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spanning subgraph D0 of D such that D0 has as few arcs as possible. This problem,which generalizes the hamiltonian cycle problem and hence is NP-hard, is of practicalinterest and has been considered several times in the literature, see e.g. [1, 12, 15,16, 17, 18]. The MSSS problem is an essential subproblem of the so-called minimumequivalent digraph problem (in fact, these two problems can be reduced to each other inpolynomial time). Here one is seeking a spanning subgraph with the minimumnumberof arcs in which the reachability relation is the same as in the original graph (i.e.there is a path from x to y if and only if the original digraph has such a path). Sincethe MSSS problem is NP-hard, it is natural to study the problem under certain extraassumptions. In order to �nd classes of digraphs for which we can solve the MSSSproblem in polynomial time, we must consider classes of digraphs for which we cansolve the hamiltonian cycle problem in polynomial time. This follows from the factthat the hamiltonian cycle problem can be solved if we can solve the MSSS problem.In [17] the MSSS problem was considered for digraphs whose longest cycle haslength r for some r. It was shown that if r � 3, then the problem is polynomial andthat it is NP-hard already when r = 5.In this paper we study the MSSS problem for quasi-transitive digraphs. Thesedigraphs have a nice, recursive structure [8], see Theorem 3.4. Using this structure,Gutin [14] proved that the hamiltonian cycle problem is polynomially time solvable forquasi-transitive digraphs. The approach used to solve the hamiltonian cycle problem in[14] involves solving the problem of �nding a minimum path cover of a quasi-transitivedigraph.We give a lower bound for the number of arcs in any minimum spanning strongsubgraph of an arbitrary given strong quasi-transitive digraph. This bound can becalculated in polynomial time using Gutin's algorithm for �nding a hamiltonian cyclein a quasi-transitive digraph. We prove that this lower bound is also attainable forquasi-transitive digraphs [14]. The proof of this uses a new characterization of a longestcycle in an extended semicomplete digraph.In the last section we point out the our methods imply that the MSSS problem canbe solved e�ciently for a much larger superclass of semicomplete digraphs than justquasi-transitive digraphs.We remark that in [9], the MSSS problem was solved for various generalizationsof tournaments. In particular polynomial algorithms were given for the classes ofextended semicomplete digraphs and semicomplete bipartite digraphs. Furthermore, itwas conjectured in [9] that the MSSS problem is also polynomially solvable for generalsemicomplete multipartite digraphs.2 TerminologyWe shall always use the number n to denote the number of vertices in the digraphcurrently under consideration. Digraphs are �nite, have no loops or multiple arcs. Weuse V (D) and A(D) to denote the vertex set and the arc set of a digraph D. Weshall use jDj (instead of jV (D)j) to denote the number of vertices in D. The arc froma vertex x to a vertex y will be denoted by xy. If xy is an arc, then we say that xdominates y and y is dominated by x. For disjoint subsets H;K � V (D) we use the2



notation H)K to denote that there are no arcs from K to H.By a cycle (path, respectively) we mean a directed (simple) cycle (path, respec-tively). If R is a cycle or a path with two vertices u; v such that u can reach v on R,then R[u; v] denotes the subpath of R from u to v. A cycle (path) of a digraph D ishamiltonian if it contains all the vertices of D. A digraph is hamiltonian if it has ahamiltonian cycle.An (x; y)-path is a path from x to y. A digraph D is strongly connected (or juststrong) if there exists an (x; y)-path and a (y; x)-path for every choice of distinct verticesx; y of D. Let U;W be disjoint subsets of V (D). A (U;W )-path is a path x1x2 : : : xksuch that x1 2 U; xk 2 W and no other xi belongs to U [W .A digraph T is semicomplete if it has no pair of non-adjacent vertices. A tournamentis a semicomplete digraph with no cycles of length 2. It is well known and easy toprove that every semicomplete digraph has a hamiltonian path and that every strongsemicomplete digraph has a hamiltonian cycle. A digraphD = (V;A) is quasi-transitiveif, for any distinct x; y; z 2 V , the arcs xy; yz 2 A implies that there exists an arcbetween x and z, i.e., xz 2 A or zx 2 A.Let D = (V;A) be a digraph. Let U � V and let W = (V 0; A0) be a subgraph ofD. We say that W covers U if U � V 0.A collection F of pairwise vertex disjoint paths and cycles of a digraph D is calleda k-path-cycle factor of D if F covers V (D) and has exactly k � 0 paths. F is called ak-path factor if it contains only paths. We shall call a 0-path-cycle factor a cycle factor.A cycle subgraph is a collection of vertex disjoint cycles. The path covering number ofa digraph D, denoted pc(D), is the smallest k for which D has a k-path factor.Let D be a digraph on p vertices v1; :::; vp and let L1; :::; Lp be a disjoint collectionof digraphs. Then D[L1; :::; Lp] is the new digraph obtained from D by replacing eachvertex vi of D by Li and adding an arc from every vertex of Li to every vertex of Ljif and only if vivj is an arc of D (1 � i 6= j � p). Let D and R be digraphs. Then Dis an extension of R if there is a decomposition D = R[Ia1; :::; Iar], r = jV (R)j, suchthat each Iai induces an independent set in D. An extended semicomplete digraph is adigraph which is an extension of a semicomplete digraph. Two vertices x and y in anextended semicomplete digraph D = R[Ia1; :::; Iar] are said to be similar if x; y 2 Iajfor some j.Note that in the rest of the paper, whenever we consider a digraph with a decom-position D = R[L1; :::; LjRj], we shall think of each Li both as a subset of V (D) and asa subgraph of D. Furthermore we also think of R as a subgraph of D.3 Results from other papersIn this section we list a number of results which we will use in the next sections.Lemma 3.1 [19] Let D = (V;A) be a digraph which has no cycle factor. Then thevertices of D can be partitioned into disjoint sets Y;Z;R1; R2 such that the followingholds:1. DhY i has no arcs. 3



2. R1)Y [R2 and Y)R2.3. jZj < jY j.Theorem 3.2 [13] A strong extended semicomplete digraph D is hamiltonian if andonly if it has a cycle factor. Furthermore, the length of a longest cycle in D is equal tothe maximum number of vertices in a cycle subgraph of D.Theorem 3.3 [13] A longest cycle of an extended semicomplete digraph can be foundin time O(n 52 ).Theorem 3.4 [8] Let D be a quasi-transitive digraph on at least 2 vertices. Then thefollowing holds1. If D is not strong, then D can be decomposed as D = T [W1;W2; : : : ;WjT j], whereT is a transitive digraph with jT j � 2 and each Wi is a strong quasi-transitivedigraph.2. If D is strong, then D can be decomposed as D = S[W1;W2; : : : ;WjSj], whereS is semicomplete with jSj � 2 and each Wi is either a single vertex or a non-strong quasi-transitive digraph. Furthermore, if sisjsi is a cycle of S, then thecorresponding Wi;Wj both have just one vertex.The following characterization of hamiltonian quasi-transitive digraphs is given im-plicitly in [14].Theorem 3.5 [14] Let D be a strong quasi-transive digraph with decomposition D =S[W1;W2; : : : ;Ws], where s = jSj. Let pc(Wi) be the path covering number of thequasi-transitive digraph Wi, i = 1; 2; : : : ; s. Let D0 = S[H1;H2; : : : ;Hs] be the extendedsemicomplete digraph obtained by deleting all arcs inside each Wi (that is jHij = jWij).Then D is hamiltonian if and only if D0 has a cycle subgraph which covers at leastpc(Wi) vertices of Hi, i = 1; 2; : : : s.Theorem 3.6 [14] The path covering number pc(D) of a quasi-transitive digraph Dcan be calculated and a path cover with pc(D) paths constructed in time O(n4).Theorem 3.7 [14] There is an O(n4) algorithm which, given a quasi-transitive digraphD, either returns a hamiltonian cycle in D or a proof that no such cycle exists in D.Theorem 3.8 [8] A quasi-transitive digraph D = S[W1;W2; : : : ;WjSj] is hamiltonianif and only if it has a cycle factor C such that no cycle of C is a cycle of some DhWii.
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4 Longest cycles in extended semicomplete digraphsIn this section we prove a new characterization of a longest cycle in an extendedsemicomplete digraph. Besides being a very useful tool in our proof of the main resultin the next section, this characterization is also of independent interest. In particular,it implies that, up to switching similar vertices, there is only one longest cycle in anextended semicomplete digraph.Lemma 4.1 Let D be an extended semicomplete digraph with an independent set I.If C is a cycle subgraph covering I, then D contains one cycle C which covers I.Furthermore, given C and I, we can �nd one cycle covering I in time O(n).Proof: By discarding some cycles if necessary, we may assume that every cycle inC contains a vertex from I. If C contains at least two cycles, then let C;C 0 be distinctcycles from C. Let x 2 V (C); y 2 V (C 0) be chosen such that x; y 2 I. Let x+; y+ bethe successors of x; y on C;C 0 respectively. Then xy+ and yx+ are arcs of D, sincex and y are similar and hence C[x+; x]C 0[y+; y]x+ is a cycle containing precisely thevertices of V (C)[V (C 0). Now the �rst claim follows easily by induction on the numberof cycles in C. The complexity claim follows from the fact that we can merge the twocycles C;C 0 in constant time. �Lemma 4.2 If D is an acyclic extended semicomplete digraph, then pc(D) = maxfjIj :I is an independent set in Dg. Furthermore, starting from D, one can obtain a pathcover with pc(D) paths by removing the vertices of a longest path pc(D) times.Proof: Let k denote the size of a largest independent set inD. LetD = S[H1;H2; : : : ;Hs]be the (unique) decomposition of D such that H1;H2; : : : ;Hs are independent sets.Since S is semicomplete, it has a hamiltonian path P and since D is acyclic P is also alongest path in D. Note that since D is acyclic, P contains precisely one vertex fromeach Hi. Now the claim follows by induction on k. �The following lemma is a special case of a more general result for semicompletemultipartite graphs [13]. Note that it also follows from Theorems 3.2 and 4.4Lemma 4.3 Let D be a strong extended semicomplete digraph and let C be a longestcycle in D. Then D �C is acyclic.The following characterization of a longest cycle in a strong extended semicompletedigraph is a generalization of Theorem 3.2.Theorem 4.4 Let D be a strong extended semicomplete digraph with decompositionD = S[H1;H2; : : : ;Ht], t = jSj. Let mi, i = 1; 2; : : : ; t, denote the maximum numberof vertices from Hi which are contained in a cycle subgraph of D. Then every longestcycle of D contains precisely mi vertices from each Hi, i = 1; 2; : : : ; t.Proof: Let C be a longest cycle and suppose without loss of generality that Cdoes not use m1 vertices from H1. Let m01 be the number of vertices from H1 whichare contained in C. First observe that C contains at least one vertex from each Hi.5



Indeed, if this is not the case, then choose i so that C has no vertex from Hi. Let x bean arbitrary vertex of Hi. If x has arcs to and from C in D, then it is easy to see that xcan be inserted between two vertices of C, contradicting the maximality of C. Supposewithout loss of generality that V (C))x. Since D is strong, there is an (x; V (C))-pathxq1q2 : : : qt in D. Let q�t be the predecessor of qt on C. Then C[qt; q�t ]xq1q2 : : : qt is acycle in D, contradicting the maximality of C. It follows that 1 � m01 < m1.By the de�nition of m1 and Lemma 4.1, there is some cycle Q which uses m1vertices from H1. Since all vertices in H1 have the same adjacencies and m01 < m1,we can choose Q so that it contains all vertices from H1 that are on C and at leastone extra vertex x 2 H1 � V (C). We will also choose Q so that under the assumptionabove, jV (Q) \ V (C)j is maximized.We claim that for every i such that Hi\V (Q) 6� V (C) we have Hi\V (C) � V (Q).If this is not the case, then let u be a vertex of Hi which is on Q but not on C and va vertex of Hi which is on C but not on Q. Since u and v are similar, we can replaceu by v and obtain a new cycle Q0 containing m1 vertices of H1 which has a largerintersection with C, contradicting the choice of Q above.Now consider the digraph D0 = DhV (C) [ V (Q)i. It follows from the fact that Chas a vertex from each Hi and that all vertices in Hi are similar that the digraph D0 isstrong. We claim that D0 has a factor. If this is not the case then we can apply Lemma3.1 to get a partition Y 0; Z 0; R01; R02 satisfying the conditions of the lemma. It followsfrom the structure of the arcs determined in Lemma 3.1 that every cycle through avertex in Y 0 must use a vertex of Z 0. Hence there can be no factor which covers all thevertices in Y 0. Since Y 0 is an independent set in the extended semicomplete digraphD0 and hence in D, we have Y 0 � Hi for some i.For every i such that Hi \ V (Q) 6� V (C) we argued above that all vertices inHi \ V (D0) are on Q. Hence we cannot have Y 0 � Hi for any of these sets. On theother hand, for every j such that Hj \V (Q) � V (C), we have all vertices of Hj \V (D0)on the cycle C. This is a contradiction since C contains a vertex from each Hi.Thus we have shown that the strong extended semicomplete subgraph D0 of D hasa cycle factor. By Theorem 3.2, D0 has a hamiltonian cycle C 0. Now we obtain acontradiction to the assumption C was a longest cycle in D. �5 Smallest spanning strong subgraphs of quasi-transitivedigraphsFor an arbitrary quasi-transitive digraph D and a natural number k, we de�ne thequasi-transitive digraph Hk(D) obtained from D as follows: Add two sets of k newvertices x1; x2; : : : ; xk; y1; y2; : : : ; yk. Add all possible arcs from V (D) to xi along withall possible arcs from yi to V (D), i = 1; 2; : : : ; k. Finally, add all arcs of the kind xiyj,i; j = 1; 2; : : : ; k. Note that H0(D) = D.De�nition 5.1 Let D be a strong quasi-transitive digraph and let �(D) be the smallestk � 0 such that Hk(D) is hamiltonian. 6



Observe that if �(D) � 1, then �(D) is precisely the path cover number of D. Hencewe can calculate �(D) in time O(n4) using the algorithms of Theorems 3.6 and 3.7. Weshow below that n + �(D) is a lower bound for the number of arcs in every spanningstrong subgraph of D.Lemma 5.2 For every strongly connected quasi-transitive digraph D every spanningstrong subgraph of D has at least n+ �(D) arcs.Proof: Let D be a strong quasi-transitive digraph with decomposition D =S[W1;W2; : : : ;Ws], s = jSj � 2 (compare with Theorem 3.4). Suppose D has a span-ning strong subgraph D0 with n + k arcs. We may assume (by deleting some arcs ifnecessary) that no proper subgraph of D0 is spanning and strong. It is easy to prove byinduction on k that D0 can be decomposed into a cycle P0 = C and k arc-disjoint pathsor cycles P1; P2; : : : ; Pk with the following properties (where Di denotes the digraphwith vertices Sij=0 V (Pj) and arcs Sij=0A(Pj) for i = 0; 1; : : : ; t):1. For each i = 1; : : : t: If Pi is a cycle, then it has precisely one vertex in commonwith V (Di�1). Otherwise the end-vertices of Pi are distinct vertices of V (Di�1)and no other vertex of Pi belongs to V (Di�1).2. Stj=0A(Pj) = A(D0).It is easy to see that this decomposition can be started with P0 as any cycle in D0.It follows that we may choose C = P0 so thatV (C) 6�Wi for i = 1; 2; : : : ; s: (1)Now consider D0 as a subgraph of Hk(D). By the minimality assumption on D0,each Pi has length at least two. It follows that Hk(D) has a cycle factor consisting ofC and k cycles of the form yiP 0ixiyi, i = 1; 2; : : : ; k, where P 0i is the path one obtainsfrom Pi by removing the vertices it has in common with V (Di�1) (de�ned above). By(1) and Theorem 3.8, Hk(D) has a hamiltonian cycle and hence �(D) � k. �Below we characterize the optimal solution to the MSSS problem for quasi-transitivedigraphs and show that the problem is polynomially solvable.Theorem 5.3 The minimum spanning strong subgraph of a quasi-transitive digraphhas precisely n+ �(D) arcs. Furthermore, we can �nd such a subgraph in time O(n4).Proof: Let D = S[W1;W2; : : : ;Ws], s = jSj � 2, be a strong quasi-transitive di-graph. Using the algorithm of Theorem 3.7 we can check whetherD is hamiltonian and�nd a hamiltonian cycle if one exists. If D is hamiltonian, then any hamiltonian cycleis the optimal spanning strong subgraph. Suppose below that D is not Hamiltonian.Let D0 = S[H1;H2; : : : ;Hs] be the extended semicomplete digraph one obtains bydeleting all arcs inside each Wi (that is jHij = jWij and Hi is obtained from Wi bydeleting all arcs). By Theorem 3.5, D0 has no cycle subgraph which covers at leastpc(Wi) vertices of each Hi, i = 1; 2; : : : ; s.For each i = 1; 2; : : : ; s, let mi denote the maximum number of vertices which canbe covered in Hi by any cycle subgraph of D0. According to Theorem 4.4 every longest7



cycle C in D0 contains exactly mi vertices from Hi, i = 1; 2; : : : ; s. By Theorem 3.3 wecan �nd C in time O(n 52 ). Letk = maxfpc(Wi)�mi : i = 1; 2; : : : ; sg: (2)De�ne the extended semicomplete subgraph D� of D as D� = S[H�1 ;H�2 ; : : : ;H�s ],where H�i is an independent set containing m�i = maxfpc(Wi);mig vertices, i =1; 2; : : : ; s. Since vertices inside an independent set are similar we may think of Cas a longest cycle in D� (i.e. C contains precisely mi vertices from H�i , i = 1; 2; : : : ; s).By Lemma 4.3 and Lemma 4.2, D� � C can be covered by k paths P �1 ; P �2 ; : : : ; P �k .Since D� � C is acyclic, we may assume (by Lemma 4.2) that P �1 starts at a vertexx and ends at a vertex y such that x has in-degree zero and y has out degree zero inD� � C. It follows that there is an arc cx from C to x and an arc yc0 from y to C inD� and hence we can glue P �1 onto C by adding the arcs cx; yc0. Remove P �1 and itsvertices and consider the remaining paths. It follows by induction on k that addingP �2 ; P �3 ; : : : ; P �k one by one, using two new arcs each time, we can obtain a spanningstrong subgraph D�� of D� with jV �j+ k arcs.Now we obtain a spanning strong subgraph of the quasi-transitive digraph D asfollows: Since m�i � pc(Wi) for i = 1; 2; : : : ; s, each Wi contains a collection of ti = m�ipaths Pi1; Pi2; : : : ; Piti such that these paths cover all vertices of Wi. Such a collectionof paths can easily be constructed from a given collection of pc(Wi) paths which coverV (Wi). Let xi1; xi2; : : : ; xiti be the vertex set of H�i . Replace xij in D�� by the pathPij for each i = 1; 2; : : : ; s, j = 1; 2; : : : ; ti. We obtain a spanning strong subgraph D0of D. The number of arcs in D0 isA(D0) = sXi=1(jWij �m�i ) + (jV �j+ k)= (n� jV �j) + (jV �j+ k)= n+ k (3)It remains to argue that D0 is smallest possible. By Lemma 5.2, it su�ces to provethat �(D) � k.Suppose �(D) = r < k. By De�nition 5.1, the quasi-transitive digraph Hr(D) hasa hamiltonian cycle C. It follows from the de�nition of Hr(D) that we can decomposeHr(D) as Hr(D) = S 0[W1;W2; : : : ;Ws; Ir; Ir], where Ir is an independent set of r ver-tices and S 0 is obtained from S by adding two new vertices x; y such that xy is an arcand x is dominated by all vertices of S and y dominates all vertices of S. Let C 0 beobtained by contracting each subpath of C which lies entirely inside some Wi. Nowdelete all remaining arcs inside eachWi. The resulting digraph T is extended semicom-plete and has a decomposition T = S 0[Ia1; Ia2; : : : ; Ias; Ir; Ir], where each Iaj denotes anindependent set on aj � 1 vertices. Since inside everyWi, we only contracted subpathsof C, it follows that ai � pc(Wi) for i = 1; 2; : : : ; s. Furthermore, C 0 is a hamiltoniancycle in T .Remove the vertices x1; x2; : : : ; xr; y1; y2; : : : ; yr from C 0. As the only arcs leavingeach xi go to fy1; y2; : : : ; yrg, this gives us a collection of r paths P1; P2; : : : ; Pr coverall vertices in T � = S[Ia1; Ia2; : : : ; Ias]. Since all vertices inside the same independent8



set are similar, we can assume that P1; P2; : : : ; Pr are paths in D0 (D0 was de�ned inthe beginning of the proof). Let i be chosen such thatpc(Wi)�mi = k: (4)Since ai � pc(Wi) and r < k it follows that some Pj contains two vertices of Hi.Note that if Pj = z1z2 : : : zp and a < b are indices so that za and zb are similar, thenza+1 : : : zb�1zbza+1 is a cycle and zazb+1 is an arc if b < p. Thus we can replace Pjby a cycle and a path P 0j = Pj [z1; za]Pj[zb+1; zp]. Clearly we can continue this way(replacing paths in the current collection by a cycle an a path) until every path in thecurrent collection contains at most one vertex from Hi. This shows that D0 has a cyclesubgraph with covers at least ai� r � pc(Wi)� r > pc(Wi)� k = mi vertices form Hi.However this contradicts the de�nition of mi. This contradiction shows that �(D) � kand the optimality of D0 follows from Lemma 5.2.The proof above can easily be turned into an algorithm which �nds a minimumspanning strong subgraph of a given quasi-transitive digraph D. The complexity of thealgorithm is dominated by the time it takes to �nd an optimal path cover in each Wi.By Theorem 3.6 this can be done in O(n4) time. �6 Remarks and open problemsIn order to speed up the algorithm implied by the proof of Theorem 5.3, one would needto �nd a faster algorithm for �nding a hamiltonian cycle in a quasi-transitive digraph.One approach (following Gutin's idea in [14]) would be to �nd a faster algorithm for thepath cover number of quasi-transitive digraphs. This as well as �nding a completelydi�erent method for solving the hamiltonian cycle problem in quasi-transitive digraphsseems to be challenging open problems.For another paper which makes good use of the nice recursive structure of quasi-transitive digraphs we refer the reader to [6] in which the problem of �nding a heaviestcycle (with respect to weights on the vertices) was solved for quasi-transitive digraphs.Below we point out that the proofs of our theorems imply a polynomial time al-gorithm for a much larger class of digraphs than just quasi-transitive digraphs. Forevery natural number t, let  t be the class of all digraphs for which an optimal pathcover can be found in polynomial time O(nt). For every natural number t, let �t bethe class of all digraphs of the form D = S[H1;H2; : : : ;Hs], s = jSj � 2, where S is astrong semicomplete digraph and Hi 2  t, i = 1; 2; : : : ; s. By Theorem 3.6 the class �4contains all quasi-transitive digraphs.Using the approach used in this paper it is not di�cult to prove the followingextension of Theorem 3.5.Theorem 6.1 Let t be a natural number and let D be a strong digraph from the class�t with decomposition D = S[W1;W2; : : : ;Ws], where s = jSj, Wi 2  t, i = 1; 2; : : : ; sand S is a strong semicomplete digraph. Let pc(Wi) be the path cover number of thedigraph Wi, i = 1; 2; : : : ; s. Let D0 = S[H1;H2; : : : ;Hs] be the extended semicompletedigraph obtained by deleting all arcs inside each Wi (that is jHij = jWij). Then D is9



hamiltonian if and only if D0 has a cycle subgraph which covers at least pc(Wi) verticesof Hi, i = 1; 2; : : : s.Gutin's approach to solving the hamiltonian cycle problem for quasi-transtive di-graphs easily extends to a proof of the following.Theorem 6.2 For every natural number t, the hamiltonian cycle problem is polyno-mially solvable for digraphs that belong to �t.LetD = S[H1;H2; : : : ;Hs] be a digraph in �t. To �nd the minimumstrong spanningsubgraph in D, let D0 be the extended semicomplete digraph obtained from D bydeleting all arcs within each Hi for i = 1; 2; : : : ; s. By Theorem 3.3, we can �nd alongest cycle C in D0. Let mi = jV (Hi) \ V (C)j for i = 1; 2; : : : ; s and letk = maxfpc(Hi)�mi : i = 1; 2; : : : ; sgUsing a proof analogous to that of Theorem 5.3, we can show that the minimum strongspanning subgraph of D contains n + k arcs when k � 1 and is a hamiltonian cyclewhen k � 0. Combining this with Theorems 6.1 and 6.2 we getTheorem 6.3 For every natural number t, the MSSS problem is polynomially solvablefor all digraphs in �t. �References[1] A.V. Aho, M. R. Garey and J. D. Ullman. The transitive reduction of a directedgraph, Siam J. Computing 1(2) (1972) 131-137.[2] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows, Prentice Hall, NewJersey (1993).[3] H. Alt, N. Blum, K. Melhorn and M. Paul, Computing of maximum cardinalitymatching in a bipartite graph in time O(n1:5qm= log n). Inf. Proc. Letters 37(1991) 237-240.[4] J. Bang-Jensen and G. Gutin, Generalizations of tournaments: A survey, J. GraphTheory, 28 (1998) 171-202.[5] J. Bang-Jensen and G. Gutin, On the complexity of hamiltonian path and cycleproblems in certain classes of digraphs, Discrete Applied Mathematics, to appear.[6] J. Bang-Jensen and G. Gutin, Vertex heaviest paths and cycles in quasi-transitivedigraphs. Discrete Math. 163 (1996) 217{223.[7] J. Bang-Jensen, G. Gutin, and A. Yeo, A polynomial algorithm for the Hamil-tonian cycle problem in semicomplete multipartite digraphs. J. Graph Theory 29(1998) 111-132. 10
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