Strongly Connected Spanning Subgraphs with the Minimum Number of Arcs in Quasi-transitive Digraphs

Jørgen Bang-Jensen * Jing Huang ${ }^{\dagger}$ Anders Yeo ${ }^{\ddagger}$

March 9, 1999

Abstract

We consider the problem (MSSS) of finding a strongly connected spanning subgraph with the minimum number of arcs in a strongly connected digraph. This problem is NP-hard for general digraphs since it generalizes the hamiltonian cycle problem. We show that the problem is polynomially solvable for quasi-transitive digraphs. We describe the minimum number of arcs in such a spanning subgraph of a quasi-transitive digraph in terms of the path covering number. Our proofs are based on a number of results (some of which are new and interesting in their own right) on the structure of cycles and paths in quasitransitive digraphs and in extended semicomplete digraphs. In particular, we give a new characterization of the longest cycle in an extended semicomplete digraph. Finally, we point out that our proofs imply that the MSSS problem is solvable in polynomial time for all digraphs that can be obtained from strong semicomplete digraphs on at least two vertices by replacing each vertex with a digraph whose path covering number can be decided in polynomial time.

Keywords: minimum equivalent digraph, hamiltonian cycle, polynomial algorithm, quasi-transitive digraph, extended semicomplete digraph, path factor, cycle factor, path cover, longest cycle.

1 Introduction

We consider the following problem, which we denote by MSSS (Minimum Spanning Strong Subgraph): given a strongly connected digraph D, find a strongly connected

[^0]spanning subgraph D^{\prime} of D such that D^{\prime} has as few arcs as possible. This problem, which generalizes the hamiltonian cycle problem and hence is NP-hard, is of practical interest and has been considered several times in the literature, see e.g. [1, 12, 15 , $16,17,18]$. The MSSS problem is an essential subproblem of the so-called minimum equivalent digraph problem (in fact, these two problems can be reduced to each other in polynomial time). Here one is seeking a spanning subgraph with the minimum number of arcs in which the reachability relation is the same as in the original graph (i.e. there is a path from x to y if and only if the original digraph has such a path). Since the MSSS problem is NP-hard, it is natural to study the problem under certain extra assumptions. In order to find classes of digraphs for which we can solve the MSSS problem in polynomial time, we must consider classes of digraphs for which we can solve the hamiltonian cycle problem in polynomial time. This follows from the fact that the hamiltonian cycle problem can be solved if we can solve the MSSS problem.

In [17] the MSSS problem was considered for digraphs whose longest cycle has length r for some r. It was shown that if $r \leq 3$, then the problem is polynomial and that it is NP-hard already when $r=5$.

In this paper we study the MSSS problem for quasi-transitive digraphs. These digraphs have a nice, recursive structure [8], see Theorem 3.4. Using this structure, Gutin [14] proved that the hamiltonian cycle problem is polynomially time solvable for quasi-transitive digraphs. The approach used to solve the hamiltonian cycle problem in [14] involves solving the problem of finding a minimum path cover of a quasi-transitive digraph.

We give a lower bound for the number of arcs in any minimum spanning strong subgraph of an arbitrary given strong quasi-transitive digraph. This bound can be calculated in polynomial time using Gutin's algorithm for finding a hamiltonian cycle in a quasi-transitive digraph. We prove that this lower bound is also attainable for quasi-transitive digraphs [14]. The proof of this uses a new characterization of a longest cycle in an extended semicomplete digraph.

In the last section we point out the our methods imply that the MSSS problem can be solved efficiently for a much larger superclass of semicomplete digraphs than just quasi-transitive digraphs.

We remark that in [9], the MSSS problem was solved for various generalizations of tournaments. In particular polynomial algorithms were given for the classes of extended semicomplete digraphs and semicomplete bipartite digraphs. Furthermore, it was conjectured in [9] that the MSSS problem is also polynomially solvable for general semicomplete multipartite digraphs.

2 Terminology

We shall always use the number n to denote the number of vertices in the digraph currently under consideration. Digraphs are finite, have no loops or multiple arcs. We use $V(D)$ and $A(D)$ to denote the vertex set and the arc set of a digraph D. We shall use $|D|$ (instead of $|V(D)|)$ to denote the number of vertices in D. The arc from a vertex x to a vertex y will be denoted by $x y$. If $x y$ is an arc, then we say that x dominates y and y is dominated by x. For disjoint subsets $H, K \subset V(D)$ we use the
notation $H \Rightarrow K$ to denote that there are no arcs from K to H.
By a cycle (path, respectively) we mean a directed (simple) cycle (path, respectively). If R is a cycle or a path with two vertices u, v such that u can reach v on R, then $R[u, v]$ denotes the subpath of R from u to v. A cycle (path) of a digraph D is hamiltonian if it contains all the vertices of D. A digraph is hamiltonian if it has a hamiltonian cycle.

An (x, y)-path is a path from x to y. A digraph D is strongly connected (or just strong) if there exists an (x, y)-path and a (y, x)-path for every choice of distinct vertices x, y of D. Let U, W be disjoint subsets of $V(D)$. A (U, W)-path is a path $x_{1} x_{2} \ldots x_{k}$ such that $x_{1} \in U, x_{k} \in W$ and no other x_{i} belongs to $U \cup W$.

A digraph T is semicomplete if it has no pair of non-adjacent vertices. A tournament is a semicomplete digraph with no cycles of length 2 . It is well known and easy to prove that every semicomplete digraph has a hamiltonian path and that every strong semicomplete digraph has a hamiltonian cycle. A digraph $D=(V, A)$ is quasi-transitive if, for any distinct $x, y, z \in V$, the $\operatorname{arcs} x y, y z \in A$ implies that there exists an arc between x and z, i.e., $x z \in A$ or $z x \in A$.

Let $D=(V, A)$ be a digraph. Let $U \subseteq V$ and let $W=\left(V^{\prime}, A^{\prime}\right)$ be a subgraph of D. We say that W covers U if $U \subseteq V^{\prime}$.

A collection \mathcal{F} of pairwise vertex disjoint paths and cycles of a digraph D is called a k-path-cycle factor of D if \mathcal{F} covers $V(D)$ and has exactly $k \geq 0$ paths. \mathcal{F} is called a k-path factor if it contains only paths. We shall call a 0 -path-cycle factor a cycle factor. A cycle subgraph is a collection of vertex disjoint cycles. The path covering number of a digraph D, denoted $p c(D)$, is the smallest k for which D has a k-path factor.

Let D be a digraph on p vertices v_{1}, \ldots, v_{p} and let L_{1}, \ldots, L_{p} be a disjoint collection of digraphs. Then $D\left[L_{1}, \ldots, L_{p}\right]$ is the new digraph obtained from D by replacing each vertex v_{i} of D by L_{i} and adding an arc from every vertex of L_{i} to every vertex of L_{j} if and only if $v_{i} v_{j}$ is an arc of $D(1 \leq i \neq j \leq p)$. Let D and R be digraphs. Then D is an extension of R if there is a decomposition $D=R\left[I_{a_{1}}, \ldots, I_{a_{r}}\right], r=|V(R)|$, such that each $I_{a_{i}}$ induces an independent set in D. An extended semicomplete digraph is a digraph which is an extension of a semicomplete digraph. Two vertices x and y in an extended semicomplete digraph $D=R\left[I_{a_{1}}, \ldots, I_{a_{r}}\right]$ are said to be similar if $x, y \in I_{a_{j}}$ for some j.

Note that in the rest of the paper, whenever we consider a digraph with a decomposition $D=R\left[L_{1}, \ldots, L_{|R|}\right]$, we shall think of each L_{i} both as a subset of $V(D)$ and as a subgraph of D. Furthermore we also think of R as a subgraph of D.

3 Results from other papers

In this section we list a number of results which we will use in the next sections.
Lemma 3.1 [19] Let $D=(V, A)$ be a digraph which has no cycle factor. Then the vertices of D can be partitioned into disjoint sets Y, Z, R_{1}, R_{2} such that the following holds:

1. $D\langle Y\rangle$ has no arcs.
2. $R_{1} \Rightarrow Y \cup R_{2}$ and $Y \Rightarrow R_{2}$.
3. $|Z|<|Y|$.

Theorem 3.2 [13] A strong extended semicomplete digraph D is hamiltonian if and only if it has a cycle factor. Furthermore, the length of a longest cycle in D is equal to the maximum number of vertices in a cycle subgraph of D.

Theorem 3.3 [13] A longest cycle of an extended semicomplete digraph can be found in time $O\left(n^{\frac{5}{2}}\right)$.

Theorem 3.4 [8] Let D be a quasi-transitive digraph on at least 2 vertices. Then the following holds

1. If D is not strong, then D can be decomposed as $D=T\left[W_{1}, W_{2}, \ldots, W_{|T|}\right]$, where T is a transitive digraph with $|T| \geq 2$ and each W_{i} is a strong quasi-transitive digraph.
2. If D is strong, then D can be decomposed as $D=S\left[W_{1}, W_{2}, \ldots, W_{|S|}\right]$, where S is semicomplete with $|S| \geq 2$ and each W_{i} is either a single vertex or a nonstrong quasi-transitive digraph. Furthermore, if $s_{i} s_{j} s_{i}$ is a cycle of S, then the corresponding W_{i}, W_{j} both have just one vertex.

The following characterization of hamiltonian quasi-transitive digraphs is given implicitly in [14].

Theorem 3.5 [14] Let D be a strong quasi-transive digraph with decomposition $D=$ $S\left[W_{1}, W_{2}, \ldots, W_{s}\right]$, where $s=|S|$. Let $p c\left(W_{i}\right)$ be the path covering number of the quasi-transitive digraph $W_{i}, i=1,2, \ldots$ s. Let $D_{0}=S\left[H_{1}, H_{2}, \ldots, H_{s}\right]$ be the extended semicomplete digraph obtained by deleting all arcs inside each W_{i} (that is $\left|H_{i}\right|=\left|W_{i}\right|$). Then D is hamiltonian if and only if D_{0} has a cycle subgraph which covers at least $p c\left(W_{i}\right)$ vertices of $H_{i}, i=1,2, \ldots s$.

Theorem 3.6 [14] The path covering number pc (D) of a quasi-transitive digraph D can be calculated and a path cover with pc(D) paths constructed in time $O\left(n^{4}\right)$.

Theorem 3.7 [14] There is an $O\left(n^{4}\right)$ algorithm which, given a quasi-transitive digraph D, either returns a hamiltonian cycle in D or a proof that no such cycle exists in D.

Theorem 3.8 [8] A quasi-transitive digraph $D=S\left[W_{1}, W_{2}, \ldots, W_{|S|}\right]$ is hamiltonian if and only if it has a cycle factor \mathcal{C} such that no cycle of \mathcal{C} is a cycle of some $D\left\langle W_{i}\right\rangle$.

4 Longest cycles in extended semicomplete digraphs

In this section we prove a new characterization of a longest cycle in an extended semicomplete digraph. Besides being a very useful tool in our proof of the main result in the next section, this characterization is also of independent interest. In particular, it implies that, up to switching similar vertices, there is only one longest cycle in an extended semicomplete digraph.

Lemma 4.1 Let D be an extended semicomplete digraph with an independent set I. If \mathcal{C} is a cycle subgraph covering I, then D contains one cycle C which covers I. Furthermore, given \mathcal{C} and I, we can find one cycle covering I in time $O(n)$.

Proof: By discarding some cycles if necessary, we may assume that every cycle in \mathcal{C} contains a vertex from I. If \mathcal{C} contains at least two cycles, then let C, C^{\prime} be distinct cycles from \mathcal{C}. Let $x \in V(C), y \in V\left(C^{\prime}\right)$ be chosen such that $x, y \in I$. Let x^{+}, y^{+}be the successors of x, y on C, C^{\prime} respectively. Then $x y^{+}$and $y x^{+}$are arcs of D, since x and y are similar and hence $C\left[x^{+}, x\right] C^{\prime}\left[y^{+}, y\right] x^{+}$is a cycle containing precisely the vertices of $V(C) \cup V\left(C^{\prime}\right)$. Now the first claim follows easily by induction on the number of cycles in \mathcal{C}. The complexity claim follows from the fact that we can merge the two cycles C, C^{\prime} in constant time.

Lemma 4.2 If D is an acyclic extended semicomplete digraph, then $p c(D)=\max \{|I|$: I is an independent set in $D\}$. Furthermore, starting from D, one can obtain a path cover with pc(D) paths by removing the vertices of a longest path pc(D) times.

Proof: Let k denote the size of a largest independent set in D. Let $D=S\left[H_{1}, H_{2}, \ldots, H_{s}\right]$ be the (unique) decomposition of D such that $H_{1}, H_{2}, \ldots, H_{s}$ are independent sets. Since S is semicomplete, it has a hamiltonian path P and since D is acyclic P is also a longest path in D. Note that since D is acyclic, P contains precisely one vertex from each H_{i}. Now the claim follows by induction on k.

The following lemma is a special case of a more general result for semicomplete multipartite graphs [13]. Note that it also follows from Theorems 3.2 and 4.4

Lemma 4.3 Let D be a strong extended semicomplete digraph and let C be a longest cycle in D. Then $D-C$ is acyclic.

The following characterization of a longest cycle in a strong extended semicomplete digraph is a generalization of Theorem 3.2.

Theorem 4.4 Let D be a strong extended semicomplete digraph with decomposition $D=S\left[H_{1}, H_{2}, \ldots, H_{t}\right], t=|S|$. Let $m_{i}, i=1,2, \ldots, t$, denote the maximum number of vertices from H_{i} which are contained in a cycle subgraph of D. Then every longest cycle of D contains precisely m_{i} vertices from each $H_{i}, i=1,2, \ldots, t$.

Proof: Let C be a longest cycle and suppose without loss of generality that C does not use m_{1} vertices from H_{1}. Let m_{1}^{\prime} be the number of vertices from H_{1} which are contained in C. First observe that C contains at least one vertex from each H_{i}.

Indeed, if this is not the case, then choose i so that C has no vertex from H_{i}. Let x be an arbitrary vertex of H_{i}. If x has arcs to and from C in D, then it is easy to see that x can be inserted between two vertices of C, contradicting the maximality of C. Suppose without loss of generality that $V(C) \Rightarrow x$. Since D is strong, there is an $(x, V(C))$-path $x q_{1} q_{2} \ldots q_{t}$ in D. Let q_{t}^{-}be the predecessor of q_{t} on C. Then $C\left[q_{t}, q_{t}^{-}\right] x q_{1} q_{2} \ldots q_{t}$ is a cycle in D, contradicting the maximality of C. It follows that $1 \leq m_{1}^{\prime}<m_{1}$.

By the definition of m_{1} and Lemma 4.1, there is some cycle Q which uses m_{1} vertices from H_{1}. Since all vertices in H_{1} have the same adjacencies and $m_{1}^{\prime}<m_{1}$, we can choose Q so that it contains all vertices from H_{1} that are on C and at least one extra vertex $x \in H_{1}-V(C)$. We will also choose Q so that under the assumption above, $|V(Q) \cap V(C)|$ is maximized.

We claim that for every i such that $H_{i} \cap V(Q) \not \subset V(C)$ we have $H_{i} \cap V(C) \subset V(Q)$. If this is not the case, then let u be a vertex of H_{i} which is on Q but not on C and v a vertex of H_{i} which is on C but not on Q. Since u and v are similar, we can replace u by v and obtain a new cycle Q^{\prime} containing m_{1} vertices of H_{1} which has a larger intersection with C, contradicting the choice of Q above.

Now consider the digraph $D^{\prime}=D\langle V(C) \cup V(Q)\rangle$. It follows from the fact that C has a vertex from each H_{i} and that all vertices in H_{i} are similar that the digraph D^{\prime} is strong. We claim that D^{\prime} has a factor. If this is not the case then we can apply Lemma 3.1 to get a partition $Y^{\prime}, Z^{\prime}, R_{1}^{\prime}, R_{2}^{\prime}$ satisfying the conditions of the lemma. It follows from the structure of the arcs determined in Lemma 3.1 that every cycle through a vertex in Y^{\prime} must use a vertex of Z^{\prime}. Hence there can be no factor which covers all the vertices in Y^{\prime}. Since Y^{\prime} is an independent set in the extended semicomplete digraph D^{\prime} and hence in D, we have $Y^{\prime} \subset H_{i}$ for some i.

For every i such that $H_{i} \cap V(Q) \not \subset V(C)$ we argued above that all vertices in $H_{i} \cap V\left(D^{\prime}\right)$ are on Q. Hence we cannot have $Y^{\prime} \subset H_{i}$ for any of these sets. On the other hand, for every j such that $H_{j} \cap V(Q) \subset V(C)$, we have all vertices of $H_{j} \cap V\left(D^{\prime}\right)$ on the cycle C. This is a contradiction since C contains a vertex from each H_{i}.

Thus we have shown that the strong extended semicomplete subgraph D^{\prime} of D has a cycle factor. By Theorem 3.2, D^{\prime} has a hamiltonian cycle C^{\prime}. Now we obtain a contradiction to the assumption C was a longest cycle in D.

5 Smallest spanning strong subgraphs of quasi-transitive digraphs

For an arbitrary quasi-transitive digraph D and a natural number k, we define the quasi-transitive digraph $H_{k}(D)$ obtained from D as follows: Add two sets of k new vertices $x_{1}, x_{2}, \ldots, x_{k}, y_{1}, y_{2}, \ldots, y_{k}$. Add all possible arcs from $V(D)$ to x_{i} along with all possible arcs from y_{i} to $V(D), i=1,2, \ldots, k$. Finally, add all arcs of the kind $x_{i} y_{j}$, $i, j=1,2, \ldots, k$. Note that $H_{0}(D)=D$.

Definition 5.1 Let D be a strong quasi-transitive digraph and let $\epsilon(D)$ be the smallest $k \geq 0$ such that $H_{k}(D)$ is hamiltonian.

Observe that if $\epsilon(D) \geq 1$, then $\epsilon(D)$ is precisely the path cover number of D. Hence we can calculate $\epsilon(D)$ in time $O\left(n^{4}\right)$ using the algorithms of Theorems 3.6 and 3.7. We show below that $n+\epsilon(D)$ is a lower bound for the number of arcs in every spanning strong subgraph of D.

Lemma 5.2 For every strongly connected quasi-transitive digraph D every spanning strong subgraph of D has at least $n+\epsilon(D)$ arcs.

Proof: Let D be a strong quasi-transitive digraph with decomposition $D=$ $S\left[W_{1}, W_{2}, \ldots, W_{s}\right], s=|S| \geq 2$ (compare with Theorem 3.4). Suppose D has a spanning strong subgraph D^{\prime} with $n+k$ arcs. We may assume (by deleting some arcs if necessary) that no proper subgraph of D^{\prime} is spanning and strong. It is easy to prove by induction on k that D^{\prime} can be decomposed into a cycle $P_{0}=C$ and k arc-disjoint paths or cycles $P_{1}, P_{2}, \ldots, P_{k}$ with the following properties (where D_{i} denotes the digraph with vertices $\bigcup_{j=0}^{i} V\left(P_{j}\right)$ and arcs $\bigcup_{j=0}^{i} A\left(P_{j}\right)$ for $\left.i=0,1, \ldots, t\right)$:

1. For each $i=1, \ldots t$: If P_{i} is a cycle, then it has precisely one vertex in common with $V\left(D_{i-1}\right)$. Otherwise the end-vertices of P_{i} are distinct vertices of $V\left(D_{i-1}\right)$ and no other vertex of P_{i} belongs to $V\left(D_{i-1}\right)$.
2. $\cup_{j=0}^{t} A\left(P_{j}\right)=A\left(D^{\prime}\right)$.

It is easy to see that this decomposition can be started with P_{0} as any cycle in D^{\prime}. It follows that we may choose $C=P_{0}$ so that

$$
\begin{equation*}
V(C) \not \subset W_{i} \text { for } i=1,2, \ldots, s \tag{1}
\end{equation*}
$$

Now consider D^{\prime} as a subgraph of $H_{k}(D)$. By the minimality assumption on D^{\prime}, each P_{i} has length at least two. It follows that $H_{k}(D)$ has a cycle factor consisting of C and k cycles of the form $y_{i} P_{i}^{\prime} x_{i} y_{i}, i=1,2, \ldots, k$, where P_{i}^{\prime} is the path one obtains from P_{i} by removing the vertices it has in common with $V\left(D_{i-1}\right)$ (defined above). By (1) and Theorem 3.8, $H_{k}(D)$ has a hamiltonian cycle and hence $\epsilon(D) \leq k$.

Below we characterize the optimal solution to the MSSS problem for quasi-transitive digraphs and show that the problem is polynomially solvable.

Theorem 5.3 The minimum spanning strong subgraph of a quasi-transitive digraph has precisely $n+\epsilon(D)$ arcs. Furthermore, we can find such a subgraph in time $O\left(n^{4}\right)$.

Proof: Let $D=S\left[W_{1}, W_{2}, \ldots, W_{s}\right], s=|S| \geq 2$, be a strong quasi-transitive digraph. Using the algorithm of Theorem 3.7 we can check whether D is hamiltonian and find a hamiltonian cycle if one exists. If D is hamiltonian, then any hamiltonian cycle is the optimal spanning strong subgraph. Suppose below that D is not Hamiltonian.

Let $D_{0}=S\left[H_{1}, H_{2}, \ldots, H_{s}\right]$ be the extended semicomplete digraph one obtains by deleting all arcs inside each W_{i} (that is $\left|H_{i}\right|=\left|W_{i}\right|$ and H_{i} is obtained from W_{i} by deleting all arcs). By Theorem 3.5, D_{0} has no cycle subgraph which covers at least $p c\left(W_{i}\right)$ vertices of each $H_{i}, i=1,2, \ldots, s$.

For each $i=1,2, \ldots, s$, let m_{i} denote the maximum number of vertices which can be covered in H_{i} by any cycle subgraph of D_{0}. According to Theorem 4.4 every longest
cycle C in D_{0} contains exactly m_{i} vertices from $H_{i}, i=1,2, \ldots, s$. By Theorem 3.3 we can find C in time $O\left(n^{\frac{5}{2}}\right)$. Let

$$
\begin{equation*}
k=\max \left\{p c\left(W_{i}\right)-m_{i}: i=1,2, \ldots, s\right\} . \tag{2}
\end{equation*}
$$

Define the extended semicomplete subgraph D^{*} of D as $D^{*}=S\left[H_{1}^{*}, H_{2}^{*}, \ldots, H_{s}^{*}\right]$, where H_{i}^{*} is an independent set containing $m_{i}^{*}=\max \left\{p c\left(W_{i}\right), m_{i}\right\}$ vertices, $i=$ $1,2, \ldots, s$. Since vertices inside an independent set are similar we may think of C as a longest cycle in D^{*} (i.e. C contains precisely m_{i} vertices from $H_{i}^{*}, i=1,2, \ldots, s$). By Lemma 4.3 and Lemma $4.2, D^{*}-C$ can be covered by k paths $P_{1}^{*}, P_{2}^{*}, \ldots, P_{k}^{*}$. Since $D^{*}-C$ is acyclic, we may assume (by Lemma 4.2) that P_{1}^{*} starts at a vertex x and ends at a vertex y such that x has in-degree zero and y has out degree zero in $D^{*}-C$. It follows that there is an arc $c x$ from C to x and an arc $y c^{\prime}$ from y to C in D^{*} and hence we can glue P_{1}^{*} onto C by adding the $\operatorname{arcs} c x, y c^{\prime}$. Remove P_{1}^{*} and its vertices and consider the remaining paths. It follows by induction on k that adding $P_{2}^{*}, P_{3}^{*}, \ldots, P_{k}^{*}$ one by one, using two new arcs each time, we can obtain a spanning strong subgraph $D^{* *}$ of D^{*} with $\left|V^{*}\right|+k$ arcs.

Now we obtain a spanning strong subgraph of the quasi-transitive digraph D as follows: Since $m_{i}^{*} \geq p c\left(W_{i}\right)$ for $i=1,2, \ldots, s$, each W_{i} contains a collection of $t_{i}=m_{i}^{*}$ paths $P_{i 1}, P_{i 2}, \ldots, P_{i t_{i}}$ such that these paths cover all vertices of W_{i}. Such a collection of paths can easily be constructed from a given collection of $p c\left(W_{i}\right)$ paths which cover $V\left(W_{i}\right)$. Let $x_{i 1}, x_{i 2}, \ldots, x_{i t_{i}}$ be the vertex set of H_{i}^{*}. Replace $x_{i j}$ in $D^{* *}$ by the path $P_{i j}$ for each $i=1,2, \ldots, s, j=1,2, \ldots, t_{i}$. We obtain a spanning strong subgraph D^{\prime} of D. The number of arcs in D^{\prime} is

$$
\begin{align*}
A\left(D^{\prime}\right) & =\sum_{i=1}^{s}\left(\left|W_{i}\right|-m_{i}^{*}\right)+\left(\left|V^{*}\right|+k\right) \\
& =\left(n-\left|V^{*}\right|\right)+\left(\left|V^{*}\right|+k\right) \\
& =n+k \tag{3}
\end{align*}
$$

It remains to argue that D^{\prime} is smallest possible. By Lemma 5.2, it suffices to prove that $\epsilon(D) \geq k$.

Suppose $\epsilon(D)=r<k$. By Definition 5.1, the quasi-transitive digraph $H_{r}(D)$ has a hamiltonian cycle C. It follows from the definition of $H_{r}(D)$ that we can decompose $H_{r}(D)$ as $H_{r}(D)=S^{\prime}\left[W_{1}, W_{2}, \ldots, W_{s}, I_{r}, I_{r}\right]$, where I_{r} is an independent set of r vertices and S^{\prime} is obtained from S by adding two new vertices x, y such that $x y$ is an arc and x is dominated by all vertices of S and y dominates all vertices of S. Let C^{\prime} be obtained by contracting each subpath of C which lies entirely inside some W_{i}. Now delete all remaining arcs inside each W_{i}. The resulting digraph T is extended semicomplete and has a decomposition $T=S^{\prime}\left[I_{a_{1}}, I_{a_{2}}, \ldots, I_{a_{s}}, I_{r}, I_{r}\right]$, where each $I_{a_{j}}$ denotes an independent set on $a_{j} \geq 1$ vertices. Since inside every W_{i}, we only contracted subpaths of C, it follows that $a_{i} \geq p c\left(W_{i}\right)$ for $i=1,2, \ldots, s$. Furthermore, C^{\prime} is a hamiltonian cycle in T.

Remove the vertices $x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{r}$ from C^{\prime}. As the only arcs leaving each x_{i} go to $\left\{y_{1}, y_{2}, \ldots, y_{r}\right\}$, this gives us a collection of r paths $P_{1}, P_{2}, \ldots, P_{r}$ cover all vertices in $T^{*}=S\left[I_{a_{1}}, I_{a_{2}}, \ldots, I_{a_{s}}\right]$. Since all vertices inside the same independent
set are similar, we can assume that $P_{1}, P_{2}, \ldots, P_{r}$ are paths in D_{0} (D_{0} was defined in the beginning of the proof). Let i be chosen such that

$$
\begin{equation*}
p c\left(W_{i}\right)-m_{i}=k . \tag{4}
\end{equation*}
$$

Since $a_{i} \geq p c\left(W_{i}\right)$ and $r<k$ it follows that some P_{j} contains two vertices of H_{i}. Note that if $P_{j}=z_{1} z_{2} \ldots z_{p}$ and $a<b$ are indices so that z_{a} and z_{b} are similar, then $z_{a+1} \ldots z_{b-1} z_{b} z_{a+1}$ is a cycle and $z_{a} z_{b+1}$ is an arc if $b<p$. Thus we can replace P_{j} by a cycle and a path $P_{j}^{\prime}=P_{j}\left[z_{1}, z_{a}\right] P_{j}\left[z_{b+1}, z_{p}\right]$. Clearly we can continue this way (replacing paths in the current collection by a cycle an a path) until every path in the current collection contains at most one vertex from H_{i}. This shows that D_{0} has a cycle subgraph with covers at least $a_{i}-r \geq p c\left(W_{i}\right)-r>p c\left(W_{i}\right)-k=m_{i}$ vertices form H_{i}. However this contradicts the definition of m_{i}. This contradiction shows that $\epsilon(D) \geq k$ and the optimality of D^{\prime} follows from Lemma 5.2.

The proof above can easily be turned into an algorithm which finds a minimum spanning strong subgraph of a given quasi-transitive digraph D. The complexity of the algorithm is dominated by the time it takes to find an optimal path cover in each W_{i}. By Theorem 3.6 this can be done in $O\left(n^{4}\right)$ time.

6 Remarks and open problems

In order to speed up the algorithm implied by the proof of Theorem 5.3, one would need to find a faster algorithm for finding a hamiltonian cycle in a quasi-transitive digraph. One approach (following Gutin's idea in [14]) would be to find a faster algorithm for the path cover number of quasi-transitive digraphs. This as well as finding a completely different method for solving the hamiltonian cycle problem in quasi-transitive digraphs seems to be challenging open problems.

For another paper which makes good use of the nice recursive structure of quasitransitive digraphs we refer the reader to [6] in which the problem of finding a heaviest cycle (with respect to weights on the vertices) was solved for quasi-transitive digraphs.

Below we point out that the proofs of our theorems imply a polynomial time algorithm for a much larger class of digraphs than just quasi-transitive digraphs. For every natural number t, let ψ_{t} be the class of all digraphs for which an optimal path cover can be found in polynomial time $O\left(n^{t}\right)$. For every natural number t, let ϕ_{t} be the class of all digraphs of the form $D=S\left[H_{1}, H_{2}, \ldots, H_{s}\right], s=|S| \geq 2$, where S is a strong semicomplete digraph and $H_{i} \in \psi_{t}, i=1,2, \ldots, s$. By Theorem 3.6 the class ϕ_{4} contains all quasi-transitive digraphs.

Using the approach used in this paper it is not difficult to prove the following extension of Theorem 3.5.

Theorem 6.1 Let t be a natural number and let D be a strong digraph from the class ϕ_{t} with decomposition $D=S\left[W_{1}, W_{2}, \ldots, W_{s}\right]$, where $s=|S|, W_{i} \in \psi_{t}, i=1,2, \ldots, s$ and S is a strong semicomplete digraph. Let pc $\left(W_{i}\right)$ be the path cover number of the digraph $W_{i}, i=1,2, \ldots, s$. Let $D_{0}=S\left[H_{1}, H_{2}, \ldots, H_{s}\right]$ be the extended semicomplete digraph obtained by deleting all arcs inside each W_{i} (that is $\left|H_{i}\right|=\left|W_{i}\right|$). Then D is
hamiltonian if and only if D_{0} has a cycle subgraph which covers at least $p c\left(W_{i}\right)$ vertices of $H_{i}, i=1,2, \ldots s$.

Gutin's approach to solving the hamiltonian cycle problem for quasi-transtive digraphs easily extends to a proof of the following.

Theorem 6.2 For every natural number t, the hamiltonian cycle problem is polynomially solvable for digraphs that belong to ϕ_{t}.

Let $D=S\left[H_{1}, H_{2}, \ldots, H_{s}\right]$ be a digraph in ϕ_{t}. To find the minimum strong spanning subgraph in D, let D^{\prime} be the extended semicomplete digraph obtained from D by deleting all arcs within each H_{i} for $i=1,2, \ldots$ s. By Theorem 3.3, we can find a longest cycle C in D^{\prime}. Let $m_{i}=\left|V\left(H_{i}\right) \cap V(C)\right|$ for $i=1,2, \ldots, s$ and let

$$
k=\max \left\{p c\left(H_{i}\right)-m_{i}: \quad i=1,2, \ldots, s\right\}
$$

Using a proof analogous to that of Theorem 5.3, we can show that the minimum strong spanning subgraph of D contains $n+k$ arcs when $k \geq 1$ and is a hamiltonian cycle when $k \leq 0$. Combining this with Theorems 6.1 and 6.2 we get

Theorem 6.3 For every natural number t, the MSSS problem is polynomially solvable for all digraphs in ϕ_{t}.

References

[1] A.V. Aho, M. R. Garey and J. D. Ullman. The transitive reduction of a directed graph, Siam J. Computing 1(2) (1972) 131-137.
[2] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows, Prentice Hall, New Jersey (1993).
[3] H. Alt, N. Blum, K. Melhorn and M. Paul, Computing of maximum cardinality matching in a bipartite graph in time $O\left(n^{1.5} \sqrt{m / \log n}\right)$. Inf. Proc. Letters 37 (1991) 237-240.
[4] J. Bang-Jensen and G. Gutin, Generalizations of tournaments: A survey, J. Graph Theory, 28 (1998) 171-202.
[5] J. Bang-Jensen and G. Gutin, On the complexity of hamiltonian path and cycle problems in certain classes of digraphs, Discrete Applied Mathematics, to appear.
[6] J. Bang-Jensen and G. Gutin, Vertex heaviest paths and cycles in quasi-transitive digraphs. Discrete Math. 163 (1996) 217-223.
[7] J. Bang-Jensen, G. Gutin, and A. Yeo, A polynomial algorithm for the Hamiltonian cycle problem in semicomplete multipartite digraphs. J. Graph Theory 29 (1998) 111-132.
[8] J. Bang-Jensen and J. Huang, Quasi-transitive digraphs. J. Graph Theory 20 (1995) 141-161.
[9] J. Bang-Jensen and A. Yeo, Strongly connected spanning subgraphs with the minimum number of arcs in semicomplete multipartite digraphs, submitted.
[10] J.A. Bondy and U.R.S. Murty. Graph Theory with Applications, MacMillan Press, 1976.
[11] A. Ghouilà-Houri, Caractérisation des graphes non orientès dont on peut orienter les arrêtes de maniere à obtenir le graphe d'un relation d'ordre, C.R.Acad. Sci.Paris 254 (1962) 1370-1371.
[12] P. Gibbons, R. Karp, V. Ramachandran, D. Soroker and R. Tarjan, Transitive compaction in parallel via branchings, J. Algorithms 12 110-125.
[13] G. Gutin, Cycles and paths in complete multipartite digraphs, theorems and algorithms: a survey. J. Graph Theory 19 (1995) 481-505.
[14] G. Gutin, Polynomial algorithms for finding hamiltonian paths and cycles in quasitransitive digraphs. Australasian J. Combin. 10 (1994) 231-236.
[15] H.T. Hsu, An algorithm for finding a minimal equivalent graph of a digraph, J. Assoc. Computing Machinery 22 (1975) 11-16.
[16] S. Khuller, B. Raghavachari and N. Young, Approximating the minimum equivalent digraph, Siam J. Computing 24 (1995) 859-872.
[17] S. Khuller, B. Raghavachari and N. Young, On strongly connected digraphs with bounded cycle length, Disc. Applied Math. 69 (1996) 281-289.
[18] K. Simon, Finding a minimal transitive reduction in a strongly connected digraph within linear time. In: Graph Theoretic concepts in computer science (Kerkrade, 1989). Springer Verlag Berlin (1990) 244-259.
[19] A. Yeo, How close to regular must a semicomplete multipartite digraph be to secure hamiltonicity? Graphs and Combinatorics, to appear.

[^0]: *Department of Mathematics and Computer Science, Odense University, DK-5230, Denmark (email jbj@imada.sdu.dk). The first author wishes to acknowledge financial support from NSERC (under grant 203191-98).
 ${ }^{\dagger}$ Department of Mathematics and Statistics, University of Victoria, Victoria, B.C., V8W 3P4, Canada. (email: jing@math.uvic.ca). The second author wishes to acknowledge financial support from NSERC (under grant 203191-98).
 ${ }^{\ddagger}$ Department of Mathematics and Statistics, University of Victoria, Victoria B.C., V8W 3P4 Canada (email: yeo@math.uvic.ca). The third author wishes to acknowledge financial support from the Danish Research Council (under grant 9800435)

