
4  4.77E-03 establishment and/or 7 9.96E-04 establishment of protein
maintenance of chromatin localization
architecture
5 2.42E-21 Translation 7  8.90E-03 Glycolysis
5 3.00E-20 gene expression 1 1.89E-03 actin filament
0 organization
5 2.35E-19 macromolecule biosynthetic 1 5.11E-03 abscisic acid mediated
process 0 signaling
5 2.86E-18 cellular biosynthetic process 1 7.76E-03 response to water
0 deprivation
5 3.42E-10 organelle organization and 1 1.25E-04 regulation of apoptosis
biogenesis 1
5 6.92E-06 Photosynthesis 1  3.99E-03 lipid catabolic process
1
6 8.67E-05 cellular biosynthetic process 1  7.02E-05 catabolic process
2
6  9.04E-05 nucleotide biosynthetic process | 1  3.21E-04 vegetative to reproductive
2 phase transition
6 1.74E-04 biosynthetic process 1 8.86E-04 sexual reproduction
2
8  1.95E-03 regulation of cellular protein
metabolic process
8 5.03E-03 chromatin assembly
8 5.62E-03 DNA packaging
9 1.93E-04 defense response to fungus
9  2.04E-03 tissue development
9 6.75E-03 post-embryonic development
9  8.04E-03 system development
9 8.04E-03 organ development
9 8.83E-03 multicellular organismal process
9 9.40E-03 stomatal complex development
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Table 9: Selected overrepresented GO terms characterizing the major

down- and upregulated clusters generated by the QT algorithm.

Expression evel

cluster-1 769 genes
T

OHr 0.5Hr 1Hr
Time Points

cluster-3 727 genes

Expression level

OHr 0.5Hr THr
Time Points

cluster-7 312 genes

cluster-2 747 genes
T

THE
Time Points

cluster-4 497 genes

Expression level

0-Hr 0.5Hr THr 2Hr &Hr
Time Points

cluster-10 247 genes
T

Expression level

.
THr 2Hr 8Hr
Time Points

L
OHr 0.5Hr

Figure 22: Gene expression profile plots of selected clusters from the

QT method.

117



Discussion

Analysis of MKK7 and MKKY function at the gene expression level
revealed the prevailing tendency of down-regulation of growth and the
induction of defences in good agreement with the regulatory functions
implied by the observed phenotypes (data not shown). The large
number of genes with altered expression levels, especially by MKK?,
suggests that MKK7/MKK9 mainly act in modulating target gene
expression rather than providing binary on/off inputs. The abundance
and diversity of response genes also suggests that MKK7/MKK9 control
complex regulatory machinery rather than a small number of executive
genes. Thus, the main role of MKK7 and MKKS9 is probably to fine tune
various stress responses, which can explain the pleiotropic phenotypes

caused by their altered expression.

In this study, although we also pre-processed microarray data showing
the transcriptional response to induced MKK9 over-expression, we
have not presented any results from the functional analyses. This is due
to suspected quality issues in the MKK9 construct which resulted in
leaky expression profiles in the early time points. Reflecting this
possibility, a very low number of genes (133) passed the ANOVA
performed for identifying differentially expressed genes. Poor
agreement between the biological replicates resulted in very low

significance levels for any hypothesis testing.
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Appendix II

MATLAB implementation of the
experiment selection algorithm

The MATLAB code for the experiment selection algorithm (presented in

Chapter 6) and the datasets used in this thesis can be downloaded from:

http://www.paccanarolab.org/papers/CorrGene/PAPER CODE.zip
Instructions for running the code:

1. Extract the contents of the =zip file into a folder named
“PAPER_CODE”.

2. Run MATLAB

3. Include “PAPER_CODE” and all its sub-directories in the path.

4. Run the script “Initialize.m” and specify organism of interest. Type
“1” for Arabidopsis or “2” for Yeast. This reads in the microarray
data, GO tree structure and gene annotations.

5. To run the algorithm, run the script “Run_and_display.m”.
IMPORTANT: Please ensure that “Initialize.m” has been run before
executing this script

6. The user is prompted to enter the GO identifier of the functional
category to select experiments for. For example, enter “51726” for the
GO category “G0O:0051726, Regulation of Cell cycle”

7. When prompted, enter the threshold for the t-test p-value. e.g. 0.05

8. When prompted, enter the number of experiments to be used as seed.

e.g. K=15.
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9. The index numbers of the selected experiments will be output on the
screen as well written into a text file named
“selected Experiments.txt”.

10. The program will also output the ROC curves indicating the
performance of the selected set vis-a-vis when all experiments in the
collection are used. The ROC curves are saved as “*.png” files.

11. The 1-AUC values from the two ROC curves are recorded in a text file
“AUCreport.txt”. Here the first column indicates the GO identifier
selected. Second column indicates the index number of selected set of
experiments, the third column indicates the 1-AUC when all
experiments are used and the fourth column indicates the 1-AUC

when the selected experiments are used.

The MATLAB code for the experiment selection algorithm and all the

functions developed for the algorithm are presented below:

Run_and_display.m

%This script runs the experiments selection algorithm and generates ROC
%curves for the selected datasets.
%IMPORTANT: Please run "Initialize.m" prior to running this script.

queries = input('Enter GO Identifier for category of interest: ');%Enter GO
identifier for the GO category of interest

TH = input('Enter threshold for t-test p-value: '); % set threshold for the t-test
p-value

seed_size = input('Enter experiment seed size: ');% specify the number of
experiments to be used as the seed set.

fornQ = 1:numel(queries)
qID = queries(nQ);
bgIDs = getallBGid(qID); %retrieves rest of the GOIDs from the GO, this forms the
background set
queryGOID = [qIDbgIDs];
disp('Retrieving data...")
[alldata, labels, sizeMat] = getAllData(queryGOID); %extract data from ALL
microarrays, for the GOIDs in the queryGOID list
topExp = getTopExp(sizeMat, seed_size, TH); %gets the top N experiments specified
by "seed_size"
disp('Experiment selection...')
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SelectSet = selectExperiments(topExp, sizeMat, maxExp, TH); %runs the experiment
selection algorithm

%%%%%% Generate ROC curves for the selected and all experiments
disp('Plotting ROC curves...")
for S = 1:2
switch(S)
case(l) %Case 1 uses All experiments
exp_retr [1:maxExp];
expLabel = 'All’';
color = {'r'};
case(2) %Case 2 uses the Selected experiments
exp_retr = SelectSet;
expLabel = num2str(exp_retr);
color = {'g"'};
end

[corrM ,pval] = getCorrMat(exp_retr,sizeMat, TH); %prepare
correlation matrix with data from chosen experiments
corrM = abs(corrM);
cmLength = length(corrM);
labelMat = zeros(sizeMat,cmLength); % a zeros matrix of the same size as the cut
corr matrix above
labelMat(1:sizeMat, 1l:sizeMat) = 1; % ones in the query GOID matrix , zeros for
the background matrix
corrVec = abs(corrM(:));

[sortCorr, scidx] = sort(corrVec, 'descend');
labelVec = labelMat(:);
sortLabel = labelVec(scidx);

[auc, prec_at] = get_precision_aucPB(sortCorr, sortlLabel,color);
hold on
resultAUC(nQ, S) = auc; % auc = 1l-auc
end
title(labels(1)) %adds title to the plot drawn by getPrecisionAUC

%Report generation

str = strcat(int2str(queryGOID(1)),"':"',int2str(sizeMat), " ':"',char(labels(1)),
int2str(SelectSet));
strFig = strcat(int2str(queryGOID(1)));
dlmwrite('SelectedExperiments.txt', str,'delimiter','','-append")
print(gcf, '-dpng',strFig)
close
end
dlmwrite('AUCreport.txt', resultAUC, 'delimiter','\t','-append')

Initialize.m

R

INITIALIZATION SCRIPT FOR YEAST AND ARABIDOPSIS THALIANA

NN

This script loads all the datasets required for running the experiment
selection algorithm. Please set "PAPER_CODE" as the default directory
before running this script and place the following files in the

"DATA" sub-directory of "PAPER_CODE":

arrayData: A compendium of microarray datasets in matrix form where every
row represents a gene and every column is an experimental condition. The
matrix should not contain any missing values.

arrayInd: This is an index file containing identifiers for each

3R 3R 3R ¥ ¥ ¥ x
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B

experiment in the compendium.

arrayGenes: This contains the list of gene identifiers for the data in
arrayData.

Annot: the file containing the gene annotation, can be downloaded

% from http://www.geneontology.org/GO.downloads.annotations.shtml

GO: The gene ontology file in OBO format

R X X

NS

°

4 PrajwalBhat, July 27, 2011

Q
3

clear all; close all; clc;

org=input('Which organism do you want to work on? [1 = ARABIDOPSIS, 2 = YEAST]:
's');

fprintf('Please wait while the system is initialized. this might take a few
minutes... \n');

%input = 1;

switch(str2num(org))

case(1)

disp('Getting data..."')

globalarrayData; %data matrix containing the microarray compendium
arrayData = importdata('../../DATA/ARABIDOPSIS DATA/ATGE_data_Mod.txt');

globalarrayInd; %index file to identify experiments
arrayInd = importdata('../../DATA/ARABIDOPSIS_ DATA/ATGE_exp_indices_Mod.txt');

globalarrayGenes; %file containing gene identifiers
arrayGenes = importdata('../../DATA/ARABIDOPSIS DATA/ATGE_genelist.txt');
arrayGenes = lower(arrayGenes);

globalAnnot; %annotation file for the selected organism
Annot = goannotread('../../DATA/ARABIDOPSIS DATA/gene_association.tair');
loading Arabidopsis annotation file

R

global GO; %load GO tree file
GO = geneont('File','../../DATA/ARABIDOPSIS_DATA/GOobject');

globalalldata;

globalmaxExp;
maxExp = size(unique(arrayInd),1); %count the total number of
% experiments available in the compendium

case(2)
disp('Getting data..."')

globalarrayData; %data matrix containing the microarray compendium

arrayData =
importdata('//home/paccanaro/praj/Gene_corr_paper_yeast/Data/m3dyeast201010/m3ddat
a20lele.txt');

globalarrayInd; %index file to identify experiments

arrayInd =
importdata('/home/paccanaro/praj/Gene_corr_paper_yeast/Data/m3dyeast201010/m3dexpl
ndex201010.txt");

globalarrayGenes; %file containing gene identifiers
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arrayGenes =
importdata('/home/paccanaro/praj/Gene_corr_paper_yeast/Data/m3dyeast201010/m3dgene
$201010.txt");

arrayGenes = lower(arrayGenes);

globalAnnot; %annotation file for the selected organism

Annot =
goannotread('/rmt/csnewton/paccanarohome/praj/Gene_corr_paper_yeast/Data/gene_asso
ciation.sgd');

global GO; %load GO tree file

GO =
geneont('File', '/rmt/csnewton/paccanarohome/praj/Gene_corr_paper_yeast/Data/GOobje
ct');

globalexpLabels;

explLabels =
importdata('/home/paccanaro/praj/Gene_corr_paper_yeast/Data/m3dyeast201010/m3dexplL
ist.txt');

globalalldata;
globalmaxExp

maxExp = 31;
end
fprintf('INITIALIZATION COMPLETED \n');

SelectExperiments.m

%USAGE :

SelectSet : selected experiments for the test GOID set

top : top N experiments which were selected by the function "topExp"
labelSize : number of genes in the test GOID

maxExp : total number of experiments in the microarray dataset
threshold : p-value cut-off limit for the t-tests

Also requires "alldata" which can be declared globally

%
%

3R X X X

functionSelectSet = selectExperiments(top,labelSize, maxExp, threshold)
SelectSetCell = cell(maxExp,1);

fori = 1:length(top)
SelectSetCell{i} = top(i);
end

BestP = ones(maxExp,1);
Y = threshold;

fori = 1:length(top);
SelectSet = SelectSetCell{i};
pList = ones(maxExp,1);

first = 1;
while (first || min(pList)<threshold)
first = 0;

REM = setdiff(1:maxExp, SelectSet);
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pList = ones(maxExp,1);
tic
for j = REM;

[corrMat, pMat] = getCorrMat([SelectSet,j], labelSize,threshold); %
corrMat = abs(corrMat);

[hpval] = doTtest(corrMat, labelSize); %t-test
pList(j) = pval; %store pvalue from the t-test2

end
toc

OLDY = Y;

[Y,I] = min(pList);
if(Y<OLDY)

SelectSet=[SelectSet,I];
BestP(i)=Y;
[i, BestP(i), SelectSet]
else
SelectSetCell{i}=SelectSet;
break;
end
end
end

[Y, I]=min(BestP);
SelectSet=SelectSetCell{I}

getTopExp.m

% This function performs t-test between the label of interest and the
% background for every experiment in the microarray collection

function [topexpID] = getTopExp(sizeMat, topN, TH)

globalmaxExp;

pvallList = ones(maxExp, 1);

fori = 1:maxExp

sprintf('Calculating TopN : Loop %d',i)
[cMat, pMat] = getCorrMat2(i, sizeMat,TH,1);
[hpval] = doTtest(cMat, sizeMat);

pvalList(i) = pval;

end

[~, Idx] = sort(pvallList, 'ascend');

topexpID = Idx(1l:topN) %top N experiments from the sorted list
getCorrMat.m

%USAGE :

%expIdx : index number of the experiments to be selected from the
%microarray collection

%threshold : p-value cut-off limit for the correlation

%

% "getCorrMat" also requires "alldata" and "arrayInd" which can be declared
globally

% alldata : data from all the microarrays in the dataset

% arrayInd : file containing index numbers of the all the experiments
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function [corrMat, pMat] = getCorrMat(expIdx, sizeMat, threshold)
globalarrayInd;
globalalldata;

Eidx = ismember(arrayInd, expIdx);

selectData = alldata(:,Eidx); %retrieves data from selected experiments, for all
the genes

[corrMatpMat] = Fast_Corr([l:sizeMat], selectData); %HX's fast correlation
function

corrMat(pMat>threshold) = 0;

getCorrMat2.m

B

This function calculates the correlation matrix for specified experiments
USAGE :

expIdx : index number of the experiments to be selected from the
microarray collection

threshold : p-value cut-off 1limit for the correlation

3R R X ¥ X

% "getCorrMat" also requires "alldata" and "arrayInd" which can be declared
globally

% alldata : data from all the microarrays in the dataset

% arrayInd : file containing index numbers of the all the experiments

function [corrMat, pMat] = getCorrMat2(expIdx, sizeMat, threshold, type)
globalarrayInd;

globalalldata;

Eidx = ismember(arrayInd, expIdx);

selectData = alldata(:,Eidx); %retrieves data from selected experiments, for all
the genes

if (type==2)

[corrMatpMat] = corrcoef(selectData');

elseif (type==1)

[corrMatpMat] = Fast_Corr([1l:sizeMat], selectData); %HX's fast correlation
function

end

threshold; %not used

getAllData.m
function [alldata, labels, sizeMat] = getAllData(queryGOID)

globalarrayData;

globalarrayInd;

globalarrayGenes;

globalAnnot;

maxExp = 44; %total number of experiments in the dataset
global GO

arrayInd = arrayInd';

arrayGenes = lower(arrayGenes);

GOgenes = {Annot.DB_Object_Symbol}; %the full arabidopsis gene list from the
annotation file

GOID = [Annot.GOid]; %get associated GO terms

Aspect = {Annot.Aspect}; %get the 3 ontologies
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Evidence = {Annot.Evidence};

BPMask = strcmp({Annot.Aspect}, 'P'); %Get only biological process terms
GOgenes = GOgenes(BPMask); %get genes from biological process tree

GOID = GOID(BPMask); %get GO terms from biological process treee

Evidence = Evidence(BPMask); %get evidence codes from genes in biological
process tree

EvMask = ismember(Evidence, {'EXP' 'IDA' 'IPI' 'IMP' 'IGI' 'IEP' 'ISS' 'IC' 'ISO'
"ISA' 'ISM' 'IGC'}'); % all annotations except microarrays and electronic
GOgenes = GOgenes(:,EvMask); %retrieve experimentally annotated genes
GOgenes = lower(GOgenes);

GOID = GOID(:, EvMask); %retrieve experimentally annotated GO terms

geneproc = [];

dataproc = [];

labelproc = [];

sizeproc [1;

GOstruct = GO(queryGOID);
fori = 1:length(queryGOID)

querylLabel = cellstr(GOstruct.term(i).name); %retrieves GO annotation for each
of the query GOIDs

desID = getdescendants(GO, queryGOID(i)); %gets all the descendant GO:IDs

Gidx = ismember(GOID, desID);

retGenes = unique(GOgenes(:, Gidx)); %retrieve genes which belong to the
descendants

retGenes = cellstr(lower(retGenes'));

ifi ==1
N = 35; % get only N number of genes from each category
else N = 1;
end
ifisempty(retGenes)

retGenes = ('');
elseif (length(retGenes)<N)
retGenes = retGenes(1l:length(retGenes));
elseretGenes = retGenes(1:N); %restrict the number of genes retrieved to N for
each GO category
end
%%%% extracting gene expression data
Lidx = ismember(lower(arrayGenes), lower(retGenes));
allData = arrayData(Lidx,:); %retrieves data from all experiments
getGenes = arrayGenes(Lidx,:);
getSize = length(getGenes);
getLabels = repmat(queryLabel, length(getGenes),1);
%%% complete dataset retrieved
geneproc = [geneproc; getGenes];
labelproc = [labelproc; getlLabels];
dataproc = [dataproc; allData];
sizeproc = [sizeproc; getSize];

end

sizeMat = sizeproc(1);

%khkhkbseperate background data

restGenes = geneproc(sizeproc(1l)+l:end, :);

restLabels = labelproc(sizeproc(1l)+1l:end, :);

restData = dataproc(sizeproc(1l)+l:end,:);

%khkkkgkmake unique genes dataset for the background data
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[unigGenes, m, n] = unique(restGenes);

uniqLabels = restLabels(m);

unigData = restData(m,:);

%hkhk%d% prepare data for output: concatenate unique background gene data
%%k6dod6%% with the query gene data

labels = [labelproc(l:sizeMat(1)); uniqglLabels];

alldata = [dataproc(1l:sizeMat(1),:); unigData];

getallBGid.m

%function takes the foreground id as the input, gets all background GOID
%such that the list contains no descendants of the input id and the GOIDs
%haveatleast one of the annotated genes in the microarray data

function [bglLabels] = getallBGid(fglLabel)

globalAnnot
global genes
global GO

GOgenes = {Annot.DB_Object_Symbol}; %the full arabidopsis gene list from the
annotation file

GOID = [Annot.GOid]; %get associated GO terms

Aspect = {Annot.Aspect}; %get the 3 ontologies

Evidence = {Annot.Evidence};

BPMask = strcmp({Annot.Aspect}, 'P'); %Get only biological process terms
GOgenes = GOgenes(BPMask); %get genes from biological process tree

GOID = GOID(BPMask); %get GO terms from biological process treee

Evidence = Evidence(BPMask); %get evidence codes from genes in biological
process tree

EvMask = ismember(Evidence, {'EXP' 'IDA' 'IPI' 'IMP' 'IGI' 'IEP' 'ISS' 'IC' 'ISO'
"ISA' 'ISM' 'IGC'}"); % all annotations except microarrays and electronic
GOgenes = GOgenes(:,EvMask); %retrieve experimentally annotated genes

GOgenes = lower(GOgenes);

GOID = GOID(:, EvMask); %retrieve experimentally annotated GO terms

GOIDlist = GOID;

GOgenesList = GOgenes;

inputLabels = getdescendants(GO, fglLabel);

goidx = ismember(GOIDlist, inputLabels);

GOIDlist(goidx) = []; %filter out Foreground GO label and its descendents from
the GOID list

GOgenesList(goidx) = [];

geneidx = ismember(lower(GOgenesList), lower(genes)); %Remove genes in the GO list
which are not found in the microarray

GOIDlist(geneidx) = [];

%%kkk%%k remove any obsolete IDs present in the list

obs = get(GO.terms, 'obsolete");

mask = ismember(cell2mat(obs), 1);

obsTermsStruct = GO.terms(mask);

obsTerms = cell2mat(get(obsTermsStruct,'id')); % make a list of obsolete IDs

terms = get(GO.terms,'id");

idx1l = ismember(GOIDlist, cell2mat(terms'));

GOIDlist(~idx1) = []; %filter out any IDs not present in the GOtree
idx = ismember(GOIDlist, obsTerms');

GOIDlist(idx) = []; % filter out obsolete terms from GOID list
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bgLabels = unique(GOIDlist);

get_precision_aucPB.m
%This function produces ROC curves and AUC
function [auc,prec_at] =get_precision_aucPB(Pre,G, color)

recall list=[0.01,0.1,0.5,0.8];
prec_at=zeros(4,1);

ind=find(G>0);

Th_List=unique(Pre(ind));
Th_List=[min(Pre);Th_List; max(Pre)];
Th_List=unique(Th_List);

AC_P=1ength(ind);
AC_N=length(G)-AC_P;

N=length(Th_List);

if(AC_P*AC_N==0 || N<3)
auc=0.5;
prec_at=0;%recall_list;
return;

end

TP=zeros(N,1);
TN=zeros(N,1);
FP=zeros(N,1);
FN=zeros(N,1);

for(i=1:N)
TH=Th_List(i);
I=find(Pre>=TH);

J=find(Pre<TH);

TP(i)=length(find(G(I)==1)); %TP should be 1, 2, 3..
FP(i)=1length(find(G(I)==0)); %TP should be 1, 2, 3..

TN(i)=length(find(G(J)==0));
FN(i)=length(find(G(J)==1));

end%TH
FPR=FP/AC_N;
TPR=TP/AC_P;

Recall=TP./(TP+FN); %check Recall==TPR
Precision=TP./(TP+FP);
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%plot(Recall, Precision);

for(i=1:4)
[Y,I]=min(abs(Recall-recall_list(i)));

prec_at(i)=Precision(I);

end

plot(FPR,TPR, char(color), 'LineWidth',2);% for ROC
auc=0;
for(i=1:N-1)
a=TPR(i);
b=TPR(i+1);
h=abs(FPR(i+1)-FPR(1));
auc=auc+0.5*(a+b)*h;
end
auc=1-auc;
end

fastCorr.m

%This function calculates a mxn matrix of correlation

function [Co, P]=Fast_Corr(IND, Matrix)

%IND is an index for the genes of interest

%Matrix is the micorarray matrix, rows for genes, and columns for
%experiments

if(size(IND,1) > size(IND,2))
IND=IND';

end

n=length(IND);

Part=n*3;

N=size(Matrix,1);
REM=setdiff(1:N, IND);

Co=zeros(n,N);
P=zeros(n,N);

Iter=ceil((N-n)/Part);

%%get division

for(i=1:Iter)

if(i<Iter)

PartSet{i}=REM( (i-1)*Part+1l: i*Part );
else

PartSet{i}=REM((i-1)*Part+l:end);

end

end

for(i=1:Iter)

callset=[IND, PartSet{i}];
Ma=Matrix(callset, :);
[c,p]=corrcoef(Ma');
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Co(:,callset)=c(1:n, :);
P(:,callset)=p(1:n, :);
end

end

doTest.m

B

Usage:

R X

corrMat : correlation matrix
sizeMat: size vector containing sizes for genes in each GOID
pval = p-value from the T-TEST2

R X

%
% To use this function sizeMat must be GREATER than 1

function [h pval] = doTtest(corrMat, sizeMat)

%extract foreground matrix

pval = [];

corrMat = abs(corrMat);

bMat = zeros(length(corrMat), length(corrMat));

LCorr = corrMat(l:sizeMat(1l), 1l:sizeMat(1)); %corr matrix for the forground or
the label of interest

[m, n] = size(LCorr);

bMat(1:m,1:n)=LCorr(1l:m,1:n);

bCorr = bMat - corrMat; % corr matrix for the background

bCorr = abs(bCorr);

mask = repmat(2, m, n); % mask for cutting corr matrix of label of interest
Trimask = triu(mask, 1);

LData = LCorr(Trimask==2); % corr data vector for the foreground or label of
interest

[r, ¢] = size(bCorr);

maskB = repmat(2, r, c);

maskB(1:m, 1:n) = @; % mask for cutting out the background

TriMaskB = triu(maskB, 1);

BgData = bCorr(TriMaskB==2);

[h, pval, ci] = ttest2(LData, BgData,[], 'right');

clearcorrMat
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