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Abstract 

 

Human genes OPTN and CCDC3, encoding respectively for optineurin and coiled-coil 

domain-containing protein 3, are part of the PDB6 locus, a genetic hotspot strongly associated 

with Paget's disease of bone (PDB), the second most prevalent metabolic bone disease after 

osteoporosis. OPTN and CCDC3 genes share a head-to-head configuration and partially 

overlapping sequences, located on opposite strands of this locus.  

We first defined the molecular structure of the two genes based on the in silico identified 

mRNAs, which included several alternatively spliced transcripts. The task was performed with 

the aid of bioinformatics tools and online databases, such as expressed sequence tags (ESTs), 

AceView gene browser and Splign software; as a result, we obtained a comprehensive map of 

OPTN and CCDC3, emphasizing the size and position of introns and exons of each transcript.  

Next, we assessed the activity of CCDC3 and OPTN promoter regions; due to their head-

to-head disposition, the two genes share a common regulatory sequence. A putative CCDC3 

alternative promoter, located downstream and exclusive for certain CCDC3 transcripts, was 

identified by analysing the gene structure obtained in silico. The activity of the promoter regions 

was validated by transient transfecting pGL3 reporter constructs, containing the promoter 

sequences under analysis, into HEK 293 cells, followed by luciferase assays.  

Trans-acting regulatory proteins, e.g. transcription factors (TFs), putatively involved in 

the regulation of the two genes, were identified in silico by analyzing the promoter sequences 

through bioinformatics software. The analysis revealed several putative TF binding sites, 

including for NF-κB, a TF known to play a role in the pathogenesis of PDB. Transient co-

transfection of HEK 293 cells with pGL3 reporter constructs and transcription factor NF-κB 

expression vectors, followed by luciferase assays, have been performed in order to confirm their 

role as trans-regulators of the target promoters, and to unveil the presence of a possible co-

regulation. 

 

This study was funded by FCT through the project UID/Multi/04326/2019 (CCMAR).  

 

Keywords: gene, expression, regulation, splicing, promoter, transcription factor, luciferase. 
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Abstract (in Portuguese language) 

 
Os genes humanos OPTN e CCDC3, que codificam respectivamente para optineurina e 

coiled-coil domain-containing protein 3, fazem parte do locus PDB6, um hotspot genético 

fortemente associado à doença óssea de Paget (PDB), a segunda doença óssea metabólica mais 

prevalente após a osteoporose. Os genes OPTN e CCDC3 compartilham uma configuração 

frente a frente e sequências parcialmente sobrepostas, localizadas em cadeias opostas desse 

locus. 

Primeiro, definimos a estrutura molecular dos dois genes com os mRNAs identificados 

in silico, que incluíam vários transcritos alternadamente unidos. A tarefa foi realizada com o 

auxílio de ferramentas de bioinformática e bancos de dados on-line, como tags de sequência 

expressa (ESTs), navegador de genes AceView e software Splign; como resultado, obtivemos 

um mapa abrangente de OPTN e CCDC3, enfatizando o tamanho e a posição dos íntrons e 

exons de cada transcrição. 

Em seguida, avaliamos a atividade das regiões promotoras de CCDC3 e OPTN; devido 

à sua disposição frente a frente, os dois genes compartilham uma sequência reguladora comum. 

Um promotor alternativo de CCDC3, localizado a jusante e exclusivo para certos transcritos de 

CCDC3, foi identificado através da análise da estrutura genética obtida em silico. A atividade 

das regiões promotoras foi validada por construções repórteres de transfecção pGL3 

transitórias, contendo as seqüências promotoras em análise, em células HEK 293, seguidas por 

ensaios de luciferase. 

Proteínas reguladoras de ação trans, p. fatores de transcrição (TFs), potencialmente 

envolvidos na regulação dos dois genes, foram identificados in silico através da análise das 

seqüências promotoras através do software de bioinformática. A análise revelou vários locais 

de ligação a TF, incluindo NF-κB, um TF conhecido por desempenhar um papel na patogênese 

do PDB. A co-transfecção transitória de células HEK 293 com construções repórter pGL3 e 

vetores de expressão contendo o TF NF-κB, seguidos de ensaios de luciferase, foram realizados 

para confirmar seu papel como reguladores trans dos promotores alvo e para revelar a presença 

de um possível co-regulação. 

 

Este estudo foi financiado pela FCT através do projeto UID/Multi/04326/2019 (CCMAR). 

 

Palavras-chave: gene, expressão, regulação, união, promotor, TF, luciferase.
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I. Introduction 

 

1.1 – The PDB6 locus and Paget’s disease of bone 

 

The genetic locus localized on the small arm of chromosome 10, corresponding to the 

cytoband number 13 (10p13), as shown in Figure 1.1, has been named as PDB6 due to its 

association with the Paget’s disease of bone (PDB), though the single causal gene of the disease 

has not been identified yet [1]. The PDB6 locus contains over 70 genes (Figure 1.2), two of 

which have been selected to be analyzed: OPTN, coding for optineurin, and CCDC3, coding 

for coiled-coil domain containing 3 protein.  

 

 

Fig. 1.1: Human chromosome 10 giemsa banding ideogram. Red arrow shows PDB6 locus genomic location 

(10p13). Adapted from Ensembl GRCh38.p10 ideogram, public domain. 
 
 

 

Fig. 1.2: Schematic representation of PDB6 locus genes. Arrows indicate the orientation of the genes. Size of 

each gene is indicated in brackets. Note the shared sequence between OPTN and CCDC3 (in white). Adapted from 

Silva (2015). 

 

The PDB6 locus is just one of the several chromosomal regions that was proven to be 

connected with PDB [1] [2]. Paget’s disease of bone is the second most prevalent metabolic 

bone illness after osteoporosis [3]; the disease is characterised by an unbalanced and excessive 

bone turnover, during which the osteoblasts mineralization of the bone matrix and the 

osteoclasts bone erosion, a finely balanced modelling/remodeling activity in unaffected bone 

tissue, result instead increased and disregulated [3]. The process leads to the creation of 

abnormal bone tissue, with affected architectural properties and weakened structural strength 

of the organ. These elements result macroscopically in severe symptoms, which include bone 

deformities, increased tendency to bone fractures, chronic pain and impaired organs due to 

nerve compression [4].  
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Both environmental and genetic causes are able to influence the development of PDB 

[6] [7], which appears to be more common in people of Anglo Saxon origin [5]; overall, PDB 

has a prevalence between 3 and 3.7%, and its frequency intensifies with age, involving up to 

three percent of adults over 55 years of age [5]. 

Albagha et al. (2010) reported a strong genetic association between the 10p13 (PDB6) 

locus and PDB, specifically with three single nucleotide polymorphisms (SNPs) located in the 

OPTN gene [1]; Michou et al. (2012) also found genetic association of two different SNPs in 

OPTN with PDB, and identified a functional SNP located in the promoter of UCMA/GRP gene, 

which provided a weak genetic connection with the disease [9]. 

 

1.2 – The OPTN gene 

 

The OPTN gene (size: 39 Kb), short for optineurin, takes its name from “optic 

neuropathy-inducing gene”, as mutations of this gene were firstly found in patients with primary 

open-angle glaucoma, a cause of blindness [10]. The OPTN gene is almost ubiquitously 

expressed in human tissues [11].  

OPTN gene structure consists in a variable number of non-coding exons at its 5’-UTR 

region, according to the transcript analysed, and 13 exons coding for a 66 kDa protein. 

Alternative splicing of the OPTN gene generates a large number of different transcripts (see 

Figure 1.3), which are translated into protein isoforms with the same open reading frame (ORF), 

giving rise to several protein variants [11]. 

By analysing the gene transcripts in Figure 1.3, it came to our attention that OPTN 

generates several mRNAs featuring an alternative first exon; these two first elements were 

named in the scheme as exon 1a (as alternative) and exon 1; many eukaryotic genes possess 

multiple transcriptional promoters with alternative first exons, located in the 5’-UTR region 

and far upstream of the coding exons [13]; even thought the protein primary structure might not 

be directly affected by these structural changes, 5’-UTR sequence can contain elements acting 

as molecular switch that regulate the translation of the mRNAs [14]; it would be interesting to 

understand to what extent these 5′ transcriptional decisions influence downstream alternative 

splicing events or mRNA translational regulation. 
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Fig. 1.3: OPTN alternative transcripts scheme. Comparison of alternatively spliced transcripts available in 

databases. Same sequences are in same colors. Red arrows indicate differences in exons sequences. Adapted from 

Michou et al. [9]. 
 

 

OPTN is a multifunctional cytoplasmic protein, characterized by a multi-domain 

structure. It contains coiled-coil motifs, a basic leucine-zipper motif (bZIP), a microtubule-

associated protein 1 light chain LC3-interacting region (LIR), a ubiquitin-binding domain 

(UBAN), and a C-terminal zinc-finger domain. Such an articulated, multi-domain configuration 

gives the OPTN protein a complex role, being capable of interacting with many different 

proteins and resulting involved in several signaling pathways. An example as such is the role 

the OPTN protein plays in NF-κB signaling, or in several other complex cellular processes, 

such as selective autophagy or membrane vesicle trafficking [11] [17].  
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Due to the large number of crucial cellular activity associated to OPTN protein, 

mutations in OPTN gene are strongly connected with human degenerative diseases; besides the 

previously mentioned PDB and primary open-angle glaucoma, OPTN mutations were found in 

patients suffering amyotrophic lateral sclerosis (ALS), frontotemporal lobar dementia (FTD), 

and Crohn's inflammatory bowel disease (CD) [11] [12].  

 

1.3 – The CCDC3 gene 

 

CCDC3 (size: 203 Kb), the second gene chosen for our transcriptional analysis, codes 

for the coiled-coil domain containing 3 protein.  

As today, unlike OPTN, we do not possess much information on the functions of this 

gene. Azad et al. (2014) found a role for CCDC3 in tumor necrosis factor(TNF)-α-induced 

inflammatory response in endothelial cells, showing that knocking down the gene increases 

TNF-α-induced expression of VCAM-1 protein (vascular cell adhesion molecule-1), and that 

an induced overexpression of CCDC3 protein decreases the TNF-α-induced nuclear 

translocation of p50 and p65 and the transcriptional activity of NF-κB [15]. Moreover, 

Kobayashi et al. (2010) found that the homologous of CCDC3 in mice positively regulates lipid 

accumulation in adipose cells [16]. 

Our choice of analysis fell on this gene due to its shared sequence with OPTN (see 

section 1.5), but also because of the low amount of structural information available: at the 

beginning of the project, only two different transcript variants of CCDC3 were publicly present 

on the Ensembl database. 

The mentioned transcripts represented a scarce and insufficient number of elements 

when compared with OPTN (see section 1.3) and the other adjacent genes, lying in the same 

PDB6 locus (Figure 1.2); given the big variety of alternative mRNAs available for OPTN and 

the lack of CCDC3 structural information, we decided to include this gene in our analysis.  

CCDC3 gene does not seem to be directly connected with the Paget’s disease of bones, 

but its peculiar shared gene structure with OPTN (see section 1.5) and its presence in the PDB6 

hotspot, make the CCDC3 gene a good candidate for further investigation on its transcriptional 

variants and regulation. 
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1.4 - OPTN and CCDC3 shared structure 

 

The two genes OPTN and CCDC3 have a head-to-head, divergent orientation and lie on 

different strands, designated as positive strand [+] for OPTN and negative [-] for CCDC3. 

Fukuda et al. defined two overlapping genes as two adjacent genes, lying on same or different 

strand, whose expressible nucleotide sequences are partially shared [18], which is the case in 

analysis.  

Figure 1.4 shows the structure of the overlapping elements of the two genes. OPTN and 

CCDC3 partially share the first exons of, respectively, 510 bp and 256 bp, with CCDC3 first 

exon resulting embedded in OPTN; for both genes, the shared sequence falls in their 5’-UTR 

region, not involving their coding sequence.  

OPTN and CCDC3 feature different transcription initiation sites, as their their 

transcripts can differ substantially in their 5’-UTR regions. Such a variety is possibly originated 

by the existence of alternative promoters in the same gene and by events of exon skipping.  

 

 
Fig. 1.4: OPTN and CCDC3 overlapping elements. OPTN (in blue) and CCDC3 (in green) lie on opposite 

strands. First CCDC3 exon (256 bp) is embedded into first OPTN exon (510 bp). The first two exons of both genes 

are shown. Exon size depicted in black, intron size in blue. Arrows show transcription initiation sites, based on 

GeneBank and Ensemble accession numbers NM_001008212.2 and ENST00000263036.9 for OPTN, 

NM_001282658.1 for CCDC3. 
 

The phenomenon of gene overlapping is a very common event in viral DNA, due to the 

strict restrictions imposed by their tightly packed structure; in non-viral organisms, though, the 

potential advantages coming from this particular structure are less clear. Such configuration, 

however, may suggest co-regulation: a head-to head overlapping structure could allow two 

genes to share the same promoter element and the same CpG island, resulting in a possible 

mutual regulation for coordinated expression [19]. 

In humans, the number of observed overlapping genes coding for a protein is increasing 

constatly, raising the idea it is a much more frequent phenomenon than previosly estimated 

[20]. 
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II. Objectives 

 

This work proposes a deeper study of the fine and complex transcriptional regulation of 

the OPTN and CCDC3 human genes. More specifically, given the high variety of transcripts 

available in the databases for OPTN, we wanted to clarify the structure of both genes by 

identifying and analyzing new mRNA transcript variants, generated by the cells through 

alternative splicing or by the activity of putative alternative promoters and/or the effect of other 

cis-regulatory elements. The mentioned factors were investigated in silico with the aid of 

bioinformatics tools, online dedicated databases and programs for sequence analysis.  

Following the in silico procedures, we aimed at creating gene reporter constructs 

containing the promoter sequences under study. In order to assess their activity as 

transcriptional regulators, their functionality was validated through the luciferase assay 

technique (section 4.2), after transfecting the gene reporter constructs into cultured HEK 293 

cells. 

Co-transfections of selected transcription factor expression vectors, together with the 

gene reporter constructs containing our promoter sequences were performed in the same 

cultured cells; the purpose of this procedure was to define and measure the effect of a specific 

transcription factor on the promoter sequence of our interest. 

 

III. Material and Methods 

 

3.1  In silico analysis 

 

The very first phases of this thesis work consisted in acquiring more information related 

to the overall structure of the genes under analysis, performed in silico with the support of 

bioinformatics tools and online databases. Genes DNA is transcribed into mRNA, which is then 

translated into protein; this process characterizes the expression of a gene, and it is finely 

regulated at multiple levels.  

Every gene in the human genome is organized in specialized  sequence elements, 

involved in the process of gene expression. The control of gene expression is carried on by 

specific nucleotide sequences in the promoter region, known as cis-acting factors, and by 

proteins, the trans-acting factors, that interact with promoter DNA or RNA polymerase II 

enzyme to let the transcription begin.  
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At the beginning of this work, it was necessary to elucidate such key elements; in 

particular, the portions of the gene destined to be withheld in the mature mRNA, the exons, and 

the intervening portions of DNA between exons, the introns.  

Successively, by analyzing the intron/exon structure of the gene, we proceeded to 

identify the promoter elements, part of the gene that controls the transcription and therefore its 

expression. 

After having identified the sequences of the OPTN/CCDC3 core promoter, and of a 

CCDC3 alternative promoter, we performed an investigation on the putative transcription 

factors binding sites (TFBSs), short nucleotide sequences present in promoter sequences, to 

which trans-acting protein (transcription factors) can potentially bind and upregulate or 

downregulate the gene expression. 

Completing our in silico investigation was the analysis of the different tissular expression 

of both OPTN and CCDC3, in order to gather more specific information regarding the 

prevalence of expression of each gene in different human tissues. 

 

3.1.1 CCDC3 gene structure analysis - EST and mRNA comparison 

 

The two known CCDC3 mRNA variants available at the beginning of this work on the 

Ensembl database (www.ensembl.org) were referring to the NCBI (www.ncbi.nlm.nih.gov) 

reference sequences (refseq) accession numbers NM_001282658.1 and NM_031455.4. The 

NM_001282658.1 variant provides a longer mRNA sequence: compared to variant 

NM_031455.4, it contains five additional alternative exons in the 5’-UTR, it lacks a portion of 

the 5’ coding region, and it initiates the translation at a different downstream start codon. 

Interestingly, the longer mRNA variant (2300 bp) encodes for a smaller protein of 145 amino 

acid residues, while the shorter mRNA variant (700 bp) gives origin to a bigger protein of 270 

residues. 

Given the transcriptional complexity of the OPTN gene and its much higher number of 

transcript variants available, we wanted to understand if CCDC3 would originate the same 

variety of transcribed alternative mRNAs. The first task consisted in using the bioinformatics 

tool Nucleotide BLAST (blast.ncbi.nlm.nih.gov/Blast.cgi), to perform a search in the expressed 

sequence tags (ESTs) database for Homo sapiens. Specifically, we BLAST searched the 

nucleotide sequence of the exon 13 of the CCDC3 gene, the first shared 175 bp exon (base pair 

12998512 to 12998338 in NC_000010.11) which belonged to both the already known mRNA 

transcripts (see section 4.1.1).  

http://www.ensembl.org/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/nuccore/NM_001282658.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_031455
https://www.ncbi.nlm.nih.gov/nuccore/NM_001282658.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_031455
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.ncbi.nlm.nih.gov/nuccore/NC_000010.11
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The retrieved EST cDNA sequences containing the 175 bp common exon were 

successively analyzed one by one using the bioinformatics tool Splign 

(ncbi.nlm.nih.gov/sutils/splign/splign.cgi). Splign performs an alignment of the putative mature 

(spliced) mRNA sequence, here in the form of cDNA, with the whole genomic DNA sequence 

[21].  

By directly comparing the size and position of the exons alignment supplied by Splign 

with the structure of the existing mRNA variants, we could determine whether each cDNA in 

analysis belonged to one of the two already known mRNA variants or it would be part of a 

newly found alternatively spliced mRNA. 

 

    3.1.2      CCDC3 gene structure analysis - AceView database 

 

The genomic database AceView browser 

(ncbi.nlm.nih.gov/IEB/Research/Acembly/index.html) has been used as a convenient source to 

retrieve a comprehensive list of all the publicly available mRNA sequences associated to the 

gene under study; AceView collects and combines the data from GenBank, RefSeq, dbEST and 

Trace.  

The sequences retrieved from AceView were aligned to the rest of the genome by using 

the Splign software tool, and successively compared to the previously known mRNA splicing 

patterns. 

 

    3.1.3      Analysis of putative TFBSs in OPTN and CCDC3 promoters 

 

Being OPTN and CCDC3 two overlapping gene, the sequence shared and adjacent to 

the beginning of the two genes was considered as a common regulatory element, working bi-

directionally; an analysis of the putative transcription factors binding sites (TFBSs) was 

performed on this 2120 bp long sequence (base pair 13099043 to 13101162 in NC_000010.11). 

The sequence located 5’ upstream of the exon 12 (501 bp) of CCDC3, corresponding to 

the position 13002689 to 13001633 in NC_000010.11, with 1057 bp, was identified as a 

potential alternative promoter and analysed for the presence of putative TFBSs that could 

potentially bind a corresponding TF and regulate the transcription of the CCDC3 gene, allowing 

the expression of specific mRNAs (section 4.1.1). 

For such purpose, three different online tools, AliBaba 2.1 (Transfac 4.0) (gene-

regulation.com/pub/programs/alibaba2/index.html), PROMO (Transfac 8.3) 

http://www.ncbi.nlm.nih.gov/sutils/splign/splign.cgi
https://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/index.html
https://www.ncbi.nlm.nih.gov/nuccore/NC_000010.11
https://www.ncbi.nlm.nih.gov/nuccore/NC_000010.11
http://gene-regulation.com/pub/programs/alibaba2/index.html
http://gene-regulation.com/pub/programs/alibaba2/index.html
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(alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3) [22], and 

TFsitescan (www.ifti.org/cgi-bin/ifti/Tfsitescan.pl) were employed, and a list of predicted 

putative TFBSs was created for both the promoter regions.  

 

    3.1.4      OPTN and CCDC3 tissular expression 

 

             Respectively 42 and 27 human tissues were examined for OPTN and CCDC3 mRNA 

expression by mining experimentally verified human expression sequence tags (ESTs) 

deposited in Unigene database (www.ncbi.nlm.nih.gov/unigene).  

The ESTs database is created via cDNA cloning from different cDNA libraries, 

followed by DNA sequencing. Gene mRNA levels are presented in the Unigene database as 

gene transcript units per million transcripts (TPM). The relative mRNA expression (REU) of 

OPTN (Hs.332706) and CCDC3 (Hs.498720) were generated by normalizing the value of TPM 

of each gene with the one of β-actin (Hs.520640), used as reference gene in every tissue 

considered.  

The intervals of the expression variation of the reference genes were generated by 

calculating the mean plus two times the standard deviation of the REU of three randomly 

selected reference genes, namely ARHGDIA (Rho GDP dissociation inhibitor alpha, number 

Hs.159161), GAPDH (glyceraldehyde-3-phosphatedehydrogenase, number Hs.544577) and 

RPS27A (ribosomal protein S27a, number Hs.311640); the mentioned reference genes were 

also normalized by β-actin values in the considered tissues. 

 

3.2 Cloning of OPTN and CCDC3 promoters sequences into a cloning vector 

 

3.2.1 Amplification of promoter sequences 

 

In order to clone the OPTN-CCDC3 shared promoter and the CCDC3 alternative 

promoter sequences into a cloning vector, the first step consisted in the amplification of the 

sequences through the polymerase chain reaction (PCR). The PCR technique uses repeated 

thermal cycles of heating and cooling to allow DNA melting and DNA replication through 

enzymatic reaction. Short oligonucleotides (primers) are deployed to begin the amplification 

process; a thermal-resistant DNA polymerase enzyme is applied to elongate the primer 

sequences by adding nucleotides using the complementary DNA strand as template. The use of 

file:///C:/DATA/DOCS/ualg/MBMM/internship/THESIS/alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi%3fdirDB=TF_8.3
http://www.ifti.org/cgi-bin/ifti/Tfsitescan.pl
https://www.ncbi.nlm.nih.gov/unigene
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forward (FW) and reverse (REV) primers is necessary in order to set the beginning and the end 

of the fragment to amplify, and to overcome the functional limitation of the DNA polymerase, 

which can only catalyse the SN2 nucleophilic attack of the 3'-OH end to the α-phosphate of the 

incoming complementary nucleotide, being therefore able to extend an existing DNA strand 

and incapable of synthesizing a DNA strand de novo [23]. 

OPTN-CCDC3 shared promoter and CCDC3 alternative promoter sequences were 

amplified by using genomic DNA (gDNA) extracted from T-47D human cell line as template. 

The PCR reaction mix was prepared as it follows: 1 μL of gDNA (100 ng/μL), 1 μL of Kapa® 

Hifi DNA polymerase enzyme (1 U/µL; Kapa Biosystems®), 1.5 μL dNTPs (10 μM; Kapa 

Biosystems®), 10 μL of 5X Hifi buffer, 1.5 μL of each FW and REV primer (10 μM), and 33.5 

μL of ultra-pure water (Milli-Q®), to reach a final volume of 50 μL. 

The primers were designed with the aid of PerlPrimer software, according to the 

functional elements present in the sequences. Table 3.1 shows in detail the primers used for the 

amplification. 

 

Table 3.1: Primers names and sequences used to amplify the DNA fragments under analysis. 

 

 

 

The reaction was performed in a thermal cycler machine (model 2720; Applied 

Biosystems®). The initial denaturation step was set at 95 ºC for 5 minutes; a number of 30 

cycles were programmed with the following parameters: denaturation at 98 ºC for 20 seconds, 

annealing at 55 ºC for 15 seconds, and extension at 72 ºC for 2 minutes; the final extension step 

ran at 72ºC for 5 minutes. 

 

 

Construct  

name 

FW and REV 

primer name 

FW and REV  

primer sequence 

Construct 

length 

OPTN-

CCDC3_F9R12 

HsaOPTN_F9 

HsaOPTN_R12 

5’-TTAAATTCTCTATTTCTCCCCACTCC-3’ 

5’-TGACCCTGAGCGAAGCCAAGCCG-3’ 

1252 bp 

OPTN-

CCDC3_F9R2 

HsaOPTN_F9 

HsaOPTN_R2 

5’-TTAAATTCTCTATTTCTCCCCACTCC-3’ 

5’-TTCTCTCCCTCTCTCCCTCC-3’ 

326 bp 

OPTN-

CCDC3_F18R9 

HsaOPTN_F18 

HsaOPTN_R9 

5’-TGAGTGTATTTTAAAGCAAAAACGA-3’ 

5’-CCACTACGGGATCTGCGGGAAGA-3’ 

187 bp 

OPTN-

CCDC3_F18R20 

HsaOPTN_F18 

HsaOPTN_R20 

5’-TGAGTGTATTTTAAAGCAAAAACGA-3’ 

5’-GAGAAGTCCCAGGGCAGAC-3’ 

1520 bp 

CCDC3_AP1 HsaCCDC3_apF1 

HsaCCDC3_apR2 

5’-TAAATATTCAGGGTGGATGTGGG-3’ 

5’-GAGCAGCCGAGCGCCCAGGGCTGCCCTT-3’ 

1057 bp 

CCDC3_AP2 HsaCCDC3_apF2 

HsaCCDC3_apR2 

5’-CTGAATGTATTTCTCAGGTGTACAG-3’ 

5’-GAGCAGCCGAGCGCCCAGGGCTGCCCTT-3’ 

656 bp 

CCDC3_AP3 HsaCCDC3_apF3 

HsaCCDC3_apR2 

5’- TCTTTAATGAATGCCTTGCG -3’ 

5’-GAGCAGCCGAGCGCCCAGGGCTGCCCTT-3’ 

373 bp 
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3.2.2   PCR products separation in gel electrophoresis and DNA extraction 

 

The amplified sequences obtained by PCR were separated by size through agarose gel 

electrophoresis; the 1% agarose gel was obtained by dissolving 1 g of agarose powder (Sigma-

Aldrich®) in 100 mL of 1X TAE buffer (tris base 40 mM, acetic acid 20 mM, EDTA sodium 

salt dihydrate 1 mM); 2 μl of intercalating agent (Green Safe®; Nzytech®) were added to the 

gel solution. The gel underwent 120V of electric field for 25 minutes.  

An ultra-violet transilluminator was used to visualize and identify the fragments of the 

desired size, by running in the same gel 7 µL of GeneRuler 1kb DNA ladder marker 

(ThermoFisher Scientific®) and used as size reference.  

The DNA fragments were extracted from the gel and purified with the aid of the 

GeneJET Gel extraction Kit® (ThermoFisher scientific®); the procedure of DNA extraction 

consists in melting the previously excised fragment of gel at 55 ºC in a provided binding buffer 

(1 µL of buffer for every mg of agarose), and then centrifuged through a purification column. 

 

      3.2.3   DNA ligation into pCR 2.1-TOPO® cloning vector 

 

The following step consisted in ligating the purified PCR products in a cloning vector. 

The chosen vector was the pCR 2.1-TOPO® (Thermo Fisher Scientific® ) (see the Appendix 

section). The ligation occurred between the 3’-adenine overhangs of the DNA fragments, added 

by the DNA polymerase during the PCR reaction, and the free thymine situated at the 

extremities of the TOPO vector. 

The ligation reaction was performed with 4 μL of purified PCR products, 1 μL of salt 

solution and 1 μL of pCR 2.1-TOPO® cloning vector, and incubated at room temperature for 30 

minutes. 

 

      3.2.4   Vector transformation in E. coli DH5α competent bacteria 

 

In order to create multiple copies of the cloning vectors containing the promoter 

constructs of our interest, we performed bacterial transformation of the recombinant pCR 2.1-

TOPO® vectors in E. coli strain DH5α competent bacteria. The DH5α cells were made 

competent, i.e. capable of receiving exogenous DNA, by treating them with calcium chloride 

(CaCl2) during their exponential phase of growth; the treatment allows the temporary 

destabilization of the bacterial cell wall and increases its permeability to DNA [24]. 
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To one microcentrifuge tube containing 100 µL of DH5α competent bacteria, 3 µL of 

the ligation product were added; the bacteria were at first incubated in ice for 30 minutes, and 

then underwent a heat shock at 42 ºC during 45 seconds, followed by 2 minutes back to ice; 

this heat shock procedure increased the capability of the bacterial cells to incorporate the 

exogenous DNA, in the form of cloning vectors containing the DNA fragments of interest [25].  

Then, 300 µL of SOC nutritional media (20 mM of glucose, 20 mM of MgCl2, and 2 

mM MgSO4) were added to the bacteria, and, successively, they were left to grow in suspension 

in a heated agitator (37 ºC at 200 RPM) for 1 hour. 

Afterwards, 150 µL of grown bacteria were plated in LB agar culture plates containing 

100 μg/mL of ampicillin antibiotic; 5 µL of IPTG (isopropyl β-D-1-thiogalactopyranoside, 10 

mM), a lactose-metabolite-analog to allolactose that enhances the transcription of 

the lac operon by binding to the lac repressor, were added to the plate, in combination with 40 

µL of X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside, 20 ng/µL), a chromogenic 

substrate of β-galactosidase analog of lactose; the two reagents were deployed in order to 

perform a blue-white screening: cells with white phenotype will have a disrupted lacZ gene and 

absence of β-galactosidase production, due to the insertion of the DNA fragments; the plates 

were then incubated overnight at 37 ºC.  

As following, bacteria colonies showing a white phenotype were selected, extracted 

from the plate, and each colony grown separately in bacterial tubes with 2 mL of LB liquid 

medium, containing 2 µL of ampicillin (50 ng/µL); the colonies were left growing overnight in 

a heated agitator (37 ºC at 200 RPM). 

 

      3.2.5   Extraction of plasmidic DNA and confirmation of DNA incorporation 

 

The extraction of plasmidic DNA from bacterial cells was performed by following a 

procedure of alkaline cell lysis, as described by Sambrook et al. [24]. The bacteria cultures 

containing the plasmids of interest were centrifuged at 14000 RPM for 2 minutes; the 

precipitated pellet was re-suspended in 100 µL of a first solution (P1) of Tris-HCl (50 mM, pH 

8), EDTA (10 mM) and RNase A (100 µg/mL), followed by adding 100 µL of a second solution 

(P2) of 1% SDS (sodium dodecyl sulfate) and NaOH (200 mM), and incubated for 5 minutes 

at room temperature. Then, 100 µL of a third solution (P3) of KOAc (3 M, pH 5.5) and acetic 

acid (CH3COOH) were added; the solution was incubated on ice for 10 minutes and later 

centrifuged at 14000 RPM for 8 minutes. The supernatant was collected, 600 µL of 100% 

ethanol were added and later centrifuged; the pellet was washed with 600 µL of 70% ethanol, 
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and finally re-suspended in 30 µL of pure water. 

After extracting and isolating the DNA from the bacterial cells, EcoRI restriction 

enzyme digestions were performed on 3 µL of the extracted DNA samples, in order to visually 

screen the positive samples through a gel run and confirm the effective incorporation of the 

DNA fragments of interest into the plasmidic vectors. The restriction endonuclease EcoRI cuts 

the pCR 2.1-TOPO® vector in two specific regions, flanking at both 5’ and 3’ the incorporated 

DNA fragments. The restriction enzyme digestion was conducted by mixing 0.2 µL of EcoRI 

(15 U/µL; Takara®), 1.5 µL of buffer FD (Takara®), 3 µL of extracted DNA and 10.3 µL of 

sterile water for a final volume of 15 µL, and incubated for 1 hour at 37 ºC in a block heater 

(Stuart®). 

The process originated two DNA fragments: the first with the size of the amplified 

fragments, and the second with the size of the plasmid. This was visible by separating the 

digested products by size through an agarose gel electrophoresis, and visualizing the gel on a 

UV transilluminator. We were able to distinguish the positive samples and select the ones which 

had incorporated our fragments, featuring two DNA bands in the gel. 

The positive samples showing the expected size were sequenced to confirm the 

nucleotide sequence and the orientation of the inserts into the pCR 2.1-TOPO® plasmid vector. 

The Sanger sequencing reaction was performed in the CCMAR Molecular Biology Platform 

using primer SP6 (5’-ATTTAGGTGACACTATAG-3’) as forward primer, and primer T7 (5’-

TAATACGACTCACTATAGGG-3’) as reverse primer. 

 

3.3 Sub-cloning of promoter constructs to pGL3-Basic® reporter vectors 

 

Once the nucleotide sequences and the orientation of the promoter fragments inside the 

plasmid had been confirmed, we proceeded with the sub-cloning of the inserts under analysis 

into the pGL3-Basic® vector (Promega®). 

This plasmid is a luciferase reporter vector used for the quantitative analysis of cis-

acting (promoters, enhancing sequence elements) and trans-acting factors (DNA-binding 

proteins, transcription factors) that regulate the eukaryotic gene expression (see Appendix 

section for the vectors structure).  

The vector is engineered to provide a quantitative feedback on the regulatory activity of 

the sequences of interest; the elements under investigation, when acting as a promoter, will 

directly control the transcription of the luciferase gene and consequentially the quantity of the 

produced luciferase protein. To obtain this, the DNA fragments were inserted in the polylinker 
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site of the vector, upstream of the luciferase gene luc+ contained in the pGL3 vector, and then 

the vector transfected into eukaryotic cells; therefore, the quantification of the luminescence 

produced by the transfected cells is proportional to the quantity of luciferase protein produced, 

which is directly regulated by the promoter activity of the sub-cloned sequences. 

In order to perform the sub-cloning, both constructs, specifically 1 µg of the pCR 2.1-

TOPO® containing the DNA fragments of interest and 1 µg of the empty pGL3-Basic®, were 

digested with the restriction endonucleases (Takara®) shown in table 2.2.  

 

Tab. 3.2: List of restriction endonucleases used to digest the fragments contained in pCR 2.1-TOPO® vector and 

the empty pGL3-Basic® vector. 

 

pCR 2.1-TOPO®  

source vector 

Restriction 

endonucleases (buffer) 

pGL3®  

constructs 

Constructs  

description 

OPTN-CCDC3_F9R12 KpnI + XhoI (M buffer) F9R12-Luc Shared promoter, OPTN direction 

OPTN-CCDC3_F9R12 XhoI + HindIII (M buffer) Luc-F9R12 Shared promoter, CCDC3 direction 

OPTN-CCDC3_F9R2 KpnI + XhoI (M buffer) F9R2-Luc Shared promoter, OPTN direction 

OPTN-CCDC3_F18R9 XhoI + HindIII (M buffer) Luc-F18R9  Shared promoter, CCDC3 direction 

OPTN-CCDC3_F18R20 XhoI + HindIII (M buffer) Luc-F18R20 Shared promoter, CCDC3 direction 

CCDC3_AP1 KpnI + XhoI (M buffer) AP1-Luc CCDC3 alternative promoter  

CCDC3_AP2 KpnI + XhoI (M buffer) AP2-Luc CCDC3 alternative promoter 

CCDC3_AP3 XhoI + HindIII (M buffer) AP3-Luc CCDC3 alternative promoter 

 

To the plasmidic DNA we added 2 µL of the respective restriction buffers (10X, 

Takara®) according to the combination of restriction enzyme deployed, plus 0.5 µL (10 U/µL) 

of each endonuclease, and sterile water, up to a final volume of 20 µL. The mix was then 

incubated at 37 ºC for 2 hours. The products of the reaction were separated by electrophoretic 

run on agarose gel (1%), using the non-digested pGL3-Basic® as band reference; the products 

were extracted from gel and purified with the GeneJET Gel Extraction Kit® (ThermoFisher 

scientific®). The DNA concentrations of the extracted samples were later quantified by 

measuring the absorbance of ultraviolet light at a wavelength of 260 nm, using a NanoDrop 

One® microvolume UV-Vis spectrophotometer machine (ThermoFisher scientific®). 

Next step consisted in ligating the DNA fragments into the pGL3-Basic® plasmids, 

digested with the same restriction endonucleases. For the purpose, a T4 DNA ligase enzyme 

was used; T4 ligase catalyzes the formation of a phosphodiester bond, which connects two 

adjacent nucleotides, between the contiguous 5’-phosphate and 3’-hydroxyl chain terminations 

in duplex DNA configuration, repairing the nicks and ligating the sequences. A ratio of 3:1 of 

insert:vector was used; the ligation reaction mix was prepared as follows: 100 ng of digested 

pGL3 basic vector, 300 ng of digested TOPO inserts, 1 µL of 10x T4 buffer (Promega®), 1 U 

of T4 DNA ligase (Promega®), and distilled water, up to a final volume of 10 µL; the mix is 
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then incubated overnight at 4 ºC. 

The obtained recombinant pGL3® plasmids, containing the promoter fragments, were 

then replicated after bacterial transformation in competent DH5α strains of E. coli bacteria, 

followed by miniprep extraction and purification, applying the same procedures described in 

section 3.2.2. 

The pGL3® constructs were screened by restriction endonuclease digestion, in order to 

select the positive samples: 3 µL of plasmidic miniprep DNA with 0.5 µL of BglII (10 U/µL), 

0.5 µL of HindIII (15 U/µL), 1.5 µL of 10X K buffer, and sterile water, for a total volume of 

15 µL, were incubated at 37 ºC for 1 hour; the reaction products were ran in electrophoresis 

agarose gel with 1X TAE buffer and 2 μL of Green Safe® intercalating agent, and then 

visualized by using a UV transilluminator. The positive samples, the ones in the gel showing 

two fragment bands (the pGL3-Basic plasmid and the promoter fragment inserted), were again 

sequenced by Sanger reaction, performed with R240 primer (5’-

ATGGAAGACGCCAAAAACATAAAG-3’) at the CCMAR Molecular Biology platform. 

 

3.4 Transient transfection  

 

       3.4.1 HEK 293 cell culture maintenance 

 

HEK 293 (human embryonic kidney) eukaryotic cell line was used for the transient 

transfection procedure. Cells were kept in DMEM (Dulbecco’s modified eagle medium) culture 

medium (Gibco®) with added supplements (1% L-glutamine, 1% penicillin and streptomycin, 

and 10% fetal bovine serum), in a 5% CO2-enriched incubator, at the temperature of 37 ºC. 

Cell cultures were passed to new cell culture dishes and provided with fresh culture 

media every three and four days, to prevent lack of nutrients for the correct development of the 

cells, unwanted pH alterations of the media, and growth inhibition due to cell-cell interaction.  

Each re-plating was performed following these steps: washing the cells with 10 mL of 

PBS (phosphate buffered saline), detaching cells with 1 mL of T solution (NaCl 137 mM + KCl 

2.7 mN + Na2HPO4 8.1 mM + KH2PO4 1.47 mM + 0.2% volume/volume trypsin, at pH 7.4) 

applied at 37 ºC for a few seconds, re-suspending cells in 10 mL of supplemented DMEM, and 

seeding cells in a new 100 mm diameter cell culture plate (Sarstedt®), maintaining a density of 

87x105 or 54x105 cells per plate. The desired densities were calculated by counting cells in a 

Neubauer® chamber with an inverted microscope (Zeiss® Axiovert 25), and then by diluting 

cells with supplemented DMEM according to the desired concentration. 
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      3.4.2  Transient transfection of pGL3 recombinant vectors into HEK 293 cells 

  

The process of transient transfection consists in the introduction of an exogenous DNA 

portion into eukaryotic cells. In this work, the exogenous DNA was the recombinant pGL3 

vectors containing the promoter regions under analysis. 

HEK 293 (human embryonic kidney) cells were plated in a 24-wells plate, at a density 

of 5x104 per well, approximately 18 hours before the transfection occurred, in order to reach 

the desired value of confluency of 50 to 70%.  

To begin the transfection, a mix of 1 μL of XtremeGene HP® DNA transfection reagent 

(Roche®) with an amount of 250 ng of each reporter construct, plus 5 ng of pRL-TK® Renilla 

luciferase expressing vector (Promega®) (see Appendix section for vector details) used to 

normalize the luciferase expression, plus DMEM without supplements, reaching a final volume 

of 100 µL, was incubated at room temperature for 15 minutes and then provided to the cells 

drop by drop, divided in two wells.  

Co-transfection consisted in adding in a single well 125 ng of each reporter construct, 

2.4 ng of Renilla luciferase normalizing vector, and 25 ng of each expression vectors containing 

p50 and p65 NF-κB isoforms (pCMV4_p50 and pCMV4_p65; Addgene plasmid 21965 and 

21966, respectively), one of the transcription factors that were identified to putatively regulate 

the promoter activity. In an independent well, 25 ng of the empty expression vector (pCMV4; 

GeneBank AF239248) were added. The plasmids pGL3-Basic® and pGL3-Control® were 

transfected in separated wells and used respectively as negative and positive control. The plate 

was then incubated in a 5% CO2-enriched atmosphere at 37 ºC. 

 

3.5 Luciferase activity assay 

 

The process of transfection and co-transfection is halted after 48 hours of incubation, by 

removing the plate from the incubator, aspiring out the growth media, and washing the cells 

with cold PBS. Cells were then lysated by adding 100 μL of 1X passive lysis buffer (Promega®), 

and placed for 20 minutes in a shaker (VWR®). With the aid of a scrapper, cells lysates were 

removed from the 24 wells plate and collected in microcentrifuge tubes. The lysate underwent 

a 14000 RPM centrifugation for 30 seconds, after which the supernatant was transferred to a 

new microcentrifuge tube, and the lysate pellet discarded. 

Firefly luciferase is widely used as a reporter gene for studying gene regulation; the 

produced enzyme catalyzes the oxidation of luciferin to oxyluciferin (see Figure 3.3), by 
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converting the chemical energy of the substrate D-Luciferine into photon emission (hv).  

The luminescence emitted by the cells, directly proportional to the amount of firefly 

luciferase protein synthesized, is connected to the activity of the promoters under study, thus 

allowing a quantification of the basal activity of each construct; the Renilla luciferase protein 

(RLuc), a second bioluminescent enzyme whose structure, function and substrate/product differ 

from the firefly luciferase (Figure 3.3), is used as a reference to normalize the luminescence 

values obtained. 

The dual Firefly & Renilla luciferase single tube assay kit (Biotium®) was used for the 

luminescence reaction; specifically, 100 μL of firefly luciferase buffer, and 50 μL of Renilla 

luciferase buffer were transferred, together with 10 μL of each cell lysate, to a Bio-One 96 well 

microplate (Greiner®), and the luminescence activity measured in a microplate reader machine 

(BioTek® Synergy 4). 

 

Fig. 3.3: Luminescence reaction of Firefly and Renilla luciferase. Note the differences in substrates, co-factors 

and products of the two bioluminescent enzymes. hv represents light as photon emission. Adapted from 

bpsbioscience.com. 

 

Firefly/Renilla luciferase activity values were calculated over a minimum of two 

different readings, and completed with the calculation of the value of standard deviation.  

Statistical data analysis of the reading results was elaborated using the software Prism 

8 (Graphpad®) with one-way ANOVA and Tukey's multiple comparisons test; results were 

considered statistically significant for values of P < 0.05. 
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IV. Results and Discussion 

 

4.1 In silico analysis results 

 

4.1.1 CCDC3 gene structure 

 

The in silico search of new EST sequences in databases, performed to obtain more 

structural information about CCDC3, gave us partial sequences that were referring to the 

structures of the two previously known alternative mRNAs. The only exception to this trend 

was the EST sequence HY075572.1 (GenBank), retrieved from a human cDNA library, in 

which the CCDC3 gene was expressed in thymus tissue (Figure 4.1). 

 

 

 

Fig. 4.1: CCDC3 transcripts structural comparison. Previously known mRNA sequences (accession numbers 

in orange) and newly found HY075572.1 alternatively spliced mRNA variant (in purple) intron/exon structure are 

compared. In-frame ORF, same start and stop codon and alternative internal splicing sites are emphasized. Exon 

size depicted in black, intron size in blue. Due to space limitation, introns are not in scale. 

 

The newly identified HY075572.1 alternatively spliced mRNA variant shares the same 

in-frame start and stop codons as the previously known NM_031455. Interestingly, the internal 

splicing sites of this mRNA variant do not follow the common GT-AG scheme, also known as 

the Chambon’s rule, according to which the first two and the last two nucleotides of introns 

are GT and AG, respectively [26]; the nucleotide pattern we found, instead, is an unusual GC-

TG. The possibility of more cases of alternative splice sites violating this “splicing rule” has 

been deeply analysed by Szafranski et al. in 2007 [27]. 

 We created a final schematic representation of CCDC3 alternative transcripts (Figure 

4.2). The scheme was built by embracing the cDNA sequences of CCDC3 that were retrieved 

from Ensembl, ESTs BLAST search, and AceView Browser combined, by assembling a total 

of 13 differentially spliced mRNAs. After analyzing the introns/exons structure of the 

https://www.ncbi.nlm.nih.gov/nucest/HY075572.1
https://www.ncbi.nlm.nih.gov/nucest/HY075572.1
https://www.ncbi.nlm.nih.gov/nucest/HY075572.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_031455
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alternative CCDC3 transcripts, we suggested the existence of an alternative promoter for the 

CCDC3 gene, upstream exon number 12 (501 bp, base pair 13001697 to 13001197 in 

NC_000010.11), as shown in Figure 4.3. In transcripts NM_031455 and HY075572, exon 12 

is the first exon identified.  

Given the far distance of the core promoter from exon 12, located over 98 kb upstream, 

we suggested an alternative CCDC3 promoter that can directly control the transcription of the 

shorter mRNA variant NM_031455 and the newly identified HY075572.1 transcript variant. 

The transcriptional activity of the longer mRNA variants, such as NM_001282658.1, would be, 

instead, under the control of the core promoter sequence found in the overlapping structure 

shared with OPTN (see section 1.5). The existence of this CCDC3 alternative promoter can 

open a new scenario of differential gene expression, in which different CCDC3 transcripts are 

under the independent control of a different promoter, possibly regulated by a variable set of 

transcription factors which could be solely expressed in specific tissues. 

The mRNAs shown in Figure 4.2 differ at both 5’ and 3’ ends, including several cases 

of exon skipping, alternative 5’ donor sites and 3’ acceptor sites. Genes presenting differences 

in the 5’-UTR region of their transcripts, as for CCDC3, are relatively common: between 10 

and 18% of human genes express mRNAs featuring alternative 5’-UTR by using alternative 

promoters [28] [29], as alternative splicing affects 13% of genes in the mammalian 

transcriptome [30]; these sequences variations in the 5′-UTR could function as important switch 

elements able to regulate gene expression, possibly allowing certain transcripts to be expressed 

in determined tissues instead of a systemic expression [14] [70].  

In transcripts number DA200147, BY798997 and DA399174 (Figure 4.2), the lack of 

exon number 12 (501 bp) and 13 (175 bp) in their structure, might let the translation machinery 

choose alternative in-frame start and stop codons. Some of the incomplete mRNAs sequences 

could also be non-functional and targeted by the process of nonsense-mediated mRNA decay 

(NMD), a translation-coupled mechanism that eliminates mRNAs containing premature 

translation-termination codons or other nonsense aberrant mRNAs [31], in order to reduce 

errors in gene expression [32]. 

https://www.ncbi.nlm.nih.gov/nuccore/NC_000010.11
http://www.ncbi.nlm.nih.gov/nuccore/NM_031455
https://www.ncbi.nlm.nih.gov/nucest/HY075572.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_031455
https://www.ncbi.nlm.nih.gov/nucest/HY075572.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_001282658.1
http://www.ncbi.nlm.nih.gov/nucleotide/DA200147
http://www.ncbi.nlm.nih.gov/nucleotide/BY798997
http://www.ncbi.nlm.nih.gov/nucleotide/DA399174
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 Fig. 4.2: CCDC3 alternative mRNAs map. Representation of differential CCDC3 gene expression. Same 

sequences are in same colors. Exons size is in black, introns size in blue (bp). Arrows show transcription 

initiation. Introns are not in scale. 
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Fig. 4.3: OPTN and CCDC3 promoter regions under analysis. Gene sequences used to build the reporter 

gene constructs. Exons size depicted in black, introns in blue (bp). Arrows show the transcription initiation 

site. 
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4.1.2 OPTN and CCDC3 tissular expression 

 

OPTN and CCDC3 are widely expressed in several tissues; according to our results, 

OPTN gene is highly transcribed in muscle, pituitary gland and parathyroid, while CCDC3 gene 

in pituitary gland, nerve and adipose tissue (Figure 4.4). Kobayashi et al. (2010), after 

performing northern blot analysis, found that CCDC3 is highly expressed in the aorta 

(endothelial tissue) and in adipose tissue [16]. 

Based on our data, both OPTN and CCDC3 genes appear expressed in the same tissues 

but in different amounts, such as in pituitary gland, adipose tissue, nerve and heart (Figure 4.4). 

Apparently, the expression of one gene does not seem to exclude the transcription of the other. 

Besides this, from the results obtained we cannot tell which promoter has been used by the 

transcription machinery when the gene is expressed in a specific tissue. Probably, when OPTN 

is transcribed, the transcription machinery precludes the expression of CCDC3 gene from the 

same shared promoter, leaving the alternative promoter free to be accessed; in this scenario, the 

RNA polymerase may transcribe an alternative mRNA with a different 5’-UTR region, 

undergoing a diverse regulation [14]. 

Unfortunately, at this level of analysis we can only speculate upon a possible scenario, 

as unigene and other similar databases have a limitation: they collects tissue information from 

the ESTs in the databases, but they do not provide information about which transcripts, 

originated from the same gene, is being expressed in that given tissue; EST profiles, in fact, 

only show approximate gene expression patterns as retrieved from EST counts and cDNA 

library sources, as reported by sequence submitters. For the aforementioned reasons, the 

obtained data results incomplete and not totally accurate, but it still delivered a generic picture 

on the tissular distribution of the expressed genes under analysis.  
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Fig. 4.4: Tissular expression of the genes OPTN and CCDC3. Graphics obtained based on Unigene database. 

Values indicated as gene transcript units per million transcripts (TPM). 
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4.1.3 TFBSs prediction 

 

A list of the predicted transcription factor binding sites (TFBSs) was obtained by 

analysing the nucleotide sequences of the promoters with bioinformatics software (Table 4.5a 

and 4.5b). Three different online tools have been used (Alibaba, PROMO and Tfsitescan), and 

we selected and listed the TFs that were predicted by all of the three programs. 

 

Table 4.5a: Putative in silico predicted TFBSs in OPTN/CCDC3 promoter. Numbers represent the predicted 

occurrence of the binding site for each TF. 

 

 

 

Table 4.5b: Putative in silico predicted TFBSs in CCDC3 alternative promoter. Numbers represent the 

predicted occurrence of the binding site for each TF. 

 

 

 

TF Alibaba PROMO Tfsitescan

AP-1 1 9 14

AP-2αA 14 6 17

ATF 1 12 1

C/EBPα 10 7 2

C/EBPβ 1 4 2

CREB 1 9 1

Elk-1 1 9 2

GATA-1 4 6 1

HNF-3 1 8 6

NF-κB 4 12 19

PEA3 1 9 11

PR 1 7 1

PU.1 1 13 1

Sp1 82 10 160

T3R-β1 2 9 1

YY1 2 4 5

TF Alibaba PROMO Tfsitescan

AP-1 3 9 1

AP-2αA 7 6 10

c-Jun 1 8 1

ER 2 5 1

GATA-1 4 6 5

HNF-3 3 8 8

NF-κB 2 11 1

T3R-β1 1 9 1

YY1 1 4 3
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A map of the putative TFBSs, showing the specific sequences position in OPTN/CCDC3 

promoter and in CCDC3 alternative promoter sequence, was built based on the results obtained 

with the software Alibaba, in order to allow a spacial recognition of the TFs (Figure 4.6).  

We focused on analysing the function of this selected set of 16 TFs identified in the 

OPTN/CCDC3 promoter region and 9 TFs in the CCDC3 alternative promoter region.  

Activator protein 1 (AP-1) is a family of dimeric TFs composed of Jun, Fos or ATF 

(activating transcription factor) subunits, that bind to a common AP-1-binding site [33]; it 

regulates gene expression in response to cytokines, growth factors, stress, and bacterial or viral 

infections [34], and controls cellular processes including differentiation, proliferation, and 

apoptosis [35]; in bone development, AP-1 Fos/Jun subunits regulate osteoblasts and osteoclast 

maturation [71]. 

Activating enhancer binding protein 2 alpha A (AP-2αA) plays a key role in gene 

expression regulation in early development, apoptosis and cell-cycle, and tumorigenesis [36]; 

AP-2 also downregulates the expression of  Frizzled-1, responsible for osteoblasts and primary 

bone marrow stromal cells differentiation [72]. 

CCAAT-enhancer-binding proteins (C/EBPs), C/EBPα and C/EBPβ, are a ubiquitous 

TF family that promote gene expression by binding to the CCAAT (cytosine-cytosine-

adenosine-adenosine-thymidine) motif of the promoter [37]; moreover, C/EBPβ has a role in 

osteoporosis: the upregulation of a long isoform of C/EBPβ decreases the number of osteoclasts 

and slows down the osteoporotic process, while the upregulation of a short isoform of C/EBPβ 

increases the loss of bone mass [38]. 

cAMP response element-binding protein (CREB) binds to DNA motifs called cAMP 

response elements (CRE), and modulate the transcription of the gene [39]; CREB plays a role 

in neuronal plasticity, in long-term and spacial memory in brain [40]; overexpression of CREB 

is considered as a possible therapy for Alzheimer's disease [41]. 

ETS Like-1 (ELK-1) belongs to the E26 transformation-specific (ETS) family of TF, 

and is involved in long-term memory formation, Alzheimer's disease, drug addiction, 

depression, Down syndrome and breast cancer [42] [43].  

GATA-1 belongs to the GATA family, a group of TF able to bind to the DNA sequence 

guanosine-adenosine-thymidine-adenosine; the gene coding for GATA-1 is located in the X 

chromosome in humans and mice [44]; GATA-1 modulates the expression of genes involved 

in the maturation of blood cells, specifically erythroblasts into erythrocytes and thrombocytes 

[45]. 
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Fig. 4.6: Map of putative TFBSs in OPTN/CCDC3 promoter (above) and in CCDC3 alternative promoter 

(below). OPTN and CCDC3 exons are depicted in blue and in green, respectively. Map built based on the results 

obtained with AliBaba software.  
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Hepatocyte nuclear factors 3 (HNF-3) is a subfamily of HNF, mainly expressed in the 

liver and playing a role in the development of hepatic cells [46]. 

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a protein that 

controls DNA transcription and the production of cytokine; NF-κB is almost ubiquitous, it can 

be found in most of the tissues and it plays a role in cellular responses to stress stimuli, 

pathogens or adverse environmental conditions, such as presence of free radicals, heavy metals, 

ultraviolet irradiation, and oxidized low-density lipoproteins [47]; given its role into 

inflammatory response, NF-κB has been targeted for therapies against cancer and inflammatory 

diseases [48] [49]; furthermore, the deletion of intermediates of NF-κB pathway resulted with 

aberrant skeletal development, as NF-κB signaling affects RANK ligand-induced 

osteoclastogenesis [50], and mediates osteoblast differentiation and bone formation [51]. 

Polyomavirus enhancer activator 3 (PEA3) is another subfamily of the previously 

described ETS TFs, involved in organogenesis in mammals [52]. 

Progesterone receptors (PRs) are a family of ligand-activated TFs, part of the SR 

(steroid hormone receptor) subfamily of nuclear receptors; two isoforms (PR-A and PR-B) are 

obtained from the same gene; they can regulate the same or different (isoform-specific) target 

genes and show both ligand-dependent and independent activities; PRs are involved in the 

development of breast cancer [53]. 

The protein PU.1 is expressed in humans by the gene SPI1, and belongs to the ETS 

family of TFs; PU.1 binds to a purine-rich sequence of a promoter (PU-box), and regulates the 

alternative splicing of the target genes in synergy with other TFs [54]. 

Specific protein 1 (Sp1) is part of the Sp/KLF transcription factor family, and it is 

involved in several cellular functions by interacting with other TFs [55] [56] [57] [58]. 

Thyroid hormone receptor β1 (T3R-β1) is an isoform of T3R, a family of ligand-

inducible, hormone-regulated transcription factors; β-1 isoform, together with α-1 and β-0, 

repress target gene expression in absence of thyroid hormone [59]. 

Yin yang 1 (YY1) belongs to the GLI-Kruppel family of zinc-finger TFs; it regulates 

several  genes during cell growth, it is required for the correct development of mammalian 

embryos, and it is regulated by acetylation (by p300 and P300/CBP-associated factor) and 

deacetylation (by histone deacetylases) [60]; it has been proved to have oncogenic potential 

[61], and plays a role in intellectual disability syndrome [62]. 

The transcription factor c-Jun, together with c-Fos, dimerizes constituting the TF AP-1 

(activator protein 1); c-Jun was the first oncogenic TF discovered [63]; it appears overexpressed 

in cancer, suggesting it can be targeted during cancer therapy [64] [65]. 
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Estrogen receptors (ERs), as PRs, are hormone-ligating receptors, that once activated 

are able to enter the nucleus and bind gene promoters to work as TF [66]; ER class is formed 

by ERα, found in in endometrium, breast cancer cells, ovarian stromal cells, efferent ducts and 

hypothalamus [67], and ERβ, in ovarian granulosa cells, kidney, brain, prostate, endothelial 

cells, heart [68], and bone [69]. 

By analysing our results (Table 4.4 and 4.5), and comparing the putative TFBSs 

available in the two promoters, we deducted that AP-1, AP-2αA, GATA-1, HNF-3, NF-κB, 

T3R-β1 and YY1 TFs have putative binding sites in both CCDC3/OPTN core promoter and 

CCDC3 alternative promoter; on the other hand, ATF, C/EBPα, C/EBPβ, CREB, Elk-1, PEA3, 

PR, PU.1 and SP1 are putatively binding only in the OPTN/CCDC3 promoter region, while just 

c-Jun and ER appear to have a putative TFBSs exclusively in the CCDC3 alternative promoter 

region. 

Furthermore, AP-1, AP-2, C/EBPβ, ERβ and NF-κB are playing a role in skeletal 

development and in diseases related to the bone tissue [71] [72] [38] [69] [50] [51]. 

  

4.2 Luciferase Assay results 

 

4.2.1 OPTN/CCDC3 promoter constructs show different luciferase activity 

 

We transfected the gene reporter pGL3 constructs containing the DNA fragments of our 

interest (Figure 4.7) into HEK 293 cells, and measured their luciferase activity, proportional to 

the amount of luciferase protein produced. We designed our constructs trying to cover different 

parts of the promoter region, in order to understand which portion of the vast sequence can have 

a stronger promoter activity and therefore a higher impact in the genes expression.  

Constructs F9R12-Luc and Luc-F9R12 are characterized by the same nucleotide 

sequence but inserted in the opposite orientation, one for OPTN and the other for CCDC3; they 

both are 1252 bp long, and embrace a bigger potential promoting sequence. 
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Fig. 4.7: OPTN/CCDC3 promoter constructs. Graphical representation of the pGL3 constructs created 

from the OPTN/CCDC3 promoter. Emphasis put on construct size, location, and in silico predicted     

NF-κB putative binding sites. 
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The luciferase activity of all of the OPTN/CCDC3 promoter constructs show statistical 

significance when compared to negative control, which demonstrates that all of the constructs 

created contain functional promoter sequences (Figure 4.8). 

Fig. 4.8: Luciferase activity of OPTN/CCDC3 promoter pGL3 constructs show statistical significance when 

compared to negative control. a. Comparison of luciferase activity between Luc-F9R12, F9R12-Luc and negative 

control. b. Comparison of luciferase activity between Luc-F18R20 and negative control. c. Comparison of 

luciferase activity between F9R2-Luc and negative control. d. Comparison of luciferase activity between Luc-

F18R9 and negative control. **** indicates a P value ≤ 0.0001 (one-way ANOVA with Turkey’s multiple 

comparisons test). 

 

Constructs F9R12-Luc and Luc-F9R12, with 1252 bp, respectively in OPTN and 

CCDC3 direction, showed comparable luciferase activity results, suggesting that the same 

region is functional in both directions (Figure 4.9). The results exhibited that both F9R12-Luc 

and Luc-F9R12 constructs were sufficient for the expression of the firefly luciferase gene 

regardless of their orientation. On the whole, the results demonstrated that the regulation of the 

OPTN and CCDC3 gene expression could be coordinated through a bidirectional promoter 

(Figure 4.9). 

 

Fig. 4.9: Luciferase activity comparison of F9R12-Luc and Luc-F9R12 constructs. Both the constructs were 

sufficient for the expression of the firefly luciferase gene regardless of their orientation. **** indicates a P value 

≤ 0.0001 (one-way ANOVA with Turkey’s multiple comparisons test). 

 



 

31 

 

In order to assess the presence of positive or negative regulatory elements within each 

considered sequence, luciferase activity was performed in stepwise deletion mutants. 

By comparing the constructs in the OPTN direction, we noticed that F9R12-Luc (size: 

1252 bp) exhibited a much higher luciferase activity when compared to the activity registered 

by  F9R2-Luc (326 bp) (see Figure 4.10). These results can be explained by the existence of 

elements within F9R12-Luc sequence that might strengthen the functionality of the promoter 

region, suggesting that positive regulators may bind in the deleted region (sequence between 

R2 and R12 in Figure 10). 

 

 

Fig. 4.10: Luciferase activity comparison of F9R12-Luc and F9R2-Luc constructs. For the constructs in the 

direction of OPTN gene, F9R12-Luc shows a much higher luciferase activity when compared to the shorter 

construct F9R2-Luc, possibly because positive regulators bind in the sequence between R2 and R12. **** 

indicates a P value ≤ 0.0001 (one-way ANOVA with Turkey’s multiple comparisons test). 

  

When analysing the constructs in the CCDC3 direction, Luc-F9R12 (1252 bp) showed 

the highest luciferase activity, significantly higher when compared to the luciferase activity 

registered by the longer construct Luc-F18R20 (1520 bp) (see Figure 4.11). These results can 

be explained either by the fact that Luc-F9R12 sequence contains binding sites for positive 

regulators (sequence between F9 and F18) able to upregulate the promoter activity, lacking in 

Luc-F18R20, or that part of the sequence of Luc-F18R20 (between R12 and R20) features 

binding sites for negative regulators that downregulate the promoter activity, missing in Luc-

F9R12.  

In order to clarify the situation, a new fragment covering the region between F18 and 

R12 (Luc-F18R12), should be created and its luciferase activity assessed to be compared with 

the activity of the studied fragments. 
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Fig. 4.11: Luciferase activity comparison of Luc-F18R9, Luc-F18R20 and Luc-F9R12 constructs. Luc-

F9R12 shows the highest luciferase activity for the constructs in CCDC3 direction. **** indicates a P value ≤ 

0.0001 (one-way ANOVA with Turkey’s multiple comparisons test). 

 

 

By comparing the constructs Luc-F18R9 and Luc-F18R20, we noticed that the 

luciferase activity of the first sequence is much inferior than the second. Apparently, the deleted 

sequence belonging to Luc-F18R20 (between R9 and R20) contains binding sites for positive 

regulators, as stated previously. Moreover, the sequence Luc-F18R9, despite being the shortest 

with 187 bp, still features a significantly increased luciferase activity when compared to the 

negative control (pGL3 empty vector) (Figure 4.8d), proving that it is part of a fully functional 

promoter region. 

 

4.2.2 NF-κB positively regulates OPTN/CCDC3 promoter activity 

 

We co-transfected HEK 293 cells with pGL3 vectors containing OPTN/CCDC3 

promoter sequences and NF-κB isoforms p50 and p65 expression vectors, in order to check in 

which way the transcription factor NF-κB could affect the luciferase activity of the promoter 

constructs.  

Construct F9R12-Luc features two predicted binding sites for NF-κB, and its luciferase 

activity is clearly affected in the presence of the protein expression vectors (Figure 4.12). NF-

κB has been previously proved to effectively bind in this region and act as a regulator of the 

OPTN gene expression, by Sudhakar et al. (2009) [17]. 
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Fig. 4.12: Luciferase activity of construct F9R12-Luc in the presence of NF-κB. Increased luciferase activity 

registered when co-transfected with p50 and p65 NF-κB isoforms. **** indicates a P value ≤ 0.0001 (one-way 

ANOVA with Turkey’s multiple comparisons test). 

 

 

Construct F9R2-Luc, on the other hand, when co-transfected with NF-κB, did not show 

any significant variation in the luciferase activity compared with the empty expression vector; 

therefore, NF-κB does not seem to be involved in the regulation of this region of the promoter; 

the results can be explained with the lack of a predicted NF-κB binding site inside its relatively 

shorter sequence (Figure 4.13). 

 

Fig. 4.13: Luciferase activity of construct F9R2-Luc in the presence of NF-κB. No luciferase activity variation 

registered when co-transfected with p50 and p65 NF-κB isoforms. ns indicates a non-significative P value > 0.05 

(one-way ANOVA with Turkey’s multiple comparisons test). 
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When comparing the luciferase activity results of the other co-transfected vectors 

(Figure 4.14), we observed that constructs Luc-F9R12, Luc-F18R9 and Luc-F18R20 showed 

significantly increased luciferase activity when co-transfected with NF-κB expression vectors, 

suggesting that NF-κB plays a role as a transcriptional regulator in these regions by potentially 

binding to one (or more) of the TFBSs predicted for NF-κB in these regions (see Figure 4.7). 

 

Fig. 4.14: Luciferase activity of constructs Luc-F9R12, Luc-F18R9 and Luc-F18R20 in presence of NF-κB. 

All of the constructs (a, b and c) showed an increased luciferase activity when co-transfected with p50 and p65 

NF-κB isoforms. ** indicates a P ≤ 0.01, and *** a P ≤ 0.001 (one-way ANOVA with Turkey’s multiple 

comparisons test). 

 

 

4.2.3 CCDC3 alternative promoter shows a high luciferase activity 

 

CCDC3 AP1-Luc sequence (Figure 4.15) functions as a very strong promoter element 

due to its very high level of luciferase activity shown during the luminescence assay (Figure 

4.16). 

 

 

Fig. 4.15: Map of CCDC3 alternative promoter pGL3 constructs. Graphical representation of the constructs 

created from CCDC3 alternative promoter. Emphasis put on in silico predicted NF-κB putative binding sites. 

Primers used to build the constructs are depicted in purple.  
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The experimental results validated our initial hypothesis on the existence of an 

alternative promoter for the gene CCDC3 (Figure 4.16). 

Fig. 4.16: Luciferase activity of AP1-Luc compared with pGL3 basic (C-) and pGL3 control (C+) . AP1-Luc 

showed a very high luciferase activity. **** indicates a P value ≤ 0.0001 (one-way ANOVA with Turkey’s 

multiple comparisons test). 

 

Shorter pGL3 constructs of CCDC3 alternative promoter, named AP2 (656bp) and AP3 

(373bp), are in process to be created by using a different set of primers (Figure 4.15), in order 

to assess which part of the CCDC3 alternative promoter is in fact essential for its functionality. 

 

4.2.4 NF-κB does not affect CCDC3 alternative promoter activity 

 

Despite acting as a very strong promoter element, CCDC3 alternative promoter (AP1) 

sequence did not significantly vary the luciferase activity when co-transfected with NF-κB (p50 

and p65) expression vectors, indicating that the predicted binding sites for NF-κB in this region 

are not functional, or that a possible molecular mechanisms exists that precludes the interaction 

TF-DNA (Figure 4.17).  

Fig. 4.17: Luciferase activity of construct AP1-Luc in presence of NF-κB. No luciferase activity variation 

registered when co-transfected with p50 and p65 NF-κB isoforms. ns indicates a non-significative P value > 0.05 

(one-way ANOVA with Turkey’s multiple comparisons test). 
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Note how there is no significant difference when comparing the luciferase activity of 

AP1-Luc construct co-transfected with pCMV (empty expression vector) and with p50 plus p65 

(NF-κB expression vectors). 
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V. Conclusions and future perspectives 
 

 

 The results of the analysis on the transcriptional activity of OPTN and CCDC3 human 

genes gave us to the opportunity to have a wider picture on the regulation of the human genes 

OPTN and CCDC3 at a transcriptional level. The luciferase gene-reporter assay gave us an 

answer on the role of the analyzed sequences identified as promoter elements. 

Essential to this work was the initial contribution of the in silico analysis, performed 

through bioinformatics tools; it gave us important early results from which we could draw an 

overall picture of the general structure of the genes; this supplied us of a solid starting point to 

propose the existence, later confirmed by gene reporter luciferase assay, of a CCDC3 alternative 

promoter, and to develop further theories on the transcriptional regulation of the gene; in silico 

early results allowed us to choose the sequences that would be later cloned into the reporter 

vector, in a much more elaborated and time-costing process, finalized with the luciferase assay. 

Thus, in our opinion, bioinformatics and, in general, early in silico analysis represent a very 

powerful tool to be employed during the initial phases of genes analysis, especially when the 

available information in databases or online gene browsers on a specific gene are scarce, as it 

was for CCDC3. 

The analysis work is still on-going, and not fully completed. More promoter-containing 

constructs are in process to be created and analysed, and consequentially more sequences to be 

investigated; as an example, shorter versions of the analysed CCDC3 alternative promoter (AP) 

construct, previously mentioned as AP2 and AP3 in this work, are still in progress to be built, 

specifically to be sub-cloned in empty pGL3 vectors, in order to be later transfected into 

cultured cells and to evaluate their promoter activity through the gene-reporter luciferase assay. 

The quantification of luminescence given by such shorter AP constructs, respectively 

656 bp (AP2) and 373 bp long (AP3) (see Figure 4.12), will help us to define which portion of 

the original 1 kb-long CCDC3 alternative promoter sequence is actually responsible for the 

strong promoter activity registered. 

Furthermore, the action of different TFs, or their combined activity with one or more 

TF expressing vectors in co-transfected cells, are yet to be tested with the already existing 

constructs, aiming to unveiling further existing mechanisms involved in the complex protein-

DNA regulatory interaction; it would be interesting to test more combinations of TFs and 

promoter constructs to see how the TF-DNA interaction can vary in presence of different 

binding sequence motifs, and how realistic in silico putatively predicted TFBS are in foreseeing 

the activity of a TF in regulating the expression of the gene. 
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Fig. A1: pCR 2.1-TOPO® plasmid maps. Putting emphasis on the poly-linker site sequence with the restriction 

enzyme sites, the phagic origin of replication (f1 ori), the genes of antibiotic resistance (KanR and AmpR), the E. 

coli origin of replication (pUC ori), the promoter for the lacZ gene (P lac), and the lacZ gene itself coding for the 

β-galactosidase enzyme. 
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Fig. A2: pGL3-Basic® vector maps. The luc+ gene encodes for the firefly luciferase protein. AmpR provides 

ampicillin resistance; f1 ori is the phagic origin of replication; ori is the origin of replication in E. coli. Note the 

polylinker site located upstream the luc+ gene. 

 

 

 

 

 

 

 

 

 

Fig. A3: pGL3-Control® vector maps. The luc+ gene encodes for the firefly luciferase protein. AmpR provides 

ampicillin resistance. SV40 is a strong viral promoter, conferring the vector the function of positive control. 
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Fig. A4: pRL-TK ® vector maps. The Rluc gene encodes for the Renilla luciferase protein. AmpR provides 

ampicillin resistance. HSV TK is a strong viral promoter, granting the expression of this vector. 
 

 
 


