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ABSTRACT 

 

This paper introduces the concept of trusted computing, and 

highlights the ways in which it may be leveraged to enable 

the provision of high assurance Software Defined Radio 

(SDR) platforms. 

 

1. INTRODUCTION 

 

A software defined radio is a communications device 

“whose operational modes and parameters can be changed 

or augmented, post manufacturing via software” [1]. This 

implies that the device can be reconfigured to communicate 

using multiple frequency bands and protocols, or upgraded 

in a low cost and efficient manner. While the concept of a 

reconfigurable air interface holds considerable promise, 

SDR will only be accepted if the security threats pertaining 

to the secure download and execution of reconfiguration 

software can be addressed.  

In this paper the concept of trusted computing is 

initially explored. An overview of the trusted computing 

industry standard specifications is presented, in conjunction 

with a synopsis of the most recent developments in trusted 

computing technologies. Following this, we highlight the 

threats which may impact upon an SDR device, and analyze 

those threats which may be addressed through the 

deployment of trusted computing functionality. 

 

2. TRUSTED COMPUTING 

 

In the context of trusted computing, a platform is trusted if it 

“behaves in an expected manner for an intended purpose” 

[2]. This does not necessarily imply, however, that a Trusted 

Platform (TP) is a secure platform. For example, if an entity 

can determine that a platform is infected with a virus, whose 

effects are known, the platform can be trusted by that entity 

to behave in an expected but malicious manner [3]. 

 In order to implement a platform of this nature, a trusted 

component, which is usually in the form of built-in 

hardware, is integrated into a computing platform [4]. This 

trusted component is then used to create a foundation of 

trust for software processes running on the platform [4]. 

 It is said that “trusted platforms were so-called because 

they provide a technological implementation and 

interpretation of the factors that permit us, in everyday life, 

to trust others” [5], i.e. 

• Either first hand experience of consistent behavior, 

or trust in someone who vouches for consistent 

behavior; 

• Unambiguous identification; and 

• Unhindered operation. 

 We examine this statement in relation to the ‘trusted 

component’ upon which a trusted platform is constructed, 

and the software processes running on the platform, for 

which it provides a ‘foundation of trust’. 

 

3. THE TRUSTED COMPUTING GROUP 

 

The Trusted Computing Group (TCG)
1
 is an industry forum 

which is developing standards for trusted computing 

platforms. Trusted computing, as currently defined by the 

TCG, is built upon four fundamental concepts: integrity 

measurement, authenticated boot, platform attestation, and 

sealing. 

 

3.1. Integrity Measurement 

 

An integrity measurement is defined in [6] as the 

cryptographic digest or hash of a platform component. For 

example, an integrity measurement of a program can be 

calculated by computing the cryptographic digest or hash of 

its instruction sequence, its initial state (i.e. the executable 

file) and its input. 

 

3.2. Authenticated Boot 

 

An authenticated boot process represents the process by 

which a platform’s configuration or state is reliably 

measured, and the resulting measurement is reliably stored. 

During this process, the integrity of a pre-defined set of 

platform components is measured, as defined in section 3.1, 

in a particular order. These measurements are condensed to 

form a set of integrity metrics which can then be stored in a 

tamper-resistant log. Condensing enables an unbounded 

number of platform component measurements to be stored. 

If each measurement was stored separately it would be 
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difficult to decide on an upper bound on the size of memory 

required to store them [4]. A record of the platform 

components which have been measured is also stored on the 

platform. 

 

3.3. Attestation 

 

Attestation is the process by which a platform can reliably 

report evidence of its identity and its current state (i.e. the 

integrity metrics which have been stored to the tamper 

resistant log, and the record of the platform components 

which have been measured, as described in section 3.2). 

 

3.4. Sealing 

 

Sealing represents the process of associating data with a set 

of integrity metrics representing a particular platform 

configuration, and encrypting it. The data can only be 

decrypted and released when the state of platform is the 

same as that indicated by the integrity metrics sealed with 

the data. 

 

4. THE TRUSTED PLATFORM SUBSYSTEM 

 

As described in section 2, in order to provide the services 

described above, a ‘trusted component’ must be integrated 

into a platform. This trusted component is comprised of 

three so-called ‘roots of trust’ – the Root of Trust for 

Measurement (RTM), the Root of Trust for Storage (RTS), 

and the Root of Trust for Reporting (RTR). A root of trust is 

defined as a component that must be unconditionally trusted 

for the platform to be trusted [2]. 

 

4.1. The RTM 

 

The RTM is an engine capable of measuring at least one 

platform component, and hence providing an integrity 

measurement, as described in section 3.1. The RTM is 

typically implemented as the normal platform engine 

controlled by a particular instruction set (the so-called ‘Core 

Root of Trust for Measurement’ (CRTM)). On a PC, the 

CRTM may be contained within the BIOS or the BIOS Boot 

Block (BBB), and is executed by the platform when it is 

acting as the RTM. It is required by the TCG that the CRTM 

is protected against software attack: the CRTM must be 

immutable, as defined by the TCG, meaning that its 

replacement or modification must be under the control of the 

host platform manufacturer alone [7]. It is also preferably 

that the CRTM be physically tamper-evident [4]. 

 

4.2. The RTS and RTR 

 

The RTS is a collection of capabilities which must be trusted 

if storage of data inside a platform is to be trusted [4]. The 

RTS is capable of maintaining an accurate summary of 

integrity measurements made by the RTM, i.e. condensing 

integrity measurements and storing the resulting integrity 

metrics, as described in section 3.2. The RTS also provides 

integrity and confidentiality protection to data and enables 

sealing. In conjunction with the RTM and RTS, an 

additional root of trust is necessary for the implementation 

of platform attestation, namely the RTR. The RTR is a 

collection of capabilities that must be trusted if reports of 

integrity metrics are to be trusted (platform attestation) [4]. 

The RTR and the RTS constitute the minimum 

functionality that should be provided by a Trusted Platform 

Module (TPM) [9-11]. A TPM is generally implemented as 

a chip which must be uniquely bound to a platform.  In order 

to support RTS and RTR functionality, a TPM incorporates 

various functional components such as: I/O; non-volatile and 

volatile memory; a minimum of 16 Platform Configuration 

Registers (PCRs), which are used by the RTS to store the 

platform's integrity metrics; a random number generator; a 

hash engine; key generation capabilities; an asymmetric 

encryption and digital signature engine; and an execution 

engine. The TPM must be protected completely against 

software attack, i.e. the RTS and RTR (i.e. the TPM) must 

be immutable, which implies that the replacement or 

modification of RTS and RTR code must be under the 

control of the TPM manufacturer alone. The TPM is 

required to provide a limited degree of protection against 

physical attack (tamper-evidence) [4]. 

 

5. TP SUBSYSTEM FUNCTIONALITY 

 

We now examine how the services described in section 3 are 

provided by the RTM, RTS and RTR. 

 

5.1. The Authenticated Boot Process 

 

An authenticated boot process enables the state of a platform 

to be measured and recorded so that it can be reported to a 

challenger of the platform, as described in section 3.3. A 

simplified authenticated boot process may proceed as 

follows, where we assume that the CRTM is part of the 

BBB. The CRTM measures itself and the rest of the BIOS 

(i.e. the POST BIOS). The computed measurements are then 

passed to the RTS which condenses them and stores the 

resulting integrity metric to the first of the 16 PCRs (PCR-

0). Control is then passed to the POST BIOS which 

measures the host platform configuration, the option ROM 

code and configuration, and the Operating System (OS) 

loader. The computed measurements are passed to the RTS, 

which condenses them and stores the resulting integrity 

metrics to PCRs 1-5. Control is then passed to the OS loader 

which measures the OS. This process of measuring, 

condensing, storing, and handing-off, continues until the 

platform’s configuration has been measured and stored. The 



exact measurement process is dependent on the platform; for 

example, the TCG specifications detail authenticated boot 

processes for a platform which has a 32-bit PC architecture 

BIOS, [7] and for an Extensible Firmware Interface platform 

[8]. 

 

5.2. The TPM Protected Storage Functionality 

 

The TPM protected storage functionality, which 

incorporates its sealing capability, was designed so that an 

unbounded number of secrets/data could be confidentiality 

and integrity protected on a TP. Asymmetric cryptography is 

used to confidentiality-protect data. 

Protected storage also provides implicit integrity 

protection of data objects. Data can be associated with a 

string of 20 bytes of authorization data before it is 

encrypted. If data decryption is requested, the authorization 

data must be submitted to the TPM. The submitted data is 

compared to the authorization data in the decrypted string, 

and the decrypted data object is only released if the values 

match. If the encrypted object has been tampered with, after 

decryption the authorization data will most likely have been 

corrupted (because of the method of encryption employed) 

and access will not be granted even to an entity which has 

submitted the correct authorization data. Functionality to 

control how data is used on its release, or to protect data 

from deletion, is not provided. 

The TPM protected storage functionality incorporates 

an asymmetric key generation capability. This capability 

enables the generation of key pairs, where the private keys 

from these pairs can only be used on the TPM on which they 

were generated, and/or can only be used if the TPM host 

platform is in a specified state. These private keys are never 

exposed outside the TPM in the clear. The TPM enables the 

encryption of keys or data external to the TPM so that they 

can only be decrypted on a particular TPM; it also enables 

the encryption of keys or data external to the TPM so that 

they can only be decrypted by a particular TPM when the 

TPM host platform is in a particular state. Finally, sealing is 

provided, i.e. the association of data with a particular 

platform configuration (i.e. a set of integrity metrics) and its 

encryption by a particular TPM. The sealed data can only be 

decrypted by the same TPM and will only be released if the 

TPM host platform is in the specified state. 

 

5.2. Platform Attestation 

 

Platform attestation enables a TPM to reliably report 

information about its identity and the current state of the 

TPM host platform. Each TPM is associated with a unique 

asymmetric key pair called an endorsement key pair, and a 

set of credentials. A trusted platform management entity 

(which is generally the TPM manufacturer) attests to the fact 

that the TPM is indeed genuine by digitally signing an 

endorsement credential, which binds the public endorsement 

key to a TPM description. Conformance credentials may be 

issued by laboratories: these attest that a particular type of 

TPM, associated components such as a CRTM, the 

connection of a CRTM to a motherboard, and the 

connection of a TPM to a motherboard, conform to TCG 

specifications. A platform entity (usually the platform 

manufacturer) offers assurance in the form of a platform 

credential that a particular platform is an instantiation of a 

TP. In order to create a platform credential, a platform entity 

must examine the endorsement credential of the TPM, the 

conformance credentials relevant to the TP, and the platform 

to be certified. 

Since a TPM can be uniquely identified by its 

endorsement key pair, this key pair is not routinely used by a 

platform, ensuring that the activities of a TP cannot be 

tracked. Instead, an arbitrary number of pseudonyms in the 

form of attestation identity key (AIK) pairs can be generated 

by a TPM and associated with a TP. Privacy-Certification 

Authorities (P-CAs) enable attestation identity public keys 

to be associated with TPs through the generation of AIK 

credentials. Once a platform has requested an AIK 

credential from a specified P-CA, the P-CA verifies all the 

TP credentials, as described above, to ensure that the TP is 

genuine, and then creates (signs) an AIK credential which 

binds the public AIK to a generic description of the TP. The 

private AIK is used by the TPM during platform attestation. 

Platform attestation is a process by which a platform 

signs a nonce (sent by a challenger of the platform) in 

conjunction with integrity metrics reflecting the current state 

of the platform, using one of its private AIKs. This signed 

bundle is returned to the challenger with the record of the 

platform components which are reflected in the integrity 

metrics, together with the appropriate AIK credential. The 

challenger then uses this information to determine whether it 

is: 

1. Safe to trust the TP from which the statement has 

originated; 

2. Safe to trust (part of) the software environment 

running on the platform. 

 

6. TRUST 

 

We now evaluate the factors which make it safe to trust a TP 

and (part of) the software environment running on the 

platform. It is safe for the challenger to trust a TP on 

validation of two elements. 

• An AIK credential, in which a trusted entity 

vouches for the consistent behavior of the TP, i.e. 

that the CRTM and TPM comply with TCG 

specifications. If the CRTM and TPM comply with 

the TCG specifications, this also implies that both 

the CRTM and TPM are immutable and tamper-



evident and can therefore be trusted to operate 

unhindered. 

• The signature of the TPM generated using its 

private AIK, which serves to unambiguously 

identify a TP. 

It is only safe to trust (part of) the software environment of 

the platform which has been attested to after examining two 

elements. 

• The signed integrity metrics reported by the TP, 

which enable the challenger to verify (part of) the 

platform’s software environment. 

• The expected integrity measurements of each 

platform component, which can be extracted from 

the component’s validation certificate. A validation 

certificate gives the expected integrity measurement 

of a component if it is behaving as intended. These 

measurements are then condensed and compared to 

the integrity metrics attested to by the TP and 

received by the challenger. The reported identity of 

(part of) the TP’s software environment can thence 

be validated. After validation, (part of) the TP’s 

software environment can be unambiguously 

identified. 

In order to ensure software can operate unhindered, the 

definition of what constitutes trusted computing 

functionality, as defined by the TCG, must be revised and 

extended to incorporate concepts such as software isolation 

or protected software execution. 

 

7. ISOLATED EXECUTION ENVIRONMENTS 

 

Isolation enables the unhindered execution of software [5]. 

In addition to the services provided by the TCG and 

described above, an isolated execution environment should 

provide the following services to hosted software [6]. 

• Protection from external interference. 

• Observation of the computations and data of a 

program running within an isolated environment 

only via controlled inter-process communication. 

• Secure communication between programs running 

in independent execution environments. 

• A trusted channel between an input/output device 

and a program running in an isolated environment. 

In order to provide software isolation and the services 

described, an isolation layer or virtual machine monitor can 

be deployed on the platform. Such a mechanism is not 

defined by the TCG. An isolation layer may be implemented 

using a number of approaches, as described below. Many of 

these approaches, however, have associated difficulties with 

respect to assurance, device support, legacy OS 

compatibility and performance. 

 

7.1. OS-Hosted Virtual Machine Monitor 

 

In the case of an OS-hosted virtual machine monitor, such as 

VMWare workstation, all guest OSs executing in VMs 

utilize the host OS device drivers. While this implies that 

every guest can utilize drivers developed for the host 

machine, it also means that the isolation layer essentially 

incorporates the VMM and the host OS, making assurance 

problematic [6, 13]. 

 

7.2. Standalone VMM 

 

In a standalone VMM, such as Terra [14], all devices are 

virtualized or emulated by the VMM. This means that the 

VMM must contain a virtual device driver for every 

supported device. As the set of devices in consumer systems 

is often large, and as many virtual drivers are complex, the 

size of the VMM quickly grows at the cost of assurance. 

A standalone VMM exposes the original hardware 

interface to its guests. While this implies that legacy OSs 

can be supported, it also means that the VMM size is 

increased due to the complexity involved in virtualizing the 

x86 CPU instruction set [6]. 

 

7.3. Para-Virtualization 

 

Isolation layers using para-virtualization techniques, such as 

XEN [15], have been designed for efficiency, and try to 

alleviate the complexity introduced when devices are 

virtualized. Two common approaches used in order to para-

virtualize I/O are as follows [13]. 

In the first case, an I/O-type-specific API for each 

device is integrated into the VMM, in conjunction with the 

device drivers [13]. This approach requires a guest OS to 

incorporate para-virtualized drivers which enable 

communication with the VMM APIs rather than the 

hardware device interfaces. While this gives performance 

gains over full virtualization, the guest OS must be modified 

to communicate with the I/O-type-specific APIs. 

Alternatively, a service OS, which incorporates the 

VMM APIs and the device drivers, may execute in parallel 

to guest OSs, which are modified to incorporate para-

virtualized drivers [13]. To enable this approach, devices are 

exported to the service OS.  While this approach means that 

device drivers do not have to be implemented within the 

isolation layer, the isolation layer may become open to 

attack from a guest in control of a direct memory access 

device which is, by default, given unrestricted access to the 

full physical address space of the machine. 

 

7.4. An Isolation Layer with Hardware Support 

 

The isolation layer described as part of the NGSCB [6, 16] 

was designed to take advantage of CPU and chipset 

extensions in the next generation of hardware.  Such 

extensions are being provided, for example, by Intel’s 



LaGrande [3]. The isolation kernel has been designed to 

execute in a CPU mode more privileged than the existing 

ring 0, effectively in ring -1, which will be introduced in 

forthcoming versions of the x86 processors. This enables the 

isolation layer to operate in ring -1 and all guest OSs to 

execute in ring 0. Thus, complexity problems which arise 

when virtualizing the x86 instruction set are avoided [6]. 

The original hardware interface is exposed to one guest 

OS [6]. However, rather than necessitating the virtualization 

of all devices, as a VMM does, devices are exported to guest 

OSs which contain drivers for the devices they choose to 

support. Guest operating systems may then efficiently 

operate directly on the chosen device. This does, however, 

leave the problem of uncontrolled Direct Memory Access 

(DMA) devices, which by default have access to all physical 

memory. In order to prevent DMA devices circumventing 

virtual memory-based protections provided by the isolation 

layer, it is necessary for the chipset manufacturers to provide 

chipset extensions. This enables a DMA policy to be set by 

the isolation layer which indicates, given the state of the 

system, if a particular subject (DMA device) has access 

(read or write) to a specified resource (physical address), 

[6]. The DMA policy is then read and enforced by hardware, 

for example the memory controller or bus bridges. 

Hardware extensions required in order to facilitate the 

implementation of the NGSCB isolation layer have been 

provided as part of Intel’s LaGrande [3] and AMD’s 

Presidio initiatives. Both enable the efficient and secure 

implementation of an isolation layer, as described by 

Microsoft, through the implementation of CPU and chipset 

extensions. Both also support the establishment of trusted 

channels between the input and output devices and programs 

running within an isolated environment. 

 

8. SOFTWARE DEFINED RADIO 

 

Software defined radio is an important innovation for the 

communications industry, providing many advantages over a 

wireless networking infrastructure and terminals that are 

implemented completely in hardware. Cost reductions may 

result from the deployment of a generic hardware platform 

which can be customized using software [17]. The value of 

terminals is increased as public/private sector radio system 

sharing becomes possible and as terminals can be upgraded 

to comply with evolving communications standards. In 

conjunction with this, SDR enables operation and 

maintenance cost reductions, as bug fixes may be completed 

by software download rather than terminal recall. 

Re-configurable radios can also be adapted to meet user 

and/or operator preferences. A terminal can also be 

reconfigured to efficiently cope with changing network 

conditions such as utilization, interference or radio channel 

quality, thereby offering an enhanced user experience [18]. 

Efficient roaming is also enabled, as air interface and 

frequency bands can be reconfigured as required. 

While there are many advantages associated with the 

introduction of SDR terminals, if SDR is to be accepted the 

security threats introduced by reconfigurable terminals must 

be analyzed, and measures taken to mitigate these threats. 

 

9. SDR THREAT ANALYSIS 

 

The threats which impact upon a reconfigurable SDR device 

may be categorized as follows: 

• Those which  impinge on the security of the 

downloaded reconfiguration software; and 

• Those which impinge on host security. 

The fundamental threat to the security of the 

downloaded reconfiguration software is: 

• Unauthorized reading of software while in transit 

between the software provider and the end host, or 

while in storage or executing on the end host. 

This threat may result in an infringement of the intellectual 

property rights associated with the software. It may also 

result in unauthorized access to and execution of software. 

Fundamental threats to end host security include: 

• Malicious or accidental modification or removal of 

security-critical software while in storage or 

executing on the end host. 

• The download of inappropriate reconfiguration 

software which does not meet the capability 

requirements of the SDR device. 

• Malicious or accidental modification, addition or 

removal of downloaded software in development, 

in transit or while in storage or executing on the 

end host. 

These threats may result in:  

• An inoperable device. For example, if a device uses 

software modulation, an improper change of the 

modulation format can render the individual device 

inoperable [19]. 

• Violation of Radio Frequency (RF) spectrum rights. 

This may, for example, result in RF interference. If 

a device can be programmed to transmit on a 

frequency for which it is not authorized, signals 

from other nodes, which are authorized to use this 

frequency, may be jammed [19]. Alternatively, 

spurious emissions resulting from unauthorized 

radio spectrum use could violate user safety [20]. 

• Increased output power. If a device, for example, 

operates at maximum power, its performance may 

be increased at the expense of other users in the 

communications network [19]. This in turn may 

force other users to use increased power. In this 

way, the device battery life is severely shortened. If 

the radiated power is too high, user safety may also 

be put at risk [20]. 



• Compromise of user applications and/or data by 

malicious software. 

The threats listed above, and the possible impacts of their 

exploitation, include those defined by the SDRF security 

working group in [21]. 

 

10. ADDRESSING THREATS TO SDR USING TC 

 

We now investigate some of ways in which trusted 

computing functionality may be used in order to address the 

threats outlined above or, failing that, to limit the level to 

which a threat may be exploited. 

 

10.1. Protecting the Reconfiguration Software 

 

TC mechanisms may be used to confidentiality-protect the 

reconfiguration software in transit between the software 

provider and the end host, while in storage or executing on 

the end host, and to ensure that only the intended recipient 

device can access the software. 

In [22], we describe a software download protocol 

which leveraged trusted computing functionality, or, more 

specifically, sealed storage, platform attestation, and 

isolation techniques. This protocol is now summarized. 

Before the required reconfiguration software can be 

downloaded to a TP, the TPM is used to generate an 

asymmetric key pair. This key pair is bound to a set of 

integrity metrics such that the private key can only be 

utilized by the TPM on which it was generated when the 

TPM host platform is in the specified state. The public key 

from this pair, and the integrity metrics with which its 

private key are associated, are then certified by the TPM 

using a TP AIK, described in section 5.2, so that the state to 

which the private key is bound can be shown to the software 

provider. The certified public key and the corresponding 

AIK credential are then sent to the software provider. 

On receipt of the certified key and the AIK credential, 

the software provider verifies the TP’s AIK credential and 

the signature of the TPM on the public key and the 

associated integrity metrics. If these two elements can be 

verified, and if the software provider considers the platform 

software state to which the key is bound to be trustworthy, 

the provider computes a MAC on and encrypts the 

reconfiguration software, encrypts the symmetric MACing 

and encryption keys using the public key received from the 

TP, signs the encrypted symmetric keys using his private 

signature key, and transmits this data to the TP. The 

symmetric keys received by the TP, and therefore the 

reconfiguration software, can only be accessed when the TP 

is in the state deemed trustworthy by the software provider. 

The software provider may require that the integrity 

metrics to which the private key is bound, represent an 

isolated execution environment executing on a specified 

isolation layer, which is turn is supported by a TP which 

incorporates hardware extensions that enable efficient and 

secure isolation, as described in section 7. In this way, the 

confidentiality of the reconfiguration software can be 

protected in transit between the software provider and the 

TP, in storage, and while executing on the device. The 

software provider is also assured that only a specified TP in 

a particular state can access the software.  

Alternatively, if a more traditional mechanism such as 

SSL/TLS is used in order to provide secure download of the 

reconfiguration software, TC functionality can be used in 

order to harden the SSL/TLS implementation. In this case, 

prior to the completion of any SSL/TLS protocol, the TPM 

is used in order to generate the client-side (the SDR device) 

asymmetric key pair for authentication, which is bound to a 

set of integrity metrics such that the private key can only be 

utilized by the TPM on which it was generated when the 

TPM host platform is in the required state. This key is then 

certified using a TP AIK. Evidence that this SSL/TLS key 

pair has been generated on, and certified by, a TPM is then 

provided by a Certification Authority (CA) in an extension 

of the SDR device’s X.509 SSL/TLS certificate.  

During an SSL/TLS protocol run between a software 

provider and the SDR device, the information provided in 

the extension of the SDR device’s X.509 SSL/TLS public 

key certificate enables a software provider to trust that the 

SDR device’s private SSL/TLS key is held within a TPM, 

and that the key can only be used when the platform is in a 

particular state. As above, the software provider may require 

that the integrity metrics to which the private key is bound, 

represent an isolated execution environment into which the 

software will be downloaded and executed. This hardened 

implementation of SSL/TLS gives the software provider 

some assurance that the SDR device’s SSL/TLS private key 

is stored securely and cannot been stolen. Evidence of the 

device’s ability to provide an isolated execution 

environment for the downloaded software can also be 

demonstrated. This process is described in [23]. The 

protocol described in [22] has the advantage that less 

processing is required on the potentially resource-

constrained SDR device in order to complete the download.  

 

10.2. Protecting the Host 

 

10.2.1. Security-Critical Software 

 

While the integrity of security-critical software while in 

storage cannot be ensured using TC functionality, TC 

mechanisms may be utilized to help detect its malicious or 

accidental modification or removal.  

A secure boot process can be used to ensure that a set of 

security-critical platform components boot into the required 

state. Secure boot is not currently enabled by the TCG TPM 

main specifications. However, much work on secure boot 

has been conducted independently of the TCG, including by 



Tygar and Yee [24], Clark [25], Arbaugh, Farber and Smith 

[26] and Itoi and Arbaugh [27]. Each of these papers 

describe a similar process, in which the integrity of a pre-

defined set of system components is measured, as described 

in section 3.1, and these measurements then compared 

against a set of expected measurements which must be 

securely stored and accessed by the platform during the boot 

process. If, at any stage during the boot process, the removal 

or modification of a platform component is detected, the 

boot process is aborted. While a secure boot process is not 

specified in the TPM specification set, the TCG mobile 

phone working group has recently released a specification 

for a Mobile TPM which enables a secure boot process [28]. 

TC functionality also enables the isolation of security-

critical software in a secure execution environment so that it 

cannot be observed or modified when executing by software 

executing in parallel insecure execution environment. 

 

10.2.2. Reconfiguration (Radio) Software 

 

A capability exchange must be completed by the network 

and the SDR prior to software download to ensure that the 

appropriate software entities and parameter sets are selected 

for a particular SDR device, [29]. The use of platform 

attestation, as described in section 3.2, could be used to 

ensure that the reports sent by the device are accurate. 

TC cannot prevent denial of service attacks resulting 

from the removal/deletion of the downloaded radio software, 

either in development, or in transit between the software 

provider and the host or in storage on the host. While TC 

functionality cannot prevent the malicious or accidental 

modification or addition of downloaded software in 

development or in transit, in the advent of malicious or 

buggy software being downloaded to and executed on a 

device, there are a number of ways in which TC can lessen 

the impact of the exploitation of this threat. 

If the downloaded software is isolated in its own 

execution environment, as described in section 7, then any 

malicious behavior can be controlled and its effects limited. 

If sealed storage is utilized by the end user to protect 

their private data (e.g., credit card numbers), then the impact 

of malicious software may be lessened, as it cannot gain 

access to security sensitive data which has been protected. 

On reconnection to a commercial network, a trusted 

SDR device could be required to attest to its state so that a 

decision can be made as to whether the device should be 

authorized to access the network. Building upon basic 

attestation, as described in section 3.2, the specifications of 

the TCG Trusted Network Connect work group describe a 

process which may be completed in order to ensure that 

devices connecting to a network are in a trustworthy state.  

This 3-stage process involves: 

• Assessment (is the platform in a trustworthy state?); 

• Isolation (of the device if its state is not considered 

trustworthy by the network); and  

• Remediation (where the state of the device can be 

updated/modified as required) [30]. 
Process isolation may be utilized in order to ensure that 

the downloaded radio software can execute unhindered. 

 

11. CONCLUSIONS 

 

In this paper we have introduced the concept of trusted 

computing. Following a brief overview of the threats 

introduced by the deployment of re-configurable terminals 

we highlighted some of ways in which TC functionality may 

be used in order to mitigate, or lessen the impact of, these 

threats. While trusted computing is not a panacea to the 

plethora of security threats pertaining to the secure 

download and execution of reconfiguration software, it 

enables us to address a significant number of them, either 

through threat mitigation or through threat impact reduction. 
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