
CardSpace-OpenID Integration for
CardSpace Users

Haitham S. Al-Sinani and Chris J. Mitchell

Technical Report
RHUL–MA–2011–12

24 May 2011

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28895928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

Whilst the growing number of identity management systems have
the potential to reduce the threat of identity attacks, major deploy-
ment problems remain because of the lack of interoperability between
such systems. In this paper we propose a novel, simple scheme to pro-
vide interoperability between two of the most widely discussed identity
management systems, namely CardSpace and OpenID. In this scheme,
CardSpace users are able to obtain an assertion token from an OpenID-
enabled identity provider, the contents of which can be processed by
a CardSpace-enabled relying party. The scheme, based on a browser
extension, is transparent to OpenID providers and to the CardSpace
identity selector, and only requires minor changes to the operation of
a CardSpace-enabled relying party. We specify its operation and also
describe an implementation of a proof-of-concept prototype. Addition-
ally, security and operational analyses are provided.

Keywords: CardSpace, OpenID, Interoperation, Browser Extension

1 Introduction

In an attempt to simplify management of identities and mitigate identity-
oriented attacks, a number of identity management systems (e.g. CardSpace,
OpenID, Liberty, etc.) have been proposed [3]. An identity provider (IdP) in
such a system supplies a user agent (UA) with an authentication token that
can be consumed by a particular relying party (RP). Whilst one RP might
solely support CardSpace, another might only support OpenID. Therefore,
to make these systems available to the largest possible group of users, effec-
tive interoperability between such systems is needed. In this paper we in-
vestigate a case involving a CardSpace-enabled RP, an OpenID-enabled IdP
(also referred to as an OpenID provider (OP)), and a UA that is CardSpace-
enabled. The goal is to develop a client-based approach to integration that
is as transparent as possible to IdPs, RPs and identity selectors.

We consider CardSpace-OpenID interoperation because of OpenID’s wide
adoption by technology-leading organisations (see section 2.2.1). Comple-
menting this, the wide use of Windows, recent versions of which incorporate
CardSpace, means that enabling interoperation between the two systems is
likely to be of significance for large numbers of identity management users
and service providers. CardSpace-OpenID interoperation is also attractive
since both schemes support the exchange of user attributes.

The remainder of the paper is organised as follows. Section 2 gives an
overview of CardSpace and OpenID, and section 3 presents the integration

1



scheme. In section 4 we provide an operational analysis and, in section 5, we
describe a prototype implementation. Section 6 reviews related work and,
finally, section 7 concludes the paper.

2 CardSpace and OpenID

2.1 CardSpace

2.1.1 Introduction

CardSpace provides a secure and consistent way for users to control and
manage personal data, to review personal data before sending it to a web-
site, and to verify the identity of visited websites. It also enables websites
to obtain data from users, e.g. to support user authentication and authori-
sation.

Digital identities are represented to users as Information Cards (or In-
foCards). There are two types of InfoCards: personal (self-issued) cards
and managed cards, issued by remote IdPs. Personal cards are created by
users themselves, and the claims listed in such an InfoCard are asserted by
the self-issued identity provider (SIIP) that co-exists with the CardSpace
identity selector on the user machine. InfoCards do not contain sensitive
information, but instead carry metadata indicating the types of personal
data associated with this identity, and from where assertions regarding this
data can be obtained. The data referred to by personal cards is stored on
the user machine, whereas the data referred to by a managed card is held
by the IdP that issued it [2, 4, 11].

By default, CardSpace is supported by Internet Explorer (IE) from ver-
sion 7 onwards. Extensions to other browsers, such as Firefox1 and Safari2,
also exist. An updated version, CardSpace 2.0 Beta 2, was released, al-
though Microsoft announced in early 2011 that it will not ship; instead
Microsoft has released a technology preview of U-Prove3. In this paper we
refer throughout to the CardSpace version that is shipped by default as part
of Windows Vista and Windows 7, that is available as a free download for XP
and Server 2003, and which has been approved as an OASIS standard [10].

1https://addons.mozilla.org/en-US/firefox/addon/openinfocard-identity-selector/
2http://www.hccp.org/safari-plug-in.html
3http://blogs.msdn.com/b/card/archive/2011/02/15/

beyond-windows-cardspace.aspx

2



2.1.2 Personal Cards

The scheme proposed here uses CardSpace personal cards to make informa-
tion provided by OPs available to CardSpace RPs via the selector.

The selector allows a user to create a personal card and populate its
fields with self-asserted claims. CardSpace restricts the contents of personal
cards to non-sensitive data in the form of 14 editable claim types, namely
First Name, Last Name, Email Address, Street, City, State, Postal Code,
Country/Region, Home Phone, Other Phone, Mobile Phone, Date of Birth,
Gender and Web Page. Data inserted in personal cards is stored in en-
crypted form on the user machine. At the time of creation, a card ID and a
card master key are created and stored by the selector.

Using Personal Cards When using personal cards, CardSpace adopts
the following protocol. We describe the protocol for the case where the RP
does not employ a security token service (STS), a service responsible for
token management [9].

1. UA → RP. HTTP/S request: GET (login page).

2. RP→ UA. HTTP/S response. A login page is returned containing the
CardSpace-enabling tags in which the RP security policy is embedded.

3. User→ UA. The RP page offers the option to use CardSpace; selecting
this option activates the selector, which is passed the RP policy. If
this is the first time that this RP has been contacted, the selector will
display the identity of the RP and give the user the option to either
proceed or abort the protocol.

4. Selector → InfoCards. The selector, after evaluating the RP policy,
highlights InfoCards matching the policy and greys out the rest. In-
foCards previously used for this RP are displayed in the upper half of
the selector screen.

5. User → selector. The user chooses a personal card. (Alternatively,
the user could create and choose a new personal card). The user
can preview the card (with its associated claims) to ensure that they
are willing to release the claim values. Of the claims specified in an
InfoCard, only those requested in the RP policy will be passed to the
requesting RP.

3



6. Selector 
 SIIP. The selector creates and sends a SAML-based Re-
quest Security Token (RST) to the SIIP, which responds with a SAML-
based Request Security Token Response (RSTR).

7. UA → RP. The RSTR is passed to the UA, which forwards it to the
RP.

8. RP→ user. The RP validates the token, and, if satisfied, grants access.

Private Personal Identifiers (PPIDs) The PPID is an identifier link-
ing a specific InfoCard to a particular RP [4]. When a user first uses a
personal card at a particular RP, CardSpace generates a card-site-specific
PPID by combining the card ID with data taken from the RP certificate,
and a card-site-specific signature key pair by combining the card master key
with data taken from the RP certificate. The RP domain/IP address is used
if no RP certificate is available.

Since the PPID and key pair are RP-specific, the PPID does not function
as a global user identifier, helping to enhance user privacy and reduce the
impact of PPID compromise. The selector displays a shortened version of the
PPID to protect against social engineering attacks and improve readability.

When a user first registers with an RP, the RP retrieves the PPID and
the public key from the received SAML security token, and stores them.
If a personal InfoCard is re-used at a site, the supplied security token will
contain the same PPID and public key as used previously, and will be signed
using the corresponding private key. The RP compares the received PPID
and public key with its stored values, and verifies the digital signature.

The PPID could be used on its own as a shared secret to authenticate
a user to an RP. However, it is recommended that the associated (public)
signature verification key, as held by the RP, should also always be used
to verify the signed security token to provide a more robust authentication
method [4].

2.2 OpenID

2.2.1 Introduction

OpenID is an open and decentralised user authentication scheme supporting
remote single sign-on to multiple websites using a single digital identity.
As of December 2009, OpenID has been widely adopted, with more than
one billion OpenIDs on the Internet and approximately nine million sites

4



enabling OpenID consumer support. OPs include Google, Facebook, and
Microsoft.

OpenID 2.0 (and some OpenID 1.1 implementations) use(s) two types
of user identifier: URLs and XRIs (Extensible Resource Identifiers). A user
could adopt a self-owned URL, e.g. a home page, or register a (new) URL
at an OP.

2.2.2 Operational Protocol

Two ‘major’ OpenID versions have been released: OpenID 1.1 [14], and
OpenID 2.0 [13]; fortunately v2.0 is backward compatible with v1.1. We
next describe the OpenID protocol, covering the main differences between
the two ‘major’ versions.

Before the protocol run, a user will typically have previously registered
an OpenID identifier with an OP.

1. UA → RP. HTTP/S request: GET (login page).

2. RP → UA. HTTP/S response. A login page is returned containing
an OpenID login form.

3. User → UA. The user enters their OpenID identifier into the OpenID
form, and submits it.

4. RP: OP discovery. The RP uses the user-supplied OpenID identifier
to discover the user’s OP, as follows.

• HTML-based discovery (OpenID 1.1/2.0). The RP re-
quests an HTML document identified by the user’s OpenID URL;
such a document contains the information necessary to discover
the required OP.

• XRDS-based discovery (OpenID 2.0). The RP requests an
XRDS document containing the information necessary to discover
the required OP. If the user’s OpenID identifier is an:

– XRI, the RP will retrieve an XRDS document identified by
the user-supplied XRI; and

– URL, the RP will use the Yadis protocol [12] to retrieve an
XRDS document; if this fails, the RP will revert to HTML-
based discovery.

5. RP 
 OP (optional). The RP and OP agree a shared secret key to be
used for a specified period of time by the OP and RP to MAC-protect

5



and verify subsequent protocol messages. Note that this request-
response process, known as the ‘association’ mode, is transparent to
the user, and requires the two parties to be able to store the secret.

6. RP-OP interaction. The RP and OP can communicate in either
‘checkid immediate’ mode, involving direct RP-OP communications
without user interaction, or ‘checkid setup’ mode, where the user is
interactively involved in RP-OP communications. The ‘checkid setup’
mode is more commonly used; indeed if ‘checkid immediate’ mode
fails, the scheme typically reverts to ‘checkid setup’ mode. If ‘check-
id immediate’ mode is being used, the RP directly sends the OP an
OpenID authentication request, and the OP directly replies with an
OpenID authentication response; step 9 then takes place. However,
in ‘checkid setup’ mode, the RP redirects the user to the OP with an
OpenID authentication request4, and step 7 follows.

7. OP 
 user. If necessary, the OP authenticates5 the user. If successful,
the OP constructs an OpenID assertion token, including user creden-
tials/attributes, a freshly-generated nonce6, a current time-stamp, and
a MAC computed on the token. If a shared key was agreed in step
5, the OP uses it to generate the MAC; otherwise the OP employs an
internally-generated MAC key. The OP requests permission to send
the assertion token to the requesting RP.

8. OP → UA → RP. The OP redirects the user back to the RP with
a positive or negative OpenID authentication response, depending on
whether or not the user granted permission in step 7.

9. RP → user. The RP validates the MAC-protected OpenID authenti-
cation response, and, if satisfied, grants access. The validation process
includes verifying that the nonce has not been seen before, the time-
stamp is sufficiently current, and the MAC is valid. The RP adds the
received nonce to a list for use in future verifications. The RP uses the
time-stamp to discard responses that are are ‘too old’, thus limiting
the period of time for which received nonces must be kept. If a shared
secret was previously agreed (see step 5), the RP uses its copy to verify

4OpenID requests and responses are typically sent embedded in URLs (alternatively
they could be sent in HTML forms).

5Note that the authentication method used is not constrained by OpenID.
6Although mandatory in OpenID 2.0 (to prevent replay attacks), use of nonces is not

mandatory in OpenID 1.1.

6



the MAC. If a secret was not agreed, the RP must make an extra re-
quest to the OP to verify the MAC, typically via a TLS/SSL channel.
This request-response process is known as the ‘check authentication’
mode, and is adopted in the integration scheme.

Note that the use of SSL/TLS on the OP-client and RP-client channels
is strongly recommended. For additional security, the RP can add a freshly-
generated nonce to its authentication request, which the OP must include
in the authentication response.

2.2.3 Attribute Exchange

OpenID supports a range of methods for attribute exchange, including the
Simple Registration OpenID Extension (SREG) [8], which allows the ex-
change of attributes of nine specified types (namely nickname, email, full-
name, dob, gender, postcode, country, language), and Attribute Exchange
(AX) [6], which supports the transfer of arbitrary data. Both SREG and
AX are supported by the scheme described below.

3 The Integration Scheme

We now describe the novel scheme. The parties involved are a CardSpace-
enabled RP, a CardSpace-enabled UA (e.g. a suitable web browser), an OP,
and a browser extension implementing the protocol described below.

3.1 Requirements

The scheme has the following operational requirements.

• The user must have an existing relationship with both a CardSpace RP
and an OP (thus the OP will have a means of authenticating the user).
The RP must trust the OP for the purposes of user authentication.

• Prior to, or during, use of the integration protocol, the user must create
a CardSpace personal card, referred to here as an IDcard. This IDcard
must contain the following data items in specific fields (the choice
of which is implementation-specific): the user’s OpenID identifier; a
predefined sequence of characters (e.g. ‘OpenID’) used to trigger the
browser extension (see section 4.3) and indicate which OpenID version
to use; and the URL of the OP.

7



• The CardSpace-enabled RP must not employ an STS. Instead, the
RP must express its security policy using HTML/XHTML, and inter-
actions between the selector and the RP must be based on HTTP/S
via a web browser (a simpler and probably more common scenario for
selector-RP interactions). This is because the scheme uses a browser
extension, and is thus incapable of managing the necessary communi-
cations with an STS.

• The CardSpace-enabled RP must be prepared to accept an unsigned
‘CardSpace-like’ SAML token which includes both OP-asserted at-
tributes and the digitally-signed SIIP-issued RSTR containing the
card-RP-specific PPID.

3.2 Protocol Operation

The protocol operates as follows (a summary of the protocol is shown in
figure 1). Steps 1, 2, and 4–7 are the same as steps 1, 2, and 3–6, respectively,
of the personal card protocol given in section 2.1.2.

3. Browser extension→ UA. The extension performs the following steps.

(a) It scans the login page to detect whether the RP website supports
CardSpace; if so, it proceeds, otherwise it terminates.

(b) It examines the RP policy to check whether the use of personal
cards is acceptable. If so, it proceeds; otherwise it terminates,
giving CardSpace the opportunity to operate normally.

(c) It keeps a local copy of any RP-requested claims.

(d) It modifies the RP policy to include the types of claim employed
in the IDcard. For example, if the user’s OpenID identifier is
stored in the web page field of the IDcard, then it must ensure
that the RP security policy includes the web page claim. Note
that adding the claim types to the RP policy ensures that the
token supplied by the SIIP contains the values of these claims,
which can then be processed by the browser extension; otherwise
these values would not be available to the browser extension.

(e) It determines the communication protocol (HTTP or HTTPS) in
use.

8. Selector→ browser extension. Unlike in the ‘standard’ case, the RSTR
does not reach the RP; instead the extension intercepts it and tem-

8



porarily stores it. If the RP uses HTTP7, the extension uses the con-
tents of the RSTR to construct an OpenID authentication request8,
which it forwards to the appropriate OP, having discovered its address
from the RSTR.

If the RP uses HTTPS, the browser extension:

(a) asks the user to enter his/her OpenID identifier and thus uses the
user-supplied OpenID to perform OP discovery (see section 2.2.2);
and

(b) constructs an OpenID authentication request (precisely as in the
HTTP case), which it forwards to the discovered OP.

Note that in both cases (i.e. HTTP and HTTPS) the format of the
OP authentication request will depend on the version of OpenID be-
ing used (see below). Note also that in both cases the more commonly
used OpenID ‘checkid setup’ mode is adopted; the ‘checkid immediate’
mode is not supported as it requires direct (background) RP-IdP com-
munication without any user interaction.

9. OP 
 user. If necessary, the OP authenticates the user. If successful,
the OP requests permission to send the OpenID assertion token (see
step 7 of the OpenID protocol given in section 2.2.2) to the designated
RP return-page9.

10. OP → UA → RP. The OP redirects the UA back to the RP return-
page with a positive or negative OpenID authentication response10,
depending on whether or not the user granted permission in step 9.

11. Browser extension → UA. The browser extension verifies the MAC-
protected OpenID authentication response by interacting with the OP

7Note that the protocol operates slightly differently depending on whether the RP uses
HTTP or HTTPS. This is because, if HTTPS is used, then the selector will encrypt
the RSTR message using the site’s public key, and the browser extension does not have
access to the corresponding private key. Hence, it will not know whether to trigger the
integration protocol, and will be unable to obtain the user’s OpenID identifier; such issues
do not occur if HTTP is used since the selector will not encrypt the RSTR.

8This request will indicate the RP-requested user attributes which are to be asserted
by the OP. The browser extension will know what they are since they were stored by it
in step 3c.

9Note that the designated return-page, chosen by the browser extension in step 8, is
the address to which the OP authentication response must be returned in step 10.

10The RP will receive the OP-issued token unchanged (embedded in the URL); however
it is assumed that the RP will ignore it because of its inability to process the token.

9



using the ‘check authentication’ mode via a TLS/SSL channel (see
section 2.2.2). If the verification succeeds, it constructs a CardSpace-
compatible SAML token (see below), and forwards it to the RP. If
the verification fails, the browser extension informs the user and ter-
minates.

12. RP → user. The RP verifies the SAML token (including verifying the
RSTR signature, PPID, nonce, time-stamps, etc.), and, if satisfied,
grants access.

The detailed operation of steps 8 and 11 is dependent on the OpenID
version in use. For example, the authentication request name-space field
(openid.ns) must be set to ‘http://specs.openid.net/auth/2.0’ for OpenID
2.0, and one of absent, ‘http://openid.net/signon/1.1’ or ‘http://openid.
net/signon/1.0’ for OpenID 1.1. Similarly, the field ‘openid.ns.sreg=
http://openid.net/extensions/sreg/1.1’ [8] is added to the authentica-
tion request when requesting identity attributes using the SREG extension
in OpenID 2.0.

Observe that the (unsigned) SAML security token created by the browser
extension in step 11 will include the user attributes as asserted by the OP and
the digitally-signed SIIP-issued RSTR (which contains the PPID), allowing
the RP to verify the SIIP signature (see also sections 4.6 and 4.7).

4 Discussion and Analysis

4.1 Defeating Phishing

The scheme mitigates the risk of phishing. This is because the redirect to
the OP11 is initiated by the browser extension and not by the RP, i.e. the RP
cannot redirect the user to an OP of its choosing. By contrast, in OpenID
a malicious RP could redirect a user to a fake OP, which might capture the
user credentials.

4.2 Client-side Integration

IdPs/RPs may not accept the burden of supporting two identity manage-
ment systems simultaneously, unless there is a significant financial incentive.
Currently, major Internet players do not provide any means of interoperation
between identity management systems. As a result, a client-side technique

11In HTTP mode the OP address is retrieved from the IDcard as entered by the user.

10



Figure 1: Protocol steps

for supporting interoperation could be practically useful. Supporting inter-
operation at the client also means that the performance of the server is not
affected, since the integration overhead is handled by the client.

4.3 Triggering the Browser Extension

The scheme specified in section 3.1 (like the prototype implementation) uses
a trigger sequence in a specific field of an IDcard. This trigger sequence is
also employed to indicate to the browser extension which OpenID version to
run. However, other approaches could be used, e.g. the browser extension
could start whenever CardSpace is triggered. In such a case, when a user
submits an IDcard, the browser extension could offer the user two options
(based on HTML forms or JavaScript pop-up boxes): to continue to use
CardSpace as usual, or to activate the integration scheme.

This approach gives a greater degree of user control, and hence imple-

11



ments Microsoft’s first identity law [4, 11]. In addition, giving user control
over whether the browser extension runs or not would enable ‘normal’ use
of CardSpace. However, it is potentially a little inconvenient, since it would
require users to always choose whether or not to use the integration soft-
ware. Nevertheless, this effect could be mitigated if the user’s choice could
be stored.

4.4 IDcard Contents

A typical OpenID authentication request to an OP includes the user-supplied
OpenID identifier, an RP return-page to which the OP must issue the au-
thentication response, and a list of requested attributes. The RP must, of
course, also know the OP address. In the protocol described in section 3.2
the user’s OpenID identifier and the OP URL are specified in the IDcard12.
The following alternative approaches avoid the need to store this data in the
IDcard.

• The browser extension could prompt the user to enter the OpenID
identifier that they wish to use, after they have submitted an IDcard,
e.g. as part of step 8 in section 3.2. This approach would be incon-
venient, since the user would have to enter the identifier every time,
unless it could be remembered.

• The browser extension could keep an internal list of the widely used
OP service URLs, enabling it to deduce which OP it needs to contact
from the user’s OpenID identifier. This would potentially maximise
user transparency, but could give rise to storage issues and operational
problems, e.g. in the case where an OP is not in the list. The latter
issue could be addressed by prompting the user to enter the URL of
an unknown OP, which the browser extension could then add to its
internal list for future use.

• The browser extension could discover the OP from the user-supplied
OpenID identifier, e.g. by fetching an HTML document from the URL
of this identifier. This approach is vulnerable to phishing attacks and
requires extra round trips.

4.5 Direct Communication

The prototype browser extension described in section 5 is currently not capa-
ble of making a direct (background) HTTP/S request to the OP (i.e. not via

12The RP return-page is transparently computed by the browser extension itself.

12



a browser). This could be performed using AJAX; indeed the OpenID spec-
ifications state that ‘. . . the authentication scheme plays nicely with AJAX-
style setups’ [13, 14]. However, AJAX is restricted by the ‘same origin
policy’ for security reasons [15].

To address this problem, the browser extension performs an HTTP/S
redirect whenever direct communication is needed, e.g. when the OpenID
‘check authentication’ mode is activated. It then reads the data returned
by the OP13, redirects the user back to the previous page, and continues
with the protocol. As a result, users will experience a relatively speedy
(duplex) redirect, but will not be actively involved. Indeed, this is precisely
what happens in the prototype implementation of the verification process
for the OP-issued token in step 11 of section 3.2, and so such a redirect
seems unlikely to be a major usability problem.

4.6 OP User Authentication

The SAML token created by the browser extension in step 11 of section 3.2
could be extended to contain an additional field to indicate that the user has
been authenticated by a specified OP (as well as when and how). Of course,
the RP would need to be modified to be able to process such an extra field,
although this is likely to be relatively straightforward.

This authentication statement could also include the original token gen-
erated by the OP. Since this is a MAC-protected token, verifying it would
give the RP added guarantees about the user authenticity. If this is re-
quired, and since the OP will only support a single validation of a security
token14, the browser extension must skip the verification process and send
the OpenID token unchanged15 to the CardSpace-enabled RP.

4.7 Security Considerations

The unsigned SAML token generated by the browser extension in step 11
of section 3.2 (referred to here as the ‘user token’) includes the PPID, the
user attributes as asserted by the OP, the signed SIIP-issued RSTR, and
(optionally) the MAC-protected OP-issued token. The RP compares the
SIIP-asserted PPID (and the public key) in the user token with its stored
values and verifies the digital signature (see section 2.1.2). The RP can

13URL query parameters or hidden form variables could be used to maintain state.
14To prevent replay attacks, OPs only issue a single valid verification for each request

with the same nonce value [13].
15The OpenID token should be sent in an authentication statement contained within

the SAML token, to allow RPs to choose whether or not to process it.

13



thus authenticate the user, link the user to his/her account, and consume
the OP-asserted attributes, e.g. for authorisation purposes. In addition, an
RP can optionally also verify the MAC in the OP-issued token, which is
embedded unchanged in the user token. However, for the RP to be able to
validate the MAC, the browser extension must skip the verification process
(see section 4.6) and the RP must initiate on-line interaction with the OP
via the ‘check authentication’ mode.

A malicious entity cannot fabricate a user token to masquerade as a
legitimate party since it will not have access to three key token components:
the PPID; the SIIP-signed RSTR, which is only issued if the appropriate
InfoCard is selected on the correct platform; and the MAC-protected OP-
issued token, which is only issued if the genuine user has been authenticated
by the OP. In addition, nonces and time-stamps are used to prevent replay
attacks, and RPs can also employ IP address validation. As mentioned
in section 2.2.1, the use of SSL/TLS is strongly recommended when using
OpenID.

Note that, in protocol step 4, the selector identifies the RP to the user
and indicates whether or not they have visited that particular RP before; if
the user is visiting this RP for the first time, CardSpace requests the user’s
permission to proceed16 (see section 2.1.2). This helps to support mutual
authentication since the user and the RP are both identified to each other.

In addition to user authentication, the scheme also strengthens OpenID
against phishing (see section 4.1). Finally note that the scheme allows the
user attributes to be stored at the OP; this has potential security advantages
over storing the attributes on the user machine, as is currently the case with
CardSpace SIIP-issued attributes.

4.8 Attribute Mapping

As stated in sections 2.1.2 and 2.2.3, CardSpace personal cards currently
support fourteen editable attributes, whereas the OpenID SREG extension
only supports nine attribute types. The prototype described in section 5
uses the mapping in Table 1 to convert between the attribute types.

The OpenID SREG extension also supports language and timezone at-
tributes, which have no corresponding attribute types in CardSpace personal
cards.

The protocol specified in section 3.2 could also be used to support trans-
fer of arbitrary data between OPs and CardSpace RPs using the AX exten-

16This offers a security advantage by comparison with ‘native’ OpenID, which does not
identify the RP to the user.

14



Table 1: CardSpace-OpenID attribute mapping
CardSpace personal cards OpenID SREG extension

givenname nickname

surname fullname

emailaddress email

dateofbirth dob

gender gender

postalcode postcode

country country

sion (see section 2.2.3); however, this has not yet been prototyped.

5 Prototype Realisation

We next give details of a prototype implementation of the scheme. The
description applies to both OpenID 1.1 and OpenID 2.0. The prototype
uses the OpenID ‘checkid setup’ mode, operating with the SREG extension.

The prototype is coded in JavaScript, chosen because its wide adop-
tion should simplify the task of porting the prototype to a range of other
browsers. It uses the Document Object Model (DOM) to inspect and manip-
ulate HTML pages and XML documents. The JavaScript code is executed
using a C#-driven browser helper object (BHO), a Dynamic-link library
(DLL) module designed as a plug-in for IE. Once installed, the BHO at-
taches itself to IE, thus gaining access to the current page’s DOM. The
prototype can readily be enabled or disabled using the add-on manager in
the IE’s Tools menu. Note that the integration plug-in does not require
any changes to default IE security settings, thus avoiding potential vulner-
abilities resulting from lowered browser security settings. Note also that
the prototype operate with both the CardSpace and the Higgins17 identity
selectors without any modification.

The prototype has been successfully tested with the ‘MyOpenID’ OP
(https://www.myopenid.com/) and with an experimental implementation
of a CardSpace-enabled RP.

17http://wiki.eclipse.org/GTK_Selector_1.1-Win

15



5.1 User Registration

Prior to use, the user must have accounts with a CardSpace RP and an
OP. The user must also create an IDcard for the relevant OP. This involves
invoking the selector and inserting the user’s OpenID identifier at the target
OP in the web page field, the OP URL in the street field, and the trigger
word OpenID1.1 or OpenID2.0 in the city field. For ease of identification,
the user can give the personal card a meaningful name, e.g. of the target
OP site. The user can also upload an image for the card, e.g. containing the
logo of the intended OP or simply of OpenID. When a user wishes to use a
particular OP, the user simply chooses the corresponding IDcard.

5.2 Prototype Operation

In this section we consider specific operational aspects of the prototype. We
refer throughout to the numbered protocol steps given in section 3.2.

In step 3 the plug-in uses the DOM to perform the following processes.

3.1 It scans the web page in the following way18.

(a) It searches through the HTML elements of the web page to detect
whether any HTML forms are present. If so, it searches each
form, scanning through each of its child elements for an HTML
object tag.

(b) If an object tag is found, it retrieves and examines its type. If it is
of type ‘application/x-informationCard’ (which indicates website
support for CardSpace), it continues; otherwise it aborts.

(c) It retrieves and stores in a cookie the name attribute of the
CardSpace object tag. This is important since the RP will use
this name to retrieve the token from the HTTP POST array.

(d) It searches through the param tags (child elements of the retrieved
CardSpace object tag) for the ‘issuer’ tag and examines its value;
if it is ‘http://schemas.xmlsoap.org/ws/2005/05/identity/
issuer/self’, indicating that the use of personal (self-issued)
cards is acceptable, it continues19; otherwise it terminates.

18The user guide [9] specifies two HTML extension formats that can be used to invoke
the selector from a web page, both of which involve placing the CardSpace object tag
inside an HTML form. This motivates the choice of the web page search method (see
also [2]).

19The plug-in also continues if the value of the ‘issuer’ tag is set to ‘any’, ‘*’ or if the
‘issuer’ tag is absent, since the use of personal cards is acceptable in these cases.

16



(e) It retrieves the ‘requiredClaims’ and ‘OptionalClaims’ tags from
the param tags, and retrieves and stores the mandatory and op-
tional claim types listed in these tags.

(f) If necessary, and after keeping track of the original policy settings,
it modifies the RP policy so that the city, street and web page
claim types are specified in the ‘requiredClaims’ tag.

3.2 It adds a JavaScript function to the head section of the HTML page
to intercept the XML-based security token (i.e. the RSTR message).

3.3 It obtains the action attribute of the CardSpace HTML form and
stores it in a cookie. This attribute specifies the URL address of
a web page at the CardSpace RP to which the security token must
be forwarded for processing. If the obtained attribute is not a fully
qualified domain name address, the JavaScript inherent properties, i.e.
document.location.protocol and/or document.location.host, are used to
help reconstruct the full URL address.

3.4 It changes the current action attribute of the CardSpace HTML form
to point to the newly created ‘interception’ function (see step 3.2
above).

In step 8 the plug-in uses the DOM to perform the following steps.

8.1 It intercepts the RSTR message sent by the selector using the added
function.

8.2 It parses and extracts certain RSTR contents. If the city field con-
tains the word OpenID1.1 or OpenID2.0, the plug-in proceeds; if not,
normal operation of CardSpace continues. It reads the web page field
to discover the user’s OpenID identifier, and obtains the OP URL
from the street field. In addition, all other fields, notably the SAML
assertion ID and the PPID, are parsed and stored in cookies.

8.3 It constructs an OpenID authentication request, compatible with the
OpenID version indicated by the trigger word in the city field. The
plug-in defaults to creating an OpenID 1.1-compatible authentication
request if no version is specified. This involves generating a nonce
and time-stamp, and also determining the required and optional at-
tributes to be sent to the OP. The plug-in retrieves all the CardSpace-
supported claims it stored earlier (see step 3.1 (e) above). It then maps
between them and the SREG-supported attributes, using Table 1. The

17



mapping is done using JavaScript regular expressions, specifically the
‘match’ method with its global (g) and case-insensitive (i) parameters.
The plug-in uses the OpenID ‘checkid setup’ mode, and skips the op-
tional initiation phase in which the OP-RP exchange a shared secret.
It also sets the return page (to which the OP sends the authentication
response) to equal the currently-visited RP page.

8.4 It redirects the user to the OP along with the OpenID authentication
request, using the JavaScript inherent property ‘window.location’.

In step 11 the plug-in performs the following steps.

11.1 It parses the OP-issued authentication response (embedded in the
URL).

11.2 It (transparently) validates the authentication response, including ver-
ifying that the return URL (openid.return to) is the same as the cur-
rent page, checking the nonce and time-stamp, and validating the OP
MAC value on the authentication assertion. The plug-in uses the
OpenID ‘check authentication’ mode so that the MAC verification is
performed by the OP via an TLS/SSL channel; it issues an HTTPS re-
quest to the OP with exact copies of all fields from the authentication
response (except for the ‘openid.mode’ field whose value the plug-in
changes from ‘id res’ to ‘check authentication’). The OP responds
with a boolean value of either ‘true’ or ‘false’. If all of the checks suc-
ceed, the plug-in continues to the next step; otherwise it terminates,
informing the user that the process can no longer continue.

11.3 It constructs a CardSpace-compatible SAML security token, inserting
the user attributes received from the OP into the token. It retrieves
other token-specific data (including the PPID and the token assertion
ID) that was originally contained in the SIIP-issued RSTR from the
cookies created earlier (see step 8.2). It also embeds the signed SIIP-
issued RSTR into the SAML token.

11.4 It creates and appends an ‘invisible’ HTML form, with the method
attribute set to ‘POST’, to the current page, thereby delivering the
SAML token to the RP.

11.5 It writes the entire SAML security token as a hidden variable into the
invisible HTML form, with the name attribute of this variable set to
the CardSpace object tag’s name (see step 3.1 (c)). Note that the
plug-in retrieves this name from the appropriate cookie.

18



11.6 It writes the end-point URL of the CardSpace-enabled RP into the
action attribute of the invisible form. Note that the plug-in retrieves
this name from the appropriate cookie (see step 3.3).

11.7 Finally, it auto-submits the HTML form (transparently to the user),
using the JavaScript inherent method ‘submit’.

5.3 Potential Issues

The integration plug-in must scan every HTML web page to see whether
it supports CardSpace, and this may affect system performance. However,
informal tests on the prototype suggest that this is not a serious issue. In
addition, the plug-in can be configured so that it only operates with certain
websites.

If the web browser is compromised, then an adversary could steal the user
token (see above), block the user-RP connection, and submit the token, thus
impersonating the user. Moreover, if the RP does not use https, then the
SIP-issued RSTR will not be encrypted. Assuming that the web browser is
not a secure environment, it may be possible for a malicious plug-in or other
malware to get access to sensitive information disclosed by the plaintext
RSTR and/or the user token. However, the same risks apply when manually
entering credentials (e.g. username-password) into the browser [7].

Finally note that some older browsers (or browsers with scripting dis-
abled) may not be able to run the integration plug-in, as it was built using
JavaScript. However, most modern browsers support JavaScript (or EC-
MAscript), and hence building the prototype in JavaScript is not a major
usability obstacle.

6 Related Work

A somewhat similar scheme [1] has previously been proposed to support
CardSpace-Liberty interoperation. However, unlike the scheme proposed
here, the CardSpace-Liberty integration scheme is not transparent to the
IdPs, does not support the exchange of identity attributes, and does not
support HTTPS-enabled websites.

Kim et al. [5] have proposed an OpenID authentication method using an
identity selector. This scheme is designed to reduce phishing and hacking
risks, and also simplify user authentication by automatically performing
the OpenID-based login process without the need to manually input the
OpenID URL. The scheme uses a specially modified identity selector to

19



enable OpenID authentication, unlike the scheme proposed here which uses
an unmodified selector.

Microsoft and OpenID have announced plans20 to enable a level of in-
teroperation. A stated aim of this effort is to reduce the risk of phishing in
OpenID by enabling an OpenID user to employ CardSpace when authenti-
cating to an OP. The scheme proposed here inherently provides a level of
protection against phishing since the redirect step to the OP is initiated by
the browser extension (see section 4.1), and also supports use of CardSpace
to authenticate to OPs.

7 Conclusions and Future Work

We have proposed a means of interoperation between two leading identity
management systems, namely CardSpace and OpenID. CardSpace users
are able to obtain an assertion token from an OpenID identity provider,
the contents of which can be processed by a CardSpace-enabled relying
party. The scheme is transparent to OpenID providers and identity se-
lectors, uses a browser extension, and requires only minor changes to a
CardSpace-enabled relying party. It uses the CardSpace identity selector
interface and CardSpace personal cards to enable interoperation between
OpenID providers and CardSpace relying parties.

The integration scheme takes advantage of the similarity between the
OpenID and the CardSpace frameworks, and this should help to reduce
the effort required for full system integration. Also, implementation of the
scheme does not require technical co-operation between Microsoft and the
OpenID Foundation.

Planned future work includes investigating the possibility of using the
CardSpace identity selector to enable access to identity providers of other
identity management systems, such as Shibboleth. We also plan to extend
the scheme to support CardSpace-enabled relying parties that employ secu-
rity token services.

Acknowledgements

The first author is sponsored by the Diwan of Royal Court, Sultanate of
Oman.

20http://www.guardian.co.uk/technology/blog/2007/feb/07/openidgetsab

20



References

[1] Haitham S. Al-Sinani, Waleed A. Alrodhan, and Chris J. Mitchell.
CardSpace-Liberty integration for CardSpace users. In Ken Klingen-
stein and Carl M. Ellison, editors, Proceedings of the 9th Symposium on
Identity and Trust on the Internet, (IDtrust’10), Gaithersburg, Mary-
land, USA, April 13–15, 2010, pages 12–25. ACM, New York, NY,
2010.

[2] Haitham S. Al-Sinani and Chris J. Mitchell. Using CardSpace as a
password manager. In Elisabeth de Leeuw, Simone Fischer-Hübner, and
Lothar Fritsch, editors, Proceedings of IFIP IDMAN 2010 — the second
IFIP Conference on Policies and Research in Identity Management,
November 18–19, 2010, Oslo, Norway. Volume 343 of IFIP Advances
in Information and Communication Technology. Springer, Boston, 18–
30, 2010.

[3] Andreas Berger. Identity Management Systems — Introducing Yourself
to the Internet. VDM Verlag, Saarbrücken, 2008.

[4] Vittorio Bertocci, Garrett Serack, and Caleb Baker. Understanding
Windows CardSpace: An Introduction to the Concepts and Challenges
of Digital Identities. Addison-Wesley, Reading, Massachusetts, 2008.

[5] Seung Hyun Kim et al. OpenID Authentication Method Using Identity
Selector. United States, Patent Application Publication, Pub. No. US
2009/0249078 A1, 2009.

[6] Dick Hardt, Johnny Bufu, and Josh Hoyt. OpenID Attribute Exchange
1.0 — Final. Sxip Identity and JanRain, 2007. http://openid.net/

specs/openid-attribute-exchange-1_0.html.

[7] Jonathan Hart, Konstantinos Markantonakis, and Keith Mayes. Web-
site credential storage and two-factor web authentication with a Java
SIM. In Pierangela Samarati, Michael Tunstall, Joachim Posegga, Kon-
stantinos Markantonakis, and Damien Sauveron, editors, Proceedings,
Information Security Theory and Practices. Security and Privacy of
Pervasive Systems and Smart Devices, 4th IFIP WG 11.2 International
Workshop, WISTP 2010, Passau, Germany, April 12–14, 2010, volume
6033 of Lecture Notes in Computer Science. Springer, Berlin, Heidel-
berg, 229–236, 2010.

21



[8] Josh Hoyt, Jonathan Daugherty, and David Recordon. OpenID Simple
Registration Extension 1.0. JanRain and VeriSign, 2006. http:

//openid.net/specs/openid-simple-registration-extension-1_

0.html.

[9] Michael B. Jones. A Guide to Using the Identity Selector Interoper-
ability Profile V1.5 within Web Applications and Browsers. Microsoft
Corporation, 2008.

[10] Michael B. Jones, Michael McIntosh, and (editors). Identity Metasystem
Interoperability Version 1.0 (IMI 1.0). OASIS Standard, 2009. http:

//docs.oasis-open.org/imi/identity/v1.0/identity.html.

[11] Marc Mercuri. Beginning Information Cards and CardSpace: From
Novice to Professional. Apress, New York, 2007.

[12] Joaquin Miller and (editor). Yadis Specification — Yadis 1.0 (HTML),
2006. http://yadis.org/wiki/Yadis_1.0_%28HTML%29.

[13] OpenID Community. OpenID Authentication 2.0 — Final, 2007. http:
//openid.net/specs/openid-authentication-2_0.html.

[14] David Recordon and Brad Fitzpatrick. OpenID Authentication
1.1, 2006. http://openid.net/specs/openid-authentication-1_1.
html.

[15] Michal Zalewski. Browser Security Handbook. Google, 2008. http:

//code.google.com/p/browsersec/wiki/Main.

22


