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Abstract

Consider an American option that pays G(X∗t ) when exercised at time t, where
G is a positive increasing function, X∗t := sups≤tXs, and Xs is the price of the
underlying security at time s. Assuming zero interest rates, we show that the
seller of this option can hedge his position by trading in the underlying security
if he begins with initial capital X0

∫∞
X0
G(x)x−2dx (and this is the smallest initial

capital that allows him to hedge his position). This leads to strategies for trading
that are always competitive both with a given strategy’s current performance
and, to a somewhat lesser degree, with its best performance so far. It also leads
to methods of statistical testing that avoid sacrificing too much of the maximum
statistical significance that they achieve in the course of accumulating data.
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1 Introduction

A financial security, such as a stock, that gains in price for a period of time
may do much worse later losing much or all of its value. When this happens, an
investor who persisted in holding the security will regret not having sold it when
its price was high. This motivates lookback options, which permit the investor to
claim the maximum price attained over a period of time. Established methods
for pricing such claims either depend on probabilistic assumptions about the
behaviour of the security price or assume that some other derivatives, such as
call options, are priced by the market and are available for trading. In this
article, we show that when only a reasonable fraction of the maximum price
is demanded, such claims can be priced and hedged without any probabilistic
assumptions and without relying on any other derivatives.

Let Xt be the security’s price at time t and set

X∗t := sup
s≤t

Xs.

The classic American lookback option has X∗t as its payoff when it is exercised
at time t. We explain how to find probability-free upper prices for more general
American options, options that payG(X∗t , Xt) when exercised at time t, whereG
is a given positive function of two variables. We call such an option an adjusted
American lookback option. The least initial capital needed to finance a trading
strategy whose capital Kt will satisfy Kt ≥ G(X∗t , Xt) for all t regardless of
how the prices of the underlying securities evolve is called the option’s upper
price. This term is standard in game-theoretic probability [15]. The upper
price of an option is what a seller needs in order to hedge fully against possible
loss, while the lower price is what a buyer needs for the same purpose. In an
incomplete market the two are not necessarily equal, and since we are assuming
neither probabilities nor market pricing of other options, our market is very
incomplete. To emphasize that we make no probabilistic assumptions about the
underlying security prices, we sometimes call our upper prices probability-free.

A closely related and conceptually simpler problem is whether there is
a strategy for the investor that keeps its capital greater than or equal to
F (X∗t , Xt), where F is a given positive function of two variables. For sim-
plicity (but without loss of generality) we will always consider this question
with the initial price X0 fixed to 1. If there is a strategy whose capital process
Kt satisfies K0 = 1 and Kt ≥ F (X∗t , Xt) for all t, and for any price evolution
from X0 = 1, then we call F a lookback adjuster, or LA. If F is an LA and there
is no other LA that dominates it, we call F an admissible lookback adjuster, or
ALA. We show that every LA is dominated by an ALA, and we characterize
the ALAs (Theorem 4.1).

The picture is clearest in the case of adjusters and options that depend only
on X∗t (i.e., not on Xt). We call these options and adjusters simple.

• Simple lookback adjusters. We call an increasing right-continuous
positive function F of one variable a simple lookback adjuster, or SLA, if
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there is a strategy for the investor that starts with initial capital 1 and
keeps its capital greater than or equal to F (X∗t ) for all t ≥ 0, on the
assumption that X0 = 1. If F is an SLA and there is no other SLA that
dominates it, we call F an admissible simple lookback adjuster, or ASLA.
We show that F is an SLA if and only if∫ ∞

1

F (y)

y2
dy ≤ 1, (1.1)

and that F is an ASLA if and only if (1.1) holds with equality (Proposi-
tion 2.1).

• Simple lookback options. Consider an American option that pays
G(X∗t ) if exercised at time t, where G is a given increasing right-continuous
positive function; we only assume that X0 > 0. It follows from the crite-
rion (1.1) that this option’s upper price at time 0 is

X0

∫ ∞
X0

G(x)

x2
dx. (1.2)

Indeed, applying a strategy always ensuring capital Kt ≥ F (Y ∗t ) to the
normalised price Yt := Xt/X0 (which satisfies Y0 = 1) and to

F (y) :=
G(X0y)

X0

∫∞
X0
G(x)x−2dx

, y ∈ [1,∞),

(satisfying (1.1) if we exclude the trivial case G(x) = 0, ∀x ≥ X0), we can
ensure that

Kt ≥ F (Y ∗t ) = F (X∗t /X0) =
G(X∗t )

X0

∫∞
X0
G(x)x−2dx

with initial capital 1; therefore, we can ensure that our capital is always
at least G(X∗t ) with initial capital X0

∫∞
X0
G(x)x−2dx (but not with less).

The left-hand side of (1.1) is the expected value of F (y) when y follows
the probability measure Q1 on [1,∞) whose density is y−2. More generally,
(1.2) is the expected value of G(x) when x follows the probability measure QX0

on [X0,∞) whose density is X0x
−2. This conforms to the standard picture in

which option prices are expected values with respect to probability distributions,
conventionally called “risk-neutral”, which emerge naturally instead of being
assumed (in the case of (1.1), the “option price” is the initial unit capital).
What is unusual here is that the risk-neutral measures emerge even in a heavily
incomplete market. The measure QX0 is the distribution of the maximum of
Brownian motion started at X0 and stopped when it hits 0; we will examine
this connection further in Section 8.

The most basic lookback option G(X∗) is simply X∗, paying X∗t at a time
t of the owner’s choice. Its upper price is infinite: X0

∫∞
X0
x−1dx = ∞. To
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get a finite upper price, we can fix a finite maturity date T and consider the
European lookback option with payoff X∗T . Hobson [8] derives upper prices for
options of this type on the assumption that the market prices call options on
X with maturity date T and all possible strike prices. Hobson’s work has been
developed in various directions: see, e.g., the recent review [9] and references
therein. We are not aware, however, of work on lookbacks that relies neither
on probabilistic assumptions nor on market pricing of other options. For other
connections with existing literature, see Section 8.

The centrepiece of this article is Figure 1, which establishes connections
between several seemingly very different notions. Part of this study has been
published as [3] in Statistics and Probability Letters.

Terminology, notation, and abbreviations

We use terms such as “positive”, “increasing”, and “above” in the wide sense
of the inequalities ≤ and ≥. We use the standard symbol R for the set of real
numbers; the set of natural numbers is N := {1, 2, . . .}. We never use primes
to mean differentiation; instead, we use the more specific notation fr to mean
the right derivative of f (we will use it mainly for concave functions f , when
fr is guaranteed to exist). In Section 9, the extended real line [−∞,∞] will be
denoted R, and we will use the convention ∞+ (−∞) :=∞.

This is the list of abbreviations used in this article:

ALA admissible lookback adjuster, often denoted F (X∗, X)

ASLA admissible simple lookback adjuster, often denoted F (X∗)

LA lookback adjuster, often denoted F (X∗, X)

SLA simple lookback adjuster, often denoted F (X∗)

2 Insuring against loss of capital, I

This section’s (and most of this article’s) trading protocol is given as Proto-
col 1. It describes a perfect-information game between two players, Market and
Investor. The players make their moves sequentially in the indicated order.
There is one security, often referred to as X, whose price Xt at time t > 0 is
chosen by Market. We will refer to pt as Investor’s position in X at time t, or the
number of units of X that he holds at time t. For simplicity, the protocol and
our formal results cover only the case of discrete time, although in our informal
discussions we will sometimes consider the case of continuous time, t ∈ [0,∞).

In the bulk of the article we will consider the conceptually simplest case of
one security X. However, we may always think of Xt as the capital of a trading
strategy, fund, or adviser when trading in a multi-security market.

In terms of Protocol 1, we call an increasing function F : [1,∞)→ [0,∞) an
SLA if there exists a strategy for Investor that guarantees Kt ≥ F (X∗t ) for all t.
We say that an SLA F dominates an SLA G if F (y) ≥ G(y) for all y ∈ [1,∞).
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Protocol 1 Simplified trading in a financial security

X0 := 1 and K0 := 1
for t = 1, 2, . . . do

Investor announces pt ∈ R
Market announces Xt ∈ [0,∞)
Kt := Kt−1 + pt(Xt −Xt−1)

end for

We say that F strictly dominates G if F dominates G and F (y) > G(y) for some
y ∈ [1,∞). An SLA is an ASLA if it is not strictly dominated by any SLA.

Proposition 2.1. 1. An increasing function F : [1,∞)→ [0,∞) is an SLA
if and only if it satisfies (1.1).

2. Any SLA is dominated by an ASLA.

3. An SLA is admissible (is an ASLA) if and only if it is right-continuous
and ∫ ∞

1

F (y)

y2
dy = 1. (2.1)

We will give two proofs of this result: in this section we will give a simple
direct derivation, and in Section 5 we will derive it from a much more general
statement.

The main idea of the direct derivation is as follows. For every threshold u we
consider the strategy that holds 1 unit of X, selling it when Investor’s capital
reaches (or exceeds) u. This corresponds to the SLA Fu(y) := u1{y≥u}. (If E is
some property, 1{E} is defined to be 1 if E is satisfied and 0 if not.) Now we can
mix these strategies according to some probability measure P on u. It remains
to notice that every increasing function F satisfying (1.1) can be represented as
such a mixture: F (y) =

∫∞
1
Fu(y)P (du) =

∫ y
1
uP (du). Now we give a formal

proof of part of Proposition 2.1 and an informal argument for the remaining
part.

Proof of Proposition 2.1. First we prove that any increasing function F :
[1,∞)→ [0,∞) satisfying

F (y) =

∫
[1,y]

uP (du), ∀y ∈ [1,∞), (2.2)

for a probability measure P on [1,∞], is an SLA. For each u ≥ 1, define the
following strategy for Investor: on round t, the strategy outputs

p
(u)
t :=

{
1 if X∗t−1 < u

0 otherwise
(2.3)
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as Investor’s move pt. (Intuitively, this strategy holds 1 unit of X until X’s

price reaches u; as soon as this happens, X is sold.) Let K(u)
t be the capital

process of this strategy. Set

pt :=

∫
[1,∞]

p
(u)
t P (du). (2.4)

This gives Kt =
∫

[1,∞]
K(u)
t P (du): indeed, this is true for t = 0 and the inductive

step is

Kt = Kt−1 + pt(Xt −Xt−1)

=

∫
[1,∞]

K(u)
t−1P (du) +

∫
[1,∞]

p
(u)
t P (du)(Xt −Xt−1)

=

∫
[1,∞]

(
K(u)
t−1 + p

(u)
t (Xt −Xt−1)

)
P (du)

=

∫
[1,∞]

K(u)
t P (du).

This strategy will guarantee

Kt =

∫
[1,∞]

K(u)
t P (du) ≥

∫
[1,X∗

t ]

K(u)
t P (du) ≥

∫
[1,X∗

t ]

uP (du) = F (X∗t ). (2.5)

We can now finish the proof of the statement “if” in part 1 of the proposition,
which says that any increasing function F : [1,∞) → [0,∞) satisfying (1.1) is
an SLA. Without loss of generality we can assume that F is right-continuous
and that (2.1) holds. It remains to apply Lemma 2.2 below.

Let us now check that every SLA satisfies (1.1). Our argument will be
informal: first, it is easy to formalize, and second, in Section 5 we will deduce this
statement independently (see Corollary 5.4). Consider the case of continuous
time, where the security price Xt depends on t ∈ [0,∞) and Investor’s capital
Kt is defined as in [18], (2). Investor can guarantee Kt ≥ F (X∗t ), ∀t. Let Xt be
the trajectory of Brownian motion started at 1 and stopped when it hits 0 for
the first time. The distribution of X∗∞ has density y−2, y ∈ [1,∞) (see Section 8
for details). The expected value of F (X∗∞) is equal to the left-hand side of (1.1).
Since Kt is a positive supermartingale with initial value 1, we obtain that the
left-hand side of (1.1) does not exceed

E lim inf
t→∞

Kt ≤ lim inf
t→∞

EKt ≤ 1.

To formalize this argument, it suffices to replace the Brownian motion with the
random walk started from 1 with the increment ±1/N for a large N (the ± is
+ or − with probability 1/2).

We have established part 1 of the theorem. Part 3 is now obvious, and part 2
follows from parts 1 and 3.
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The method used in this proof (stopping and combining) has been used
previously by various authors, e.g., El-Yaniv et al. ([6], Theorem 1, based on
Leonid Levin’s personal communication) and Shafer and Vovk ([15], Lemma
3.1). We have now seen that it gives optimal results in our setting.

The second statement of the following lemma was used in the proof of Propo-
sition 2.1.

Lemma 2.2. An increasing right-continuous function F : [1,∞)→ [0,∞) sat-
isfies (2.1) if and only if (2.2) holds for some probability measure P on [1,∞).
It satisfies (1.1) if and only if (2.2) holds for some probability measure P on
[1,∞].

Proof. It is sufficient to prove the first statement of the lemma; the second then
follows easily.

Let us first check that the existence of a probability measure P on [0,∞)
satisfying (2.2) implies (2.1). We have:∫

[1,∞)

F (y)

y2
dy =

∫
[1,∞)

∫
[1,y]

u

y2
P (du)dy

=

∫
[1,∞)

∫
[u,∞)

u

y2
dyP (du) =

∫
[1,∞)

P (du) = 1. (2.6)

It remains to check that any increasing right-continuous F : [1,∞)→ [0,∞)
satisfying (2.1) satisfies (2.2) for some probability measure P on [1,∞). Let Q be
the measure on [1,∞) (σ-finite but not necessarily a probability measure) with
distribution function F , in the sense that Q([1, y]) = F (y) for all y ∈ [1,∞). Set
P (du) := (1/u)Q(du). We then have (2.2), and the calculation (2.6) shows that
the σ-finite measure P must be a probability measure (were it not, we would
not have an equality in (2.1)).

According to (2.1), the function

F (y) := αy1−α (2.7)

is an ASLA for any α ∈ (0, 1) ([14], (12)). Another example ([14], below (12))
is

F (y) :=

{
α(1 + α)α y

ln1+α y
if y ≥ e1+α

0 otherwise,
(2.8)

where α > 0. The measures P corresponding (see (2.2)) to (2.7) and (2.8) are
computed in Appendix A.

3 Insuring against loss of capital, II

The previous section explains how we can get an insurance against losing al-
most all capital as compared to the peak price of the underlying security. In
this section we will discuss (in fact, this is obvious) how to get an additional
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insurance: not to lose much as compared to the current value of the underlying
security.

Condition (1.1) implies lim infy→∞ F (y)/y = 0 (and even limy→∞ F (y)/y =
0, as we will show in Lemma 5.6 below). Therefore, Kt/Xt may be very small for
some t even if Kt ≥ F (X∗t ) holds. A simple way to insure against this possibility
is to hold c ∈ (0, 1) units of X (assuming X0 = 1) and to invest 1 − c into a
strategy ensuring Kt ≥ F (X∗t ). The following corollary says that it leads to an
optimal result.

Proposition 3.1. Let c ≥ 0 and F : [1,∞)→ [0,∞) be an increasing function.
Investor has a strategy ensuring

Kt ≥ cXt + F (X∗t ) (3.1)

if and only if c and F satisfy∫ ∞
1

F (y)

y2
dy ≤ 1− c. (3.2)

Proof. Suppose (3.2) is satisfied; in particular, c ∈ [0, 1]. The case c = 1 is
trivial, so we assume c < 1. Using c+ (1− c)p′t as Investor’s strategy, where p′t
are Investor’s moves guaranteeing Kt ≥ 1

1−cF (X∗t ) (cf. Proposition 2.1), we can
see that Investor can guarantee (3.1).

The rest of the proof is similar to the second part of the proof of Proposi-
tion 2.1, and is again informal, for the same reasons. Suppose (3.1) is satisfied;
our goal is to demonstrate (3.2). Without loss of generality, assume that F is
left-continuous. Again replacing the discrete time parameter t ∈ {0, 1, . . .} by
t ∈ [0,∞), assuming that Xt is the trajectory of Brownian motion started from
1 and stopped when it hits 0, and taking the expected value of both sides of
(3.1), we obtain EF (X∗t ) ≤ 1−c; by the monotone convergence theorem, letting
t→∞ gives EF (X∗∞) ≤ 1− c, i.e., (3.2).

In fact, the guarantee (3.1), and an even stronger guarantee, can be extracted
directly from Equation (2.5) in the previous section. If we do not discard the

term
∫

(X∗
t ,∞]
K(u)
t P (du) in (2.5), we will obtain

Kt ≥ P ((X∗t ,∞])Xt + F (X∗t ). (3.3)

The coefficient P ((X∗t ,∞]) in front of Xt shrinks to c := P ({∞}) as X∗t ↑ ∞,
and the function F in (3.3) satisfies (3.2). Therefore, (3.3) is stronger than
(3.1). This does not contradict the part “only if” of Proposition 3.1, which does
not say that (3.1) cannot be improved; it only says that the improvement will
not be significant enough to decrease the coefficient in front of Xt.

The purpose of the next two sections will be to show that (3.3) is all we
can get even in the situation when we allow an arbitrary dependence of the
right-hand side on X∗t and Xt.

According to (2.7) and (3.1), Investor can guarantee

Kt ≥ cXt + (1− c)α(X∗t )1−α (3.4)
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for any constants c ∈ [0, 1] and α ∈ (0, 1). In Appendix A we will see that using
(3.3) allows us to improve (3.4) to

Kt ≥ cXt + (1− c)α(X∗t )1−α + (1− c)(1− α)(X∗t )−αXt. (3.5)

4 Insuring against loss of capital, III

In this section we consider more general lookback adjusters, those that depend
on both X∗t and Xt. A positive function F (X∗, X), where X∗ ranges over [1,∞)
andX over [0, X∗], is an LA if there exists a strategy for Investor that guarantees
Kt ≥ F (X∗t , Xt) for all t. An LA F dominates an LAG if F (X∗, X) ≥ G(X∗, X)
for all X∗ ∈ [1,∞) and X ∈ [0, X∗]. We say that F strictly dominates G if F
dominates G and F (X∗, X) > G(X∗, X) for some X∗ ∈ [1,∞) and X ∈ [0, X∗].
An LA is an ALA if it is not strictly dominated by any LA.

Remember that by fr we mean the right derivative of f ; in particular, F=
r

is the right derivative of F=.

Theorem 4.1. Every LA is dominated by an ALA. A positive function
F (X∗, X) with domain X∗ ∈ [1,∞) and X ∈ [0, X∗] is an ALA if and only if
the following two conditions are satisfied:

• the function
F=(X∗) := F (X∗, X∗), X∗ ∈ [1,∞), (4.1)

is increasing, concave, and satisfies F=(1) = 1 and F=
r (1) ≤ 1;

• for each X∗ ∈ [1,∞), the function F (X∗, X) is linear in X and its slope
is equal to the right derivative of F= at the point X∗.

Theorem 4.1 will be deduced from three lemmas. The function F= :
[1,∞)→ [0,∞) defined by (4.1) will be called the spine of an ALA F (X∗, X).

By a situation we mean any sequence σ = (X1, . . . , Xt) of Market’s moves;
2 stands for the empty situation. We use the notation X(σ) for the last move
Xt of Market and the notation X∗(σ) for the highest price maxs=0,...,tXs of
the security so far, setting X(2) = X∗(2) := 1. If Π is a strategy for Investor,
KΠ(σ) is defined as Investor’s capital Kt in the situation σ when Investor follows
Π. Formally, a strategy for Investor (also called a trading strategy) is defined as
a function Π : Σ→ R, where Σ is the set of all situations, and

KΠ(X1, . . . , Xt) := 1 +

t∑
s=1

ps(Xs −Xs−1),

where ps := Π(X1, . . . , Xs−1).

Lemma 4.2. If a positive function F (X∗, X), X∗ ∈ [1,∞), X ∈ [0, X∗], satis-
fies the two conditions in the statement of Theorem 4.1, it is an LA.
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Proof. The following trading strategy witnesses that F is an LA: at any time
t, take the position pt := F=

r (X∗t−1). (When we say that a trading strategy
Π witnesses that F is an LA we mean that KΠ(σ) ≥ F (X∗(σ),X(σ)) for all
situations σ.)

Lemma 4.3. Every LA is dominated by a function that satisfies the two con-
ditions in the statement of Theorem 4.1.

Proof. Let F (X∗, X) be an LA. Choose a trading strategy Π that witnesses
that F is an LA. Notice that Π’s moves pt are always positive, pt ≥ 0: indeed,
if pt < 0, Market can make KΠ negative by choosing large enough Xt.

Define F1(X∗, X) as the infimum of KΠ(σ) over the situations σ such
that X∗(σ) = X∗ and X(σ) = X. It is clear that F1 is finite (in par-
ticular, F1(X∗, X) ≤ 1 + Π(2)(X∗ − 1) ≤ X∗) and F1 dominates F . Set
F=

1 (X) := F1(X,X), X ∈ [1,∞). Let F=
2 be the smallest concave increas-

ing function that dominates F=
1 (in other words, F=

2 is the lower envelope
of the straight lines with positive slopes lying above the graph of F=

1 ), and
set F2(X∗, X) := F=

2 (X∗) + (F=
2 )r(X

∗)(X − X∗), where X∗ ∈ [1,∞) and
X ∈ [0, X∗].

First we check that F2 dominates F1. Suppose it does not. There exist X ∈
[0,∞) and X∗ ∈ [1,∞) such that X < X∗ and the point A := (X,F1(X∗, X))
lies strictly above the straight line L2 passing through B := (X∗, F=

2 (X∗)) and
having slope (F=

2 )r(X
∗). Let L1 be the straight line passing through the points

A and B; the slope of L1 is strictly less than the slope of L2. Consider two
cases:

The case F=
2 (X∗) = F=

1 (X∗). The graph of F=
2 is below L2; therefore, by

the definition of F=
2 , the graph of F=

1 is also below L2. Consider two
possibilities:

• If the graph of F=
1 does not contain any points in the interior of the

space between L1 and L2 to the right of B, then the graph of F=
1 is

below both L2 and L1, and therefore, the graph of F=
2 is below both

L2 and L1. But we know that the graph of F=
2 cannot be below L1

to the right of B.

• Suppose the graph of F=
1 contains some points in the interior of the

space between L1 and L2 to the right of B, and let C := (X ′, F=
1 (X ′))

be such a point. Then B is strictly below [A,C]. By the definition
of F=

1 , there is a situation σ such that X∗(σ) = X(σ) = X∗ and the
point (X∗,KΠ(σ)) lies strictly below the segment [A,C] connecting
the points A = (X,F1(X∗, X)) and C = (X ′, F1(X ′, X ′)). It is clear
that regardless of Π(σ), in the situation σ Market can choose the
next move in such a way as to violate KΠ ≥ F1(X∗,X).

The case F=
2 (X∗) > F=

1 (X∗). We consider two possibilities:

• If (F=
2 )r(X

∗) = 0, the slope of L1 is strictly negative, which is im-
possible: by the definition of F=

1 there is a situation σ such that
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X∗(σ) = X(σ) = X∗ and KΠ(σ) < F=
2 (X∗) < F1(X∗, X); since

Π(σ) ≥ 0, Market can violate KΠ ≥ F1(X∗,X) by choosing X as the
next move.

• Now suppose (F=
2 )r(X

∗) > 0. Notice that the function F=
2 is affine

(and its graph coincides with L2) to the right of X∗ in a neighbour-
hood of X∗. There are X ′ ≤ X∗ and X ′′ > X∗ such that the segment
[C ′, C ′′], where C ′ := (X ′, F=

1 (X ′)) and C ′′ := (X ′′, F=
1 (X ′′)), has a

positive slope and lies strictly above (X∗, F=
1 (X∗)). For each ε > 0,

we can choose such a segment [C ′, C ′′] = [C ′ε, C
′′
ε ] in such a way that

it lies completely in the ε-neighbourhood of L2; and it is easy to see
that the distance between C ′′ε and B will stay bounded away from
0 as ε → 0. This implies that B will lie strictly below the segment
[A,C ′′ε ] for a small enough ε. Therefore, (X∗, F=

1 (X∗)) will lie strictly
below the segment [A,C ′′ε ]. By the definition of F=

1 , there is a situa-
tion σ such that X∗(σ) = X(σ) = X∗ and the point (X∗,KΠ(σ)) lies
strictly below the segment connecting the points A = (X,F1(X∗, X))
and C ′′ε = (X ′′, F1(X ′′, X ′′)), for some X ′′ > X∗. Regardless of Π(σ),
in the situation σ Market can choose the next move in such a way as
to violate KΠ ≥ F1(X∗,X).

We can see that all possibilities lead to contradictions, which shows that F2

indeed dominates F1 and, therefore, dominates F .
The function F2 satisfies all properties listed in the two conditions in the

statement of Theorem 4.1 possibly except F=
2 (1) = 1 and (F=

2 )r(1) ≤ 1. It
remains to prove F=

2 (1) ≤ 1 and (F=
2 )r(1) ≤ 1: indeed, in this case F2 will

be dominated by a function satisfying the two conditions. Since F=
1 (X) ≤

1 + Π(2)(X − 1) for all X ≥ 1, we have F=
2 (1) ≤ 1. And if (F=

2 )r(1) > 1, we
would have F (1, 0) ≤ F2(1, 0) = F=

2 (1)− (F=
2 )r(1) < 0.

Lemma 4.4. If positive functions F1(X∗, X) and F2(X∗, X), X∗ ∈ [1,∞),
X ∈ [0, X∗], satisfy the two conditions in the statement of Theorem 4.1 and
F1 ≤ F2, then F1 = F2.

Proof. Suppose F1 and F2 satisfy the conditions in the statement of the lemma
but F1 6= F2. Since the functions satisfying the two conditions in Theorem 4.1
are determined by their spines, F=

1 and F=
2 must be different. Set F (X∗, X) :=

F2(X∗, X)− F1(X∗, X) ≥ 0 and F=(X) := F (X,X) ≥ 0. Suppose F=(X) > 0
for some X ∈ [1,∞); we fix such X and will arrive at a contradiction. Let X∗

be a point in [1, X] with the highest value of F=
r to within a small ε > 0; in

particular, F=
r (X∗) > 0. Since F= is absolutely continuous, we have:

F=(X∗) =

∫
[1,X∗]

F=
r (x)dx

≤
∫

[1,X∗]

(F=
r (X∗) + ε)dx = (X∗ − 1)(F=

r (X∗) + ε).
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Since

F (X∗, X) = F (X∗, X∗) + F=
r (X∗)(X −X∗)

≤ (X∗ − 1)(F=
r (X∗) + ε) + F=

r (X∗)(X −X∗)
= −F=

r (X∗) + (X∗ − 1)ε+ F=
r (X∗)X,

F (X∗, 0) will be strictly negative for ε small enough; this contradicts our as-
sumption F1 ≤ F2.

Proof of Theorem 4.1. In view of Lemma 4.3, it suffices to prove that any ALA
satisfies the two conditions in the statement of the theorem and that any func-
tion satisfying the two conditions is an ALA.

Suppose F is an ALA. By Lemmas 4.3 and 4.2, it is dominated by an LA
F ′ satisfying the two conditions. By admissibility, F = F ′.

Suppose a function F satisfies the two conditions. By Lemma 4.2, F is an
LA. By Lemma 4.3, it suffices to check that F is not strictly dominated by a
function satisfying the two conditions. It remains to apply Lemma 4.4.

5 Various connections

Figure 1 provides a visual frame for the relationships we discuss in this section
and elsewhere in this article. ALAs are characterized by the two conditions in
Theorem 4.1. By a “scaled ASLA” we mean a function of the form cF , where
c ∈ [0, 1] and F is an ASLA; more fully, such functions may be called scaled
down ASLAs. These are increasing right-continuous functions F satisfying (1.1).
A spine is a function that can be represented as the spine of some ALA; such
functions are characterized by the first condition in Theorem 4.1. A “measure”
stands for a probability measure on [0,∞]. We can see that the notions in all
four vertices of the square in Figure 1 have simple analytic characterizations.

The arrows in Figure 1 represent various connections between the four no-
tions; they are labelled by the equations expressing those connections. Each of
the four sides of the square in Figure 1 represents a bijective mapping between
the sets of objects in the adjacent vertices of the square. The first such bijective
mapping was introduced in Section 2; it corresponds to the right side of the
square. Given a probability measure P on [1,∞], we define the corresponding
scaled ASLA F by (2.2). As can be seen from the proof of Lemma 2.2, P is
uniquely determined by F , and the expression of the restriction of P to [1,∞)
in terms of F (X) is given there as

Q([1, y]) := F (y), y ∈ [1,∞); P (du) := (1/u)Q(du); (5.1)

P ({∞}) is then determined uniquely as 1− P ([1,∞)).
Another easy side of the square is the left one, considered in Section 4. The

spine F= is just the diagonal (4.1) of the corresponding ALA F . According to
the second condition in Theorem 4.1, the expression of an ALA F via its spine
F= is

F (X∗, X) = F=(X∗) + F=
r (X∗)(X −X∗). (5.2)

11
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Figure 1: Some relationships between ALAs (functions satisfying the two condi-
tions in Theorem 4.1), spines (concave increasing functions F : [1,∞)→ [0,∞)
such that F (1) = 1 and Fr(1) ≤ 1), probability measures on [1,∞], and scaled
down ASLAs (right-continuous increasing functions F : [1,∞)→ [0,∞) satisfy-
ing

∫∞
1
F (y)y−2dy ≤ 1).

Next we consider the bottom side of the square. The following lemma estab-
lishes a bijection between the spines and the probability measures on [1,∞]; it
uses (in the definition (5.3)) the obvious right-continuity of F=

r for a spine F=.

Lemma 5.1. Let F= be a spine. Define a probability measure P on [1,∞] by
setting

P ((X,∞]) := F=
r (X), X ∈ [1,∞). (5.3)

Then

F=(X) =

∫
[1,X]

uP (du) +XP ((X,∞]) (5.4)

for all X ∈ [1,∞). Vice versa, if P is a probability measure on [1,∞], the
function F= defined by (5.4) is a spine and satisfies (5.3).

Proof. Let F= be a spine and a probability measure P on [1,∞] be defined by
(5.3). Using integration by parts for the Lebesgue–Stiltjes integral (see, e.g.,
[7], Theorem 3.36), we obtain:∫

[1,X]

uP (du) = P ({1}) +

∫
(1,X]

uP (du) = 1− F=
r (1)−

∫
(1,X]

udF=
r (u)

= 1− F=
r (1)−XF=

r (X) + F=
r (1) +

∫
(1,X]

F=
r (u)du

= 1−XF=
r (X) + F=(X)− F=(1) = F=(X)−XP ((X,∞]).

The equality between the two extreme terms of this chain is equivalent to (5.4).
We can see that the relations (5.3) and (5.4) establish a bijection between

the spines and a subset of probability measures on [1,∞]. Now let P be any
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probability measure on [1,∞] and define F= : [1,∞) → [0,∞) by F=(1) := 1
and the equality F=

r (X) = P ((X,∞]), X ∈ [1,∞) (cf. (5.3)). Namely, set
F=(X) := 1 +

∫
[1,X]

f(x)dx, where f : [1,∞) → [0,∞) is the right-continuous

decreasing function defined by f(x) := P ((x,∞]). It is easy to see that F=

is a spine, and the argument of the previous paragraph shows that it satisfies
(5.4) (which can be taken as the definition of F=). This completes the proof
that (5.3) and (5.4) establish a bijection between the spines and the probability
measures on [0,∞].

We have established the three bijections corresponding to the right, left,
and bottom sides of the square in Figure 1. That figure also contains three
shortcuts: the top side and the diagonals of the square; these are compositions
of bijections and so are bijections themselves. (This structure of the diagram,
three basic bijections and three shortcuts, makes sure that it “commutes”, in
the terminology of category theory.)

First, combining (5.2), (5.4), and (5.3), we obtain an expression of an ALA
F in terms of the corresponding measure P on [1,∞]:

F (X∗, X) = F=(X∗) + F=
r (X∗)(X −X∗)

=

∫
[1,X∗]

uP (du) +X∗P ((X∗,∞]) + P ((X∗,∞])(X −X∗)

=

∫
[1,X∗]

uP (du) +XP ((X∗,∞]) (5.5)

(cf. (3.3) and (2.2)).
Second, since the scaled ASLA corresponding to a probability measure P on

[1,∞] is (2.2) and the ALA corresponding to P is (5.5), we can see that the
composition of (4.1), (5.3), and (2.2) is the function

F ′(X∗) := F (X∗, 0), X∗ ∈ [1,∞), (5.6)

mapping each ALA F to the corresponding scaled ASLA F ′.
Third, combining (5.6) and (5.2), we obtain an expression of the scaled ASLA

in terms of the spine:

F ′(X∗) = F=(X∗)− F=
r (X∗)X∗; (5.7)

we can see that F ′(X) as a function of −F=
r (X) is, essentially, the Legendre

transformation of −F=(X).
The argument leading to (5.6) is important enough to state its conclusion

formally:

Corollary 5.2. Suppose F (X∗, X) is an ALA. Then F (X∗) := F (X∗, 0) is a
scaled ASLA. If, furthermore, F=

r (∞) = 0, F (X∗) is an ASLA. Vice versa,
if F (X∗) is a scaled ASLA, there exists a unique ALA F (X∗, X) such that
F (X∗) = F (X∗, 0) for all X∗. If, furthermore, F (X∗) is an ASLA, this ALA
F (X∗, X) will satisfy F=

r (∞) = 0.
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Remark. Let us check analytically the first statement in Corollary 5.2: if
F (X∗, X) satisfies the two conditions in Theorem 4.1, then F (X∗) := F (X∗, 0)
satisfies (1.1), and if, furthermore, F=

r (∞) = 0, then F (X∗) satisfies (2.1). Since

(F=(y)y−1)r = F=
r (y)y−1 − F=(y)y−2 = −F (y, 0)

y2
= −F (y)

y2
,

the absolute continuity of the function F=(y)y−1 over [1,∞) gives∫ ∞
1

F (y)

y2
dy = −

[
F=(y)y−1

]∞
y=1

= F=(1)− lim
y→∞

F=(y)

y

= 1− lim
y→∞

F=
r (y) ≤ 1,

and “ ≤ 1” becomes “ = 1” when F=
r (∞) = 0.

In the proof of Lemma 5.1 we have used the following alternative expression
of a spine in terms of the corresponding probability measure on [0,∞]:

F=(X) = 1 +

∫
[1,X]

P ((x,∞])dx. (5.4′)

Using (5.4′) in place of (5.4) in the derivation of (5.5), we obtain an alternative
expression

F (X∗, X) = P ([1, X∗]) +

∫
[1,X∗]

P ((x,X∗])dx+ P ((X∗,∞])X (5.5′)

of an ALA in terms of the corresponding probability measure on [0,∞]. In
combination with (5.6), this gives an alternative expression

F ′(X∗) = P ([1, X∗]) +

∫
[1,X∗]

P ((x,X∗])dx (2.2′)

of a scaled ASLA in terms of the corresponding measure.

Generalizations of Propositions 2.1 and 3.1

Theorem 4.1 allows us to generalize Propositions 2.1 and 3.1 by dropping the
requirement that the function F should be increasing. First we generalize the
notions of SLA and ASLA. A function F : [1,∞) → [0,∞) is an SLA if there
exists a strategy for Investor that guarantees Kt ≥ F (X∗t ) for all t (there are no
measurability requirements on F ). We say that an SLA F dominates another
SLA G if F (y) ≥ G(y) for all y ∈ [1,∞). We say that F strictly dominates G
if F dominates G and F (y) > G(y) for some y ∈ [1,∞). An SLA is an ASLA if
it is not strictly dominated by any SLA. We will use the adjective “increasing”
to refer to SLAs and ASLAs as defined in Section 2. (In fact, Corollary 5.4 will
show that all ASLAs are automatically increasing.)
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Lemma 5.3. A function G(X∗) is an SLA if and only if it has the form
F (X∗, 0) for some LA F .

Proof. First suppose that G(X∗) = F (X∗, 0), ∀X∗ ∈ [1,∞), for some LA F .
There is an ALA F ′ ≥ F (Theorem 4.1). Some trading strategy ensures Kt ≥
F ′(X∗t , Xt), and since F ′(X∗, X) is increasing inX ∈ [0, X∗], it therefore ensures
Kt ≥ F ′(X∗t , 0) ≥ F (X∗t , 0) = G(X∗t ). So G is an SLA.

Now suppose that G is an SLA. Then F (X∗, X) := G(X∗) is an LA such
that G(X∗) = F (X∗, 0).

Corollary 5.4. 1. A function F : [1,∞) → [0,∞) is an SLA if and only if
it satisfies ∫ ∞

1

F ∗(y)

y2
dy ≤ 1, (5.8)

where F ∗(y) := supx∈[1,y] F (x).

2. Any SLA is dominated by an ASLA.

3. An SLA is an ASLA if and only if it is increasing, right-continuous, and
satisfies (2.1).

Proof. First we prove part 1. If (5.8) is true, F ∗ is an SLA and so, a fortiori,
F is an SLA as well.

In the opposite direction, if F is an SLA, F (X∗) = F1(X∗, 0), ∀X∗ ∈ [1,∞),
for some LA F1 (see Lemma 5.3). By Theorem 4.1, F1 is dominated by an ALA
F2. The function F3(X∗) := F2(X∗, 0) of X∗ ∈ [1,∞) is an increasing SLA
(by Corollary 5.2) that dominates F and, therefore, F ∗. Now (5.8) follows from∫∞

1
F3(y)/y2dy ≤ 1.
Part 3 is now obvious since, by part 1, ASLAs must be increasing functions.

Part 2 follows from parts 1 and 3.

Corollary 5.5. Let c ≥ 0 and F : [1,∞) → [0,∞). Investor has a strategy
ensuring (3.1) if and only if c and F satisfy∫ ∞

1

F ∗(y)

y2
dy ≤ 1− c. (5.9)

Proof. If (5.9) is satisfied, Investor can ensure (3.1) with F replaced by F ∗, and
so can ensure (3.1) itself.

In the opposite direction, suppose Investor can ensure (3.1). It means
that the function F1(X∗, X) := cX + F (X∗) is an LA. Let F2 be any ALA
that dominates F1. Represent F2 in the measure form (5.5): F2(X∗, X) =
P ((X∗,∞])X+F3(X∗), where F3(X∗) =

∫
[1,X∗]

uP (du). Since F3(X∗)/X∗ → 0

as X∗ →∞ (see Lemma 5.6 below), we have

P ({∞}) = lim
X∗→∞

F2(X∗, X∗)

X∗
≥ lim
X∗→∞

F1(X∗, X∗)

X∗
≥ c.
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And since
F (X∗) = F1(X∗, 0) ≤ F2(X∗, 0) = F3(X∗),

F3 is an increasing function that dominates F , thus dominating F ∗. Therefore,∫ ∞
1

F ∗(y)

y2
dy ≤

∫
[1,∞)

F3(y)

y2
dy = P ([1,∞)) = 1− P ({∞}) ≤ 1− c

(the first equality follows from Lemma 2.2).

The following lemma (in combination with Lemma 2.2) was used in the proof
of Corollary 5.5.

Lemma 5.6. If an increasing function F : [1,∞) → [0,∞) satisfies (1.1),
limy→∞ F (y)/y = 0.

Proof. If
∫∞

1
F (y)y−2dy < ∞ for increasing F , then

∫∞
c
F (y)y−2dy → 0 as

c→∞, and so
∫∞
c
F (c)/y−2dy = F (c)/c→ 0 as c→∞.

6 Trading algorithm

In this short section we will give an explicit trading strategy (already described
briefly in the proof of Lemma 4.2) ensuring Kt ≥ F (X∗t , Xt) for all t, where
F is an ALA, or Kt ≥ F ′(X∗t ) for all t, where F ′ is an ASLA, in the notation
of Protocol 1. This strategy can be given in terms of either the corresponding
spine F= (in the spirit of Section 2) or the corresponding probability measure
P on [0,∞] (in the spirit of Section 4).

If we would like to ensure that Kt ≥ F (X∗t , Xt) for some ALA F , we can
apply Algorithm 1 to the spine F=(X∗) := F (X∗, X∗) of F .

Algorithm 1 Ensuring Kt ≥ F (X∗t , Xt) or Kt ≥ F ′(X∗t )

Require: spine F= : [1,∞)→ [0,∞)
X∗ := 1
for t = 1, 2, . . . do

hold F=
r (X∗) units of X

read Xt

Kt := Kt−1 + F=
r (X∗)(Xt −Xt−1)

if Xt > X∗ then
X∗ := Xt

end if
end for

If we would like to ensure that Kt ≥ F ′(X∗t ) for an ASLA F ′, we first need
to find the spine F= corresponding to F ′; in other words, to find F= satisfying
(5.7). This can be done by combining (5.1) and (5.4). After that we can apply
Algorithm 1.
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Alternatively, we could use the probability measure P on [1,∞) correspond-
ing to F or F ′, respectively, as the parameter of Algorithm 1: the only difference
would be that F=

r (X∗) would be replaced by P ((X∗,∞]) (cf. (5.3)). This is ex-
actly the trading strategy used in the proof of Proposition 2.1: see (2.3) and
(2.4).

7 Pricing adjusted American lookbacks

In this section we will consider a modified version of Protocol 1, given as Proto-
col 2. Now Investor starts with initial capital K0 equal to α, and the security’s
initial price X0 is not necessarily 1 but is chosen by Market.

Protocol 2 Trading in a financial security

K0 := α
Market announces X0 ∈ [0,∞)
for t = 1, 2, . . . do

Investor announces pt ∈ R
Market announces Xt ∈ [0,∞)
Kt := Kt−1 + pt(Xt −Xt−1)

end for

A situation in Protocol 2 is a non-empty sequence σ = (X0, X1, . . . , Xt)
of Market’s moves, which now includes X0. We let Σ stand for the set of all
situations. A strategy for Investor (or trading strategy) is a function Π : Σ→ R,
and

Kα,Π(X0, X1, . . . , Xt) := α+

t∑
s=1

Π(X0, . . . , Xs−1)(Xs −Xs−1)

is Investor’s capital in a situation (X0, X1, . . . , Xt) when he follows Π from
initial capital α. A capital process is a real-valued function on Σ that can be
represented in the form Kα,Π for some α and Π.

Let F : Σ → R. The perpetual American option with payoff F entitles its
owner to the payoff F (X0, X1, . . . , Xt) at the time t ∈ {0, 1, . . .} of her choice.
The upper price of (the American option with payoff) F in a situation ι is
defined as

E(F | ι) := inf {K(ι) | K(σ) ≥ F (σ),∀σ ∈ Σι} , (7.1)

where K ranges over the capital processes and Σι stands for the set of all situa-
tions σ such that ι is a prefix of σ. Intuitively, E(F | ι) is the price of a cheapest
superhedge for F in the situation ι.

Let Ω be the set of all infinite sequences X0, X1, X2, . . . of Market’s moves,
and let F : Ω → (−∞,∞]. The European option with maturity date ∞ and
payoff F entitles its owner to the payoff F (X0, X1, X2, . . .) at time ∞. The
upper price of (the European option with maturity date ∞ and payoff) F in a
situation ι is defined as
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E(F | ι) := inf
{
K(ι) | ∀(X0, X1, X2, . . .) ∈ Ωι :

lim inf
t→∞

K(X0, X1, . . . , Xt) ≥ F (X0, X1, X2, . . .)
}
, (7.2)

where K ranges over the capital processes and Ωι is the set of all sequences in
Ω containing ι as their prefix.

Using the notation E in this section usually implies that the correspond-
ing infimum (see (7.1) and (7.2)) is attained; the only exception is the second
statement of Corollary 7.2.

As discussed in Section 1, the results of the previous sections can be recast
as a study of the upper prices of perpetual American options paying G(X∗t , Xt)
for various functions G. The following corollaries list some special cases, com-
plemented with simple statements about European options.

Corollary 7.1. Let G : [0,∞) → [0,∞) be an increasing function and X0 ∈
(0,∞). The upper price in the situation X0 of the perpetual American option
with payoff G(X∗t ) is X0

∫∞
X0
G(x)x−2dx. The upper price in the situation X0

of the European option paying G(X∗∞) at ∞ is also X0

∫∞
X0
G(x)x−2dx.

Corollary 7.2. Let c ≥ 0, G : [0,∞) → [0,∞) be an increasing function, and
X0 ∈ (0,∞). The upper price in the situation X0 of the perpetual American
option with payoff cXt + G(X∗t ) is cX0 + X0

∫∞
X0
G(x)x−2dx. The upper price

in the situation X0 of the European option paying cX∞ + G(X∗∞) at time ∞,
where cX∞ :=∞ when limt→∞Xt does not exist, is cX0 +X0

∫∞
X0
G(x)x−2dx.

Proof. The only statement going beyond the argument in Section 1 is the one
about European options; namely, we need to justify the convention cX∞ :=
∞ when limt→∞Xt does not exist. By the argument in Doob’s martingale
convergence theorem (see, e.g., [15], Lemma 4.5), there exists a strategy Π for
Investor such that K1,Π is always positive and K1,Π(X1, . . . , Xt)→∞ as t→∞
when limt→∞Xt does not exist. Finally, we can replace the initial capital 1 of
K1,Π by an arbitrarily small ε > 0.

Pricing at time s > 0

A natural question is what the upper price of the perpetual American option
with payoff G(X∗t ) is at a time s > 0. The answer can be obtained by applying
the formulaX0

∫∞
X0
G(x)x−2dx to the function x 7→ G(X∗s∨x) (where u∨v stands

for max(u, v)) in place ofG(x) and toXs in place ofX0; this givesXs

∫∞
Xs
G(X∗s∨

x)x−2dx. The same argument is also applicable to the corresponding European
option. We state this as the following corollary.

Corollary 7.3. Let G : [1,∞) → [0,∞) be an increasing function. The upper
price in a situation (X0, . . . , Xs) such that Xs > 0 of the perpetual American
option with payoff G(X∗t ) is Xs

∫∞
Xs
G(X∗s ∨ x)x−2dx, where X∗s := maxi≤sXi.

The upper price in a situation (X0, . . . , Xs), Xs > 0, of the European option
paying G(X∗∞) at ∞ is also Xs

∫∞
Xs
G(X∗s ∨ x)x−2dx.
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More general American lookbacks, I

Let F (X∗, X) be a positive function whose domain includes all (X∗, X) with
X∗ > 0 and X ∈ [0, X∗]. In this subsection we will discuss the upper price in
a situation X0 > 0 of the American option paying F (X∗t , Xt) at a time t of the
owner’s choice. To do this, we first notice that the formula (5.2) for transition
from a spine to the corresponding ALA can be applied to any concave increasing
function with domain [X0,∞). Formally, we define an operator G 7→ G on the
concave increasing functions G : [X0,∞)→ R by

G(X∗, X) := G(X∗) +Gr(X
∗)(X −X∗), (7.3)

X∗ ∈ [X0,∞), X ∈ [0, X∗] (7.4)

(our notation does not reflect the dependence of this operator on X0).
The upper price E(F | X0) of the American option paying F (X∗t , Xt) can

be determined in two steps:

• Let H : [X0,∞) → [0,∞) be the smallest concave increasing function
such that H ≥ F in the domain (7.4). (The function H can be defined as
the infimum of all concave increasing functions G satisfying G ≥ F ; the
inequality H ≥ F then follows from Lemma 7.4 below. If such G do not
exist, set H :=∞ on [X0,∞).)

• The function H determines E(F | X0) via

E(F | X0) = H(X0). (7.5)

Given the initial capital H(X0) in the situation X0, the option’s seller can meet
his obligation by holding pt := Hr(X

∗
t−1) units of X at time t. And Theorem 4.1

implies that H(X0) is the smallest initial capital allowing the option’s seller to
meet his obligation for sure.

Lemma 7.4. Let X0 > 0 and {Gα | α ∈ A} be an indexed set of positive concave
increasing functions Gα(X∗, X), where (X∗, X) ranges over the domain (7.4).
Then

inf
α∈A

Gα ≥ inf
α∈A

Gα.

Proof. Let infα∈AGα ≥ F , i.e., Gα ≥ F for all α ∈ A. Our goal is to prove
H ≥ F , where H := infα∈AG

α. Fix an arbitrary (X∗, X) in the domain (7.4).
Our goal reduces to proving H(X∗, X) ≥ F (X∗, X).

Suppose H(X∗, X) ≥ F (X∗, X) is false, i.e.,

H(X∗) +Hr(X
∗)(X −X∗) < F (X∗, X).

Taking ∆ > 0 small enough, we obtain

H(X∗) +
H(X∗ + ∆)−H(X∗)

∆
(X −X∗) < F (X∗, X).
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Choosing α ∈ A such that Gα(X∗) is close enough to H(X∗), we obtain

Gα(X∗) +
Gα(X∗ + ∆)−Gα(X∗)

∆
(X −X∗) < F (X∗, X),

which implies
Gα(X∗) +Gαr (X∗)(X −X∗) < F (X∗, X),

which contradicts our assumption Gα ≥ F .

More general American lookbacks, II

The lookbacks paying X∗t at some time t that have been our motivation in this
article are the most basic ones, but several other kinds have been considered
in literature. According to the standard nomenclature, the full name for the
American option paying X∗t at time t ∈ [0,∞) is “perpetual American lookback
call option with fixed strike 0”. Fixing a finite maturity date T does not change
much (it does not change anything at all in our probability-free framework in
the case of continuous time; we have chosen the discrete-time framework in this
article only for simplicity).

Let G be a positive increasing function. Replacing the strike 0 by c > 0
will change the pricing formula for adjusted American lookbacks: it is easy to
see that the upper price in a situation X0 > 0 of the American option paying
G((X∗t −c)+) is X0

∫∞
X0
G((x−c)+)x−2dx. The other popular kinds of American

lookbacks are:

• the American lookback put option with fixed strike c, whose payoff is
(c−mins≤tXs)

+;

• the American lookback call option with floating strike, whose payoff is
Xt −mins≤tXs;

• the American lookback put option with floating strike, whose payoff is
X∗t −Xt.

The first two payoffs depend on mins≤tXs, and so the methods of this article are
not applicable to them. The adjusted version of the last one can be easily dealt
with by our methods: applying the recipe (7.5) to F (X∗t , Xt) := G(X∗t −Xt),
we obtain E(F | X0) = E(F ′ | X0), where

F ′(X∗, X) := F (X∗, 0) = G(X∗).

(Indeed, since H(X∗, X) is increasing in X and G(X∗ − X) is decreasing in
X, the inequality H(X∗, X) ≥ G(X∗ − X) holds for all (X∗, X) if and only
if H(X∗, X) ≥ G(X∗) holds for all (X∗, X).) Therefore, by Corollary 7.1,
E(F | X0) = X0

∫∞
X0
G(x)x−2dx. In other words, the term “−Xt” in G(X∗t −Xt)

does not help.
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8 Other connections with literature

In addition to Hobson’s approach mentioned in Section 1, this article’s results
have links with the recent probability-free version [18] (motivated by [17]) of Du-
bins and Schwarz’s [5] reduction of continuous martingales to Brownian motion
and with the Azéma–Yor solution [2] to the Skorokhod embedding problem.

Risk-neutral probability measures

In Section 1, we noticed that (1.2) is the expected value of G w.r. to the proba-
bility measure QX0

on [X0,∞) with density X0x
−2. In this somewhat informal

subsection we will discuss the origins of QX0
.

A natural interpretation of QX0
can be given in the case of continuous time

[0,∞) and a continuous price path Xt, t ∈ [0,∞). For the details of the defi-
nition of capital processes, upper prices, etc., in continuous time, see [18]. It is
easy to see that this article’s results carry over to this continuous-time frame-
work. In particular, the upper price at time 0 of the European option paying
G(X∗∞) at time ∞, where G is a positive increasing function, is equal to the
expected value X0

∫∞
X0
G(x)x−2dx with respect to the risk-neutral probability

measure X0x
−2dx on [X0,∞). In this section we will additionally assume that

the function G is bounded.
In the case of continuous price paths, the emergence of the risk-neutral

probability measure X0x
−2dx on [X0,∞) can be regarded as a corollary of the

emergence of Brownian motion discussed in [18]. Indeed, by Theorem 6.2 of [18],
the upper price of G(X∗∞) in the situation X0 is equal to the expected value∫
G(X0 + ω∗τ )W (dω), where W is the Wiener measure on ω ∈ C([0,∞)) and

τ := inf{t | X0 + ωt = 0}. In other words, the upper price of G(X∗∞) in X0 can
be obtained by averaging G with respect to the distribution Q of the maximum
of Brownian motion started at X0 and stopped when it hits 0. The density of Q
is X0x

−2, in agreement with this article’s results; indeed, the probability that
Brownian motion started at X0 hits level x ≥ X0, before hitting 0 is X0/x (see,
e.g., [11], Theorem 2.49; this follows from Brownian motion being a martingale);
therefore, the distribution function of Q is 1−X0/x, and its density is X0/x

2.
This intuitive picture for the risk-neutral measure was used in the informal parts
of the proofs of Propositions 2.1 and 3.1.

It is easy to see that Brownian motion can be replaced by any martingale
in a wide class C of martingales. By Dubins and Schwarz’s classic result [5],
each continuous martingale that is nowhere constant and unbounded almost
surely is a time-transformed Brownian motion; therefore, we can include all
such martingales in C.

But it is clear that the class of allowable martingales is much wider; e.g., in
[3] we used the martingale whose trajectories are of the form

Xt =


1 if t ≤ 1

t if 1 < t ≤ T
0 otherwise,
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where T ≥ 1 depends on the trajectory (we say “the” as this condition com-
pletely determines the distribution of the martingale’s trajectories). The infor-
mal arguments in the proofs of Propositions 2.1 and 3.1 could have been based
on this martingale rather than Brownian motion (analogously to the proof of
an analogous statement in [3]: cf. the end of the proof of Theorem 1 in [3]).

In general, we can extend C by adding to it all right-continuous martin-
gales Xt that never make upward jumps when they are positive, never make
downward jumps from strictly positive to strictly negative values, and such that
lim inft→∞Xt ≤ 0 or lim supt→∞Xt = ∞ almost surely. To see this, use the
standard martingale argument given in [11], Theorem 2.49. (We assume that
the first time when Xt reaches or crosses some level is a stopping time; this will
be the case for a reasonable choice of the definitions.)

Remark. A very informal picture inspired by the use of improper priors in
Bayesian statistics is that there is just one risk-neutral measure Q, with density
y−2 on (0,∞), and each probability distribution QX0

for X∗∞ is obtained from
Q by conditioning on the event X∗∞ ≥ X0.

ALAs and the Azéma–Yor solution to the Skorokhod em-
bedding problem

Let Xt, t ∈ [0,∞), be Brownian motion started at 0. Wald’s lemmas (see, e.g.,
[11], Theorems 2.44 and 2.48) say that if τ is a stopping time with E τ <∞, we
have EXτ = 0 and EX2

τ = E τ . The Skorokhod embedding problem goes in the
opposite direction: given a random variable ξ with E ξ = 0 and E ξ2 <∞, find a
stopping time τ such that Xτ is distributed as ξ and E τ <∞ (i.e., E τ = E ξ2).
For a recent review of solutions to the Skorokhod embedding problem, see [12].

The most well-known solution to the Skorokhod embedding problem is given
by Azéma and Yor [2]. It is based on the fact that if f is a C1 function,
the process f(X∗t ) + (Xt − X∗t )fr(X

∗
t ) is a local martingale. (For a definitive

generalization of this fact, see [13].) In other words, if F= is a C1 function, the
process F (X∗t , Xt), where F is defined by (5.2), is a local martingale. Therefore,
the Azéma–Yor solution is based on the notion of ALA in which our requirements
on a spine are replaced by the requirement that a spine should be a C1 function.

9 Insuring against loss of evidence

In this section we will apply our results about insuring against loss of capital
to the problem of insuring against loss of evidence. The latter problem was the
topic of [14] in the standard framework of measure-theoretic probability; we will
consider the more general framework of game-theoretic probability.

In game-theoretic probability (see, e.g., [15]) Sceptic tries to prove Forecaster
wrong by gambling against him: the values of Sceptic’s capital Kt measure the
changing evidence against Forecaster. We assume that Sceptic’s initial capital
is K0 = 1, and that Sceptic is required to ensure that Kt ≥ 0 at each time t.
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Sceptic can lose as well as gain evidence. At a time t when Kt is large
Forecaster’s performance looks poor, but then Ki for some later time i may be
lower and make Forecaster look better. Our result (a simple corollary of the
results of the previous sections) will show that, for a modest cost, Sceptic can
avoid losing too much evidence.

Suppose we exaggerate the evidence against Forecaster by considering not
the current value Kt of Sceptic’s capital but the greatest value so far: K∗t :=
maxs≤tKs. We will see that there are many functions F : [1,∞)→ [0,∞) such
that

1. F (y)→∞ as y →∞ almost as fast as y, and

2. Sceptic’s moves can be modified on-line in such a way that the modified
moves lead to capital

K′t ≥ F (K∗t ), t = 1, 2, . . . . (9.1)

If we are dissatisfied by the asymptotic character of the first of these two con-
ditions, which does not prevent K′t/Kt from becoming very small for some t, we
can compromise by putting a fraction c ∈ (0, 1) of the initial capital on Sceptic’s
original moves and the remaining fraction 1− c on the modified moves, thus ob-
taining capital cKt + (1− c)K′t at each time t. This way Sceptic may sacrifice a
fraction 1− c of his capital but gets extra insurance against losing evidence.

As we will see (in Corollary 9.1), the set of functions F for which (9.1) can
be achieved is exactly the set of all SLAs.

Our prediction protocol (Protocol 3) involves four players: Forecaster, Scep-
tic, Rival Sceptic, and Reality. The parameter of the protocol is a set X , from
which Reality chooses her moves; E is the set of all “outer probability con-
tents” on X (to be defined shortly). We always assume that X contains at least
two distinct elements. The reader who is not interested in the most general
statement of our result can interpret E as the set of all expectation functionals
E : f 7→

∫
fdP , P being a probability measure on a fixed σ-algebra on X ; in

this case Sceptic and Rival Sceptic are required to output functions that are
measurable w.r. to that σ-algebra.

Protocol 3 Competitive scepticism

K0 := 1 and K′0 := 1
for t = 1, 2, . . . do

Forecaster announces Et ∈ E
Sceptic announces ft ∈ [0,∞]X such that Et(ft) ≤ Kt−1

Rival Sceptic announces f ′t ∈ [0,∞]X such that Et(f ′t) ≤ K′t−1

Reality announces xt ∈ X
Kt := ft(xt) and K′t := f ′t(xt)

end for

In general, an outer probability content on X is a function E : RX → R
(where RX is the set of all functions f : X → R) that satisfies the following four
axioms:
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1. If f, g ∈ RX and f ≤ g, then E(f) ≤ E(g).

2. If f ∈ RX and c ∈ (0,∞), then E(cf) = cE(f).

3. If f, g ∈ RX , then E(f + g) ≤ E(f) + E(g).

4. For each c ∈ R, E(c) = c, where the c in parentheses is the function in RX
that is identically equal to c.

An axiom of σ-subadditivity on [0,∞]X is sometimes added to this list, but we
do not need it in this article. (And it is surprising how rarely it is needed in
general: see, e.g., [16].)

Remark. There is a dazzling array of terms that have been used in place of
our “outer probability contents”. In our terminology we follow [10] and [16].
Upper previsions studied in the theory of imprecise probabilities (see, e.g., [4])
are closely related to (but somewhat more restrictive than) outer probability
contents. Coherent risk measures introduced in [1] are essentially outer proba-
bility contents, but applied to −f in place of f . A lot of different terms have
been used by numerous authors developing [1].

Protocol 3 describes a perfect-information game in which Sceptic tries to
discredit the outer probability contents Et issued by Forecaster as a faithful
description of Reality’s xt ∈ X . On each round Sceptic and Rival Sceptic
choose gambles ft and f ′t on how xt is going to come out, and their resulting
capitals are Kt and K′t, respectively. Discarding capital is allowed, but Sceptic
and Rival Sceptic are required to ensure that Kt ≥ 0 and K′t ≥ 0, respectively;
this is achieved by requiring that ft and f ′t should be positive.

Corollary 9.1. Let F : [1,∞) → [0,∞) be an increasing function. In Proto-
col 3, Rival Sceptic can ensure (9.1) if and only if F is an SLA. More generally,
let c ∈ [0, 1). Rival Sceptic can ensure

K′t ≥ cKt + F (K∗t ), ∀t, (9.2)

if and only if F/(1− c) is an SLA.

The meaning of (9.1) and (9.2) when K∗t =∞ is provided by the usual conven-
tion F (∞) := limy→∞ F (y).

Proof. To establish the part “if”, notice that Protocol 3 reduces to Protocol 1
(with Sceptic corresponding to Market and Rival Sceptic to Investor). In the
latter, it is clear that any strategy for Investor ensuring (3.1) always chooses
pt ≥ 0. Fix such a strategy Π. It can be used by Rival Sceptic in Protocol 3: if
Sceptic’s move on round t is ft and his capital at the beginning of the round is
Kt−1 <∞ (so that Et(ft) ≤ Kt−1) and the strategy Π recommends move pt for
Investor, Rival Sceptic’s move should be

f ′t := K′t−1 + pt(ft −Kt−1). (9.3)
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We will have both Et(f ′t) ≤ K′t−1 and K′t = K′t−1 + pt(Kt −Kt−1).
The case Kt−1 = ∞ has to be considered separately. Let s ≤ t − 1 be the

first time when Ks =∞. If ps > 0, we have K′s =∞, and so we can set f ′i :=∞
for all i > s; in particular, K′t =∞. If ps = 0, we have c = 0 and K′s−1 ≥ F (∞);
therefore, (9.2) will hold if we set f ′i := 0 for all i ≥ s.

The part “only if” follows from Protocol 1 being a special case of Protocol 3.
(One way to embed Protocol 1 into Protocol 3 is to set X := [0,∞) and make
Forecaster output

Et(f) := inf{K | ∃p ∈ R ∀x ∈ X : K + p(x−Xt−1) ≥ f(x)}

on round t.)

We refrain from giving a similar restatement of Theorem 4.1.
It is easy to see that Algorithm 1 is applicable not only in the financial

context of Section 6 but also in the context of Protocol 3. Namely, on round t
of Protocol 3 Rival Sceptic should choose the move (9.3), where pt is output by
Algorithm 1.

In [14] we use a simple method based on Lévy’s zero-one law to prove a
result similar to Corollary 9.1 that can be used for insuring against loss of
evidence in measure-theoretic probability and statistics. As we explain there,
the value Kt of the capital process is the dynamic version of Bayes factors, and
its running maximum K∗t is the dynamic version of p-values; SLAs transform
inverse p-values into inverse Bayes factors.

Appendix A Details of the specific examples of
ALAs and ASLAs

In Section 2 we gave two examples of ASLAs, (2.7) and (2.8). In this appendix
we will find the corresponding measures, spines, and ALAs (cf. Figure 1). It will
be a good illustration of the absence at the top of Figure 1 of an arrow pointing
to the left, from “scaled ASLA” to “ALA”. To find the ALA corresponding to a
given scaled ASLA, we will have to move around the square via “measure” and
“spine”.

ASLAs and ALAs related to (2.7)

Let us first find the probability measure P on [1,∞] corresponding to the ASLA
F defined by (2.7). Using (5.1) we find Q([1, y]) = αy1−α for all y ∈ [1,∞), and
so Q gives weight α to 1 and has density α(1−α)y−α over (1,∞). Therefore, P
gives weight α to 1 and has density α(1− α)y−1−α over (1,∞); it is clear that
it gives weight 0 to ∞. Now we can find

P ((X,∞]) =

∫ ∞
X

α(1− α)y−1−αdy = (1− α)X−α. (A.1)
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We can see that the distribution function of the probability measure P is
P ([1, X]) = 1− (1− α)X−α, X ≥ 1.

The spine corresponding to the F defined by (2.7) has an even simpler ex-
pression: using (A.1) and (5.4), we obtain

F=(X) = F (X) +XP ((X,∞]) = αX1−α +X(1− α)X−α = X1−α.

In Section 3 we implicitly considered the ALAs corresponding to the proba-
bility measure Pc := (1− c)P + cδ∞, where c ∈ [0, 1] and δ∞ is the probability
measure on [1,∞] that is concentrated at ∞. The corresponding spine is

F=(X) = (1− c)X1−α + cX,

and so, by (5.2), the corresponding ALA is

F (X∗, X) = (1− c)(X∗)1−α + cX∗ +
(
(1− c)(1− α)(X∗)−α + c

)
(X −X∗)

= cX + (1− c)α(X∗)1−α + (1− c)(1− α)(X∗)−αX;

cf. (3.5).

ASLAs and ALAs related to (2.8)

Let us now find the probability measure P on [1,∞] and the spine F= corre-
sponding to (2.8). Since Q([1, y]) = α(1 + α)αy ln−1−α y when y ∈ [e1+α,∞)
and Q([1, y]) = 0 otherwise, we obtain that Q({e1+α}) = α

1+αe
1+α and that

over (e1+α,∞) the measure Q is absolutely continuous with density q(y) :=
α(1 + α)α ln−1−α y − α(1 + α)1+α ln−2−α y. Therefore, P ({e1+α}) = α

1+α and

over (e1+α,∞) the probability measure P is absolutely continuous with density
q(y)/y. For any X ≥ e1+α we now obtain

P ((X,∞)) = α(1 + α)α
∫ ∞
X

ln−1−α y

y
dy − α(1 + α)1+α

∫ ∞
X

ln−2−α y

y
dy

= (1 + α)α ln−αX − α(1 + α)α ln−1−αX.

Equation (5.4) now gives, for X ≥ e1+α,

F=(X) = α(1 + α)αX ln−1−αX + (1 + α)αX ln−αX − α(1 + α)αX ln−1−αX

= (1 + α)αX ln−αX.

For X < e1+α, the same equation gives F=(X) = X. Therefore,

F=(X) =

{
(1 + α)αX ln−αX if X ≥ e1+α

X otherwise.

This function satisfies the first condition in the statement of Theorem 4.1 by
definition; it is also easy to check directly (notice that X ln−αX is concave only
over (e1+α,∞)).
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