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Abstract. In this paper we investigate nonlinear equivalence of stream
ciphers over a finite field, exemplified by the pure LFSR-based filter gen-
erator over F2. We define a nonlinear equivalence class consisting of filter
generators of length n that generate a binary keystream of period divid-
ing 2n−1, and investigate certain cryptographic properties of the ciphers
in this class. We show that a number of important cryptographic prop-
erties, such as algebraic immunity and nonlinearity, are not invariant
among elements of the same equivalence class. It follows that analysis of
cipher-components in isolation presents some limitations, as it most often
involves investigating cryptographic properties that vary among equiva-
lent ciphers. Thus in order to assess the resistance of a cipher against a
certain type of attack, one should in theory determine the weakest equiv-
alent cipher and not only a particular instance. This is however likely to
be a very difficult task, when we consider the size of the equivalence class
for ciphers used in practice; therefore assessing the exact cryptographic
properties of a cipher appears to be notoriously difficult.

Keywords: Stream ciphers, sequences, nonlinear equivalence.

1 Introduction

A stream cipher [8] is a type of encryption algorithm which encrypts individual
alphabet elements of a plaintext, one at a time, with a time-varying transfor-
mation. Stream ciphers are very popular due to their many attractive features:
they are generally fast, can usually be implemented efficiently in hardware, have
no (or limited) error propagation, and are particularly suitable for environments
where no buffering is available and alphabet-elements need to be processed in-
dividually.

It is very common to construct stream ciphers based on linear feedback shift
registers (LFSRs). Besides their attractive implementation features, the rich al-
gebraic structure often enables a more formal and detailed security analysis. A
filter generator over F2 is perhaps a stream cipher in its simplest form, with a
well-defined mathematical description: it consists of a sequence generator and a
Boolean function which produce a keystream based on the state of the register.
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The security of such a construction is highly reliant on both the properties of
the sequence-generator, as well as the properties of the Boolean function.

Boolean functions play a very important role in stream cipher design and
analysis (as well as in several other cryptographic primitives), and a significant
amount of literature has been devoted to the study of cryptographic properties
of Boolean functions. Cryptanalytic techniques that may exploit these properties
include correlation attacks, algebraic attacks, inversion attacks, among others.

We note however that for several methods of analysis one often investigates
the Boolean function in isolation from the associated sequence generator. For
instance, the algebraic normal form of a Boolean function can be constructed
and related properties such as algebraic immunity, algebraic degree, nonlinearity
and correlation immunity, can be computed to derive the cipher’s security. On
the other hand, other types of attacks take advantage of certain properties of the
sequence generator. For instance, the Hamming weight of a feedback polynomial
should not be low in order to resist correlation attacks; likewise, to resist inversion
attacks, the positions of the cipher’s LFSR which a Boolean function taps from,
should satisfy additional requirements.

In this paper, we discuss and attempt to combine the analysis of both the
generator and the corresponding Boolean function. Such an approach has for
instance been taken by the authors of [10], enabling a very efficient attack on
a class of stream ciphers by identifying certain characteristic structures which
are not evident from isolated analysis of the cipher components. Our main focus
point is to investigate (nonlinear) equivalence of LFSR-based stream ciphers
using basic properties of Galois fields and certain isomorphisms between the
corresponding multiplicative groups. This can be seen as a way of constructing
isomorphic ciphers (examples of cipher representations and isomorphisms were
provided in [1, 9]; the subject was discussed in detail in [2]).

We show here that important cryptographic properties such as nonlinearity
and algebraic immunity are variant with respect to such an equivalence. The focal
point of this paper is therefore: since there are many ciphers generating the same
keystream, any cryptographic property should be defined with respect to the
weakest equivalent cipher. However, without some type of provable construction,
it seems difficult to assess the exact security of a filter generator for practical
sizes, since the class of equivalent ciphers is very large in practice. For instance,
there are about 2121 nonlinearly equivalent filter generators with an LFSR of
length 128 over F2 generating a keystream of period 2128 − 1. We note however
that we are not concerned here with affine equivalences, as such equivalences are
not particularly revealing in general.

This paper is organized as follows. In section 2 we present some basic defini-
tions and define the notation used in the paper. In section 3, the basic principle
of equivalence and change of basis is introduced, and in section 4 we introduce
an equivalence class of filter generators with respect to a periodic sequence. In
section 5 we explain how to determine equivalences realised as nonlinear polyno-
mial functions, and in section 6 we reflect on some consequences for the design
and cryptanalysis of LFSR-based stream ciphers.
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Preliminaries

2 Preliminaries

In this section we provide some definitions which are essential in our analysis;
see [6] and [5] for a more detailed discussion of sequences over finite fields.

Let p be a prime, q = pn, and let Fq denote the finite field with q elements.
The order of an element α ∈ Fq is the smallest positive integer k such that αk =
1, denoted by ord(α). An element α with order q−1 is called a primitive element
and its minimal polynomial gα(x) ∈ Fp[x] is called a primitive polynomial. The
primitive elements are exactly the generators of F∗q , the multiplicative group
consisting of the non-zero elements of Fq.

If α is a primitive element of Fq and gcd(k, q − 1) = 1, then any element
αk is also primitive. In particular, the conjugates αpi of α are all primitive and
form the roots of the primitive polynomial gα(x) =

∑n−1
i=0 (x − αpi) of degree n

over Fp[x]. It follows that there are φ(q − 1) primitive elements of Fq, where φ
denotes Euler’s totient function, and that the number of primitive polynomials
over Fp of degree n is given by φ(q − 1)/n.

If k divides n, then pk − 1 divides q − 1 = pn − 1, and it follows that there
is an element β ∈ Fq with order pk − 1. Furthermore, β is a primitive element
of Fp(β) ' Fpk ⊆ Fp(α) ' Fq.

The absolute trace of an element β ∈ Fpk ⊆ Fq is given by

Trk1(β) =
k−1∑
i=0

βp
i

,

where Trk1(x) denotes the trace function from Fpk to Fp. We write Tr(x) = Trn1 (x)
when there is no room for confusion. If α ∈ Fq is a primitive element, then
{1, α, . . . , αn−1} is a basis of Fq (when considered as a vector space over Fp).

Let s denote a periodic sequence over Fp with period e dividing q−1, viewed as
a vector of length q−1, and letm(x) =

∑k
i=0 cix

i ∈ Fp[x] be a monic polynomial
of degree k. We say that the sequence s satisfies the linear recurrence defined by
m(x) if

c0at + c1at+1 + . . .+ ck−1at+k−1 + at+k = 0,

for all t ≥ 0. The minimal polynomial of s is the polynomial of least degree
whose linear recurrence is satisfied by s.

We say that a sequence s is irreducible if its minimal polynomial is irreducible
over Fp. A sequence s is generated by a polynomial g(x) ∈ Fp[x], if the minimal
polynomial ms(x) of s divides g(x). Denote by Ω(g(x)) the vector space spanned
by the sequences generated by g(x). If g(x) is primitive, then Ω(g) contains
q − 1 cyclically equivalent sequences (in addition to the zero-sequence), and
every non-zero sequence in Ω(g) has maximal period q − 1. Such sequences are
called maximal sequences (or m-sequences).

Let s be an m-sequence over Fp with minimal polynomial ms(x) of degree
n, and α ∈ Fq be a root of ms(x) (and thus ms(x) = gα(x)). Then s may be
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written over Fq in terms of the roots of ms(x) as

st = Tr(Xαt) =
n−1∑
i=0

(Xαt)p
i

, t = 0, 1, 2, . . . ,

where X ∈ F∗q . Furthermore, the q − 1 nonzero choices of X ∈ F∗q result in the
q − 1 distinct shifts of the same m-sequence s.

In the remaining of this paper, we will consider sequences defined over the
field F2, that is, p = 2 and q = 2n. It should be noted however that the analysis
provided here can be extended trivially to sequences and filter generators over
any prime extension Fpn .

Let R = F2[x0, x1, . . . , xn−1] and J be the ideal of R generated by the set
{x2

i + xi}(0≤i<n). Any Boolean function f : Fn2 → F2 can be realised as a poly-
nomial function f(x0, ..., xn−1) ∈ R/J . The algebraic degree of the Boolean
function f is the highest degree of a monomial in f .

A pure filter generator over F2 consists of a LFSR-based sequence generator
and a nonlinear Boolean function. Moreover, if we let s denote an m-sequence
over F2 and f ∈ R/J a nonlinear function, then a nonlinearly filtered sequence
a may be generated by

at = f(st, st+1, . . . , st+n−1), t = 0, 1, 2, . . . ,

for some initial state (s0, s1, . . . , sn−1) of the LFSR generating s. It is well known
that a filter generator with an LFSR of period e, can generate any sequence of
period l dividing e for appropriate choices of filter function f .

3 Equivalent Sequence Generators

Our main motivation results from the following observation: an m-sequence s of
period q − 1 = 2n − 1 may in general be written in terms of the roots of any
primitive polynomial of degree n in F2[x].

Indeed, let β = αk be a primitive element of F2(α) ' Fq. Then gcd(k, q−1) =
1, and the k-power exponentiation is an automorphism of the multiplicative
group F∗q . Furthermore, this automorphism induces the mapping xk : F2(α) →
F2(β), with inverse xr, where r is the multiplicative inverse of k modulo q − 1.

Let s ∈ Ω(gα(x)) be an m-sequence generated by

st = Tr(Xαt), (1)

and β = αk ∈ F2(α), where ord(β) = q − 1, and let r · k ≡ 1 (mod q − 1). Then
we may rewrite (1) in terms of the primitive element β as

st = Tr(Xαt) = Tr((Y βt)r), (2)

where Y ∈ F2(β) and Y r = X is an elementary change of basis. Equation (2)
shows how an m-sequence s ∈ Ω(gα) may be represented (nonlinearly) in terms
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of the roots of the minimal polynomial of another m-sequence b ∈ Ω(gβ). In
particular, the output of the LFSR satisfying the linear recursion defined by
gα(x) may also be generated by a nonlinear filter generator using an LFSR
satisfying the linear recursion defined by gβ(x), as illustrated in the following
example.

Example 1. Let n = 5, q = 2n = 32 and let F2(α) ' F32, where gα(x) = x5 +
x4 + x3 + x2 + 1 ∈ F2[x] is a primitive polynomial. An m-sequence s ∈ Ω(gα(x))
can be generated by

st = Tr(Xαt), t = 0, 1, 2, . . . ,

where X ∈ F∗32. Now let β = α21 and X21 = Y ∈ F2(β). It follows that

Tr(Xαt) = Tr((Y βt)3), t = 0, 1, 2, . . . ,

since 3 · 21 ≡ 1 (mod 31).
The corresponding filter generator over F2(β) is given by

st = f(bt, bt+1, . . . , bt+4), t = 0, 1, 2, . . . ,

where

(bt, bt+1, . . . , bt+4) = (Tr(Y βt),Tr(Y βt+1), . . . ,Tr(Y βt+4)),

and
f(x0, x1, x2, x3, x4) = x0x2 + x2x3 + x1x4 + x2x4 + x1 + x3.

The two filter generators (one of them is linear) will generate identical sequences
for all possible initial states X and Y = X21, and they are thus equivalent
sequence generators.

Notice that the function f has algebraic immunity 2 and nonlinearity 12,
which is maximal for a quadratic Boolean function in 5 variables. Thus, on the
basis of certain types of analysis, one of the ciphers appears to be secure while
the other is not.

Example 1 illustrates that the Boolean function corresponding to the trace-
representation over F2(β) may possess strong cryptographic properties in gen-
eral. Thus, if we investigate the security of the whole cipher by analysing the
Boolean function of a particular filter generator in isolation, we might perhaps
conclude (erroneously) that it is a cryptographically strong cipher.

4 Equivalence of Filter Generators

In order to simplify the presentation, we introduce the following notation.

Definition 1. Let X,α ∈ F∗q . Then define the vector

S(Xαt) = (Trk1(Xαt),Trk1(Xαt+1), . . . ,Trk1(Xαt+k−1)) ∈ Fk2 ,

where k = dim(F2(α)) and k divides n.
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The vector S(Xαt) is equivalent to the state at time t of an LFSR with character-
istic polynomial gα(x) of degree k and initial state S(X) ∈ Fk2 . In the remaining
of this paper, we will only consider the case k = n. We view any Boolean func-
tion in r ≤ n variables as a polynomial in Bn = R/J . For convenience in the
presentation, we have the following definition.

Definition 2. Let β,X ∈ F∗q , bt = Tr(Xβt) be a linear recurrence sequence and
f ∈ Bn a Boolean function. Define a sequence

Lβ(f, t,X) = (f(S(Xβt)), f(S(Xβt+1)), . . . , f(S(Xβt+q−2))),

of length q − 1, with entries

f(S(Xβt)) = f(bt, bt+1, . . . , bt+n−1).

Let Lβ(f) be the set of sequences defined as

Lβ(f) = {Lβ(f, 0, X) | X ∈ F∗q}.

The set Lβ(f) can be seen as the set of all possible keystream output sequences
(of length q − 1) from a filter generator, whose LFSR has feedback polynomial
gβ(x) and filtering function f . The non-zero elements X ∈ F∗q determine the
initial state of the LFSR.

The period of the sequences in Lβ(f) depend on the order of β and the func-
tion f ; for instance, it should be clear that the period of any sequence in Lβ(f)
cannot be greater than ord(β), and in fact must divide ord(β) (in particular, it
divides q− 1). In general, if ord(β) = q− 1, then for a random function f ∈ Bn,
the sequence Lβ(f) have almost surely period q − 1.

When considering the set of (polynomial) Boolean functions Bn = R/J , we
can define a surjective homomorphism ϕ from Bn to the set of sequences over
F2 of length q − 1 = 2n − 1 as

ϕ : Bn → Fq−1
2

f 7→ sf ,

where sf corresponds to the truth-table of f in all points of Fn2 except (0, . . . , 0).
It can be shown that ker(ϕ) = 〈h〉, where h(x0, . . . , xn−1) =

∏n−1
i=0 (xi + 1),

and as a result ϕ(f1) = ϕ(f2) if, and only if, f1 ≡ f2 mod 〈h〉. Moreover, since
〈h〉 = {0, h}, we have the counter-image of any sequence s ∈ Fq−1

2 given by

ϕ−1(s) = {fs, f
∗
s } ⊂ Bn, (3)

where f∗s = fs + h. Note that fs, f
∗
s are the functions that coincide in the set

Fn2 \ {(0, . . . , 0)} (with image in this set given by the sequence s), but with
fs(0, . . . , 0) 6= f∗s (0, . . . , 0).

Definition 3. For a sequence s ∈ Fq−1
2 and β ∈ F∗q , let

Vβ(s) = {f ∈ Bn | s ∈ Lβ(f)}.
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In other words, we can consider Vβ(s) as the set of all filter generators with
feedback polynomial gβ(x) that generate s as its first q− 1 terms. The following
lemma summarises the conjugation property of such sets.

Lemma 1. For any s ∈ Fq−1
2 and β ∈ F∗q , we have

Vβ2i (s) = Vβ2j (s), 0 ≤ i, j ≤ n− 1.

The above lemma follows directly from the fact that gβ2i (x) = gβ2j (x). We then
have the following lemma.

Lemma 2. Let s ∈ Fq−1
2 denote a periodic sequence with e = per(s) and β ∈ F∗q ,

where per(s) | ord(β). Then

|Vβ(s)| ≤ e(q − 1)
ord(β)

· 2q−ord(β).

Proof. Let w = ord(β) and X be the subgroup of F∗q generated by β. The
subgroup X has index k = (q − 1)/w in F∗q , and thus there are k elements
1 = X0, X1, X2, . . . , Xk−1 ∈ F∗q such that the sets Xi = XiX form a partition
of F∗q (these are the cosets of X in F∗q).

We can thus associate the sets Xi ⊆ F∗q with the distinct and non-intersecting
ordered sets

Vi = {S(Xiβ
t) = vti | t = 0, 1, . . . , w − 1} ⊆ Fn2 .

It is clear that the elements X0, X1, . . . , Xk−1 ∈ F∗q result in the k distinct and
shift-nonequivalent state-cycles of the corresponding LFSR with period w.

Let H = {h0, h1, . . . , hk−1} ⊆ Bn be the set of Boolean polynomials such
that hi(x) = 0 if x ∈ Vi and hi(x) = 1 if x ∈ Fn2\Vi. The ideal 〈hi〉 consists of
the set of all functions in Bn that are zero when restricted to Vi. Since Vi has
cardinality w, then |〈hi〉| = 2q−w for every i.

Given s ∈ Fq−1
2 with period e, for every Vi we can define the function fi ∈ Bn

as fi(vti) = st for 0 ≤ t ≤ w − 1, and fi(x) = 0 if x ∈ Fn2\Vi. Thus fi ∈ Vβ(s).
Furthermore, it is clear that if gi ≡ fi mod 〈hi〉, then gi(vti) = st for 0 ≤ t ≤
w − 1, and gi ∈ Vβ(s).

Now, by considering the w shift-equivalent sets V ′i of the ordered set Vi, we
obtain shift-equivalent functions to the elements of the set Fi = {fi + gi | gi ∈
〈hi〉} ⊂ Bn. In fact we get e = per(s) such functions for each element in Fi.
Thus, for every Vi, we have e · 2q−w functions in Vβ(s). We can repeat the above
with all k sets Vi to obtain

k · e · 2q−w = e(q − 1)
w

· 2q−w

elements in Vβ(s). ut

The inequality in lemma 2 is necessary in case per(s) < 2n − 1, since it may
then be the case that some of the functions are counted several times. However,
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the main motivation of this paper is sequences of maximal period and one should
note that when per(s) = ord(β) = 2n − 1, then |Vβ(s)| = 2(q − 1); in fact, we
have that ϕ−1(s) contains the two representatives of the shift equivalence classes
in Vβ(s) (assuming the natural ordering on the elements of Fn2 induced by the
cyclic group generated by β). This fact also implies the following lemma.
Lemma 3. Let β be a primitive element of Fq, and f ∈ Bn. If s1 and s2 are
sequences in the set Lβ(f), then Vβ(s1) = Vβ(s2).
We note that when β is not primitive, then lemma 3 is not necessarily true.

In the following definition, we assume sequences with period e|(q− 1), where
e is not a divisor of 2k − 1, 0 < k < n. That is, we assume that the sequences
are generated by filter generators consisting of irreducible LFSRs of length n.
Definition 4. Let s ∈ Fq−1

2 be a sequence with period e dividing q − 1, where e
is not a divisor of 2k − 1, with 0 < k < n. Then let

Gn(s) = {Vβ(s) |β ∈ Fq, e | ord(β)}.

In other words, the set Gn(s) may be viewed as a class of filter generators of
length n that generate s as a keystream. For sequences with period e dividing
q − 1, the size of Gn is given by the following proposition.
Proposition 1. If s ∈ Fq−1

2 has period e dividing q−1, where e is not a divisor
of 2k − 1, with 0 < k < n, then

|Gn(s)| =
∑
e|w

φ(w)/n,

where the sum is extended over all positive divisors w of q − 1.
Proof. By restricting the class Gn(s) to sequences with period e, where e is not
a divisor of 2k − 1, with 0 < k < n, we are restricting the sets Vβ to elements
β with minimal polynomial of degree n over F2. Thus, we need only count the
distinct irreducible polynomials in F2[x] of degree n with periods of which e is a
divisor. ut

The following corollary then follows immediately, which is of most interest
for this paper.
Corollary 1. If s ∈ Fq−1

2 has period q − 1, then

|Gn(s)| = φ(q − 1)/n,

where φ(q − 1) is the number of generators of the multiplicative group of Fq.
Thus when per(s) = q−1, the set Gn(s) contains φ(q−1)/n elements, where

each element Vβ(s) contains two equivalent functions with respect to Fn2 \ {0}
(without counting affine equivalences). There are thus in total

2 · φ(q − 1)/n (4)

distinct filter generators with feedback-polynomial of degree n that generate s
(again, without counting affine equivalences).
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Remark 1. Assume that we determine Gn for a sequence s of period e < q − 1
and assume that the sequence stems from a filter generator with irreducible (but
not primitive) feedback polynomial of degree n. Such filter generators (most
often) produce r = (q − 1)/e shift-nonequivalent sequences of period e. Thus,
the equivalence only encapsulates one out of r = (q−1)/e sequences generated by
that generator, and we are only guaranteed that the two generators are equivalent
for a subset of initial states. Thus, Gn induce a strong equivalence for sequences
with periods 2k−1 (see Proposition 2), and a weak form of equivalence otherwise.
This will be studied in closer detail in a follow-up paper.

We have restricted Gn(s) to the set of filter generators with feedback poly-
nomial of degree n for the purpose of simplicity and clarity of the presentation.
Our main focus are sequences with period q−1, the case of filter generators with
a primitive feedback polynomial, in which the equivalence class Gn becomes es-
pecially simple and clear. While it is possible to generalise Gn into more complex
equivalence classes offering more insight in cryptanalysis, it is out of the scope of
this paper. In particular, one may generalise Gn by incorporating combiner gen-
erators that generate the same sequences or for instance filter generators based
on NLFSRs. For instance, it should be clear that a sequence generated by a
combiner generator, can also be generated by a filter generator, and vice-versa.

It is especially simple to deduce equivalent ciphers generating a sequence
of period q − 1 in terms of nonlinear equivalences of Boolean functions. In the
following section, we describe how to deduce isomorphic filter generators in the
case of sequences of period q − 1.

5 Structure of Equivalent Functions

With access to a filter generator that generates a sequence a, we may in fact
generate all other equivalent filter generators.

Let F2(α) ' Fq and let β = αk be a primitive element of F2(α). Then
for any elements X ∈ F2(α) and Y ∈ F2(β), let φβ(x0, x1, . . . , xn−1) be the
vectorial Boolean function which maps states S(Xαt) ∈ Fn2 to states S(Y βt) ∈
Fn2 . Moreover, we have that

φβ(x0, x1, . . . , xn−1) = (y0, y1, . . . , yn−1),

and thus φβ(S(Xαt)) = S(Y βt).
Now if we select a function fα(x0, x1, . . . , xn−1) ∈ Bn, then we may compute

another function by

fα(x0, x1, . . . , xn−1) = fα(x0, x1, . . . , xn−1) ◦ φ−1
β (y0, y1, . . . , yn−1)

= fα(φ−1
β,0(y0, . . . , yn−1), . . . , φ−1

β,n−1(y0, . . . , yn−1))
= fβ(y0, y1, . . . , yn−1),

where φ−1
β (y0, y1, . . . , yn−1) is the inverse of φβ(x0, x1, . . . , xn−1). And since Y =

Xk, it follows that

at = fβ(S(Y βt)) = fα(S(Xαt)), t = 0, 1, 2, . . . ,
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which corresponds to two filter generators with distinct LFSRs and filter func-
tions, but which generate the same sequence a.

In the case of sequences of period q − 1, we need only determine one ele-
ment fα ∈ Vα(a) ∈ Gn(a), and then determine the other elements of Gn(a) by
composing fα with nonlinear maps φ−1

γ for each primitive element γ ∈ F∗q .

Remark 2. From the trace-representation of one filter generator (using a uni-
variate polynomial P (x) ∈ Fq[x]/(xq − x)), it is much simpler to derive the
trace-representation of the equivalent filter generators and then transform back
to the ANF form. The univariate representation of the equivalent sequence gen-
erators are of the form P (xk), where all such polynomials have exactly the same
weight and the equivalent functions are no more complicated in this sense.

The following proposition follows from lemma 3 and the discussion in this section.

Proposition 2. Let s1, s2 ∈ Fq−1
2 be sequences of period q − 1, and assume

there is β ∈ Fq a primitive element, such that Vβ(s1) = Vβ(s2). Then Gn(s1) =
Gn(s2).

6 Cryptanalytic Implications

If we restrict ourselves to keystream-sequences of period q − 1, which is the
common case for sequences generated by filter generators, then it follows from
(4) that there are 2 · |Gn(s)| isomorphic filter generators generating the same
keystream sequence, excluding affine equivalence. Thus, in order to assess the
cryptographic properties of a filter generator, one should in theory check whether
there exist in this class weak isomorphic ciphers with respect to some crypto-
graphic property. In particular, it should be clear that any cryptographic prop-
erty must be defined with respect to the weakest isomorphic cipher. This moti-
vates a definition of the following type.

Definition 5. Let P be a cryptographic measurement of a filter generator S,
which generates a sequence s. Then the filter generator S is said to be P-resistant
only if there is no isomorphic filter generator S ′ with measurement P ′ < P.

For example, consider a stream cipher S with a filter generator structure, which
may employ a weak filter function that enables a successful algebraic attack. The
results of the previous section imply that it is likely that there exists a cipher S ′
isomorphic to S, that has a cryptographically much stronger Boolean function,
and in turn may have been considered secure in that sense. An argument that
supports this, while certainly not a proof, is given in Example 1 and in the next
two subsections.

One can do the same type of argument with respect to any other filter gen-
erator, in that a randomly chosen isomorphic cipher may look more secure than
a specifically designed instance, in the classical view of cryptanalysis. In crypt-
analysis, it is clear that one would go for the weakest isomorphic cipher. It would
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in principle be possible to construct a trap-door function this way. However, such
a direction would require further analysis, as such applications seem apparently
inefficient in general.

Remark 3. Although out of the scope of this paper, as a general result, it would
be interesting to divide Bn into classes of Boolean functions which are equivalent
with respect to both nonlinear and linear equivalence. The main goal would be to
measure the amount of cryptographically strong Boolean functions. This could
be achieved by dividing Bn into classes consisting of nonlinearly equivalent func-
tions, together with the affine equivalences of those, and pick one representative
from each such class. Such a class would be invariant regardless of the generator
of F∗q . It should be noted that such a class would be much larger and general
than the usual affine equivalences studied in literature, and would restrict the
set of representatives of Boolean functions much further.

In the following section we discuss two properties of filter generators of cryp-
tographic relevance, and how the results of this paper may be applied in the
analysis of stream ciphers.

6.1 Algebraic Attacks
Algebraic attacks against stream ciphers were originally proposed by Courtois
and Meier in [3]. The attack is a powerful technique against filter generators, and
works by constructing systems of equations derived from the cipher operations,
which can be solved using a choice of methods. Protection against algebraic
attacks may for instance be reached by using filtering functions f of high degree,
which neither f nor its complement f + 1 have low degree multiples. Algebraic
degree and algebraic immunity are two properties of Boolean functions which
are affine invariant. However, we have the following lemma when considering the
equivalence Gn.

Lemma 4. The algebraic degree and algebraic immunity of a Boolean function
f are not invariant with respect to Gn(s).

This is clearly seen in Examples 1 and 2 (in the Appendix).

It is then for instance useful to have the following definition of algebraic
immunity with respect to the equivalence Gn

Definition 6. Let f ∈ Bn be a filter function used in a filter generator gener-
ating a sequence s ∈ Lα(f) of period q − 1, where we let F2(α) ' Fq. A more
general algebraic immunity of a Boolean function f can be defined as

GAI(f) = min(AI(fβ) | fβ ∈ Vβ(s), for all Vβ(s) ∈ Gn(s)).

However, it is not apparent whether the algebraic immunity of fβ is less than f or
not in general. One could argue that if f contains less than n variables, then the
equivalent functions will probably have higher algebraic immunity (since they
probably involve all n variables). We consider this as a general open problem
arising from our work.

11
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6.2 Correlation Attacks

Correlation attack (see [11] and [7]) is another type of attack which has shown
to be particularly successful against stream ciphers. A full treatment of the
potential impact of our analysis on correlation attacks will be discussed on an
forthcoming paper. Nevertheless, the purpose of this section is to show that:

1) current analysis of distance from a nonlinear function to the space of affine
(linear) functions is incomplete with respect to LFSR-based stream ciphers;
2) the notion of so-called weak feedback polynomials needs refinement.

In order to address 1), we only need to point out the fact that there is not
only one linear basis, but several. Assume that F2(α) ' Fq. If we let gαk(x) =∑nk
i=0(x+ αk·2

i), where nk = dim(F2(αk)), it follows that

xq−1 − 1 =
∏

k∈C(n)

gαk(x),

where C(n) ⊂ {0, 1, 2, 3, . . . , q − 2} denotes the coset-leaders modulo q − 1.
In the following, for a polynomial p(x) ∈ F2[x] dividing xq − x, denote by

dH(Ω(p) , a ) = (min( dH( s, a) ) | s ∈ Ω(p)),

the minimal distance between the vector spaceΩ(p) of sequences spanned by p(x)
and a sequence a ∈ Fq−1

2 . Then we have the following definition of generalised
correlations and distance to linear functions (linear subspaces).

Definition 7. Let a ∈ Fq−1
2 . Then define the minimal distance between a and

a linear subspace by

N1(a) = min( dH(Ω(gαk) , a ) ) | 0 ≤ k ≤ q − 2),

Assume that a is in Lα(f). Then, if for l2 ∈ Bn we have that dH(a, Lα(l1)) >
dH(a, Lβ(l2)) for all linear functions l1 ∈ Bn, it follows that a correlation attack
is more successful on the equivalent function fβ .

Some correlation attacks (see for instance [4]) involve analysing LFSRs with
low-weight feedback polynomials (or certain other nice properties). Such cor-
relation analysis assume that the Boolean function models a binary symmetric
channel (BSC) with certain correlation probability. Thus, it is sometimes possi-
ble to construct parity-check equations that relate the keystream to the underly-
ing sequence-generator and allowing for instance one to mount a distinguishing
attack. However, due to the fact that one may choose an equivalent filter gen-
erator with any desirable primitive polynomial (for instance a trinomial), it is
clear that such analysis is not complete without taking into account the exact
channel modelled by the Boolean function. If not, then this would mean that
there always exists a cipher among the equivalent ciphers that is susceptible to
correlation analysis, which is probably not true.

12
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7 Conclusions and Future Research

Given a LFSR-based stream cipher S generating a sequence s, we showed how
to define an equivalence class Gn(s), consisting of all filter generators of length
n that produce s as output (and in most cases of interest, of all filter genera-
tors equivalent to S). In general, several properties of cryptographic relevance
are not invariant among the elements of Gn(s), and as a result it does not ap-
pear to make sense to conclude the security properties of a filter generator by,
for instance, analysing the algebraic degree or algebraic immunity of the corre-
sponding Boolean function, the properties such as the weight of the polynomial
defining the LFSR, or the position of the registers that are tapped as input to
the Boolean function. In particular, our analysis makes it clear that one cannot
generally analyse the components of a stream cipher separately, as it is usual in
practice. The natural object of analysis is the equivalence class Gn(s), and thus
we believe that no analysis is complete without considering all of its elements.

Furthermore, we note that the idea presented here can be generalised into
more complete equivalence classes. For example, instead of restricting oneself
to the set of filter generators generating a particular sequence, one may instead
define an equivalence with respect to the set of all possible combiner-generators
generating a periodic sequence, in which cryptanalysis becomes much more fine-
grained. We plan to explore this subject in more detail in a follow-up paper.
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A Appendix

The following example illustrates the lack of invariance of cryptographic prop-
erties of Boolean functions with respect to the equivalence classes G5(s).

Example 2. Consider the binary sequence

s = (1011111101000100110001010110001),

of length 31. There are φ(31)/5 = 6 primitive polynomials over F2 of degree 5.
For each (distinct) generator β of the multiplicative group of F(α), we compute
a function fβ such that s ∈ Lβ(fβ), where we let gα = x5 + x2 + 1. The distinct
nonzero coset-leaders modulo 31 are K = {1, 3, 5, 7, 11, 15}, and thus we may
compute six functions fαk , k ∈ K, where we let αk = αk and pick one function
fαk from each class Vαk ∈ G5(s). The columns of the table below are ordered by
the six functions fαk ∈ Vαk(s) ∈ G5(s), k ∈ K:

fα1 fα3 fα5 fα7 fα11 fα15

n 5 5 5 5 5 5
d 4 4 4 3 3 2
wH 16 16 16 16 16 16
NL 10 10 10 8 12 8
AI 2 3 2 2 3 2
CI 0 0 0 1 0 1
PC 0 0 0 0 0 1
AB 16 16 16 16 8 32
SS 2432 2816 2816 3584 2048 8192

In the table above, wH denotes the hamming weight of the functions,NL denotes
nonlinearity, AI denotes algebraic immunity, CI denotes correlation immunity,
PC denotes propagation criterion of order 0, AB denotes absolute indicator and
SS denotes sum-of-squares indicator.
As one would expect, the weight of the truth-tables and the number of variables
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Appendix

remains the same for each function. But notice that none of the other properties
remain the same with respect to the transformation; and yet most of these
are properties that are invariant with respect to affine transformations. The
functions are:

fα1 = x0x1x2x3 + x0x1x2x4 + x0x1x3x4 + x1x2x3x4 + x0x1x2 + x0x1x3 +
x0x2x3 + x1x2x3 + x0x1x4 + x2x3x4 + x0x2 + x0 + x1

fα3 = x0x1x2x3 + x0x1x3x4 + x1x2x3x4 + x0x1x2 + x0x1x4 + x0x3x4 +
x1x3x4 + x2x3x4 + x0x1 + x1x3 + x2x4 + x2 + x3

fα5 = x0x1x2x4 + x0x2x3x4 + x1x2x3x4 + x0x1x2 + x0x1x3 + x0x2x3 +
x1x2x3 + x0x1x4 + x0x3x4 + x0x2 + x0x4 + x1x4 + x2x4 + x0 +
x1 + x2 + x3 + x4

fα7 = x0x1x3 + x0x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + x1x2 + x0x3 +
x0x4 + x1x4 + x3x4 + x0 + x3

fα11 = x0x1x2 + x0x2x3 + x1x2x3 + x0x1x4 + x1x2x4 + x0x1 + x0x2 +
x1x3 + x0x4 + x2

fα15 = x0x1 + x1x2 + x1x3 + x0x4 + x1x4 + x2x4 + x3x4 + x0 + x1 + x3

For instance, we now pick two of the above functions, say fα1 and fα15 . If
we let αi = αi, X1 ∈ F2(α1)∗ and X15 ∈ F2(α15)∗ and assume X1 = α10

1 ,
then we have that X15 = X15

1 = (α10
1 )15 = α10

15. Thus, if S(X1) = (1, 1, 1, 1, 0)
denotes the initial state of an LFSR L1 with generator polynomial gα1(x), then
S(X15) = (1, 1, 0, 1, 1) denotes the initial state of the register L2 with generator
polynomial gα15(x). It then follows that

fα1(S(X1α
t
1)) = fα15(S(X15α

t
15)), t = 0, 1, 2, 3 . . . ,

and so the two different filter generators generate the same keystream-sequence

(0001001100010101100011011111101).

Thus, if one recovers the initial state of one cipher, it is a simple matter to re-
cover the initial state of an isomorphic cipher. One would in this case for instance
choose to attack the filter generator with the weakest function, say f15.
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