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STRONG TRANSVERSALS IN HYPERGRAPHS AND DOUBLE
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Abstract. Let H be a 3-uniform hypergraph of order n and size m, and let T be a subset of
vertices of H. The set T is a strong transversal in H if T contains at least two vertices from every
edge of H. The strong transversal number τs(H) of H is the minimum size of a strong transversal in
H. We show that 7τs(H) ≤ 4n+ 2m, and we characterize the hypergraphs that achieve equality in
this bound. In particular, we show that the Fano plane is the only connected 3-uniform hypergraph
H of order n ≥ 6 and size m that achieves equality in this bound. A set S of vertices in a graph G is
a double total dominating set of G if every vertex of G is adjacent to at least two vertices in S. The
minimum cardinality of a double total dominating set of G is the double total domination number
γ×2,t(G) of G. Let G be a connected graph of order n with minimum degree at least three. As an
application of our hypergraph results, we show that γ×2,t(G) ≤ 6n/7 with equality if and only if G
is the Heawood graph (equivalently, the incidence bipartite graph of the Fano plane). Further if G is
not the Heawood graph, we show that γ×2,t(G) ≤ 11n/13, while if G is a cubic graph different from
the Heawood graph, we show that γ×2,t(G) ≤ 5n/6, and this bound is sharp.
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1. Introduction. In this paper, we continue the study of transversals in hyper-
graphs and their interplay with total domination in graphs. A hypergraph H = (V,E)
is a finite set V of elements, called vertices, together with a finite multiset E of arbi-
trary subsets of V , called edges. Two edges in a hypergraph are said to be overlapping
if they intersect in at least two vertices. A k-edge in H is an edge of size k in H . The
hypergraph H is said to be k-uniform if every edge of H is a k-edge. The number of
i-edges (of size i) in H is denoted by ei(H). We denote the number of edges in H of
size at least 3 by e≥3(H).

The degree of a vertex v in H , denoted dH(v) or simply by d(v) if H is clear from
the context, is the number of edges of H which contain v. A vertex of degree k is
called a degree-k vertex. The minimum degree (resp., maximum degree) among the
vertices of H is denoted by δ(H) (resp., Δ(H)). The open neighborhood of v in H is
N(v) = {u ∈ V | {u, v} ⊆ e for some e ∈ E}. Two vertices x and y of H are adjacent
if there is an edge e of H such that {x, y} ⊆ e. Further, x and y are connected if
there is a sequence x = v0, v1, v2, . . . , vk = y of vertices of H in which vi−1 is adjacent
to vi for i = 1, 2, . . . , k. A connected hypergraph is a hypergraph in which every pair
of vertices are connected. A (connected) component of a hypergraph H is a maximal
connected subhypergraph of H .

A subset T of vertices in a hypergraphH is a transversal in H if T has a nonempty
intersection with every edge of H , while T is a strong transversal in H if T is a
transversal in H that contains at least two vertices from every k-edge in H where k ≥
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STRONG TRANSVERSALS IN HYPERGRAPHS 1337

3. The transversal number τ(H) and the strong transversal number τs(H) of H are
the minimum cardinalities of a transversal and strong transversal in H , respectively.
A strong transversal of H of size τs(H) is called a τs(H)-set.

In this paper, we also continue the study of total domination in graphs, which is
now well studied in graph theory. The literature on this subject has been surveyed
and detailed in the two books by Haynes, Hedetniemi, and Slater [8, 9]. A recent
survey of total domination in graphs can be found in [10]. Let G be a graph with no
isolated vertex, and let S be a subset of vertices of G. The set S is a total dominating
set of G if every vertex of G is adjacent to a vertex in S (other than itself), while S
is a double total dominating set (DTDS) of G if every vertex of G is adjacent to at
least two vertices in S. The minimum cardinalities of a total dominating set and a
DTDS in G are the total domination number γt(G) and the double total domination
number γ×2,t(G) of G, respectively. A DTDS of G of cardinality γ×2,t(G) is called a
γ×2,t(G)-set.

We remark that a DTDS is also called a 2-tuple total dominating set in the
literature. The more general concept of a k-tuple dominating set S, where every vertex
is either in S and has at least k − 1 neighbors in S or is not in S and has at least k
neighbors in S, has been studied by several authors (see, for example, [4, 5, 6, 7, 16, 17]
and elsewhere), while the analogous concept of a k-tuple total dominating set S, where
every vertex has at least k neighbors in S, is studied in [11] and elsewhere.

For notation and graph theory terminology we in general follow [8]. Specifically,
let G = (V,E) be a graph with vertex set V of order n = |V | and edge set E of
size m = |E|, and let v be a vertex in V . The open neighborhood of v is the set
N(v) = {u ∈ V |uv ∈ E}, and the closed neighborhood of v is N [v] = {v} ∪ N(v).
For a set S ⊆ V , its open neighborhood is the set N(S) = ∪v∈SN(v) and its closed
neighborhood is the set N [S] = N(S) ∪ S. If Y ⊆ V , then the set S is said to totally
dominate the set Y if Y ⊆ N(S). For a set S ⊆ V , the subgraph induced by S is
denoted by G[S]. We denote the degree of v in G by dG(v) or simply by d(v) if the
graph G is clear from context. The minimum degree (resp., maximum degree) among
the vertices of G is denoted by δ(G) (resp., Δ(G)).

Two edges in a graph G are independent if they are not adjacent in G. A set
of pairwise independent edges of G is called a matching in G, while a matching of
maximum cardinality is a maximum matching. The number of edges in a maximum
matching of G is called the matching number of G, which we denote by α′(G).

Much of the recent interest in total domination in graphs arises from the fact that
total domination in graphs can be translated to the problem of finding transversals
in hypergraphs. For a graph G = (V,E), we denote by HG the open neighborhood
hypergraph (ONH) of G; that is, HG is the hypergraph with vertex set V (HG) = V
and with edge set E(HG) = {NG(x) | x ∈ V (G)} consisting of the open neighbor-
hoods of vertices of V in G. We observe that γt(G) = τ(HG). This idea of using
transversals in hypergraphs to obtain results on total domination in graphs first ap-
peared in a paper by Thomassé and Yeo [18] and subsequently in several other papers,
including [13, 14, 15].

Chvátal and McDiarmid [3] and Tuza [19] independently established that if H
is a hypergraph on n vertices and m edges with all edges of size at least three, then
4τ(H) ≤ n+m. Thomassé and Yeo [18] proved that if H is a hypergraph on n vertices
and m edges with all edges of size at least four, then 21τ(H) ≤ 5n+ 4m.

In this paper, we obtain upper bounds on the strong transversal number of a
hypergraph along the lines of the Chvátal–McDiarmid and Tuza upper bound and the
Thomassé–Yeo upper bound on the transversal number. We then study the interplay
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1338 MICHAEL A. HENNING AND ANDERS YEO

between strong transversals in hypergraphs and double total domination in graphs.
We shall need the following key observation.

Observation 1. If G is a graph with δ(G) ≥ 3, then γ×2,t(G) = τs(HG).
Let H be a connected 3-uniform hypergraph on n ≥ 6 vertices and m edges. We

remark that there are many pairs of numbers (a, b) such that the inequality τs(H) ≤
an+ bm holds; clearly, both (1, 0) and (0, 2) work. By Observation 1, this inequality
implies that if G is a graph of order n with δ(G) ≥ 3, then γ×2,t(G) ≤ (a+ b)/n since
the ONH HG of G has size m = n. We wish to choose a and b so that their sum is as
small as possible, as this would be interesting for double total domination purposes.
This is the same approach used for total domination where τ(H) ≤ n/4 + m/4 is
used when H is 3-uniform (see [3, 19]) and τ(H) ≤ 5n/21 + 4m/21 is used when H
is 4-uniform (see [18]). The whole idea is to minimize a + b, and the big problem is
often deciding which values of a and b to use.

Applying probabilistic arguments used by Alon [1], we note that by choosing
vertices at random with probability p and then picking one or two more vertices
from edges that had only one or zero vertices picked randomly, we have τs(H) ≤
pn + (3p(1 − p)2 + 2(1 − p)3)m for all 0 ≤ p ≤ 1. Hence, (a, b) can be chosen to be
the pair (p, 3p(1 − p)2 + 2(1 − p)3) for any value of p with 0 ≤ p ≤ 1. However, for
such a choice of a and b, we note that a+ b = 2− 2p+ p3, which attains its minimum
nonnegative value when p =

√
2/3. Thus for all such choices of a and b, we note that

a+ b > 0.9113. To improve this trivial probabilistic lower bound on the sum of a and
b, a much more detailed and intricate analysis is needed.

In this paper we determine that a = 4/7 and b = 2/7 work in our case. Further-
more we note that a + b cannot be less than 6/7 due to the Fano plane. Of course
it would also be interesting to determine other values of a and b, but they cannot
improve the 6/7 bound we get for double total domination.

1.1. The hypergraph family H. In order to state our main results, we first
define a hypergraph family H.

Definition 1. Let H = {F4, F5, F6, F7, H3, H4, H5, T5} be a family of eight hy-
pergraphs shown in Figure 1. We remark that the Fano plane F7 is obtained from F6

by adding a new vertex v and expanding the three 2-edges in F6 to three 3-edges that
contain v.

2. Main results. We shall prove the following two hypergraph results. A proof
of Theorem 1 is presented in section 3.6, while a proof of Theorem 2 can be found in
section 3.8.

Theorem 1. If H is a hypergraph with only 2-edges and 3-edges, then

14τs(H) ≤ 8|V (H)|+ 4e3(H) + 2e2(H)

with equality if and only if every component of H belongs to H.
Theorem 2. If H is a connected 3-uniform hypergraph on n ≥ 6 vertices and m

edges, then 7τs(H) ≤ 4n+ 2m with equality if and only if H is the Fano plane.
In order to state our main graph theory results, let G14 be the Heawood graph

(or, equivalently, the incidence bipartite graph of the Fano plane) on 14 vertices shown
in Figure 2.

Using our earlier hypergraph results, we shall prove the following results about
double total domination in graphs.

Theorem 3. If G is a connected graph of order n with δ(G) ≥ 3, then γ×2,t(G) ≤
6n/7 with equality if and only if G is the Heawood graph G14.
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The Fano Plane F7

Fig. 1. The hypergraphs F4, F5, F6, H3, H4, H5, T5, and F7.
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Fig. 2. The Heawood graph G14.

Theorem 4. If G �= G14 is a connected cubic graph of order n, then γ×2,t(G) ≤
5n/6, and this bound is sharp.

Theorem 5. If G �= G14 is a connected graph of order n with δ(G) ≥ 3, then
γ×2,t(G) ≤ 11n/13.

Proofs of Theorems 3, 4, and 5 can be found in sections 4.3, 4.1, and 4.2, respec-
tively. Our proof techniques demonstrate an interplay between strong transversals in
hypergraphs and double total domination in graphs.
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1340 MICHAEL A. HENNING AND ANDERS YEO

3. Proof of hypergraph results. In order to prove our two main hypergraph
results, namely, Theorems 1 and 2, we need to prove two key results. However, in
order to state these results, we shall need certain hypergraph definitions.

3.1. Hypergraph definitions. In the definitions that follow, we assume through-
out that H is a hypergraph with all edges of size at least 2.

Definition 2. By shrinking an edge e of H we mean either deleting the edge e
if e is a 2-edge or replacing e by an arbitrary 2-edge e′, where e′ ⊂ e if e is an edge
of size at least 3. Further, we define e∗ = e if e is a 2-edge and e∗ = e′, where e′ is
an arbitrary selected 2-element subset of e if e is a 3-edge. If we shrink an edge in H,
then we say that the resulting hypergraph is obtained from H by an edge-change.

Definition 3. For a subset X of vertices in H, let H −X denote a hypergraph
obtained from H by

• deleting the vertices in X,
• deleting all 2-edges incident with X,
• deleting all edges of size at least 3 that intersect X in at least two vertices,
• shrinking all edges of size at least 3 that intersect X in exactly one vertex to a

2-edge that contains no vertex of X, and
• deleting the resulting set of isolated vertices, if any.

If X = {v}, then we simply denote H −X by H − v. We note that if T ′ is a strong
transversal in H −X, then T ′ ∪X is a strong transversal in H.

Definition 4. If F is a set of edges in H, then we define H − F to be the
hypergraph obtained from H by deleting the edges in F . If F = {e}, then we simply
write H − e rather than H − {e}. If F is the set of all edges in H of size at least 4,
then we denote the hypergraph H − F by H≤3.

Definition 5. We define a component of H to be a bad component if it belongs to
the family H. We define b(H) to be the number of bad components in H. Further, we
define b≤3(H) to be the number of bad components in H≤3. Thus, b≤3(H) = b(H≤3).

Definition 6. If H1 is a bad component of a hypergraph that can be obtained
from a hypergraph H by an edge-change but H1 is not a bad component of H itself,
then we say that H1 is an edge-bad component of H. We define eb(H) to be the
maximum number of vertex-disjoint edge-bad components in H. We note that an
edge-bad component of H may not be a subhypergraph of H.

Definition 7. If H2 is a bad component of a hypergraph that can be obtained
from a hypergraph H by two edge-changes resulting from two distinct edges in H but
H2 is neither a bad component nor an edge-bad component of H, then we say that H2

is an edge-bad 2-component of H.
Definition 8. We define ve(H) (standing for “vertex-edge contribution”) and

bc(H) (standing for “bad contribution”) by

ve(H) = 6|V (H)|+ 4e3(H) + 2e2(H),
bc(H) = 2b(H) + eb(H),
φ(H) = ve(H) + bc(H).

Definition 9. For every edge e in H, we define the cost of the edge e to be

c(e) =

{
2 if e is a 2-edge,
4 if e is a 3-edge.

3.2. Key results needed to prove Theorems 1 and 2. We are now in a
position to state two key results we shall need to prove our main results, namely,
Theorems 1 and 2.
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Theorem 6. If H is a hypergraph with only 2-edges and 3-edges, then the fol-
lowing holds: (a) 12τs(H) ≤ 6|V (H)|+ 4e3(H) + 2e2(H) + 2b(H) + eb(H).
(b) 13τs(H) ≤ 7|V (H)|+ 4e3(H) + 2e2(H) + b(H).

Proofs of Theorems 6(a) and 6(b) are presented in sections 3.4 and 3.5, respec-
tively. We next prove a slight strengthening of Theorem 6(b), a proof of which can
be found in section 3.7.

Theorem 7. If H is a hypergraph with all edges of size at least 2, then 13τs(H) ≤
7|V (H)|+ 4e≥3(H) + 2e2(H) + b≤3(H).

3.3. Properties of hypergraphs in H. In this section, we list properties of
hypergraphs in the family H that we will need in the subsequent proofs of our main
results. We begin with the following observation. We omit the proof of Observation 2
since it is a routine exercise to verify that these properties hold for each of the eight
hypergraphs in the family H. A vertex v in a hypergraph H is said to cover H if v is
adjacent to every vertex of H .

Observation 2. If H ∈ H, then H has the following properties:
(a) Every two vertices ofH belong to a common edge, and so every vertex coversH .
(b) τs(H) = |V (H)| − 1.
(c) Every set of |V (H)| − 1 vertices in H is a τs(H)-set.
(d) 12τs(H) = ve(H) + 2.
(e) ve(H) = 12(|V (H)| − 1)− 2.
(f) 12τs(H) = φ(H).
(g) If e and f are distinct edges in H , then e �⊆ f .
(h) If H �= H3, then H is 2-edge connected.
(i) For any two 2-edges e1 and e2 in H , there exists a vertex in V (H) \ (e1 ∪ e2).
(j) For any vertex v and 2-edge e in H , there exists a vertex in V (H) \ ({v} ∪ e).
(k) For any two vertices v1 and v2 in H , there exists a vertex in V (H) \ {v1, v2}.
The following characterization of the family H will prove to be useful.
Lemma 1. Let H be a hypergraph with only 2-edges and 3-edges. Then, H ∈ H

if and only if ve(H) ≤ 12(|V (H)| − 1)− 2 and every vertex covers H.
Proof. The necessity follows immediately from Observations 2(a) and 2(e). To

prove the sufficiency, for the sake of contradiction, let H = (V,E) be a counterexample
such that |V | + |E| is a minimum. Thus, ve(H) ≤ 12(|V | − 1) − 2, and every two
distinct vertices of H belong to a common edge, but H /∈ H. Clearly, |V | ≥ 3. Let v
be a vertex of maximum degree in H .

Suppose that dH(v) ≥ 4 and consider the hypergraph H ′ = H − v. We note
that if {v, x, y} is a 3-edge in H , then {x, y} is a 2-edge in H ′. Hence since every
two distinct vertices of H belong to a common edge, every two distinct vertices of
H ′ belong to a common edge. Thus every vertex of H ′ covers H ′. We also note that
ve(H ′) = ve(H)−6−2dH(v) ≤ ve(H)−14 ≤ 12(|V |−1)−2−14 = 12(|V (H ′)|−1)−4 <
12(|V (H ′)| − 1) − 2. By the minimality of H , we have that H ′ ∈ H. But then by
Observation 2, ve(H ′) = 12(|V (H ′)| − 1) − 2, contradicting our earlier observation
that ve(H ′) < 12(|V (H ′)|− 1)− 2. Hence, dH(v) ≤ 3. Since v covers H , we have that
|V | ≤ 7.

Suppose |V | = 7. Then every vertex in H has degree 3, and there are no overlap-
ping edges in H . Hence, H is a 3-regular 3-uniform hypergraph with the property that
every two distinct vertices of H belong to a common edge. But then H is the Fano
plane F7 ∈ H, contradicting the fact that H is a counterexample. Hence, |V | ≤ 6.

Suppose |V | = 6. By assumption, ve(H) ≤ 12(|V | − 1) − 2 = 58. If e2(H) = 0,
then H is 3-regular, and so e3(H) = 6 and ve(H) = 60, a contradiction. Hence,
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e2(H) ≥ 1. Let V = {v, v1, v2, . . . , v5}. Renaming vertices if necessary, we may
assume that v is incident with a 2-edge and that {{v, v1, v2}, {v, v3, v4}, {v, v5}} ⊂ E.
If {v1, v2, v5} ∈ E, then {v3, v4, v5} ∈ E since v5 covers H . But then {v1, v3, v4} ∈ E
and {v2, v3, v4} ∈ E, and so dH(v3) ≥ 4, contradicting the fact that Δ(H) = 3. Thus,
{v1, v2, v5} /∈ E. Similarly, {v3, v4, v5} /∈ E. Since v5 covers H , we may therefore
assume that {{v1, v3, v5}, {v2, v4, v5}} ⊂ E. But then {{v1, v4}, {v2, v3}} ⊂ E, and so
H = F6, a contradiction. Hence, |V | ≤ 5.

Suppose |V | = 5. By assumption, ve(H) ≤ 46. Let V = {v, v1, v2, v3, v4}. Since
every vertex coversH , every vertex is contained in at least one 3-edge. Thus, e3(H) ≥
2. Suppose e3(H) = 2. Then we may assume that {{v, v1, v2}, {v, v3, v4}} ⊂ E.
But then {{v1, v3}, {v1, v4}, {v2, v3}, {v2, v4}} ⊂ E, whence H = F5, a contradiction.
Hence, e3(H) ≥ 3. Then H contains two overlapping 3-edges. We may assume
that {{v, v1, v2}, {v, v1, v3}} ⊂ E. Suppose e3(H) = 3. We note that ve(H) =
6|V |+4e3(H)+2e2(H) = 42+2e2(H). By assumption, ve(H) ≤ 46. Hence, e2(H) ≤ 2.
This implies that {v2, v3, v4} is the third 3-edge and that {{v, v4}, {v, v1}} ⊂ E.
Thus, H = H5, a contradiction. Hence, e3(H) ≥ 4. We note then that ve(H) =
6|V |+4e3(H)+2e2(H) = 46+2e2(H). By assumption, ve(H) ≤ 46. Hence, e3(H) = 4
and e2(H) = 0. It follows that {{v, v1, v4}, {v2, v3, v4}} ⊂ E, whence H = T5, a
contradiction. Hence, |V | ≤ 4.

Suppose |V | = 4. By assumption, ve(H) ≤ 34. Let V = {v, v1, v2, v3}. If
e3(H) = 0, then every two vertices in H are joined by a 2-edge, and so e2(H) = 6 and
ve(H) = 6|V |+4e3(H) + 2e2(H) = 24+ 12 = 36, a contradiction. If e3(H) ≥ 3, then
ve(H) ≥ 36 + 2e2(H) ≥ 36, a contradiction. Hence either e3(H) = 1 or e3(H) = 2. If
e3(H) = 1, then H = F4, while if e3(H) = 2, then H = H4. In both cases, H ∈ H, a
contradiction. Hence, |V | = 3.

By assumption, ve(H) ≤ 22. If e3(H) = 0, then every two vertices in H are
joined by a 2-edge, and so e2(H) = 3 and ve(H) = 6|V | + 4e3(H) + 2e2(H) = 24,
a contradiction. Hence, e3(H) ≥ 1. But then ve(H) = 22 + 2e2(H), implying that
e3(H) = 1 and e2(H) = 0, and so H = H3 ∈ H, a contradiction.

3.4. Proof of Theorem 6(a). Before presenting a proof of Theorem 6(a), we
shall need the following result about matchings in cubic graphs which first appeared
in a paper by Biedl et al. [2]. We remark that a short proof of this result can be found
in [12].

Theorem 8 (see [2]). If G is a connected cubic graph G of order n, then α′(G) ≥
4(n− 1)/9.

For n ≥ 4, we note that 	 4
9 (n − 1)
 ≥ 	 7

16n
. Hence we have the following
immediate corollary of Theorem 8.

Corollary 1. If G is a cubic graph G of order n, then α′(G) ≥ 7n/16.
Using the hypergraph terminology defined in section 3.1, Theorem 6(a) can be

restated as follows.
Theorem 6(a). If H is a hypergraph with only 2-edges and 3-edges, then 12τs(H) ≤

φ(H).
Proof. For the sake of contradiction, among all counterexamples, let H = (V,E)

be one such that |V |+ |E| is a minimum. We proceed further with a series of claims
that we may assume the hypergraph H satisfies.

Claim A. The following properties hold in H:
(a) H /∈ H.
(b) H is connected.
(c) b(H) = 0.
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(d) If e and f are distinct edges in H, then e �⊆ f .
(e) δ(H) ≥ 2.
(f) eb(H) = 0.
(g) There is no edge-bad 2-component in H.
(h) Δ(H) ≤ 3.
(i) H is 2-regular.
(j) H is 3-uniform.
(k) There are no overlapping edges in H.
Proof. (a) If H ∈ H, then, by Observation 2(f), 12τs(H) = φ(H), contradicting

the fact that H is a counterexample to the theorem.
(b) Suppose H is disconnected. By the minimality of H , we have that 12τs(H

′) ≤
φ(H ′) for each component of H . Since τs(H) =

∑
τs(H

′) and φ(H) =
∑

φ(H ′) where
the sum is taken over all components H ′ in H , we have that 12τs(H) ≤ φ(H), a
contradiction.

(c) If b(H) > 0, then, by part (b), H ∈ H, contradicting part (a).
(d) Suppose e and f are distinct edges in H but e ⊆ f . Then, e must be a 2-edge

since H has only 2-edges and 3-edges. Further, every strong transversal in H − e in
a strong transversal in H , and so τs(H) ≤ τs(H − e). By the minimality of H , we
have that 12τs(H − e) ≤ φ(H − e). Now ve(H − e) = ve(H) − c(e) = ve(H) − 2.
If there is a new bad component in H − e, then it contains the edge f and by (c)
b(H − e) = 1. Furthermore eb(H − e) ≤ eb(H). Thus, bc(H − e) ≤ bc(H) + 2.
Thus, 12τs(H − e) ≤ φ(H − e) ≤ (ve(H) − 2) + (bc(H) + 2) = φ(H), contradicting
the fact that H is a counterexample to the theorem. Hence, b(H − e) = 0. If there
is a new edge-bad component in H − e but not in H , then b(H − e) = 0 = b(H) and
eb(H−e) ≤ eb(H)+3. If eb(H−e) ≤ eb(H)+2, then once again 12τs(H − e) ≤ φ(H),
a contradiction. Hence, eb(H − e) = eb(H)+ 3 and bc(H − e) = bc(H)+ 3. But then
e is a 3-edge, a contradiction.

(e) Suppose that dH(v) = 1 for some vertex v in H , and let e be the edge of H
containing v. Suppose first that e is a 2-edge. Let e = {u, v}. If dH(u) = 1, then V =
{u, v} and E = {e}. But then τs(H) = 1 and φ(H) = 14, and so 12τs(H) < φ(H), a
contradiction. Hence, dH(u) ≥ 2. We now consider the hypergraph H ′ = H − u. Let
U denote the set of isolated vertices resulting from deleting u from H . We note that
v ∈ U , and so |U | ≥ 1. Then, ve(H ′) = ve(H) − 6|{u}| − 6|U | − 2dH(u) ≤ ve(H) −
12 − 2dH(u). Further we note that the number of new bad-components or vertex-
disjoint edge-bad components that are created in H ′ is at most dH(u) − 1. Hence,
b(H ′)+eb(H ′) ≤ b(H)+eb(H)+(dH(u)−1). However, every new bad component inH ′

(that was not a bad component in H) is an edge-bad component of H or is intersected
by two or more edges incident with u, implying that bc(H ′) ≤ bc(H) + (dH(u)− 1).
Hence, φ(H ′) = ve(H ′) + bc(H ′) ≤ (ve(H)− 12− 2dH(u)) + (bc(H) + dH(u)− 1) =
φ(H)−13−dH(u) ≤ φ(H)−15. Since H ′ is not a counterexample to our theorem, we
have that 12τs(H

′) ≤ φ(H ′). Hence, 12τs(H) ≤ 12(τs(H
′) + 1) ≤ (φ(H)− 15)+ 12 =

φ(H)− 3, a contradiction.
Therefore, e is a 3-edge. Let e = {v, v1, v2}. We may assume that dH(v2) ≥

dH(v1). If E = {e}, then H = H3 ∈ H , contradicting part (a). Hence, dH(v2) ≥ 2.
Let X = {v1, v2} and consider the hypergraph H ′ = H −X . Let Y denote the set of
isolated vertices resulting from deleting X from H . We note that |Y | ≥ 1 since v ∈ Y .
Then ve(H ′) = ve(H)− 6|X | − 6|Y | − 2dH(v1)− 2dH(v2) ≤ ve(H)− 18− 2dH(v1)−
2dH(v2). Further we note that bc(H ′) ≤ bc(H) + (dH(v1) − 1) + (dH(v2) − 1).
Hence, φ(H ′) = ve(H ′) + bc(H ′) ≤ φ(H) − 20 − dH(v1) − dH(v2). Since H ′ is
not a counterexample to our theorem, we have that 12τs(H

′) ≤ φ(H ′). Further,
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τs(H) ≤ τs(H
′)+ 2. Hence, 12τs(H) ≤ 12(τs(H

′)+ 2) ≤ φ(H)+ 4− dH(v1)− dH(v2).
If dH(v1) + dH(v2) ≥ 4, then 12τs(H) ≤ φ(H), a contradiction. Hence, dH(v1) = 1
and dH(v2) = 2. But then the hypergraph with vertex set {v, v1, v2} and edge set
consisting of the 3-edge e is an edge-bad component of H , and therefore contributes 1
to eb(H). Thus, since this edge-bad component is deleted from H when constructing
H ′, we have that bc(H ′) ≤ bc(H) − 1 + (dH(v1) − 1) + (dH(v2) − 1), implying that
12τs(H) ≤ φ(H) + 3− dH(v1)− dH(v2) ≤ φ(H), a contradiction. Hence, δ(H) ≥ 2.

(f) Suppose eb(H) > 0. Let H1 be an edge-bad component of H that results
from shrinking the edge e of H . Then |e ∩ V (H1)| ≥ 1. Suppose that e ⊆ V (H1).
Then V (H1) = V . If e is a 2-edge in H , then by Observation 2(a), there exists
an edge f of H1 such that e ⊆ f , contradicting part (d) above. Hence, e is a 3-
edge, and so H1 contains a 2-edge implying that |V (H)| ≥ 4. Let v ∈ V \ e. By
Observation 2(c), the set V \ {v} is a τs(H1)-set. Since V \ {v} is a strong transversal
in H , τs(H) ≤ τs(H1) = |V | − 1. We note that ve(H ′) = ve(H) − 2. Further, we
note that b(H) = 0, b(H ′) = 1, eb(H) = 1, and eb(H ′) = 0, and so bc(H) = 1 and
bc(H ′) = 2. Thus, bc(H ′) = bc(H) + 1 and φ(H ′) = φ(H) − 1. By Observation 2,
φ(H ′) = 12τs(H

′) = 12(|V (H1)| − 1) = 12(|V | − 1). Thus, φ(H) = φ(H ′) + 1 =
12(|V | − 1) + 1 > 12τs(H), contradicting the fact that H is a counterexample to our
theorem. Hence, e �⊆ V (H1), and so V \ V (H1) �= ∅.

We now consider the hypergraph H ′ = H − V (H1). We note that ve(H ′) =
ve(H) − ve(H1) − 2 and that H ′ is connected. By Observation 2(e), ve(H1) =
12(|V (H1)| − 1) − 2, and so ve(H ′) = ve(H) − 12(|V (H1)| − 1). If H ′ ∈ H, then
H ′ is an edge-bad component of H , and so b(H) = 0, b(H ′) = 1, eb(H) = 2, and
eb(H ′) = 0, whence bc(H ′) = bc(H). If H ′ /∈ H, then b(H) = b(H ′) = 0 and
eb(H ′) ≤ eb(H), and so bc(H ′) ≤ bc(H). In both cases, we have bc(H ′) ≤ bc(H),
and so φ(H ′) ≤ φ(H) − 12(|V (H1)| − 1). Since H ′ is not a counterexample to our
theorem, we have that 12τs(H

′) ≤ φ(H ′). Let x ∈ V (H1)\e, and let X = V (H1)\{x}.
We note that τs(H) ≤ τs(H

′) + |X | = τs(H
′) + (|V (H1)| − 1). Hence, 12τs(H) ≤

12τs(H
′)+ 12(|V (H1)|− 1) ≤ φ(H ′)+ 12(|V (H1)|− 1) ≤ φ(H), contradicting the fact

that H is a counterexample to our theorem. Hence, eb(H) = 0.
(g) Suppose that H1 is an edge-bad 2-component of H that results from shrinking

the (distinct) edges e and f of H . Then |e ∩ V (H1)| ≥ 1 and |f ∩ V (H1)| ≥ 1. If e is
a 2-edge and e ⊂ V (H1), then by Observation 2(a), there exists an edge e′ in H1 such
that e ⊆ e′, contradicting part (d) above. Hence we note that if e ⊆ V (H1), then e is
a 3-edge. Similarly, if f ⊆ V (H1), then f is a 3-edge.

Suppose e ⊆ V (H1) and f ⊆ V (H1). Then V (H1) = V and V \ {v} is a strong
transversal in H for any vertex v ∈ V . Thus, τs(H) ≤ |V | − 1 = τs(H1). We
note that ve(H1) = ve(H) − 4. Further, we note that b(H) = 0, b(H1) = 1, and
eb(H) = eb(H1) = 0, and so bc(H) = 0 and bc(H1) = 2. Thus, bc(H1) = bc(H) + 2
and φ(H1) = φ(H) − 2. By Observation 2, φ(H1) = 12(|V | − 1). Thus, φ(H) =
φ(H1) + 2 = 12(|V | − 1) + 2 > 12τs(H), a contradiction. Hence, e �⊆ V (H1) or
f �⊆ V (H1), and so V \ V (H1) �= ∅.

We now consider the hypergraph H ′ = H − V (H1). We note that ve(H ′) =
ve(H) − ve(H1) − 4. By Observation 2(e), ve(H1) = 12(|V (H1)| − 1) − 2, and so
ve(H ′) = ve(H) − 12(|V (H1)| − 1) − 2. If there is a bad component in H ′, then
since eb(H) = 0 by part (f) above, this bad component is H ′ itself (and both e
and f intersect H ′), implying that b(H) = 0, b(H ′) = 1, and eb(H) = eb(H ′) = 0,
whence bc(H ′) = bc(H) + 2. If there is no bad component in H ′, then b(H) =
eb(H) = b(H ′) = 0 and eb(H ′) ≤ 2, and so bc(H ′) ≤ bc(H) + 2. In both cases,
we have bc(H ′) ≤ bc(H) + 2, and so φ(H ′) ≤ φ(H) − 12(|V (H1)| − 1). Since H ′
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is not a counterexample to our theorem, we have that 12τs(H
′) ≤ φ(H ′). We note

that either e is a 2-edge, in which case |e ∩ V (H1)| = 1, or e is a 3-edge, in which
case |e ∩ V (H1)| = 1 or e∗ is a 2-edge in H1 (see Definition 2). A similar statement
holds for the edge f . We note therefore that by Observations 2(i), 2(j), and 2(k)
there exists a vertex x ∈ V (H1) \ (e∗ ∪ f∗). Let X = V (H1) \ {x}. We note that
τs(H) ≤ τs(H

′) + |X | = τs(H
′) + (|V (H1)| − 1). Hence, 12τs(H) ≤ 12τs(H

′) +
12(|V (H1)|− 1) ≤ φ(H ′)+ 12(|V (H1)|− 1) ≤ φ(H), a contradiction. Therefore, there
is no edge-bad 2-component in H .

(h) Suppose that Δ(H) ≥ 4. Let x be a vertex of maximum degree Δ(H) in H ,
and consider the hypergraph H ′ = H − x. Since H ′ is not a counterexample to our
theorem, we have that 12τs(H

′) ≤ φ(H ′). Let Y denote the set of isolated vertices, if
any, resulting from deleting x fromH . Then ve(H ′) = ve(H)−6|{x}|−6|Y |−2dH(x) ≤
ve(H)− 6− 2dH(x). By parts (c) and (f) above, we note that bc(H) = 0.

If b(H ′) + eb(H ′) ≤ 1, then bc(H ′) ≤ 2, and so bc(H ′) ≤ bc(H) + 2, whence
φ(H ′) ≤ φ(H) − 4 − 2dH(x) ≤ φ(H) − 12. Thus, 12τs(H) ≤ 12(τs(H

′) + 1) ≤
φ(H ′) + 12 ≤ (φ(H)− 12) + 12 ≤ φ(H), a contradiction. Hence, b(H ′) + eb(H ′) ≥ 2.

By parts (f) and (g) above, we note that if there is a bad component in H ′, then
at least three edges incident with x intersect such a component, while if there is an
edge-bad component in H ′, then at least two edges incident with x intersect such a
component. Hence, 3b(H ′) + 2eb(H ′) ≤ dH(x), implying that bc(H ′) = 2b(H ′) +
eb(H ′) ≤ dH(x)− b(H ′)− eb(H ′) ≤ dH(x)− 2 = bc(H)+ dH(x)− 2, whence φ(H ′) ≤
φ(H)−8−dH(x) ≤ φ(H)−12. Thus, 12τs(H) ≤ 12(τs(H

′)+1) ≤ φ(H ′)+12 ≤ φ(H),
a contradiction. Hence, Δ(H) ≤ 3.

(i) Suppose that H is not 2-regular. Then, by parts (e) and (h), we have that
Δ(H) = 3. Let x be a vertex of maximum degree Δ(H) in H and consider the
hypergraph H ′ = H − x. As shown in the previous part (h), 3b(H ′) + 2eb(H ′) ≤
dH(x) = 3, and so b(H ′) + eb(H ′) ≤ 1. Further, 12τs(H

′) ≤ φ(H ′) and ve(H ′) =
ve(H) − 12. If b(H ′) + eb(H ′) = 0, then bc(H ′) = bc(H) = 0, and so φ(H ′) ≤
φ(H) − 12 and 12τs(H) ≤ 12(τs(H

′) + 1) ≤ φ(H ′) + 12 ≤ φ(H), a contradiction.
Hence, b(H ′) + eb(H ′) = 1. Thus either b(H ′) = 1 and eb(H ′) = 0 or b(H ′) = 0 and
eb(H ′) = 1.

Suppose that b(H ′) = 1 and eb(H ′) = 0. Then bc(H ′) = 2 = bc(H) + 2. Hence
since ve(H ′) = ve(H) − 12, we have that φ(H ′) = φ(H) − 10. By Observation 2,
ve(H ′) = 12(|V (H ′)| − 1) − 2 = 12(|V | − 2) − 2, and so ve(H) = ve(H ′) + 12 =
12(|V | − 1)− 2. Further, φ(H ′) = 12(|V | − 2), and so φ(H) = 12(|V | − 2)+ 10. Since
b(H ′) = 1, all three edges incident with x intersect H ′, and so V = V (H ′) ∪ {x}.
If there is a vertex v not covered by x, then V \ {v, x} is a strong transversal in H ,
and so 12τs(H) ≤ 12(|V | − 2) = φ(H)− 10 < φ(H), a contradiction. Hence, x covers
H . By Observation 2(a), every vertex of H ′ covers H ′. Therefore every vertex of H
covers H . As observed earlier, ve(H) = 12(|V | − 1)− 2. Hence, by Lemma 1, H ∈ H,
a contradiction. Thus, b(H ′) = 0 and eb(H ′) = 1.

Let R be the edge-bad component of H ′ resulting from shrinking the edge e. By
Observation 2, ve(R) = 12(|V (R)| − 1)− 2. By part (g), at least two edges incident
with x intersect R.

Suppose V = V (R) ∪ {x}. Then all three edges incident with x intersect R and
e ⊆ V (R). We note that ve(R) = 12(|V |−2)−2 and ve(R) = ve(H)−6−2dH(x)−2 =
ve(H) − 14, and so ve(H) = ve(R) + 14 = 12(|V | − 1). Thus, since bc(H) = 0 we
have that φ(H) = ve(H) + bc(H) = 12(|V | − 1). However, the set V \ {x} is a strong
transversal in H , and so 12τs(H) ≤ 12(|V | − 1). Consequently, 12τs(H) ≤ φ(H), a
contradiction. Therefore, V \ (V (R) ∪ {x}) �= ∅.
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We now consider the hypergraphH∗ = H−(V (R)∪{x}). We note that ve(H∗) ≤
ve(H)−ve(R)−6−2dH(x)−2 = ve(H)−12|V (R)|, and so ve(H) ≥ ve(H∗)+12|V (R)|.
By parts (f) and (g) above, we also note that b(H∗) = 0 and eb(H∗) ≤ 1, and so
bc(H∗) ≤ 1 = bc(H) + 1.

Suppose eb(H∗) = 0. Then bc(H∗) = bc(H) = 0 and φ(H) ≥ φ(H∗) + 12|V (R)|.
Therefore since H∗ is not a counterexample to our theorem, we have that 12τs(H

∗) ≤
φ(H∗) = φ(H) − 12|V (R)|. We note that if R = H3, then the edge e intersects
R in exactly one vertex (otherwise R would have a 2-edge), while if R �= H3, then
|V (R)| ≥ 4. Hence there exists a vertex v in R not contained in e. Every τs(H

∗)-set
can be extended to a strong transversal in H by adding to it the set (V (R)∪{x})\{v}
of size |V (R)|, and so 12τs(H) ≤ 12(τs(H

∗)+|V (R)|) ≤ φ(H), a contradiction. Hence,
eb(H∗) = 1.

Since eb(H∗) = 1 and there is no edge-bad 2-component inH , the edge e intersects
H∗ as does one edge, f , say, incident with x. Let R1 be the edge-bad component ofH∗

resulting from shrinking the edge g. By Observation 2, ve(R1) = 12(|V (R1)| − 1)− 2.
We note that the edges e, f , and g all intersect R1.

If g ⊆ V (R1), then g is a 3-edge and V = V (R1) ∪ V (R2) ∪ {x}. Let y ∈ V (R)∩e,
and let z ∈ V (R1) \ (e ∪ g). Then V \ {y, z} is a strong transversal in H , and so
12τs(H) ≤ 12(|V |−2). We note that ve(H) = ve(R)+ve(R1)+6|{x}|+2dH(x)+c(g) =
ve(R)+ve(R1)+16 = (12(|V (R)|−1)−2)+(12(|V (R1)|−1)−2)+16 = 12(|V |−2) ≥
12τs(H), a contradiction. Hence, g �⊆ V (R1), and so V (H∗) \ V (R1) �= ∅.

Let H ′′ = H∗ − V (R1). If b(H ′′) > 0, then eb(H) > 0, a contradiction. If
eb(H ′′) > 0, then there would be an edge-bad 2-component in H , a contradiction.
Hence, b(H ′′) = eb(H ′′) = 0, and so bc(H ′′) = bc(H) = 0. We note further that
ve(H ′′) = ve(H)−ve(R)−ve(R1)−16 = ve(H)− (12(|V (R)|−1)−2)− (12(|V (R1)|−
1)− 2)− 16 = ve(H)− 12(|V (R)|+ |V (R1)|− 1). Thus, φ(H ′′) = φ(H)− 12(|V (R)|+
|V (R1)|−1). By Observations 2(i), 2(j), and 2(k), there exists vertices y ∈ V (R)\N(x)
and z ∈ V (R1)\(e ∪ g). Any τs(H

′′)-set can be extended to a strong transversal in H
by adding to it the set (V (R)∪ V (R1)∪ {x}) \ {y, z}, and so 12τs(H) ≤ 12(τs(H

′′) +
|V (R)|+ |V (R1)|−1). Since H ′′ is not a counterexample to our theorem, we have that
12τs(H

′′) ≤ φ(H ′′). Consequently, 12τs(H) ≤ φ(H ′′) + 12(|V (R)| + |V (R1)| − 1) =
φ(H), a contradiction.

(j) Suppose that H contains a vertex v that is incident with a 2-edge e = {v, x}.
By part (i), H is 2-regular. Let f be the other edge incident with v.

Suppose f is a 2-edge. Let f = {v, y}. Suppose there is an edge g containing x
and y. If g is a 2-edge, then g = {x, y}, and V = {v, x, y} and E = {e, f}. But then
τs(H) = 2 and φ(H) = 24, and so 12τs(H) = φ(H), a contradiction. Hence, g is a
3-edge. We now consider the hypergraph H ′ = H−{x, y}, and note that the resulting
isolated vertex v is deleted when constructing H ′. By parts (f) and (g) above, we note
that b(H ′) = eb(H ′) = 0, and so bc(H ′) = bc(H) = 0. Also, ve(H ′) = ve(H ′) − 26,
and so ve(H) = ve(H ′) + 26. Thus, φ(H) = φ(H ′) + 26. Therefore since H ′ is
not a counterexample to our theorem, we have that 12τs(H

′) ≤ φ(H ′) = φ(H) − 26.
However, every τs(H

′)-set can be extended to a strong transversal in H by adding to it
the set {x, y}, and so 12τs(H) ≤ 12(τs(H

′)+2) ≤ φ(H ′)+24 < φ(H), a contradiction.
Thus, {{v, x}, {v, y}} ⊆ E, and there is no edge containing both x and y. We will

show that 12τs(H) ≤ φ(H)−2. By part (i), H is 2-regular. Let H∗ be the hypergraph
obtained from H by deleting the edges e and f and identifying the vertices x and y
to produce a new vertex w. We say that H∗ is obtained from H by contracting x
and y. Since H is 2-regular, so too is H∗. We note that b(H∗) + eb(H∗) ≤ 1, and so
bc(H∗) ≤ 2 = bc(H) + 2. Also, ve(H∗) = ve(H)− 16, and so ve(H) = ve(H∗) + 16.
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Thus, φ(H) ≥ φ(H∗)+14. Since H∗ is not a counterexample to our theorem, we have
that 12τs(H

∗) ≤ φ(H∗) ≤ φ(H) − 14. Let T ∗ be a τs(H
∗)-set, and so |T ∗| = τs(H

∗).
If w /∈ T ∗, let T = T ∗ ∪ {v}. If w ∈ T ∗, let T = (T ∗ \ {w}) ∪ {x, y}. In both cases, T
is a strong transversal in H of size τs(H

∗) + 1. Hence, 12τs(H) ≤ 12(τs(H
∗) + 1) ≤

(φ(H) − 14) + 12 = φ(H) − 2, as claimed. Thus, 12τs(H) < φ(H), a contradiction.
Hence, f must be a 3-edge.

Let f = {v, y, z}. If {x, y, z} is an edge of H , then H = H4, a contradiction.
Hence, renaming y and z if necessary, we may assume that there is no edge containing
both x and y. We now consider the hypergraph Hz = H − z. By parts (f) and (g)
above, we note that b(Hz) = 0 and eb(Hz) ≤ 1, and so bc(Hz) ≤ bc(H) + 1. Also,
ve(Hz) = ve(H) − 10, and so ve(H) = ve(Hz) + 10. Thus, φ(H) ≥ φ(Hz) + 9. By
construction, {v, x} and {v, y} are the two edges in Hz containing v, and there is no
edge containing both x and y. A similar proof as shown in the previous paragraph
shows that 12τs(Hz) ≤ φ(Hz) − 2. Thus, 12τs(Hz) ≤ φ(H) − 11. If 12τs(Hz) ≤
φ(H) − 12, then 12τs(H) ≤ 12(τs(Hz) + 1) ≤ φ(H), a contradiction. Consequently,
12τs(Hz) = φ(H) − 11. Thus, eb(Hz) = 1, and both edges incident with z intersect
Hz. In particular, the edge-bad component of Hz contains v or y. Let H∗ be the
hypergraph obtained by contracting x and y in Hz. Then b(H∗) + eb(H∗) ≤ 1, and
so bc(H∗) ≤ 2 = bc(Hz) + 1. Thus the bound bc(H∗) ≤ bc(H) + 2 which we use to
establish the upper bound 12τs(H) ≤ φ(H)− 2 is improved to bc(H∗) ≤ bc(Hz) + 1,
which in turn implies that 12τs(Hz) ≤ φ(Hz) − 3. But then 12τs(H) ≤ 12(τs(Hz) +
1) ≤ (φ(Hz)− 3) + 12 ≤ φ(H), a contradiction. This completes the proof of part (j).

(k) Suppose that e and f are two overlapping edges in H . Let e = {a, b, x} and
f = {a, b, y}. If {x, y} is a edge of H , then H = H4, a contradiction. If there is a 3-
edge containing x and y, then the hypergraph with vertex set {a, b, x, y} and edge set
{e, f, {x, y}} is an edge-bad component ofH , and so eb(H) ≥ 1, contradicting part (f).
Hence, there is no edge containing x and y. We now consider the hypergraph Ha =
H − a and note that φ(H) = φ(Ha) + 10. By construction, {b, x} and {b, y} are the
two edges in Ha containing v, and there is no edge in Ha containing x and y. A similar
proof as shown in the third paragraph of part (j) shows that 12τs(Ha) ≤ φ(Ha) − 2.
Hence, 12τs(H) ≤ 12(τs(Ha) + 1) ≤ (φ(Ha)− 2) + 12 = φ(H), a contradiction. This
completes the proof of Claim A.

We now return to the proof of Theorem 6(a). By Claim A, we have that H is a
2-regular 3-uniform hypergraph with no overlapping edges. Let G be the incidence
bipartite graph of the hypergraph H = (V,E); that is, G has partite sets V and E,
where every vertex e in E is joined to the three vertices in V that belong to the edge
e in H . We note that dG(v) = 2 if v ∈ V , while dG(v) = 3 if v ∈ E. Further, since H
has no overlapping edges, we note that in the graph G every two vertices in E have
at most one common neighbor.

Let F be the graph with vertex set V (F ) = E and where two vertices are adjacent
in F if they have a common neighbor in G. We note that F is a cubic graph of order |E|
and that G is obtained from F by subdividing every edge of F exactly once. Let M
be a maximum matching in F . By Corollary 1, we have that |M | = α′(F ) ≥ 7|E|/16.
For each edge e in M , let ve be the (unique) vertex in V whose neighbors in G are
the two ends of e. Let VM = ∪{ve}, where the union is taken over all edges e ∈ M .
Then |VM | = |M | ≥ 7|E|/16. Let T = V \ VM . Then T is a strong transversal in H ,
and so τs(H) ≤ |T | = |V | − |VM | ≤ |V | − 7|E|/16. Since 2|V | = 3|E|, we therefore
have that τs(H) ≤ 17|E|/16. We also note that ve(H) = 6|V | + 4e3(H) + 2e2(H) =
6|V | + 4|E| = 13|E| and bc(H) = 0, and so φ(H) = ve(H) + bc(H) = 13|E|. Thus,
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12τs(H) ≤ 204|E|/16 = 12.75|E| < φ(H), a contradiction. This completes the proof
of Theorem 6(a).

3.5. Proof of Theorem 6(b). Recall the statement of Theorem 6(b).
Theorem 6(b). If H is a hypergraph with only 2-edges and 3-edges, then 13τs(H)

≤ 7|V (H)|+ 4e3(H) + 2e2(H) + b(H).
Proof. We show first that b(H) + eb(H) ≤ |V (H)| − τs(H). Let T be a τs(H)-

set. If R is a bad component of H , then by Observation 2(b), there is a vertex in
R that does not belong to T , and therefore the component R contributes 1 to the
difference |V (H)| − τs(H). Suppose that R is an edge-bad component of H resulting
from shrinking the edge e. Let v be a vertex in R not contained in e. If V (R) ⊆ T ,
then T \ {v} is a strong transversal in H , contradicting the minimality of T . Hence,
by Observation 2(b), there is exactly one vertex u in R that does not belong to T , and
therefore the component R contributes 1 to the difference |V (H)| − τs(H). Hence,
b(H) + eb(H) ≤ |V (H)| − τs(H), as claimed. Hence, by Theorem 6(a), we note that
13τs(H) ≤ 7|V (H)|+ 4e3(H) + 2e2(H) + b(H).

3.6. Proof of Theorem 1. Recall the statement of Theorem 1.
Theorem 1. If H is a hypergraph with only 2-edges and 3-edges, then

14τs(H) ≤ 8|V (H)|+ 4e3(H) + 2e2(H)

with equality if and only if every component of H belongs to H.
Proof. If the desired result holds for each component of H , then the result holds

for the hypergraphH itself. Hence we may assume that H is connected. In particular,
b(H) ≤ 1. As shown in the proof of Theorem 6(b), we note that b(H) ≤ |V (H)| −
τs(H). By Theorem 6(b), we therefore note that 14τs(H) ≤ 8|V (H)| + 4e3(H) +
2e2(H). Further, if 14τs(H) = 8|V (H)| + 4e3(H) + 2e2(H), then b(H) = |V (H)| −
τs(H). Consequently, since 1 ≥ b(H) and |V (H)| − τs(H) ≥ 1, we deduce that
b(H) = 1 and H ∈ H. Conversely, if H ∈ H, then by Observation 2, we have
that τs(H) = |V (H)| − 1 and 8|V (H)| + 4e3(H) + 2e2(H) = ve(H) + 2|V (H)| =
12(|V (H)| − 1)− 2 + 2|V (H)| = 14(|V (H)| − 1). Thus, 14τs(H) = 8|V (H)|+ 4e3(H)
+ 2e2(H).

3.7. Proof of Theorem 7. Recall the statement of Theorem 7.
Theorem 7. If H is a hypergraph with all edges of size at least 2, then 13τs(H) ≤

7|V (H)|+ 4e≥3(H) + 2e2(H) + b≤3(H).
Proof. Define ξ(H) = 7|V (H)| + 4e≥3(H) + 2e2(H) + b≤3(H). We show that

13τs(H) ≤ ξ(H). We proceed by induction on |E(H) \ E(H≤3)| +
∑

x∈V (H) dH(x).

Assume that there exists a k-edge, e, with k > 4. Let H ′ be obtained from H by
replacing e by a 4-edge e′ where e′ ⊂ e. We note that ξ(H) = ξ(H ′) and that
τs(H) ≤ τs(H

′). Applying the induction to H ′, we have that 13τs(H) ≤ 13τs(H
′) ≤

ξ(H ′) = ξ(H), as desired. Therefore we may assume that all edges in H have size 2,
3, or 4.

Assume that e = {x1, x2, x3, x4} is a 4-edge intersecting a 2- or 3-edge e′. If e′ ⊆ e
and e′ is a 3-edge, then we may remove e and use the induction hypothesis. Hence we
may assume that |e′ ∩ e| ≤ 2. Renaming vertices, if necessary, we may assume that
e′ ∩ e ⊆ {x1, x2}. Let H ′ be the hypergraph obtained from H by replacing e by the
3-edge e\ {x4}. We note that any strong transversal in H ′ is also a strong transversal
in H , and so τs(H) ≤ τs(H

′). If b(H ′
≤3) ≤ b(H≤3), then ξ(H ′) ≤ ξ(H), and we are

done by induction. Therefore we may assume that R is a bad component in H ′
≤3,

which was not a bad component in H≤3. We note that {x1, x2, x3} is an edge of R.
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Suppose x4 ∈ V (R). Let H ′′ be obtained from H by removing the edge e and
adding the two 2-edges {x1, x2} and {x3, x4}. We note that any strong transversal
in H ′′ is also a strong transversal in H . Furthermore since R ∈ H, Observation 2(a)
implies that some edge in R contains the vertices {x3, x4}, and so this 2-edge may be
removed from H ′′, and we can use induction on the remaining hypergraph. Hence we
may assume that x4 /∈ V (R). We note that since the edge e′ intersects {x1, x2}, the
bad component R �= F3.

We now let H∗ be obtained from H by removing the edge e and adding the 3-edge
e∗ = e \ {x3}. We note that b(H∗

≤3) ≤ b(H≤3), as the edge e∗ separates x1 from x4

in H∗
≤3 and therefore does not belong to a bad component. We are therefore done by

induction.
Therefore we may assume that no 4-edge intersects any 2- or 3-edge in H . We

now delete all 4-edges in H and replace each deleted 4-edge with two vertex disjoint
2-edges whose union is the original 4-edge. This does not create any bad components,
as all bad components contain at least one 3-edge. We are therefore done by induction
if there exists any 4-edge at all. If no 4-edge exists in H , then we are done by Theo-
rem 6(b).

3.8. Proof of Theorem 2. Recall the statement of Theorem 2.
Theorem 2. If H is a connected 3-uniform hypergraph on n ≥ 6 vertices and m

edges, then 7τs(H) ≤ 4n+ 2m with equality if and only if H is the Fano plane.
Proof. We note that e3(H) = m and e2(H) = 0. We note further that if H ∈ H,

then H = F7, as the Fano plane F7 is the only 3-uniform hypergraph on at least six
vertices in H. Thus, by Theorem 1, 7τs(H) ≤ 4n+ 2m with equality if and only if H
belongs to H.

4. Proof of graph theory results. Next we provide proofs of our three main
graph theory results, namely, Theorems 3, 4, and 5. We begin with a proof of Theo-
rem 4.

4.1. Proof of Theorem 4. We shall need the following result in [14].
Lemma 2 (see [14]). If G is a connected bipartite graph, then the open neigh-

borhood hypergraph HG of G contains exactly two components (which are induced by
the two partite sets of G). If G is a connected nonbipartite graph, then HG contains
exactly one component.

Recall the statement of Theorem 4.
Theorem 4. If G �= G14 is a connected cubic graph of order n, then γ×2,t(G) ≤

5n/6, and this bound is sharp.
Proof. Let G �= G14 be a connected cubic graph of order n, and let H = HG.

We note that H is a 3-regular, 3-uniform hypergraph of order n and size m. Suppose
that b(H) > 0. The only 3-regular, 3-uniform hypergraph in H is the Fano plane.
Thus each bad component of H is a copy of the Fano plane. If G is a nonbipartite
graph, then, by Lemma 2, H contains exactly one component, implying that H = F7.
But then G is a cubic graph of order 7, which is impossible. Hence, G is a bipartite
graph. Thus, by Lemma 2, H contains exactly two components which are induced by
the two partite sets of G. Since at least one of these components is the Fano plane,
we must have that G is the Heawood graph G14, a contradiction. Hence, b(H) = 0.

Suppose that eb(H) ≥ 1. Recall that H is a 3-regular, 3-uniform hypergraph. Let
R be an edge-bad component of H that results from shrinking the edge e of H . Then
|e ∩ V (R)| ≥ 1 and every vertex of R, except for possibly one vertex, has degree 3 in
R. If |e ∩ V (R)| ≥ 2, then R is 3-regular and contains exactly one 2-edge. But there
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Fig. 3. The graph G12.

is no such hypergraph in the family H, a contradiction. Hence, |e ∩ V (R)| = 1. Let
v be the vertex of R that belongs to the edge e. Then R is a 3-uniform hypergraph
with one vertex of degree 2 and all other vertices of degree 3. Once again, there
is no such hypergraph in the family H, a contradiction. Hence, eb(H) = 0, and so
2b(H)+eb(H) = 0. Therefore, by Theorem 6(a), 12τs(H) ≤ 6|V (H)|+4e3(H) = 10n.
Hence, by Observation 1, γ×2,t(G) = τs(HG) = 5n/6.

To see that the bound of Theorem 4 is sharp, consider the cubic graph G12

of order n = 12 shown in Figure 3 that satisfies γ×2,t(G) = 10 = 5n/6, due to
the following. Since every pair of vertices in X = {x1, x2, . . . , x6} have a common
neighbor and G is cubic, we note that every DTDS in G must contain at least five
vertices from this set. Analogously it must also contain at least five vertices from
Y = {y1, y2, . . . , y6}, which implies that γ×2,t(G) ≥ 10 = 5n/6. It is easy to see that
equality holds, as we can take any five vertices from X and any five vertices from Y
to obtain a DTDS of size 10.

4.2. Proof of Theorem 5. Recall the statement of Theorem 5.
Theorem 5. If G �= G14 is a connected graph of order n with δ(G) ≥ 3, then

γ×2,t(G) ≤ 11n/13.
Proof. Let G �= G14 be any connected graph of order n with δ(G) ≥ 3, and let

H = HG. Let B1, . . . , Bk denote the bad components in H≤3. For each i = 1, . . . , k,
let Wi be defined such that w ∈ Wi if and only if NG(w) ∈ E(Bi). We will first prove
the following claim that we may assume the graph G satisfies.

Claim 1. We may assume that the graph G has the following properties:
(a) If e = uv is an edge in G such that d(u), d(v) ≥ 4, then G− e contains a

component isomorphic to G14.
(b) V (Bi) ∩ V (Bj) = ∅ for all 1 ≤ i < j ≤ k.
(c) V (Bi) ∩Wi = ∅ for all 1 ≤ i ≤ k.
(d) Removing any bridge of G creates at most one copy of G14.
(e) V (Bi) is an independent set in G.
Proof. (a) If there exists an edge e = uv in G, such that d(u), d(v) ≥ 4, and G− e

contains no component isomorphic to G14, then we may consider the components in
G − e instead of G, as γ×2,t(G − e) ≥ γ×2,t(G). Therefore we may assume that no
such edge exists.

(b) This is immediate since no two components can intersect.
(c) To prove part (c), we note that every edge in H has size at least 3. Thus

the bad components in H≤3 contain no 2-edges, and therefore each bad component
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belongs to the family {H3, T5, F7}. Let i ∈ {1, . . . , k}, let B = Bi and W = Wi, and
let X = W ∩V (B). Since B is 3-uniform, all vertices in W have degree three in G. For
the sake of contradiction, assume that there exists a vertex u ∈ X . Thus, eu = NG(u)
is a 3-edge in B. We note that dB(u) of the vertices in eu belong to W and that they
all belong to V (B) (as eu ∈ E(B)), and so dB(u) vertices in eu belong to X .

If B = F3, then as u ∈ W , we have that u ∈ V (B) = NG(u), which is impossible
since no vertex belongs to its own open neighborhood. Thus, B �= F3. If B = F7,
then NG(u) ⊆ X , and analogously all vertices connected to u by a path also belong to
X . This implies that V (B) = W induces a 3-regular graph on seven vertices, which
is impossible as no such graph exists. Thus, B �= F7.

Hence, B = T5. Name the vertices of T5 so that x1, x2, and x3 are the three
vertices of degree 2 and x4 and x5 are the two vertices of degree 3. Let e = {x1, x2, x3}
and for i = 1, 2, 3, let ei = {xi, x4, x5}. Then, E(B) = {e, e1, e2, e3}. Suppose x1 ∈ X .
Since x1 /∈ NG(x1), we note thatNG(x1) is either the edge e2 or the edge e3. Similarly,
if x2 ∈ X , NG(x2) is either e1 or e3, while if x3 ∈ X , NG(x3) is either e1 or e2. In
particular, we note that if xj ∈ X , then as two vertices in NG(xj) belong to X , at
least one of x4 and x5 belong to X . If u ∈ {x4, x5}, then, renaming the vertices x4

and x5, if necessary, we may assume that x4 ∈ X . If u ∈ {x1, x2, x3}, then at least
one of x4 and x5 belong to X , and once again we may assume that x4 ∈ X . This
implies that NG(x4) = e. As dB(x4) = 3, we note that {x1, x2, x3} ⊆ X . As observed
earlier, NG(x1) is either the edge e2 or the edge e3. Renaming x2 and x3, if necessary,
we may assume that NG(x1) = e2. Thus, x1x2 ∈ E(G). Since NG(x2) is either e1
or e3, we therefore have that NG(x2) = e1. But then NG(x3) is neither e1 or e2, a
contradiction. This completes the proof of part (c).

(d) Suppose G consists of two vertex disjoint copies of G14 connected by an edge
uv. Let Huv denote the ONH of G−uv, and let Nu and Nv denote the neighborhoods
of u and v, respectively, in G − uv. We note that Huv consists of four disjoint
copies of the Fano plane F7, where one copy Fu contains the vertex u, one copy
FN(u) contains the 3-edge Nu, one copy Fv contains the vertex v, and the last copy
FN(v) contains the 3-edge Nv. Let Tu be a strong transversal in Fu, containing u, of
size 6, and let Tv be a strong transversal in Fv, containing v, of size 6. Let TN(u)

be any five vertices in FN(u) such that |TN(u) ∩ V (Nu)| = 1, and let TN(v) be any
five vertices in FN(v) such that |TN(v) ∩ V (Nv)| = 1. It is not difficult to see that
Tu ∪ Tv ∪ TN(u) ∪ TN(v) is a strong transversal in H , implying that τs(H) ≤ 22. We
note that b≤3(H) = 2 and |V (H)| = |E(H)| = |e≥3(H)| = n, and so 11n + 2 =
7|V (H)|+ 4e≥3(H) + 2e2(H) + b(H≤3) = 7× 28 + 4× 28 + 2 = 310 ≥ 13τs(H) + 11.
Thus, by Observation 1, γ×2,t(G) = τs(H) ≤ (11n − 9)/13 < 11n/13, as desired.
Therefore we may assume that removing any bridge of G creates at most one copy of
G14, which completes the proof of part (d).

(e) Assume that e = uv is an edge in G and u, v ∈ V (Bi). As u, v /∈ Wi by
part (c) and Bi is a component in H≤3, we note that dG(u), dG(v) ≥ 4. By part (a),
G − e contains a component isomorphic to G14. However, as u and v are connected
by a path in G − e (by just using edges in G between V (Bi) and Wi), we note that
G is isomorphic to G14 + e. However, it is not difficult to see that this implies that
γ×2,t(G) = 11 ≤ 11 × 14/13 (by letting T be a DTDS of G − e of size 12 such that
u ∈ T and |T ∩ NG−e(v)| = 2 and noting that T \ {w} is a DTDS of G for any
w ∈ NG−e(v) ∩ T ).

We now return to the proof of Theorem 5. For i = 1, 2, . . . , k, let Gi = G[V (Bi)∪
Wi]. We now proceed with a number of definitions. If for some i, 1 ≤ i ≤ k, the
induced subgraph Gi = G14 and there is a bridge separating Gi from the rest of G,
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then we say that Bi is a special F7. Let � be the number of bad components in H ,
none of which is a special F7. Renaming indices, if necessary, we may assume that no
Bi is a special F7 for any i ≤ � and all Bi with i > � are special F7’s.

Let Ni = NG(V (Bi)) \ V (Gi). Let Q = {q1, q2, . . . , qr} such that Q = ∪�
i=1Ni.

We now consider four copies of Q. Let Q′ = {q′1, q′2, . . . , q′r}, Q′′ = {q′′1 , q′′2 , . . . , q′′r },
Q′′′ = {q′′′1 , q′′′2 , . . . , q′′′r }, and let Q∗ = Q ∪ Q′ ∪ Q′′ ∪ Q′′′. For j = 1, , . . . , r, let

Q∗
j = {qj , q′j , q′′j , q′′′j }.

We now define a bipartite graph F as follows. Let the partite sets of F be the
set Q∗ and the set P = {p1, p2, . . . , p�}, where the vertex pi corresponds to the graph
Gi. Let the edge set of F be defined as follows. Add an edge from pi to each vertex
in Q∗

j if and only if qj ∈ Ni. Let M be a maximum matching in F .
For each qi ∈ Q, let ei be the hyperedge in H such that ei = NG(qi). As qi /∈ Wi,

we note that ei /∈ E(Bi), and therefore ei is a hyperedge of size at least four. We now
construct a sequence of new hypergraphs H0, H1, . . . , Hr as follows. Initially, we let
H0 = H .

For i ≥ 1, we define Hi as follows. Let ai denote the number of vertices in Q∗
i

that are M -matched to a vertex pj in the graph F , where Bj is still a bad component
in Hi−1

≤3 . If ai = 0, let Hi = Hi−1. If ai = 4, let Hi be obtained from Hi−1 by
deleting the edge ei and adding two vertex disjoint 2-edges e′i and e′′i such that each
of the four bad components in Hi−1

≤3 corresponding to the vertices of P that are M -

matched with a vertex in Q∗
i now intersect either e′i or e

′′
i . If 1 ≤ ai ≤ 3, let Hi be

obtained from Hi−1 by deleting the edge ei and adding a 3-edges e′i such that each
of the ai bad components in Hi−1

≤3 corresponding to the vertices of P that are M -
matched with a vertex in Q∗

i intersect e′i. We note that whenever we change the edge
ei when constructing Hi

≤3, the new edge(s) are always cut-edges in Hi
≤3 or completely

lie within V (Bj) for some j, 1 ≤ j ≤ �. Thus, no new bad components are created.
That is, b(Hi

≤3) ≤ b(Hi−1
≤3 ) − ai. Furthermore if pj is M -matched with a vertex in

Q∗
i , then Bj is not a bad component in Hi

≤3, as it is incident with a new 2- or 3-edge.

Finally we note that a strong transversal in Hi is also a strong transversal in Hi−1

and 7|V (Hi)|+ 4e≥3(H
i) + 2e2(H

i) = 7|V (Hi−1)|+ 4e≥3(H
i−1) + 2e2(H

i−1).
Let H ′ = Hr. Then τs(H) ≤ τs(H

′) and 7|V (H ′)| + 4e≥3(H
′) + 2e2(H

′) =
7|V (H)|+ 4e≥3(H) + 2e2(H) = 11|V (H)|. Further, b(H ′

≤3) ≤ b(H≤3)− |M |.
Let U ⊆ P denote those vertices which are M -unmatched in the bipartite graph

F . Let S be the set of all vertices in P which are reachable by an M -alternating path
starting from a vertex in U . Then U ⊆ S ⊆ P and |S| = |NF (S)| + |U |. We note
that each vertex in S \U is M -matched in F to a vertex in NF (S) and that the edges
of M incident with vertices in S form a perfect matching in the induced subgraph
F [NF (S) ∪ (S \ U)]. By construction of F , we also note that either |V (Q∗

j ) ∩NF (S)|
is equal to four or zero for all j = 1, . . . , r. We now define T such that qj ∈ T if and
only if |V (Q∗

j ) ∩NF (S)| = 4, and we note that 4|T | = |NF (S)|.
Let pi ∈ S be arbitrary, where 1 ≤ i ≤ �. As observed earlier, each bad component

belongs to the family {H3, T5, F7}. Assume that Bi = H3 and note that each vertex in
Bi has exactly one edge toWi in G and no edge to V (Bi), due to Claim 1(e). Therefore
each of the three vertices has two edges to Ni, which implies that there are at least
six edges in G with exactly one end in V (Gi). If Bi = T5, then analogously there are
at least three edges in G with exactly one end in V (Gi). If Bi = F7, then since i ≤ �
there are at least two edges in G with exactly one end in V (Gi). In all three cases, we
let e′i and e′′i be two distinct edges in G with exactly one end in V (Gi). If e′i and e′′i
are adjacent to a common vertex in Bi, then add this vertex to a set S1; otherwise,
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add the two distinct endpoints of e′i and e′′i in Bi to a set S2. Let EST = ∪pi∈S{e′i, e′′i }
and note that 2|S1|+ |S2| = |EST | = 2|S| = 2(|NF (S)|+ |U |) = 8|T |+ 2|U |.

Let H ′′ = H ′ − T and note that all hyperedges of the form NG(u) where u ∈ S1

will be deleted from H ′ and all hyperedges of the form NG(v) where v ∈ S2 will either
be deleted from H ′ or will be shrunk to a 2-edge. Therefore 4e≥3(H

′′) + 2e2(H
′′) is

at least 4|S1| + 2|S2| = 2|EST | smaller than 4e≥3(H
′) + 2e2(H

′). Assume that it is
in fact 2|EST |+ 2c smaller, where we note that c ≥ 0 is the number of edge-changes
which we have not counted above. In this case, 7|V (H ′′)| + 4e≥3(H

′′) + 2e2(H
′′) =

11|V (G)| − 7|T | − 2|EST | − 2c. However, each time we remove or shrink an edge the
number of bad components may increase by one. As b(H ′

≤3) ≤ (k − �) + |U |, we note
that b(H ′′

≤3) ≤ b(H ′
≤3) + |EST |+ c ≤ (k − �) + |U |+ |EST |+ c.

For all Bi with � < i ≤ k, there exists a bridge yiui in G such that Ni = {yi} and
ui ∈ V (Bi). Let vi and wi be any two vertices in NG(ui)∩Wi. Let Ti = Wi \ {vi, wi}
and note that Ti ∪ {yi} is a double dominating set for all vertices in V (Bi). Let
T ′ = ∪k

i=�+1Ti and let T ′′ = ∪k
i=�+1{yi}.

Let H ′′′ = H ′′ − T ′ − T ′′. We note that all vertices in Wi and all hyperedges
touching Wi are removed from H ′′′ when i > �. Apart from the removal of the
hyperedges intersecting the Wis (i > l), assume that we have c′ additional edge-
changes in order to get from H ′′ to H ′′′. This implies the following, as |T ′| = 5(k− �)
and |T ′′ \ T | ≤ (k − �):

7|V (H ′′′)|+ 4e≥3(H
′′′) + 2e2(H

′′′)

≤ 11|V (G)| − 7|T | − 2|EST | − 2c− 7(7(k − �))− 4(7(k − �))− 7|T ′′ \ T | − 2c′

= 11|V (G)| − 7|T | − 2|EST | − 2c− 13|T ′| − 12(k − �)− 7|T ′′ \ T | − 2c′.

Analogously to the above we note that b(H ′′′
≤3) ≤ b(H ′′

≤3) + c′ ≤ (k − �) + |U | +
|EST |+ c+ c′. Combining the two formulas we get the following:

7|V (H ′′′)|+ 4e≥3(H
′′′) + 2e2(H

′′′) + b(H ′′′
≤3)

≤ 11|V (G)| − 7|T | − |EST | − c− 13|T ′| − 11(k − �)− 7|T ′′ \ T | − c′ + |U |
≤ 11|V (G)| − 7|T | − (8|T |+ 2|U |)− 13|T ′| − 11(k − �)− 7|T ′′ \ T |+ |U |
≤ 11|V (G)| − 15|T | − 13|T ′| − 11|T ′′ \ T | − 7|T ′′ \ T | − |U |
≤ 11|V (G)| − 15|T | − 13|T ′| − 18|T ′′ \ T | − |U |.

Let S∗ be a τs(H
′′′)-set. By Theorem 7 and our upper bound on 7|V (H ′′′)| +

4e≥3(H
′′′) + 2e2(H

′′′) + b(H ′′′
≤3), we note that |S∗| ≤ (11|V (G)| − 15|T | − 13|T ′| −

18|T ′′ \ T | − |U |)/13 ≤ 11
13 |V (G)| − |T | − |T ′| − |T ′′ \ T |. However, we note that

S∗∪T ∪T ′∪(T ′′ \T ) is a strong transversal of H . Thus, by Observation 1, γ×2,t(G) =
τs(H) ≤ |S∗|+ |T |+ |T ′|+ |T ′′ \ T | ≤ 11n/13, as desired.

4.3. Proof of Theorem 3. Recall the statement of Theorem 3.
Theorem 3. If G is a connected graph of order n with δ(G) ≥ 3, then γ×2,t(G) ≤

6n/7 with equality if and only if G is the Heawood graph G14.
Proof. Suppose G = G14. The ONH of the Heawood graph, HG14 , consists of two

disjoint copies of the Fano plane F7, which implies by Observation 1 and Theorem 1
that γ×2,t(G) = 2τs(F7) = 2(6) = 6|V (G14)|/7. If G �= G14, then by Theorem 5,
γ×2,t(G) < 6n/7.
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Fig. 4. A graph G ∈ F of order n with δ(G) ≥ 3 and γ×2,t(G) = 4n/5.

5. Closing conjectures. We close with the following two conjectures.
Conjecture 1. If G �= G14 is a connected graph of order n with δ(G) ≥ 3, then

γ×2,t(G) ≤ 5n/6.
Conjecture 2. If G �= G14 is a connected graph of sufficiently large order n

with δ(G) ≥ 3, then γ×2,t(G) ≤ 4n/5.
We remark that Conjecture 1 is true for cubic graphs (see Theorem 4). We also

remark that if Conjecture 2 is true, then the bound is sharp, as may be seen by
considering the following family F of all graphs that can be obtained as follows: Take
a connected graph F with δ(F ) ≥ 2 and for each vertex v of F , add a copy of the
Heawood graph G14 and join v to one vertex in that copy of G14. A graph G in the
family F is illustrated in Figure 4 (here, F is a cycle). Each graph G of order n in
the family F is a connected graph with δ(G) ≥ 3 satisfying γ×2,t(G) = 4n/5.

REFERENCES

[1] N. Alon, Transversal numbers of uniform hypergraphs, Graphs Combin., 6 (1990), pp. 1–4.
[2] T. Biedl, E. D. Demaine, C. A. Duncan, R. Fleischer, and S. G. Kobourov, Tight bounds

on maximal and maximum matchings, Discrete Math., 285 (2004), pp. 7–15.
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