
Browser Extension-based Interoperation
Between OAuth and Information

Card-based Systems

Haitham S. Al-Sinani

Technical Report
RHUL–MA–2011–15
24 September 2011

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Royal Holloway - Pure

https://core.ac.uk/display/28897766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Whilst the growing number of identity management systems have
the potential to reduce the threat of identity attacks, major deploy-
ment problems remain because of the lack of interoperability between
such systems. In this paper we propose a simple scheme to provide
client-based interoperation between OAuth and an Information Card-
based system such as CardSpace or Higgins. In this scheme, Informa-
tion Card users are able to obtain an assertion token from an OAuth-
enabled system, the contents of which can be processed by an Infor-
mation Card-enabled relying party. The scheme, based on a browser
extension, is transparent to OAuth providers and to identity selectors,
and only requires minor changes to the operation of an Information
Card-enabled relying party. We specify its operation and also describe
an implementation of a proof-of-concept prototype. Additionally, se-
curity and operational analyses are provided.

Keywords: Information Cards, CardSpace, Higgins, OAuth, Interoper-
ation, Browser Extension

1 Introduction

In an attempt to simplify management of identities and mitigate identity-
oriented attacks, a number of identity management systems (e.g. CardSpace,
OAuth, OpenID, etc.) have been proposed [4]. An identity provider (IdP)
in such a system supplies a user agent (UA), typically a web browser, with
an assertion token that can be consumed by a particular relying party (RP).
Whilst one RP might solely support an Information Card system, another
might only support OAuth. Therefore, to make these systems available to
the largest possible group of users, effective interoperability between such
systems is needed. In this paper we investigate a case involving an In-
formation Card-enabled RP, an OAuth-enabled provider, and a UA that
supports Information Cards. The goal is to develop a client-based approach
to integration that is as transparent as possible to IdPs, RPs and identity
selectors.

The scheme operates with a variety of Information Card-based systems,
including CardSpace and Higgins. For simplicity of presentation, in this
paper we describe its operation with CardSpace, a widely-discussed example
of an Information Card-based system.

We consider CardSpace-OAuth interoperation because of OAuth’s fast-
growing adoption by widely used Internet service providers such as Face-
book and Twitter. Complementing this, the wide use of Windows, recent

1

versions of which incorporate CardSpace, means that enabling interopera-
tion between the two systems is likely to be of significance for large numbers
of identity management users and service providers. CardSpace-OAuth in-
teroperation is also attractive since both schemes support the exchange of
user attributes.

The remainder of the paper is organised as follows. Section 2 gives an
overview of CardSpace and OAuth, and section 3 presents the integration
scheme. In section 4 we provide an operational analysis and, in section 5, we
describe a prototype implementation. Section 6 reviews related work and,
finally, section 7 concludes the paper.

2 CardSpace and OAuth

2.1 CardSpace

2.1.1 Introduction

CardSpace provides a secure and consistent way for users to control and
manage personal data, to review personal data before sending it to a web-
site, and to verify the identity of visited websites. It also enables websites
to obtain data from users, e.g. to support user authentication and authori-
sation.

Digital identities are represented to users as Information Cards (or Info-
Cards). There are two types of InfoCards: personal (self-issued) cards and
managed cards, issued by remote IdPs. Personal cards are created by users
themselves, and the claims listed in such an InfoCard are asserted by the self-
issued identity provider (SIIP) that co-exists with the CardSpace identity
selector (or just the selector) on the user machine. InfoCards do not con-
tain sensitive information, but instead carry metadata indicating the types
of personal data associated with this identity, and from where assertions
regarding this data can be obtained. The data referred to by personal cards
is stored on the user machine, whereas the data referred to by a managed
card is held by the IdP that issued it [5, 13].

By default, CardSpace is supported by Internet Explorer (IE) from ver-
sion 7 onwards. Extensions to other browsers, such as Firefox1 and Safari2,
also exist. An updated version, CardSpace 2.0 Beta 2, was released, al-
though Microsoft announced in early 2011 that it will not ship; instead

1https://addons.mozilla.org/en-US/firefox/addon/cardspace-support-for-firefox/
2http://www.hccp.org/safari-plug-in.html

2

Microsoft has released a technology preview of U-Prove3. In this paper we
refer throughout to the CardSpace version that is shipped by default as part
of Windows Vista and Windows 7, that is available as a free download for XP
and Server 2003, and which has been approved as an OASIS standard [11].

2.1.2 Personal Cards

The scheme proposed here uses CardSpace personal cards to make informa-
tion provided by an OAuth IdP (Resource Server) available to CardSpace
RPs via the selector. The selector allows a user to create a personal card
and populate its fields with self-asserted claims. CardSpace restricts the
contents of personal cards to non-sensitive data in the form of 14 editable
claim types including First Name, Last Name, Web Page and Email Ad-
dress. Data inserted in personal cards is stored in encrypted form on the
user machine. At the time of creation, a card ID and a card master key are
created and stored.

Using Personal Cards When using personal cards, CardSpace adopts
the following protocol. We describe the protocol for the case where the RP
does not employ a security token service (STS), a service responsible for
token management [10].

1. UA → RP. HTTP/S request: GET (login page). A user visits a
CardSpace-enabled RP login page.

2. RP→ UA. HTTP/S response. A login page is returned containing the
CardSpace-enabling tags in which the RP security policy is embedded.

3. User→ UA. The RP page offers the option to use CardSpace; selecting
this option activates the selector, which is passed the RP policy. If
this is the first time that this RP has been contacted, the selector will
display the identity of the RP and give the user the option to either
proceed or abort the protocol.

4. Selector → InfoCards. The selector, after evaluating the RP policy,
highlights InfoCards matching the policy and greys out the rest. In-
foCards previously used for this RP are displayed in the upper half of
the selector screen.

3http://blogs.msdn.com/b/card/archive/2011/02/15/

beyond-windows-cardspace.aspx

3

5. User → InfoCards. The user chooses a personal card. (Alternatively,
the user could create and choose a new personal card). The user
can preview the card (with its associated claims) to ensure that they
are willing to release the claim values. Of the claims specified in an
InfoCard, only those requested in the RP policy will be passed to the
requesting RP.

6. Selector
 SIIP. The selector creates and sends a SAML-based Re-
quest Security Token (RST) to the SIIP, which responds with a SAML-
based Request Security Token Response (RSTR).

7. UA → RP. The RSTR is passed to the UA, which forwards it to the
RP.

8. RP → UA. The RP verifies the token, and, if satisfied, grants access.

Private Personal Identifiers (PPIDs) The PPID is an identifier link-
ing a specific InfoCard to a particular RP [5]. When a user first uses a per-
sonal card at a particular RP, CardSpace generates both a card-site-specific
PPID by combining the card ID with data taken from the RP certificate,
and a card-site-specific signature key pair as a function of the card master
key and data taken from the RP certificate. The RP domain/IP address is
used if no RP certificate is available.

Since the PPID and key pair are RP-specific, the PPID does not function
as a global user identifier, helping to enhance user privacy and reduce the
impact of PPID compromise. The selector displays a shortened version of the
PPID to protect against social engineering attacks and improve readability.

When a user first registers with an RP, the RP retrieves the PPID and
the public key from the received SAML security token, and stores them.
If a personal InfoCard is re-used at a site, the supplied security token will
contain the same PPID and public key as used previously, and will be signed
using the corresponding private key. The RP compares the received PPID
and public key with its stored values, and verifies the digital signature.

The PPID could be used on its own as a shared secret to authenticate
a user to an RP. However, it is recommended that the associated (public)
signature verification key, as held by the RP, should also always be used
to verify the signed security token to provide a more robust authentication
method [5].

4

2.2 OAuth

2.2.1 Introduction

OAuth4 (Open Authorisation) is an emerging, open, identity management
standard, enabling an end-user to grant an Internet application controlled
access to personal information (e.g. user attributes, photos, contact lists,
etc.) stored at a third party site, without divulging long-term credentials
such as passwords. In the absence of a system like OAuth, applications
must request user credentials in order to access user information held by a
third party, which is clearly undesirable.

The four entities involved in the OAuth protocol are: the Resource
Owner, typically an end-user (or, more specifically, their UA); the Client,
an application requesting access to user resources; the Resource Server, a
server hosting user resources; and the Authorisation Server, a server that
issues access tokens to clients after successfully authenticating the Resource
Owner and obtaining its authorisation. Note that the latter two roles are
typically performed by a single entity.

2.2.2 Operational Protocol

Two major (incompatible) versions of OAuth have been released: OAuth
1.0 [6] and 2.0 [8, 15]. We next describe the latest version, OAuth 2.0.

The OAuth protocol enables a Client to request authorisation from the
Resource Owner for access to specific information held by a Resource Server,
possibly via an intermediary Authorisation Server (the latter option is rec-
ommended [8]). If necessary, the Authorisation Server first authenticates the
Resource Owner and, if successful, asks the Resource Owner to authorise the
Client. If the Resource Owner decides to grant this request, an authorisation
token (known as an authorisation grant) is sent to the Client (four autho-
risation grant types are defined — see below). The Client then requests
an access token5 from the Authorisation Server, where the request includes
the authorisation grant. The Authorisation Server authenticates the Client
and verifies the authorisation grant, and, if successful, issues an access to-
ken. Next, the Client requests access to the private resource(s) from the
Resource Server, presenting the access token. Finally, the Resource Server

4http://oauth.net/
5An access token is typically an opaque string that indicates permission to access

specific information for a limited time period; such a token can be independently revoked.
The access token must be kept confidential, and should be issued with the minimum
necessary scope and lifetime.

5

verifies the access token, and, if it is valid, meets the request.
The four authorisation types supported by OAuth 2.0 are: authorisation

code, implicit, resource owner password credentials, and client credentials,
corresponding to four possible protocol flows. The two types of most rele-
vance here are discussed below.

Authorisation Code. An authorisation code is typically a short-lived ran-
dom string. Such a value is supplied by an Authorisation Server to a
Client if a Resource Owner authorises a request made by the Client to
access (a) specific user resource(s).

The Client redirects the Resource Owner UA to the Authorisation
Server, requesting access to personal data. If necessary, the Autho-
risation Server authenticates the Resource Owner; if successful, the
Authorisation Server asks the Resource Owner to authorise the Client
request, and, if the Resource Owner agrees, the Authorisation Server
issues an authorisation code to the Client. The Client uses the au-
thorisation code to request an access token from the Authorisation
Server. Before issuing such a token, the Authorisation Server first au-
thenticates the Client by checking that the credentials provided by the
Client match those issued to it when it registered with the Authorisa-
tion Server. If successful, the Authorisation Server generates an access
token and sends it to the Client via a secure back-channel. The use of
this back channel means that this grant type cannot be supported by
the scheme proposed here.

Implicit. An authorisation grant is said to be ‘implicit’ if the access token is
issued to the Client as a direct result of Resource Owner authorisation.
Since it requires fewer round trips to obtain an access token than for
the authorisation code type, the implicit grant type improves the re-
sponsiveness and efficiency of certain clients, including browser-hosted
client applications. Such a grant type is supported by the scheme
proposed in this paper.

Before use of the OAuth operational protocol, the Client must register
with the OAuth Authorisation Server. How this is achieved is beyond the
scope of the OAuth specifications [8], but it could involve the use of an
HTML registration form provided by the Authorisation Server. During reg-
istration, the Authorisation Server collects certain data about the Client,
including the Client type, its redirection URI, and any other server-required
data, e.g. the Client name. The Authorisation Server issues the registered

6

Client with a unique identifier and a secret used for Client authentication
when using the authorisation code grant type.

In the remainder of this paper we restrict our attention to the OAuth
2.0 protocol when using the implicit grant type. In this case the OAuth
protocol operates as follows.

1. Client → UA → Authorisation Server: HTTP Request. The Client
redirects the Resource Owner to the Authorisation Server, requesting
access to private data. The redirect includes the Client identifier, the
scope of the requested access, an optional state parameter, and a redi-
rection URI to which the Authorisation Server will redirect the Owner
once access is granted (or denied). The optional (but recommended)
state parameter is set equal to an unguessable value [8]. It is used
by the Client to match its initial redirection to the response from the
Authorisation Server.

2. Authorisation Server
 Resource Owner (UA): Verification and Au-
thorisation. The Authorisation Server validates the received HTTP
request (see step 1), ensuring that all the required parameters are
present and valid. The Authorisation Server verifies the Client iden-
tity by comparing the provided redirection URI with the Client URI
previously registered. If the request is valid and the Client identity is
successfully verified, the Authorisation Server (if necessary) authenti-
cates the Resource Owner (via the UA) over a TLS-protected channel;
the authentication method used is outside the scope of OAuth. It then
asks the Resource Owner whether the Client’s access request is autho-
rised (where this query includes the Client identifier and the scope of
the requested access). If all the checks succeed, the protocol continues.

3. Authorisation Server → UA → Client: HTTP Response. The Autho-
risation Server redirects the Resource Owner’s UA back to the Client
using the redirection URI provided earlier (see step 1). The redirection
URI includes the access token in a URI fragment. If the state param-
eter was present in step 1, the Authorisation Server must return it
unmodified (in the URI) to the Client to protect against attacks in-
volving manipulated URIs and malicious redirections, notably CSRF6

(Cross-Site Request Forgery) attacks [7]. The UA follows the redi-
rection instructions by making a request to the Client, excluding the
access token-bearing fragment, although the UA retains the fragment
information locally.

6http://en.wikipedia.org/wiki/Cross-site_request_forgery

7

4. Client
 UA. The Client returns a web page containing an embed-
ded script capable of accessing the full redirection URI, including the
fragment retained by the UA (see step 3). The UA executes the em-
bedded script, which extracts the access token from the URI fragment
and passes it to the Client over a secure channel.

5. Client
 Resource Server. Finally, the Client uses the access token
to retrieve the required resource(s) from the Resource Server via a
TLS-protected channel.

2.2.3 Facebook Connect

Facebook Connect7 [14] implements the OAuth 2.0 standard, providing a
single sign-on service. Facebook Connect allows users to sign on to applica-
tions (e.g. Facebook-affiliated websites) using their Facebook account, and
also enables such applications to access Facebook-hosted user data, subject
to user authorisation.

3 The Integration Scheme

We now describe the novel scheme. The parties involved are a CardSpace-
enabled RP, a CardSpace-enabled UA (e.g. a suitable web browser), a browser
extension implementing the protocol described in section 3.2, and an OAuth
Resource and Authorisation server; for simplicity, we assume that the roles
of both the Resource and the Authorisation Servers are performed by a
single entity, which we refer to as the ‘OAuth IdP’.

The browser extension performs the functions of a Client. It obtains
an access token from the Authorisation Server and uses this to obtain user
attributes from the Resource Server.

3.1 Requirements

The scheme has the following operational requirements.

• The user must have an existing relationship with both a CardSpace RP
and an OAuth IdP (and so the IdP will have a means of authenticating
the user).

7http://developers.facebook.com/docs/authentication/

8

• The user must register the RP with the IdP, in a user-specific manner.
This involves the user interacting (via the UA) with an HTML regis-
tration page hosted by the IdP, and using this page to send the IdP
the RP’s name, URI, and (optionally) locale. The IdP then issues an
RP identifier, where the ‘identifier’ is used by the browser extension
to identify the RP to the IdP.

• Prior to, or during, use of the integration protocol, the user must create
a CardSpace personal card, referred to here as an OAuthCard. This
OAuthCard must contain the following data items in specific fields
(the choice of which is implementation-specific): the URI of the IdP;
the RP’s identifier (as issued by the IdP); and a predefined sequence
of characters (e.g. ‘OAuth’), used to trigger the browser extension.

• The RP must not employ an STS. Instead, the RP must express its
security policy using HTML/XHTML, and interactions between the
selector and the RP must be based on HTTP/S via a web browser
(a simpler and probably more common scenario for selector-RP inter-
actions). This is because the scheme uses a browser extension, and
is thus incapable of managing the necessary communications with an
STS.

• The RP must be prepared to accept an unsigned ‘CardSpace-like’
SAML security token (generated by the browser extension) which in-
cludes both the OAuth IdP-supplied attributes and the digitally-signed
SIIP-issued RSTR containing the card-RP-specific PPID.

3.2 Protocol Operation

The protocol operates as follows (a summary of the protocol is shown in
figure 1). Steps 1, 2, and 4–7 are the same as steps 1, 2, and 3–6, respectively,
of the personal card protocol given in section 2.1.2.

3. Browser Extension→ UA. The extension performs the following steps.

(a) It scans the login page to detect whether the RP website supports
CardSpace. If so, it proceeds; otherwise it terminates.

(b) It examines the RP policy to check whether the use of personal
cards is acceptable. If so, it proceeds; otherwise it terminates,
giving CardSpace the opportunity to operate normally.

(c) It keeps a local copy of any RP-requested claims.

9

(d) It determines the communication protocol (HTTP or HTTPS) in
use with the RP8.

(e) If HTTP is in use, it modifies the RP policy to include the types of
claim employed in the OAuthCard. For example, if the URI of the
IdP is stored in the web page field of the OAuthCard, then it must
ensure that the RP security policy includes the web page claim.
Note that adding the claim types to the RP policy ensures that
the token supplied by the SIIP contains the values of these claims,
which can then be processed by the browser extension; otherwise
these values would not be available to the browser extension.

8. Selector→ Browser Extension/UA. Following the user submission of
a suitable OAuthCard, the RSTR, unlike in the ‘standard’ case, does
not reach the RP; instead the extension intercepts it and temporarily
stores it.

If the RP uses HTTP, the extension uses the contents of the RSTR to
construct an OAuth request which it forwards to the appropriate IdP,
having discovered its address from the RSTR.

If the RP uses HTTPS, the browser extension first asks the user
whether the use of the integration protocol is required. If not, it
terminates, thereby allowing CardSpace to operate normally. If so,
the extension prompts the user to enter the URI of the IdP and the
RP’s identifier. The browser extension could offer the user the option
to store the supplied values for future logins at this RP. Precisely as
in the HTTP case, the extension then constructs an OAuth request.

Note that, in both cases (i.e. HTTP and HTTPS), the ‘implicit’ grant
type is adopted. Note also that in both cases the OAuth request
includes: the ‘redirect uri’ parameter, to which the IdP must later
redirect the UA; the ‘scope’ parameter, showing the scope requested9;
and the ‘state’ parameter.

8Note that the protocol operates slightly differently depending on whether the RP uses
HTTP or HTTPS. This is because, if HTTPS is used, the selector will encrypt the RSTR
message using the site’s public key, and the browser extension does not have access to
the corresponding private key. Hence, it will not know whether to trigger the integration
protocol, and will be unable to obtain the OAuth IdP URI and the RP’s identifier; such
issues do not occur if HTTP is used, since the selector will not encrypt the RSTR.

9This scope parameter indicates the RP-requested user attribute types (if any) which
are to be provided by the OAuth IdP. The browser extension will know what they are
since they were stored by it in step 3c. The ‘scope’ parameter helps the IdP determine
the scope of the access request; the IdP must ask the user to authorise the release of the
requested attribute values.

10

9. OAuth IdP
 User. This step is the same as step 2 of the OAuth 2.0
protocol (implicit grant type) given in section 2.2.2.

10. OAuth IdP
 Browser Extension/UA. The IdP redirects the UA
back to the provided RP URI, including the access token (in the URI
fragment) and the ‘state’ parameter10. The extension reads and uses
the provided access token to request and retrieve the RP-required user
attribute values from the IdP via online communication with the IdP.
Note that the UA-IdP communication channel is TLS-protected.

11. Browser Extension/UA → RP. Having retrieved the required user
attribute values from the IdP, the browser extension constructs a
‘CardSpace-like’ SAML token and submits it to the RP. Such a to-
ken includes the IdP-supplied user attributes and the digitally-signed,
SIIP-issued RSTR (which contains the PPID), allowing the RP to
verify the SIIP signature (see also sections 4.2 and 4.3).

12. RP→ User. The RP verifies the SAML token (including verifying the
RSTR signature, PPID, nonce, time-stamps, etc.), and, if satisfied,
grants access.

4 Discussion and Analysis

4.1 Defeating Phishing

The scheme mitigates the risk of phishing. This is because the redirect to
the OAuth IdP is initiated by the browser extension and not by the RP,
i.e. the RP cannot redirect the user to an OAuth IdP of its choosing. By
contrast, in OAuth as it is typically used a malicious site could redirect a
user to a fake IdP, which might capture user credentials.

4.2 OAuth IdP User Authentication

The SAML token created by the browser extension in step 11 of section 3.2
could be extended to contain an additional field to indicate that the user has
been authenticated by a specified OAuth IdP (as well as when and how).
Of course, the RP would need to be modified to be able to process such an
extra field, although this is likely to be relatively straightforward.

10The browser extension checks that the value in the state parameter is the same as the
one it generated in step 8, is sufficiently current, and has not been previously used. The
extension then adds the received value to a list for use in future verifications.

11

OAuth-enabled IdP CardSpace-enabled UA [+ Integration Plug-in] CardSpace-enabled RP

(3) Plug-in: pre-process and prepare to intercept RSTR

(4) User: invoke the selector and select an IDcard

(5) Selector
 SIIP: exchange of RST and RSTR

(6) Plug-in: intercept RSTR, generate and send ‘OAuth request’

(10) Plug-in: retrieve (RP-requested) user attributes using ‘access token’

(11) Plug-in: construct and forward SAML
token [RSTR + OAuth-asserted attributes]

(1) Auth request

(2) Auth response (RP policy in object tag)

(7) User authentication

(8) Request user authorisation

(9) Access token

(12) Grant or deny access

Figure 1: Simplified Protocol Exchange

4.3 Security Considerations

4.3.1 Properties

The unsigned SAML token generated by the browser extension in step 11 of
section 3.2 (referred to here as the ‘user token’) includes the PPID, the user
attributes as provided by the OAuth IdP, and the digitally-signed, SIIP-

12

issued, RSTR. The RP compares the SIIP-asserted PPID (and the public
key) in the user token with its stored values and verifies the digital signature
(see section 2.1.2). The RP can thus authenticate the user, link the user
to his/her account, and consume the OAuth IdP-supplied attributes, e.g.
for authorisation purposes. If the RSTR also contains self-issued attributes,
the RP could compare these (locally-stored) attributes with the (remotely-
stored) IdP-provided attributes; such a procedure could give the RP added
guarantees about the accuracy of these attributes.

It is infeasible for a malicious entity to fabricate a user token to mas-
querade as a legitimate party since it will not have access to the PPID and
the private key necessary to sign the RSTR, both of which are only available
if the appropriate InfoCard is selected on the correct platform.

Note that, in protocol step 4, the selector identifies the RP to the user
and indicates whether or not they have visited that particular RP before; if
the user is visiting this RP for the first time, CardSpace requests the user’s
permission to proceed (see section 2.1.2). This helps to support mutual
authentication since the user and the RP are both identified to each other.

Finally note that the scheme allows the user attributes to be stored
remotely at the OAuth IdP; this has potential security advantages over
storing the attributes locally on the user machine, as is currently the case
with CardSpace SIIP-issued attributes.

4.3.2 Concerns

If the web browser is compromised, then an adversary could steal the user
token and use it to impersonate the user. Moreover, if the RP does not
use HTTPS, then the SIIP-issued RSTR will not be encrypted. Also, if we
assume that the web browser is not a secure environment, it may be possible
for a malicious plug-in or other malware to get access to sensitive information
present in the (plaintext) RSTR, the plug-in-generated SAML token, or
the OAuth IdP-issued access token. However, the same risks apply when
manually entering credentials (e.g. username-password) into a browser [9].

4.3.3 Additional Security Properties

In certain circumstances, the RP can gain additional assurance in the iden-
tity of the user through use of the scheme proposed in section 3. If the RP
trusts that the correct browser extension is running unmodified on the user
platform, then the RP will know that the user has been authenticated by
the OAuth IdP, and that the attributes have been provided by a genuine

13

OAuth IdP. In such a case, the integration scheme would provide a two-
level user authentication, based on selection of the correct InfoCard and user
authentication at the OAuth IdP. This would offer a security advantage by
comparison with the ‘native’ CardSpace personal card protocol, where the
user is only authenticated once.

However, this is a significant trust assumption. We next consider two
ways in which this assumption might be met.

1. The integration browser extension could be installed in a managed en-
vironment in which a user is only granted limited privileges insufficient
to modify or replace the extension. However, in order for the RP to
have assurance that the user platform is in such a controlled environ-
ment (and to avoid making extra changes to the RP server), the RP
itself would probably need to belong to the managed environment.

2. A more widely-applicable solution would be to make use of the func-
tionality of the Trusted Platform Module (TPM), present on a large
proportion of recently manufactured PCs. Using the remote attes-
tation mechanism, an RP could be provided with guarantees about
the software state of the user platform, including the presence of
the expected software implementing the CardSpace-OAuth integration
scheme.

4.4 Client-side Integration

IdPs/RPs may not accept the burden of supporting two identity manage-
ment systems simultaneously, unless there is a significant financial incentive.
Currently, major Internet players do not provide any means of interoperation
between identity management systems. As a result, a client-side technique
for supporting interoperation could be practically useful. Supporting inter-
operation at the client (instead of the server(s) at the IdP and/or RP) also
means that server-performance is not affected.

4.5 Triggering the Browser Extension

The scheme specified in section 3.2 (like the prototype implementation) uses
a special sequence in a specific field of an OAuthCard to trigger the browser
extension. However, other approaches could be used, e.g. the browser exten-
sion could start whenever CardSpace is triggered. In such a case, when a user
submits an OAuthCard, the browser extension could offer the user the choice
(e.g. via an embedded HTML form or JavaScript pup-up box) to either use

14

CardSpace as usual or activate the integration scheme. This approach gives
a greater degree of user control, and hence implements Microsoft’s first iden-
tity law [5, 13]. In addition, giving user control over whether the browser
extension runs or not would enable ‘normal’ use of CardSpace. However,
it is potentially a little inconvenient, since it would require users to always
choose whether or not to use the integration software. Nevertheless, this
effect could be mitigated if the user’s choice is stored.

4.6 Attribute Mapping

CardSpace and Facebook Connect use two different sets of attribute types11;
this clearly causes a problem when requesting user attributes from Facebook
based on a policy statement provided by a CardSpace-enabled RP. We
outline two approaches to dealing with the problem.

1. We could restrict the RP to requesting only CardSpace personal card
style attributes. The browser extension would then need to convert
the requested attributes to Facebook style attributes, and include the
converted attribute types in the request sent to Facebook. An example
mapping is shown in Table 1.

Table 1: CardSpace-Facebook Connect attribute mapping
CardSpace (Personal Cards) OAuth (Facebook Connect)

givenname first name

surname last name

emailaddress email

dateofbirth birthday

gender gender

country locale

city location

web page website

2. Alternatively, the RP could be permitted to request any of the Facebook-
supported attributes. If an attribute not supported by CardSpace per-
sonal cards is requested (and given that the RP permits the use of any
IdP), then the browser extension would need to be configured to re-
quest it from Facebook. However if any attributes are required that

11As stated in section 2.1.2, CardSpace personal cards only support fourteen editable
attributes, whereas Facebook Connect supports many more.

15

are outside the set permitted in a personal card, then the CardSpace
identity selector will clearly not highlight any of the personal cards.

In order to cause the selector to highlight personal cards, the browser
extension must modify the RP policy. In particular, as part of step 3
the browser extension must (after storing them) strip out the at-
tributes that are outside the set supported by personal cards, and
then request them from Facebook as part of step 10. Note, however,
that such a modification will prevent CardSpace from operating nor-
mally in the case where a personal card is requested. Nevertheless, if
the RP specifies the use of managed cards (i.e. does not permit per-
sonal cards), then CardSpace would still operate normally, since the
extension will shut down if it sees such a policy statement.

Finally, we observe that in order to support the broadest range of user
attributes, the browser extension could be configured to support both of the
approaches described above.

5 Prototype Realisation

We next give details of a prototype implementation of the scheme. The
description applies to Facebook Connect, an implementation of OAuth 2.0.
The prototype uses Facebook Connect’s client-side flow12 (i.e. the implicit
‘grant’ type).

The prototype is coded in JavaScript, chosen because its wide adop-
tion should simplify the task of porting the prototype to a range of other
browsers. It uses the Document Object Model (DOM) to inspect and manip-
ulate HTML pages and XML documents. The JavaScript code is executed
using a C#-driven browser helper object (BHO), a Dynamic-link library
(DLL) module designed as a plug-in for IE. Once installed, the BHO at-
taches itself to IE, thus gaining access to the current page’s DOM. The
prototype can readily be enabled or disabled using the add-on manager in
the IE’s Tools menu. Note that the integration plug-in does not require
any changes to default IE security settings, thus avoiding potential vulner-
abilities resulting from lowered browser security settings. Note also that
the prototype operates with both the CardSpace and the Higgins13 identity
selectors without any modification.

12http://developers.facebook.com/docs/authentication/
13http://wiki.eclipse.org/GTK_Selector_1.1-Win

16

The prototype has been successfully tested with Facebook14 and an ex-
perimental implementation of a CardSpace-enabled RP.

5.1 Registration

Prior to use, the user must have accounts with an RP and Facebook. The
user must register the RP with Facebook15 (see section 3.1). The user must
also create an OAuthCard, inserting the RP’s identifier in the first name
field, and the trigger word ‘OAuth’ in the last name field. Note that the
Facebook URL is contained in the source code of the browser extension,
and thus does not need to be included in the OAuthCard. For ease of
identification, the user can give the OAuthCard a meaningful name, e.g. of
the RP site. The user can also upload an image for the card, e.g. containing
the logo of the RP with which it is used or simply of OAuth. When a user
wishes to use the scheme with a particular RP, the user simply chooses the
corresponding OAuthCard.

5.2 Prototype Operation

In this section we consider specific operational aspects of the prototype. We
refer throughout to the numbered protocol steps given in section 3.2.

In step 3 the plug-in uses the DOM to perform the following processes.

3.1 It scans the web page in the following way16.

(a) It searches through the HTML elements of the web page to detect
whether any HTML forms are present. If so, it searches each
form, scanning through each of its child elements for an HTML
object tag.

(b) If an object tag is found, it retrieves and examines its type. If it is
of type ‘application/x-informationCard’ (which indicates website
support for CardSpace), it continues; otherwise it aborts.

(c) It retrieves and stores in a cookie the name attribute of the
CardSpace object tag. This is important since the RP will use
this name to retrieve the token from the HTTP POST array.

14https://www.facebook.com/
15https://developers.facebook.com/setup/
16Two HTML extension formats can be used to invoke the selector from a web page [10],

both of which involve placing the CardSpace object tag inside an HTML form. This
motivates the choice of the web page search method.

17

(d) It searches through the param tags (child elements of the retrieved
CardSpace object tag) for the ‘issuer’ tag and examines its value;
if it is ‘http://schemas.xmlsoap.org/ws/2005/05/identity/
issuer/self’, indicating that the use of personal (self-issued)
cards is acceptable, it continues17; otherwise it terminates.

(e) It retrieves the ‘requiredClaims’ and ‘OptionalClaims’ tags from
the param tags, and retrieves and stores the mandatory and op-
tional claim types listed in these tags.

(f) It uses the JavaScript property ‘document.location.protocol’ to
discover whether HTTP or HTTPS is in use.

(g) If necessary and if HTTP is in use, the plug-in, after keeping
track of the original policy settings, modifies the RP policy so
that the first name and last name claim types are specified in
the ‘requiredClaims’ tag.

3.2 It adds a JavaScript function to the head section of the HTML page
to intercept the RSTR (an XML-based security token).

3.3 It obtains the action attribute of the CardSpace HTML form and
stores it in a cookie. This attribute specifies the URL address of a
web page at the RP server to which the security token must be for-
warded for processing. If the obtained attribute is not a fully qualified
domain name address, the JavaScript inherent properties, e.g. docu-
ment.location.protocol and/or document.location.host, are used to help
reconstruct the full URL address.

3.4 It changes the current action attribute of the CardSpace HTML form
to point to the newly created ‘interception’ function (see step 3.2
above).

In step 8 the plug-in uses the DOM to perform the following steps.

8.1 It intercepts the RSTR message sent by the selector using the added
function.

8.2 It operates slightly differently depending on whether HTTP or HTTPS
is in use.

17The plug-in also continues if the value of the ‘issuer’ tag is set to ‘any’, ‘*’ or if the
‘issuer’ tag is absent, since the use of personal cards is acceptable in these cases.

18

• If HTTP is used, the plug-in parses and extracts certain RSTR
contents. If the last name field contains the word ‘OAuth’, the
plug-in proceeds; if not, normal operation of CardSpace contin-
ues. It reads the first name field to discover the RP’s identifier.

• If HTTPS is used, the plug-in (using a JavaScript pop-up box)
asks the user whether the use of the integration protocol is re-
quired. If so, it proceeds; otherwise it terminates. On proceeding,
it prompts the user to enter the RP’s identifier (as issued by Face-
book). The plug-in offers the user the option to store the input
values in a persistent cookie for future logins at this RP, using a
plug-in-embedded checkbox.

8.3 It constructs an OAuth request, compatible with Facebook Connect.
This involves generating a nonce and time-stamp (used to build the
‘state’ parameter), and also determining the required and optional
attribute types to be requested from Facebook. The plug-in retrieves
all the CardSpace-supported claim types it stored earlier (see step 3.1
(e) above). It then maps between them and the Facebook-supported
attribute types, using Table 1. The mapping is done using JavaScript
regular expressions, specifically the ‘match’ method with its global
(g) and case-insensitive (i) parameters. The plug-in sets the value of
‘redirect uri’ parameter (to which Facebook will send the response)
to the URL of the currently-visited RP page. In addition, it sets the
value of the ‘response type’ parameter to ‘token’, signifying the use of
the ‘implicit’ grant type.

8.4 It encrypts (and temporarily stores in a cookie) the RSTR and the
value of the ‘state’ parameter using AES in CBC mode, using a secret
key known only to the plug-in.

8.5 It redirects the user to Facebook along with the OAuth request, using
the JavaScript inherent property ‘window.location’.

In step 10 the plug-in performs the following steps.

10.1 It parses the Facebook-issued response (embedded in the URL).

10.2 It (transparently) validates the response, including checking that the
value of the ‘state’ parameter is the same as the one it generated in
step 8.3, is sufficiently current, and has not been previously used. The
plug-in then adds the received value to an internally stored list for use
in future verifications.

19

10.3 It uses the provided access token to request and retrieve the RP-
requested user attribute values from Facebook open graph18 using a
TLS-protected channel.

In step 11 the plug-in performs the following steps.

11.1 It constructs a CardSpace-like SAML security token, inserting the user
attribute values received from Facebook into the token. It also embeds
the signed SIIP-issued RSTR into the SAML token, after retrieving
and decrypting the RSTR from the appropriate cookie (see step 8.4).

11.2 It creates and appends an ‘invisible’ HTML form (with the method
attribute set to ‘POST’) to the current page.

11.3 It writes the entire SAML security token as a hidden variable into
the invisible HTML form, with the name attribute of this variable set
to the CardSpace object tag’s name (see step 3.1(c)). Note that the
plug-in retrieves this name from the appropriate cookie.

11.4 It writes the end-point URL of the RP into the action attribute of
the invisible form. Note that the plug-in retrieves this name from the
appropriate cookie (see step 3.3).

11.5 Finally, it auto-submits the HTML form (transparently to the user),
using the JavaScript inherent method ‘submit’.

5.3 Potential Issues

The plug-in must scan every HTML web page to see whether it supports
CardSpace, and this may affect system performance. However, informal
tests on the prototype suggest that this is not a serious issue. In addition,
the plug-in can be configured so that it only operates with certain websites.

Some older browsers (or browsers with scripting disabled) may not be
able to run the plug-in, as it was built using JavaScript. However, most
modern browsers support JavaScript (or ECMAscript), and hence building
the prototype in JavaScript is not a major usability obstacle.

18http://en.wikipedia.org/wiki/Social_graph#Open_Graph and http:

//developers.facebook.com/docs/reference/api/user/

20

6 Related Work

A somewhat similar scheme [1] has previously been proposed to support
CardSpace-Liberty interoperation. However, unlike the scheme proposed
here, the CardSpace-Liberty integration scheme does not support the ex-
change of identity attributes and does not operate with HTTPS-enabled
websites. Two further similar schemes have recently been proposed, al-
lowing interoperation between a CardSpace-enabled RP and a Shibboleth
IdP [2] or an OpenID IdP [3].

Another scheme supporting interoperation between CardSpace and Lib-
erty has been proposed by Jørstad et al. [12]. In this scheme, the IdP is re-
sponsible for supporting interoperation. The IdP must therefore perform the
potentially onerous task of maintaining two different identity management
schemes. This scheme also requires the user to possess a mobile phone sup-
porting the Short Message Service (SMS). Moreover, the IdP must always
perform the same user authentication technique, regardless of the identity
management system the user is attempting to use. The IdP simply sends an
SMS to the user, and, in order to be authenticated, the user must confirm
receipt of the SMS. This confirmation also serves as an implicit indication
of user approval for the IdP to send a security token to the RP. By con-
trast, the scheme proposed in this paper supports client-side interoperation
between CardSpace and OAuth, does not require use of a handheld device,
and does not enforce a specific authentication method.

7 Conclusions and Future Work

In this paper we have proposed and prototyped a means of interoperation
between two leading identity management systems, namely CardSpace and
OAuth. CardSpace users (indeed, users of any Information Card system) are
able to obtain an assertion token from an OAuth provider, the contents of
which can be processed by a CardSpace-enabled relying party. The scheme is
transparent to OAuth providers and identity selectors, uses a browser exten-
sion, and requires only minor changes to a CardSpace-enabled relying party.
It uses the CardSpace identity selector interface and CardSpace personal
cards to enable interoperation between OAuth providers and CardSpace re-
lying parties.

The integration scheme takes advantage of the similarity between the
OAuth and CardSpace frameworks, and this should help to reduce the effort
required for full system integration. Also, implementation of the scheme

21

does not require technical co-operation between Microsoft and the OAuth
owners.

Planned future work includes investigating the possibility of extending
the CardSpace identity selector to simultaneously support security tokens
from a variety of identity providers, such as OpenID, OAuth, Liberty, Shib-
boleth, as well as CardSpace remote and self-issued identity providers. Possi-
ble future work may also investigate the possibility of extending the proposed
integration protocol to support CardSpace-enabled relying parties that em-
ploy security token services.

Acknowledgements

The author is sponsored by the Diwan of Royal Court, Sultanate of Oman.
The helpful comments provided by Chris Mitchell are gratefully acknowl-
edged.

References

[1] Haitham S. Al-Sinani, Waleed A. Alrodhan, and Chris J. Mitchell.
CardSpace-Liberty integration for CardSpace users. In Ken Klingen-
stein and Carl M. Ellison, editors, Proceedings of IDtrust ’10 — the
9th Symposium on Identity and Trust on the Internet, Gaithersburg,
Maryland, USA, April 13–15, 2010. ACM, New York, 12–25, 2010.

[2] Haitham S. Al-Sinani and Chris J. Mitchell. CardSpace-Shibboleth
integration for CardSpace users. In ACNS ’11 [industrial track pro-
ceedings], 9th International Conference on Applied Cryptography and
Network Security, Nerja (Malaga), Spain, 7–10 June 2011, pages 49–
66, 2011. [Full version available at: http://www.isg.rhul.ac.uk/

cjm/Papers/cssifc.pdf].

[3] Haitham S. Al-Sinani and Chris J. Mitchell. Client-based CardSpace-
OpenID interoperation. In Proceedings of ISCIS ’11 — the 26th In-
ternational Symposium on Computer and Information Sciences, 26–
28 September 2011, London, UK (to appear). To be published in
the Springer Lecture Notes on Electrical Engineering (LNEE), 2011.
[Full version available at: http://www.ma.rhul.ac.uk/techreports/
2011/RHUL-MA-2011-12.pdf].

22

[4] Andreas Berger. Identity Management Systems — Introducing Yourself
to the Internet. VDM Verlag, Saarbrücken, 2008.

[5] Vittorio Bertocci, Garrett Serack, and Caleb Baker. Understanding
Windows CardSpace: An Introduction to the Concepts and Challenges
of Digital Identities. Addison-Wesley, Reading, Massachusetts, 2008.

[6] Eran Hammer-Lahav (editor). The OAuth 1.0 Protocol — RFC 5849,
2010. http://tools.ietf.org/html/rfc5849.

[7] Torsten Lodderstedt (editor), Mark McGloin, and Phil Hunt.
OAuth 2.0 Threat Model and Security Considerations — draft-
ietf-oauth-v2-threatmodel-00, 2011. http://tools.ietf.org/html/

draft-ietf-oauth-v2-threatmodel-00.

[8] Eran Hammer-Lahav, David Recordon, and Dick Hardt (editors).
The OAuth 2.0 Authorization Protocol — draft-ietf-oauth-v2-20, 2011.
http://tools.ietf.org/html/draft-ietf-oauth-v2-20.

[9] Jonathan Hart, Konstantinos Markantonakis, and Keith Mayes. Web-
site credential storage and two-factor web authentication with a Java
SIM. In Pierangela Samarati, Michael Tunstall, Joachim Posegga, Kon-
stantinos Markantonakis, and Damien Sauveron, editors, Proceedings of
WISTP ’10 — Information Security Theory and Practices. Security and
Privacy of Pervasive Systems and Smart Devices, 4th IFIP WG 11.2
International Workshop, Passau, Germany, April 12–14, 2010, volume
6033 of Lecture Notes in Computer Science, pages 229–236. Springer,
Berlin, Heidelberg, 2010.

[10] Michael B. Jones. A Guide to Using the Identity Selector Interoper-
ability Profile V1.5 within Web Applications and Browsers. Microsoft,
2008.

[11] Michael B. Jones and Michael McIntosh (editors). Identity Metasystem
Interoperability Version 1.0 (IMI 1.0). OASIS Standard, 2009. http:

//docs.oasis-open.org/imi/identity/v1.0/identity.html.

[12] Ivar Jørstad, Do Van Thuan, Tore Jønvik, and Do Van Thanh. Bridging
CardSpace and Liberty Alliance with SIM authentication. In Proceed-
ings of ICIN ’07 — the 10th International Conference on Intelligence
in Next Generation Networks. Adera, Pessac, 8–13, 2007.

[13] Marc Mercuri. Beginning Information Cards and CardSpace: From
Novice to Professional. Apress, New York, 2007.

23

[14] Marino Miculan and Caterina Urban. Formal analysis of Facebook
Connect single sign-on authentication protocol. In SOFSEM ’11 (Soft-
ware Seminar): Theory and Practice of Computer Science — the 37th
Conference on Current Trends in Theory and Practice of Computer Sci-
ence, Slovakia, January 22–28, 2011. Proceedings of Student Research
Forum, pages 99–116, 2011.

[15] Suhas Pai, Yash Sharma, Sunil Kumar, Radhika M. Pai, and Sanjay
Singh. Formal verification of OAuth 2.0 using Alloy framework. In Pro-
ceedings of CSNT ’11 — the International Conference on Communi-
cation Systems and Network Technologies, Katra, Jammu, India, June
3–5, 2011, pages 655–659. IEEE Computer Society, Los Alamitos, CA,
2011.

24

