

TRUSTED COMPUTING TECHNOLOGIES AND THEIR USE IN THE PROVISION OF

HIGH ASSURANCE SDR PLATFORMS

Eimear Gallery (Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK;
e.m.gallery@rhul.ac.uk); and Chris Mitchell (Royal Holloway, University of London, Egham, Surrey,

TW20 0EX, UK; c.mitchell@rhul.ac.uk).

ABSTRACT

This paper introduces the concept of trusted computing, and

highlights the ways in which it may be leveraged to enable

the provision of high assurance Software Defined Radio

(SDR) platforms.

1. INTRODUCTION

A software defined radio is a communications device

“whose operational modes and parameters can be changed

or augmented, post manufacturing via software” [1]. This

implies that the device can be reconfigured to communicate

using multiple frequency bands and protocols, or upgraded

in a low cost and efficient manner. While the concept of a

reconfigurable air interface holds considerable promise,

SDR will only be accepted if the security threats pertaining

to the secure download and execution of reconfiguration

software can be addressed.

In this paper the concept of trusted computing is

initially explored. An overview of the trusted computing

industry standard specifications is presented, in conjunction

with a synopsis of the most recent developments in trusted

computing technologies. Following this, we highlight the

threats which may impact upon an SDR device, and analyze

those threats which may be addressed through the

deployment of trusted computing functionality.

2. TRUSTED COMPUTING

In the context of trusted computing, a platform is trusted if it

“behaves in an expected manner for an intended purpose”

[2]. This does not necessarily imply, however, that a Trusted

Platform (TP) is a secure platform. For example, if an entity

can determine that a platform is infected with a virus, whose

effects are known, the platform can be trusted by that entity

to behave in an expected but malicious manner [3].

 In order to implement a platform of this nature, a trusted

component, which is usually in the form of built-in

hardware, is integrated into a computing platform [4]. This

trusted component is then used to create a foundation of

trust for software processes running on the platform [4].

 It is said that “trusted platforms were so-called because

they provide a technological implementation and

interpretation of the factors that permit us, in everyday life,

to trust others” [5], i.e.

• Either first hand experience of consistent behavior,

or trust in someone who vouches for consistent

behavior;

• Unambiguous identification; and

• Unhindered operation.

 We examine this statement in relation to the ‘trusted

component’ upon which a trusted platform is constructed,

and the software processes running on the platform, for

which it provides a ‘foundation of trust’.

3. THE TRUSTED COMPUTING GROUP

The Trusted Computing Group (TCG)
1
 is an industry forum

which is developing standards for trusted computing

platforms. Trusted computing, as currently defined by the

TCG, is built upon four fundamental concepts: integrity

measurement, authenticated boot, platform attestation, and

sealing.

3.1. Integrity Measurement

An integrity measurement is defined in [6] as the

cryptographic digest or hash of a platform component. For

example, an integrity measurement of a program can be

calculated by computing the cryptographic digest or hash of

its instruction sequence, its initial state (i.e. the executable

file) and its input.

3.2. Authenticated Boot

An authenticated boot process represents the process by

which a platform’s configuration or state is reliably

measured, and the resulting measurement is reliably stored.

During this process, the integrity of a pre-defined set of

platform components is measured, as defined in section 3.1,

in a particular order. These measurements are condensed to

form a set of integrity metrics which can then be stored in a

tamper-resistant log. Condensing enables an unbounded

number of platform component measurements to be stored.

If each measurement was stored separately it would be

1
 www.trustedcomputinggroup.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28899126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

difficult to decide on an upper bound on the size of memory

required to store them [4]. A record of the platform

components which have been measured is also stored on the

platform.

3.3. Attestation

Attestation is the process by which a platform can reliably

report evidence of its identity and its current state (i.e. the

integrity metrics which have been stored to the tamper

resistant log, and the record of the platform components

which have been measured, as described in section 3.2).

3.4. Sealing

Sealing represents the process of associating data with a set

of integrity metrics representing a particular platform

configuration, and encrypting it. The data can only be

decrypted and released when the state of platform is the

same as that indicated by the integrity metrics sealed with

the data.

4. THE TRUSTED PLATFORM SUBSYSTEM

As described in section 2, in order to provide the services

described above, a ‘trusted component’ must be integrated

into a platform. This trusted component is comprised of

three so-called ‘roots of trust’ – the Root of Trust for

Measurement (RTM), the Root of Trust for Storage (RTS),

and the Root of Trust for Reporting (RTR). A root of trust is

defined as a component that must be unconditionally trusted

for the platform to be trusted [2].

4.1. The RTM

The RTM is an engine capable of measuring at least one

platform component, and hence providing an integrity

measurement, as described in section 3.1. The RTM is

typically implemented as the normal platform engine

controlled by a particular instruction set (the so-called ‘Core

Root of Trust for Measurement’ (CRTM)). On a PC, the

CRTM may be contained within the BIOS or the BIOS Boot

Block (BBB), and is executed by the platform when it is

acting as the RTM. It is required by the TCG that the CRTM

is protected against software attack: the CRTM must be

immutable, as defined by the TCG, meaning that its

replacement or modification must be under the control of the

host platform manufacturer alone [7]. It is also preferably

that the CRTM be physically tamper-evident [4].

4.2. The RTS and RTR

The RTS is a collection of capabilities which must be trusted

if storage of data inside a platform is to be trusted [4]. The

RTS is capable of maintaining an accurate summary of

integrity measurements made by the RTM, i.e. condensing

integrity measurements and storing the resulting integrity

metrics, as described in section 3.2. The RTS also provides

integrity and confidentiality protection to data and enables

sealing. In conjunction with the RTM and RTS, an

additional root of trust is necessary for the implementation

of platform attestation, namely the RTR. The RTR is a

collection of capabilities that must be trusted if reports of

integrity metrics are to be trusted (platform attestation) [4].

The RTR and the RTS constitute the minimum

functionality that should be provided by a Trusted Platform

Module (TPM) [9-11]. A TPM is generally implemented as

a chip which must be uniquely bound to a platform. In order

to support RTS and RTR functionality, a TPM incorporates

various functional components such as: I/O; non-volatile and

volatile memory; a minimum of 16 Platform Configuration

Registers (PCRs), which are used by the RTS to store the

platform's integrity metrics; a random number generator; a

hash engine; key generation capabilities; an asymmetric

encryption and digital signature engine; and an execution

engine. The TPM must be protected completely against

software attack, i.e. the RTS and RTR (i.e. the TPM) must

be immutable, which implies that the replacement or

modification of RTS and RTR code must be under the

control of the TPM manufacturer alone. The TPM is

required to provide a limited degree of protection against

physical attack (tamper-evidence) [4].

5. TP SUBSYSTEM FUNCTIONALITY

We now examine how the services described in section 3 are

provided by the RTM, RTS and RTR.

5.1. The Authenticated Boot Process

An authenticated boot process enables the state of a platform

to be measured and recorded so that it can be reported to a

challenger of the platform, as described in section 3.3. A

simplified authenticated boot process may proceed as

follows, where we assume that the CRTM is part of the

BBB. The CRTM measures itself and the rest of the BIOS

(i.e. the POST BIOS). The computed measurements are then

passed to the RTS which condenses them and stores the

resulting integrity metric to the first of the 16 PCRs (PCR-

0). Control is then passed to the POST BIOS which

measures the host platform configuration, the option ROM

code and configuration, and the Operating System (OS)

loader. The computed measurements are passed to the RTS,

which condenses them and stores the resulting integrity

metrics to PCRs 1-5. Control is then passed to the OS loader

which measures the OS. This process of measuring,

condensing, storing, and handing-off, continues until the

platform’s configuration has been measured and stored. The

exact measurement process is dependent on the platform; for

example, the TCG specifications detail authenticated boot

processes for a platform which has a 32-bit PC architecture

BIOS, [7] and for an Extensible Firmware Interface platform

[8].

5.2. The TPM Protected Storage Functionality

The TPM protected storage functionality, which

incorporates its sealing capability, was designed so that an

unbounded number of secrets/data could be confidentiality

and integrity protected on a TP. Asymmetric cryptography is

used to confidentiality-protect data.

Protected storage also provides implicit integrity

protection of data objects. Data can be associated with a

string of 20 bytes of authorization data before it is

encrypted. If data decryption is requested, the authorization

data must be submitted to the TPM. The submitted data is

compared to the authorization data in the decrypted string,

and the decrypted data object is only released if the values

match. If the encrypted object has been tampered with, after

decryption the authorization data will most likely have been

corrupted (because of the method of encryption employed)

and access will not be granted even to an entity which has

submitted the correct authorization data. Functionality to

control how data is used on its release, or to protect data

from deletion, is not provided.

The TPM protected storage functionality incorporates

an asymmetric key generation capability. This capability

enables the generation of key pairs, where the private keys

from these pairs can only be used on the TPM on which they

were generated, and/or can only be used if the TPM host

platform is in a specified state. These private keys are never

exposed outside the TPM in the clear. The TPM enables the

encryption of keys or data external to the TPM so that they

can only be decrypted on a particular TPM; it also enables

the encryption of keys or data external to the TPM so that

they can only be decrypted by a particular TPM when the

TPM host platform is in a particular state. Finally, sealing is

provided, i.e. the association of data with a particular

platform configuration (i.e. a set of integrity metrics) and its

encryption by a particular TPM. The sealed data can only be

decrypted by the same TPM and will only be released if the

TPM host platform is in the specified state.

5.2. Platform Attestation

Platform attestation enables a TPM to reliably report

information about its identity and the current state of the

TPM host platform. Each TPM is associated with a unique

asymmetric key pair called an endorsement key pair, and a

set of credentials. A trusted platform management entity

(which is generally the TPM manufacturer) attests to the fact

that the TPM is indeed genuine by digitally signing an

endorsement credential, which binds the public endorsement

key to a TPM description. Conformance credentials may be

issued by laboratories: these attest that a particular type of

TPM, associated components such as a CRTM, the

connection of a CRTM to a motherboard, and the

connection of a TPM to a motherboard, conform to TCG

specifications. A platform entity (usually the platform

manufacturer) offers assurance in the form of a platform

credential that a particular platform is an instantiation of a

TP. In order to create a platform credential, a platform entity

must examine the endorsement credential of the TPM, the

conformance credentials relevant to the TP, and the platform

to be certified.

Since a TPM can be uniquely identified by its

endorsement key pair, this key pair is not routinely used by a

platform, ensuring that the activities of a TP cannot be

tracked. Instead, an arbitrary number of pseudonyms in the

form of attestation identity key (AIK) pairs can be generated

by a TPM and associated with a TP. Privacy-Certification

Authorities (P-CAs) enable attestation identity public keys

to be associated with TPs through the generation of AIK

credentials. Once a platform has requested an AIK

credential from a specified P-CA, the P-CA verifies all the

TP credentials, as described above, to ensure that the TP is

genuine, and then creates (signs) an AIK credential which

binds the public AIK to a generic description of the TP. The

private AIK is used by the TPM during platform attestation.

Platform attestation is a process by which a platform

signs a nonce (sent by a challenger of the platform) in

conjunction with integrity metrics reflecting the current state

of the platform, using one of its private AIKs. This signed

bundle is returned to the challenger with the record of the

platform components which are reflected in the integrity

metrics, together with the appropriate AIK credential. The

challenger then uses this information to determine whether it

is:

1. Safe to trust the TP from which the statement has

originated;

2. Safe to trust (part of) the software environment

running on the platform.

6. TRUST

We now evaluate the factors which make it safe to trust a TP

and (part of) the software environment running on the

platform. It is safe for the challenger to trust a TP on

validation of two elements.

• An AIK credential, in which a trusted entity

vouches for the consistent behavior of the TP, i.e.

that the CRTM and TPM comply with TCG

specifications. If the CRTM and TPM comply with

the TCG specifications, this also implies that both

the CRTM and TPM are immutable and tamper-

evident and can therefore be trusted to operate

unhindered.

• The signature of the TPM generated using its

private AIK, which serves to unambiguously

identify a TP.

It is only safe to trust (part of) the software environment of

the platform which has been attested to after examining two

elements.

• The signed integrity metrics reported by the TP,

which enable the challenger to verify (part of) the

platform’s software environment.

• The expected integrity measurements of each

platform component, which can be extracted from

the component’s validation certificate. A validation

certificate gives the expected integrity measurement

of a component if it is behaving as intended. These

measurements are then condensed and compared to

the integrity metrics attested to by the TP and

received by the challenger. The reported identity of

(part of) the TP’s software environment can thence

be validated. After validation, (part of) the TP’s

software environment can be unambiguously

identified.

In order to ensure software can operate unhindered, the

definition of what constitutes trusted computing

functionality, as defined by the TCG, must be revised and

extended to incorporate concepts such as software isolation

or protected software execution.

7. ISOLATED EXECUTION ENVIRONMENTS

Isolation enables the unhindered execution of software [5].

In addition to the services provided by the TCG and

described above, an isolated execution environment should

provide the following services to hosted software [6].

• Protection from external interference.

• Observation of the computations and data of a

program running within an isolated environment

only via controlled inter-process communication.

• Secure communication between programs running

in independent execution environments.

• A trusted channel between an input/output device

and a program running in an isolated environment.

In order to provide software isolation and the services

described, an isolation layer or virtual machine monitor can

be deployed on the platform. Such a mechanism is not

defined by the TCG. An isolation layer may be implemented

using a number of approaches, as described below. Many of

these approaches, however, have associated difficulties with

respect to assurance, device support, legacy OS

compatibility and performance.

7.1. OS-Hosted Virtual Machine Monitor

In the case of an OS-hosted virtual machine monitor, such as

VMWare workstation, all guest OSs executing in VMs

utilize the host OS device drivers. While this implies that

every guest can utilize drivers developed for the host

machine, it also means that the isolation layer essentially

incorporates the VMM and the host OS, making assurance

problematic [6, 13].

7.2. Standalone VMM

In a standalone VMM, such as Terra [14], all devices are

virtualized or emulated by the VMM. This means that the

VMM must contain a virtual device driver for every

supported device. As the set of devices in consumer systems

is often large, and as many virtual drivers are complex, the

size of the VMM quickly grows at the cost of assurance.

A standalone VMM exposes the original hardware

interface to its guests. While this implies that legacy OSs

can be supported, it also means that the VMM size is

increased due to the complexity involved in virtualizing the

x86 CPU instruction set [6].

7.3. Para-Virtualization

Isolation layers using para-virtualization techniques, such as

XEN [15], have been designed for efficiency, and try to

alleviate the complexity introduced when devices are

virtualized. Two common approaches used in order to para-

virtualize I/O are as follows [13].

In the first case, an I/O-type-specific API for each

device is integrated into the VMM, in conjunction with the

device drivers [13]. This approach requires a guest OS to

incorporate para-virtualized drivers which enable

communication with the VMM APIs rather than the

hardware device interfaces. While this gives performance

gains over full virtualization, the guest OS must be modified

to communicate with the I/O-type-specific APIs.

Alternatively, a service OS, which incorporates the

VMM APIs and the device drivers, may execute in parallel

to guest OSs, which are modified to incorporate para-

virtualized drivers [13]. To enable this approach, devices are

exported to the service OS. While this approach means that

device drivers do not have to be implemented within the

isolation layer, the isolation layer may become open to

attack from a guest in control of a direct memory access

device which is, by default, given unrestricted access to the

full physical address space of the machine.

7.4. An Isolation Layer with Hardware Support

The isolation layer described as part of the NGSCB [6, 16]

was designed to take advantage of CPU and chipset

extensions in the next generation of hardware. Such

extensions are being provided, for example, by Intel’s

LaGrande [3]. The isolation kernel has been designed to

execute in a CPU mode more privileged than the existing

ring 0, effectively in ring -1, which will be introduced in

forthcoming versions of the x86 processors. This enables the

isolation layer to operate in ring -1 and all guest OSs to

execute in ring 0. Thus, complexity problems which arise

when virtualizing the x86 instruction set are avoided [6].

The original hardware interface is exposed to one guest

OS [6]. However, rather than necessitating the virtualization

of all devices, as a VMM does, devices are exported to guest

OSs which contain drivers for the devices they choose to

support. Guest operating systems may then efficiently

operate directly on the chosen device. This does, however,

leave the problem of uncontrolled Direct Memory Access

(DMA) devices, which by default have access to all physical

memory. In order to prevent DMA devices circumventing

virtual memory-based protections provided by the isolation

layer, it is necessary for the chipset manufacturers to provide

chipset extensions. This enables a DMA policy to be set by

the isolation layer which indicates, given the state of the

system, if a particular subject (DMA device) has access

(read or write) to a specified resource (physical address),

[6]. The DMA policy is then read and enforced by hardware,

for example the memory controller or bus bridges.

Hardware extensions required in order to facilitate the

implementation of the NGSCB isolation layer have been

provided as part of Intel’s LaGrande [3] and AMD’s

Presidio initiatives. Both enable the efficient and secure

implementation of an isolation layer, as described by

Microsoft, through the implementation of CPU and chipset

extensions. Both also support the establishment of trusted

channels between the input and output devices and programs

running within an isolated environment.

8. SOFTWARE DEFINED RADIO

Software defined radio is an important innovation for the

communications industry, providing many advantages over a

wireless networking infrastructure and terminals that are

implemented completely in hardware. Cost reductions may

result from the deployment of a generic hardware platform

which can be customized using software [17]. The value of

terminals is increased as public/private sector radio system

sharing becomes possible and as terminals can be upgraded

to comply with evolving communications standards. In

conjunction with this, SDR enables operation and

maintenance cost reductions, as bug fixes may be completed

by software download rather than terminal recall.

Re-configurable radios can also be adapted to meet user

and/or operator preferences. A terminal can also be

reconfigured to efficiently cope with changing network

conditions such as utilization, interference or radio channel

quality, thereby offering an enhanced user experience [18].

Efficient roaming is also enabled, as air interface and

frequency bands can be reconfigured as required.

While there are many advantages associated with the

introduction of SDR terminals, if SDR is to be accepted the

security threats introduced by reconfigurable terminals must

be analyzed, and measures taken to mitigate these threats.

9. SDR THREAT ANALYSIS

The threats which impact upon a reconfigurable SDR device

may be categorized as follows:

• Those which impinge on the security of the

downloaded reconfiguration software; and

• Those which impinge on host security.

The fundamental threat to the security of the

downloaded reconfiguration software is:

• Unauthorized reading of software while in transit

between the software provider and the end host, or

while in storage or executing on the end host.

This threat may result in an infringement of the intellectual

property rights associated with the software. It may also

result in unauthorized access to and execution of software.

Fundamental threats to end host security include:

• Malicious or accidental modification or removal of

security-critical software while in storage or

executing on the end host.

• The download of inappropriate reconfiguration

software which does not meet the capability

requirements of the SDR device.

• Malicious or accidental modification, addition or

removal of downloaded software in development,

in transit or while in storage or executing on the

end host.

These threats may result in:

• An inoperable device. For example, if a device uses

software modulation, an improper change of the

modulation format can render the individual device

inoperable [19].

• Violation of Radio Frequency (RF) spectrum rights.

This may, for example, result in RF interference. If

a device can be programmed to transmit on a

frequency for which it is not authorized, signals

from other nodes, which are authorized to use this

frequency, may be jammed [19]. Alternatively,

spurious emissions resulting from unauthorized

radio spectrum use could violate user safety [20].

• Increased output power. If a device, for example,

operates at maximum power, its performance may

be increased at the expense of other users in the

communications network [19]. This in turn may

force other users to use increased power. In this

way, the device battery life is severely shortened. If

the radiated power is too high, user safety may also

be put at risk [20].

• Compromise of user applications and/or data by

malicious software.

The threats listed above, and the possible impacts of their

exploitation, include those defined by the SDRF security

working group in [21].

10. ADDRESSING THREATS TO SDR USING TC

We now investigate some of ways in which trusted

computing functionality may be used in order to address the

threats outlined above or, failing that, to limit the level to

which a threat may be exploited.

10.1. Protecting the Reconfiguration Software

TC mechanisms may be used to confidentiality-protect the

reconfiguration software in transit between the software

provider and the end host, while in storage or executing on

the end host, and to ensure that only the intended recipient

device can access the software.

In [22], we describe a software download protocol

which leveraged trusted computing functionality, or, more

specifically, sealed storage, platform attestation, and

isolation techniques. This protocol is now summarized.

Before the required reconfiguration software can be

downloaded to a TP, the TPM is used to generate an

asymmetric key pair. This key pair is bound to a set of

integrity metrics such that the private key can only be

utilized by the TPM on which it was generated when the

TPM host platform is in the specified state. The public key

from this pair, and the integrity metrics with which its

private key are associated, are then certified by the TPM

using a TP AIK, described in section 5.2, so that the state to

which the private key is bound can be shown to the software

provider. The certified public key and the corresponding

AIK credential are then sent to the software provider.

On receipt of the certified key and the AIK credential,

the software provider verifies the TP’s AIK credential and

the signature of the TPM on the public key and the

associated integrity metrics. If these two elements can be

verified, and if the software provider considers the platform

software state to which the key is bound to be trustworthy,

the provider computes a MAC on and encrypts the

reconfiguration software, encrypts the symmetric MACing

and encryption keys using the public key received from the

TP, signs the encrypted symmetric keys using his private

signature key, and transmits this data to the TP. The

symmetric keys received by the TP, and therefore the

reconfiguration software, can only be accessed when the TP

is in the state deemed trustworthy by the software provider.

The software provider may require that the integrity

metrics to which the private key is bound, represent an

isolated execution environment executing on a specified

isolation layer, which is turn is supported by a TP which

incorporates hardware extensions that enable efficient and

secure isolation, as described in section 7. In this way, the

confidentiality of the reconfiguration software can be

protected in transit between the software provider and the

TP, in storage, and while executing on the device. The

software provider is also assured that only a specified TP in

a particular state can access the software.

Alternatively, if a more traditional mechanism such as

SSL/TLS is used in order to provide secure download of the

reconfiguration software, TC functionality can be used in

order to harden the SSL/TLS implementation. In this case,

prior to the completion of any SSL/TLS protocol, the TPM

is used in order to generate the client-side (the SDR device)

asymmetric key pair for authentication, which is bound to a

set of integrity metrics such that the private key can only be

utilized by the TPM on which it was generated when the

TPM host platform is in the required state. This key is then

certified using a TP AIK. Evidence that this SSL/TLS key

pair has been generated on, and certified by, a TPM is then

provided by a Certification Authority (CA) in an extension

of the SDR device’s X.509 SSL/TLS certificate.

During an SSL/TLS protocol run between a software

provider and the SDR device, the information provided in

the extension of the SDR device’s X.509 SSL/TLS public

key certificate enables a software provider to trust that the

SDR device’s private SSL/TLS key is held within a TPM,

and that the key can only be used when the platform is in a

particular state. As above, the software provider may require

that the integrity metrics to which the private key is bound,

represent an isolated execution environment into which the

software will be downloaded and executed. This hardened

implementation of SSL/TLS gives the software provider

some assurance that the SDR device’s SSL/TLS private key

is stored securely and cannot been stolen. Evidence of the

device’s ability to provide an isolated execution

environment for the downloaded software can also be

demonstrated. This process is described in [23]. The

protocol described in [22] has the advantage that less

processing is required on the potentially resource-

constrained SDR device in order to complete the download.

10.2. Protecting the Host

10.2.1. Security-Critical Software

While the integrity of security-critical software while in

storage cannot be ensured using TC functionality, TC

mechanisms may be utilized to help detect its malicious or

accidental modification or removal.

A secure boot process can be used to ensure that a set of

security-critical platform components boot into the required

state. Secure boot is not currently enabled by the TCG TPM

main specifications. However, much work on secure boot

has been conducted independently of the TCG, including by

Tygar and Yee [24], Clark [25], Arbaugh, Farber and Smith

[26] and Itoi and Arbaugh [27]. Each of these papers

describe a similar process, in which the integrity of a pre-

defined set of system components is measured, as described

in section 3.1, and these measurements then compared

against a set of expected measurements which must be

securely stored and accessed by the platform during the boot

process. If, at any stage during the boot process, the removal

or modification of a platform component is detected, the

boot process is aborted. While a secure boot process is not

specified in the TPM specification set, the TCG mobile

phone working group has recently released a specification

for a Mobile TPM which enables a secure boot process [28].

TC functionality also enables the isolation of security-

critical software in a secure execution environment so that it

cannot be observed or modified when executing by software

executing in parallel insecure execution environment.

10.2.2. Reconfiguration (Radio) Software

A capability exchange must be completed by the network

and the SDR prior to software download to ensure that the

appropriate software entities and parameter sets are selected

for a particular SDR device, [29]. The use of platform

attestation, as described in section 3.2, could be used to

ensure that the reports sent by the device are accurate.

TC cannot prevent denial of service attacks resulting

from the removal/deletion of the downloaded radio software,

either in development, or in transit between the software

provider and the host or in storage on the host. While TC

functionality cannot prevent the malicious or accidental

modification or addition of downloaded software in

development or in transit, in the advent of malicious or

buggy software being downloaded to and executed on a

device, there are a number of ways in which TC can lessen

the impact of the exploitation of this threat.

If the downloaded software is isolated in its own

execution environment, as described in section 7, then any

malicious behavior can be controlled and its effects limited.

If sealed storage is utilized by the end user to protect

their private data (e.g., credit card numbers), then the impact

of malicious software may be lessened, as it cannot gain

access to security sensitive data which has been protected.

On reconnection to a commercial network, a trusted

SDR device could be required to attest to its state so that a

decision can be made as to whether the device should be

authorized to access the network. Building upon basic

attestation, as described in section 3.2, the specifications of

the TCG Trusted Network Connect work group describe a

process which may be completed in order to ensure that

devices connecting to a network are in a trustworthy state.

This 3-stage process involves:

• Assessment (is the platform in a trustworthy state?);

• Isolation (of the device if its state is not considered

trustworthy by the network); and

• Remediation (where the state of the device can be

updated/modified as required) [30].
Process isolation may be utilized in order to ensure that

the downloaded radio software can execute unhindered.

11. CONCLUSIONS

In this paper we have introduced the concept of trusted

computing. Following a brief overview of the threats

introduced by the deployment of re-configurable terminals

we highlighted some of ways in which TC functionality may

be used in order to mitigate, or lessen the impact of, these

threats. While trusted computing is not a panacea to the

plethora of security threats pertaining to the secure

download and execution of reconfiguration software, it

enables us to address a significant number of them, either

through threat mitigation or through threat impact reduction.

12. REFERENCES

[1] Software Defined Radio Forum (SDRF), Overview and

Definition of Software Download for RF Reconfiguration,
SDRF Archived Approved Document, DL-DFN Document
SDRF-02-A-0002-V.0.0, 27th August 2002.

[2] Trusted Computing Group (TCG), “TCG Specification
Architecture Overview”, TCG Specification Version 1.2, The
Trusted Computing Group, Portland, Oregon, USA, April
2003.

[3] D. Grawrock, The Intel Safer Computing Initiative Building
Blocks for Trusted Computing, Intel Press, Oregon, USA,
2006.

[4] B. Balacheff, L. Chen, S. Pearson, D. Plaquin, and G.
Proudler, Trusted Computing Platforms: TCPA Technology in
Context, Prentice Hall, Upper Saddle River, New Jersey, USA,
2003.

[5] G.J. Proudler, “Concepts of Trusted Computing”, In C.J.
Mitchell, editor, Trusted Computing, IEE Professional
Applications of Computing Series 6, chapter 2, pages 11-28,
The Institute of Electrical Engineers (IEE), London, UK,
2005.

[6] M. Peinado, P. England and Y. Chen, “An Overview of
NGSCB”, In C.J. Mitchell, editor, Trusted Computing, IEE
Professional Applications of Computing Series 6, chapter 4,
pages 115-144, The Institute of Electrical Engineers (IEE),
London, UK, 2005.

[7] Trusted Computing Group (TCG), “TCG PC Client Specific
Implementation Specification for Conventional BIOS - for
TPM Family 1.2; Level 2”, TCG Specification Version 1.2
Final Revision 1.00, The Trusted Computing Group, Portland,
Oregon, USA, July 2005.

[8] Trusted Computing Group (TCG), “TCG EFI Platform - for
TPM Family 1.1 or 1.2”, TCG Specification Version 1.2 Final
Revision 1.00, The Trusted Computing Group, Portland,
Oregon, USA, June 2006.

[9] Trusted Computing Group (TCG), TPM Main, Part 1 Design
Principles, TCG Specification Version 1.2 Revision 94, The
Trusted Computing Group, Portland, Oregon, USA, March
2006.

[10] Trusted Computing Group (TCG), TPM Main, Part 2 TPM
Data Structures, TCG Specification Version 1.2 Revision 94,
The Trusted Computing Group, Portland, Oregon, USA,
March 2006.

[11] Trusted Computing Group (TCG), TPM Main, Part 3
Commands, TCG Specification Version 1.2 Revision 94, The
Trusted Computing Group, Portland, Oregon, USA, March
2006.

[12] National Institute of Standards and Technology (NIST),
Security Hash Standard, Federal Information Processing
Standards Publication FIPS PUB 180-2, The National Institute
of Standards and Technology, August 2000.

[13] D. Abramson, J. Jackson, S. Muthrasanallur, G. Neiger, G.
Regnier, R. Sankaran, I. Schionas, R. Uhlig, B. Vembu and J.
Wiegert, “Intel Virtualization Technology for Directed I/O”,
Intel Technology Journal, 10(3): pages 179-192, 10th August
2006.

[14] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum and D. Boneh,
“Terra: A Virtual Machine Based Platform for Trusted
Computing”, In Proceedings of the 19th Symposium on
Operating Systems Principles (SOSP 2003), pages 193-206,
Bolton Landing, New York, USA, 19-22 October 2003, ACM
Press, New York.

[15] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt and A. Warfield, “Xen and the Art of
Virtualization”, In Proceedings of the 19th ACM Symposium
on Operating System Principals (SOSP 2003), pages 164-177,
Bolton Landing, New York, USA, 19-22 October 2003, ACM
Press, New York.

[16] M. Peinado, Y. Chen, P. England, and J. Manferdelli,
“NGSCB: A Trusted Open System”, H. Wang, J. Pieprzyk,
and V. Varadharajan, editors, In Proceedings of 9th
Australasian Conference on Information Security and
Privacy, ACISP 2004, volume 3108 of Lecture Notes in
Computer Science (LNCS), pages 86-97, Springer-Verlag,
Berlin-Heidelberg, Germany, July 2004.

[17] S.M. Blust, Presentation on “Perspective on Software Defined
Radio Focusing on Reconfiguration and Radio Software
Download”, Cingular Wireless, 8th September 2003.

[18] R. Falk, R.K. Atukula and U. Lucking, “Secure
Communications in Future Mobile Communication Systems”,
In Proceedings of the 14th IST Mobile and Wireless
Communication Summit, Dresden, Germany, 19-23 June
2005.

[19] R.L. Hill, S. Myagmar and R. Campbell, “Threat Analysis of
GNU Software Radio”, In Proceedings of the World Wireless

Congress (WWC 2005), Palo Alto, California, USA, 24-27
May 2005.

[20] Software Defined Radio Forum (SDRF), Security
Considerations for Operational Software Defined Radio
Devices in a Commercial Wireless Domain, SDRF Working
Document, DL-SIN Document SDRR-04-A-0010-V.0.00,
27th October 2004.

[21] Software Defined Radio Forum (SDRF), Security Functional
Requirements for a Software Reconfigurable Communications
Device, SDRF Working Document, SDRF-06-W-0002-V0.15,
3rd October 2006.

[22] E. Gallery and A. Tomlinson, “Protection of Downloadable
Software on SDR Devices”, In Proceedings of the 4th
Software Defined Radio Forum Technical Conference (SDR
2005), Orange County, California, USA, 14-18 November
2005, Software Defined Radio Forum (SDRF).

[23] Trusted Computing Group (TCG), Subject Key Attestation
Evidence Extension, TCG Specification Version 1.0 Revision
7, The Trusted Computing Group, Portland, Oregon, USA,
16th June 2005.

[24] J. Tygar and B. Yee, “Dyad: A System for Using Physically
Secure Co-processors”, Technical report CMU-CS-91-140R,
Carnigie Mellon University, May 1991.

[25] P.C. Clark and L.J. Hoffman, “BITS: A Smartcard Protected
Operating System”, Communications of the ACM, 37(11):
pages 66-94, November 1994.

[26] W.A. Arbaugh, D.J. Farber and J.M. Smith, “A Secure and
Reliable Bootstrap Architecture”, In Proceedings of the 1997
IEEE Symposium on Security and Privacy, pages 65-71,
Oakland, California, USA, 4-7 May 1997, IEEE Computer
Society, IEEE Computer Society Press.

[27] N. Itoi, W.A. Arbaugh, S.J. Pollack, and D.M. Reeves.
“Personal Secure Booting”, In Proceedings of the 6th
Australasian Conference on Information Security and Privacy,
volume 2119 of Lecture Notes in Computer Science (LNCS),
pages 130-141, Springer-Verlag, London, UK, July 2001.

[28] Trusted Computing Group (TCG), TCG Mobile Trusted
Module Specification, TCG Specification Version 0.9
Revision 1, The Trusted Computing Group, Portland, Oregon,
USA, 12th September 2006.

[29] Software Defined Radio Forum (SDRF), Requirements for
Radio Software Download for RF Reconfiguration, Technical
Report SDRF-02-A-0007-V0.0, SDR Forum, November 2002.

[30] Trusted Computing Group (TCG), Trusted Network Connect
Architecture for Interoperability, TCG Specification Version
1.1 Revision 2, The Trusted Computing Group, Portland,
Oregon, USA, 1st May 2006.

Copyright Transfer Agreement: The following Copyright Transfer Agreement must be included on the cover
sheet for the paper (either email or fax)—not on the paper itself.

“The authors represent that the work is original and they are the author or authors of the work, except for
material quoted and referenced as text passages. Authors acknowledge that they are willing to transfer the
copyright of the abstract and the completed paper to the SDR Forum for purposes of publication in the SDR
Forum Conference Proceedings, on associated CD ROMS, on SDR Forum Web pages, and compilations and
derivative works related to this conference, should the paper be accepted for the conference. Authors are
permitted to reproduce their work, and to reuse material in whole or in part from their work; for derivative
works, however, such authors may not grant third party requests for reprints or republishing.”
Government employees whose work is not subject to copyright should so certify. For work performed under a
U.S. Government contract, the U.S. Government has royalty-free permission to reproduce the author's work for
official U.S. Government purposes.

