
Integrating OAuth with Information Card Systems
Haitham S. Al-Sinani

Information Security Group
Royal Holloway, University of London

Haitham.Al-Sinani.2009@rhul.ac.uk

Abstract—We propose a novel scheme to provide client-based
interoperation between OAuth and an Information Card system
such as CardSpace or Higgins. In this scheme, Information Card
users are able to obtain a security token from an OAuth-enabled
system, the contents of which can be processed by an Information
Card-enabled relying party. The scheme, based on a browser
extension, is transparent to OAuth providers and to identity
selectors, and only requires minor changes to the operation of an
Information Card-enabled relying party. We specify its operation
and describe an implementation of a proof-of-concept prototype.
Security and operational analyses are also provided.

Keywords: Information Cards, CardSpace, OAuth

I. INTRODUCTION

To mitigate identity-oriented attacks, a number of identity
systems (e.g. CardSpace, OAuth, OpenID, etc.) have been
proposed [1]. An identity provider (IdP) in such systems
supplies a user agent (UA) with a security token that can
be consumed by a relying party (RP). Whilst one RP might
support an Information Card system, another might only sup-
port OAuth [2]. To make these systems available to the largest
possible group of users, interoperability between such systems
is needed. We propose a scheme to provide interoperation
between OAuth and an Information Card-based system.

The scheme operates with a variety of Information Card-
based systems, including CardSpace and Higgins. For simplic-
ity of presentation, we describe its operation with CardSpace,
a widely-discussed example of an Information Card system.

We consider CardSpace-OAuth interoperation because of
OAuth’s fast-growing adoption by widely-used Internet service
providers such as Facebook and Twitter. Complementing this,
the wide use of Windows, recent versions of which incorporate
CardSpace [3], means that enabling integration between the
two systems is likely to be beneficial for large numbers of
users. CardSpace-OAuth integration is attractive since both
schemes support the exchange of user attributes.

The remainder of the paper is organised as follows. Sec-
tion II reviews related work. Section III gives an overview of
CardSpace and OAuth, and section IV presents the integration
scheme. In section V we provide an operational analysis and,
in section VI, we describe a prototype implementation. Finally,
section VII concludes the paper.

II. RELATED WORK

We first review related work. A similar scheme [4] has
previously been proposed to support CardSpace-Liberty in-
teroperation. However, unlike the scheme proposed here, the
CardSpace-Liberty integration scheme does not support the

exchange of user attributes and does not operate with HTTPS-
enabled websites. Two further similar schemes have recently
been proposed, allowing interoperation between a CardSpace-
enabled RP and a Shibboleth IdP [5] or an OpenID IdP [6].

A Liberty-CardSpace integration scheme has also been pro-
posed by Jørstad et al. [7], in which the IdP is responsible for
supporting interoperation. The IdP must therefore perform the
potentially onerous task of maintaining two different identity
management systems. The IdP must always perform the same
user authentication technique, regardless of the used identity
system. This scheme also requires the user to possess an
SMS-capable mobile phone. By contrast, the scheme pro-
posed in this paper supports client-side interoperation between
CardSpace and OAuth, does not require use of a handheld
device, and does not enforce a specific authentication method.

III. CARDSPACE AND OAUTH

A. CardSpace

1) Introduction: CardSpace [3] is Microsoft’s implementa-
tion of a digital identity metasystem, in which digital identities
are represented to users as Information Cards (or InfoCards).
There are two types of InfoCards: personal (self-issued) cards
and managed cards, issued by remote IdPs.

CardSpace is supported in Internet Explorer (IE) from ver-
sion 7 onwards. Extensions to other browsers, e.g. Firefox and
Safari, also exist. An updated version, CardSpace 2.0 Beta 2,
was released, although Microsoft announced in early 2011 that
it will not ship; instead Microsoft released a technology pre-
view of U-Prove (http://blogs.msdn.com/b/card/archive/2011/
02/15/beyond-windows-cardspace.aspx). We refer throughout
to the CardSpace version that is shipped by default as part
of Windows Vista and Windows 7, that is available as a
free download for XP and Server 2003, and which has been
approved as an OASIS standard [8].

2) Using Personal Cards: Personal cards are created by
users themselves, and the claims listed in such cards are
asserted by the self-issued identity provider (SIIP) that co-
exists with the CardSpace identity selector. Personal cards can
contain claims of 14 editable types, including First Name,
Last Name, and Web Page. The scheme proposed here uses
personal cards to make information provided by an OAuth IdP
(Resource Server) available to CardSpace RPs via the selector.

The personal card protocol operates as follows, in the case
where the RP does not employ a security token service (STS).

1) UA → RP. A user visits a CardSpace-enabled RP page.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28898179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2) RP → UA. The login page is returned in which the RP
security policy is embedded.

3) User → UA. The user clicks the CardSpace icon/option,
and the selector (which is passed the RP policy) is
activated. If the RP is visited for the first time, the
selector will display the RP identity, giving the user the
option to either proceed or abort the protocol.

4) Selector → InfoCards. The selector highlights InfoCards
matching the RP policy.

5) User → InfoCards. The user chooses (or creates) a
personal card. The user can preview the card to ensure
that they are willing to release the claim values.

6) Selector 
 SIIP. The selector sends a Request Security
Token (RST) to the SIIP, which responds with a Request
Security Token Response (RSTR).

7) UA → RP. The RSTR is passed to the UA, which
forwards it to the RP.

8) RP → User. The RP verifies the token, and, if satisfied,
grants access.

The PPID (private personal identifier) is an identifier linking
an InfoCard to an RP. During card creation, a card ID and
master key are created and stored. When a user first uses
a personal card at an RP, CardSpace generates a card-site-
specific PPID by combining the card ID with data taken from
the RP certificate, and a card-site-specific signature key pair
by combining the card master key with data taken from the
RP certificate. The PPID could be used on its own as a
shared secret to authenticate a user to an RP. However, it is
recommended that the associated (public) signature key should
be used to verify the signed security token to provide a more
robust authentication method [3].

B. OAuth

1) Introduction: OAuth (Open Authorisation) is an emerg-
ing identity management standard, enabling an end-user to
grant an application controlled access to personal informa-
tion (e.g. user attributes) stored at a third-party site, without
divulging long-term credentials such as passwords. The four
entities involved in the protocol are: the Resource Owner,
typically an end-user (or their UA); the Client, an application
requesting access to user resources; the Resource Server, a
server hosting user resources; and the Authorisation Server, a
server that issues access tokens to clients after first authen-
ticating the Resource Owner and obtaining its authorisation;
the latter two roles are typically performed by a single entity.

2) Operational Protocol: Two major (incompatible) ver-
sions of OAuth have been released: OAuth 1.0 [2] and 2.0 [9],
[10]. We describe the latest version, OAuth 2.0. OAuth 2.0
support four authorisation grant types, including authorisation
code and implicit, which are described next.

• An ‘authorisation code’ is typically a short-lived random
string. Such a value is supplied by an Authorisation
Server to a Client if a Resource Owner authorises a
request made by the Client to access (a) specific user
resource(s). The Client uses the authorisation code to

request an access token (typically an opaque, user/issuer-
revokable string that indicates permission to access spe-
cific information for a defined time period) from the
Authorisation Server. Before issuing such a token, the
Authorisation Server first authenticates the Client by
checking that the credentials provided by the Client match
those issued to it when it registered with the Authorisation
Server. If successful, the Authorisation Server generates
an access token and sends it to the Client via a secure
back-channel; the use of which means that this grant type
cannot be supported by the scheme proposed here.

• An authorisation grant is said to be ‘implicit’ if the access
token is issued to the Client as a direct result of Resource
Owner authorisation. Since it requires fewer round trips
to obtain an access token than for the authorisation code
type, the implicit grant type improves the responsiveness
and efficiency of certain clients, including browser-hosted
clients. This grant type is supported in our scheme.

Prior to use, the Client must register with the OAuth
Authorisation Server; this could involve the use of an HTML
registration form provided by the Authorisation Server. During
registration, the Authorisation Server collects certain data
about the Client, including the Client type, its redirection URL,
and any other server-required data, e.g. the Client name. The
Authorisation Server issues the registered Client with a unique
identifier and a secret used for Client authentication when
using the authorisation code grant type. We next describe the
OAuth 2.0 protocol when using the implicit grant type.

1) The Client redirects the Resource Owner to the Autho-
risation Server, requesting access to private data. The
redirect includes the Client identifier, the scope of the
requested access, an optional state parameter, and a
redirection URL to which the Authorisation Server will
redirect the Owner once access is granted (or denied).
The state parameter is set to an unguessable value [9].

2) The Authorization Server validates the received request,
ensuring that all the required parameters are present
and valid. The Authorisation Server verifies the Client
identity by comparing the provided redirection URL
with the Client URL previously registered. If valid,
the Authorisation Server (if necessary) authenticates the
Resource Owner over a TLS-protected channel; the au-
thentication method used is outside the scope of OAuth.
It then asks the Resource Owner whether the Client’s
access request is authorised (where this query includes
the Client identifier and the scope of the requested
access). If all the checks succeed, the protocol continues.

3) The Authorisation Server redirects the Resource
Owner’s UA back to the Client using the redirection
URL provided earlier (see step 1). The redirection URL
includes the access token in a URL fragment. If the state
parameter was present in step 1, the Authorisation Server
must return it unmodified (in the URL) to the Client
to protect against attacks involving manipulated URIs
and malicious redirections, notably CSRF (Cross-Site



Request Forgery) attacks [11]. The UA follows the redi-
rection instructions by making a request to the Client,
excluding the access token-bearing fragment, although
the UA retains the fragment information locally.

4) The Client returns a web page containing an embedded
script capable of accessing the full redirection URL,
including the fragment retained by the UA (see step 3).
The UA executes the embedded script, which extracts
the access token from the URL fragment and passes it
to the Client over a secure, TLS-protected channel.

5) Finally, the Client uses the access token to securely re-
trieve the required resource(s) from the Resource Server.

3) Facebook Connect: Facebook Connect [12] implements
the OAuth 2.0 standard, providing a single sign-on ser-
vice. Facebook Connect (http://developers.facebook.com/docs/
authentication/) allows end-users to sign on to applications
(e.g. Facebook-affiliated websites) using their Facebook ac-
count, and also enables such applications to access Facebook-
hosted user data, subject to user authorisation.

IV. THE INTEGRATION SCHEME

We now describe the novel scheme. The parties involved
are a CardSpace-enabled RP, a CardSpace-enabled UA (e.g. a
web browser), a browser extension implementing the protocol
described below, and an OAuth Resource and Authorisation
server; for simplicity, we assume that the roles of both the
Resource and the Authorisation Servers are performed by a
single entity, which we refer to as the ‘OAuth IdP’.

The scheme has the following operational requirements.

• The user must have an existing relationship with both a
CardSpace RP and an OAuth IdP (and so the IdP will
have a means of authenticating the user).

• The user must register the RP with the IdP, in a user-
specific manner. This involves the user interacting (via
the UA) with an HTML registration page hosted by the
IdP, and using this page to send the IdP the RP’s name,
URL, and (optionally) locale. The IdP then issues an RP-
user-specific identifier, where the ‘identifier’ is used by
the browser extension to identify the RP to the IdP.

• Prior to, or during, use of the protocol, the user must
create a personal card, referred to here as an OAuthCard.
This OAuthCard must contain the following data items
in specific fields (the choice of which is implementation-
specific): the URL of the IdP; the RP’s identifier (as is-
sued by the IdP); and a predefined sequence of characters
(e.g. ‘OAuth’), used to trigger the browser extension.

• The RP must not employ an STS. Instead, the RP must
express its policy using HTML/XHTML, and interactions
between the selector and the RP must be based on
HTTP/S via a browser (a simpler and probably more
common scenario for selector-RP interactions). This is
because the scheme uses a browser extension.

• The RP must accept an unsigned (CardSpace-like) SAML
token which includes OAuth IdP-supplied attributes and
the signed RSTR containing the card-RP-specific PPID.

The protocol operates as follows. Steps 1, 2, and 4–7 are
the same as steps 1, 2, and 3–6, respectively, of the personal
card protocol given in section III-A2.

3) Extension → UA. The extension performs the following.
a) It scans the login page to detect whether the RP

website supports CardSpace; if so, it proceeds.
b) It examines the RP policy to check whether the use

of personal cards is acceptable. If so, it proceeds;
otherwise it terminates, allowing CardSpace to
operate normally.

c) It keeps a local copy of any RP-requested claims.
d) It determines the communication protocol (HTTP

or HTTPS) in use with the RP1.
e) If necessary and if HTTP is in use, it modifies the

RP policy to include the types of claim employed
in the OAuthCard. For example, if the URL of
the IdP is stored in the web page field of the
OAuthCard, then it must ensure that the RP policy
includes the web page claim. Adding the claim
types to the policy ensures that the RSTR supplied
by the SIIP contains the values of these claims,
which can then be processed by the extension.

8) Selector→ Extension/UA. Following the user submis-
sion of a suitable OAuthCard, the RSTR, unlike in
the ‘standard’ case, does not reach the RP; instead the
extension intercepts it and temporarily stores it. If the
RP uses HTTP, the extension uses the contents of the
RSTR to construct an OAuth request which it forwards
to the IdP, having discovered its address from the RSTR.
If the RP uses HTTPS, the extension first asks the user
whether the use of the integration protocol is required. If
not, it terminates, thereby allowing CardSpace to operate
normally. If so, the extension prompts the user to enter
the IdP’s URL and the RP’s identifier. The extension
could offer the option to store the user-supplied values
for future logins at this RP. Precisely as in the HTTP
case, the extension then constructs an OAuth request.
In both cases (i.e. HTTP and HTTPS), the ‘implicit’
grant type is adopted. Also, in both cases the OAuth
request includes: the ‘redirect uri’ parameter, to which
the IdP must later redirect the UA; the ‘scope’ parameter,
showing the scope requested2; and the ‘state’ parameter.

9) OAuth IdP 
 User. This step is the same as step 2 of
the OAuth 2.0 protocol given in section III-B2.

10) OAuth IdP 
 Extension/UA. The IdP redirects the UA

1Note that the protocol operates slightly differently depending on whether
the RP uses HTTP or HTTPS. This is because, if HTTPS is used, the selector
will encrypt the RSTR message using the site’s public key, and the browser
extension does not have access to the corresponding private key. Hence, it
will not know whether to trigger the integration protocol, and will be unable
to obtain the OAuth IdP’s URL and the RP’s identifier; such issues do not
occur if HTTP is used, since the selector will not encrypt the RSTR.

2This scope parameter indicates the RP-requested user attribute types (if
any) which are to be provided by the OAuth IdP. The browser extension
will know what they are since they were stored by it in step 3c. The ‘scope’
parameter helps the IdP determine the scope of the access request; the IdP
must ask the user to authorise the release of the requested attribute values.



back to the provided RP URL, including the access token
(in the URL fragment) and the ‘state’ parameter3. The
extension reads and uses the provided access token to
request and retrieve the RP-required user attribute values
from the IdP via online communication with the IdP. The
UA-IdP communication channel is TLS-protected.

11) Extension/UA → RP. Having retrieved the required user
attribute values from the IdP, the browser extension
constructs a ‘CardSpace-like’ SAML token and submits
it to the RP. Such a token includes the IdP-supplied user
attributes and the digitally-signed, SIIP-issued RSTR
(which contains the PPID), allowing the RP to verify
the SIIP signature (see also section V-A).

12) RP → User. The RP verifies the SAML token (includ-
ing verifying the RSTR signature, PPID, nonce, time-
stamps, etc.), and, if satisfied, grants access.

V. DISCUSSION AND ANALYSIS

A. Security Considerations

1) Properties: The scheme mitigates the risk of phishing.
This is because the redirect to the OAuth IdP is initiated by
the browser extension and not by the RP, i.e. the RP cannot
redirect the user to an OAuth IdP of its choosing. By contrast,
in OAuth, as it is typically used, a malicious site could redirect
a user to a fake IdP, which could capture user credentials [13].

The unsigned (extension-generated) SAML token in step 11
of section IV (referred to here as the ‘user token’) includes
the PPID, the OAuth IdP-supplied user attributes, and the
digitally-signed, SIIP-issued, RSTR. The RP compares the
SIIP-asserted PPID (and the public key) in the user token with
its stored values and verifies the digital signature (see sec-
tion III-A). If the RSTR contains user attributes, the RP could
compare these (locally-stored) attributes with the (remotely-
stored) IdP-provided attributes; such a procedure could give
the RP added guarantees about the accuracy of these attributes.

It is infeasible for a malicious entity to fabricate a user
token to masquerade as a legitimate party since it will not
have access to the PPID and the private key necessary to sign
the RSTR, both of which are only available if the appropriate
InfoCard is selected on the correct platform.

Note that, in protocol step 4, the selector identifies the RP
to the user and indicates whether or not they have visited that
particular RP before; if the user is visiting this RP for the first
time, CardSpace requests the user’s permission to proceed (see
section III-A2). This helps to support mutual authentication
since the user and the RP are both identified to each other.

Finally, the scheme allows the user attributes to be stored
remotely at the OAuth IdP; this has potential security advan-
tages over storing the attributes locally on the user machine,
as is currently the case with CardSpace SIIP-issued attributes.

3The extension checks that the value in the state parameter is the same as
the one it generated in step 8, is sufficiently current, and has not been used.
The extension adds the received value to a list for use in future verifications.

2) Concerns: If the web browser is compromised, then an
adversary could steal the user token and use it to impersonate
the user. If the RP does not use HTTPS, then the SIIP-
issued RSTR will not be encrypted. Also, if we assume that
the browser is not a secure environment, it may be possible
for a malicious plug-in or other malware to get access to
sensitive information present in the (plaintext) RSTR, the
extension-generated SAML token, or the OAuth IdP-issued
access token. However, the same risks apply when manually
entering credentials (e.g. username-password) into a browser.

3) Additional Security Properties: In certain circumstances,
the RP can gain additional assurance in the identity of the user
through use of the scheme proposed in section IV. If the RP
trusts that the correct browser extension is running unmodified
on the user platform, then the RP will know that the user has
been authenticated by an OAuth IdP, and that the attributes
have been provided by a genuine IdP. In such a case, the
scheme would provide a two-level user authentication, based
on selection of the correct InfoCard and user authentication
at the OAuth IdP. This would offer a security advantage
by comparison with the ‘native’ CardSpace personal card
protocol, where the user is only authenticated once.

However, this is a significant trust assumption. We next
consider two ways in which this assumption might be met.

1) The extension could be installed in a managed environ-
ment in which a user is only granted limited privileges
insufficient to modify or replace the extension. However,
in order for the RP to have assurance that the user plat-
form is in such a controlled environment (and to avoid
making extra changes to the RP), the RP itself would
probably need to belong to the managed environment.

2) A more widely-applicable solution would be to make
use of the functionality of the Trusted Platform Module
(TPM), present on a large proportion of recently manu-
factured PCs. Using the remote attestation mechanism,
an RP could be provided with guarantees about the soft-
ware state of the user platform, including the presence
of the expected integration software.

The SAML token created by the browser extension in
step 11 of section IV could be extended to contain an ad-
ditional field to indicate that the user has been authenticated
by a specified OAuth IdP (as well as when and how). The RP
would need to be modified to be able to process such an extra
field, although this is likely to be relatively straightforward.

B. Client-side Integration

IdPs/RPs might not accept the burden of supporting two
identity management systems, unless there is a financial in-
centive. A client-based integration technique would therefore
be practically useful and would not affect server-performance.

C. Attribute Mapping

CardSpace and Facebook Connect use two different sets
of attribute types4; a mapping would therefore be required.

4As stated in section III-A2, CardSpace personal cards only support
fourteen editable attributes, whereas Facebook Connect supports many more.



Table I gives an example mapping.

TABLE I
CARDSPACE-FACEBOOK CONNECT ATTRIBUTE MAPPING

CardSpace (Personal Cards) OAuth (Facebook Connect)
givenname first name
surname last name

emailaddress email
dateofbirth birthday

gender gender
country locale

city location
web page website

VI. PROTOTYPE REALISATION

We now describe a prototype implementation. The de-
scription applies to Facebook Connect, an implementation of
OAuth 2.0. The prototype uses Facebook Connect’s client-side
flow (i.e. the implicit ‘grant’ type). It is coded in JavaScript,
chosen because its wide adoption should simplify the task of
porting the prototype to a range of other browsers. It uses the
Document Object Model (DOM) to inspect and manipulate
HTML pages and XML documents. The JavaScript code is
executed using a C#-driven browser helper object (BHO), a
Dynamic-link library (DLL) module designed as a plug-in for
IE; once installed, the BHO attaches itself to IE, thus gaining
access to the page’s DOM. The prototype can be enabled or
disabled using the add-on manager in the IE’s Tools menu.
The prototype operates with the CardSpace and the Higgins
(http://wiki.eclipse.org/GTK Selector 1.1-Win) identity selec-
tors without any modification. It has been tested with Facebook
and an implementation of a CardSpace RP.

A. Prototype Operation

Prior to use, the user must have accounts with an RP and
Facebook. The user must register the RP with Facebook (http:
//developers.facebook.com/setup/). The user must also create
an OAuthCard, inserting the RP’s identifier in the first name
field, and the trigger word ‘OAuth’ in the last name field. The
Facebook URL is contained in the source code of the browser
extension. The user can give the OAuthCard a meaningful
name and can also upload an image for the card. We next
consider specific operational aspects of the prototype. We refer
throughout to the numbered protocol steps given in section IV.

In step 3 the plug-in uses the DOM to perform the following.
3.1 It scans the web page in the following way5.

(a) It searches through the HTML elements of the web
page to detect whether any HTML forms are present.
If so, it searches each form, scanning through each of
its child elements for an HTML object tag.

(b) If an object tag is found, it retrieves and examines its
type. If it is of type ‘application/x-informationCard’

5Two HTML extension formats can be used to invoke the selector from
a web page [14], both of which involve placing the CardSpace object tag
inside an HTML form. This motivates the choice of the web page search
method [15], [16], [17].

(which indicates website support for CardSpace), it
continues; otherwise it aborts.

(c) It retrieves and stores in a cookie the name attribute
of the CardSpace object tag.

(d) It searches through the param tags (child elements of
the retrieved CardSpace object tag) for the ‘issuer’ tag
and examines its value; if it is ‘http://schemas.xmlsoap.
org/ws/2005/05/identity/issuer/self’, indicating that the
use of personal cards is acceptable, it continues.

(e) It retrieves the ‘requiredClaims’ and ‘Optional-
Claims’ tags from the param tags, and stores the
mandatory/optional claim types listed in these tags.

(f) It uses the property ‘document.location.protocol’ to
discover whether HTTP or HTTPS is in use.

(g) If necessary and if HTTP is in use, the plug-in, after
keeping track of the original policy settings, modifies
the RP policy so that the first name and last name claim
types are specified in the ‘requiredClaims’ tag.

3.2 It adds a JavaScript function to the head section of the
HTML page to intercept the RSTR.

3.3 It obtains the action attribute of the CardSpace HTML
form and stores it in a cookie. This attribute specifies
the URL address of a web page at the RP to which the
security token must be forwarded for processing.

3.4 It changes the current action attribute of the CardSpace
form to point to the newly created ‘interception’ function.

In step 8 the plug-in uses the DOM to perform the following.
8.1 It intercepts the RSTR using the added function.
8.2 It operates slightly differently depending on whether
HTTP or HTTPS is in use.

• If HTTP is used, the plug-in parses and extracts
certain RSTR contents. If the last name field con-
tains the word ‘OAuth’, the plug-in proceeds; if not,
normal operation of CardSpace resumes. It reads the
first name field to discover the RP’s identifier.

• If HTTPS is used, the plug-in (using a JavaScript
pop-up box) asks the user whether the use of the
integration protocol is required. If so, it proceeds;
otherwise it terminates. On proceeding, it prompts
the user to enter the RP’s identifier (as issued by
Facebook). The plug-in offers the option to store the
supplied values in a persistent cookie for future lo-
gins at this RP, using a plug-in-embedded checkbox.

8.3 It constructs an OAuth request, compatible with Face-
book Connect. This involves generating a nonce and time-
stamp (used to build the ‘state’ parameter), and also
determining the required and optional attribute types to
be requested from Facebook. The plug-in retrieves all
the CardSpace-supported claim types it stored earlier (see
step 3.1 (e) above). It then maps between them and the
Facebook-supported attribute types, using Table I. The
mapping is done using JavaScript regular expressions.
The plug-in sets the value of ‘redirect uri’ parameter
to the URL of the visited RP page. In addition, it sets
the value of the ‘response type’ parameter to ‘token’,



signifying the use of the ‘implicit’ grant type.
8.4 It encrypts (and stores in a cookie) the RSTR and the

value of the ‘state’ parameter using AES in CBC mode,
using a secret key known only to the plug-in.

8.5 It redirects the user to Facebook along with the OAuth
request, using the JavaScript property ‘window.location’.

In step 10 the plug-in performs the following steps.
10.1 It parses the Facebook (URL-embedded) response.
10.2 It (transparently) validates the response, including

checking that the value of the ‘state’ parameter is the
same as the one it generated in step 8.3, is sufficiently
current, and has not been used. It adds the received value
to an internally stored list for future verifications.

10.3 It uses the provided access token to request and
retrieve the RP-requested user attribute values from Face-
book open graph (http://en.wikipedia.org/wiki/Social
graph#Open Graph) using a TLS-protected channel.

In step 11 the plug-in performs the following steps.
11.1 It constructs a CardSpace-like SAML security token,

inserting the user attribute values received from Facebook
into the token. It also embeds the signed SIIP-issued
RSTR into the SAML token, after retrieving and decrypt-
ing the RSTR from the appropriate cookie (see step 8.4).

11.2 It creates and appends an ‘invisible’ form (with the
method attribute set to ‘POST’) to the current page.

11.3 It writes the entire SAML token as a hidden variable
into the invisible HTML form, with the name attribute of
this variable set to the CardSpace object tag’s name.

11.4 It writes the end-point URL of the RP into the action
attribute of the HTML form.

11.5 Finally, it auto-submits the HTML form (transpar-
ently to the user), using the JavaScript method ‘submit’.

B. Potential Issues

The plug-in must scan every HTML web page to see
whether it supports CardSpace, and this may affect system
performance. However, informal tests on the prototype suggest
that this is not a serious issue. In addition, the plug-in can be
configured so that it only operates with certain websites.

Some older browsers (or browsers with scripting dis-
abled) may not be able to run the plug-in, as it was built
using JavaScript. However, most modern browsers support
JavaScript (or ECMAscript), and hence building the prototype
in JavaScript is not a major usability obstacle.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed and prototyped a means of interoperation
between two leading identity management systems, namely
CardSpace and OAuth. CardSpace users (indeed, users of
any Information Card system) are able to obtain an assertion
token from an OAuth provider, the contents of which can be
processed by a CardSpace-enabled relying party. The scheme
is transparent to OAuth providers and identity selectors, uses a
browser extension, and requires only minor changes to relying
parties. It uses the identity selector interface and personal cards
to enable the interoperation.

Planned future work includes investigating the possibility
of extending the CardSpace identity selector to simultaneously
support security tokens from a variety of identity providers,
such as OpenID, OAuth, Liberty, Shibboleth, as well as
CardSpace remote and self-issued identity providers. Finally, a
full version of this paper is available as a technical report [18].

ACKNOWLEDGEMENTS

The helpful remarks provided by Chris Mitchell are grate-
fully acknowledged. The author is sponsored by the Diwan of
Royal Court, Sultanate of Oman.

REFERENCES

[1] E. Bertino and K. Takahashi, Identity Management: Concepts, Technolo-
gies, and Systems. Artech House Publishers, Norwood, MA, 2011.

[2] E. Hammer-Lahav, editor, The OAuth 1.0 Protocol, RFC 5849, 2010.
[3] M. Mercuri, Beginning Information Cards and CardSpace: From Novice

to Professional. Apress, New York, 2007.
[4] H. S. Al-Sinani, W. A. Alrodhan, and C. J. Mitchell, “CardSpace-Liberty

integration for CardSpace users,” in Proceedings of IDtrust ’10 — the
9th Symposium on Identity and Trust on the Internet, Gaithersburg, USA,
K. Klingenstein and C. M. Ellison, Eds. ACM, 2010, pp. 12–25.

[5] H. S. Al-Sinani and C. J. Mitchell, “CardSpace-Shibboleth integration
for CardSpace users,” in ACNS ’11 [industrial track proceedings],
9th International Conference on Applied Cryptography and Network
Security, Nerja (Malaga), Spain, 7–10 June 2011, 2011, pp. 49–66.

[6] ——, “Client-based CardSpace-OpenID interoperation,” in Proceedings
of ISCIS’11 — the 26th International Symposium on Computer and In-
formation Sciences, London, UK, E. Gelenbe, R. Lent, and G. Sakellari,
Eds. Springer (LNEE), 2011, pp. 387–393.

[7] I. Jørstad, et al., “Bridging CardSpace and Liberty Alliance with SIM
authentication,” in Proceedings of ICIN ’07, International Conference
on Intelligence in Next Generation Networks. Adera, 2007, pp. 8–13.

[8] M. B. Jones and M. McIntosh, editors, Identity Metasystem Interoper-
ability Version 1.0 (IMI 1.0), OASIS Standard, 2009.

[9] E. Hammer-Lahav, D. Recordon, and D. Hardt, editors, The OAuth 2.0
Authorization Protocol — draft-ietf-oauth-v2-20, 2011.

[10] S. Pai, Y. Sharma, S. Kumar, R. Pai, and S. Singh, “Formal verification
of OAuth 2.0 using Alloy framework,” in Proceedings of CSNT ’11 —
the International Conference on Communication Systems and Network
Technologies. IEEE Computer Society, 2011, pp. 655–659.

[11] T. Lodderstedt, editor, OAuth 2.0 Threat Model and Security Consider-
ations — draft-ietf-oauth-v2-threatmodel-00, 2011.

[12] M. Miculan and C. Urban, “Formal analysis of Facebook Connect single
sign-on authentication protocol,” in SOFSEM ’11 (Software Seminar):
Theory and Practice of Computer Science — the 37th Conference on
Current Trends in Theory and Practice of Computer Science. Proceed-
ings of Student Research Forum, 2011, pp. 99–116.

[13] H. S. Al-Sinani and C. J. Mitchell, “A universal client-based identity
management tool,” in Proceedings of EuroPKI ’11 — the 8th European
Workshop on Public Key Infrastructures, Services and Applications,
Leuven, Belgium. Springer-Verlag (LNCS), (to appear), 2011.

[14] M. B. Jones, A Guide to Using the Identity Selector Interoperability
Profile V1.5 within Web Applications and Browsers, Microsoft, 2008.

[15] H. S. Al-Sinani and C. J. Mitchell, “Using CardSpace as a pass-
word manager,” in Proceedings of IFIP IDMAN ’10, the 2nd IFIP
Working Conference on Policies and Research in Identity Management,
E. de Leeuw, S. Fischer-Hübner, and L. Fritsch, Eds., vol. 343. Springer,
Boston, 2010, pp. 18–30.

[16] ——, “Extending the scope of CardSpace,” in Proceedings of SIN
’11, the 4th International Conference on Security of Information and
Networks, Sydney, Australia. ACM (to appear), 2011.

[17] ——, “Enhancing CardSpace authentication using a mobile device,” in
Proceedings of DBSEC ’11, the 25th IFIP Conference on Data and
Applications Security and Privacy, Richmond, USA, 11-13 of July 2011,
Y. Li, Ed., vol. 6818. Springer (LNCS), 2011, pp. 201–216.

[18] H. S. Al-Sinani, Browser Extension-based Interoperation Between
OAuth and Information Card-based Systems, Technical Report: RHUL–
MA–2011–15 (Department of Mathematics, Royal Holloway, Univer-
sity of London), 2011, http://www.ma.rhul.ac.uk/static/techrep/2011/
RHUL-MA-2011-15.pdf.


