
Lambda-Free Logical FrameworksI

Robin Adamsa

aRoyal Holloway, University of London

Abstract

We present the definition of the logical framework TF, the Type Framework.
TF is a lambda-free logical framework; it does not include lambda-abstraction
or product kinds. We give formal proofs of several results in the metatheory of
TF, and show how it can be conservatively embedded in the logical framework
LF: its judgements can be seen as the judgements of LF that are in beta-normal,
eta-long normal form. We show how several properties, such as the injectivity
of constants and the strong normalisation of an object theory, can be proven
more easily in TF, and then ‘lifted’ to LF.

Key words: logical framework, type theory, lambda-free
2000 MSC: 03B15, 03B22, 03B35, 03B70, 68T15

1. Introduction

A logical framework is a typing system intended as a meta-language for the
specification of other formal systems, which may themselves be type theories
or other systems of logic, such as predicate logic. Traditionally, logical frame-
works are based on a typed lambda calculus; variable binding is represented
by lambda-abstraction in the framework, and substitution by application in the
framework. The correspondence between the object theory and its representa-
tion in the framework is not exact: each entity of the object theory is represented
by more than one object in the framework — typically, βη-convertible objects
represent the same entity of the object theory — and there are objects in the
framework (such as partially applied meta-functions) that do not correspond
to any entity of the object theory. It is therefore necessary to prove adequacy
theorems establishing the relationship between an object theory and its rep-
resentation in a logical framework; and these theorems are notoriously often
difficult to prove.

ICorresponding address: Department of Computer Science, Royal Holloway, University of
London, Egham Hill, Egham, Surrey. TW20 0EX. England. Tel.: +44 1784 443421. Fax:
+44 1784 439786. Email robin@cs.rhul.ac.uk
This research was supported by the UK EPSRC research grant Pythagoras GR/R84092,
the EU Framework VI grant TYPES 510996, and the UK EPSRC research fellowship
EP/D066638/1.

Preprint submitted to Elsevier November 7, 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28896367?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

It is possible to construct a logical framework that does not employ all the ap-
paratus of the lambda calculus. We can construct logical frameworks that do not
make use of abstraction and substitution, but instead involve only parametrisa-
tion and the instantiation of parameters. We shall call these lambda-free logical
frameworks. They can be seen as frameworks that only use β-normal, η-long
normal forms. Lambda-free frameworks provide a more faithful representation
of an object theory — there is a one-to-one correspondence between the objects
of the framework and the terms and types of the object theory. Because of this,
many results including adequacy theorems are easier to prove in a lambda-free
framework.

It is often possible to embed a lambda-free framework L within a traditional
framework F ; that is, to provide a translation from L into F such that the
derivable judgements of L map onto exactly the derivable judgements of F that
are in normal form. F can then be seen as a conservative extension of L. Once
this embedding has been established, we can ‘lift’ results from L to F ; that is,
we can prove a result for L, and then deduce that the corresponding result holds
for F as a corollary.

There is a price to be paid for using a lambda-free framework: the early
metatheoretic results are much more difficult to establish, as is the soundness
of the embeddings discussed above. But this is a ‘one-time’ cost; once this price
has been paid, it is comparatively easy to prove many results in the lambda-free
framework, and then lift them to the traditional frameworks.

1.1. Background and Outline
The term ‘lambda-free logical framework’ was first use to describe the frame-

work PAL+ [1], which uses parametrisation and definitions as its basic notions
rather than lambda-abstraction. In PAL+, however, it is possible to form ab-
stractions (using parametric definition) that can then be applied to objects.

We are using the phrase ‘lambda-free logical framework’ in a stricter sense,
to describe a framework which does not permit abstractions to be applied to
objects, and which therefore contain no framework-level notion of reduction. We
shall use the phrase ‘traditional framework’ throughout this paper to denote a
logical framework that is not lambda-free, such as the Edinburgh LF [2] or
Martin-Löf’s Logical Framework [3]. When we represent a formal system S
within a logical framework F , the system S is referred to as the object theory.

The framework TF first appeared in an unpublished note by Aczel [4]. It was
developed by myself in my thesis [5]. In particular, I introduced the set of arities
to organise the grammar, and made explicit the definition of instantiation.

In Section 2, we give the formal definition of TF, and describe how a type
theory may be specified in TF. In Section 3, we begin to prove the metatheoretic
properties of TF. We would like to prove that these properties hold under an
arbitrary type theory specification in TF. However, for most of the properties
considered in Section 3, we are at present only able to prove them for two large
classes of specifications — those with no equation declarations, and those which

2

do not involve variables of order 2 or higher1. The proofs are given in Section
3, with the more technical proofs given in the Appendix.

In Section 4, we describe a second lambda-free logical framework TFk, which
is a Church-typed version of TF; that is, the bound variables are labelled with
their kinds. We define translations between TF and TFk in Section 4. It is
often very convenient to have these two versions of TF available, and to be able
to move between them at will.

In Section 5, we show how TF may be embedded in LF, a Church-typed
version of Martin-Löf’s Logical Framework [6]. We do so by defining a trans-
lation from TFk to LF and from LF to TF, taking advantage of the results of
Section 4. We show how this embedding allows results to be lifted ; that is, a
result may be proven to hold for TF, and the fact that it holds for LF follows as
an easy corollary. We demonstrate this for two results: the injectivity of type
constructors, and strong normalisation of an object theory.

In Section 6, we describe two other frameworks that have appeared in the
literature which are lambda-free logical frameworks in the stricter sense: the
Concurrent Logical Framework (Concurrent LF) [7, 8] and DMBEL [9, 10].
In both of these frameworks, abstractions may be formed, and a constant or
variable may be applied to an abstraction, but abstractions may not themselves
be applied to objects.

Each of these may be conservatively embedded in TF. That is, we can find a
subsystem S of TF such that there exist bijective translations between Concur-
rent LF and S, and such that TF is a conservative extension of S. Likewise, we
can find a subsystem S′ such that there exist bijective translations between DM-
BEL and S′, and such that TF is a conservative extension of S′. It is possible to
find many such subsystems of TF, which all extend one another conservatively;
this idea, called a ‘modular hierarchy of logical frameworks’, was described in
Adams [11] and the formal details given in Adams [5]. We give the details in
the case of Concurrent LF and DMBEL in Section 6.

Abbreviation. Throughout this paper, the phrase ‘induction hypothesis’ shall
be abbreviated to ‘i.h.’.

2. The Type Framework TF

We present our first example of a lambda-free framework, the Type Frame-
work TF. The framework TF includes nothing but what is essential for repre-
senting an object theory. In particular, it contains neither lambda-abstraction
nor local definition; its basic concepts are parametrisation, the instantiation of
parameters, and the declaration of equations.

1In Adams [5], the properties in Section 3 were claimed to hold under an arbitrary speci-
fication, but a mistake has since been found in the proof.

3

2.1. Grammar
2.1.1. Arities

We begin by introducing the set of arities, with which we shall organise the
syntax of TF.

The arities are defined inductively thus:

If α1, . . . , αn are arities, then (α1, . . . , αn) is an arity.

The base case of this definition is the case n = 0, yielding the arity (), which
we shall write as 0. The next arities that can be formed are

n︷ ︸︸ ︷
(0, . . . ,0)

for positive n; we shall write this arity as n. The next arities that can be formed
are (n1, . . . ,nk), and so forth.

The intuition behind the arities is that an (α1, . . . , αn)-ary function is a
function that takes n arguments — namely an α1-ary function, . . . , and an
αn-ary function — and returns an entity (term or type) of the object theory.
In particular, a 0-ary (or base) function is just an entity of the object theory;
a 2-ary function is a binary operation on the entities of the object theory; and
so forth.

We denote by α̂ β the concatenation of the two arities α and β:

(α1, . . . , αm)̂ (β1, . . . , βn) ≡ (α1, . . . , αm, β1, . . . , βn) .

We also ascribe an order to each arity as follows:

• The only 0th-order, or base, arity is 0.

• If the highest order among the arities α1, . . . , αn is k, then (α1, . . . , αn)
is a k + 1st-order arity.

For example, the first-order arities are those of the form n for positive n, and
the second-order arities are those of the form (n1, . . . ,nk) where at least one ni
is positive.

We say the arity α is a subarity of the arity β if α occurs inside β. We say
α is a proper subarity of β if α is a subarity of β and α 6≡ β.

2.2. Objects
The objects of TF are expressions intended to represent the terms and types

of the object theory. They are built up from variables and constants, to each of
which is assigned an arity. The constants shall be used for the type constructors
and term constructors of the object theory. The variables shall be used as the
variables of the object theory.

4

The set of objects is defined by the following inductive definition:

If z is an α-ary constant or variable, where

α ≡ ((α11, . . . , α1r1), . . . , (αn1, . . . , αnrn
)) ,

then
z[[x11, . . . , x1r1]M1, . . . , [xn1, . . . , xnrn

]Mn] (1)

is an object, where each xij is an αij-ary variable, and each Mi an
object. Each xij is bound within the corresponding object Mi, and
we identify objects up to α-conversion.

The base case of this definition is that, if z is a base variable or constant
(that is, a 0-ary variable or constant), then z[] is an object; we shall henceforth
write this object as just z. Likewise, if z is an n-ary variable or constant, then
z[[]M1, . . . , []Mn] is an object for any objects M1, . . . , Mn; we shall write this
object simply as z[M1, . . . ,Mn].

The subexpressions of the object (1) such as [x1, . . . , xr]M are not first-
class entities of TF; they cannot occur except as arguments to some variable
or constant z. Nevertheless, it shall be convenient to have some way of refer-
ring to these pieces of raw syntax. We shall therefore introduce the following
terminology:

• An (α1, . . . , αn)-ary variable sequence is a sequence of n distinct variables
〈x1, . . . , xn〉, where xi has arity αi.

• An α-ary abstraction is an expression of the form [~x]M , where ~x is an
α-ary variable sequence, and M an object. We take each member of ~x
to be bound within this abstraction, and identify abstractions up to α-
conversion.

• An (α1, . . . , αn)-ary abstraction sequence is a sequence 〈F1, . . . , Fn〉, where
Fi is an αi-ary abstraction.

Thus, an object has the form z[~F], where z is an α-ary variable or constant,
and ~F an α-ary abstraction sequence. We shall often write this object as just
z ~F .

We note that the only expressions that can occur as arguments to a symbol
are abstractions. In the situations where we would naturally wish to write a
variable or constant in an argument position, we instead write its η-long form.

Definition 2.1 (η-long Form). Given any α-ary variable or constant z, the
η-long form zη of z is the α-ary abstraction defined by recursion on α as follows:

If α ≡ (α1, . . . , αn), then

zη ≡ [x1, . . . , xn]z[xη1 , . . . , x
η
n] ,

where each xi is an αi-ary variable. (By α-conversion, it does not matter which
variables we choose.)

5

2.3. Hereditary Substitution and Employment
We cannot use the familiar operation of substitution in TF. The result of

substituting an abstraction [~y]M for the variable x in the object x~F is not an
object of TF; rather, it would be a β-redex.

Instead, we introduce an operation that we name instantiation. The op-
eration of instantiating an abstraction F for a variable x can be thought of
as substituting F for x, then reducing to normal form (that is, β-normal,
η-long form). However, we note that the definition does not use any notion
of reduction.

Definition 2.2 (Instantiation). Given an α-ary abstraction F , an α-ary vari-
able x, and an object N , the object {F/x}N , the result of instantiating F for
x in N , is defined by recursion firstly on the arity α, secondly on the object N ,
as follows:

{F/x}z[G1, . . . , Gn] ≡ z[{F/x}G1, . . . , {F/x}Gn] (z 6≡ x)

If F ≡ [t1, . . . , tn]P , then

{F/x}x[G1, . . . , Gn] ≡ {{F/x}G1/t1} · · · {{F/x}Gn/tn}P .

We assume here, through α-conversion, that no ti occurs free in any Gj .

We shall also introduce a notational convention that shall play the role of
abstraction: if x is an α-ary variable and F a β-ary abstraction, then [x]F is an
(α)̂β-ary abstraction, defined by

[x][y1, . . . , yn]M ≡ [x, y1, . . . , yn]M .

Finally, we define an operation, which we shall call employment, to play the
role usually taken by application. The result of employing F on G, denoted
F • G, can be thought of as the normal form of the application FG. The
definition is:

Definition 2.3 (Employment). Given an (α)̂β-ary abstraction [x]F and an
α-ary abstraction G, the β-ary abstraction F •G, the result of employing [x]F
on G, is defined by

([x]F) •G ≡ {G/x}F .

We have used our newly introduced notation [x]M in this definition; written
out in full, the above equation is

([x, y1, . . . , yn]M) •G ≡ [y1, . . . , yn]{G/x}M .

We shall abbreviate the repeated use of employment as follows: if ~G is the
abstraction sequence 〈G1, . . . , Gn〉, then F • ~G abbreviates F •G1 •G2 • · · · •Gn,
that is,

((· · · (F •G1) •G2) • · · ·) •Gn .

6

Remark. We note that there is a strong correspondence between our syntax and
the simply-typed lambda calculus. Our arities correspond to the types of the
simply-typed lambda calculus, and our abstractions to the terms. Instantiation
corresponds to the strategy of innermost reduction. Thus, the fact that our
definition of instantiation is total corresponds to the fact that the simply-typed
lambda calculus is weakly normalisable.

2.4. Kinds
A base kind in TF is either the symbol Type, or has the form El (A) for some

object A. The intention is that each type T of the object theory is represented
by an object [[T]] of kind Type; the terms of type T are then represented by
the objects of kind El ([[T]]).

In addition to these, we introduce a set of α-ary product kinds for every arity
α. These shall be used to give kinds to the variables and constants of higher
arity. The definition is by recursion on α:

An (α1, . . . , αn)-ary product kind is an expression of the form

(x1 : K1, . . . , xn : Kn)T (2)

where the xis are distinct variables, xi being of arity αi; each Ki is
an αi-ary product kind; and T is a base kind.

We take each variable xi to be bound within Ki+1, Ki+2, . . . , Kn and T in this
product kind, and identify product kinds up to α-conversion.

The intuition is that the kind (2) represents the collection of functions
that take n arguments — namely F1 of kind K1, F2 of kind {F1/x1}K2, . . . ,
and Fn of kind {F1/x1, . . . , Fn−1/xn−1}Kn — and returns an object of kind
{F1/x1, . . . , Fn/xn}T .

If K ≡ (x1 : K1, . . . , xn : Kn)T , then we shall write (y : J)K for
(y : J, x1 : K1, . . . , xn : Kn)T .

Just as with abstractions, so the product kinds of non-zero arity are not
considered first-class entities of TF; only the base kinds are. We shall however
make use of the higher product kinds to give kinds to the variables and constants
of higher arity. We shall even talk of an abstraction being a member of a product
kind; however, this shall not be represented by a primitive judgement form of
TF.

Contexts. A context Γ in TF is a sequence of the form:

x1 : K1, . . . , xn : Kn

where the xis are distinct variables, and each xi has the same arity as the
corresponding product kind Ki. If each xi has arity αi, we say the context Γ
has arity (α1, . . . , αn), and its order o(Γ) is then the order of (α1, . . . , αn). The
variable sequence 〈x1, . . . , xn〉 is called the domain of the context Γ, dom Γ.

Thus, an α-ary kind has the form (Γ)T , where Γ is an α-ary context and T
a base kind.

7

2.5. Judgement Forms
There are three primitive judgement forms in TF:

Γ valid
Γ ` M : T
Γ ` M = N : T

where Γ is a context, M and N are objects, and T is a base kind. These are
intended to express that Γ is a valid context; that the object M has kind T
under the context Γ; and that the objects M and N are equal objects of kind
T under Γ, respectively.

We now introduce defined judgement forms to deal with the abstractions
and product kinds of higher arity:

Γ K kind; Γ K = K ′; Γ F : K; Γ F = G : K .

Each of these judgements is defined to be a set of primitive judgements. We
shall always use the double turnstile to indicate a defined judgement form.

For any base kind T , the defined judgement Γ T kind is defined as follows:

(Γ Type kind) = {Γ valid}
(Γ El (A) kind) = {Γ ` A : Type}

For any α-ary product kind K, the judgement Γ K kind is defined by:

(Γ (∆)T kind) = (Γ,∆ T kind) .

Equality of base kinds is defined by:

(Γ Type = Type) = {Γ valid}
(Γ El (A) = El (B)) = {Γ ` A = B : Type}

We leave ‘Γ Type = El (B)’ and ‘Γ El (A) = Type’ undefined.
Equality of product kinds and contexts is defined recursively by

(Γ (∆)T = (∆′)T ′) = (Γ ∆ = ∆′) ∪ {Γ T = T ′}

(Γ 〈〉 = 〈〉) = {Γ valid}
(Γ ∆, x : K = ∆′, x : K ′) = (Γ ∆ = ∆′) ∪ (Γ,∆ K = K ′)

For example, the defined judgement Γ (x : A)B = (x : C)D is defined to
be the set

{Γ valid, Γ ` A = C : Type, Γ, x : A ` B = D : Type} .

The judgement Γ (x : A)B = (x : C)Type is undefined.

8

We introduce defined judgement forms Γ F : K and Γ F = G : K for
the inhabitation of a product kind K by an abstraction F , and the equality of
two abstractions F and G of product kind K; here, F , G and K must all have
the same arity.

(Γ [~x]M : (∆)T) = {Γ,∆ `M : T}
(Γ [~x]M = [~x]N : (∆)T) = {Γ,∆ `M = N : T}

We assume here that we have applied α-conversion to ensure that the same
variable sequence ~x is used in both [~x]P and [~x]Q, and is also the domain of the
context ∆.

Finally, we introduce judgement forms

• Γ ~F :: ∆, denoting that ~F satisfies the context ∆; that is, ~F is a
sequence of abstractions whose kinds are those given by the context ∆;

• Γ ~F = ~G :: ∆, denoting that ~F and ~G are two equal abstraction
sequences that satisfy ∆.

The judgement forms are defined as follows:

(Γ 〈〉 :: 〈〉) = {Γ valid}
(Γ ~F , F0 :: ∆, x : K) = (Γ ~F :: ∆) ∪ (Γ F0 : {~F/∆}K)

Γ 〈〉 = 〈〉 :: 〈〉 = {Γ valid}
Γ (~F , F0) = (~G,G0) :: (∆, x : K)

= (Γ ~F = ~G :: ∆) ∪ (Γ F0 = G0 : {~F/∆}K)

2.6. Rules of Deduction
We are finally able to give the rules of deduction of TF. They are listed in

Figure 1. They consist of the rules (emp) and (ctxt) determining when a context
is valid; (var) and (var eq), the typing and congruence rules for the application of
a variable; (ref), (sym) and (trans), which ensure that the judgemental equality
is an equivalence relation; and (conv) and (conv eq), which ensure that equal
kinds have the same objects.

We note in passing how few rules there are compared to logical frameworks
of similar expressiveness such as LF [6] and ELF [2]. In particular, the two rules
(var) and (var eq) do all the work normally done by the rules governing typing
and congruence of applications and abstractions, and β- and η-contractions. We
have shifted this burden from the rules of deduction to the syntax.

2.6.1. Type Theory Specifications
An object theory is represented in TF by extending the logical framework

with several new rules of deduction, representing the formation of the terms and
types of the object theory and the computation rules of the object theory.

9

(emp ctxt) 〈〉 valid

(ctxt)
Γ K kind

Γ, x : K valid
(x /∈ dom Γ)

(var)
Γ ~F :: ∆

Γ ` x~F : {~F/∆}T
(x : (∆)T ∈ Γ)

(var eq)
Γ ~F = ~G :: ∆

Γ ` x~F = x~G : {~F/∆}T
(x : (∆)T ∈ Γ)

(ref)
Γ `M : T

Γ `M = M : T

(sym)
Γ `M = N : T

Γ ` N = M : T

(trans)
Γ `M = N : T Γ ` N = P : T

Γ `M = P : T

(conv)
Γ `M : El (A) Γ ` A = B : Type

Γ `M : El (B)

(conv eq)
Γ `M = N : El (A) Γ ` A = B : Type

Γ `M = N : El (B)

Figure 1: Rules of Deduction of TF

10

Formally, a type theory specification in TF is a set of declarations, of two
possible forms:

• constant declarations of the form

c : K

where c is a constant and K a kind of the same arity; and

• equation declarations of the form

(∆)(M = N : T)

where ∆ is a context, M and N objects and T a base kind.

The intention is that the constant declarations represent the term- and type-
constructors of the object theory, and the equation declarations represent the
computation rules of the object theory.

Making the constant declaration c : (∆)T has the effect of adding the follow-
ing two rules of deduction to the framework (c.f. the rules (var) and (var eq)):

(const)
Γ ~F :: ∆

Γ ` c ~F : {~F/∆}T
(const eq)

Γ ~F = ~G :: ∆

Γ ` c ~F = c ~G : {~F/∆}T

Making the equation declaration (∆)(M = N : T) has the effect of adding
the following rule to the framework:

(eq)
Γ ~F :: ∆

Γ ` {~F/∆}M = {~F/∆}N : {~F/∆}T

We define the order o(δ) of a declaration as follows: the order of c : K is
the order of K, and the order of (∆)(M = N : T) is the order of ∆. The order
o(T) of a type theory specification T is the largest n such that T contains a
declaration of order n, or ω if there is no such maximum.

2.7. Representing Object Theories in TF
TF is intended for representing type theories that have judgements of the

following forms:

x1 : A1, . . . , xn : An ` M : B (3)
x1 : A1, . . . , xn : An ` M = N : B (4)

Given such a type theory T that we wish to represent in TF, we begin by
forming the appropriate specification. There will be one constant declaration
for each constructor in the grammar of T , and one equation declaration for each
computation rule in T .

11

We make these declarations in such a way that:

• the objects of kind Type correspond to the types of T ;

• if the object M : Type corresponds to the type A, then the objects of
kind El (M) correspond to the terms of type A;

• the judgements of T of the form (2.7) correspond to the TF judgements
of the form

x1 : El (A1) , . . . , xn : El (An) `M : El (B) ; (5)

• the judgements of T of the form (2.7) correspond to the TF judgements
of the form

x1 : El (A1) , . . . , xn : El (An) `M = N : El (B) . (6)

To specify type theories such as the Calculus of Constructions [12], ECC
[6] or Martin-Löf’s Type Theory without W-types [3] requires a second-order
specification. To specify Martin-Löf’s Type Theory with W-types requires a
third-order specification. To specify UTT [6] requires a specification of order ω.
These examples are described in more detail in Adams [5].

Note that the judgements of TF that represent the judgements of the ob-
ject theory, those of form (5) or (6), have first-order contexts. This will be
important in the following section. For many of the metatheoretic properties
we investigate, we shall be able to prove that they hold for judgements with
first-order contexts, but they have not yet been proved to hold for judgements
with contexts of order ≥ 2.

3. Metatheory

We can now begin to investigate the metatheoretical properties of this sys-
tem. Many of these properties are more difficult to prove than the correspond-
ing properties of a traditional logical framework; in particular, it is often the
case that several properties need to be established simultaneously by a single
induction. This should be seen as the ‘one-time’ cost of using a lambda-free
framework.

3.1. Grammar
We begin by demonstrating some properties of the operations of instantiation

and employment. Many of them are analogous to properties of substitution in
more familiar languages; we shall point out these analogies as we proceed.

12

Lemma 3.1 Let FV (X) denote the set of free variables in the object or ab-
straction X.

1. FV ({F/x}N) ⊆ (FV (N) \ {x}) ∪ FV (F)
2. FV (F •G) ⊆ FV (F) ∪ FV (G).

Proof. Part 1 is proved by induction on the object N . Part 2 follows directly.

The following is the analogue of the result that, if x is not free in N , then
[M/x]N ≡ N .

Lemma 3.2 If x does not occur free in M , then

{F/x}M ≡M .

Proof. This is easily proven by induction on the object M .

Part 1 of the next lemma is the analogue of the famous Substitution Lemma.

Lemma 3.3 Let α, β and γ be arities. Let F be an α-ary abstraction, G a
β-ary abstraction, and H a (β)̂ γ-ary abstraction. Let x be an α-ary variable
and y a β-ary variable, with x 6≡ y. Let M be an object.

1. If x and y are distinct variables, and y does not occur free in M , then

{F/x}{G/y}M ≡ {{F/x}G/y}{F/x}M .

2. {F/x}(H •G) ≡ ({F/x}H) • {F/x}G.

Proof. Both parts are proved simultaneously by induction on the sum of the
orders of α and β.

Part 1 of the next lemma is the analogue of the fact that [M/x]x ≡M . Part
3 is the analogue of the fact that [x/x]M ≡M .

Lemma 3.4 Let α be an arity.

1. For any α-ary variable x and α-ary abstraction F , {F/x}xη ≡ F .
2. For any α-ary variable x and α-ary abstraction sequence ~F , xη • ~F ≡ x~F .
3. For any α-ary variable x and object M , {xη/x}M ≡M .

Proof. The three parts are proven simultaneously by induction on α. Part 3
requires a secondary induction on the object M .

13

3.2. Metatheoretic Properties
The following results are true in TF.

Theorem 3.5

1. (Context Validity) Every derivation of a judgement of the form Γ,∆ ` J
has a subderivation of Γ valid.

2. Every derivation of Γ, x : K,∆ ` J has a subderivation of Γ K kind.
3. If Γ ` J is derivable, then every free variable in the judgement body J is

in the domain of Γ.
4. If Γ, x : K,∆ valid, then every free variable in K is in the domain of Γ.
5. (Weakening) If Γ ` J , Γ ⊆ ∆ and ∆ valid, then ∆ ` J .
6. (Generation) If Γ ` x~F : T , then there is a declaration x : (∆)S in Γ,

where
Γ ~F :: ∆, Γ {~F/∆}S = T .

7. (Generation) If Γ ` c ~F : T , then a constant declaration c : (∆)S has
been made, where

Γ ~F :: ∆, Γ {~F/∆}S = T .

8. If Γ `M : T and Γ `M : T ′, then Γ T = T ′.

Proof. The first 7 parts are each proved by a simple induction on derivations.
Part 8 follows easily from parts 6 and 7.

The other metatheoretic properties of TF are very difficult to establish. We
have not been able to prove the following properties in full generality, but only
under a set of restrictions on the type theory specification and context.

Definition 3.6 (Good Specification). Let T be a type theory specification
in TF.

1. We say that T is orderable iff there exists a well-ordering ≺ on the decla-
rations of T such that:
(a) For every constant declaration δ ≡ (c : (∆)T), it is possible to derive

∆ T kind using only the declarations δ′ such that δ′ ≺ δ.
(b) For every equation declaration δ ≡ (∆)(M = N : T), it is possible

to derive ∆ ` M : T , ∆ ` N : T and ∆ T kind using only the
declarations δ′ such that δ′ ≺ δ.

2. We say that T is n-good iff, whenever Γ is a context of order ≤ n and
Γ `M = N : T , then Γ `M : T and Γ ` N : T .

3. We say that T is good iff T is n-good for every natural number n.

14

It is difficult to find general conditions under which we can prove that a
specification is good. So far, we are able to do so for two large classes of
specifications:

Theorem 3.7

1. If T contains no equation declarations, then T is good.
2. If T is orderable and o(T) ≤ 2, then T is 2-good.

Proof.

1. A simple proof by induction on derivations shows that, whenever Γ `M =
N : T , then M ≡ N and Γ `M : T .

2. See Appendix B.

Theorem 3.8 Let T be a type theory specification. Suppose T is n-good, and
Γ, x : K,∆ is a context of order ≤ n.

1. (Cut) If Γ, x : K,∆ ` J and Γ F : K then Γ, {F/x}∆ ` {F/x}J .
2. (Functionality) If Γ, x : K,∆ ` M : T and Γ F = G : K then

Γ, {F/x}∆ ` {F/x}M = {G/x}M : {F/x}T .
3. (Context Conversion) If Γ, x : K,∆ ` J and Γ K = K ′ then Γ, x :
K ′,∆ ` J .

Proof. See Appendix A.

Once we have got past this hurdle, other properties of TF follow rapidly.

Theorem 3.9 (Type Validity) Suppose that T is an n-good specification,
and

• for every constant declaration c : K in T , we have K kind;

• for every equation declaration (∆)(M = N : T) in T , we have ∆ T kind.

Then, whenever o(Γ) ≤ n, if Γ ` M : El (A) or Γ ` M = N : El (A), we have
Γ ` A : Type.

Proof. The proof is by induction on derivations. The cases (const) and
(const eq) use the first hypothesis with Cut and Functionality respectively. The
case (eq) uses the second hypothesis with Cut. The other cases are all trivial.

Theorem 3.10 (Kind Validity) Suppose T is n-good and o(Γ) ≤ n. Then
the following rules are admissible.

Γ F : K

Γ K kind

Γ F = G : K

Γ K kind

Proof. Both rules are proved admissible simultaneously by induction on the
derivation of the premise. The case of the rule (var eq) requires Equation Va-
lidity.

15

4. The Church-Typed TF

The version of TF we have described is Curry-typed ; that is, the bound vari-
ables in abstractions are not annotated with their kinds. We can also construct
a Church-typed version of TF, in which objects have the form

z[[x11 : K11, . . . , x1r1 : K1r1]M1, . . . , [xn1 : Kn1, . . . , xnrn
: Knrn

]Mn] .

We shall call the Church-typed version of TF by the name TFk
2. In this section,

we shall give the definition of TFk, prove its metatheoretic properties, and
define mutually inverse translations between TF and TFk that show that the
two systems are in some sense equivalent.

It is very convenient to have available two versions of a lambda-free logical
framework, and to be able to switch between them at will. For example, when
embedding a lambda-free framework in a traditional framework, it is easier to
define translations into the Curry-typed version, and from the Church-typed
version. We shall be in just this situation when we come to embed TF in LF.

4.1. Grammar
In TFk, the sets of objects, abstractions, abstraction sequences, contexts and

kinds are all defined simultaneously as follows.

Objects An object has the form z ~F , where z is an α-ary variable or constant
and ~F an α-ary abstraction sequence, for some arity α.

Abstractions An α-ary abstraction has the form [∆]M , where ∆ is an α-ary
context and M an object.

Abstraction Sequences An (α1, . . . , αn)-ary abstraction sequence has the
form 〈F1, . . . , Fn〉, where each Fi is an αi-ary abstraction.

Contexts An (α1, . . . , αn)-ary context has the form x1 : K1, . . . , xn : Kn,
where each xi is an αi-ary variable and Ki an αi-ary kind, with the xis
all distinct.

Kinds An α-ary kind has the form (∆)Type or (∆)El (M), where ∆ is an
α-ary context and M an object.

In an abstraction [x1 : K1, . . . , xn : Kn]M or a kind (x1 : K1, . . . , xn : Kn)T ,
each variable xi is bound wherever it occurs in Ki+1, Ki+2, . . . , Kn, and M .
We identify all these expressions up to α-conversion.

The η-long form of a symbol in TFk must be defined with reference to some
kind. For z an α-ary variable or constant and K an α-ary kind, we define the

2The ‘k’ here stands for ‘kind’, as we include the kind labels in abstractions. This system
was named TFc in Adams [5], the ‘c’ standing for ‘Church’. I have decided to abandon this
name, as ‘c’ could just as well stand for ‘Curry’ !

16

α-ary abstraction zK , the η-long form of z considered as being of kind K, by
recursion on α as follows.

z(x1:K1,...,xn:Kn)T ≡ [x1 : K1, . . . , xn : Kn]z[xK1
1 , . . . , xKn

n] .

The definitions of instantiation and employment in TFk are very similar to
those in TF.

{F/x}z[G1, . . . , Gn] ≡ z[{F/x}G1, . . . , {F/x}Gn] (z 6≡ x)

If F ≡ [t1 : K1, . . . , tn : Kn]M ,

{F/x}x[G1, . . . , Gn] ≡ {{F/x}G1/t1} · · · {{F/x}Gn/tn}M
([x : K]F) •G ≡ {G/x}F

As in TF, there are three primitive judgement forms in TFk:

Γ valid Γ `M : T Γ `M = N : T

where Γ is a context, M and N objects and T a base kind.
We define the judgement forms Γ K kind, Γ K = K ′ and Γ ∆ = ∆′

just as we did for TF.
The judgement form Γ F : K, where F is an α-ary abstraction and K an

α-ary kind, is defined as follows.

(Γ [∆]M : (∆′)T) = (Γ ∆′ = ∆) ∪ {Γ,∆′ `M : T} .

The judgement form Γ F = G : K, where F and G are α-ary abstractions
and K an α-ary kind, is defined as follows.

(Γ [∆1]M = [∆2]N : (∆3)T)
= (Γ ∆3 = ∆1) ∪ (Γ ∆3 = ∆2) ∪ {Γ,∆3 `M = N : T}

The judgement form Γ ~F :: ∆, where ~F is an α-ary abstraction sequence and
∆ an α-ary context, is defined by recursion on α as follows.

(Γ 〈〉 :: 〈〉) = {Γ valid}
(Γ ~F , F0 :: ∆, x : K) = (Γ ~F :: ∆)

∪(Γ F0 : {~F/∆}K)

The judgement form Γ ~F = ~G :: ∆, where ~F and ~G are α-ary abstraction
sequences and ∆ an α-ary context, is defined by recursion on α as follows.

(Γ 〈〉 = 〈〉 :: 〈〉) = {Γ valid}
(Γ ~F , F0 = ~G,G0 :: ∆, x : K) = (Γ ~F = ~G :: ∆)

∪(Γ F0 = G0 : {~F/∆}K)

17

Rules of Deduction. The rules of deduction of TFk look exactly the same as
those of TF, as given in Fig. 1. The rules (ctxt), (var) and (var eq) of course
use the new definitions of the defined judgement forms Γ K kind, Γ ~F :: ∆
and Γ ~F = ~G :: ∆.

Object theories are declared in TFk in the same way as in TF: we make a
number of constant declarations c : (∆)T , which has the effect of introducing the
rules (const) and (const eq), and equation declarations (∆)(M = N : T), which
has the effect of introducing the rule (eq), as given in Section 2.6.1. Again, in
TFk these rules use the new definitions of the defined judgement forms.

Metatheory. All the properties of TF we proved in Section 3 hold in TFk too.
The proofs follow the same pattern; we have indicated in Appendix A the places
where the details differ.

4.2. Translations between TF and TFk

The systems TF and TFk are equivalent, in the following sense. Given any
derivable judgement in TFk, erasing the kind labels on variables gives a derivable
judgement in TF. Conversely, given any derivable judgement in TF, there is a
way of filling in the kind labels on the variables to yield a derivable judgement
in TF; further, the choice of kind labels is unique up to equality in TFk.

This fact is very convenient when working with lambda-free logical frame-
works, as it allows us to switch between TF and TFk more or less at will,
effectively treating them as if they were the same system.

In this section, we shall formally establish the equivalence of TF and TFk

by defining translations between the two.
The translation from TFk to TF consists simply of erasing the kind labels:

Definition 4.1. For every entity (object, abstraction, abstraction sequence,
kind, context, or judgement) X in TFk, let |X| denote the entity obtained by
erasing the kind labels on the bound variables in abstractions.

Given a type theory specification T in TFk, let |T | denote the type theory
specification in TF formed by erasing the kind labels on the bound variables in
abstractions within the declarations of T .

It is straightforward to show that this translation is sound:

Theorem 4.2 Let T be a type theory specification in TFk, and let J be a
judgement that is derivable under T . Then |J | is a derivable judgement in TF
under the type theory specification |T |.

Proof. The proof consists of observing that the image of a primitive rule of
deduction in TFk under | | is a primitive rule of deduction in TF, and the image
of any of the rules introduced by T under | | is a rule introduced by |T |.

18

Defining the translation in the other direction is harder. We shall define the
translation ‘L’ from TF to TFk, which fills in the kind labels on the bound vari-
ables. Whenever we encounter an object of the form x[· · · , [y1, . . . , yn]M, · · ·],
we discover the kinds of y1, . . . , yn by looking up the kind of x in the current
context. Similarly, we handle objects of the form c[· · ·] by looking up the kind
of c in the specification.

Let us say that an object, abstraction or abstraction sequence X in TF is
defined relative to the specification T and context Γ if and only if every constant
that occurs in X is declared in T , and every free variable in X is declared in
Γ. Let us also say that a context ∆ ≡ x1 : K1, . . . , xn : Kn is defined relative
to Γ and T if and only if, for each i, Ki is defined relative to the context
Γ, x1 : K1, . . . , xi−1 : Ki−1 and T . Let us say that a judgement Γ ` J is defined
relative to T if and only if Γ is defined relative to T , every constant that occurs
in J is declared in T , and every free variable in J is declared in Γ.

Let us say that the specification T is consistent if and only if:

• for each constant declaration c : K, the kind K is defined relative to the
empty context and T ;

• for each equation declaration (∆)(M = N : T), the context ∆ is defined
relative to T , and M , N and T are defined relative to ∆ and T .

Now, given a consistent specification T in TF, we shall define the following.

• For every context Γ defined relative to T , and every object M defined
relative to T and Γ, an object LΓ(M) in TFk.

• For every abstraction F and kind K of the same arity defined relative to
Γ and T , an abstraction LKΓ (F) in TFk. We think of K as the intended
kind of F .

• For every abstraction sequence ~F and context ∆ of the same arity defined
relative to Γ and T , an abstraction sequence L∆

Γ (~F) in TFk. We think of
∆ as giving the intended kinds of the abstractions ~F .

• For every kind K defined relative to Γ and T , a kind LΓ(K) in TFk.

• For every context Γ defined relative to T , a context L(Γ) in TFk.

• For every judgement J defined relative to T , a judgement L(J) in TFk.

19

The definition is as follows.

LΓ(c ~F) ≡ c[L∆
Γ (~F)] (c : (∆)T declared in T)

LΓ(x~F) ≡ x[L∆
Γ (~F)] (x : (∆)T declared in Γ)

LTΓ (M) ≡ LΓ(M)

L(x:K)K′

Γ ([x]F) ≡ [x : LΓ(K)]LK
′

Γ,x:K(F)

L〈〉Γ (〈〉) ≡ 〈〉

L∆,x:K
Γ (~F ,G) ≡ L∆

Γ (~F),L{
~F/∆}K

Γ (G)

LΓ(Type) ≡ Type

LΓ(El (M)) ≡ El (LΓ(M))
LΓ((x : K)K ′) ≡ (x : LΓ(K))LΓ,x:K(K ′)

L(〈〉) ≡ 〈〉
L(Γ, x : K) ≡ L(Γ),LΓ(K)

L(Γ valid) ≡ L(Γ) valid
L(Γ `M : T) ≡ L(Γ) ` LΓ(M) : LΓ(T)
L(Γ `M = N : T) ≡ L(Γ) ` LΓ(M) = LΓ(N) : LΓ(T)

Given a consistent specification S in TF, let L(S) be the following type
theory specification in TFk.

• For every constant declaration c : K in S, declare c : L〈〉(K).

• For every equation declaration (∆)(M = N : T) in S, declare
(L(∆))(L∆(M) = L∆(N) : L∆(T)).

We can show that this translation is sound after proving a number of lemmas.

Lemma 4.3 If M is defined relative to both Γ and ∆, and Γ and ∆ agree on
every free variable in M , then LΓ(M) ≡ L∆(M). In particular, if M is defined
relative to Γ and Γ ⊆ ∆, then LΓ(M) ≡ L∆(M).

Proof. An easy induction on M .

20

Lemma 4.4 For each of the following equations, if the left-hand side is defined
then so is the right-hand side, in which case the two are equal.

{LKΓ (F)/x}LΓ,x:K,∆(X) ≡ LΓ,{F/x}∆({F/x}X)

{LKΓ (F)/x}LK
′

Γ,x:K,∆(G) ≡ L{F/x}K
′

Γ,{F/x}∆({F/x}G)

{LKΓ (F)/x}LΘ
Γ,x:K,∆(~G) ≡ L{F/x}ΘΓ,{F/x}∆({F/x}~G)

where X is an object, kind or context.

Proof. The five equations are proved simultaneously by a double induction
on the arity of K, then the size of X, G or ~G. We give the calculation for
one case, the case where X is an object of the form x~G. Let K ≡ (Θ)T and
F ≡ [dom Θ]N .

{L(F)/x}L(x~G) ≡ L(F) • {L(F)/x}L(~G)

≡ L(F) • L({F/x}~G) (i.h. on X)

≡ {L({F/x}~G)/Θ}L(N)

≡ L({{F/x}~G/Θ}N) (i.h. on arity)

≡ L({F/x}x~G)

The following lemma shows how we can change the subscript and superscript
on an abstraction LKΓ (F). Roughly, it can be read as: if L(Γ) = L(Γ′) and
L(K) = L(K ′), then LKΓ (F) = LK′

Γ′ (F).

Lemma 4.5 The following rule of deduction is admissible in TFk.

L〈〉(Γ) LKΓ (F) : LΓ(K)
 L〈〉(Γ) = L〈〉(Γ′) L〈〉(Γ) LΓ(K) = LΓ′(K ′)

L〈〉(Γ) LKΓ (F) = LK
′

Γ′ (F) : LΓ(K)

Proof. We prove that this rule and the following two are admissible.

L〈〉(Γ) LΓ(M) : LΓ(T)
 L〈〉(Γ) = L〈〉(Γ′)

L〈〉(Γ) LΓ(M) = LΓ′(M) : LΓ(T)
(7)

L〈〉(Γ) LΘ
Γ (~F) :: LΓ(Θ)

 L〈〉(Γ,Θ) = L〈〉(Γ′,Θ′)
L〈〉(Γ) LΘ

Γ (~F) = LΘ′

Γ′ (~F) :: LΓ(Θ)

The three rules are proved admissible simultaneously by induction on the
size of LKΓ (F), LΓ(M) and LΘ

Γ (~F). We give here the details for the case for (7)
where M has the form x~F .

21

Let x have kind (Θ)S in Γ and (Θ′)S′ in Γ′. We are given that
L(Γ) ` LΓ(M) : L(T). Therefore, by Generation,

L(Γ) LΘ
Γ (~F) :: L(Θ) L(Γ) {LΘ

Γ (~F)/Θ}L(S) = L(T) .

The induction hypothesis gives

L(Γ) LΘ
Γ (~F) = LΘ′

Γ′ (~F) :: L(Θ) .

and the desired result follows by (var eq) and (conv eq).

Lemma 4.6 Let T be an n-good declaration in TFk. The following rules of
deduction are admissible in TFk.

(L seq)
L(Γ ~F :: Θ)

L〈〉(Γ) LΘ
Γ (~F) :: LΓ(Θ)

(L seqeq)
L(Γ ~F = ~G :: Θ)

L〈〉(Γ) LΘ
Γ (~F) = LΘ

Γ (~G) :: LΓ(Θ)

where Γ, ~F , ~G and Θ are of order ≤ n.

Proof. We first prove the following two rules are admissible.

(L abs)
L(Γ F : K)

L〈〉(Γ) LKΓ (F) : LΓ(K)

(L abseq)
L(Γ F = G : K)

L〈〉(Γ) LKΓ (F) = LKΓ (G) : LΓ(K)

For the first of these rules, if K ≡ (Θ)T and F ≡ [dom Θ]M , then the premise
is L(Γ),L(Θ) ` L(M) : L(T), and the conclusion is

(L(Γ) L(Θ) = L(Θ)) ∪ {L(Γ),L(Θ) ` L(M) : L(T)}

which follows using Context Validity and (ref). The proof for the second rule is
similar.

The rules (L seq) and (L seqeq) are each proved admissible by induction on
the length of ~F . We give the details for the rule (L seqeq) where the length
of ~F is greater than 0. Suppose now that ~F ≡ ~F0, F1; ~G ≡ ~G0, G1; and Θ ≡
Θ0, x : K1. The premises are

L(Γ ~F0 = ~G0 :: Θ0) ∪ L(Γ F1 = G1 : { ~F0/Θ0}K1)

and the conclusion is

(L(Γ) L(~F0) = L(~G0) :: L(Θ))

∪ (L(Γ) L{
~F0/Θ0}K1

Γ (F1) = L{
~G0/Θ0}K1

Γ (G1) : LΓ({ ~F0/Θ0}K1) .

22

This follows, using the induction hypothesis, the rule (L abseq) and Lemma 4.5,
once we have shown

L(Γ) L({ ~F0/Θ0}K1) = L({ ~G0/Θ0}K1) .

By Lemma 4.4, this is

L(Γ) {L(~F0)/Θ0}L(K1) = {L(~G0)/Θ0}L(K1)

which is obtainable using Functionality.

Theorem 4.7 Let S be an orderable n-good type theory specification in TF in
which every declaration has order ≤ n. Assume we have declared S in TF and
L(S) in TFk. Then, for every judgement J derivable in TF with context of
order ≤ n, the judgement L(J) is derivable in TFk.

Proof. Let ≺ be the given order on S. For each declaration δ in S, let Sδ be the
set of declarations δ′ such that δ′ ≺ δ. We prove the following simultaneously
by ≺-induction on δ:

1. L(Sδ) is an orderable n-good specification in TFk.
2. If J is derivable in TF under Sδ, and J has context of order ≤ n, then
L(J) is derivable under L(Sδ) in TFk.

The proof of 2 is by a straightforward induction on the derivation of J . The
cases (var), (const), (eq) all make use of the first rule in Lemma 4.6; the cases
(var eq) and (const eq) make use of the second rule in that lemma.

Thus, our translations between TF and TFk are sound. It is also easy to
show that the mapping | | is an exact left inverse to L:

Theorem 4.8

|LΓ(X)| ≡ X |LKΓ (F)| ≡ F |L∆
Γ (~F)| ≡ ~F

where X is an object, kind or context.

Proof. An easy induction on X, F and ~F .

The mapping L is not a left inverse to | | up to syntactic identity. For
example,

L(x:El(A))El(C)
A:Type,B:Type,C:Type(|[x : El (B)]x|) ≡ [x : El (A)]x .

However, on the well-typed objects, abstractions and kinds, L is a left inverse
to | | up to equality in TFk, in the following sense.

23

Theorem 4.9 Let T be an n-good declaration in TFk, and Γ, F , K, ∆ have
order ≤ n.

1. If Γ `M : T then Γ `M = L|Γ|(|M |) : T .
2. If Γ F : K then Γ F = L|K||Γ| (|F |) : K.

3. If Γ ~F :: ∆ then Γ ~F = L|∆||Γ| (|~F |) :: ∆.
4. If Γ K kind then Γ K = L|Γ|(|K|).
5. If Γ,∆ valid then Γ ∆ = L|Γ|(|∆|).

Proof. Let l(X) denote the length of an expression X. The five parts are
proven simultaneously by induction on l(Γ) + l(M), l(Γ) + l(F), l(Γ) + l(~F),
l(Γ) + l(K), and l(Γ) + l(∆). We give here the details of the first two parts.

1. Suppose M ≡ x~F , where x : (Θ)S ∈ Γ. By Generation,

Γ ~F :: Θ, Γ {~F/Θ}S = T .

Therefore,

Γ ~F = L|Θ||Γ| (|~F |) :: Θ (i.h.)

∴ Γ ` x~F = x
[
L|Θ||Γ| (|~F |)

]
: {~F/Θ}S (var eq)

∴ Γ ` x~F = x
[
L|Θ||Γ| (|~F |)

]
: T (conv eq)

The case M ≡ c ~F is similar.
2. Let K ≡ (Θ)T and F ≡ [Θ′]M . We are given that

Γ Θ = Θ′, Γ,Θ `M : T .

We must show that Γ [Θ′]M = [L|Γ|(|Θ|)]L|Γ|,|Θ|(|M |) : (Θ)T . The
induction hypothesis gives us that Γ,Θ `M = L|Γ|,|Θ|(|M |) : T ; it remains
to show

Γ Θ = Θ′ .

The induction hypothesis gives us that Γ Θ′ = L|Γ|(|Θ′|); and Γ Θ =
L|Γ|(|Θ|); it is thus sufficient to show

Γ L|Γ|(|Θ|) = L|Γ|(|Θ′|) .

Well,

|Γ| TF |Θ| = |Θ′| (Theorem 4.2)
∴ L〈〉(|Γ|) TF L|Γ|(|Θ|) = L|Γ|(|Θ′|) (Theorem 4.7)

TF Γ = L〈〉(|Γ|) (i.h.)

and the result follows by Context Conversion.

Parts 3–5 are proven similarly.

We have thus established sound translations | | and L between TF and TFk

which are inverses of one another up to the appropriate notion of equality.

24

LF

TF
L -�
| |

�

NF

TFk

�

lift

Figure 2: Translations between Logical Frameworks

5. Embedding TF in LF

Lambda-free frameworks can often be embedded within existing traditional
logical frameworks; that is, given a traditional logical framework F , we can often
construct a lambda-free framework (its core) that is, in some sense, isomorphic
to a subsystem of F . More precisely, we can construct a lambda-free framework
L and define translations

NF : F → L, lift : L→ F .

These translations are sound, and NF is a left inverse to ‘lift’ up to identity
(α-conversion). That is, we have the following properties:

1. For every derivable judgement J in L, lift(J) is derivable in F .
2. For every derivable judgement J in F , NF(J) is derivable in L.
3. For every typable expression X in L, NF(lift(X)) ≡ X.

In many cases (particularly when F allows η-conversion) we have in addition
that NF is a right inverse to lift up to the equality judgements of F :

4. For every typable expression X in F , the equality lift(NF(X)) = X is
derivable in F .

We can think of F as picking out, from each equivalence class of the expressions
of F modulo βη-convertibility, a unique representative: the β-normal, η-long
form.

Establishing the above properties of the translations is not easy; it usually
involves proving fairly strong properties of L and F . However, once this one-
time cost has been paid, we can then use the translations to prove various
properties of F more easily. It is often the case that it is easier to establish a
given metatheoretic property for L than for F . Once it has been proven to hold
in L, the result can then be ‘lifted’ to F ; that is, we can derive the corresponding
result for F using the properties of the translations.

In this section, we shall show how TF can be embedded in this fashion
within the framework LF introduced in [6], a Church-typed version of Martin-
Löf’s logical framework. It will prove to be very advantageous that we have two
different versions of TF; we shall define translations from TFk to LF, and from
LF to TF, as shown in Figure 2.

25

5.1. The Framework LF
The framework LF [6] is a Church-typed version of Martin-Löf’s logical

framework3. LF deals with objects and kinds, given by the following grammar:

Kind K ::= Type | El (k) | (x : K)K
Object k ::= x | c | [x : K]k | kk

where x is a variable and c a constant. There are five judgement forms in LF:

• Γ valid, which denotes that Γ is a valid context;

• Γ ` K kind, which denotes that K is a kind under Γ;

• Γ ` k : K, which denotes that k is an object of kind K under Γ;

• Γ ` k = k′ : K, which denotes that k and k′ are equal objects of kind K
under Γ;

• Γ ` K = K ′, which denotes that K and K ′ are equal kinds under Γ.

A type theory is specified in LF by giving a set of constant declarations c : K,
and a set of computation rules

k = k′ : K for k1 : K1, . . . , kn : Kn .

We shall make use of the following abbreviations when working with LF. Let
∆ be the context x1 : K1, . . . , xn : Kn, and ∆′ the context x1 : K ′1, . . . , xn : K ′n.
We shall write Γ ∆ = ∆′ for the n judgements

Γ ` K1 = K ′1,

Γ, x1 : K1 ` K2 = K ′2,

...
Γ, x1 : K1, . . . , xn−1 : Kn−1 ` Kn = K ′n

and we shall write Γ (k1, . . . , kn) :: ∆ for the n judgements

Γ ` k1 : K1, Γ ` k2 : [k1/x1]K2, . . . , Γ ` kn : [k1/x1, . . . , kn−1/xn−1]Kn .

For the rules of deduction of LF, and how LF may be used to specify various
object theories, we refer to Luo [6].

We note that, as with TF, the judgements of the object theory are repre-
sented by the LF-judgements of the form

x1 : El (A1) , . . . , xn : El (An) ` k : El (B)
x1 : El (A1) , . . . , xn : El (An) ` k = k′ : El (B)

and these are judgements with first-order contexts.
We shall make use of the fact that LF satisfies Subject Reduction:

If Γ ` k : K and k �βη k
′, then Γ ` k = k′ : K.

3The framework here called LF should not be confused with the Edinburgh Logical Frame-
work [2], which is also often referred to as LF.

26

5.2. Translation from TFk to LF
We shall now define our translations between LF and the two versions of TF.

The mapping from TFk to LF, which we shall call ‘lift’, is almost trivial. We
map objects and abstractions to objects, kinds to kinds, contexts to contexts
and judgements to judgements as follows.

lift(x[F1, . . . , Fn]) ≡ xlift(F1) · · · lift(Fn)
lift([∆]M) ≡ [lift(∆)]lift(M)

lift(Type) ≡ Type

lift(El (M)) ≡ El (lift(M))
lift((x : K)K ′) ≡ (x : lift(K))lift(K ′)

lift(x1 : K1, . . . , xn : Kn) ≡ x1 : lift(K1), . . . , xn : lift(Kn)

lift(Γ valid) ≡ lift(Γ) valid
lift(Γ `M : T) ≡ lift(Γ) ` lift(M) : lift(T)
lift(Γ `M = N : T) ≡ lift(Γ) ` lift(M) = lift(N) : lift(T)

It is relatively straightforward to establish that this translation is sound.

Lemma 5.1
[lift(F)/x]lift(N)�β lift({F/x}N)

Proof. The proof is by a double induction on the arity of F and x, then on
the object N . We give here the details for the case N ≡ x~G. Let F ≡ [∆]P .

[lift(F)/x]xlift(~G) ≡ lift(F)[lift(F)/x]lift(~G)

≡ ([lift(∆)]lift(P))[lift(F)/x]lift(~G)

� [[lift(F)/x]lift(~G)/∆]lift(P)

� [lift({F/x}~G)/∆]lift(P) (i.h.)

� lift({{F/x}~G/∆}P) (i.h.)
≡ lift({F/x}N)

27

Theorem 5.2 Suppose we have declared a type theory T in TFk, and the cor-
responding theory lift(T) in LF. If J is a derivable judgement in TFk, then
lift(J) is derivable in LF.

Proof. We first prove that the following rules of deduction are admissible in
LF:

(lift abs)
lift(Γ F : K)

lift(Γ) ` lift(F) : lift(K)

(lift abseq)
lift(Γ F = G : K)

lift(Γ) ` lift(F) = lift(G) : lift(K)

(lift seq)
lift(Γ ~F :: ∆) lift(Γ,∆ valid)

lift(Γ) lift(~F) :: lift(∆)

(lift seqeq)
lift(Γ ~F = ~G :: ∆) lift(Γ,∆ valid)

lift(Γ) lift(~F) = lift(~G) :: lift(∆)

The proof for (lift seq) is by induction on the length of ~F .
If the length is 0, both hypothesis and conclusion are that lift(Γ) is valid.
Suppose ~F is of length n+ 1, and the result holds for abstraction sequences

of length n. Let ~F ≡ ~F0, F1; and ∆ ≡ ∆0, x : K1. We are given that lift(Γ
~F0 :: ∆0) is derivable, hence so is lift(Γ) lift(~F0) :: lift(∆0) by the induction
hypothesis. We also have

lift(Γ) ` lift(F1) : lift({ ~F0/∆0}K1)

by part 1 and
lift(Γ), lift(∆0) ` lift(K1) kind

by Kind Validity in LF. This yields

lift(Γ) ` [lift(~F0)/∆0]lift(K1) kind (substitution)

∴ lift(Γ) ` [lift(~F0)/∆0]lift(K1) = lift({ ~F0/∆0}K1)
(Subject Reduction, Lemma 5.1)

∴ lift(Γ) ` lift(F1) : [lift(~F0)/∆0]lift(K1) (conv)

as required.
The proof for (lift seqeq) is similar, and the proofs for (lift abs) and (lift seq)

are simple. The theorem now follows by induction on the derivation of J .

28

5.3. Translation from LF to TF
The translation from LF to TF is more difficult to construct. It consists of

reducing every entity of LF to its β-normal, η-long form.
We must first assign arities to the entities of LF, to guide us during η-

expansion. We assign an arity to every kind of LF as follows:

Ar(Type) ≡ 0

Ar(El (k)) ≡ 0

Ar((x : K1)K2) ≡ (Ar(K1))̂ Ar(K2)

We now define an arity ArΓ(k) to some LF-contexts Γ and LF-objects k as
follows:

• If x : K is an entry in Γ, then ArΓ(x) ≡ Ar(K).

• If c has been declared with arity K, then ArΓ(c) ≡ Ar(K).

• If ArΓ,x:K(k) is defined, then ArΓ([x : K]k) ≡ (Ar(K))̂ ArΓ,x:K(k).

• If ArΓ(k) and ArΓ(k′) is defined, and ArΓ(k) has the form

ArΓ(k) ≡ (ArΓ(k′))̂β

then ArΓ(kk′) ≡ β.

We shall say that an object k is well-aritied if ArΓ(k) is defined. We shall only
be able to map well-aritied objects into TF. We can prove immediately that
every object typable in LF is well-aritied.

Proposition 5.3 In LF,
1. if Γ ` k : K then ArΓ(k) ≡ Ar(K);
2. if Γ ` k = k′ : K then ArΓ(k) ≡ ArΓ(k′) ≡ Ar(K);
3. if Γ ` K = K ′ then Ar(K) ≡ Ar(K ′).

Proof. The three statements are proven simultaneously by induction on the
derivation of the premise. We need to make use of the following two auxiliary
facts, which are easy to prove:

1. Ar([k/x]K) ≡ Ar(K)
2. If ArΓ(k) ≡ Ar(K) and ArΓ,x:K(k′) is defined, then we have

ArΓ([k/x]k′) ≡ ArΓ,x:K(k′).

Given an object k such that ArΓ(k) ≡ α, we define the α-ary abstraction
NFΓ(k) in TF as follows.

NFΓ(x) ≡ xη

NFΓ(c) ≡ cη

NFΓ([x : K]k) ≡ [x]NFΓ,x:K(k)
NFΓ(kk′) ≡ NFΓ(k) •NFΓ(k′)

where, in the first two clauses, x has arity ArΓ(x) and c has arity ArΓ(c). In
the third clause, x has arity ArΓ(K).

29

We extend the mapping NF to kinds, contexts and judgements as follows.

NFΓ(Type) ≡ Type

NFΓ(El (k)) ≡ El (NFΓ(k))
NFΓ((x : K)K ′) ≡ (x : NFΓ(K))NFΓ,x:K(K ′)

NFΓ(〈〉) ≡ 〈〉
NFΓ(∆, x : K) ≡ NFΓ(∆), x : NFΓ,∆(K)

NF(Γ valid) = {NF〈〉(Γ) valid}
NF(Γ ` K kind) = (NF〈〉(Γ) NFΓ(K) kind)
NF(Γ ` K = K ′) = (NF〈〉(Γ) NFΓ(K) = NFΓ(K ′))
NF(Γ ` k : K) = (NF〈〉(Γ) NFΓ(k) : NFΓ(K))
NF(Γ ` k = k′ : K) = (NF〈〉(Γ) NFΓ(k) = NFΓ(k′) : NFΓ(K))

Given a type theory specification T in LF, we define the type theory specification
NF(T) in TF as follows.

• For each declaration c : K in T , the declaration c : NF〈〉(K) is in NF(T).

• For each declaration (∆)(k = k′ : K) in T , the declaration
(NF〈〉(∆))(NF∆(k) = NF∆(k′) : NF∆(K)) is in NF(T).

The following results ensure that this translation is well-behaved and sound.

Theorem 5.4

1. Let Ar(K) ≡ α. If NFΓ(K) is defined, then it is an α-ary kind.
2. Let Γ ⊆ ∆. If NFΓ(X) is defined, then NF∆(X) is defined, and

NF∆(X) ≡ NFΓ(X) .

3. Suppose ArΓ(k) ≡ Ar(K). Let X be an LF-object, kind or context. If
NFΓ(k) and NFΓ,x:K,∆(X) are defined, then NFΓ,[k/x]∆([k/x]X) is de-
fined, and

NFΓ,[k/x]∆([k/x]X) ≡ {NFΓ(k)/x}NFΓ,x:K,∆(X) .

4. Let T be a type-theory specification in LF, and suppose NF(T) is an n-
good specification in TF. If the judgement J is derivable in LF and has
context of order ≤ n, then NF(J) is defined and derivable in TF.

30

Proof. The first three parts are easily proven by an induction on K and X
respectively.

The fourth part is proven by induction on the derivation of J . Most cases
are straightforward, making use of the results proven in Section 3. We give here
the details for the rule (beta).

(beta)
Γ, x : K ` k′ : K ′ Γ ` k : K

Γ ` ([x : K]k′)k = [k/x]k′ : [k/x]K ′

By the induction hypothesis,

NF〈〉(Γ), x : NFΓ(K) NFΓ,x:K(k′) : NFΓ,x:K(K ′);
NF〈〉(Γ) NFΓ(k) : NFΓ(K) .

Now,

NFΓ(([x : K]k′)k) ≡ ([x]NFΓ,x:K(k′)) •NFΓ(k)
≡ {NFΓ(k)/x}NFΓ,x:K(k′)
≡ NFΓ([k/x]k′) (part 3)

The Cut rule and (ref) give us

NF〈〉(Γ) {NFΓ(k)/x}NFΓ,x:K(k′) = {NFΓ(k)/x}NFΓ,x:K(k′)
: {NFΓ(k)/x}NFΓ,x:K(K ′)

and, by part 3, this is the same judgement as

NF〈〉(Γ) NFΓ(([x : K]k′)k) = NFΓ([k/x]k′) : NFΓ([k/x]K ′) .

The translations we have established between our three systems are shown
in Figure 2. The triangles in this diagram commute in the sense given by the
following theorem.

Theorem 5.5 Let T be a type theory specification in LF, and suppose NF(T)
is an orderable n-good type theory specification in TF.

1. If Γ ` k : K in LF, then

Γ ` k = lift
(
LNFΓ(K)

NF〈〉(Γ)(NFΓ(k))
)

: K .

Similar results hold for kinds and contexts.
2. If Γ `M : T in TF, then

M ≡ NFlift(L〈〉(Γ))(lift(LΓ(M))) .

Similar results hold for kinds and contexts.

31

3. If Γ `M : T in TFk, then

Γ `M = LNF〈〉(lift(Γ))(NFlift(Γ)(lift(M))) : T .

Similar results hold for kinds and contexts.

Proof.

1. We prove the statement:

If Γ ` k : K and Γ = ∆ in LF, then

Γ ` k = lift(LNFΓ(K)
NF〈〉(Γ)(NF∆(k))) : K .

We prove the statements simultaneously with similar statements for kinds
and contexts by induction on size. We give here the details for the case
where k is an abstraction.
Let k ≡ [x : K0]k′, and K ≡ (x : K1)K2. By Generation, we have

Γ ` K0 = K1, Γ, x : K1 ` k′ : K2 .

Now,

lift
(
LNFΓ(K)

NF〈〉(Γ)(NF∆(k))
)

≡ lift
(
L(x:NFΓ(K1))NFΓ,x:K1 (K2)

NF〈〉(Γ) ([x]NF∆,x:K0(k′))
)

≡ lift
(

[x : LNF〈〉(Γ)(NFΓ(K1))]LNFΓ,x:K1 (K2)

NF〈〉(Γ,x:K1) (NF∆,x:K0(k′))
)

≡ [x : lift(LNF〈〉(Γ)(NFΓ(K1)))]lift
(
LNFΓ,x:K1 (K2)

NF〈〉(Γ,x:K1) (NF∆,x:K0(k′))
)

Now, the induction hypothesis gives the two judgements

Γ ` lift(LNF〈〉(Γ)(NFΓ(K1))) = K1

Γ, x : K1 ` lift
(
LNFΓ,x:K1 (K2)

NF〈〉(Γ,x:K1) (NF∆,x:K0(k′))
)

= k′ : K2

from which the result follows.
2. The proof is by induction on the object M . Let M ≡ z[~F], and let z have

kind (∆)T relative to Γ. Then

NFlift(L〈〉(Γ))(lift(LΓ(M))) ≡ NFlift(L〈〉(Γ))(lift(z[L∆
〈〉(~F)]))

≡ NFlift(L〈〉(Γ))(z[lift(L∆
〈〉(~F))])

≡ zη •NFlift(L〈〉(Γ))(lift(L∆
〈〉(~F)))

≡ z[NFlift(L〈〉(Γ))(lift(L∆
〈〉(~F)))]

≡ z[~F] (i.h.)

32

3. The proof is by induction on the object M . Let M ≡ x[~F], and let

Γ ≡ Γ1, x : (∆)S,Γ2 .

Then

LNF〈〉(lift(Γ))(NFlift(Γ)(lift(M)))

≡ LNF〈〉(lift(Γ))(NFlift(Γ)(xlift(~F)))

≡ LNF〈〉(lift(Γ))(xη •NFlift(Γ)(lift(~F)))

≡ LNF〈〉(lift(Γ))(x[NFlift(Γ)(lift(~F))])

≡ x
[
LNFlift(Γ1)(lift(∆))

NF〈〉(lift(Γ)) (NFlift(Γ)(lift(~F)))
]

≡ x
[
LNFlift(Γ)(lift(∆))

NF〈〉(lift(Γ)) (NFlift(Γ)(lift(~F)))
]

Now, by Generation, Γ ~F :: ∆ and Γ {~F/∆}S = T . Hence, the
induction hypothesis gives

Γ ~F = LNFlift(Γ)(lift(∆))

NF〈〉(lift(Γ)) (NFlift(Γ)(~F)) :: ∆

from which the result follows.

5.4. Lifting Results
Suppose we wish to establish a property of a framework, or of an object

theory in a traditional framework F . It is often the case that the property
is more easily proven for a lambda-free framework L. The result can then be
‘lifted’ to F ; that is, we can derive the result for F easily from L, together with
the properties of the translations between L and F .

In Luo and Adams [13], we were working with a type theory declared in
LF: an extension of the type theory UTT [6] with some new reduction rules. It
was found to be necessary to prove that type constructors are injective; that is,
whenever T : (K)Type and TA = TB, then A = B. We were not able to find
a way to prove this result in LF directly; the obvious method requires using the
Church-Rosser property for the new reduction relation, which is not known to
hold. However, the corresponding result in TF is almost trivial, and so we made
use of this fact and lifted the result from TF to LF. As an illustration of the
process of lifting results, we repeat the details here.

33

We seek to prove:

Theorem 5.6 (Injectivity of Type Constructors) Let S be a type theory
specification in LF that has the property: for every equation declaration
(∆)(M = N : T) in S, T has the form El (A) (that is, there are no equation
declarations of the form (∆)(M = N : Type)). Further, suppose NF(S) is an
orderable n-good specification in TF. Let c : (Θ)Type be a constant declaration
in S. Then the following rule of deduction is admissible:

Γ ` c ~A = c ~B : Type

Γ ~A = ~B :: Θ

where Γ has order ≤ n.

The corresponding result for TF is fairly easy to prove:

Theorem 5.7 Let S be a type theory specification in TF that has the property:
for every equation declaration (∆)(M = N : T) in S, T has the form El (A).
Let c : (Θ)Type be a constant declaration in S. Then the following rule of
deduction is admissible:

Γ ` c ~F = c ~G : Type

Γ ~F = ~G :: Θ

Proof. We shall prove the following statement.

If Γ ` c ~F = X : Type or Γ ` X = c ~F : Type is derivable, then X
has the form c ~G, and Γ ~F = ~G :: Θ.

The proof is by induction on the derivation of the premise. Note that the last
step in this derivation cannot be the use of an equation from S. All cases are
straightforward.

The result can now be ‘lifted’ to LF. We omit the sub- and superscripts on
NF and L in the following proof.

Proof of Theorem 5.6. Let S satisfy the hypotheses of the theorem. Suppose
Γ ` c ~A = c ~B : Type is derivable in LF under S. By Theorem 5.4,

NF(Γ) ` cNF(~A) = cNF(~B) : Type

is derivable in TF under NF(S). We note also that NF(S) satisfies the hypothe-
ses of Theorem 5.7. Therefore,

NF(Γ) TF NF(~A) = NF(~B) :: NF(Θ) (Theorem 5.7)

∴ L(NF(Γ)) TF L(NF(~A)) = L(NF(~B)) :: L(NF(Θ)) (Theorem 4.7)

∴ lift(L(NF(Γ))) LF lift(L(NF(~A))) = lift(L(NF(~B))) :: lift(L(NF(Θ)))
(Theorem 5.2)

34

We also have, by Theorem 5.5,

LF Γ = lift(L(NF(Γ)))

Γ LF ~A = lift(L(NF(~A))) :: Θ

Γ LF ~B = lift(L(NF(~B))) :: Θ
Γ LF Θ = lift(L(NF(Θ)))

It follows that
Γ LF ~A = ~B :: Θ

as required.

In contrast, the author has been unable to find a direct proof of this result
in LF.

Here is a second example of how a result may be lifted from TF to LF. Let
T be a type theory specification in LF. Roughly, we shall show that, if NF(T)
is strongly normalising in TF, then T is strongly normalising in LF.

More strictly, assume we have declared T in LF and NF(T) in TF. Suppose
NF(T) is orderable and 1-good. Let→R be a reduction relation on the objects of
LF, and let →Rβη be the union of →R and framework-level β- and η-reduction:

([x : K]k)k′ →β [k′/x]k
[x : K]kx →η k .

Define the relation B on the objects of TF as follows:

MBN if and only if there exist LF-objects a, b such that NF(a) = M ,
NF(b) = N , and M →R N .

Then we have

Theorem 5.8 Suppose that every object typable in TF is strongly
B-normalising. Then every object typable in LF is strongly →Rβη-normalising.

Proof. Suppose Γ ` a : A and

a→Rβη a1 →Rβη a2 →Rβη · · · (8)

is an infinite →R-reduction sequence starting with a. Then NF(Γ) `TF NF(a) :
NF(A), so NF(a) is strongly B-normalisable.

Now, if an →R an+1, then NF(an) B NF(an+1); and if an →βη an+1, then
NF(an) ≡ NF(an+1). So we have

NF(a) D NF(a1) D NF(a2) D · · · .

This sequence cannot contain an infinite number of B-reductions; therefore,
there must be some n such that

NF(an) ≡ NF(an+1) ≡ NF(an+2) ≡ · · ·

35

and hence
an →βη an+1 →βη an+2 →βη · · · .

This contradicts the fact that LF is strongly →βη-normalising.

It is often easier to prove that NF(T) is strongly B-normalising than that
T is strongly →Rβη-normalising, because we do not have to consider how →R

and framework-level β- and η-reduction interact.
We have made use in this proof of the fact that LF is strongly βη-normalising

under an arbitrary type theory specification. This is not difficult to prove, but,
to the best of the author’s knowledge, a proof has not yet been published, and
so we present one in Appendix C.

6. Related Work

Several lambda-free logical frameworks have appeared, independently, since
the publication of Adams [5].

6.1. The Canonical Logical Framework
The Canonical Logical Framework (Canonical LF) [7, 8] is a subsystem of

the Edinburgh Logical Framework (ELF) that deals only with objects in β-
normal, η-long forms. This framework uses an operation of hereditary substitu-
tion [M/x]mαN which behaves similarly to TF’s instantiation. Their operation
must be given a simple type α, which plays a similar role to the arity in TF.

The Canonical LF is essentially the same system as the following subsystem
of TFk. Let us say that a product kind (x1 : K1, . . . , xn : Kn)T is small iff
the symbol Type does not occur in it, and large otherwise. We impose the
following restrictions on TF:

• every variable that appears in a judgement or constant declaration must
have a small kind;

• no equation declarations may be made.

This subsystem was the system named SPar(ω)− in [5]. We can prove that
TFk is conservative over this subsystem in a very strong sense:

Theorem 6.1 Let T be a type theory specification containing no equation dec-
larations, such that every variable in a constant declaration has a small kind.
Let J be a judgement in which every variable has a small kind. If J is deriv-
able in TFk under T , then J is derivable under T in SPar(ω)−. In fact, every
derivation of J in TFk is a derivation of J in SPar(ω)−.

36

Canonical LF SPar(ω)−

Kinds Product kinds of the form (∆)Type
Canonical Type Families Product kinds of the form (∆)El (A)

Atomic Type Families Objects of kind Type
Canonical Terms Abstractions of small kind

Atomic Terms Objects of small kind

Table 1: Correspondence between the syntactic categories of Canonical LF and SPar(ω)−.

Proof. By inspection of the rules of TFk, we see the following two facts.

1. If a variable of large kind occurs in a derivable judgement, then a variable
of large kind occurs in the context of that judgement.

2. If a variable of large kind occurs in the context of a judgement at some
point in a derivation, then a variable of large kind occurs in the context
of every judgement below that point.

Therefore, if the conclusion contains no variable with large kind, then no variable
with large kind occurs anywhere in the derivation, and the derivation is valid
in SPar(ω)−.

There is a close correspondence between Canonical LF and SPar(ω)−. It is
possible to define a bijective translation between Canonical LF and SPar(ω)−

that maps each class of entity in the left-hand column of Table 1 to the corre-
sponding class of entity in the right-hand column.

The embedding of TF in LF given in this paper can be adapted in a straight-
forward way to provide an embedding of Canonical LF in ELF. This embedding
proves that the two systems are equivalent; that is, the derivable judgements of
Canonical LF are exactly the derivable judgements of ELF that are in β-normal,
η-long form. To the best of the author’s knowledge, a proof of this fact has not
yet been published. For further details, we refer to Adams [5], where an explicit
embedding of SPar(ω)− in ELF is defined.

6.2. DMBEL
Plotkin has produced several ‘algebraic frameworks’ for logics and type theo-

ries, including DMBEL (Dependent Multi-Sorted Binding Equational
Logic) [9, 10]. This is a framework that allows the declaration of theories in-
volving second-order constants, and equations between objects. It is intended
to be used for studying the theory of the syntax and semantics of logic and
programming languages. The framework DMBEL uses operations of first-order
substitution and second-order substitution, which are similar to TF’s operation
of instantiation {M/x}N restricted to the cases where x is of order 0 or 1
respectively.

The framework DMBEL is essentially the same as the subsystem of TFk

obtained by imposing the following restriction:

• In every constant declaration, equation declaration and judgement, every
variable that appears must have a small kind of order 0 or 1.

37

DMBEL SPar(2)
Type constant constant of kind (∆)Type,

where ∆ is small and of order ≤ 2
Term constant constant of kind (∆)El (A),

where ∆ is small and of order ≤ 2
Term variable variable of small kind and order 0

Abstraction variable variable of small kind and order ≤ 1
Type object of kind Type

Abstraction type small product kind of order ≤ 1
Term object of kind El (A)

Abstraction term abstraction of small kind and order ≤ 1
Context context of order ≤ 1

Abstraction context context of order ≤ 2
Signature constant declarations in a specification

Table 2: Correspondence between the syntactic categories of DMBEL and SPar(2).

It follows that every constant that is declared must have order at most 2. This
subsystem was named SPar(2) in Adams [5]. It can be proven that TFk is
conservative over this subsystem:

Theorem 6.2 Let T be a specification in SPar(2), and let J be a judgement
in which every variable has a small kind of order 0 or 1. Then any derivation
of J under T in TFk is a derivation of J under T in SPar(2).

Proof. By inspection of the rules of TFk, we see the following four facts.

1. If a variable of large kind occurs in a derivable judgement, then a variable
of large kind occurs in the context of that judgement.

2. If a variable of order > 1 occurs in a derivable judgement, then a variable
of order > 1 occurs in the context of that judgement.

3. If a variable of large kind occurs in the context of a judgement at some
point in a derivation, then a variable of large kind occurs in the context
of every judgement below that point.

4. If a variable of order > 1 occurs in the context of a judgement at some
point in a derivation, then a variable of order > 1 occurs in the context of
every judgement below that point.

Therefore, if the conclusion contains no variable with large kind, and no variable
of order > 1, then no variable with large kind or of order > 1 occurs anywhere
in the derivation, and the derivation is valid in SPar(2).

There is a close correspondence between DMBEL and SPar(2). It is possible
to define a bijective translation between DMBEL and SPar(2) that maps each
class of entity in the left-hand column of Table 2 to the corresponding class of
entity in the right-hand column.

The results in this paper thus show that the properties Cut, Functionality,
Equation Validity and Context Conversion hold for DMBEL, and that DMBEL

38

can be conservatively embedded in LF. Further, if we remove equation declara-
tions from DMBEL, then the resulting system can be conservatively embedded
in both Canonical LF and ELF.

6.3. PAL+

The phrase ‘lambda-free logical framework’ was originally coined to describe
the framework PAL+ [1]. This framework does not use lambda-abstraction,
instead taking parametrisation and local definition as primitive. PAL+ does not
allow partial application; an n-ary function must be applied to all n arguments
at once. It does still have a mechanism for forming abstractions, however; the
object

let v[x1 : K1] = k : K in v

in PAL+ behaves very similarly to the lambda-abstraction [x1 : K1]k. The
system TF thus involves even fewer primitive concepts than PAL+.

It can be proved that TF can be embedded in PAL+, in a similar manner to
the embedding in LF. We refer to Adams [5] for the details.

7. Conclusion

We have presented the formal definition of two lambda-free logical frame-
works, TF and TFk, and proven several of their metatheoretic properties. We
have defined translations between these two frameworks and the framework LF,
and shown how these can be used to lift results proven in TF to LF.

The idea of a lambda-free framework has now been invented independently
by several researchers, including Aczel (who invented TF), Harper and Pfen-
ing (Canonical LF) and Plotkin (DMBEL). These frameworks are powerful in
many ways. They represent object theories more faithfully than do traditional
frameworks; each expression in the object theory corresponds to a unique object
in the framework, rather than a βη-convertibility class. Many results, such as
the injectivity of type constructors or strong normalisation, are often easier to
prove using a lambda-free framework than a traditional framework.

The cost is that the metatheoretic properties of a lambda-free framework
are much more difficult to establish. This should be seen as a one-time cost,
however; these properties need only be established for a framework once, and
the framework can then be used for many object theories and the lifting of many
results. We have been able to establish these properties for two large classes
of object theories: those with no equation declarations, and those with only
declarations of order ≤ 2. It follows that these results hold for Canonical LF
and DMBEL, as these systems are isomorphic to conservative subsystems of
TF, one of which does not allow equation declarations, and one of which does
not allow specifications of order > 2.

For the future, the most immediate need is to remove this restriction on the
specifications. We would dearly love to be able to prove that every orderable
specification is good, as we would then be able to remove the hypotheses about
the n-goodness of specifications and the order of contexts in each of the results

39

in this paper. Further work should also include constructing new lambda-free
logical frameworks with features such as subtyping, coercive subtyping, or meta-
logical reasoning, so that results can be lifted to traditional frameworks that
have these features.

Acknowledgements

Thanks to Zhaohui Luo for helpful comments and proofreading. Many
thanks to Randy Pollack for bringing the systems CLF and DMBEL to my
attention.

References

[1] Z. Luo, PAL+: A lambda-free logical framework, Journal of Functional
Programming 13 (2) (2003) 317–338.

[2] R. Harper, F. Honsell, G. Plotkin, A framework for defining logics, Journal
of the Association for Computing Machinery 40 (1) (1993) 143–184, a pre-
liminary version appeared in the Proceedings of the Symposium on Logic in
Computer Science, pages 194–204, June 1987.

[3] B. Nordström, K. Petersson, J. Smith, Programming in Martin-Löf’s Type
Theory: An Introduction, Oxford University Press, 1990.

[4] P. Aczel, Yet another logical framework, unpublished.

[5] R. Adams, A modular hierarchy of logical frameworks, Ph.D. thesis, Uni-
versity of Manchester (2004).

[6] Z. Luo, Computation and Reasoning: A Type Theory for Computer Sci-
ence, no. 11 in International Series of Monographs on Computer Science,
Oxford University Press, 1994.

[7] R. Harper, D. R. Licata, Mechanizing metatheory in a logical frame-
work, Journal of Functional Programming 17 (4–5) (2007) 613–673.
doi:10.1017/S0956796807006430.

[8] W. Lovas, F. Pfenning, A bidirectional refinement type system
for LF, Electron. Notes Theor. Comput. Sci. 196 (2008) 113–128.
doi:http://ds.doi.org/10.1016/j.entcs.2007.09.021.

[9] G. Plotkin, An algebraic framework for logics and type theories, Talk given
at LFMTP’06 (August 2006).

[10] R. Pollack, Some recent logical frameworks,
Talk given at ProgLog, slides available at
homepages.inf.ed.ac.uk/rpollack/export/canonicalLF talk.pdf
(February 2007).

40

[11] R. Adams, A modular hierarchy of logical frameworks, in: S. Berardi,
M. Coppo, F. Damiani (Eds.), Types for Proofs and Programs, Interna-
tional Workshop, TYPES 2003, Torino, Italy, April 30 - May 4, 2003,
Revised Selected Papers, Vol. 3085 of LNCS, Springer, 2004, pp. 1–16.

[12] T. Coquand, G. Huet, The calculus of constructions, Information and Com-
putation 76 (1988) 95–120.

[13] Z. Luo, R. Adams, Structural subtyping for inductive types with functorial
equality rules, Mathematical Structures in Computer Science 18 (5) (2008)
931–972.

A. Metatheory of TF

We present here the proof of the basic metatheoretic properties of TF and
TFk. The proofs for each system are very similar; we shall work in TF for most
of this section, and mark with the symbol § the changes that need to be made to
obtain a proof for TFk. These changes are all very minor. The most substantial
is in Lemma A.7.

Fix a natural number n, and let T be a type theory specification in TF
(§ or TFk) that is n-good. Throughout this section, we assume that every
kind, context, variable, constant and abstraction that appears is of order ≤ n.

We shall begin by proving the following two properties:

Cut. We say that the property Cut holds for a kind K if and only if, whenever
Γ, x : K,∆ ` J , and Γ F : K, then Γ, {F/x}∆ ` {F/x}J .

Functionality. We say that the property Functionality holds for a kind K if and
only if, whenever Γ, x : K,∆ ` M : T and Γ F = G : K, then Γ, {F/x}∆ `
{F/x}M = {G/x}M : {F/x}T .

We first note:

Lemma A.1 Let K be a kind. Suppose the properties Cut and Functionality
hold for K. Then so does the following: if Γ, x : K,∆ ` M = N : T and
Γ F = G : K, then Γ, {F/x}∆ ` {F/x}M = {G/x}N : {F/x}T .

Proof. Suppose Γ, x : K,∆ ` M = N : T and Γ F = G : K. Since the
specification is good, we have Γ F : K, and so Functionality gives

Γ, {F/x}∆ ` {F/x}M = {F/x}N : {F/x}T .

The goodness of the specification also gives us Γ ` N : T , and so

Γ, {F/x}∆ ` {F/x}N = {G/x}N : {F/x}T .

The result follows by (trans).

Theorem A.2 The properties Cut and Functionality hold for every kind K.

Proof. The proof is by double induction, first on the kind K, second on the
derivation of the judgement Γ, x : K,∆ ` J or Γ, x : K,∆ `M : T .

41

Cut. Let K ≡ (Θ)T and F ≡ [dom Θ]P . (§In TFk, F will have the form [Θ′]P .)
We deal here with the case where the last step in the derivation is

(vareq)
Γ, x : (Θ)T,∆ ~H1 = ~H2 :: Θ

Γ, x : (Θ)T,∆ ` x ~H1 = x ~H2 : { ~H1/Θ}T

By the induction hypothesis, we have

Γ, {F/x}∆ {F/x} ~H1 = {F/x} ~H2 :: Θ .

We are also given that Γ,Θ ` P : T . By Weakening and (ref),

Γ, {F/x}∆,Θ ` P = P : T .

By repeatedly applying Lemma A.1 with each of the kinds in Θ, we have the
desired conclusion

Γ, {F/x}∆ ` {{F/x} ~H1/Θ}P = {{F/x} ~H2/Θ}P : {{F/x} ~H1/Θ}T .

Functionality. Let K ≡ (Θ)T , F ≡ [dom Θ]P and G ≡ [dom Θ]Q. (§In TFk, F
will have the form [Θ′]P and G the form [Θ′′]Q.) We deal here with the case
where the last step in the derivation is

(var)
Γ, x : (Θ)T,∆ ~H :: Θ

Γ, x : (Θ)T,∆ ` x ~H : { ~H/Θ}T

By the induction hypothesis, we have

Γ, {F/x}∆ {F/x} ~H = {G/x} ~H :: Θ .

We are also given that
Γ,Θ ` P = Q : T .

By repeatedly applying Lemma A.1 with each of the kinds in Θ, we have the
desired conclusion

Γ, {F/x}∆ ` {{F/x} ~H/Θ}P = {{G/x} ~H/Θ}Q : {{F/x} ~H/Θ}T .

We also deal with the case where the last step in the derivation is

(conv)
Γ, x : K,∆ `M : El (A) Γ, x : K,∆ ` A = B : Type

Γ, x : K,∆ `M : El (B)

We are given Γ F = G : K; by the goodness of the specification, we also have
Γ F : K. By the induction hypothesis, we may apply Functionality to the
first premise and Cut to the second to give

Γ, {F/x}∆ ` {F/x}M = {G/x}M : El ({F/x}A)
Γ, {F/x}∆ ` {F/x}A = {F/x}B : Type .

The result follows by (conveq).

42

Our next objective is to prove the following property:

Context Conversion. We say that the property Context Conversion holds for
a kind K if and only if, whenever Γ, x : K,∆ ` J and Γ K = K ′, then
Γ, x : K ′,∆ ` J .

Once again, we need some auxiliary lemmas:

Lemma A.3 Let K be a kind, and suppose Context Conversion holds for every
kind of smaller arity than K. If o(Γ) ≤ n and Γ K = K ′ then Γ K ′ = K.

Proof. The proof is by induction on K.
If K ≡ Type, there is nothing to prove. If K has the form El (A), we simply

apply (sym).
Suppose K ≡ (x : K1)K2 and K ′ ≡ (x : K ′1)K ′2. We are given

Γ K1 = K ′1, Γ, x : K1 K2 = K ′2 .

Applying Context Conversion gives Γ, x : K ′1 K2 = K ′2. The desired judge-
ments

Γ K ′1 = K1, Γ, x : K ′1 K
′
2 = K2

follow by the induction hypothesis.

Lemma A.4 Let ∆ be a context, and suppose Context Conversion holds for
every kind of smaller arity than ∆. If Γ ∆ = ∆′ then Γ ∆′ = ∆.

Proof. The proof is by induction on the length of ∆. The case of length 0 is
trivial.

For the inductive step, let ∆ ≡ ∆0, x : K and ∆′ ≡ ∆′0, x : K ′. We are given

Γ ∆0 = ∆′0 Γ,∆0 K = K ′ .

By the induction hypothesis, Γ ∆′0 = ∆0. Applying Context Conversion with
each of the kinds in ∆0 gives Γ,∆′0 K = K ′, and so Γ,∆′0 K

′ = K by the
previous lemma.

Lemma A.5 Suppose Context Conversion holds for every kind of lower arity
than K1. If Γ K1 = K2 and Γ K2 = K3 then Γ K1 = K3.

Proof. The proof is by induction on K1. The case K1 ≡ Type is trivial. If
K1 has the form El (A), we simply apply (trans).

Suppose K1 ≡ (x : J1)L1, K2 ≡ (x : J2)L2, and K3 ≡ (x : J3)L3. We are
given

Γ J1 = J2 Γ J2 = J3

Γ, x : J1 L1 = L2 Γ, x : J2 L2 = L3

By Lemma A.3, we have Γ J2 = J1; applying Context Conversion gives Γ, x :
J1 L2 = L3. The desired judgements Γ J1 = J3 and Γ, x : J1 L1 = L3

follow by the induction hypothesis.

43

Lemma A.6 Suppose Context Conversion holds for every kind of lower arity
than ∆1. If Γ ∆1 = ∆2 and Γ ∆2 = ∆3, then Γ ∆1 = ∆3.

Proof. The proof is by induction on the length of ∆1. The case of length 0 is
trivial.

For the inductive step, let ∆1 ≡ Θ1, x : K1; ∆2 ≡ Θ2, x : K2; and ∆3 ≡
Θ3, x : K3. We are given

Γ Θ1 = Θ2 Γ Θ2 = Θ3

Γ,Θ1 K1 = K2 Γ,Θ2 K2 = K3

By Lemma A.4, we have Γ Θ2 = Θ1. Repeatedly applying Context Conver-
sion gives us Γ,Θ1 K2 = K3. The desired judgements

Γ Θ1 = Θ3, Γ,Θ1 K1 = K3

follow by the induction hypothesis.

Lemma A.7 Suppose Context Conversion holds for every kind of lower arity
than K. If Γ F : K and Γ K = K ′, then Γ F : K ′.

Proof. Let K ≡ (Θ)T , K ′ ≡ (Θ′)T ′ and F ≡ [dom Θ]M . We are given

Γ,Θ `M : T, Γ Θ = Θ′, Γ,Θ T = T ′ .

By (conv), we have Γ,Θ ` M : T ′. Applying Context Conversion with each of
the kinds in Θ yields

Γ,Θ′ `M : T ′

as required.
§In TFk, let F ≡ [Θ1]M . In addition to the above, we are given Γ Θ = Θ1

and must prove Γ Θ′ = Θ1. This follows from Lemmas A.4 and A.6.

Lemma A.8 Suppose Context Conversion holds for each of the kinds in ∆. If
Γ ~F :: ∆ and Γ ∆ = ∆′, then Γ ~F :: ∆′.

Proof. The proof is by induction on the length of ∆ and ∆′. The case of
length 0 is trivial.

For the induction step, let ∆ ≡ ∆0, x : K, let ∆′ ≡ ∆′0, x : K ′, and let
~F ≡ ~F0, F1. Then we are given

Γ ~F0 :: ∆0 Γ F1 : {~F0/∆0}K
Γ ∆0 = ∆′0 Γ,∆0 K = K ′

By the induction hypothesis,

Γ ~F0 :: ∆′0 .

44

Applying Cut repeatedly gives

Γ {~F0/∆0}K = {~F0/∆0}K ′

and the desired judgement

Γ F1 : {~F0/∆0}K ′

follows by the previous lemma.

Theorem A.9 The property Context Conversion holds for every kind K.

Proof. Let K ≡ (Θ)T and K ′ ≡ (Θ′)T ′, so we are given Γ Θ = Θ′ and
Γ,Θ K = K ′. The proof is by double induction, first on the kind K, second
on the derivation of Γ, x : K,∆ ` J .

We deal here with the case where the last step in the derivation is

(var)
Γ, x : (Θ)T,∆ ~F :: Θ

Γ, x : (Θ)T,∆ x~F : {~F/Θ}T

By the induction hypothesis, we have

Γ, x : (Θ′)T ′,∆ ~F :: Θ .

Applying Lemma A.8, we have

Γ, x : (Θ′)T ′,∆ ~F :: Θ′

∴ Γ, x : (Θ′)T ′,∆ x~F : {~F/Θ}T ′ (var)

Applying Cut yields

Γ, x : (Θ′)T ′,∆ ` {~F/Θ}T = {~F/Θ}T ′

and the result follows by (sym) and (conv).
The case where the last step is (vareq) is similar, and the other cases are all

straightforward.

This completes the proof of Theorem 3.8.

Note. The assumption of n-goodness is essential for this proof. To remove the
need for it, one suggestion would be to add the following as primitive rules of
TF:

(Leq)
Γ `M = N : T

Γ `M : T
(Req)

Γ `M = N : T

Γ ` N : T
This would not work, however. The proof of Theorem A.2 would then fail, as we
would not be able to complete the inductive step for the proof of Functionality
in the case that the last step in the derivation is the rule (Req).

45

B. 2-good Specifications

Our aim in this section is to show that, if T is an orderable type theory
specification in which every declaration is of order ≤ 2, then T is 2-good. In
order to prove this, we must prove four properties hold simultaneously. The
following proof holds whether we are working in TF or TFk.

Theorem B.1 Suppose T is an orderable specification, and every declaration
in T has order ≤ 2. Then:

1. Whenever Γ ` M = N : T and Γ has order ≤ 2 then Γ ` M : T and
Γ ` N : T .

2. Whenever Γ, x : K,∆ ` J , Γ F : K and Γ, x : K,∆ is of order ≤ 2,
then Γ, {F/x}∆ ` {F/x}J .

3. Whenever Γ, x : K,∆ `M : T , Γ F = G : K and Γ, x : K,∆ is of order
≤ 2, then Γ, {F/x}∆ ` {F/x}M = {G/x}M : {F/x}T .

4. Whenever Γ, x : K,∆ ` J , Γ K = K ′ and Γ, x : K,∆ is of order ≤ 2,
then Γ, x : K ′,∆ ` J .

Proof. By the orderability of T , we may replace the rules (const), (const eq)
and (eq) with the following rules without changing the set of derivable judge-
ments. For each constant declaration c : (∆)T ,

(const′)
Γ ~F :: ∆ ∆ T kind

Γ ` c ~F : {~F/∆}T
(const eq′)

Γ ~F = ~G :: ∆ ∆ ` T kind

Γ ` c ~F = c ~G : {~F/∆}T

For each equation declaration (∆)(M = N : T),

(eq′)
Γ ~F :: ∆ ∆ `M : T ∆ ` N : T

Γ ` {~F/∆}M = {~F/∆}N : {~F/∆}T

Given a finite sequence of declarations s, let us write Γ `s J to mean that
there exists a derivation of the judgement Γ ` J such that, for every branch in
the derivation, the declarations used at the (const), (const eq) and (eq) nodes,
taken in order from leaf to root, form a subsequence of s. For defined judgement
forms, we write (e.g.) Γ s (x : El (A))El (B) = (x : El (A′))El (B′) to mean
Γ `s A = A′ : Type and Γ, x : A `s B = B′ both hold.

We write s @ t to denote that s is a proper initial segment of t. We write
Γ `@s J to denote that there exists t @ s such that Γ `t J .

Define the order of a sequence s by

o(s) = max{o(δ) | δ ∈ s} .

46

We define the following properties for natural numbers m, n with n < m
and sequences s.

• CUT (m,n, s) is the statement: whenever Γ, x : K,∆ has order m, K
has order n, and Γ, x : K,∆ `s J and Γ s F : K, then Γ, {F/x}∆ `s
{F/x}J .

• FUNC (m,n, s) is the statement: whenever Γ, x : K,∆ has order m, K
has order n, and Γ, x : K,∆ `s M : T and Γ s F = G : K, then
Γ, {F/x}∆ `s {F/x}M = {G/x}M : {F/x}T .

• CC (m,n, s) is the statement: whenever Γ, x : K,∆ has order m, K has
order n, and Γ, x : K,∆ `s J and Γ s K = K ′, then Γ, x : K ′,∆ `s J .

• EQVAL (m, s) is the statement: whenever Γ has order m and Γ `s M =
N : T , then Γ `s M : T and Γ `s N : T . (EQVAL stands for ‘equation
validity’.)

• FUNCEQ (m,n, s) is the statement: whenever Γ, x : K,∆ has order m,
K has order n, and Γ, x : K,∆ `s M = N : T and Γ s F = G : K, then
Γ, {F/x}∆ `s {F/x}M = {G/x}N : {F/x}T .

• GFUNC (m,n, s) is the statement: whenever Γ, x : K,∆ has order m, K
has order n, and Γ, x : K,∆ `s M : T , Γ s F = G : K, Γ s F : K
and Γ s G : K, then Γ, {F/x}∆ `s {F/x}M = {G/x}M : {F/x}T .
(GFUNC stands for ‘guarded functionality’.)

We shall employ the following abbreviations: CUT (≤ a,< b, s), for example,
shall mean that CUT (m,n, s) holds for all m ≤ a and all n < b. Another
example: CC (m,n,ls) shall mean CUT (m,n, t) holds for all tl s.

Our aim is to show EQVAL (2, s) for all sequences s of declarations from T .
By proofs similar to the ones in the Appendix A, we can prove the following

results for all m and s:

(1) FUNCEQ (m,< n, s) ∧ CUT (m,< n, s)⇒ GFUNC (m,n, s)
(2) CUT (m,< n, s) ∧ FUNCEQ (m,< n, s)⇒ CUT (m,n, s)
(3) CUT (m,< n, s) ∧ CC (m,< n− 1, s) ∧ EQVAL (m, s)⇒ CC (m,n, s)
(4) GFUNC (m,n, s) ∧ CUT (m,n, s)⇒ GFUNCEQ (m,n, s)

The following results are trivial:

(5) GFUNC (m,n, s) ∧ EQVAL (m, s)⇒ FUNC (m,n, s)
(6) GFUNCEQ (m,n, s) ∧ EQVAL (m, s)⇒ FUNCEQ (m,n, s)

47

Claim.

(7) The properties

GFUNCEQ (m,< m− 1, s)
CC (m,< m− 2, s)

GFUNCEQ (≤ max(m, o(s)), < o(s),@ s)
CC (≤ max(m, o(s)− 1), < o(s)− 1,@ s)

CUT (≤ max(m, o(s)), < o(s),@ s)

entail EQVAL (m, s).

Proof. We prove that, whenever Γ has order ≤ m and Γ `s M = N : T , then
Γ `s M : T and Γ `s N : T , by induction on the derivation of Γ `s M = N : T .

Suppose the last step in the derivation is

(const eq′)
Γ s ~F = ~G :: ∆ ∆ T kind

Γ `s c ~F = c ~G : {~F/∆}T

where we have (c : (∆)T) ∈ s. Let s = s1, c : (∆)T, s2, where c : (∆)T does not
occur in s2.

The induction hypothesis gives Γ s1 ~F :: ∆, and so Γ `s c ~F : {~F/∆}T by
(const).

The induction hypothesis also gives Γ `s1 Gi : {~F/∆}Ki, where Ki is the
ith kind in ∆. By Context Validity, we also have

x1 : K1, . . . , xi−1 : Ki−1 s1 Ki kind .

Using GFUNCEQ (m,< o(s),@ s), we have Γ s1 {~F/∆}Ki = {~G/∆}Ki, and
so, using CC (m,< o(s)− 1,@ s),

Γ `s1 Gi : {~G/∆}Ki ,

that is, Γ s1 ~G :: ∆. Therefore, Γ `s c ~G : {~G/∆}T by (const).
The case (vareq) is similar, using GFUNCEQ (m,< m− 1, s) and

CC (m,< m− 2, s).
Suppose s = s1, (∆)(M = N : T), s2, and the last step in the derivation is

(eq′)
Γ s1 ~F :: ∆ ∆ `s1 M : T ∆ `s1 N : T

Γ `s {~F/∆}M = {~F/∆}N : {~F/∆}T

By CUT (≤ max(m, o(s)), < o(s),@ s), we have Γ `s1 {~F/∆}M : {~F/∆}T and
Γ `s1 {~F/∆}N : {~F/∆}T .

48

We can now use these seven results to prove Theorem B.1. Firstly, note that
(1) and (2) imply

GFUNC (m, 0, s) ∧ CUT (m, 0, s)

for every m and s. Therefore, by (4), GFUNCEQ (m, 0, s) holds for every m
and s.

Our goal is to prove the following:

EQVAL (2, s) ∧ FUNC (2, 1, s) ∧ CUT (2, 1, s) ∧ CC (2, 1, s) .

The proof is by induction on the length of s. Suppose, as induction hypothesis,

EQVAL (2,@ s) ∧ FUNC (2, 1,@ s) ∧ CUT (2, 1,@ s) ∧ CC (2, 1,@ s) .

Then the following hold:

CC (2,≤ 1,@ s) (by (3))
EQVAL (2, s) (by (7))
FUNC (2, 0, s) (by (5))

FUNCEQ (2, 0, s) (by (6))
GFUNC (2, 1, s) (by (1))
FUNC (2, 1, s) (by (5))
CUT (2, 1, s) (by (2))

GFUNCEQ (2, 1, s) (by (4))
FUNCEQ (2, 1, s) (by (6))

This completes the induction.

It does not seem possible to use the same method to prove that, if every
declaration in T is of order ≤ 3, then T is 3-good. As noted in the proof, we have
GFUNC (m, 0, s), CUT (m, 0, s) and GFUNCEQ (m, 0, s). It is also possible to
prove directly, by an induction on derivations, that CC (m, 0, s) holds for all m
and s. We are then stuck: for o(s) = 2, we have the circle of implications

EQVAL (3, s)⇒ FUNCEQ (3, 0, s)⇒ GFUNC (3, 1, s) ∧ CUT (3, 1, s)
⇒ GFUNCEQ (3, 1, s)⇒ EQVAL (3, s)

without any immediate way to prove any of these directly.
We are thus unable to prove the following statement yet, and present it here

as a conjecture:

Conjecture B.2 Every orderable type theory specification is good.

C. The Strong Normalisability of LF

Consider the simply typed lambda-calculus (STLC), with the following gram-
mar:

Type A ::= ∗ | A→ A

Term M ::= x | λx : A.M |MM

49

We shall use the fact that every term typable in STLC is strongly βη-normalising
to prove that every object typable in LF is strongly βη-normalising.

Define a translation [[]] that maps every kind of LF to a type of STLC, every
object of LF to a term of STLC, and every context of LF to a context of STLC,
as follows:

[[Type]] ≡ ∗
[[El (k)]] ≡ ∗
[[(x : K)K ′]] ≡ [[K]]→ [[K ′]]
[[[x : K]k]] ≡ λx : [[K]] . [[k]]
[[kk′]] ≡ [[k]] [[k′]]
[[x1 : K1, . . . , xn : Kn]] ≡ x1 : [[K1]] , . . . , xn : [[Kn]]

The key step in this proof is to realise the following fact about this translation:

Lemma C.1 Under an arbitrary type theory specification in LF, if Γ ` K =
K ′, then [[K]] ≡ [[K ′]].

Proof. The proof is a simple induction on derivations.

Using this lemma, we can establish the following:

Lemma C.2 Suppose Γ ` k : K. Let c1, . . . , cm be the constants that occur
in k, and let them be declared with kinds

c1 : K1, . . . , cm : Km .

Then
c1 : [[K1]] , . . . , cm : [[Km]] , [[Γ]] ` [[k]] : [[K]]

in STLC.

Proof. The proof is by induction on the derivation of Γ ` k : K.

Lemma C.3 If k and k′ are LF-objects and k →βη k
′, then [[k]]→βη [[k′]].

Proof. We first establish the fact that

[[[k/x]k′]] ≡ [[[k]] /x] [[k′]]

by induction on k′. Now, if k ≡ ([x : K]k1)k2 and k′ ≡ [k2/x]k1, then

[[k]] ≡ (λx : [[K]] . [[k1]]) [[k2]]→β [[[k2]] /x] [[k1]] ≡ [[k′]] .

The other cases are similar.

50

These allow us to prove the theorem we want:

Theorem C.4 Under an arbitrary type theory specification in LF, if Γ ` k :
K, then k is strongly βη-normalising.

Proof. Suppose k →βη k1 →βη k2 →βη · · · is an infinite reduction sequence.
By Lemma C.2, we have that [[k]] is typable in STLC under some context; and
by Lemma C.3, we have that

[[k]]→βη [[k1]]→βη [[k2]]→βη · · ·

is an infinite reduction sequence. This contradicts the fact that STLC is strongly
normalising.

51

