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Abstract

We consider the problem (MSSS) of finding a strongly connected spanning
subgraph with the minimum number of arcs in a strongly connected digraph.
This problem is NP-hard for general digraphs since it generalizes the hamil-
tonian cycle problem. We show that the problem is polynomially solvable for
quasi-transitive digraphs. We describe the minimum number of arcs in such a
spanning subgraph of a quasi-transitive digraph in terms of the path covering
number. Our proofs are based on a number of results (some of which are new
and interesting in their own right) on the structure of cycles and paths in quasi-
transitive digraphs and in extended semicomplete digraphs. In particular, we
give a new characterization of the longest cycle in an extended semicomplete
digraph. Finally, we point out that our proofs imply that the MSSS problem is
solvable in polynomial time for all digraphs that can be obtained from strong
semicomplete digraphs on at least two vertices by replacing each vertex with a
digraph whose path covering number can be decided in polynomial time.

Keywords: minimum equivalent digraph, hamiltonian cycle, polynomial algo-
rithm, quasi-transitive digraph, extended semicomplete digraph, path factor, cy-
cle factor, path cover, longest cycle.

1 Introduction

We consider the following problem, which we denote by MSSS ( Minimum Spanning
Strong Subgraph): given a strongly connected digraph D, find a strongly connected
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spanning subgraph D’ of D such that D’ has as few arcs as possible. This problem,
which generalizes the hamiltonian cycle problem and hence is NP-hard, is of practical
interest and has been considered several times in the literature, see e.g. [1, 12, 15,
16, 17, 18]. The MSSS problem is an essential subproblem of the so-called minimum
equivalent digraph problem (in fact, these two problems can be reduced to each other in
polynomial time). Here one is seeking a spanning subgraph with the minimum number
of arcs in which the reachability relation is the same as in the original graph (i.e.
there is a path from « to y if and only if the original digraph has such a path). Since
the MSSS problem is NP-hard, it is natural to study the problem under certain extra
assumptions. In order to find classes of digraphs for which we can solve the MSSS
problem in polynomial time, we must consider classes of digraphs for which we can
solve the hamiltonian cycle problem in polynomial time. This follows from the fact
that the hamiltonian cycle problem can be solved if we can solve the MSSS problem.

In [17] the MSSS problem was considered for digraphs whose longest cycle has
length r for some r. It was shown that if » < 3, then the problem is polynomial and
that it is NP-hard already when r = 5.

In this paper we study the MSSS problem for quasi-transitive digraphs. These
digraphs have a nice, recursive structure [8], see Theorem 3.4. Using this structure,
Gutin [14] proved that the hamiltonian cycle problem is polynomially time solvable for
quasi-transitive digraphs. The approach used to solve the hamiltonian cycle problem in
[14] involves solving the problem of finding a minimum path cover of a quasi-transitive
digraph.

We give a lower bound for the number of arcs in any minimum spanning strong
subgraph of an arbitrary given strong quasi-transitive digraph. This bound can be
calculated in polynomial time using Gutin’s algorithm for finding a hamiltonian cycle
in a quasi-transitive digraph. We prove that this lower bound is also attainable for
quasi-transitive digraphs [14]. The proof of this uses a new characterization of a longest
cycle in an extended semicomplete digraph.

In the last section we point out the our methods imply that the MSSS problem can
be solved efficiently for a much larger superclass of semicomplete digraphs than just
quasi-transitive digraphs.

We remark that in [9], the MSSS problem was solved for various generalizations
of tournaments. In particular polynomial algorithms were given for the classes of
extended semicomplete digraphs and semicomplete bipartite digraphs. Furthermore, it
was conjectured in [9] that the MSSS problem is also polynomially solvable for general
semicomplete multipartite digraphs.

2 Terminology

We shall always use the number n to denote the number of vertices in the digraph
currently under consideration. Digraphs are finite, have no loops or multiple arcs. We
use V(D) and A(D) to denote the vertex set and the arc set of a digraph D. We
shall use |D| (instead of |V(D)|) to denote the number of vertices in D. The arc from
a vertex x to a vertex y will be denoted by zy. If a2y is an arc, then we say that x
dominates y and y is dominated by x. For disjoint subsets H, K C V(D) we use the



notation H=K to denote that there are no arcs from K to H.

By a cycle (path, respectively) we mean a directed (simple) cycle (path, respec-
tively). If R is a cycle or a path with two vertices u,v such that u can reach v on R,
then R[u,v] denotes the subpath of R from u to v. A cycle (path) of a digraph D is
hamiltonian if it contains all the vertices of D. A digraph is hamiltonian if it has a
hamiltonian cycle.

An (x,y)-path is a path from = to y. A digraph D is strongly connected (or just
strong) if there exists an (x, y)-path and a (y, «)-path for every choice of distinct vertices
z,y of D. Let U, W be disjoint subsets of V(D). A (U, W)-path is a path xy22... 2%
such that x; € U,z € W and no other z; belongs to U U W.

A digraph T is semicomplete if it has no pair of non-adjacent vertices. A tournament
is a semicomplete digraph with no cycles of length 2. It is well known and easy to
prove that every semicomplete digraph has a hamiltonian path and that every strong
semicomplete digraph has a hamiltonian cycle. A digraph D = (V, A) is quasi-transitive
if, for any distinct x,y,z € V, the arcs ay,yz € A implies that there exists an arc
between x and z, i.e., 2z € A or zzx € A.

Let D = (V,A) be a digraph. Let U C V and let W = (V’, A’) be a subgraph of
D. We say that W covers U if U C V.

A collection F of pairwise vertex disjoint paths and cycles of a digraph D is called
a k-path-cycle factor of D if F covers V(D) and has exactly k > 0 paths. F is called a
k-path factorif it contains only paths. We shall call a 0-path-cycle factor a cyele factor.
A cycle subgraph is a collection of vertex disjoint cycles. The path covering number of
a digraph D, denoted pc(D), is the smallest & for which D has a k-path factor.

Let D be a digraph on p vertices vy, ...,v, and let Ly, ..., L, be a disjoint collection
of digraphs. Then D[Ly,..., L,] is the new digraph obtained from D by replacing each
vertex v; of D by L; and adding an arc from every vertex of L; to every vertex of L;
if and only if v;v; is an arc of D (1 < i # 57 < p). Let D and R be digraphs. Then D
is an extension of R if there is a decomposition D = R[l,,,..., I, ], r = |V(R)|, such
that each [I,, induces an independent set in D. An extended semicomplete digraph is a
digraph which is an extension of a semicomplete digraph. Two vertices x and y in an
extended semicomplete digraph D = R[I,,, ..., I,,] are said to be similar if z,y € I,
for some j.

Note that in the rest of the paper, whenever we consider a digraph with a decom-
position D = R[Ly, ..., Lg||, we shall think of each L; both as a subset of V(D) and as
a subgraph of D. Furthermore we also think of R as a subgraph of D.

3 Results from other papers
In this section we list a number of results which we will use in the next sections.

Lemma 3.1 [19] Let D = (V, A) be a digraph which has no cycle factor. Then the
vertices of D can be partitioned into disjoint sets Y, 7. Ry, Ry such that the following
holds:

1. DY) has no ares.



2. Ri=Y UR; and Y=R,.
3. 17 < |Y].

Theorem 3.2 [13] A strong extended semicomplete digraph D is hamiltonian if and
only if it has a cycle factor. Furthermore, the length of a longest cycle in D is equal to
the maximum number of vertices in a cycle subgraph of D.

Theorem 3.3 [13] A longest cycle of an extended semicomplete digraph can be found
in time O(n%)

Theorem 3.4 [8] Let D be a quasi-transitive digraph on at least 2 vertices. Then the
following holds

1. If D is not strong, then D can be decomposed as D = T[Wy, Wa, ..., Wg|], where
T is a transitive digraph with |T'| > 2 and each W; is a strong quasi-transitive
digraph.

2. If D is strong, then D can be decomposed as D = S[Wy,Ws, ..., Wg||, where
S is semicomplete with |S| > 2 and each W; is either a single vertex or a non-
strong quasi-transitive digraph. Furthermore, tf s;s;s; s a cycle of S, then the
corresponding W;, W; both have just one vertex.

The following characterization of hamiltonian quasi-transitive digraphs is given im-
plicitly in [14].

Theorem 3.5 [1/] Let D be a strong quasi-transive digraph with decomposition D =
S[Wi, Wa, ..., W], where s = |S|. Let pe(W;) be the path covering number of the
quasi-transitive digraph W;, 1 = 1,2,...,s. Let Do = S[Hy, Hy, ..., H,] be the extended
semicomplete digraph obtained by deleting all arcs inside each W; (that is |H;| = |W;|).
Then D is hamiltonian if and only if Dy has a cycle subgraph which covers at least
pe(W;) vertices of Hy, i =1,2,...s.

Theorem 3.6 [14] The path covering number pe(D) of a quasi-transitive digraph D
can be calculated and a path cover with pc(D) paths constructed in time O(n?).

Theorem 3.7 [1/] There is an O(n*) algorithm which, given a quasi-transitive digraph
D, either returns a hamiltonian cycle in D or a proof that no such cycle exists in D.

Theorem 3.8 [8] A quasi-transitive digraph D = S[Wy, Wy, ..., Wg|] is hamiltonian
if and only if it has a cycle factor C such that no cycle of C is a cycle of some D(W;).



4 Longest cycles in extended semicomplete digraphs

In this section we prove a new characterization of a longest cycle in an extended
semicomplete digraph. Besides being a very useful tool in our proof of the main result
in the next section, this characterization is also of independent interest. In particular,
it implies that, up to switching similar vertices, there is only one longest cycle in an
extended semicomplete digraph.

Lemma 4.1 Let D be an extended semicomplete digraph with an independent set I.
If C is a cycle subgraph covering I, then D contains one cycle C which covers I.
Furthermore, given C and I, we can find one cycle covering I in time O(n).

Proof: By discarding some cycles if necessary, we may assume that every cycle in
C contains a vertex from [. If C contains at least two cycles, then let C, C” be distinct
cycles from C. Let v € V(C),y € V(C') be chosen such that x,y € I. Let 2, y* be
the successors of z,y on C,C’ respectively. Then 2y and yat are arcs of D, since
z and y are similar and hence C[a*, z]C'[yT,y]at is a cycle containing precisely the
vertices of V(C)UV(C"). Now the first claim follows easily by induction on the number
of cycles in C. The complexity claim follows from the fact that we can merge the two
cycles C,C" in constant time. o

Lemma 4.2 If D is an acyclic extended semicomplete digraph, then pc(D) = max{|I| :
I is an independent set in D}. Furthermore, starting from D, one can obtain a path
cover with pe(D) paths by removing the vertices of a longest path pe(D) times.

Proof: Let k£ denote the size of a largest independent set in D. Let D = S[H;, Ha, . ..
be the (unique) decomposition of D such that Hy, Hs,..., H are independent sets.
Since S is semicomplete, it has a hamiltonian path P and since D is acyclic P is also a
longest path in D. Note that since D is acyclic, P contains precisely one vertex from
each H;. Now the claim follows by induction on k. o

The following lemma is a special case of a more general result for semicomplete
multipartite graphs [13]. Note that it also follows from Theorems 3.2 and 4.4

Lemma 4.3 Let D be a strong extended semicomplete digraph and let C' be a longest
cycle in D. Then D — C s acyelic.

The following characterization of a longest cycle in a strong extended semicomplete
digraph is a generalization of Theorem 3.2.

Theorem 4.4 Let D be a strong extended semicomplete digraph with decomposition
D = S[H,Hy,....,H], t = |S|. Let m;, e = 1,2,....t, denote the mazimum number
of vertices from H; which are contained in a cycle subgraph of D. Then every longest
cycle of D contains precisely m; vertices from each H;, 1 =1,2,...,t.

Proof: Let (' be a longest cycle and suppose without loss of generality that ¢
does not use m, vertices from H;. Let m/ be the number of vertices from H; which
are contalned in . First observe that C contains at least one vertex from each H;.



Indeed, if this is not the case, then choose i so that C' has no vertex from H;. Let x be
an arbitrary vertex of H;. If  has arcs to and from C in D, then it is easy to see that «
can be inserted between two vertices of (', contradicting the maximality of C'. Suppose
without loss of generality that V(C)=x. Since D is strong, there is an (x, V(C'))-path
rq1qz ... q in D. Let ¢ be the predecessor of ¢; on C. Then Clq, ¢ |xqiga. .. q; is a
cycle in D, contradicting the maximality of C'. It follows that 1 < m/] < m;.

By the definition of m; and Lemma 4.1, there is some cycle () which uses m;
vertices from Hj. Since all vertices in H; have the same adjacencies and m) < my,
we can choose () so that it contains all vertices from H; that are on C and at least
one extra vertex € Hy — V(C'). We will also choose () so that under the assumption
above, |[V(Q) N V(C)| is maximized.

We claim that for every i such that H; NV (Q) ¢ V(C') we have H;NV(C) C V(Q).
If this is not the case, then let u be a vertex of H; which is on ¢} but not on €' and v
a vertex of H; which is on C' but not on ). Since u and v are similar, we can replace
u by v and obtain a new cycle ()’ containing m; vertices of H; which has a larger
intersection with ', contradicting the choice of ) above.

Now consider the digraph D' = D(V(C)U V(Q)). It follows from the fact that '
has a vertex from each H; and that all vertices in H; are similar that the digraph D’ is
strong. We claim that D’ has a factor. If this is not the case then we can apply Lemma
3.1 to get a partition Y', 7' R}, R, satisfying the conditions of the lemma. It follows
from the structure of the arcs determined in Lemma 3.1 that every cycle through a
vertex in Y must use a vertex of Z’. Hence there can be no factor which covers all the
vertices in Y. Since Y’ is an independent set in the extended semicomplete digraph
D’ and hence in D, we have Y’ C H; for some 1.

For every ¢ such that H; N V(Q) ¢ V(C) we argued above that all vertices in
H; NV (D) are on ). Hence we cannot have Y’ C H; for any of these sets. On the
other hand, for every j such that H;NV(Q) C V(C), we have all vertices of H;NV(D")
on the cycle C'. This is a contradiction since (' contains a vertex from each H;.

Thus we have shown that the strong extended semicomplete subgraph D’ of D has
a cycle factor. By Theorem 3.2, D’ has a hamiltonian cycle C’. Now we obtain a
contradiction to the assumption (' was a longest cycle in D. o

5 Smallest spanning strong subgraphs of quasi-transitive
digraphs

For an arbitrary quasi-transitive digraph D and a natural number k, we define the
quasi-transitive digraph Hi(D) obtained from D as follows: Add two sets of k new
vertices @1, o, ..., Tk, Y1, Y2, - - -, Y& Add all possible arcs from V(D) to x; along with
all possible arcs from y; to V(D), i =1,2,..., k. Finally, add all arcs of the kind z,y;,
i,7=1,2,...,k. Note that Ho(D) = D.

Definition 5.1 Let D be a strong quasi-transitive digraph and let e(D) be the smallest
k >0 such that Hi(D) is hamiltonian.



Observe that if ¢(D) > 1, then €(D) is precisely the path cover number of D. Hence
we can calculate €( D) in time O(n*) using the algorithms of Theorems 3.6 and 3.7. We
show below that n + €(D) is a lower bound for the number of arcs in every spanning
strong subgraph of D.

Lemma 5.2 For cvery strongly connected quasi-transitive digraph D every spanning
strong subgraph of D has at least n + (D) ares.

Proof: Let D be a strong quasi-transitive digraph with decomposition D =
S[Wi, Wy, ..., W], s = |S]| > 2 (compare with Theorem 3.4). Suppose D has a span-
ning strong subgraph D’ with n + & arcs. We may assume (by deleting some arcs if
necessary) that no proper subgraph of D’ is spanning and strong. It is easy to prove by
induction on k that D’ can be decomposed into a cycle Py = C' and k arc-disjoint paths
or cycles P, Py, ..., P, with the following properties (where D; denotes the digraph
with vertices U;‘:o V(P;) and arcs U;‘:o A(F;) for i =0,1,...,1):

1. For each s = 1,...¢: If P; is a cycle, then it has precisely one vertex in common
with V(D;_1). Otherwise the end-vertices of P; are distinct vertices of V(D;_1)
and no other vertex of P; belongs to V(D;_1).

2. Uiy A(P) = A(D)).

It is easy to see that this decomposition can be started with Fy as any cycle in D'.
It follows that we may choose C' = P so that

V(C)g W, fori=1,2,...,s. (1)

Now consider D’ as a subgraph of Hi(D). By the minimality assumption on D',
each P; has length at least two. It follows that Hy(D) has a cycle factor consisting of
C' and k cycles of the form y,Pz;y;, 1 = 1,2,...,k, where P/ is the path one obtains
from P; by removing the vertices it has in common with V(D;_;) (defined above). By
(1) and Theorem 3.8, Hy(D) has a hamiltonian cycle and hence ¢(D) < k. o

Below we characterize the optimal solution to the MSSS problem for quasi-transitive
digraphs and show that the problem is polynomially solvable.

Theorem 5.3 The minimum spanning strong subgraph of a quasi-transitive digraph
has precisely n + (D) arcs. Furthermore, we can find such a subgraph in time O(n*).

Proof: Let D = S[Wy, Wy, ..., W], s = |S] > 2, be a strong quasi-transitive di-
graph. Using the algorithm of Theorem 3.7 we can check whether D is hamiltonian and
find a hamiltonian cycle if one exists. If D is hamiltonian, then any hamiltonian cycle
is the optimal spanning strong subgraph. Suppose below that D is not Hamiltonian.

Let Do = S[Hy, Hs, ..., Hy] be the extended semicomplete digraph one obtains by
deleting all arcs inside each W; (that is |H;| = |W;| and H; is obtained from W; by
deleting all arcs). By Theorem 3.5, Dy has no cycle subgraph which covers at least
pe(W;) vertices of each H;, i =1,2,...,s.

For each : = 1,2,..., s, let m; denote the maximum number of vertices which can
be covered in H; by any cycle subgraph of Dy. According to Theorem 4.4 every longest
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cycle C'in Dgy contains exactly m; vertices from H;, ¢t = 1,2,...,s. By Theorem 3.3 we
can find C' in time O(ng) Let
k= max{pe(W;) —m; :1=1,2,... s} (2)

Define the extended semicomplete subgraph D* of D as D* = S[Hy, H;,... H]],
where H; is an independent set containing m; = max{pe(W;),m;} vertices, 1 =
1,2,...,s. Since vertices inside an independent set are similar we may think of '
as a longest cycle in D* (i.e. ' contains precisely m; vertices from H*, i =1,2,...,3).
By Lemma 4.3 and Lemma 4.2, D* — C can be covered by k paths P, P5,..., Pr.
Since D* — (' is acyclic, we may assume (by Lemma 4.2) that P; starts at a vertex
x and ends at a vertex y such that = has in-degree zero and y has out degree zero in
D* — C. It follows that there is an arc cx from C' to x and an arc y¢’ from y to C' in
D* and hence we can glue Py onto C' by adding the arcs cx,yc. Remove P and its
vertices and consider the remaining paths. It follows by induction on k& that adding
Py, Py, ..., PF one by one, using two new arcs each time, we can obtain a spanning
strong subgraph D** of D* with |V*| + k arcs.

Now we obtain a spanning strong subgraph of the quasi-transitive digraph D as
follows: Since m* > pe(W;) for i =1,2,..., s, each W; contains a collection of ¢; = m}
paths P, P, ..., Py, such that these paths cover all vertices of W;. Such a collection
of paths can easily be constructed from a given collection of pe(W;) paths which cover
V(W;). Let a1, 249,..., 2, be the vertex set of H'. Replace x;; in D** by the path
P foreach 1 =1,2,...,s, 7 =1,2,...,t;. We obtain a spanning strong subgraph D’
of D. The number of arcs in D' is

S

AWDY) = (Wil =mi) + (V7] + k)

= (n—=[V*)+ (V" + k)
= n+k (3)

It remains to argue that D’ is smallest possible. By Lemma 5.2, it suffices to prove
that e(D) > k.

Suppose €(D) = r < k. By Definition 5.1, the quasi-transitive digraph H, (D) has
a hamiltonian cycle C. It follows from the definition of H,(D) that we can decompose
H.(D) as H.(D) = S'[Wy, Wy, ..., W, I,,1,], where I, is an independent set of r ver-
tices and S’ is obtained from S by adding two new vertices x,y such that zy is an arc
and x is dominated by all vertices of S and y dominates all vertices of S. Let C’ be
obtained by contracting each subpath of €' which lies entirely inside some W;. Now
delete all remaining arcs inside each W;. The resulting digraph 7' is extended semicom-
plete and has a decomposition T' = S'[1,,, Ia,, ..., la,, I+, I.], where each I,, denotes an
independent set on a; > 1 vertices. Since inside every W;, we only contracted subpaths
of C, it follows that a; > pe(W;) for i = 1,2,...,s. Furthermore, C’ is a hamiltonian
cyclein T

Remove the vertices x1,x9,..., 2., Y1,Y2, ..., y, from C’. As the only arcs leaving
each z; go to {y1,y2,...,y.}, this gives us a collection of r paths P;, P,,..., P, cover
all vertices in T = S[l,,, la,, ..., 1s.]. Since all vertices inside the same independent



set are similar, we can assume that Py, P,,..., P, are paths in Dy (Dy was defined in
the beginning of the proof). Let ¢ be chosen such that

pe(Ws) —m; = k. (4)

Since a; > pce(W;) and r < k it follows that some P; contains two vertices of H;.
Note that if P; = z125...%, and @ < b are indices so that z, and 2, are similar, then
Za41 - - - Zb—1%p%a41 18 a cycle and z,zp4q 1s an arc if b < p. Thus we can replace P;
by a cycle and a path P/ = P;[21, 24 Pj[2041, 2p). Clearly we can continue this way
(replacing paths in the current collection by a cycle an a path) until every path in the
current collection contains at most one vertex from H;. This shows that Dy has a cycle
subgraph with covers at least a; —r > pe(W;) —r > pc(W;) — k = m; vertices form H;.
However this contradicts the definition of m;. This contradiction shows that ¢(D) > k
and the optimality of D’ follows from Lemma 5.2.

The proof above can easily be turned into an algorithm which finds a minimum
spanning strong subgraph of a given quasi-transitive digraph D. The complexity of the
algorithm is dominated by the time it takes to find an optimal path cover in each W;.
By Theorem 3.6 this can be done in O(n*) time. o

6 Remarks and open problems

In order to speed up the algorithm implied by the proof of Theorem 5.3, one would need
to find a faster algorithm for finding a hamiltonian cycle in a quasi-transitive digraph.
One approach (following Gutin’s idea in [14]) would be to find a faster algorithm for the
path cover number of quasi-transitive digraphs. This as well as finding a completely
different method for solving the hamiltonian cycle problem in quasi-transitive digraphs
seems to be challenging open problems.

For another paper which makes good use of the nice recursive structure of quasi-
transitive digraphs we refer the reader to [6] in which the problem of finding a heaviest
cycle (with respect to weights on the vertices) was solved for quasi-transitive digraphs.

Below we point out that the proofs of our theorems imply a polynomial time al-
gorithm for a much larger class of digraphs than just quasi-transitive digraphs. For
every natural number ¢, let ¢; be the class of all digraphs for which an optimal path
cover can be found in polynomial time O(n'). For every natural number ¢, let ¢; be
the class of all digraphs of the form D = S[Hy, H,, ..., H,], s = |S| > 2, where S is a
strong semicomplete digraph and H; € ¢y, 1 =1,2,...,s. By Theorem 3.6 the class ¢4
contains all quasi-transitive digraphs.

Using the approach used in this paper it is not difficult to prove the following
extension of Theorem 3.5.

Theorem 6.1 Let t be a natural number and let D be a strong digraph from the class
¢¢ with decomposition D = S[Wy, W, ..., W], where s = |S|, W; € ¢, 1 =1,2,...,s
and S is a strong semicomplete digraph. Let pe(W;) be the path cover number of the
digraph Wi, 1 = 1,2,...,s. Let Do = S[Hy, Hs, ..., H,] be the extended semicomplete
digraph obtained by deleting all arcs inside each W; (that is |H;| = |W;|). Then D is



hamiltonian if and only if Do has a cycle subgraph which covers at least pe(W;) vertices
of H;, 1=1,2,...s.

Gutin’s approach to solving the hamiltonian cycle problem for quasi-transtive di-
graphs easily extends to a proof of the following.

Theorem 6.2 For every natural number t, the hamiltonian cycle problem is polyno-
mially solvable for digraphs that belong to ¢.

Let D = S[Hy, Hs, ..., Hs] be adigraph in ¢;. To find the minimum strong spanning
subgraph in D, let D’ be the extended semicomplete digraph obtained from D by
deleting all arcs within each H; for « = 1,2,...,s. By Theorem 3.3, we can find a
longest cycle C'in D'. Let m; = |V(H;)NV(C)| for e =1,2,...,s and let

k= max{pc(H;) —m;: i=1,2,...,s}

Using a proof analogous to that of Theorem 5.3, we can show that the minimum strong
spanning subgraph of D contains n + k£ arcs when & > 1 and is a hamiltonian cycle
when k& < 0. Combining this with Theorems 6.1 and 6.2 we get

Theorem 6.3 For every natural number t, the MSSS problem is polynomially solvable
for all digraphs in ¢;. o
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