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Abstract

Selective breeding is considered as a communication
channel, in a novel way. The Shannon informational ca-
pacity of this channel is an upper limit on the amount of
information that can be put into the genome by selection:
this is a meaningful upper limit to the adaptive complexity
of evolved organisms. We calculate the maximum adap-
tive complexity achievable for a given mutation rate for
simple models of sexual and asexual reproduction. A new
and surprising result is that, with sexual reproduction, the
greatest adaptive complexity can be achieved with very long
genomes, so long that genetic drift ensures that individual
genetic elements are only weakly determined. Put another
way, with sexual reproduction, the greatest adaptive com-
plexity can in principle be obtained with genetic architec-
tures that are, in a sense, error correcting codes. For asex-
ual reproduction, for a given mutation rate, the achievable
adaptive complexity is much less than for sexual reproduc-
tion, and depends only weakly on genome length.

A possible implication of this result for genetic algo-
rithms is that the greatest adaptive complexity is in prin-
ciple achievable when genomes are so long that mutation
prevents the population coming close to convergence.

1. Introduction

Complex organisms become intricately adapted to their
environments after long eons of natural selection. In some
sense, natural selection creates genetic information that
specifies the structure of the organism. Most of this in-
formation is encoded in the genome; in each generation,
the information is degraded by mutation, and restored or in-
creased by selection.

We will pose and answer some natural and basic ques-
tions about the amount of genetic information that can be

produced by selection.
We will partially answer these questions for a simple

model of evolution, variants of which have been indepen-
dently studied by many people. In population genetics it is
the standard model of linear selection with full linkage equi-
librium, as described in classic population genetics texts
such as, for example, [CK70] and [Ewe79]. Similar models
have been studied in machine learning by [DH97] and as
a simplified form of genetic algorithm by [BBG95]; in the
genetic algorithms (GA) community they have been studied
by [Bal94], [PGCP99], [HLG99], and others.

It has long been known that under certain assumptions
sexual reproduction can be evolutionarily advantageous: an
early study was [CK79]; [BBG95] and [Mac03] are more
recent analyses. [Mac03] (chapter 20) defines a measure
of the rate of acquisition of information of a species from
selection, but that definition of information is different from
the one developed here.

In contrast to previous studies, we quantify the advan-
tage of sexual over asexual reproduction in terms of the
maximal amount of information that can be maintained in
the genome. We also compare the amount of informa-
tion that can be maintained using both compact and highly
distributed genetic codes: for sexual reproduction, it turns
out that there is an enormous potential advantage in using
highly distributed codes over long genomes.

It is not straightforward to define a suitable notion of
the amount of information in the genomes of a population
that is the result of selection rather than genetic drift. The
notion we will next describe is very similar to the notion
of “physical information” that was introduced by [Ada02].
We motivate the definition with two thought-experiments,
and we argue that the appropriate way to consider achiev-
able adaptive complexity is as the informational capacity of
a communication channel: informational channel capacity
is a standard concept in information theory, as described in
numerous texts such as [CT91] and [Mac03].
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2. A thought experiment: selective breeding as
communication

The key question is how to define the information that
is in the genomes of a species as a result of selection. Not
all parts of the sequence of a genome are informative: many
features of real genomes are determined by “random genetic
drift” rather than by selection. But genetic drift is nothing
but random selection: how can one distinguish the effects
of random selection from “real” selection? A direct way
to make the distinction to consider selective breeding as a
communication channel, in the following way.

Suppose that Alice and Bob are two geneticists: Alice
is to be imprisoned, and wishes to send messages to Bob
from her cell. The only possible method is for Alice to
capture wild Drosophila, and to breed them selectively for
many generations in her cell. She must encode her message
in the flies’ genomes by means of selective breeding alone
(we suppose that direct modification of genomes by genetic
engineering is against the prison rules). The message that
Alice sends corresponds to the criterion that she uses to se-
lect flies as she breeds them. On a previously appointed day,
she releases her final generation of flies. The faithful Bob,
waiting outside, catches one of them, sequences its genome,
and decodes Alice’s message according to the encoding sys-
tem they agreed to use before Alice was sent to prison. How
much information can Alice send, and what code should Al-
ice and Bob agree to use? This is a concrete and practical,
though fanciful, question that deserves an answer.

It is important that we require that Bob should capture
only one fly. All the flies that Alice releases should there-
fore carry her message. This requirement corresponds to
the intuition that the information to construct a member of
a species is present in the genome of each member of the
species. If, instead, Bob were allowed to capture a large
number of flies, then Alice could encode her message in the
population structure: this could be done within a single gen-
eration, rather than by producing a new variety of fly over
many generations. With such a “population code”, each in-
dividual fly would carry only a tiny part of the message, so
that this manner of transmitting information would not be
relevant to explaining the evolution of complex organisms,
which is our goal. We will not, therefore, consider popula-
tion codes further.

Any information that Alice can send to Bob in this way
must be the result of Alice’s selections of which flies to
breed. The capacity of this communication channel, there-
fore, is a conservative measure of the amount of informa-
tion that Alice can put into her flies’ genomes by selective
breeding.

One possible method for Alice and Bob to use would
be to have a code-book of distinct varieties of fly, each
of which Alice could reliably produce by selective breed-

ing. Each time Alice set out to breed a particular variety,
she would produce a detectably different final population –
an achievable variety would need to be defined sufficiently
broadly to ensure that Alice could produce it by following
a prespecified selection policy. The amount of information
that could be sent in this way would be the log of the number
of distinct achievable varieties in the code-book. Although
the notion of a code-book of distinct, achievable varieties is
concrete and intuitively attractive, the notion of channel ca-
pacity is formally more convenient, and will be used below.

From the point of view of the flies, the channel capacity
measures the variety and precision of the fly population’s
possible responses to selection. The structural adaptation of
an individual fly to its environment is limited by the amount
of information from selection that is stored in its genome.
In principle, the greater the number of distinct achievable
varieties, the more precise and well-specified the fly can be,
both in body and innate behaviour, and the greater the range
of possible responses to environmental challenge.

2.1. A formal framework for describing se-
lective breeding

In a more formal model, we view the breeding popula-
tion as a collection of genomes, and consider selection to be
performed directly on known genome sequences. We will
first set up a general framework that can be applied to many
computational models of evolution, and we will then con-
sider two specific models.

Let the (finite) set of all possible genomes be G. A breed-
ing population of genomes, which will be called a collection
of genomes, is denoted as c = (x1, . . . ,xn). Three oper-
ations are defined on collections: selection, breeding, and
mutation.

A selection rule s assigns a weight to each genome in a
collection: that is, s(c) = w, where w = (w1, . . . , wn) and
wi ≥ 0 and

∑
i wi = 1. We suppose that there is a set S of

possible selection rules that a breeder can apply.
A breeding system b is a stochastic function that con-

structs a new collection from an existing weighted collec-
tion: C = b(c,w), where C is a random variable ranging
over the set of possible collections.

A mutation function m modifies the genomes in a collec-
tion by incorporating mutations. m is also a stochastic func-
tion, in the sense that, for a collection c, m(c) is a random
variable ranging over all possible collections of the same
size as c.

Given a selection rule s and a starting collec-
tion C0, we may construct a sequence of collections
C1, C2, . . . , Ct, . . ., such that for t = 1, 2, . . . , T , Ct+1 =
m(b(Ct,wt)), where wt = s(Ct). Note that the same
selection rule s is used for all T generations. We also
define an associated sequence X0, X1, . . . , XT such that



Xt ∼ (Ct,wt): that is, Xt is sampled from Ct according
to the probabilities wt. Ct is a Markov sequence, but Xt is
in general not Markov.1

We define an evolutionary system (ES)
〈G,S, b, m, C0, n, T 〉, consisting of a set G of possi-
ble genomes, a set S of possible selection rules, a breeding
system b, a mutation function m, a starting population C0

(which may be a random variable), population size n, and a
stopping time T .

An ES may be viewed as a communication channel in
the following sense. The message sender chooses a selector
s ∈ S: s is the “message” that is “sent”. Starting with
a collection distributed as C0, a sequence of collections
C1, . . . , CT , each of size n, is generated, such that Ck+1 =
m(b(Ck, s(Ck))). Finally the sample XT ∼ (CT ,wT ) is
the message that is “received”. The receiver of the mes-
sage may then infer some information about s by examin-
ing XT . All characteristics of the system, including the
stopping time T are known to the receiver: the receiver is
ignorant only of the sender’s choice of s.

The channel capacity I of an ES is defined using a “send-
ing” probability distribution Q over S , so that the selection
rule used is a random variable S ∈ S and such that S ∼ Q.
The channel capacity I is defined in the standard way as:

I = max
Q

{
H(S)−H(S|XT )

}
= max

Q

{
H(XT )−H(XT |S)

}

(1)
where H is the entropy function and conditional entropy is
defined in the standard way.

3. A Simplified GA Model

We use a model identical to that of [BBG95]: very simi-
lar models have been used by others such as [DH97], and by
[CK70] for the case of truncation selection with reversible
mutation in full linkage equilibrium.

The set of possible genomes G = {0, 1}L for some cho-
sen genome length L (we will consider the effect of varying
the choice of L).

3.1. Selection Rules

We consider selection rules based on the Hamming dis-
tance from an “ideal genome” z: the set S consists of one
selection rule based on each of the 2L possible values of z.
Define the level of agreement between a genome x and and
“ideal” genome z as f(x, z) := 1

L#{i : xi = zi}, which is
the fraction of indices at which they agree. Given a collec-
tion C = (x1, . . . ,xn), let us define fi = f(xi, z). Let σ

1In fact X1, . . . , XT is a sequence of observations from a hidden
Markov model, but standard tools of HMM estimation turn out not to be
needed for the analysis given below.

be a permutation of (1, .., n) such that fσ(1) ≥ · · · ≥ fσ(n).
Let sz ∈ S be the selection rule based on ideal genome z,
and, assuming n to be even, define

wσ(i) :=

{
2
n if 1 ≤ i ≤ n

2

0 if n
2 < i ≤ n

(2)

In other words, we select for breeding the 50% of genomes
in a collection that agree best with the “ideal genome” z.

By symmetry, H(XT |sz) will be equal for all sz ∈ S ,
so to compute the channel capacity we need consider only
the case where z = (1, 1, . . . , 1) and let us define f(x) :=
1
L

∑L
i=1 xi.

3.2. Model of Sexual Reproduction

We model sexual reproduction as follows. A child
genome x′ is constructed by selecting each element x′i from
the corresponding element of a genome x of the parent pop-
ulation, where x ∼ (C,w), and x is sampled afresh and in-
dependently for each x′i. Each element of the child genome
x′ may be drawn from a different parent genome, there-
fore. This might be termed “hypersexual reproduction”,
since each child is a mixture of the alleles of the entire
parent population, instead of having just two parents. This
model of reproduction ensures that the elements of a child
genome are independent Bernoulli variates.

This “hypersexual” model is simple to analyse but not
fully biologically realistic. It is equivalent to the simplifying
assumption of linkage equilibrium, often used in population
genetics.

3.3. Model of Mutation

Finally, mutation is modelled by inverting each element
of each genome with probability u, independently of other
elements and other genomes. The parameter u is the muta-
tion rate, and is typically small.

3.4. Channel capacity of sexual breeding

We will estimate the channel capacity of the evolutionary
system defined in the previous section, when the stopping
time T is large enough for the collections to have reached
mutation-selection equilibrium. We write X := XT as
a genome observed when the process has reached equilib-
rium.

Let p := E[f(X)], the expected fraction of 1s in the
selected population at equilibrium. The maximum entropy
distribution of X for a given value of p would be the fac-
torial distribution in which the elements of XT are inde-
pendent Bernoulli variables, such that P(XT

i = 1) = p
for all i. The entropy of this distribution is Lh(p) where



h(p) := −p log2 p − (1 − p) log2(1 − p). The actual en-
tropy of X must be less than equal to this.

As H(X|sz) is the same for all sz ∈ S , the maximal
channel capacity is achieved when the sending distribution
Q is the uniform distribution over all sz, in which case,
without the conditioning on S, X is uniformly distributed
over G, so that H(X) attains its maximal possible value of
L bits. The channel capacity is therefore

I = H(X)−H(X|S) (3)
≥ L(1− h(p)) (4)

=
2

ln 2
L(p− 1

2 )2 + O((p− 1
2 )4) (5)

using the Taylor series for h(p) (measured in bits) expanded
at 1

2 . To compute the channel capacity, it remains to esti-
mate the equilibrium value of p.

3.5. Channel Capacity with Small Genomes

For small L, the equilibrium selected population may
consist of identical genomes. The mean number of ele-
ments of a genome that are inverted by mutation is Lu;
using a Poisson approximation of the number of elements
of a genome that are inverted, the probability that no ele-
ment of a genome is inverted — that is, the probability that
a genome is unchanged by mutation — is approximately
e−Lu.

If more than half of the genomes are unchanged by mu-
tation — that is, if e−Lu > 1

2 — then in equilibrium
50% truncation selection can maintain a selected collection
that with high probability consists of identical genomes.
Each selection rule sz can maintain a selected collection of
genomes that are with high probability all equal to z. This
implies that H(X|S) ≈ 0, and therefore the channel capac-
ity I = L bits, provided that L < log 2

u . Hence

I ≤ log 2
u

(6)

for a regime in which the selected collection consists of
identical copies of a single genome.

The result of equation (6) was derived by [ES79], in their
investigation of the possible origins of life. Eigen et al. ar-
gued that an early replicator would have been inaccurate,
with some relatively large mutation rate u, and that the mu-
tation rate would set a limit on the possible length of the
genetic sequence of such a proto-organism. If such an or-
ganism required, for its specification, an accurate genetic
sequence longer than approximately 1

u , it would suffer an
“error catastrophe”, as more errors accumulated in its se-
quence than could be feasibly eliminated by selection.

3.6. Channel Capacity with Large Genomes

In contrast to short genomes, we now consider the case
of long genomes, so long that in equilibrium, the selected
collection will have a value of p only slightly larger than 1

2 .
Clearly, such genomes will be underdetermined by the se-
lection rule, and they will have a low density of information
— but on the other hand, the genomes are long, and so may
contain a large amount of information at low density.

To determine the channel capacity, we estimate p at equi-
librium as follows. At equilibrium, the fraction of 1s intro-
duced by selection in each generation will equal the fraction
of 1s removed by mutation. Mutation changes the fraction
of 1s by −2u(p− 1

2 ).
The increase in the fraction of 1s as a result of se-

lection depends on the intra-collection variance of v :=
ECT Var(f1, . . . , fN ). Assuming that the fi are approxi-
mately normally distributed, the expected fraction of 1s in

selected half of the population is p+
√

2
π

√
v since the mean

deviation of a normal variate from the mean is
√

2
π σ. As

stated above, the exact method of selection is not impor-
tant: let us suppose that the effect of selection is to increase

the fraction of ones by an amount α
√

v, where α is
√

2
π

for 50% truncation selection. The equilibrium equation is
therefore

2u(p− 1
2 ) = α

√
v (7)

It remains to estimate the expected variance v of the frac-
tions of 1s Var(f1, . . . , fn) of genomes in the collection.

Let θ = (θ1, . . . , θL) be the marginal frequencies of 1s
in C. That is, let θi = 1

n

∑n
k=1 xk

i . The breeding system
ensures that the values of each element of each genome are
statistically independent, so:

v =
1
L2
EC

L∑

i=1

θi(1− θi) (8)

By symmetry, for 1 ≤ i ≤ L

ECθi = p− 2u(p− 1
2 ) (9)

= p− 2up + u (10)

For sufficiently large collection size n, each θi will with
high probability be close to its expected value p−2u(p− 1

2 ).
It follows that for large collections

v =
1
L

(
p(1− p) + 4(p− 1

2 )2(u− u2)
)

(11)

≥ 1
L

p(1− p) (12)

We are most interested in the case where u is small, so that
v ≈ 1

Lp(1− p), and we will proceed using this approxima-
tion.



The equilibrium equation is

2u(p− 1
2 ) = α

√
p(1− p)

L
(13)

which implies

p− 1
2 =

1

2
√

4
α2 Lu2 + 1

(14)

For L À α2

16u2 the channel capacity is

I =
α2

8 ln 2
· 1
u2

+ O

(
1

Lu4

)
(15)

hence for large L and n,

I ∝ 1
u2

(16)

Equation (16) is a remarkable result. The mutation rate
u is typically small, so that the maximal channel capacity is
achieved with large, ill-determined genomes, and is much
larger than the channel capacity with small genomes of size
O( 1

u ).

3.7. How large a population is needed?

An important question is how large the population size
n needs to be to approach this channel capacity. A stan-
dard result of population genetics (given in [CK70]) is that
the expected variance of the fraction of 1s with symmet-
ric mutation and near-neutrality at individual loci, which is
achieved with large L, is given by

v =
1
L
· Nu

4Nu + 1
(17)

This implies that I ∝ 1
u2 for N greater than approximately

1
4u .

4. A model of selective breeding for asexual or-
ganisms

To model asexual reproduction, we need alter only the
breeding system b. To produce a new collection C ′ asexu-
ally from an existing weighted collection (C,w), we sam-
ple each element x′i of C ′ independently from (C,w). In
this model of asexual reproduction, genomes do not recom-
bine, so that each element of C ′ is a copy of some element
of C. Mutation is the only source of new genetic variety.

4.1. Channel capacity of asexual breeding:
strong selection

Equation (7) remains valid for asexual breeding, but v is
not easy to estimate for truncation selection as the distribu-
tion of (f1, . . . , fN ) is no longer normal.

Instead of seeking to compute the channel capacity for
truncation selection, we will bound the capacity of asexual
breeding with a population of size n for any type of selec-
tion.

In asexual breeding, the “children” are cloned from the
parent, and differ only in the mutations they accumulate.
The expected fitness of a child, therefore, increases mono-
tonically with the fitness of the parent. It follows that the
fittest possible child population is obtained by breeding the
entire child generation C ′ from fittest genome in C. That is,
the selection rule — that we term strong selection — which
gives the highest expected fitness of the child population is
to set wi to 1 where xi is a maximally fit genome in C, and
to set the weights of the rest of the genomes in C to zero.

In equilibrium, the expected fraction of 1s in the best
child should be equal to the fraction of 1s in the parent. For
large L, the distribution of the fraction of 1s in the children
will be approximately normal, so that

v =
u(1− u)

L
(18)

≈ u

L
when u is small (19)

The mean fraction of 1s in the children will be p−2u(p− 1
2 ).

The maximum of N samples from a normal distribution is
O(σ

√
log N) above the mean. It follows that

2u(p− 1
2 ) = O

(√
u log N

L

)
(20)

so that

I = O

(
log N

u

)
(21)

Hence the channel capacity for asexual breeding is much
lower than for sexual breeding for low mutation rates. The
difference is large: to achieve a channel capacity compara-
ble to sexual breeding with a population size of 1

4u , the size
of an asexual population needs to be exp(O( 1

u )), which is
infeasible for small u.

5. Simulations

Figure 1 shows the channel capacity for sexual and asex-
ual breeding, for genomes of various lengths, and with var-
ious mutation rates. The value of collection size N was 500
for all experiments. Three different mutation rates — 0.1,



0.01, and 0.001 — were used. The genome sizes ranged
from 10 to 1,000,000. The lines labelled “S” are for sexual
breeding, and those labelled “A” show the results for asex-
ual breeding. As expected, for low mutation rates there is a
large difference in channel capacity for sexual and asexual
breeding. In this experiment, sexual rather than hypersexual
breeding was used: each child was created from two “par-
ent” genomes, with each element of the child being inde-
pendently selected with equal probability from either par-
ent. This breeding system can be implemented very effi-
ciently, so that large simulations may readily be done. The
channel capacity of this form of sexual breeding is some-
what less than that of hypersexual breeding.

6. Discussion

Although the analysis has been quite abstract, the in-
formational advantage of distributed encodings for sexual
breeding is in principle so large that it seems plausible that
such encodings occur in nature. Well known aspects of the
genetics of eukaryotic organisms may make sense from this
point of view. The (sexual) eukaryotes usually have large
genomes, consisting mostly of “junk”, while the genomes
of (asexual) prokaryotes are generally smaller with a higher
proportion of genes. Although the classical triplet genetic
code is the same in both kingdoms, the genome encodes
much information other than protein sequences. The en-
coding of regulatory and developmental information would
be informationally efficient if it were diffuse. “Junk” DNA
is produced by many processes: once it exists it will accu-
mulate genetic variety as mutations occur, and this genetic
variety provides potential channel capacity. Where channel
capacity exists, it is likely to be used.

Eigen et al in [ES79] argue that a primitive genome must
be limited in length to O( 1

u ) because otherwise errors would
accumulate that would prevent the genome from replicat-
ing properly, so that there would be an “error catastrophe”
for genomes of excessive length. We take a different view.
There are no doubt parts of the genome that must be accu-
rate for an organism to be viable, and for basic components
of cells to function properly. The length of these parts of
the genome is indeed limited, by Eigen et al’s argument, to
O( 1

u ). However, for complex organisms, the mechanisms
of regulation of gene expression, and the processes of devel-
opment, could conceivably be influenced by very many loci,
and might be robust enough to ce able to interpret a code of
low information density. The adaptive structural complexity
of an organism is necessarily limited by the amount of ge-
netic information available to the organism’s developmen-
tal processes, and the largest amount of information may be
supplied by diffuse, low-density codes.

For genetic algorithms, these results imply that more in-
teresting behaviour and better adaptation may occur if the

algorithms use diffuse encodings on long genomes, long
enough so that “convergence” of the population to a sin-
gle genome never occurs because of mutation and drift. We
do not yet know how to devise suitable diffuse encodings,
or under what circumstances such encodings may sponta-
neously arise.

The next unanswered question is whether highly dis-
tributed genetic codes that enable high channel capacity
tend to evolve spontaneously. The channel capacity is the
maximum possible maintainable information in the genome
under an encoding that enables the most favourable type of
fitness function. We do not know whether such stable highly
distributed and favourable codes can evolve and themselves
be stable under natural selection.
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Figure 1. The channel capacity as a function of genome size, for sexual and asexual breeding, for
three mutation rates.


