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ABSTRACT 

 

Despite the remarkable knowledge acquired in the formation of the heart during 

embryonic development and the molecular mechanisms involved in heart function and 

physiology, there is no efficient way to prevent adult heart disease and congenital heart disease 

(CHD). The transcriptional modulator Cited2 is required for normal embryogenesis of mice 

and humans, particularly for heart development. Indeed, mouse lacking Cited2 alleles die in 

utero displaying many cardiovascular defects, and mutations in human CITED2 have long been 

associated with CHD. However, the exact role and the molecular mechanisms involving 

Cited2 during these processes are largely unknown. 

Using mouse Embryonic Stem Cells (ESC) as a model system, we have established that 

the depletion of Cited2 at the onset of differentiation resulted in a decline of ESC ability to 

generate cardiac cells. These cardiogenic defects in Cited2-depleted cells were rescued by 

treatment with a recombinant CITED2 protein. 

To further investigate the mechanisms caused by the loss of Cited2 in pluripotency and 

differentiation, we compared the gene expression profiles of control cells and Cited2-depleted 

cells upon differentiation. We determined that loss of Cited2 expression delays the expression 

of early mesoderm transcription factors and cardiopoietic factors. 

We found that the secretome of Cited2 overexpressing ESC is enough to restore the 

emergence of beating colonies in Cited2 depleted cells, upon differentiation. We identified 

WNT5a and WNT11 as two of the proteins enriched in the Conditioned Medium and crucial 

for rescuing cardiomyocyte differentiation defects caused by Cited2 depletion. 

Our results point that Cited2 is a co-transcriptional activator of Wnt5a and Wnt11 and 

that both proteins can restore cardiogenesis in Cited2-depleted cells. Additionally, using 

zebrafish as a model system, we demonstrated that WNT5a and WNT11 also rescued the 

development defects caused by Cited2 depletion in vivo. 

Collectively, our results show that WNT5a and WNT11 rescue cardiogenic defects 

caused by Cited2 depletion both in vitro, as well as in vivo. 

 

Keywords: CITED2, WNT5a, WNT11, Cardiovascular Defects, Embryonic Stem Cells. 
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RESUMO 

 

 Apesar do notável conhecimento adquirido sobre o desenvolvimento cardíaco, as 

doenças cardiovasculares e as doenças congénitas cardíacas (CHD), continuam a ser a 

principal causa de morte no mundo tanto nos adultos como em recém-nascidos. Estima-se 

que cerca de 1% da população mundial seja portadora de uma forma de CHD e, espera-se 

que este número aumente substancialmente nas próximas décadas. Um ponto crucial do 

desenvolvimento cardíaco é a expressão primorosamente controlada de fatores de 

transcrição e vias de sinalização cardíacas. Pequenos desvios na estrita expressão de fatores 

de transcrição e das vias de sinalização cardíacas, podem resultar num mau desenvolvimento 

do coração e no aparecimento de CHD, ou em casos mais extremos à morte do embrião 

ainda no útero. Dentro dos fatores de transcrição importantes para a formação do coração 

destacam-se inicialmente os genes importantes para a regulação da pluripotência OCT4, 

SOX2 e NANOG. Após a gastrulação, as células da mesoderme começam inicialmente a 

expressar BRACHYURY, MIXL1 e EOMES, e mais tarde o gene da mesoderme cardiaca 

MESP1. Por último, os progenitores cardíacos começam a expressar os fatores de transcrição 

cardíacos GATA4, NKX2.5, HAND2, TBX5, MEF2C e ISL1. As principais vias de sinalização 

cardíacas são a ACTIVIN/NODAL e as BMP, ambas pertencentes à via TGFβ, a via canónica 

e não canónica da WNT e por último, a via FGF. 

 Um ótimo modelo, in vitro, para se estudar os mecanismos moleculares, responsáveis 

pela formação do coração, são as células estaminais embrionárias (ESC). Algumas das 

características que tornam as ESC um bom modelo para estudar o desenvolvimento cardíaco 

são, o fato de se dividirem indefinidamente e de se diferenciarem em todas as células do 

adulto, após o correto estímulo, incluindo cardiomiócitos com a capacidade de produzirem 

focos de contração. 

O fator de transcrição Cited2, é importante para o desenvolvimento cardíaco, uma 

vez que a remoção de ambos os alelos de Cited2 no ratinho é letal ainda no útero, enquanto 

que mutações pontuais na proteína CITED2 foram previamente associadas com o 

aparecimento de CHD. No entanto, a função de CITED2 no desenvolvimento cardíaco e no 

aparecimento das CHD é ainda bastante desconhecida. Como tal, o objetivo deste trabalho 

foi estudar o papel de Cited2 durante o processo de diferenciação cardíaco de ESC. 

Para estudar o efeito de depleção de Cited2, durante a diferenciação cardíaca, 

utilizamos no laboratório uma linha de ESC com “Knock-out” condicional de Cited2, que 
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quando suplementado com 4-hydroxytamoxifen, no meio de cultura, resulta na excisão e 

depleção de Cited2. Começamos por ver que Cited2 é expresso ao longo do processo de 

diferenciação cardíaca, sendo a sua expressão mínima no dia 2 de diferenciação. De seguida, 

vimos que a depleção de Cited2, no início da diferenciação, reduz a capacidade das ESC de se 

diferenciarem em cardiomiócitos. Para demonstrar que os defeitos cardíacos eram causados 

pela falta de Cited2, tratámos as ESC com uma proteína recombinante CITED2. Os resultados 

obtidos indicam que esta proteína reverte os defeitos cardíacos quando adicionado no 

segundo dia de diferenciação.  

 Para perceber melhor os mecanismos subjacentes à perda de função de CITED2, 

comparámos o perfil genético de células controlo (com Cited2) e células sem Cited2 no início 

da diferenciação. Neste sentido, realizámos uma análise de “microarrays”, e observámos que 

as células sem Cited2 têm vários genes, importantes para a diferenciação em endoderme e 

mesoderme desregulados. Comprovámos que a depleção de Cited2 atrasa a expressão de 

fatores de transcrição da mesoderme (Brachyury, Mixl1) e da mesoderme cardíaca (Mesp1 e 

Eomes). Observámos também, que a depleção de Cited2 inibe a expressão de várias vias de 

sinalização cardíacas, o que nos fez colocar a hipótese de que a deficiência cardíaca, causada 

pela falta de Cited2, resultaria da desregulação da expressão de proteínas extracelulares. 

Para o estudo de proteínas extracelulares considerámos o uso de Meio Condicionado 

(CM), ou seja, recorremos ao meio de cultura que contém, entre vários componentes, 

proteínas secretadas pelas células (secretoma). Portanto, através do secretoma de ESC, que 

sobre expressam Cited2, observámos que este é suficiente para recuperar os defeitos 

cardíacos causados pela falta de Cited2. Vimos também que o CM é crítico para a correta 

expressão do fator de transcrição Brachyury. Ao imunoprecipitarmos o CM contra WNT5a e 

WNT11, seguido de um Western Blot, identificámos que as proteínas WNT5a e WNT11 se 

encontravam enriquecidas no CM proveniente das células que sobre expressavam Cited2. 

Vimos também que estas duas proteínas eram críticas no CM, uma vez que quando as 

depletavámos, víamos que o CM perdia a sua capacidade de recuperar os defeitos 

cardiovasculares das células sem Cited2.  

A WNT5a e a WNT11 são duas proteínas pertencentes à via não canónica da WNT 

e que cooperam para promover o desenvolvimento cardíaco, mais propriamente, para 

promover a formação do campo secundário cardíaco. Os nossos resultados, in vitro, apontam 

para que Cited2 seja um co-ativador transcricional do Wnt5a e do Wnt11. Mostrámos, que 

existe uma sinergia entre a WNT5a e WNT11 para corrigir os defeitos cardíacos causados 
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pela falta de Cited2 in vitro, não só em termos de diferenciação celular e surgimento de focos 

de contração, mas também para a correta expressão de fatores de transcrição da mesoderme 

e da mesoderme cardiaca. 

Adicionalmente, para estudar a perda de função de Cited2 in vivo, estabelecemos um 

sistema de “Knockdown” de Cited2 no peixe zebra (Danio renio). Cited2, é um gene conservado 

entre os vertebrados e, portanto, tal como acontece nos mamíferos, Cited2 é necessário para 

o correto desenvolvimento do peixe zebra. Através das experiências realizadas, vimos que a 

falta de Cited2 atrasa o desenvolvimento dos embriões às 24 horas pós fertilização (hpf), reduz 

o número de batimentos médio por minuto às 48 hpf e, causa letalidade e o surgimento de 

defeitos cardíacos em embriões de peixe zebra às 72hpf. Demonstrámos que estes defeitos 

eram específicos de Cited2, uma vez que conseguimos recuperar a maioria dos defeitos 

causados pela falta de Cited2, quando usámos a proteína recombinante CITED2. Por último, 

como acontece in vitro, a combinação da WNT5a e da WNT11 é capaz de compensar a falta 

de Cited2, também, in vivo. 

Em suma, os nossos resultados indicam que a WNT5a e a WNT11 corrigem, in vitro 

e in vivo, os defeitos cardíacos causados pela perda de Cited2, sendo o nosso objetivo, no 

futuro, desenvolver uma nova opção terapêutica para reduzir o número de pacientes com 

CHD. 

 

  

 

Palavras-chave: CITED2, WNT5a, WNT11, Defeitos Cardíacos, Células estaminais 

embrionárias.  
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CHAPTER 1 

 

GENERAL INTRODUCTION 

 
“It’s a world full of children that die far, far before their time, in the arms of their parents as 

they sob and they mourn and they curse the giant that is congenital heart disease.” 

 

 by Lexi Behrndt 
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1.1 The Heart 
 

The heart is a midline structure located in the superior and posterior region of the 

mediastinum. The heart is the first organ to form and ensures the pumping of nutrients and 

waste removal as soon as the body reaches a point where passive diffusion is no longer enough 

to ensure the survival of the embryo (1).  

 

1.1.1 Congenital Heart Disease 

 

Cardiovascular diseases are the leading cause of death and morbidity in developed 

countries (2, 3). Cardiac complications are a complex pathology, in which multi-genetic and 

environmental factors often interplay, thus making them difficult to predict and prevent. 

Congenital heart disease (CHD), refers to structural and functional anomalies of the 

heart that occur prior to birth. Early heart defects are a common cause of mortality and it is 

expected that nearly 1% of newborns manifest some form of CHD (4). Worryingly, these 

numbers do not take into consideration the embryos or fetus which are lost before birth. In 

fact, it is estimated that nearly 30% of the miscarriages, in developed countries, are due to 

heart defects (5). In the last decades, novel surgical procedures and advances in diagnoses 

have drastically decreased the number of deaths due to CHD (6). Nonetheless, many children 

and adults with heart defects need lifelong medical surveillance and, this raises new issues such 

as the increased risk for the offspring of patients with a CHD to contract a CHD. 

 

1.1.2 Mutations in Congenital Heart Disease 

 

CHD are caused by a combination of genetic and environmental factors. 

Environmental factors are usually associated with maternal exposure to environmental 

teratogens or metabolic disorders (7, 8). The genetic causes of CHD are diverse, but 

chromosomal aneuploidy remains the largest genetic cause of CHD. For example, nearly half 

of the individuals with Trisomy 21 or Turner Syndrome, manifest some form of CHD (9, 10).  
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More recently, it was found that cardiac defects are not necessarily due to big global 

changes in the genomic content but rather from an altered expression dosage of specific genes 

(11). A good example is the deletion found in the chromosome 22q11 syndrome, also known 

as the DiGeorge syndrome. Although more than 30 genes are involved in the DiGeorge 

syndrome, studies have shown that the cardiac defects were caused by the loss of T-box 

(TBX)1 gene. Tbx1 is important for proper cardiac development, and its haploinsufficiency 

matches the defects observed in patients and animals suffering from DiGeorge syndrome (12, 

13).  

 

Table 1.1  Most common types of CHD worldwide (14). 

Types Description Prevalence 

Coarctation of 
Aorta (CoA) 

Narrowing of the aorta, resulting in a reduced flow of blood 
throughout the body 5% 

Atrial Septal 
Defects (ASD) Anomaly in the wall between the left and right atriums. 13% 

Tetralogy of Fallot 
(TOF) 

Combined effects of PSt, VSD, RV hypertrophy and overriding 
aorta (aorta receives blood from both RV and LV) 5% 

Patent Ductus 
Arteriosus (PDA) 

Failure in closure of the ductus arteriosus. Ductus arteriosus is a 
blood vessel that connects the pulmonary artery to the aorta which 

closes at birth. 
10% 

Pulmonary Stenosis 
(PSt) 

Narrowing between the RV and the pulmonary artery which results 
in a reduced flow of blood to the pulmonary artery. 8% 

Aortic Stenosis 
(AS) 

Narrowing of the aortic valve, resulting in a reduced flow of blood 
throughout the body 4% 

Ventricular Septal 
Defects (VSD) The anomaly in the wall between the left and right ventricle. 34% 

 

Thus, CHD is usually associated with genes which function is essential for cardiac 

development. As such, non-syndromic CHD patients are quite likely to have mutations either 

in a transcription factor or a signalling pathway involved in cardiogenesis. The best 

characterized cardiac defects and their worldwide prevalence are presented in Table 1.1, and 

the most common and critical mutations in transcription factors or signalling molecules 

associated with these defects are presented in Figure 1.1. 
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Figure 1.1 Common gene mutations in CHD patients and their phenotype. Blue Box 

Transcription Factors. Orange Box Signalling Pathways. Abbreviations: CoA, Coarctation of Aorta; ASD, Atrial 

Septal Defects; TOF, Tetralogy of Fallot; PDA, Patent Ductus Arteriosus; PSt, Pulmonary Stenosis; AS, Aortic 

Stenosis; VSD, Ventricular Septal Defects. Adapted from (11). 

 

1.1.3 The Mammalian Development 

 

Mammalian embryogenesis begins with the totipotent unicellular zygote, which can 

form both fetal and extraembryonic lineages. While the fetal cells are responsible for 

originating most of the cells that constitute the adult body, extraembryonic tissue nourishes 

the fetus and provide patterning signals that direct embryogenesis (15). The zygote continues 

to divide and eventually forms a structure of cells called blastocyst. The blastocyst is a 

spherical structure delimited by cells forming an outer structure, termed the trophectoderm 

(TE), and cells gathering inside of this structure termed the inner cell mass (ICM). The ICM is 

composed by bipotent progenitor cells that can give rise to the epiblast and the primitive 

endoderm.  

As the blastocyst expands and implants into the uterine wall, it undergoes dramatic 

morphological changes. At this point, the uncommitted epiblast cells undergo lineage 

specification during gastrulation. Gastrulation is the developmental process through which the 

three fetal germ layers, definitive endoderm, mesoderm, and definitive ectoderm are formed. 

(Figure 1.2) (16).  
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Figure 1.2 Early steps of development. A) Totipotent cells go through successive cell divisions until the 

development of the blastocyst. Epiblast cells are isolated from the ICM of the blastocyst. B) Post uterine 

implantation epiblast cells differentiate into the three germ layers: ectoderm, mesoderm, and endoderm. These 

three germ layers are responsible for the development of most of the tissues that comprise the adult body. 

Image adapted from (17). 

 

Cells derived from the definitive endoderm, hereafter simply referred as endoderm, 

originate many of the internal parts of the body, including the gastrointestinal tract, the liver, 

the pancreas, and other glands. On the other hand, the definitive ectoderm, hereafter referred 

simply as ectoderm, gives rise to the epidermis, the outermost skin layer, mammary glands, 

and the central and peripheral nervous system. 
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 The third and last germ layer is the mesoderm, which is divided into three major areas: 

the paraxial, intermediate and lateral plate. The paraxial mesoderm is the area closest to the 

primitive streak (PS) and gives rise to the somites and the muscles. The intermediate 

mesoderm gives rise to the urogenital system. On either side of the intermediate mesoderm 

resides the lateral plate mesoderm. The lateral plate mesoderm splits into somatic and 

splanchnic layers. The somatic mesoderm forms the connective tissue of the body wall while, 

the splanchnic mesoderm (SpM) forms the visceral layer, blood vessels and, most of the cells 

of the heart. 

 

1.1.4 The development of the human heart 

 

 At around 18 days post-fertilization (dpf) in humans, two tubes called endothelial tubes 

will fuse to form the primitive heart tube. At 20dpf the linear heart tube is composed of an 

inner cell layer called the endocardium and an outer cell layer called the myocardium where 

the first beating cells emerge. At 23dpf the cardiac tube starts bending and the cardiac looping 

occurs so that the mature outflow tract (OT) and inflow tract (IT) are aligned anteriorly. At 

this stage, the heart is composed of a primitive right ventricle (RV), a primitive left ventricle 

(LV) and a single primordium atrium. As the primitive heart tube elongates, it begins to fold 

eventually forming an S shape. The heart becomes complete at the end of the fifth week of 

development (Figure 1.3) (1, 18, 19). Apart from proepicardium cells, derived also from the 

SpM, and cardiac neural crest cells (CNCC), derived from the ectoderm, all structural cells 

present in the main heart derive from a common cardiac progenitor cells (CPC). The CPC 

can originate three different types of cells: cardiomyocytes, endothelial cells and smooth 

muscle cells (20). The heart is formed of three layers: the endocardium, the myocardium and 

the epicardium. The innermost layer is the endocardium where endothelial cells, some 

smooth muscle cells, and CNCCs can be found. The myocardium is mostly composed of 

cardiomyocytes, while the outermost layer, the epicardium, is composed of proepicardium 

cells (21). Proepicardium cells are multipotent cells that contribute to the development of the 

epicardium, but can also differentiate into fibroblasts, cardiomyocytes and coronary vessels 

(22). On the other hand, CNCC, of ectoderm origin, contributes to the development of the 

aorta and pulmonary trunk (21). 
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Figure 1.3 Embryology of the human heart. A) After gastrulation two pools of CPC will give to the heart: 

the FHF (red) and the SHF (green). B) Migration of the FHF progenitors to form the primitive heart tube while 

the SHF progenitors are proliferating. C) Migration of the SHF progenitors. D) Bending and looping of the heart. 

The different chambers of the heart start to be evident. The contribution of the cells of the proepicardium and 

cardiac neural crest cells to the development of the heart. E) The heart becomes complete at 35 dpf. 

Abbreviations: FHF, First Heart Field; SHF, Second Heart Field; RV, Right Ventricle; LV, Left Ventricle; OT, 

Outflow Tract; AO, Aorta; PT, Pulmonary Trunk; RA, Right Auricula; LA, Left Auricula; CNCC, Cardiac Neural 

Crest Cells; Epi, Epicardium, Adapted from (23).  

 

1.1.5 First Heart and Second Heart Field 

 

The embryonic heart was initially thought to derive from a unique population. This 

idea was first challenged in 1977 when a research group found that the OT region did not 

derive from the initial cells that comprise the heart tube (24). However, it was only in 2001 

that three distinct groups, using different cell lineage tracking methods, confirmed the 

existence of two main and distinct groups of CPC: the progenitors derived from the first 

heart field (FHF) and the progenitors derived from the second heart field (SHF). (25-27). 
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The FHF refers to the initial CPC that differentiate to form the initial heart tube. The 

SHF refers to the second wave of CPC that do not differentiate until the linear tube starts 

looping. As soon as the FHF progenitors migrate, the SHF progenitors are maintained in a 

proliferative state without differentiating. This process is tightly regulated by a specific set of 

transcription factors and signalling molecules. The cells derived from the FHF will later 

contribute to the development of the LV and the atria. On the other hand, the SHF originates 

the RV, OT and will also contribute to the development of the atria (Figure 1.3). 

Interestingly, the segregation between FHF and SHF progenitors has been reported to 

occur very early during gastrulation. Indeed, clonal analysis of cardiovascular progenitors in a 

temporally controlled manner during gastrulation showed two temporally distinct pools of 

progenitors which are already committed either to FHF or SHF (28). 

The first gene identified to play a critical role in the SHF was the gene encoding the 

transcription factor ISLET1 (ISL1) (29). Lineage tracing analysis using an Isl1-CRE driver system 

in mice showed, that Isl1+ cells contributed to the development of the OT, RV, and Atria 

(30). Lack of ISL1 results in structures, derived from the SHF, failing to form while structures 

from the FHF were not affected (29). Subsequent studies have provided evidence that low 

levels of ISL1 expression are also present in the FHF (31). Even so, ISL1 remains a key 

regulator and marker of the SHF cells. 

Cells of the SHF are initially highly proliferative to ensure an expansion of CPC. This 

balance between proliferation and differentiation is maintained by signalling pathways. 

Fibroblast Growth Factor (FGF), canonical Wnt and Hedgehog (Hh) signalling pathways have 

been shown to promote the proliferation of CPC. Meanwhile Bone Morphogenic Proteins 

(BMP), non-canonical Wnt and Notch have an opposite effect and force the differentiation 

and maturation of the cells (32, 33) (Figure 1.4). 
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Figure 1.4 Pathways involved in SHF proliferation and differentiation. Hedgehog (Hh), Fibroblast 

growth factor (FGF) and Wnt β-catenin lead to SHF proliferation while Notch, BMP, and Non-canonical Wnt 

lead to SHF differentiation. Adapted from (34). 
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1.2 Molecular Mechanism in Cardiogenesis 
 

The mammalian development is a tightly regulated spatiotemporal process. The molecular 

mechanisms involved in cardiogenesis are very well conserved across mammals both in vitro 

and in vivo. In this chapter, we expose both the main transcription factors as well as the 

signalling pathways involved in cardiogenesis. 

 

1.2.1 Transcription Factors 

 

A transcription factor is a protein that controls the transcription of genes by binding 

to a specific deoxyribonucleic acid (DNA) sequence. The transcription factors may act as 

activators or repressors by enabling or disabling the ability of the ribonucleic acid (RNA) 

polymerase to bind to a specific gene. Here, we focus our attention on the most important 

transcription factors at specific time points for the establishment and maintenance of 

pluripotency, mesoderm specification and cardiac differentiation (Figure 1.5). 

 

 

Figure 1.5 Key transcription factors involved in cardiac development. Pluripotent cells are 

characterized by the expression of Oct4, Sox2, and Nanog. Upon gastrulation, early mesoderm cells express T, 

Mixl1, and Eomes and late mesodermal cells, that become cardiac commitment, start to express Mesp1. CPC 

express Gata4, Nkx2.5, and Hand2. CPC of the FHF start to express more Tbx5, whereas progenitors of the SHF 

start to express Mef2c and Isl1. Both progenitors can differentiate into cardiomyocytes. 
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1.2.1.1 Pluripotency 

 

Oct4, Sox2, and Nanog are the master regulators in the pluripotency. These three 

genes regulate each other’s expression in a positive feedback loop. These genes are expressed 

in the pluripotent section of the mouse embryo, prior to implantation and gastrulation. Cells 

expressing these three transcription factors, generally maintain the ability to differentiate into 

three germ layers. 

Oct4 was the first key transcription factor identified in pluripotency (35). OCT4 is 

encoded by the gene POU5f1 a member of the POU family. OCT4 expression is activated 

prior to the 8-cell stage and remains highly expressed in the ICM of the blastocyst. After 

gastrulation OCT4 expression becomes restricted in the primitive ectoderm and the 

mesodermal precursors that will give rise to the primordial germ cells (36). The Knock-out 

(KO) of Oct4 in mice results in defective epiblast development and early embryonic lethality 

(37, 38). The depletion of OCT4 in embryonic stem cells (ESC) results in spontaneous 

differentiation and impaired ability to differentiate into mesoderm cell fates (39). Ectopic 

expression of OCT4 results in primitive endoderm and mesoderm differentiation (40). 

Sox2 is another transcription factor crucial for the maintenance of pluripotency. SOX2 

is highly expressed in the ICM of the blastocyst and post gastrulation is found expressed in 

the early ectodermal lineages (41). Like Oct4, the KO of Sox2 in mice results in defective 

epiblast development and early embryonic lethality (42). Loss of SOX2 considerably 

compromises the pluripotent state of both mouse and human ESC as shown by the changes 

in cell morphology, loss of pluripotent marker expression and their spontaneous 

differentiation into PS (43-45). On the other hand, overexpression of SOX2 in ESC leads to 

a predisposition of these cells to differentiate into neuroectodermal cell fate and inhibition of 

PS differentiation (45, 46). 

Nanog is the most recently identified core pluripotent gene. NANOG is expressed in 

the morulae, then in the ICM until gastrulation (47). Comparable to the other previously 

mentioned genes, the KO of Nanog is early embryonic lethal with elevated ICM apoptosis 

(48). The depletion of NANOG in mouse ESC (mESC) results in premature mesoderm and 

ectoderm differentiation (49, 50). Moreover, while Nanog null mESC can be maintained, these 

cells ability to self-renewal is severely affected (51). Overexpression of NANOG results in 

enhancement of human ESC (hESC) commitment to PS differentiation and inhibition of 
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ectoderm differentiation (45). Surprisingly, only overexpression of NANOG has been 

associated with pluripotency maintenance and self-renewal (47, 52, 53). 

 

1.2.1.2 Mesoderm 

 

Upon gastrulation, pluripotent stem cells (PSC) start to lose their potency. PSC either 

become ectoderm or, mesendoderm. Indeed, mesendoderm is a term used to define cells 

that can still differentiate into both mesoderm or endoderm. All cells from mesendoderm and 

early mesoderm co-express two transcription factors: Brachyury and Mixl1. 

Early mesoderm commitment is mostly controlled by BRACHYURY, also known as T, 

expression. KO of Brachyury is lethal, with embryos dying at very early stages due to multiple 

defects in the mesoderm-derived tissues including, complete lack of limb development. 

BRACHYURY expression is first found in the ICM. However, its peak of expression becomes 

more prominent during the PS. While both mesoderm and endoderm cells express 

BRACHYURY, endoderm cells express low levels of BRACHYURY while mesoderm cells 

express high levels of BRACHYURY (54). BRACHYURY expression is silenced in pre-cardiac 

mesoderm (55). 

The earliest known committed cardiac precursors express the transcription factor 

Eomesodermin (Eomes) (56). The transient expression of EOMES promotes cardiovascular 

fate during ESC differentiation. Moreover, EOMES is important for activating MESP1 a key 

regulator of cardiovascular cell fate (57). Mesp1 was first identified as a marker of early cardiac 

mesoderm in 1999 (58). A β-Galactosidase (lacZ) under the control of the Mesp1 promoter 

showed that all MESP1 expressing cells contribute to the heart (58). However, the Mesp1 

lineage is not specific to the heart and also contributes to the mesenchyme and the limbs (59). 

Loss of MESP1 results in cardiac defects attributed to defects in cell migration and embryonic 

lethality by E10.5 (58). On the other hand, its gain of function strongly increases cardiac 

differentiation both in vitro and in vivo (60, 61). More recently, Mesp1 was found to be required 

for cells to exit the pluripotent state and promote, migration and cardiovascular specification 

(62). Furthermore, temporally inducible Mesp1 lineage tracing shows that at E6.5, Mesp1+ 

cells will form the LV, whereas Mesp1+ cells at E7.25 will form the RV, OT, and atria. This 
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suggests that Mesp1 progenitors consist of two distinct pools of progenitors restricted to 

either FHF or the SHF (28, 62). 

 

1.2.1.3 Cardiac Mesoderm 

 

Cardiac development is a fine-tuned process controlled by key transcription factors. 

The core transcription factors include Nkx2.5, Gata4, Mef2c, Tbx5, Isl1, and Hand2. These 

factors regulate each other’s expression and affect common downstream targets (Figure 1.6). 

 

Figure 1.6. Cardiac Transcription factors interactions. Numbers indicate published paper where 

interaction has been identified.A)(63) B)(64) C)(65) D)(66) E)(67) F)(68) G)(69) H)(70) I)(70) 

 

The discovery of Nk2-related homeobox 5 (Nkx2.5) in the fly was the founding event in 

the molecular study of heart development (71). The subsequent analysis of NKX2.5 led to the 

identification of the first mutated gene in a CHD patient (72). Mutations of NKX2.5 remains 

the most commonly identified in CHD patients, accounting to approximately 4% of the 

patients suffering from CHD (73). Its expression is first detected in CPC and its expression 

remains high in cardiac tissue throughout adulthood (73). Nkx2.5 is essential for heart 

development and mice lacking its expression show abnormal morphogenesis of the heart and 

abnormal LV resulting in embryonic lethality at E9.5 (74).  
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The zinc finger transcription factor GATA binding protein 4 (Gata4) is expressed in 

cells of the cardiac lineage through adulthood and plays an important role in cardiac 

development. The Gata4 KO in mice results in embryonic lethality by E10.5 with abnormal 

ventral folding, failure of midline fusion of the heart, and extensive endoderm defects (75). 

Furthermore, GATA4 is known to regulate the transcription of multiple genes encoding 

contractile elements like the Myosin Heavy Chain (MHC) and α-ACTININ (76). Interestingly, 

overexpression of GATA4 in ESCs directs cells towards endoderm rather than cardiac 

mesoderm. However, endoderm cells that overexpress GATA4, produce paracrine factors that 

stimulate adjacent cells to differentiate into cardiac mesoderm (77). Moreover, forced 

expression of GATA4 in mesoderm cells forced the expression of cardiomyocyte-specific 

markers (78).  

Myocyte enhancer factor 2 (Mef2) is a family of transcription factors that play an 

important role in cardiac differentiation. The family of MEF2 is composed of 4 genes MEF2A, 

MEF2B, MEF2C and MEF2D, all expressed in cardiac development with partly redundant 

function. One of the well-described MEF2 genes in cardiac cell fate is Mef2c. Mef2c null mice 

die at E9.5 with the heart tube failing to undergo cardiac looping and apparent lack of RV is 

observed (79, 80)

Tbx5 has been associated with cardiovascular development ever since, TBX5 

mutations have been associated with Holt-Aram syndrome (81, 82). TBX5 is expressed during 

the development of the heart and the limbs (83, 84). In mice, TBX5 is expressed around E8.0 

throughout the cardiac crescent. At E8.5 it starts to become expressed in the cells that will 

give rise to the atria and, at E9.0 it becomes expressed in the LV (83). Mice embryos that lack 

Tbx5 die in utero around E10.5 with abnormal heart tube, hypoplastic LV and complete absence 

of forelimbs (85, 86). 

Isl1 has been highly associated with the SHF. Using an Isl1-CRE system that permits 

the labeling of Isl1-derived cells showed, that these cells mostly contribute to the cells of the 

RV, OT, and atria (29). Indeed, the KO of Isl1 in mice embryos results in their death at 

midgestation with an absence of OT and RV and reduced atria (29). Transcription of Isl1 is 

shut off as soon as the CPC enter the forming embryonic heart, suggesting that Isl1 is required 

for the proliferation, expansion, and migration of CPCs but not for differentiation (87). Isl1 

was initially hypothesized to be a specific marker of the SHF. However, in some studies, ISL1 

was shown to be expressed in CPC common to FHF and SHF (88).  
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Finally, Hand2 is essential for the development of the heart, brachial arches and limb 

buds (89). During heart development, HAND2 is expressed in the RV, OT and the epicardium 

(90). The KO of Hand2 results in embryonic lethality, partly due to defects in the aortic arch 

arteries and RV (89). Hand2 is essential for CNCC in the OT where loss of Hand2 reduces 

the number of CNCC, affecting the survival of the SHF progenitors and proepicardial cells 

differentiation (91-93). In humans, mutations in HAND2 are mostly associated with CHD with 

VSD (94). 

 

1.2.2 Signalling Pathways 

 

Signalling between cells coordinates the complex event of cardiac development that 

culminates in the development of the heart. Specific factors are released from cells that, at a 

given time point of development, direct and control differentiation, proliferation or migration 

of multiple neighbouring cells. Since every signalling pathway may affect cardiogenesis, I will 

give an overview of the pathways having a well-established role and that has been determined 

to be crucial for heart development (Figure 1.7).  

 

 

Figure 1.7 Key Signalling Pathways involved in cardiac development. ACTIVIN/NODAL (Pink 

line) and BMP (Blue line) from the TGFβ pathway, Canonical (Light Green line) and Non-Canonical (Dark Green 

Line) WNT pathway and FGF (Grey Line) pathway activate or repress cardiac development depending on the 

time of activation.   
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1.2.2.1 TGFβ Signalling Pathway 

 

The Transforming Growth Factor β (TGFβ) signalling pathway is involved in many 

cellular processes in both the adult organism and developing embryo including cell growth, 

cell differentiation, apoptosis, and cellular homeostasis. The TGFβ superfamily ligands bind to 

the TGFβ receptor type II, which recruits and phosphorylates TGFβ receptor type I. This 

results in the activation and accumulation of SMAD2/3 in the nucleus where they associate 

with other co-transcription factors and regulate the expression of target genes. The TGFβ 

superfamily ligands includes both Bmp and Activin/Nodal (Figure 1.8b) (95).   

Bmp were originally discovered because of their ability to induce the development of 

bone and cartilage in rabbits (96). The canonical Bmp signalling is Smad dependent. In the 

canonical pathway, BMP initiate the signal transduction cascade by binding to the type I/II 

serine/threonine kinase receptors and forming a heterotetrameric complex. The 

constitutively active type II receptor then transphosphorylases the type I receptor which 

results in the phosphorylation of SMAD1/5/8. Phosphorylated SMAD1/5/8 associates with 

Smad4 and the complex translocates into the nucleus to regulate gene expression (Figure 

1.8f). 

Several Bmp are essential during embryogenesis, most noticeable for mesoderm and 

cardiac development both in vitro and in vivo (97, 98). Indeed, Bmp2 homozygous mutants are 

embryonic lethal with abnormal development of the heart (99). The BMP2 expression is 

detected in mesoderm, CPC and myocardium (100). On the other hand, Bmp4 deficient mice 

do not differentiate into mesoderm, indicating that BMP4 might be important during 

gastrulation (101). Moreover, BMP4 forces PSC to differentiate into mesoderm by increasing 

the expression of BRACHYURY and CDX2, while inhibiting endoderm differentiation (102). 

However, BMP expression beyond cardiac mesoderm forces cells to differentiate into 

epicardial lineages instead of cardiomyocytes (103). 

Activin/Nodal exert their biological effects by binding to the heterodimeric complexes 

activin-like kinases (ALK) receptors. This results in the phosphorylation and activation of 

SMAD2 and SMAD3. Phosphorylated SMAD2 and SMAD3 associates with SMAD4 and 

translocates to the nucleus, where it regulates gene expression through its association with 

transcription factors (Figure 1.8g) (104). 



General Introduction 
 

18 
 

Activin/Nodal are necessary at the early epiblast stage during implantation. 

Activin/Nodal signalling has been shown to maintain pluripotency of both human and mouse 

ESC (105, 106). Loss of Activin/Nodal signalling in PSC results in loss of pluripotency markers 

and premature ectoderm differentiation (107). Moreover, Activin/Nodal signalling is 

important in germ layer specification and early ESC commitment (105). Absence, of 

ACTIVIN/NODAL, drives cells to differentiate into ectoderm, while its expression induces 

mesendoderm. Upon the mesendoderm, high levels of ACTIVIN/NODAL promote 

endoderm, while low levels of ACTIVIN/NODAL promote mesoderm (108, 109). 

 

1.2.2.2 Wnt Signalling Pathway 

 

Wnt proteins play a critical role in cell fate decisions, cell proliferation, and cellular 

migration. The Wnt signalling begins with the secretion of the Wnt proteins outside of the 

cell. Wnt proteins can be divided into two groups: the canonical and non-canonical Wnts 

(Figure 1.8A). 

The Canonical Wnt Signalling Pathway refers to a pathway where β-CATENIN acts as 

a signal transducer (33, 110-112). In the absence of Wnt proteins, β-CATENIN is 

phosphorylated by a destruction complex composed of glycogen synthase kinase (GSK)-3, 

adenomatosis polyposis coli (APC) and AXIN and subsequently ubiquitylated and targeted for 

degradation by the proteosome. In the presence of WNT, the Frizzled (FZD) and co-receptor 

lipoprotein receptor-related protein (LRP)5/6 are activated. This results in the recruitment of 

the Dishevelled (DVL) proteins, which prevents the degradation of β-CATENIN, resulting in 

its accumulation in the nucleus. β-CATENIN is then free to act as a transcriptional co-

activator of the transcription factors T-cell factor (TCF) and Leukemia enhancer factor (LEF) 

(Figure 1.8d). On the other hand, Non-Canonical Wnts, do not rely on β-catenin as a signal 

transducer. These Wnts activate different co-receptors, the best described are Ror1/Ror2, 

Ryk and PTK. Two Non-Canonical Wnt Pathways have been suggested, the Wnt/Ca2+ 

Pathway and the Planar Cell Polarity (PCP) pathway. In the case of the Ca2+ pathway, Wnt 

activation results in an increase of intracellular calcium levels, and activation of CAMKII, PKC 

and NFAT transcription factors in the nucleus. On the other hand, in the PCP pathway Wnt 

proteins activate small GTPASES RHOA and RAC1 which leads to the activation of c-Jun N-



General Introduction 
 

19 
 

terminal kinases (JNK) and Rho-associated protein kinase (ROCK) in the nucleus (Figure 

1.8e)(113). 

 

Figure 1.8 WNT, TGFβ, and FGF Signalling Pathways. A Diagram presenting the most important 

pathways involved in cardiogenesis. A) WNT Signalling Pathway; B) TGFβ Signalling Pathway; C) FGF Signalling 

Pathway. D) Canonical if WNT activity is β-catenin dependent; E) Non-Canonical If WNT activity is β-catenin 

independent; F) BMP dependent; G) ACTIVIN/NODAL dependent. 

 

1.2.2.3 Fibroblast Growth Factor 

 

The FGF family comprises 22 proteins of approximately 150 to 300 amino acids. Most 

FGF play roles as paracrine or endocrine signals in development, health and, disease in major 

organs including the heart. FGF signalling starts with the binding of the FGF to FGF receptors. 

The activated receptor is coupled to intracellular signalling pathways which include the RAS-

MAPK and the PI3K-AKT pathways resulting in the transcriptional activity of FOS and FOXO 

(114) (Figure 1.8c). In terms of cardiac development, several paracrine FGF play an important 

role in cardiac development (115). For example, FGF8 is expressed in early embryonic stages 

and its KO is lethal with several mesodermal problems including improper cardiac looping 

and migration of CNCC (116). As for Fgf10, its KO is also lethal with abnormal ventricle 

morphology associated with an impairment of proliferation of cardiomyocytes (117).  



General Introduction 
 

20 
 

1.2.3 From pluripotent to cardiac cell fate 

 

Oct4, Sox2, and Nanog are essential in early cell fate commitment. KO of any of the 

previously mentioned genes compromises the epiblast resulting in early embryonic lethality. 

Until recently, it was thought, that pluripotency was maintained, and differentiation blocked, 

by the expression of OCT4, SOX2, and NANOG. However, if any of these genes block 

differentiation, their overexpression should further induce cells self-renewal. Surprisingly, 

overexpression of OCT4 in mESC induces mesoderm differentiation rather than more self-

renewal (40). Similar findings were also observed in the other two genes. Induced expression 

of SOX2 leads to neuroectoderm lineage differentiation (118) whereas NANOG expression 

in hESC results in an increased PS differentiation (119). These core pluripotent factors seem 

critical to prime cells to go to a specific cell fate. For instance, SOX2 induces ectoderm 

differentiation repressing endoderm and mesoderm. In contrast, NANOG induces endoderm 

by inhibiting mesoderm and ectoderm. Lastly, OCT4 induces mesoderm by inhibiting 

ectoderm and endoderm (Figure 1.9) (17, 45, 120, 121).  

 

Figure 1.9 Distinct lineage specification roles of key pluripotent genes. Model of cell fate regulation by 

increased expression of NANOG, OCT4 or SOX2 in pluripotent cells.  

 

 The balance between OCT4, SOX2 and NANOG expression is mostly achieved by 

changes in ACTIVIN/NODAL expression. Although ACTIVIN/NODAL is uniformly 
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expressed through the epiblast, its expression becomes spatially asymmetric upon epiblast 

implantation. ACTIVIN/NODAL expression is amplified in the posterior epiblast (PS) and its 

expression becomes repressed in the anterior region of the epiblast (ectoderm) (122). High 

levels of ACTIVIN/NODAL result in the upregulation of OCT4 and NANOG while 

downregulating SOX2. Consequently, high levels of OCT4 and NANOG specifies the PS by 

directly inducing expression of EOMES (45, 50). These results contribute to an initial 

bifurcation in which PSC become ectoderm lineage when the expression of 

ACTIVIN/NODAL is low, or mesendoderm lineage when high levels of ACTIVIN/NODAL 

are present. Mesendoderm are cells that express both OCT4 and NANOG that can still go 

to either mesoderm or endoderm cell fate (123). Mesendoderm cells share the expression of 

genes from both mesoderm and endoderm such as BRACHYURY and MIXL1. 

The bifurcation between mesoderm and endoderm fate specification occurs when the 

anterior and posterior regions of the PS start to become evident.  The most anterior part of 

the PS will give rise to the definitive endoderm, while the posterior area is responsible for 

originating the mesoderm. Once more, ACTIVIN/NODAL are key regulators in cell 

commitment. High concentrations of ACTIVIN/NODAL direct definitive endoderm 

differentiation whereas, low concentrations of ACTIVIN/NODAL specifies mesoderm 

differentiation. Mesoderm-derived cells start to express high levels of BRACHYURY. The 

expression of BRACHYURY indicates commitment to mesoderm (Figure 1.10A) (124). 

As the PS elongates, a paraxial and a lateral mesoderm is formed. The commitment to 

either paraxial mesoderm or lateral mesoderm is in part controlled by BMP and Canonical 

WNT expression (Figure 1.10B). Both BMP and Canonical WNT direct a PS-like 

differentiation in ESC (125-128). Post gastrulation, BMP activation induces lateral mesoderm 

whereas WNT activation induces paraxial mesoderm. Indeed, Wnt and β-catenin are required 

and induce paraxial mesoderm development in mice (129). Moreover, studies on chick and 

frog showed that induced activation of WNT signalling in the anterior mesoderm inhibits the 

expression of core cardiac markers (130, 131). On the other hand, BMP expression is 

detected when cardiac mesoderm starts to form. Both BMP2 and BMP receptor 1A are 

expressed in the cardiac crescent and their deletion, in the cardiac mesoderm, results in 

embryos lacking cardiac crescent and cardiomyocytes (132). Furthermore, expression of 

BMP4 in the paraxial mesoderm prevents the development of somites, converting the cells 

instead into lateral plate mesoderm (133). 
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Figure 1.10 Mapping of cardiac mesoderm development. A) Schematic representation of 

mesoderm cell fate decisions. B) Bifurcation between lateral and paraxial mesoderm. C) Bifurcation between 

Cardiac mesoderm and Forelimb mesoderm. Image adapted from (134). 

 

Lateral plate mesoderm can be subdivided into an anterior and a posterior region. The 

anterior region forms the CPC and the posterior region will result in the development of the 

limbs. The cell fate decision between anterior and posterior is controlled by the expression 

of FGF and WNT signalling (Figure 1.10C). The WNT expression in the lateral mesoderm 

induces limb-specific markers, while suppressing cardiac markers such as Nkx2.5. Reciprocally, 

WNT inhibition suppresses posterior lateral mesoderm, instead inducing cardiac mesoderm. 

Dickkopf related protein 1 (DKK1), a potent Wnt inhibitor, induces heart-specific gene 

expression in posterior lateral plate mesoderm (131, 135). Furthermore, most of the robust 

protocols to generate cardiomyocytes from ESC, are based on the inhibition of WNT 

signalling, after mesoderm induction (136, 137). On the other hand, FGF is responsible for 

the development of the anterior region of lateral plate mesoderm. FGF is expressed in cardiac 

precursors and later in the heart and required for the expression of NKX2.5 and GATA4 

(138). Moreover, deletion of FGF8 and FGF10 using a Mesp1-CRE mouse system showed 

several cardiac defects (139). 

 Overall, the cardiac developmental program starts as soon as pluripotent cells start to 

lose the expression of pluripotent markers until the acquisition of cardiac transcription 

markers and specification into CPC. Therefore, transcription factors have widely been used 

as markers for specific lineages. For example, cells that express high levels Brachyury are 
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indicative of early mesoderm and cells that express NKX2.5 are already cardiac committed. 

On the other hand, signalling pathways can work as paracrine factors influencing surrounding 

cells to become committed to different cell fates. Stem cell biologists have as such, taken 

advantage of this, to direct cell fate decision in vitro (140).  
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1.3 Animal Models to study Cardiovascular Development 
 

In recent years, great progress has been made in determining many of the factors that 

regulate cardiovascular development. This has been possible through both in vivo and in vitro 

model systems. The mouse is a very interesting model not only because it has a cardiovascular 

system like the human but also because it provides the advantages of a highly tractable 

organism for genetic studies. The ability to introduce or remove DNA sequences of interest 

in the germline genome has rendered the mouse a powerful and indispensable experimental 

model in fundamental and medical research (141, 142). Furthermore, conditional gene 

activation or inactivation through, for example, Cre recombinase and loxP system, permit 

precise temporal and spatial assessment of gene function (143). Even so, like any other 

mammal system, mice embryos are hard to access and/or observe as they develop inside their 

mother which is inconvenient for studying cardiac development and CHD. 

The chick model is also widely used to study cardiac morphogenesis. The embryos are 

large and develop externally to the mother. The avian heart is also four-chambered but, the 

major advantage of chick embryos is their accessibility for surgical manipulation and functional 

interference approaches, through both gain and loss of function. Furthermore, chick embryos 

can be cultured for time-lapse imaging, which enables tracking of fluorescently labelled cells 

and detailed analysis of tissue morphogenesis (144). 

Other vertebrate models include the frog and the fish. Xenopus laevis, the clawed frog, 

offers very similar advantages to the chick model (145). Zebrafish have two muscular cardiac 

chambers and is highly sought as model for questions concerning the development and looping 

of the heart tube, atrial and ventricular patterning, and myocardial differentiation. The 

zebrafish is also widely used as a powerful genetic and drug screening system. Finally, zebrafish 

is a very interesting model to study cardiac regeneration due their regeneration capability 

(146). 

 The fruit fly, Drosophila melanogaster, has emerged as a useful model for cardiac 

development and diseases. The fly is a unique and valuable system as it is the only invertebrate 

genetic model with a working heart developmentally homologous to the vertebrate heart. 

Thus, the fly model combines the advantages of invertebrate such as large populations, easy 

genetic manipulation and short lifespan with physiological measurement techniques that allow 
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meaningful comparisons with data from vertebrate model systems. As such, the fly has been 

mostly contributing to the understanding of complicated interactions between environmental 

factors and genetics in the long-term regulation of cardiac development (147, 148). 

Although in vivo models are critically important, their intrinsic complexity can bring 

several disadvantages. While their application can be limited, in vitro models can offer unique 

advantages. The major advantages of in vitro model systems are the precise control of 

experimental conditions and access to a large pool of sample. This results in an ability to 

efficiently conduct studies regarding signalling pathways, cell-specific mechanisms studies, and 

high-throughput drug screening.  

Neonatal mouse cardiomyocytes are easily isolated and can be maintained in  

proliferation, in vitro, for a few passages (149, 150). They are mainly sought for drug screening 

and response to stimulus because these cellular responses closely represent the changes found 

in cardiomyocytes in vivo (150). To overcome the limited cultured ability of primary 

cardiomyocytes, efforts have been made to develop cardiac cell lines (151). Nowadays, 

immortalized cell lines exist that retain phenotypical and contractible characteristics of 

cardiomyocytes (152, 153). 
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1.4 Stem Cells 
 

Stem cells remain the most used in vitro model system to study cardiovascular 

development. Stem cells have the innate ability of self-renewal and ability to differentiate. Self-

renewal refers to their ability through (a)symmetric cell division to generate daughter cells 

that can maintain their stemness under the appropriate stimulus. Differentiation is the ability 

of these cells to give rise to new specialized cells (154). Stem cells can be divided in two main 

groups: PSC and adult stem cell (ASC). PSC can give rise to all the cell types that make up the 

body, and therefor termed pluripotent, while ASC include cells with a differentiation capacity 

that ranges from a subgroup of cells and therefore considered multipotent, to one unique cell 

type, referred as unipotent. 

 

1.4.1 Pluripotent Stem Cells 

 

The usage of the term PSC started when the first mESC were first isolated from the 

ICM of the blastocyst back in 1981 (155, 156). The definitive proof of the pluripotency of 

these cells was confirmed by the ability to generate adult mice entirely derived from these 

cells (154). The first hESC were successfully isolated in 1998 from preimplantation blastocysts 

donated from fertility facilities (157). The fact that hESC lines were isolated from “excess” 

embryos has quickly generated ethical and political issues, halting their obtention (158).  

However, this problem was solved in 2006 when the group led by Yamanaka was able 

to generate pluripotent cells from differentiated cells, in vitro, by exogenous expression of four 

transcriptions factors important for the pluripotency establishment and maintenance (159). 

These reprogrammed cells have then been called induced pluripotent stem cells (iPSC). 

Mouse PSC can be isolated from the epiblast of the blastocyst. In the mice, two 

temporally distinct PSC can be isolated. PSC isolated from the blastocyst that has yet to 

implant in the uterus (E4.5), are called mESC, while PSC isolated from post-implanted 

blastocyst (E5.5) are called mouse epiblast stem cells (mEpiSC). (106, 160). Both cell types 

can give rise to the three germ layers in vitro, but only mESC can aggregate to the ICM-cells 

and contribute to originate all cells of the embryo in vivo. Furthermore, the core pluripotent 
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factors Oct4, Sox2, and Nanog, which are the hallmark of pluripotency, are expressed in both 

cell types. 

However, the fact that mEpiSC are isolated post-implantation, means that they are 

closer to gastrulation. As such, they are molecularly and functionally different from mESC. 

This led to the consensus that mEpiSC are more “primed” for differentiation, while mESC 

remain more dormant or more “naïve” (161). Indeed, since mEpiSC are more prone for 

differentiation they express epiblast markers such as Nodal or Fgf5 (162, 163). 

 

1.4.1.2 Mechanisms Behind Pluripotency 

 

The use of serum in combination with a feeder layer, made of mitotically inactivated 

mouse embryonic fibroblasts (MEF), was the key to successfully maintain mESC in culture. In 

1988, leukemia inhibitory factor (LIF) was identified as the protein secreted from MEF 

responsible for mESC self-renewal (106). Later in 2008, it was shown that pluripotency can 

be maintained in the absence of serum and growth factors by two chemical inhibitors, 

PD0325901, which inhibits mitogen-activated protein kinase (MAPK) and CHIR99021 which 

inhibits GSK-3 (164). 

Surprisingly, the extrinsic stimuli necessary to maintain undifferentiated mESC and 

mEpiSC are different. Indeed, TGFβ and FGF are responsible for maintaining mEpiSC 

undifferentiated. However, treating mESC with TGFβ and FGF results in the loss of their 

“naïve” state, priming them to differentiate and enter in a mEpiSC-like state. Interestingly, 

while hESC are also isolated from preimplantation blastocyst, they need the exact same 

extrinsic factors as mEpiSC to remain undifferentiated. Furthermore, hESC are molecularly 

and functionally closer to mEpiSC, than mESC, which have led scientists to believe that they 

are also in a primed state (165, 166). LIF signalling also fails to maintain self-renewal of hESC 

(167). Moreover, while hESC require both TGFβ and FGF for their self-renewal, these factors 

drive mESC into differentiation (160). In contrast, while BMP and WNT activity induces mESC 

pluripotency, their activity in hESC results in their differentiation (106, 168) (Figure 1.11). 
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Figure 1.11 Regulation of pluripotency. Left panel – Mechanism behind self-renewal of mESC. 

Right panel – Mechanism behind self-renewal of hESC and mEpiSC. Green arrow – promotes self-renewal. Red 

arrow – induces differentiation. 

 

1.4.1.3 Cardiac Differentiation 

 

The two major approaches to differentiate PSC into cardiomyocytes are through 

Embryoid Bodies (EB) differentiation or Directed differentiation.  

The first method established to induce ESC differentiation and to promote the 

emergence of cells with spontaneous contractile capacity, specific to cardiomyocytes, was 

through the formation of EB. This method consists on the dissociation of ESC into single cells 

and their subsequent aggregation through the formation of hanging drops. This method 

consists in creating droplets in the lid of a Petri dish, which is then inverted, causing the ESC 

to generate under gravity spheroid bodies which undergo differentiation. Unlike normal 

embryonic development, EB are highly variable in structure and composition, but a fraction 

of the EB exhibit spontaneously contracting regions. Alternatively, EB can be generated by 

suspension cultures in which ESC are cultivated in a non-coated Petri dish and allowed to 

generate three-dimensional aggregates (169). The amount of serum and cell number used, 

seem to influence EB ability to differentiate into cardiomyocytes. However, the data is 

conflicting and controversial (170-172).  
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The use of directed differentiation is particularly useful to address specific issues 

regarding lineage commitment, in a more defined differentiation condition. Most of the 

methods involve the addition of recombinant growth factors or small molecules compounds. 

The directed differentiation typically consists on activating the same steps by compounds that 

mimic the process of embryonic development, as previously mentioned. This method can 

increase results robustness and yield of the desired cells. For cardiomyocytes, many different 

differentiation protocols have been optimized, and most of them have a cardiomyocyte yield 

superior to 90% (Figure 1.12). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12 Monolayer cardiac differentiation protocols. A) LaFlamme et al, 2007 (173); B) Lian et al, 
2012 (136, 137); C) Coa et al. 2013 (174) D) Burridge et al. 2014 (175). Image adapted from (176).  
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1.4.2 Stem Cells as a therapeutic approach for Cardiovascular Disease 

 

Stem cell research offers great promise for understanding basic mechanisms of human 

development and differentiation, as well as appealing for treatment of several cardiovascular 

problems including myocardial infarction. Nevertheless, the ethical dilemma involving the 

destruction of a human embryo was, and remains, a major factor that has slowed down the 

development of hESC-based clinical therapies (177). It is also important to highlight that 

besides ethical concerns, safety issues regarding hESC based therapy are a major concern. 

Based on their characteristics of unlimited self-renewal and high proliferation rate, hESC-

based transplantations are often associated with tumorigenicity, immunogenicity and genomic 

instability (178, 179). 

One possible alternative to hESC are ASC. Compared to hESC they are safer, can 

circumvent many of the ethical issues and, in some cases, it is possible to use patient´s own 

cells. Different sources of ASC have been reported to differentiate into cardiomyocyte 

including the bone marrow, skeletal muscle, adipose tissue, peripheral blood and the heart 

(180-182). The major problem is that ASC are rare in mature tissues, and the most accessible 

have low efficiency in generating cardiomyocytes (180-182).  

CPC are another interesting option which has gained strength in the last few years. 

CPC have the interesting feature that can self-renew for multiple passages, but their 

differentiation potential is restricted to cardiovascular cells only. Results with CPC have been 

very promising. After injury, CPC spontaneously differentiated into cardiomyocytes, 

endothelial cells and smooth muscle cells in infarcted mouse hearts and improved heart 

function after cardiac injury (183, 184). However, acquiring and maintaining large amounts of 

CPC has been challenging because the culture requirements of CPC are not optimized, and 

their molecular identity is poorly understood. Recently, the necessary conditions needed to 

maintain inducible expandable CPC that can robustly self-renew for several passages while 

maintaining their original morphology, gene expression pattern and potential to differentiate 

into cardiovascular lineages within the heart, have been reported (185, 186). 

iPSC technology has provided new possibilities to model human diseases. 

Reprogramming somatic cells from patients into a pluripotent state followed by differentiation 

to disease-relevant cell types can generate an unlimited source of human tissue carrying the 

genetic variations that caused the development of the disease (187). Moreover, iPSC derived 
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issues can be used to understand the complex mechanisms underlying the various diseases 

(188) and for assessing cytotoxicity of small chemicals in drug development (188). One of the 

main challenges for the clinical application of hESC is the immune rejection which can be 

overcome with the usage of iPSC. The technology to generate autologous iPSC raised the 

possibility that cells can be transplanted into the patients with reduced concern of immune 

rejection (189) (Figure 1.13). 

 

Figure 1.13 Application of iPSC for therapy. Somatic cells from patients harbouring a disease can be 

reprogrammed into iPSC. IPSC are differentiated into disease-specific tissue for cellular characterization or drug 

screening. iPSC genome can be corrected through gene editing and be used as a regenerative therapy. Image 

adapted from (190). 
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1.5 Cited2 
 

The CBP/p300 interacting transactivator with ED tail rich family member 2 (Cited2) is 

a transcription factor which binds with high affinity to the transcriptional co-activator 

p300/CBP (191, 192). CITED2 does not bind to the DNA directly and acts as a co-activator 

or co-inhibitor of transcription factors that require an interaction with the Cysteine-Histidine 

rich domain I (CHI) of p300/CBP for their increased activity (193). Cited2 is found in all 

vertebrates but not in invertebrates such as Drosophila melanogaster. The CITED2 protein 

shares three conserved regions (CR) with the other Cited family members. However, to date, 

only the function of CR2, which encompasses a binding domain for CBP/p300, has clearly been 

identified as a transactivation domain (Figure 1.14). 

Mouse Cited2 KO embryos die in utero with multiple organs affected (194-196). In 

humans, CITED2 gene is located in the 6q23 region and mutations in CITED2 have been 

previously associated with CHD (197-201). 

 

 

Figure 1.14 Schematic representation of CITED2 Protein. CITED2 protein is composed of 270 amino 

acids, three conserved regions (CR)1-3 and a serine-rich junction (srj). The region of interaction and the 

transcription factors, co-activators of transcription and F-box protein FBXL5 that interact with CITED2 are 

indicated. Image adapted from José Bragança, Joao Santos and Leonardo Silva, manuscript in preparation. 
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1.5.1 Cited2 Gene regulatory network 

 

The best-described role of Cited2 is in regulating of hypoxia. Indeed, Cited2 was first 

described as a new p300-Cysteine-Histidine rich domain I (CH1) interacting protein that 

inhibits hypoxia-inducible factor (HIF)1α transactivation by blocking its interaction with p300-

CH1 (191). In fact, part of the cardiac defects observed in Cited2 null embryos are likely due 

to an enhanced activity of HIF1α (202). Indeed, the persistent hypoxia found in Cited2 null 

hearts is rescued by HIF1α haploinsufficiency (203). In terms of molecular mechanisms, Cited2 

transactivation domain (TAD/CR2) disrupts the complex between the CH1 domain of 

p300/CBP and HIF1α by binding to the CH1 with higher affinity than HIF1α. CITED2 activates 

a highly responsive negative feedback circuit that rapidly and efficiently attenuates hypoxic 

response, even at modest CITED2 concentrations (192, 204). 

Besides HIF1α, CITED2 also negatively regulates the activity of other transcription 

factors, such as RXRα, NF-κB, STAT2, p53, and ETS-1, which have been shown to bind and 

compete, with CITED2, for the CH1 domain of CBP/p300 (205-211). On the other hand, 

CITED2 co-activates many other transcription factors that require a cooperation with 

CBP/p300 to be transcriptionally efficient such as, the TFAP2 members, LHX2/3, SMAD2/3, 

PPARα/β HNF4α, WT1, GCN5 and ISL1 (212-223) (Figure 1.15). 

 

Figure 1.15 CITED2 gene regulatory network. Schematic representation of described inducers of Cited2, 

proteins that interact with CITED2 and the transcriptional activity of CITED2 in networks involved in 

cardiogenesis. Image adapted from José Bragança, Joao Santos and Leonardo Silva, manuscript in preparation. 
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1.5.2 Role of Cited2 in Stem Cells 

 

 Cited2 is involved in the maintenance of ESC pluripotency. Overexpression of CITED2 

in mESC sustains their ability to self-renewal and proliferate even in the absence of LIF (224). 

Our group has also reported that Cited2 is a key player in pluripotency acting upstream of 

Nanog, Klf4, and Tbx3 (224). Furthermore, acute loss of Cited2 in mESC impairs NANOG 

expression causing mESC to spontaneously differentiate or die (224). Interestingly, a very 

small fraction of mESC were able to remain pluripotent without Cited2. However, Cited2 null 

mESC have defective ability to differentiate into cardiac, hematopoietic and neuronal lineages 

(224, 225). This is likely to result from the delayed silencing of OCT4 and SOX2, disturbing 

ESCs ability to differentiate (225) (Figure 1.16). 

 

 Figure 1.16 Stem cells gene regulatory network associating CITED2. Factors important for 

ESC (red background) and adult stem cells (green background) and their interaction with CITED2 (193). 

 

Lastly, Cited2 plays a role in both fetal and ASC. Cited2 is required for the normal 

formation of the placenta and trophoblast stem cell differentiation (194, 226-229). In adult 

hematopoietic stem cells (HSC), loss of Cited2 increases cell death by apoptosis and impairs 
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their residence in the bone marrow in a quiescent state, resulting in a reduction on the pool 

of undifferentiated HSC (230, 231). Conversely, overexpression of CITED2 in CD34+ cells of 

the blood decreases apoptosis and enhances their quiescence in vitro (232).  

 

1.5.2 Role of Cited2 in cardiac development 

 

 During mouse embryogenesis, CITED2 is expressed in both early extraembryonic and 

embryonic structures. At E5.5, prior to gastrulation, CITE2 is expressed in the most anterior 

domain of the visceral endoderm. Upon gastrulation, its expression is detected in the anterior 

mesoderm adjacent to the visceral endoderm. At E7.5 CITED2 is expressed in the ventral 

node and in the cardiogenic mesoderm and its expression is maintained throughout the entire 

myocardium and the formation of the heart tube. Between E9.5 and E10.5, Cited2 expression 

is elevated in heart forming structures, including the aortic sac, ventricles, myocardium, OT, 

atria and IT. Finally, at E13.5 CITED2 expression was predominantly found in the OT, IT, 

septum premium, around the vena cava and endocardial cushions of the atrioventricular (AV) 

canal and the tip of the intraventricular septum (233, 234) (Figure 1.17). 

  

 

Figure 1.17 CITED2 expression throughout heart development. Schematic representation of Cited2 

expression during mice heart development according to the following articles (233, 234). 
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1.5.3 Congenital Heart Diseases 

 

Heart abnormalities have been reported in patients carrying CITED2 mutations. 

Indeed, cardiac defects observed in Cited2-null embryos are phenotypically comparable to the 

heart problems of patients harbouring CITED2 mutations. Worldwide genetic screenings of 

cohort of patients have associated variants in CITED2 sequences mostly to sporadic non-

syndromic CHD. 

The most frequent heart anomalies associated with Cited2 are: VSD, ASD, TOF and 

the transposition of the great arteries (TGA), a CHD where the aorta is connected to the 

RV, and the pulmonary artery is connected to the LV (Figure 1.18). Interestingly, most of the 

missense mutations clustered in the serine-rich junction (SRJ) domain. Remarkably, transgenic 

mice in which the SRJ domain of Cited2 is removed are viable with normal hearts (199, 235).  

 

 

Figure 1.18 Prevalence of CITED2 mutations in CHD patients. Schematic representation of the adult 

human heart indicating the heart defects detected in patients of CHD carrying CITED2 mutations. The 

percentages represent the proportion of each of the heart abnormalities associated with CITED2 mutations in 

a cohort of patients with CHD. Image adapted from José Bragança, Joao Santos and Leonardo Silva, manuscript 

in preparation, the data compiled in the figure was published elsewhere (197-201). 
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Most of CITED2 variants identified in patients with CHD, only marginally affected the 

ability of CITED2 to repress HIF-1α and/or co-activate TFAP2C transcription factor ex vivo 

(235-241).  
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1.6 Objectives 
 

Cardiomyopathies and CHD are the leading cause of death worldwide both in adults 

and newborns respectively. It is expected that nearly 1% of the population manifest some 

form of CHD. Many laboratories across the world have studied the mechanisms of normal 

heart development and the causes leading to CHD. While the number of transcription factors 

and signalling pathways contributing to cardiogenesis is largely known, the fine regulation of 

this process is still not fully understood.  

Cited2 is important for heart development, and Cited2 KO embryos die in utero with 

multiple heart defects. Certain CITED2 mutations in humans have strongly been associated 

with CHD. However, its function is largely unknown.  

As such, the goal of this thesis is to better understand the function of CITED2 in 

cardiac development. Thus, the first objective consisted in understanding the impact of Cited2 

in cardiac commitment through CITED2 gain or loss function approaches. Given that, the 

second objective consisted on identifying the transcriptomic profile of Cited2 depletion 

through microarray analysis and candidate gene approach. The third objective was the 

identification of new candidate genes downstream of Cited2 important for cardiogenesis. Last 

objective was to attempt the rescue cardiac defects caused by Cited2 depletion through 

candidate genes both in vitro, as well as in vivo. 
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2.1 Materials 
 

2.1.1  Mouse embryonic stem cell lines 

 

2.1.1.2 Cited2fl/fl 

 

 Cited2fl/fl are a mESC that permit the spatiotemporal conditional KO of Cited2. Cited2fl/fl 

mESC derive from the blastocyst of mice Cited2fl/fl (242) and were successfully isolated and 

characterized in vitro (224). Excision of Cited2 can be achieved by the activity of the Cre 

recombinase enzyme. Lastly, the excised region of the exon2 is replaced by a cassette of LacZ 

reporter that allows the verification of Cited2 depletion and track cells where it occurred 

(Figure 2.1). 

 

Figure 2.1 Cited2 Conditional KO system. The exon2 of the Cited2 is flanked by two LoxP sites. Upon 

Cited2 excision, the exon is replaced by a LacZ cassette.  

 

2.1.1.2 Cited2fl/fl [Cre] 

 

Cited2fl/fl mESC were stably transfected with a plasmid expressing Cre fused to a 

domain of the Estrogen Receptor containing a ligand binding domain (Cre-ERt) (224). Excision 

of Cited2 can be triggered by supplementation of 4-Hydroxytamoxifen (4HT), a potent 

Estrogen antagonist, that causes Cre-ERt to enter the nucleus and excise the exon 2 of Cited2 

encompassed by loxP sites.  
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2.1.1.3 Cited2∆/∆ 

 

 Cited2fl/fl mESC that lost both Cited2 alleles, which have acquired compensation for 

CITED2 function and remained in culture with pluripotent-like features. Cited2∆/∆, represent 

a minority of mESC that were able to adapt to the loss of Cited2 and managed to survive. Even 

so, Cited2∆/∆ ability to differentiate to cardiac lineage is severely compromised (224). 

 

2.1.1.4 E14/T 

 

 E14/T is a mESC line derived from the blastocyst of a mouse strain 12910la that 

express polyomavirus large T antigen that can be transfected with plasmids carrying a 

polyomavirus origin of replication (ORI) at three orders of magnitude greater than DNA 

transfection efficiencies than other ESC. Provided selection, the transfected plasmid with the 

polyomavirus ORI is maintained episomal and propagates without the risk of chromosomal 

the integration (47). These cells were gently given by Austin Smith (University of Cambridge, 

UK). 

 

2.1.1.5 A2loxCRE 

  

 A2loxCRE cells are a mESC line that can be targeted with a specific plasmid vector 

harbouring an inducible gene expression cassette to generate a derivative ESC line. A2loxCRE 

were derived from E14Tg2a ESC by targeting them with an Inducible Cassette Exchange (ICE) 

locus on the X chromosome (243) (Figure 2.2). To generate A2loxCRE, harbouring the 

inducible CITED2 expression, hereafter termed as A2UpC2, cells were treated with 0.5μg/mL 

doxycycline, one day before transfection, in order to induce the expression of Cre (244). On 

the following day, cells were transfected with P2lox harbouring Flag-tagged CITED2 (FC2) 

and, after 24h, selection medium containing 300μg/mL of geneticin (Invivogen G418) was 

added to the cells and selection was maintained for 10 days (Figure 2.2). Resistant colonies 

were then individually picked into 96-well plates and expanded. To confirm integration of the 

plasmid sequence, DNA was isolated from resistant clones and sent for sequencing (Stabvida). 
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CITED2 expression was induced by adding 2 μg/ml of doxycycline (Sigma) to the culture 

medium every two days. A2loxCre mESC were gently given by Prof. Michael Kyba (University 

of Minnesota, USA) (245). 

 

Figure 2.2. Schematic representation of the A2loxCre System. Site-specific recombination between the 

loxP sites in p2Lox plasmid and in A2loxcre ESC leading to the integration of our gene of interest into the X-

chromosome of the cells along with the PGK-ATG that complements the mutated version of the neomycin 

resistance gene (∆neo). The recombination between the loxM sites excises Cre leading a stable integration. 

Reverse Tetracycline transactivators (rtTA); ROSA promoter (pROSA); tetracycline response elements (TRE); 

Hypoxanthine guanine phosphoribosyltransferase (Hprt) Image adapted from (245), 

 

2.1.2 Plasmid Vectors 

 

2.1.2.1 pPyCAGIP 

 

 The pPyCAGIP, hereafter referred as CAGIP, is an episomal expression vector that 

harbours a polyoma ORI with the F101 mutation allowing episomal replication in ESC. 

Complementary DNA (cDNA) may be cloned in place of the stuffer fragment linked to the 
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puromycin resistance gene. The CAGIP backbone was used to generate two different vectors 

used in this study. A vector harbouring an enhanced green fluorescent protein (eGFP), 

hereafter termed CAGIP-eGFP and, a vector harbouring the human full-length CITED2 (FC2) 

fused to a flag peptide at its N-terminal domain, hereafter termed CAGIP-FC2. The pPyCAGIP 

vector was gently given by Austin Smith ( University of Cambridge, UK) (47).  

 

2.1.2.2 P2lox 

 

P2lox is a vector with a backbone size of 2660 base pair (bp) used to recombine with 

the ICE of the A2loxCre mESC. In the present work, we used a P2lox vector harbouring an 

eGFP, hereafter termed P2lox-eGFP, gently given by Prof. Michael Kiba (University of 

Minnesota, USA)(245). Furthermore, we generated a P2lox vector harbouring an FC2, 

hereafter known as P2lox-FC2. 

 

2.1.2.3 Plasmid for Luciferase Assay  

 

 pGL3-Basic vector (Promega) is a promoter-less luciferase reporter, into which 

promoter fragments can be cloned to control the expression of the luciferase in mammalian 

cells. After transfection, the expression of the luciferase and its subsequent activity is 

proportional to the promoter transcriptional activity. In the present work, we used a Wnt11-

luc vector harboring the luciferase activity under the promoter of Wnt11. This plasmid was a 

kind gift from Dr. Hiroyuki Mori (University of Michigan, USA) (246).  
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2.2. Methods 

2.2.1 Embryonic Stem Cell culture 

   

Except for A2loxCRE mESC, all ESC were cultured in Glasgow Minimum Essential 

Medium (GMEM) BHK-21 (Gibco®, 21710) supplemented with 10% Fetal Bovine Serum (FBS) 

(Sigma®, F7524), 1x L-Glutamine 200mM (Gibco®, 25030), 1% Penicillin-Streptomycin (P/S) 

(Gibco®, 15140), 1x Sodium Pyruvate 100mM (Gibco®, 11360), 1x Minimum Essential Medium 

Non-Essential Amino Acids (MEM-NEAA) (Gibco®, 11140) and 0.05mM 2-Mercaptoethanol 

(Gibco®, 31350).  

A2loxCRE mESC, were cultured in Dulbecco’s Modified Eagle Medium (DMEM) 

(Gibco®, 41966) supplemented with 15% FBS (Sigma®, F7524), 1x L-Glutamine 200mM 

(Gibco®, 25030), 1% P/S (Gibco®, 15140), 1x Sodium Pyruvate 100mM (Gibco®, 11360), 1x 

MEM-NEAA (Gibco®, 11140) and 0.05mM 2-Mercaptoethanol (Gibco®, 31350). 

Cells were maintained on plates previously coated with 0.1% Gelatine (Sigma®, G1393) 

and kept at 37ºC in a humidified incubator with 5% CO2. To maintain the cells under 

pluripotency conditions 103 U/ml LIF (Merck Millipore, ESG1107) was added to the medium. 

The cell medium was changed every two days, and cells were split when 60%-70% confluent. 

Cells were dissociated in Trypsin EDTA (0.25%) (Gibco®, 25200) after washed with phosphate 

buffered saline (PBS), followed by centrifugation at 300g for 4 min. 

 

2.2.2 Embryoid Bodies Formation and Cardiac Differentiation 

 

 To induce mESC differentiation, we used a hanging-drop method. The differentiation 

medium used was the same used to maintain mESC pluripotent but without LIF. 5x104 cells, 

previously dissociated and separated by trypsinization, were resuspended in 1mL of 

differentiation medium. After that, approximately 50 droplets of 20μL were prepared in low 

adhesion plates and inverted to ensure the formation of EB with, approximately, 1000 

cells/drop. After 2 days, the plates were inverted and supplemented with 5mL of 

differentiation medium. By day 5 of the differentiation, the EB were transferred to a previously 

0.1% gelatine-coated plate allowing their adhesion to the plate. By day 7, the first beating foci 
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normally appear. From day 8 to day 10 of the differentiation, we assess the cardiac 

differentiation by counting the percentage of EB that have beating foci and the average beating 

foci per EB.  

 The differentiation medium used on Cited2fl/fl[CRE] was supplemented at D0 with 4HT 

at a final concentration of 1 M (Sigma H7904) or treated with the same volume of Ethanol 

(EtOH) used as a vehicle. The differentiation medium used on A2uPC2 was supplemented at 

different time points with 1μg/mL of Doxycycline Hyclate (Sigma, D9891). 

 

2.2.3 pPyCAGIP-based vectors transfection 

 

All transfections were performed with Lipofectamine® 2000 (Invitrogen, 11668). In 

brief, 2.5x105 ESC were plated in 0.1% gelatine-coated 6-well plate. On the following day, 1μg 

of total DNA vectors were transfected per well according to the recommendation of the 

manufacturer. After 4 hours, the ESC medium was added to cultures. On the following day, 

selection antibiotic was supplemented to the medium. 

 

2.2.3 RNA extraction and cDNA synthesis 

 

Total RNA extraction and purification were performed according to the 

manufacturer’s protocol of the RNeasy Mini Kit (Qiagen 74104). Total RNA concentration 

was measured with Nanodrop2000 (Thermo Scientific). To prepare cDNA from total RNA, 

1μg of total RNA was used for reverse transcriptase according to the manufacturer’s 

protocol, using the NZY First-Strand cDNA Synthesis Kit (Nzytech MB125). 

 

2.2.5 Quantitative polymerase chain reaction 

 

Quantitative polymerase chain reaction (qPCR) was performed using SsoFast Evagreen 

Supermix (BioRad), in a CFX96TM Real-Time PCR detection system (BioRad) and using the 

CFX ManagerTM Software (BioRad). For all primers, we used an annealing temperature of 65ºC 
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and we normalized gene expression levels to the levels of Gapdh expression. The list of 

primers used for qRT-PCR is presented in Table 2.1. 

 

Table 2.1. List of primers used for qPCR 

Gene Forward Primer Reverse Reference 

Bmp4 TTCCTGGTAACCGAATGCTGA CCTGAATCTCGGCGACTTTTT (247) 

Brachyury CTCTAATGTCCTCCCTTGTTGCC TGCAGATTGTCTTTGGCTACTTTG (49) 

Cer1 CTCTGGGGAAGGCAGACCTAT CCACAAACAGATCCGGCTT (248) 

Cited2 #1 CGCATCATCACCAGCAGCAG CGCTCGTGGCATTCATGTTG (249) 

Cited2 #2 AAATCGCAAAGACGGAAGGACTGG ATGCGGGCTCGGGAACTGC (224) 

Dkk1 CTGAAGATGAGGAGTGCGGCTC GGCTGTGGTCAGAGGGCATC (250) 

Gapdh TCCCACTCTTCCACCTTCGATGC GGGTCTGGGATGGAAATTGTGAGG (49) 

Fgf5 CTGTATGGACCCACAGGGAGTAAC ATTAAGCTCCTGGGTCGCAAG (49) 

Fgf8 CCAGCCCCAAACTACCCCGAGGAG CGCGCAGACCCAGCCCAGGAT (251) 

Fgf10 CAGCGGGACCAAGAATGAAG TGACGGCAACAACTCCGATTT (252) 

Isl1 CTTAAGCATGCCCTGTAGCTGG CAGACAGGAGTCAAACACAATCCC (49) 

Mesp1 TGTACGCAGAAACAGCATCC TTGTCCCCTCCACTCTTCAG (253) 

Nkx2.5 

Nodal 

CCACTCTCTGCTACCCACCT 

TGGCGTACATGTTGAGCCTCT 

CCAGGTTCAGGATGTCTTTGA 

TGAAAGTCCAGTTCTGTCCGG 

(254) 

(255) 

Tbx5 

Wnt3 

GGACCCAGTCCCTTGAATGG 

ACCTGGAGAAGGCTGGAAGT 

TCCAGGCTGAGGAGTTCTAGGC 

CTTGTCCTTGAGGAAGTCGC 

(49) 

(252) 

Wnt3a TGGCTCCTCTCGGATACCTC AAAGCTACTCCAGCGGAGGC (256) 

Wnt5a CAAATAGGCAGCCGAGAGAC TCTAGCGTCCACGAACTCCT (249) 

Wnt11 GCTCCATCCGCACCTGTT CGCTCCACCACTCTGTCC (252) 

 

2.2.6 Microarray  

  

 Total RNA was isolated using TRIzol and purified with a miRNeasy Mini Kit (Qiagen 

217084). Quantification was carried out using Nanodrop2000 (Thermo Scientific). For 

microarray labeling, 100ng of total RNA was taken as starting material, and amplification and 

hybridization were performed according to Affymetrix standard protocol. 12.5 μg of amplified 

RNA was hybridized on Mouse Genome 430 version 2.0 arrays (Affymetrix) for 16h at 45ºC. 

The arrays were washed and stained in an Affymetrix Fluidics Station-450, according to the 

manufacturer’s instructions. After staining, arrays were scanned with an Affymetrix Gene-

Chip Scanner-3000-7G (257). 
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 Microarray data were processed using the robust multi-array average (RMA) method 

on the R/Bioconductor platform. Variability between samples was visualized using Principal 

Component Analysis (PCA), hierarchical clustering, and density plots, implemented in R using 

the entire poly(A)-RNA datasets. For differential expression analysis, the Bioconductor 

package limma (258) and multivariate empirical Bayes statistics were applied. Gene expression 

was considered significantly altered when the adjusted p-value was inferior to 0.05 and a 

positive or negative Logarithm fold change (LogFC) was superior to 1 (259). Upregulated and 

downregulated differentially expressed genes (DEGS) pathway analysis was performed by 

Wikipathways conducted by Enrichr (260, 261). 

 

2.2.4 Immunocytochemistry 

 

Immunocytochemistry was performed with Cited2fl/fl[Cre] ESC treated with EtOH or 

4HT at D0 and differentiated for 10 days. At D10, cells were dissociated with trypsin and 

grown in coverslips, previously coated with gelatine ON. On the next day, cells were washed 

with PBS (Sigma) and fixed in 4% formaldehyde (Sigma, F8775) for 15 min at 37ºC, 

permeabilized in 0.1% Triton X-100 diluted in PBS for 20 minutes and blocked with 2% Bovine 

Serum Albumin (BSA) (Nzytech) in PBS for 30 minutes. Samples were then incubated with 

mouse monoclonal anti- -ACTININ 1:500 (Sigma, A7811) or mouse monoclonal anti-

MYOSIN 1:300 (DSHB, MF20) diluted in PBS with 0.1% Tween 20 (PBS-T) (Sigma) for 2 hours 

at Room temperature (RT). Afterward, samples were washed three times with PBS-T and 

incubated with secondary antibody AlexaFluor-594 (Invitrogen, AF594) for 1 hour at RT. The 

coverslips were then washed three times with PBS-T and incubated with 5μg/mL of DAPI 

(Sigma, 28718) for 10 minutes. Lastly, coverslips were washed twice with PBS-T and mounted 

with Mowiol. Fluorescence microscopy was performed using an Axio Imager Z2 Fluorescence 

microscope (Carl Zeiss) and images obtained at 100x magnification. 
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2.2.5 Conditioned Medium preparation 

  

To prepare the conditioned medium (CM), 3x106 previously transfected E14T/CAGIP 

or E14T/FC2 ESC were plated on a 0.1% gelatine-coated 10cm dish and supplemented with 

GMEM without LIF ON. The following day, cells were washed twice with PBS (Sigma) and 

10mL of GMEM without supplements was added ON. On the next morning (approximately 

16 hours), the medium was collected and filtered through 0.45μm. At the onset of 

differentiation, Cited2fl/fl[Cre] ESC were treated with half CM and half differentiation medium 

with 10% total FBS. After D2, cells were treated with normal differentiation medium for the 

remaining of the differentiation. 

 

2.2.6 Immunoprecipitation and Western Blot 

 

 For immunoprecipitation (IP), 1.5mL  of the collected CM was incubated with the 5μg 

of rat monoclonal anti-WNT5a (R&D Systems, MAB645), rabbit polyclonal anti-WNT11 

(Santa Cruz Biotechnology, SC50360) or goat polyclonal anti-FGF10 (Sant Cruz 

Biotechnology, SC7375) ON at 4ºC. On the following day, 30μL of Protein G Sepharose Beads 

(GE Healthcare), pre-blocked with 1% BSA solution were added to the CM and incubated at 

4ºC with agitation for 1 hour. Afterward, the CM was centrifuged at 1000g for 5min and both 

the pellet and the supernatant were recovered.  

Proteins immunoprecipitated were separated using  SDS-PAGE 10% bisacrylamide-

polyacrylamide gel (National DiagnosticsTM) using the Miniprotean II system (BioRad) along 

with NZYColour Protein Marker II (NZYTech, MB090) and transferred to PVDF membrane 

(GE Healthcare) using a semi-dry blotter (20min at 200mA, BioRad). The membrane was 

blocked for 1 hour at RT with a solution containing 4% milk in PBS-T. The membrane was 

subsequently incubated with rat monoclonal anti-WNT5a (1:1000), rabbit polyclonal anti-

WNT11 (1:200) or goat polyclonal anti-FGF10 (1:200) at RT for 1 hour. Samples were washed 

three times with PBS-T and incubated with the appropriate secondary antibody horseradish 

peroxidase (HRP) conjugated for 1 hour at RT (Santa Cruz Biotechnology sc-2313 1:10,000; 

Santa  Cruz Biotechnology sc-2378 1:5,000; Abcam, ab97057 1:5000). The HRP activity was 
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revealed by ECL Plus kit (GE Healthcare) according to the manufacturer’s instructions and 

image acquisition was done on the ChemiDocTM MP Imaging System (BioRad).  

 

2.2.7 Immunodepleted Conditioned Medium and Rescue Assay 

 

For immunodepleted CM, the supernatant of previously immunoprecipitated CM or 

CM incubated with 5μg/mL of rat monoclonal anti-WNT5a, 2.5μg/mL of rabbit polyclonal 

anti-WNT11, 2.5μg/mL of goat polyclonal anti-FGF10, or 5μg/mL of polyclonal rabbit IgG, 

polyclonal (Abcam, ab37415) was added at the onset of differentiation of Cited2fl/fl[Cre] ESC. 

For rescue assay, 100ng of recombinant WNT5a protein (Millipore, GF146), 100ng of 

recombinant of WNT11 (R&D Systems, 6179-WN), or a combination of 50ng of WNT5a and 

50ng of WNT11 was added at the onset of differentiation of Cited2fl/fl[Cre] ESC. 

   

2.2.8 Luciferase Assay 

 

E14T ESC were plated in 24 well plates at 2.5x104 cells per well and transfected the 

following day using Lipofectamine 2000 (Invitrogen) with 100ng of Wnt11-luc reporter  (246), 

100ng of CAGIP-FC2 expression or CAGIP control vectors and 100ng of CMV-lacZ plasmid. 

Cells were maintained under pluripotency conditions and lysed 48h post-transfection and 

both luciferase and lacZ activities were measured as previously reported in (224), in a Dual 

Injector GloMax-Multi Detection System (Promega). 

 

2.2.9 Zebrafish Microinjection and Developmental Study 

 

 The night before the injection, male and female zebrafishes were set up in breeding 

tanks with dividers to increase total egg production. To achieve Cited2 depletion, 1-cell stage 

zebrafish eggs were injected with 4.6nl of 5ng of custom anti-Cited2 Morpholino (MO) 

designed to bind to the translation staring site (UAG-MO) (5’-

CCATCATGCGGTCTACCATTCCC-3’) with 3’- Carboxyfluorescein end modification 
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and/or anti-Cited2 MO designed to the splicing site of the 1st intron (Splicing-MO) (5´-

AACTTTGTAACCTTTACCTCTCCGC-3’) with 3’-Lissamine end modification (GeneTools) 

prepared in Danieau’s solution (262). To control the procedure, 1-cell stage zebrafish eggs 

were injected with 5ng of a standard control oligo (Control MO) (5’-

CCTCTTACCTCAGTTACAATTTATA-3’) (GeneTools) also prepared in Danieau’s solution. 

To perform the rescue assays, Danieau’s solution with 5ng of Cited2 MO was co-injected with 

500pg of 8R-CITED2 or 5-10pg of WNT5a and/or WNT11. Previous dialysis of 8R-CITED2 

in SnakeSkin® Dialysis Tubing 3.5k MWCO (Thermofisher) was performed at 4ºC ON with 

constant agitation, against PBS, to ensure the removal of phenylmethylsulfonyl fluoride (PMSF) 

from the solution. 

 Zebrafish embryos were kept in embryo medium (263) at 28.5ºC with a photoperiod 

of 14hours light and 10 hours dark. The medium was changed every day and the dead embryos 

discarded. For heart rate determination, the beating per minute (bpm) were counted from 

10-second videos of hearts acquired from randomly picked embryos at 48hpf. Live imaging 

and photography were captured on a Leica MZ 7.5 stereomicroscope (Leica Microsystems) 

at RT. All experiments were conducted in accordance with the regulation of the Directive 

2010/63/EU (EU, 2010). 

 

2.2.10 Statistical Analysis 

  

Statistical Analysis Statistical significance was determined by two-tailed Student’s t-

tests assuming unequal variance or Fisher’s Exact test of independence when we had two 

nominal variables. P-values were considered significant when p<0.05. 

 

  





 

  

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 

 
Cited2 depletion impairs cardiac differentiation 
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3.1 Introduction 

 

In mice, the transcriptional modulator Cited2 is required for normal embryogenesis. 

KO of Cited2 in the epiblast results in embryonic lethality associated with multiple 

cardiovascular defects (194-196). In humans, mutations in the gene encoding CITED2 are 

associated with CHD (197-201).  

To better understand the role of Cited2 in the early stages of mESC differentiation, 

our group employed a CITED2 gain of function approach to examine its role during cardiac 

differentiation (224). CITED2 overexpression, in undifferentiated ESC, stimulates the 

expression of transcription factors important for cardiac lineage commitment and 

differentiation, promoting cardiac cell emergence upon differentiation (264). 

Previous data also showed that CITED2 expression is highly associated with CPC 

populations, particularly CPC of the SHF and that CITED2 is recruited to the promoter of 

the Isl1 gene (264). We also provided evidence that the human CITED2 and ISL1 proteins 

physically interact and synergize to promote cardiogenesis from ESC (264) (Figure 3.1).  

 

Figure 3.1. Model of the role of Cited2 during cardiogenesis of ESC. CITED2 is required for 

the normal expression of mesoderm markers such as Brachyury and Mesp1 and cardiac mesoderm markers such 

as Isl1, Nkx2.5, Gata4, and Tbx5.  The overexpression of CITED2 in ESC triggers an increase of Isl1, Nkx2.5, 

Gata4, and Tbx5 which favours cardiac differentiation. Lastly, CITED2 and ISL1 proteins physically interact and 

cooperatively promote cardiac differentiation (264). 
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3.2 Chapter Objectives and experimental strategy 

 

To better understand the role of Cited2 at the early stages of mESC differentiation, we 

employed a CITED2 loss and gain of function approaches to examine the role of Cited2 during 

cardiac differentiation. 

 

3.3 Cited2 is expressed throughout cardiac differentiation 

  

 To further investigate the role of Cited2 in cardiac differentiation we used 

Cited2fl/fl[Cre], which allows the conditional KO of Cited2 by supplementation of 4HT to the 

culture medium. First, we analysed Cited2 kinetic expression by qPCR, during the 

differentiation of Cited2fl/fl[Cre] ESC (Figure 3.2). The pattern of Cited2 expression in control 

ESC (EtOH treated) is biphasic. Cited2 transcripts decrease from the onset of differentiation, 

D0 to D2 of differentiation, followed by an elevation from D3 onward.  

Next, we examined Cited2 expression in Cited2fl/fl[Cre] ESC treated with 4HT (Figure 

3.2). In cells treated with 4HT, Cited2 expression decreases at a similar rate as control ESC 

from day D0 to D2 of differentiation. However, from D3 onwards Cited2 transcripts were 

significantly lower in cells treated with 4HT when compared to those where EtOH was used 

as a vehicle. This decrease of Cited2 expression from D3 onwards is due to cells impaired 

ability to produce Cited2 transcripts indicative of a partial Cited2 KO.  

The increase in Cited2 transcripts levels on control ESC matches Cited2 expression in 

vivo. In mice, Cited2 expression is detected post gastrulation in the cardiogenic mesoderm and 

later in CPC of both FHF and SHF (234).  

Cited2 depletion was incomplete during the time course of differentiation since Cited2 

transcripts remained detectable in cells treated with 4HT. Even so, these levels were 

significantly reduced in comparison to the EtOH treated cells, especially from day 3 onwards. 

This decrease should still result in phenotypic changes since Cited2 haploinsufficiency is 

sufficient to result in CHD in mouse and human (242). 



Cited2 depletion impairs cardiac differentiation 
 

57 
 

C
it

e
d

2
 E

x
p

re
ss

io
n

 n
o

rm
al

iz
e

d
 t

o

 u
n

d
if

fe
re

n
ti

a
te

d
 E

S
C

D
1

D
2

D
3

D
4

D
5

0

1

2

3
E to H

4 H T

* * *

* * *

* * * *

 
Figure 3.2. Cited2 expression in mESC differentiation. The expression of Cited2 was determined 

by qPCR of Cited2fl/fl[Cre] ESC treated either with EtOH or 4HT at the onset of differentiation. Samples were 

taken every 24h during the initial 5 days of differentiation. Cited2 expression was normalized to the expression 

of undifferentiated Cited2fl/fl[Cre] ESC. Each dot represents the expression per sample and mean ±SEM of four 

independent experiments. (*** p<0.005; **** p<0.001). 

 

3.4 Cited2 is required for cardiomyocytes differentiation 

 

 To determine if Cited2 depletion impairs the cardiac cell fate decision of ESC, we 

counted the number of EB that originated spontaneous beating foci at D10 of differentiation. 

Noticeably, the number of beating foci was reduced in cell cultures treated with 4HT at D0 

compared with cell cultures treated with EtOH (Figure 3.3). Indeed, in comparison to control 

cells, the number of beating colonies arising from Cited2 depleted cells reduced in half.  
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Figure 3.3. Cited2 depletion impairs cardiac differentiation. Cited2fl/fl[Cre] ESC were treated either with 

EtOH or 4HT at the onset of differentiation and the average number of beating colonies was determined at D8 

of differentiation. The percentage of beating colonies was determined by the number of colonies that express a 

beating colony divided by the total number of colonies. Each dot represents an independent experiment and 

mean ±SEM of eight independent experiments. (**** p<0.001), 

 

To further support and validate these observations, we analysed the expression of 

cardiomyocyte-specific markers through immunocytochemistry (ICC) at D10 of 

differentiation (Figure 3.4). Approximately 25% to 30% of Cited2fl/fl[Cre] ESC treated with 

EtOH were positive for α-ACTININ and MF20. Cited2fl/fl[Cre] ESC treated with 4HT resulted 

in the decline of α-ACTININ or MF20 protein detection and in the diminution of the number 

of cells stained positive α-ACTININ and MF20 in comparison with control ESC (Figure 3.5a). 

Interestingly, when we investigated the sarcomere organization of Cited2 depleted ESC we 

observed that they were largely unorganized. Indeed, α-ACTININ and MF20 positive control 

ESC had the majority of their sarcomeric region well organized. In comparison, 4HT treated 

cells had most of their sarcomeric region disorganized (Figure 3.5b). 
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Figure 3.4. Immunofluorescence detection of sarcomeric proteins in cardiomyocytew. Cited2fl/fl[Cre] 

ESC treated either with Ethanol or 4HT at the onset of differentiation were stained for α-ACTININ (left panels, 

red staining) or MF20 (right panels, red staining). Nuclei wer stained with DAPI and cells were analysed at 100X 

magnification. 

 

 Both actin (thin) and myosin (thick) filaments expression were reduced, most notably, 

myosin filaments which were almost non-existent in Cited2 depleted ESC. Smaller sarcomere 

length is typically found in immature cardiomyocytes (265) This suggests that Cited2 depleted 

ESC do not differentiate efficiently resulting in very immature cardiomyocytes. 

 

 

3.5 A recombinant Cited2 protein rescues Cited2 depletion defects 

 

To confirm that the cardiogenic differentiation defects observed in Cited2 depleted 

cells were caused by the loss of CITED2 expression, Cited2fl/fl[Cre] ESC, treated with 4HT, 

were supplemented with 5-10μg of a recombinant human CITED2 protein, hereafter known 

as 8R-CITED2. The recombinant 8R-CITED2 has the CITED2 N-terminal domain with a 

stretch of eight arginine’s, that allow proteins to pass the intracellular membrane and 

translocate into the nucleus (266). 
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Figure 3.5 Expression and organization of sarcomeric proteins in cardiomyocytes. A) Percentage of 

positive cells stained at D12 of differentiation for α-ACTININ or MF20 in Cited2fl/fl[Cre] ESC treated either with 

EtOH (white bars) or 4HT (grey bars) at the onset of differentiation. B) Sarcomeric organization of α-ACTININ 

or MF20 positive cells. A) Bars represent the mean ±SEM of two independent experiments.  

  

 We first supplemented 8R-CITED2, in combination with 4HT, to the culture medium 

of Cited2fl/f[Cre] ESC at D0. Surprisingly, the average number of beating colonies did not 

change between cells treated with 4HT and 4HT+8R-CITED2 (Figure 3.6a). Interestingly, the 

supplementation of 8R-CITED2 at D2 of differentiation in the culture medium of ESC treated 

with 4HT at D0 restored the emergence of beating colonies to control levels, further 

confirming that the cardiac defects observed are caused by Cited2 depletion (Figure 3.6b). 
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Figure 3.6 Recombinant CITED2 protein can rescue cardiac defects caused by Cited2 depletion. 

A) Cited2fl/fl[Cre] ESC were treated at the onset of differentiation with EtOH, 4HT or 4HT with 5-10 μg/mL of 

8R-CITED2. The percentage of beating colonies was determined at D8, D9 or D10 of differentiation. B) 

Cited2fl/fl[Cre] ESC were treated at the onset of differentiation with EtOH or 4HT at the onset of differentiation. 

At D2 of differentiation, some of the 4HT treated cells were then supplemented with 5-10 μg/mL of 8R-CITED2, 

while the rest was maintained under normal conditions. The percentage of beating colonies was determined at 

D8, D9 or D10 of differentiation. Bars represent the mean ±SEM of four independent experiments. Non-

significant (n/s); (* p<0.05); (** p<0.01); (*** p<0.005). 

 

Next, we supplemented 8R-CITED2 to Cited2∆/∆ ESC, which complete lack CITED2 

expression and do not differentiate well into cardiomyocytes (264). Cited2∆/∆ ESC were treated 

with 8R-CITED2 at D2 of differentiation and the number of beating cells determined at D10. 

Even with supplementation of 8R-CITED2, we failed to increase the number of beating cells. 
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As such, we investigated if 8R-CITED2 supplementation could increase the expression of 

mesoderm and cardiac mesoderm transcription factors. 

At D5 of differentiation Cited2∆/∆ ESC, express less mesoderm and cardiac mesoderm 

transcription factors compared to Cited2fl/fl ESC. Indeed, while Gata4 expression was similar in 

both cell types, Cited2∆/∆ ESC express lower levels of Brachyury, Mesp1, Tbx5, Isl1, and Nkx2.5 

when compared to Cited2fl/fl ESC. However, when Cited2∆/∆ ESC were treated with 8R-CITED2 

at D2 of differentiation, the expression of Brachyury, Mesp1, Tbx5, Isl1, and Nkx2.5 increased. 

While this increase in expression matched the expression levels of Cited2fl/fl ESC, only Isl1 

expression was significantly different when compared to non-treated Cited2∆/∆ ESC (Figure 

3.7).  

 

Figure 3.7 8R-CITED2 can partially rescue Cited2 null ESC. The expression of T, Mesp1, Tbx5, Nkx2.5, 

Isl1, and Gata4, were determined at D5 of differentiation in Cited2fl/fl, Cited∆/∆ and Cited∆/∆ ESC treated at D2 of 

differentiation with 5-10 μg/mL of 8R-CITED2 through qPCR. The expression of each gene was normalized to 

the levels obtained in Cited2fl/fl ESC at D5 of differentiation. Each dot represents the expression per sample and 

mean ±SEM of three independent experiments. (* p<0.05); (*** p<0.005). 

 

3.6 Decrease of Cited2 expression during mesoderm is required for proper 

cardiac differentiation. 

 

 Previous data showed that CITED2 overexpression, in mESC, promotes cardiac cell 

emergence upon differentiation (264). However, both Cited2 kinetic expression, as well rescue 

with 8R-CITED2, made us hypothesize that Cited2 expression needs to go down, during the 
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initial days of differentiation, to allow ESC to go into a state permissive to their differentiation. 

To test this hypothesis, we used A2UpC2 ESC that enable the temporal overexpression of 

Cited2 upon addition of doxycycline into the medium at different time points of differentiation.  

Doxycycline was added at different time points of differentiation and renewed every 

two days until D10 of differentiation and the number of beating colonies was determined 

between D7 to D9. The addition of doxycycline every two days ensures that the levels of 

Cited2 remain high throughout the process of differentiation (Figure 3.8). 

 

 

 

 

 

 

 

Figure 3.8 Inducible Cited2 overexpression system. The expression of Cited2 was determined in 

A2UpC2 ESC, treated or non-treated, with 1μg/mL of doxycycline for two days through qPCR. The expression 

of Cited2 was normalized to the levels of non-treated cells. Error bars represent the mean ±SEM of three 

independent experiments. (**** p<0.001). 

 

When doxycycline was added from D0 onward, the differentiation into 

cardiomyocytes was severely compromised. Indeed, continuous overexpression of Cited2 

from D0 results in almost no beating colonies when compared to non-treated A2UpC2 ESC. 

Interestingly, continuous addition of doxycycline at a later time point of differentiation did not 

affect the ability of A2UpC2 to differentiate into cardiomyocytes when compared to non-

treated cells (Figure 3.9). 

Thus, Cited2 expression needs to go down to ensure a proper cardiac differentiation. 

To some extent, this result contradicts what we had previously reported (264). However, 

contrary to the previously mentioned experiment where Cited2 was overexpressed prior to 

differentiation, in this experiment we continuously maintained Cited2 levels high throughout 

differentiation.  
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Figure 3.9 Continuous Cited2 Overexpression at the onset of differentiation impairs 

cardiac differentiation. 2μg/mL of doxycycline was added to A2UpC2 ESC at different days of differentiation 

and renewed every two days until D9 of differentiation. The average number of beating colonies was assessed 

at D7, D8 and D9 of differentiation and normalized to non-treated A2UpC2 at D7, D8 and D9 of differentiation. 

Each dot represents the expression per sample and mean ±SEM of three independent experiments. Statistical 

analysis was performed for the countings at D8 of differentiation. (**** p<0.001). 

 

3.7 Conclusion 

 

 Cited2 is expressed throughout the process of cardiac differentiation but its expression 

is minimal at D2 of differentiation. Depletion of Cited2 at the onset of differentiation impairs 

the ability of ESC to give rise to cardiomyocytes. This was observed through a decrease in 

the average number of beating cells and the decrease of cardiomyocyte-specific markers. To 

demonstrate that the cardiac defects observed were caused by Cited2 depletion we treated 

ESC with a recombinant CITED2 protein that can revert cardiac defects when added at D2 

of differentiation. We also provide evidence that continuous expression of Cited2, from the 

onset of differentiation, impairs cardiac differentiation. This indicates that the expression of 

Cited2 must decrease to ensure proper cardiac differentiation.  

 



 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4 
 

Gene Profile of Cited2 depleted ESC 
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4.1 Introduction 

 

 We previously reported that Cited2 contributes to the expression of a subset of key 

cardiopoietic genes involved in mesoderm and CPC specification (264). During mouse 

embryonic development CITED2 expression was detected in early mesodermal cardiac-

derived structures (233). 

 Surprisingly, using a Brachyury-CRE or a Mesp1-CRE conditional Cited2 KO only 

resulted in minor heart developmental defects of mouse embryos, while Cited2 KO in the 

epiblast consistently resulted in embryonic lethality and heart defects (242). Similarly, we 

reported that Cited2 depletion at the onset of differentiation of ESC causes the most severe 

impact on cardiac differentiation (264). On the other hand, Cited2 depletion from D2 onwards 

had little to no effect on cardiogenesis. Together, with the results from the previous chapter, 

indicate that Cited2 function is important for the early commitment of ESC to mesoderm and 

cardiac specification.  

 

4.2 Experimental Strategy 
 

To further investigate the mechanisms underlying the loss of Cited2, in pluripotency 

and early differentiation, we compared the gene expression profiles of Cited2 depleted cells 

at D4 of differentiation, to control cells at D4 of differentiation or undifferentiated. For that, 

we extracted RNA and performed microarray analysis, of Cited2fl/fl[Cre] ESC, treated with 

EtOH or 4HT, at the onset of differentiation, at D0 and D4 of differentiation (Figure 4.1).  
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Figure 4.1 Microarray experimental strategy. Cited2fl/fl[Cre] ESC were treated with EtOH or 4HT and 

maintained under pluripotent conditions or differentiated. Total RNA of cells maintained under pluripotency 

conditions was extracted at D2, whereas total RNA of cells used for differentiation was extracted at D4. Samples 

were later sent for microarray analysis. 

 

4.3 Transcriptional differences between control cells and Cited2 depleted cells.  

 

 To understand the molecular differences between Cited2 depleted cells and control 

cells we first performed a PCA. PCA is a statistical procedure that simplifies the complexity 

in high dimensional data while retaining trends and patterns. PCA analysis indicated that 

patterns of expression of undifferentiated and differentiated Cited2fl/fl[Cre] ESC are very 

distinct (Figure 4.2). Interestingly, the transcriptomic profile of Cited2 depleted cells at D4 of 

differentiation clustered closer to those of undifferentiated ESC than to control ESC at D4 of 

differentiation. 
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Figure 4.2 Principal Component Analysis. PCA analysis of Cited2fl/fl[Cre] ESC undifferentiated (red dots), 

control cells at D4 of differentiation (blue dots) and Cited2 depleted at D4 of differentiation (green dots). The 

number of differentially expressed genes is indicated. Each dot represents an individual sample. 

 

Next, we analysed the gene expression differences between undifferentiated ESC and 

control cells at D4 of differentiation. We considered the expression values significantly altered 

when adjusted p-value was inferior to 0.05 and the absolute LogFC was greater than 1. We 

found 546 genes differentially expressed genes (DEGS) upregulated while 546 DEGS were 

downregulated in Cited2fl/fl[Cre] ESC at D4 when compared with Cited2fl/fl[Cre] ESC at D0. 

Amongst the most upregulated genes, we identified genes important for different cell fate 

acquisition including Kdr, Eomes or Mixl1 (Figure 4.3A). On the other hand, amongst the most 

downregulated genes, we identified genes important for pluripotency such as Sox2, Dppa5a, 

and Klf4 (Figure 4.3B) 
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Figure 4.3 Top DEGS between differentiated and undifferentiated cells. Bars represent the top 10 

upregulated and downregulated DEGS important for pluripotency or cell fate commitment in Cited2fl/fl[Cre] ESC 

at D4 of differentiation compared to Cited2fl/fl[Cre] ESC undifferentiated. A) DEGS upregulated. B) DEGS 

Downregulated. The number ahead of the bars indicates the ranking position in all DEGS found. 

 

For upregulated and downregulated DEGS we performed functional enrichment 

analysis on basis of Wikipathways conducted by Enrichr web-tool (260, 261). Wikipathways 

is an open, collaborative platform for capturing and disseminating biological pathways for data 
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visualization and analysis (267, 268). Pathway enrichment analysis with the upregulated DEGS 

indicated that the gene expression profile fits the initial process of fate acquisition during ESC 

differentiation and early embryonic development (Table 4.1). Likewise, pathway analysis of the 

downregulated DEGS indicated that the gene expression profile is related with pluripotent 

network and pre-implantation epiblast (Table 4.2). 

 

Table 4.1  Upregulated pathways in differentiated cells compared to undifferentiated cells. Pathway 

analysis was conducted using Enrichr for the 546 DEGS upregulated in Cited2fl/fl[Cre] ESC at D4 of differentiation 

compared to Cited2fl/fl[Cre] ESC undifferentiated. 

 

 

 

 

 

 

 

 

 

 

On the other hand, only 8 DEGS were found upregulated and 37 were found 

downregulated in differentiated Cited2 depleted cells at D4 of differentiation in comparison to 

undifferentiated control cells. Interestingly, the most upregulated gene was Brachyury (LogFc 

2.95)¸ indicative of initial stages of differentiation. Amongst the 37 DEGS downregulated, we 

identified Dppa3a (LogFC -1.58), a gene expressed in PSC and important for their 

maintenance. Interestingly, we also identified Prdm1 (LogFC -1.99), Pcgf5 (Log FC -1,39), genes 

responsible for blocking neuronal cell fate decision, amongst the downregulated DEGS (269, 

270). 

 

Index Pathway P-value 

1 Mesodermal Commitment  4.159e-14 

2 Endoderm Differentiation 6.196e-13 

3 Heart Development 1.127e-11 

4 Cardiac Progenitor Differentiation 3.553e-11 

5 Neural Crest Differentiation 6.938e-10 

6 Ectoderm Differentiation 1.509e-8 

7 Differentiation Pathway 2.218e-4 

8 Adipogenesis 2.307e-4 

9 Wnt Signalling Pathway 7.980e-4 

10 ESC Pluripotency Pathways 8.137e-4 
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Table 4.2.  Downregulated pathways in differentiated cells compared to undifferentiated cells. 

Pathway analysis was conducted using Enrichr for the 546 DEGS downregulated in Cited2fl/fl[Cre] ESC at D4 of 

differentiation compared to Cited2fl/fl[Cre] ESC undifferentiated. 

Index Pathway P-value 

1 Pluripotency Network 2.712e-11 

2 Preimplantation Embryo 1.516e-04 

3 Nuclear Receptors 9.862e-04 

4 TGF Beta Signalling Pathway 2.648e-03 

5 p53 signalling 4.769e-03 

6 Focal Adhesion-PI3K-Akt-mTOR-signalling pathway 5.540e-03 

7 Endoderm Differentiation 6.370e-03 

8 Mesodermal Commitment Pathway 7.687e-03 

9 Prostaglandin Synthesis and Regulation 1.099e-02 

10 IL-4 Signalling Pathway 3.330e-02 

 

 

Lastly, we found 366 DEGS upregulated and 250 DEGS downregulated in control cells 

compared to Cited2 depleted cells at D4 of differentiation. Intriguingly, we found that most of 

the top DEGS, previously associated with ESC maintenance or differentiation, were similar to 

the ones found in differentiated and undifferentiated cells, but in different ranking positions 

(Figure 4.4). Conversely, pathway analysis of the upregulated DEGS indicated that heart 

development, endoderm and mesoderm cell fate commitment, were the most affected 

pathways upon Cited2 depletion, at D4 of differentiation (Table 4.3). On the other hand, loss 

of Cited2 resulted in an incomplete decrease in the expression of genes important for 

pluripotency maintenance (Table 4.4). 
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Figure 4.4 Top DEGS between control cells and Cited2 depleted cells at D4 of differentiation. Bars 

represent the top 10 upregulated and downregulated DEGS important for pluripotency or cell fate commitment 

in Cited2fl/fl[Cre] ESC at D4 of differentiation compared to Cited2fl/fl[Cre] ESC treated with 4HT at D4 of 

differentiation. A) DEGS upregulated. B) DEGS Downregulated. The number ahead of the bars indicates the 

ranking position in all DEGS found. 
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Table 4.3  Upregulated pathways in control cells compared to Cited2 depleted cells at D4 of 

differentiation. The pathway analysis was conducted using Enrichr for the 366 DEGS upregulated in 

Cited2fl/fl[Cre] ESC at D4 of differentiation compared to Cited2fl/fl[Cre] ESC undifferentiated. 

 

 

Table 4.4  Downregulated pathways in control cells compared to Cited2 depleted cells at D4 of 

differentiation. The pathway analysis was conducted using Enrichr for the 250 DEGS downregulated in 

Cited2fl/fl[Cre] ESC at D4 of differentiation compared to Cited2fl/fl[Cre] ESC undifferentiated. 

 

 

Index Pathway P-value 

1 Heart Development 1.469e-11 

2 Endoderm Differentiation 3.456e-11 

3 Mesodermal Commitment  9.083e-11 

4 Cardiac Progenitor Differentiation 1.602e-10 

5 Neural Crest Differentiation 4.643e-10 

6 Adipogenesis 1.703e-06 

7 TGF-beta Signalling Pathway 1.609e-04 

8 Wnt Signalling Pathway 3.300e-04 

9 Ectoderm Differentiation 6.580e-04 

10 ESC Pluripotency Pathways 1.470e-03 

Index Pathway P-value 

1 Pluripotency Network 1.419e-12 

2 Statin Pathway 5.751e-04 

3 Preimplantation Embryo 8.469e-04 

4 PPAR Alpha Pathway 4.057e-03 

5 Nuclear Receptors 1.096e-02 

6 Endoderm Differentiation 1.204e-02 

7 Mesodermal Commitment Pathway 1.516e-02 

8 TGF Beta Signalling Pathway 2.721e-02 

9 ErbB Signalling Pathway 3.144e-02 

10 Wnt Signalling Pathway 3.917e-02 
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4.4 Cited2 depletion impairs the expression of  mesoderm and endoderm genes 

 

 The major differences found between undifferentiated cells and Cited2 depleted cells 

at D4, when compared to control differentiated cells, was the absence of DEGS important 

for ectoderm cell fate, in Cited2 depleted cells. Indeed, the ectoderm pathway was heavily 

downregulated in undifferentiated cells (p-value 1.509e-8) but, in Cited2 depleted cells, the 

ectoderm pathway was less affected (p-value 6.580e-04). 

As such we hypothesized that Cited2 depletion impairs the expression of genes 

important for mesoderm and endoderm transition. To test our hypothesis, we investigated a 

reference list of genes specific of each primary embryonic lineage (Supplementary Table 10.1). 

This list includes 20 ectoderm specific genes, 36 endoderm specific genes, 20 mesoderm  

specific genes and 30 genes common to both mesoderm and endoderm cell fate (Adapted 

from (271)). 

We identified 12 out of 36 endoderm genes, 4 out of 20 mesoderm genes and 12 out 

of 30 mesoderm/endoderm genes significantly upregulated, whereas only 1 out of 20 

ectoderm genes was found significantly upregulated in D4 control cells compared to Cited2 

depleted cells (Figure 4.5). We then decided to calculate the statistical differences of these 

observations. For that, we compared the number of upregulated mesoderm and endoderm 

genes to the number of upregulated ectoderm genes using Fisher’s exact test. We found a 

statistically significant difference between these two groups (p=0.0119), further emphasizing 

that loss of Cited2 impairs the expression of mesoderm and endoderm genes without affecting 

the expression of ectoderm-specific genes. 

On the other hand, we only identified two genes significantly upregulated in Cited2 

depleted cells. Curiously, one of the genes belonged to the ectodermal lineage (Tfcp2l1), 

whereas the other is a gene common to both mesoderm and endoderm cell fate (Gdf3).  
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Figure 4.5 Mesoderm and Endoderm commitment is downregulated in Cited2 depleted cells. Bars 

represent the DEGS found upregulated in Cited2fl/fl[Cre] ESC at D4 of differentiation compared to Cited2fl/fl[Cre] 

ESC treated with 4HT at D4 of differentiation-specific of ectoderm (blue bars), mesoderm (red bars) and 

endoderm (green bars) lineages or common to both mesoderm and endoderm (orange bars). Data was obtained 

according to Supplementary Table 10.1. 
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4.5 Cited2 depletion delays the expression of mesoderm and cardiac mesoderm 

transcription factors 

 

As Cited2 depletion impairs the expression of genes involved in cardiogenesis, we 

assessed from D1 to D6 of differentiation the expression of genes associated with epiblast 

(Fgf5) and early mesoderm specification (Brachyury, Mixl1, Mesp1, and Eomes) by qPCR (Figure 

4.6). 

 The expression profile of epiblast marker Fgf5 expression remained similar between 

EtOH and 4HT treated cells, from D1 to D4 of differentiation with both presenting peaks of 

expression occurring at D4. Afterward, Fgf5 expression decreases on D5 and D6 on EtOH 

treated cells while in 4HT conditions its expression remains high and similar to the levels 

observed at D4.  

 Mesoderm markers Brachyury, Mixl1, Eomes, and Mesp1 expression profiles between 

EtOH and 4HT treated cells were different. In EtOH treated cells the peak of expression 

happened at D4 and rapidly decreases, while in 4HT treated cells this peak of expression only 

occurred at D5. 

 The differences in transcriptional activity are likely to result in the unregulated 

expression of genes that might favour other cell fate specification. For example, MIXL1 

expression is required for mesoderm differentiation, but it’s enforced or later expression, 

suppresses mesoderm and promotes endoderm formation (272). 

  

4.6 Conclusion 

  

 Previous results suggested that Cited2 function is most critical at the early stages of 

differentiation. To better understand the impact of Cited2 depletion in ESC cell fate 

commitment we performed microarray analysis. PCA analysis confirmed that the 

transcriptomic profile of Cited2 depleted cells is similar to undifferentiated cells than 

differentiated cells at D4 of differentiation. The DEGS and the pathway analysis confirmed, 

that upon Cited2 depletion, ESC lack the ability to express genes important for endoderm and 

mesoderm differentiation which results in the impaired ability to give rise to cardiac-derived 
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cells. Upon further analysis, we identified by qPCR, that cells that lack Cited2 delay the 

expression of mesoderm and cardiac mesoderm transcription factors. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Cited2 depletion delays the expression of mesoderm transcription factors. The 

expression of Fgf5, Brachyury, Mixl1, Mesp1, and Eomes were determined by qPCR of Cited2fl/fl[Cre] ESC treated 

either with EtOH or 4HT at the onset of differentiation. Samples were taken every 24h during the initial 5 days 

of differentiation. Gene expression was normalized to the expression of undifferentiated Cited2fl/fl[Cre] Sample 

and mean ±SEM of two (Mixl1 and Eomes) and three (Fgf5, Brachyury, and Mesp1) independent experiments.  
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CHAPTER 5 

 
 

Cited2 induced secretome rescues cardiac 

defects caused by Cited2 depletion 
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5.1 Introduction 

 

 During the microarray analysis, we identified that different cardiac signalling pathways 

were significantly affected by the loss of Cited2. Curiously, many of these proteins are proteins 

secreted outside the cell that act as paracrine factors. For example, we found that Dkk1 and 

Fgf10, proteins important for proper cardiac cell fate instruction, were significantly 

downregulated in cells that lack Cited2. The decrease in the expression of important cardiac 

signalling pathways is likely to affect cell differentiation and cardiac commitment. As such, we 

hypothesized that the cardiogenic deficiency of Cited2 depleted cells results from the 

misregulation of extracellular signalling pathways which are precisely regulated during ESC 

differentiation in order to properly instruct cell fate decisions (273).  

 Secreted proteins constitute an important class of active molecules that play an 

important role in several biological processes including cell differentiation and proliferation. 

The word “secretome” was first introduced by Tjalsma and colleagues in a study dealing with 

a survey of secreted proteins of Bacillus subtillis (274). These secreted proteins including 

metabolites, amino acids, growth factors, microvesicles or exosomes can be found in the 

medium where stem cells are cultured  (275). 

 The majority of secretome studies are performed in vitro. In general, cells of interest 

are seeded in serum-supplemented medium to obtain the desired cells. Cells are then washed 

to remove serum proteins, before incubating them in a serum-free medium for another 12 to 

24 hours. CM is then collected and processed for mass spectrometry analysis, protein 

identification or cellular assays (276). 

 Few studies have provided evidence of the cardiogenic potential of CM. Treating 

primary isolated rat cardiomyocytes exposed to hypoxia with CM derived from hypoxic 

cardiomyocytes increased the number of surviving cardiomyocytes by 40% compared to the 

control cell (277). In another study, the cardiac defects caused by the KO of Inhibitor of DNA-

binding/differentiation proteins, known as ID proteins were rescued through the co-culture 

experiments in which heart explants were cultured on WNT5a over-expressing MEF (278). 

 The use of the secretome of the CM has several advantages compared to the use of 

stem cells. The CM can be manufactured, freeze-dried, packaged and easily transported. 

Moreover, as it is devoid of cells, there is no need to match the donor and the recipient to 
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avoid rejection problems. Therefore, stem cell-derived CM has the potential to be produced 

for regenerative medicine. 

  

5.2 Chapter Objectives and experimental strategy 

 

To determine whether Cited2 expression promoted the secretion of cardiopoietic 

factors, we transfected undifferentiated E14/T ESC with a plasmid expressing high levels of  

CITED2 (E14/T-FC2) and a control plasmid expressing an eGFP protein (E14/T-eGFP). E14/T-

FC2 levels of Cited2 are increased by approximately 10-folds compared to E14/T-eGP (Figure 

5.1).  

 

 

 

 

 

 

 

 

 

Figure 5.1. Cited2 overexpression system. E14T ESC were transfected either with a CAGIP-eGFP or 

CAGIP-FC2 plasmid and Cited2 expression was determined through qPCR two days post-transfection. Each dot 

represents an independent experiment and mean ±SEM of three independent experiments. (*** p<0.005). 

 

 Transfected E14/T ESC were maintained for 1h in a medium deprived of serum and 

LIF to enrich the medium with factors secreted by ESC. Since the CM is destined to be used 

in cell differentiation assays, LIF was removed to ensure a better differentiation process of 

ESC. 
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The CM collected from E14/T-eGFP (CM-Control) or E14/T-FC2 (CM-FC2) cultures 

were then supplemented as the differentiation medium of Cited2fl/fl[Cre] ESC treated either 

with 4HT or EtOH for the first two days of differentiation. The cardiogenic potential of the 

CM was then assessed through the ESC ability to generate beating colonies (Figure 5.2). 

 

Figure 5.2. Strategy for ESC differentiation with cited2 induced secretome. E14/T ESC were 

transfected with a control plasmid or a plasmid expressing FC2. The medium of transfected cells was then used 

in Cited2fl/fl[Cre] ESC treated either with EtOH or 4HT at the onset of differentiation and the average number 

of beating colonies was determined at D8 of differentiation.  

 

5.3 Cited2 induced secretome rescues cardiac defects caused by its depletion

  

Cited2 depletion impairs cardiac cell fate decision of ESC with the number of beating 

foci being reduced in Cited2fl/fl[Cre] ESC treated with 4HT at D0 compared to cells treated 

with EtOH. Supplementing Cited2 depleted ESC with CM-FC2 significantly increased their 

ability to generate contractile foci whereas the number of foci in Cited2 depleted ESC, 

supplemented with CM-Control, remained low. Interestingly, treating EtOH-treated ESC with 

either CM-FC2 or CM-Control did not affect their ability to differentiate into cardiomyocytes 

(Figure 5.3). This indicates that the proteins present in the CM-FC2 compensate or bypass 

the lack of Cited2. 
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Figure 5.3 Cited2 Conditioned Medium rescues cardiac defects caused by Cited2 depletion defects. 

Cited2fl/fl[Cre] ESC treated either with EtOH or 4HT and CM-Control or CM-FC2, at the onset of differentiation, 

and the average number of beating colonies was determined at D8 of differentiation. The percentage of beating 

colonies was determined by the number of colonies that express a beating foci divided by the total number of 

colonies. Each dot represents an independent experiment and mean ±SEM of four independent experiments. 

(*** p<0.01; **** p<0.001). 

 

5.4 The Conditioned Medium of ESC overexpressing Cited2 supports ESC 

transition through mesoderm 

 

To unravel the mechanism by which CM supports cardiac differentiation of Cited2 

depleted ESC, we assessed the transcriptional activity of mesoderm transcription factors 

Brachyury and Mesp1, and cardiac mesoderm transcription factors Nkx2.5 and Isl1 in 

Cited2fl/fl[Cre] ESC treated with 4HT and either CM-Control or CM-FC2 at D5 of 

differentiation. To exclude possible cell contamination, we also investigated the expression of 

Cited2 (Figure 5.4). 
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Figure 5.4 The Conditioned medium of ESC overexpressing Cited2 supports ESC 

transition through mesoderm. The expression of Cited2, Brachyury, Mesp1, Nkx2.5, and Isl1, were determined 

at D5 of differentiation in Cited2fl/fl[Cre] ESC treated with CM-Control or CM-FC2 for the first two days of 

differentiation. Each dot represents the expression per sample and mean ±SEM of three independent 

experiments. (* p<0.05). 

 

Cited2 depleted cells treated with CM-FC2 stimulated Brachyury expression at D5 of 

differentiation without affecting significantly the expression of Mesp1, Nkx2.5, and Isl1. In 

addition, the expression of Cited2 was not affected by CM-FC2. 

The increased expression of Brachyury implies that CM-FC2 treatment may restore 

the differentiation process as early as the mesoderm specification. Cited2 expression levels 

remain similar when we compare Cited2 depleted cells treated with CM-Control or CM-FC2. 

This indicates that the rescue of cardiac defects was not caused by the reactivation of Cited2 

expression in the presence of E14/T-FC2 ESC. Overall, this indicates that the rescue of Cited2 

depletion defects is being caused in a Cited2 independent manner. 

 

5.5 Identification of Cardiopoietic factors present in the Conditioned Medium 

  

 Since the CM-FC2 restored the number of beating colonies, caused by Cited2 

depletion, we hypothesized that these defects could result, at least in part, from the 
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deregulation of the activity of extracellular signalling pathways which are regulated during ESC 

differentiation to properly instruct cell fate decisions.  

Using E14T cells, we assessed by qPCR which secreted factors expression was being 

affected by the upregulation of Cited2 levels. We analysed the expression of Bmp4 and Cerberus 

(Cer1) from the TGF-β signalling pathway; Wnt3 and Wnt3a from the Canonical-Wnt pathway; 

Wnt5a, Wnt11, and Dkk1 from the non-canonical Wnt pathway; Nodal; and Fgf8 and Fgf10 

from the FGF signalling pathway. 

Wnt5a, Wnt11, Dkk1, and Fgf10 transcripts were found to be significantly upregulated, 

while Wnt3a was the only gene found to be downregulated in E14/T-FC2 cells when compared 

to E14/T-CAGIP cells. Meanwhile, Bmp4, Wnt3, Cer1, Nodal and Fgf8 expression was not 

altered upon Cited2 overexpression (Figure 5.5). 

 

 

 

 

 

 

 

 

 

Figure 5.5 Expression level of cardiopoietic factors in Cited2 overexpressing ESC. The 

expression of Bmp4, Wnt3, Wnt3a, Wnt5a, Wnt11, Dkk1, Cer1, Fgf10, Nodal, and Fgf8 was determined in E14/T 

FC2 ESC and normalized to E14/T CAGIP ESC. Each dot represents the expression per sample and mean ±SEM 

of three independent experiments. The bar pattern is indicative of a significant difference. 

 

Next, we assessed the expression of Wnt3a, Wnt5a, Wnt11, Fgf8, Fgf10, and Cer1, upon 

Cited2 depletion at D4 of differentiation. qPCR analysis of Cited2fl/fl[Cre] ESC, treated with 

4HT at the onset of differentiation leads to a decrease in transcript levels of Wnt3a, Wnt5a, 
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Wnt11 and Fgf10 compared to control cells. Meanwhile, the expression of Fgf8 and Cer1 was 

not found to be significantly altered (Figure 5.6). 

As Wnt5a, Wnt11 and Fgf10 expression systematically correlated with the expression 

of Cited2, we decided to pursue further studies with these three secreted factors. 

 

 

 

 

 

 

 

 

 Figure 5.6 Expression level of cardiopoietic factors in Cited2 depleted cells. The expression 

of Wnt3a, Wnt5a, Fgf8, Cer1, Fgf10, and Wnt11, were determined at D4 of differentiation in Cited2fl/fl[Cre] ESC 

treated with 4HT at the onset of differentiation and normalized to control cells treated with EtOH. Each dot 

represents the expression per sample and mean ±SEM of three independent experiments. The bar pattern is 

indicative of a significant difference. 

 

5.6 The Conditioned medium is enriched with Wnt5a and Wnt11 

 

 Since, Wnt5a, Wnt11, and Fgf10 transcripts were upregulated in E14T-FC2 ESC we 

hypothesized that CM-FC2 is enriched with WNT5a, WNT11, and FGF10 proteins. To test 

our hypothesis, we performed IP against WNT5a, WNT11, and FGF10, followed by Western 

Blot (WB) of both CM-Control and CM-FC2. 

WB analysis revealed that WNT5a and WNT11 proteins were dramatically increased 

in the CM-FC2 when compared to CM-Control. Meanwhile, the protein levels of FGF10 were 

only marginal increased in CM-FC2 (Figure 5.7). This indicates, that FC2 overexpression in 

ESC stimulated mostly the expression and secretion of particularly WNT5a and WNT11 to 

the medium. 

F
o

ld
 I

n
c

re
a

se
 c

o
m

p
a

re
d

 t
o

 c
o

n
tr

o
l 

E
S

C

W
n t3

a

W
n t5

a
F g f

8

C
e r1

F g f
1 0

W
n t1

1

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

n /s

p < 0 .0 5



Cited2 induced secretome rescues cardiac defects caused by Cited2 depletion 

88 
 

 

 

Figure 5.7 The Conditioned Medium is enriched with WNT5a and WNT11. WNT5a, WNT11, and 

FGF10 protein levels were determined by WB of the Immunoprecipitated CM-Control and CM-FC2. Loading in 

each lane was monitored by staining Input with Ponceau. 

 

5.7 Removal of WNT5a or WNT11 from the Conditioned Medium impairs its 

ability to rescue cardiac defects caused by Cited2 depletion 

 

 Since the CM-FC2 was rich in both WNT5a and WNT11, we hypothesized that the 

ability of the CM to rescue cardiac defects was due to the increase of either WNT5a and/or 

WNT11. To test this hypothesis, we removed WNT5a and WNT11 from the CM and tested 

if, the CM, could still rescue cardiac defects caused by Cited2 depletion. For that, we used two 

distinct approaches where we depleted WNT5a or WNT11 from the CM.  

On the first approach, we immunoprecipitated the CM against WNT5a, WNT11, and 

FGF10 and used the immuno-depleted CM for differentiation (Figure 5.8). On the second 

approach, both CM-Control and CM-FC2 were treated with the specific antibody against 

WNT5a or WNT11 (Figure 5.9). 
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 Figure 5.8 Cited2 immunodepleted medium fails to restore cardiac differentiation. WNT5a 

and WNT11 immunodepleted CM-Control and CM-FC2 were added to Cited2fl/fl[Cre] ESC treated with 4HT 

during the first two days of differentiation. The percentage of beating colonies was determined by the number 

of colonies that express a beating foci divided by the total number of colonies. Each dot represents an 

independent experiment and mean ±SEM of three independent experiments. (*** p<0.005; **** p<0.001). 

 

In both experiments, the CM-FC2 WNT5a and WNT11 immuno-depleted failed to 

restore the emergence of beating colonies while immunodepleted CM-Control ability to 

generate cardiomyocytes maintained unaltered. 

This result indicates that the presence of WNT5a or WNT11 in the CM-FC2 is 

required to overcome the lack of Cited2. As for CM-Control, removal of WNT5a or WNT11 

did not affect much the ability to generate beating foci, most likely due to the limited amount 

of protein in the CM, as was previously demonstrated in the IP of the CM-Control. 
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Figure 5.9 Cited2 conditioned medium fails to restore cardiac differentiation after incubation with 

specific antibodies. The CM-Control or CM-FC2 was incubated with 5μg/mL of AbWNT5a or 2.5μg/mL of 

AbWNT11 and added to Cited2fl/fl[Cre] ESC treated with 4HT during the first two days of differentiation. The 

percentage of beating colonies was determined by the number of colonies that express a beating foci divided by 

the total number of colonies. Each dot represents an independent experiment and mean ±SEM of three 

independent experiments. (** p<0.01; *** p<0.005). 

 

Contrary to WNT5a and WNT11, removal of FGF10 from the CM totally disrupts 

cardiac differentiation. This indicates that the proteins immunodepleted by anti-FGF10, are 

required at the onset of differentiation and are present in both CM-Control and CM-FC2. 

We decided to pursue further studies only with WNT5a and WNT11 as their depletion 

impairs CM-FC2 ability to increase the number of beating cells without significantly altering 

CM-Control ability to generate cardiomyocytes upon their immunodepleting. 

To further demonstrate that these defects were being caused by the loss of protein, 

we incubated both CM-Control and CM-FC2 with an antibody that does not target any mouse 

protein. As both CM ability to rescue cardiac defects remained, we can suggest that the 

removal of WNT5a of WNT11 largely impairs CM-FC2 ability to rescue cardiac defects 

caused by Cited2 depletion (Figure 5.8). 
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5.8 Conclusion 

 

 Results from gene expression profile suggested that Cited2 depleted cells impaired 

ability to differentiate into beating cardiomyocytes might be due to the misregulation of 

extracellular signalling proteins. Using a CM approach, we observed that the secretome of 

ESC overexpressing Cited2 rescued the number of beating colonies caused by Cited2 depletion. 

We observed that the CM is critical to the expression of mesoderm key transcription factor 

Brachyury in a Cited2 independent manner. Trough Cited2 gain and loss of function, we saw 

that the transcript expression of Wnt5a, Wnt11 and Fgf10 varied according to the levels of 

Cited2. Through IP followed by WB against WNT5a, WNT11 and FGF10 proteins we saw 

that CM-FC2 is particularly enriched with WNT5a and WNT11. Once we immunodepleted 

WNT5a or WNT11 from the CM, it loses its ability to rescue cardiac defects caused by Cited2 

depletion. 

 

 

  





 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6 

 
 

WNT5a and WNT11 rescues Cited2 

cardiac defects in vitro 
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6.1 Introduction 

 

Wnt5a and Wnt11 were first identified and characterized in Xenopus laevis in 1993 

(279). WNT5a expression was found to be enriched in both the anterior and posterior 

regions of embryos at the late stages of development, with lower levels of expression in the 

mesoderm (280). WNT11 was found to be expressed in the lateral and ventral marginal zone, 

in the somites and first brachial arch (281). 

Both Wnt5a and Wnt11 belong to the Non-canonical Wnt signalling pathway. The 

first indication that Non-Canonical Wnts were important to cardiac cell fate commitment 

occurred in 1997, when Eisenberg and colleagues, found that WNT11 was expressed in post 

gastrulated mesoderm cells of chick embryos (282). Later, they found that chick embryos 

exposed to WNT11 increased the ability to generate cardiac tissue (283).  In 2002, Pandur 

and colleagues showed that Wnt11 was required for cardiac specification in Xenopus. Through 

a loss of function experiments, using a dominant negative Xenopus Wnt11 construct that 

inhibits Wnt11, they found that its inhibition in the cardiac region strongly inhibited the 

expression of the early cardiac marker NKX2.5 and the mature cardiomyocyte marker 

TROPONIN I (284).  

The first data connecting Wnt5a to cardiac development was reported in 1999. 

Transcripts of Wnt5a were observed during gastrulation at E6.5 and E7.5 in mice across the 

three germ layers, with the highest levels expressed in the mesoderm (285). Similar results 

were also observed in whole-mount in situ hybridization of chick embryos at stage 8/9 where 

Wnt5a was found highly expressed in both PS and lateral mesoderm (286). 

Microarray analysis of different derived hPSC lines differentiated into cardiomyocytes 

suggests that both WNT5a and WNT11 expression increases during cardiac mesoderm and 

that their expression levels maintain high throughout the rest of differentiation until 

cardiomyocyte maturation (287).  
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Figure 6.1 Wnt5a and Wnt11 is expressed throughout the heart. Both Wnt5a and Wnt11 are 

highly expressed in the OT region of the heart. To a lesser extent, their expression can be identified in the RV. 

Residual expression of the Wnt5a and Wnt11 can be identified in the RA, LA and LV. Information gathered from 

the following papers (285, 288-290),  

 

In 1999, Yamaguchi and colleagues, described for the first-time a loss-of-function 

mutation of WNT5a, which was lethal and affected many structures which development 

requires the extension from the primary body axis (285). It was only in 2007, that Wnt5a null 

mice embryos hearts were first described to have multiple cardiac defects with a 100% 

penetrance of OT abnormalities (291).  

A conditional Isl1-Cre induced Rosa26Wnt5a mice, which permits the expression of 

WNT5a in the SHF progenitors, revealed that the endogenous WNT5a expression is present 

at a higher level in the caudal SpM and at a lower level in the rostral SpM and OT. 

Overexpression of WNT5a resulted in its expression across the entire SpM and OT, where 

the previous expression was low or not detected. However, this ectopic expression of 

WNT5a in the SHF progenitors disturbs their deployment and causes heart-looping and OT 

shortening (292, 293). 

To explore the role of Wnt11 in mammalian development, Sinha and colleagues 

developed a Wnt11-CreERT transgenic mouse line. Initially, they found that cells transiently 
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expressing WNT11 at early gastrulation were fated to become progenitors of the endoderm. 

Then, they observed that sequential activation of WNT11 between E7.0 and E9.0 resulted in 

a highly dynamic contribution of cells to the ventricular myocardium. Administration of 

WNT11 at E7.5, contributed extensively to the myocardium in the LV and inter-ventricular 

septum, suggesting a contribution of WNT11 to the CPC of the FHF. Subsequently, WNT11 

activation at E8.0 contributed to both LV and RV formation. On the other hand, its forced 

expression at E8.5 contributed mostly to RV and OT. Lastly, WNT11 forced expression at 

E9.5 greatly diminished the contribution to the RV formation. The presence of RV becomes 

non-existent from E10.5 onwards. This suggests that initial expression of WNT11 contributes 

to cells of the FHF while, at later stages, the contribution starts shifting to cells of the SHF 

(294). 

Analysis of Wnt11 null mice revealed abnormal OT development from E9.5 onward. 

These defects lead to the appearance of CHD such as DORV, TGA and VSD that become 

apparent from E11.5 onward (295, 296).  

Compared to mice lacking either Wnt5a or Wnt11, double null-mutants embryos 

defects are exacerbated suggesting the redundancy of these two signalling molecules. While 

Wnt5a or Wnt11 null mice embryos hearts undergo normal rightward looping, double null 

mutants fail to undergo normal rightward looping remaining a linear tube at E9.5 (297). Cohen 

and colleagues showed an overlapping between WNT5a and WNT11 expression in the OT 

and RV, and that both proteins are co-required to induce CPC differentiation and proper 

heart formation. They showed that double null mutants, particularly, affected the SHF 

progenitors with a severe reduction in the number of Isl1 positive cells without affecting the 

number of Nkx2.5, Hand1 and Hand2 positive cells (288). 

 

6.2 Cited2 control the expression of Wnt5a and Wnt11. 

 

To further investigate the role of Cited2 in the regulation of Wnt5a and Wnt11, we 

analysed Wnt5a and Wnt11 kinetic expression by qPCR during the differentiation of 

Cited2fl/fl[Cre] ESC treated with EtOH or 4HT. 
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Wnt5a transcripts were low from the onset of differentiation until D4. From D4 

onward, Wnt5a expression levels rapidly increase in EtOH treated cells, while in 4HT treated 

cells Wnt5a levels remain low (Figure 6.2). 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Wnt5a expression in mESC differentiation. The expression of Wnt5a was determined 

by qPCR of Cited2fl/fl[Cre] ESC treated either with EtOH or 4HT at the onset of differentiation. Samples were 

taken every 24h during the initial 6 days of differentiation. Cited2 expression was normalized to the expression 

of undifferentiated Cited2fl/fl[Cre] ESC. Each dot represents the expression per sample and mean ±SEM of three 

independent experiments. (* p<0.05; *** p<0.005). 

 

Like Wnt5a, Wnt11 transcripts are low from the onset of differentiation until D5. At 

D6, Wnt11 expression drastically increases in control cells, whereas in Cited2 depleted cells, 

this increase is subtler (Figure 6.3). 

 To investigate the role of Cited2,  in the promoter activity of Wnt11, we co-

transfected E14T cells with vectors expressing FC2 together with a luciferase reporter 

construct harbouring 1064bp of mouse Wnt11 promoter proximal region in pGL3-basic 

(Wnt11-luc) (246). Wnt11-luc was kindly given by Hiroyuki Mori (University of Michigan, 

USA). 
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Figure 6.3 Wnt11 expression in mESC differentiation. The expression of Wnt11 was determined 

by qPCR of Cited2fl/fl[Cre] ESC treated either with EtOH or 4HT at the onset of differentiation. Samples were 

taken every 24h during the initial 6 days of differentiation. Cited2 expression was normalized to the expression 

of undifferentiated Cited2fl/fl[Cre] ESC. Each dot represents the expression per sample and mean ±SEM of three 

independent experiments. (* p<0.05; ** p<0.01). 

 

 The co-transfection of CAGIP-FC2 vector increased the reporter gene activity when 

compared to cells transfected with a control vector (Figure 6.4). These results provide 

evidence that Cited2 might be a direct transcriptional activator of Wnt11. 

 

 

  

 

 

 

 

 

 

 

 

Figure 6.4 Cited2 increases the promoter activity of Wnt11. E14T cells were transiently co-transfected 

with Wnt11-luc reporter, together with either CAGIP or FC2. The luciferase activity was normalized for the 

lacZ activity conferred by the CMVlacZ vector. Relative luminescence units (RLU) are presented relative to 

values of Wnt11-luc transfected with the control vector set at 1. Each dot represents the expression per sample 

and mean ±SEM of three independent experiments. (* p<0.05). 
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6.3 Wnt5a and Wnt11 can rescue cardiac defects caused by Cited2 depletion 

 

 Next, we sought to understand if Wnt5a and Wnt11 are enough to rescue Cited2 

depletion-caused cardiac defects. For that purpose, we supplemented the differentiation 

medium at the onset of differentiation with 100ng/mL of WNT5a, 100ng/mL of Wnt11 or 

50ng/mL of WNT5a and WNT11. Adding WNT5a or WNT11 to 4HT treated cells 

significantly increased the number of beating colonies at D8 of differentiation (Figure 6.5). 

Even though supplementation of WNT5a or WNT11 to 4HT treated cells, was not able to 

completely rescue the cardiac differentiation defects, when both WNT5a and WNT11 were 

added together, at the beginning of differentiation, we observed an increase in the number of 

beating colonies to levels compared to EtOH treated cells (Figure 6.5). 

 

 

 

 

 

 

 

 

 

Figure 6.5. WNT5a and WNT11 rescue cardiac defects caused by Cited2 depletion. Cited2fl/fl[Cre] 

ESC were treated either with EtOH or 4HT with WNT5a and/or WNT11 at the onset of differentiation and 

the average number of beating colonies was determined at D8 of differentiation. The percentage of beating cells 

was determined by the number of colonies that express a beating colony divided by the total number of colonies. 

Each dot represents an independent experiment and mean ±SEM of three or more independent experiments. 

(** p<0.01; *** p<0.005). 
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 Next, we investigated whether WNT5a and/or WNT11 supplementation could 

increase the expression of mesoderm and cardiac mesoderm transcription factors. For that, 

we assessed by qPCR, at D4 of differentiation, the expression of Cited2 and the expression of 

genes associated with mesoderm (Brachyury and Mesp1) and CPC (Nkx2.5, Isl1 and Tbx5) 

(Figure 6.6). 

 At D4 of differentiation, EtOH treated cells express significantly more Cited2 than 

Cited2 depleted cells. This indicates that WNT supplementation does not affect Cited2 

transcripts levels. 

 When we analysed the expression of mesodermal markers, cells treated with only 

4HT express significantly less Brachyury and Mesp1 than control cells. The addition of WNT5a 

significantly increases the expression of Brachyury and Mesp1. Compared to control cells, cells 

treated with 4HT and WNT5a restore the expression of Brachyury and further increases the 

expression of Mesp1. Treatment with WNT11 also restores the expression of Brachyury but 

fails to restore the expression of Mesp1. Whereas Cited2 depleted cells treated with both 

WNT5a and WNT11 completely restore the expression of Mesp1 and further enhances the 

expression of Brachyury when compared to control cells. 

Analyses of the expression of CPC markers showed that Cited2 depleted cells express 

less Isl1 and Tbx5. The addition of WNT5a restores the expression of Isl1 but fails in increasing 

the expression of Tbx5. On the other hand, WNT11 is unable to restore either the expression 

of Isl1 and Tbx5, whereas the addition of both WNT5a and WNT11 restores the expression 

of Tbx5 and Isl1. The expression of Nkx2.5 was not found to be altered. 

Overall, the addition of WNT5a or WNT11 to the differentiation medium significantly 

increased the expression of most mesoderm and CPC markers in a Cited2 independent 

manner. Even though, only the addition WNT5a and WNT11 resulted in mesodermal and 

cardiac transcripts levels similar to control cells. 
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Figure 6.6 WNT5a and WNT11 supports ESC transition through mesoderm. The 

expression of Cited2, Brachyury, Mesp1, Nkx2.5, Isl1 and Tbx5 were determined at D4 of differentiation, by qPCR, 

in Cited2fl/fl[Cre] ESC treated with EtOH or 4HT at the onset of differentiation. 4HT treated cells were either 

not supplemented or supplemented with 100ng/μL of WNT5a, 100ng/μL of WNT11 or 50ng/μL WNT5a and 

50ng/μL of WNT11 at the onset of differentiation. Each dot represents the expression per sample and mean 

±SEM of three independent experiments. (* p<0.05; ** p<0.01; *** p<0.005; **** p<0.001). 

 

6.4 Wnt5a and Wnt11 can partially rescue Cited2 null ESC 

 

Lastly, we supplemented WNT5a and WNT11 to Cited2∆/∆ ESC, which completely lack 

CITED2 expression and do not differentiate well into cardiomyocytes (Figure 6.7) (264). 

Addition of WNT5a or WNT11, individually, to Cited2∆/∆ ESC, at the onset of differentiation, 

does not enhance the appearance of beating foci. However, supplementation of both WNT5a 

and WNT11 at the onset of differentiation significantly increases the percentage of beating 

colonies. This indicates that there is a synergistic effect of WNT5a and WNT11 in correcting 

cardiac defects caused by Cited2 depletion. 

 

 

 

 

 

 

 

 

 

Figure 6.7 WNT5a and WNT11 can partially rescue Cited2 null ESC cardiovascular defects. Cited∆/∆ 

ESC were either non-treated or treated at the onset of differentiation with either 100ng/μL of WNT5a, 100ng/μL 

WNT11 or 50ng/μL of WNT5a plus 50ng/μL of WNT11 and the percentage of beating colonies accessed at 10 

of Differentiation. Each dot represents the percentage of beating colonies per sample and mean ±SEM of three 

independent experiments. (** p<0.01). 
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6.5 Conclusion 

 

 Previous result from the CM, showed that CITED2 expression was important to the 

release of WNT5a and WNT11 outside the cell. We started by showing, that Cited2 depletion 

directly impairs the expression of Wnt5a and Wnt11 throughout differentiation. Moreover, 

we provide evidence that the increased expression of Cited2 promotes the activity of Wnt11 

proximal promoter region. While the molecular mechanisms behind Cited2 and Wnt5a or 

Wnt11 are still unknown, our results point to Cited2 being a transcriptional activator of both 

genes. 

 Since the presence of WNT5a and WNT11 in the CM was required to rescue cardiac 

defects caused by Cited2 depletion, we hypothesized that these two proteins, alone, rescued 

cardiac defects caused by Cited2 depletion. We showed that WNT5a and WNT11 synergize 

together to correct Cited2 depletion defects in vitro, not only in terms of cell differentiation 

and the emergence of beating foci but also restores the correct expression of mesoderm and 

cardiac mesoderm transcription factors. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 7 

 
 

In vivo rescue of Cited2 depletion defects 
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7.1 Introduction 

 

The zebrafish, Danio renio, is a tropical freshwater fish native to North Indian Rivers. 

It is approximately 3.5 to 4.5 cm in length and immediately identified by its distinctive striped 

scales pattern. Zebrafish as a model system presents many advantages. They are vertebrates 

that have at least one orthologue for approximately 70% of human genes (298). Moreover, 

zebrafish embryonic development is external, fast and the transparency of the eggs and early 

embryos provide optically accessible means to visualise development. Furthermore, the 

zebrafish is practically and economically advantageous, given that large numbers of animals can 

be kept in a relatively small space at a low cost. 

Like in mammals, the zebrafish heart is the first organ to fully develop and function 

during vertebrate embryogenesis, a process that occurs in 2 days in zebrafish, 12 days in mice 

and 35 days in humans (299). Most cardiac developmental processes and cardiac structural 

features are conserved between all vertebrate species and thus, zebrafish have been used to 

model cardiac development in humans (Figure 7.1) (146). Moreover, the optical clarity allows 

easy access and detailed imaging of the developing heart. Interestingly, zebrafish embryos can 

survive for up to 5 dpf with severe cardiac phenotypes because they are able to obtain oxygen 

by passive diffusion (300). This feature enables large-scale forward and reverse genetic 

screening and phenotypic characterisation of genes influencing cardiac development, to an 

advanced stage, that would otherwise be embryonic lethal in mammals.  

Several approaches to modify the genome have been successfully applied to the 

zebrafish. The use of MO remains one of the preferred methods to carry out a loss of function 

approaches in the zebrafish. The MO technology induces gene silencing via antisense 

complementarity oligonucleotides to disrupt target protein synthesis. MO contain a 

methylene morpholine ring in place of a ribose or deoxyribose sugar in the macromolecule 

backbone. The MO can be designed to bind near the AUG translation start site or splicing to 

elicit target gene Knockdown (KD) (301). 
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Figure 7.1 Schematic representation of heart development in zebrafish. A) CPC are identified 5hpf, 

located in the lateral marginal zone. B) At 15hpf cardiac primordia are bilaterally aligned at the lateral plate 

mesoderm. C) & D) Endocardial progenitors are established at the midline before migrating towards the midline 

and fusing to form the primitive heart with ventricular cells at the apex and atrial cells at the base. E) The heart 

starts elongating and the primitive heart tube begins to contract. F) The heart tube undergoes looping and the 

distinct atria and ventricle compartments become evident. G) Cardiac maturation occurs, AV valve is formed 

and the proepicardium adheres to the heart surface. Image adapted from. (146). 

 

 The ortholog of Cited2 in zebrafish is in chromosome 20. Information regarding Cited2 

in zebrafish is scarce. Thisse et al. in 2004 reported, through in situ hybridization, that Cited2 

was expressed across all development stages similar to what had been reported in mice. At 

5hpf, pre-gastrulation, Cited2 expression can already be detected, but specific tissues cannot 

yet be identified. At 15hpf, its expression is mostly found in the somites and the eyes. At 

17hpf, its expression can also be detected in the branchial arches, and at 30hpf Cited2 

expression can also be detected in the hindbrain. Expression in the eyes, branchial arches and 

the hindbrain can be detected until hatching (302). Other than that, there is no evidence of 

further studies relating zebrafish and Cited2. 
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7.2 Experimental strategy 

  

 To perform Cited2 depletion in zebrafish, two MO were designed to target Cited2 

transcripts. A custom MO oligo with 3’-Carboxyfluorescein end modification, designed to 

block the translation initiation complex of CITED2, hereafter termed AUG MO and, a custom 

MO oligo with 3’-Lissamine end modification, designed to block sites involved in splicing Cited2 

pre-mRNA, hereafter termed SPL MO. To control all the procedure, we used a standard 

control MO with no described biological activity, hereafter known as Control MO.  

 

Figure 7.2 Schematic representation of the experimental setting. 1cell stage embryos were injected 

and at 6hpf fluorescent embryos were selected. At 24hpf dead embryos were removed and the remaining 

evaluated if they were well developed. At 48hpf dead embryos were removed and heart beating was measured. 

At 72hpf larvae were separated in dead, normal or aberrant. Aberrant larvae were assessed for possible cardiac 

problems. Larvae were sacrificed at 72hpf.  Embryos and larvae photos were obtained from (303). 
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An experimental strategy for all the steps regarding zebrafish experiments is described 

in Figure 7.2. In summary, approximately, 5ng of MO was injected at 1-cell stage embryo and 

fluorescence was accessed at 6hpf. Only the fluorescent embryos were kept for further 

observations, and the non-fluorescent were disposed of. Embryonic lethality was accessed 

every 24h, until the end of the experiment, and dead embryos were disposed of. At 24hpf, 

embryo morphology was observed and developmental delay was accessed. At 48pf, the 

zebrafish average heart rate was also determined with a resource to 10sec videos of the heart. 

At 72hpf the remaining zebrafish were separated and classified as presenting a normal or 

aberrant morphology. Aberrant zebrafishes were individually analysed to identify potential 

cardiovascular defects. All zebrafish larvae were sacrificed at 72hpf. 

 

7.3 Cited2 depletion increases embryo lethality and delays proper development

  

 The first individual parameter we assessed was the efficiency of our microinjections. 

As both Cited2 MO have fluorescent tags we easily detected the embryos that successfully 

integrated the MO. The fluorescence was detected as soon as 6hpf and distributed 

ubiquitously throughout the embryo, suggesting a proper delivery at 1-cell stage (Figure 7.3). 

On average, 60% of the injected embryos were fluorescent. Non-fluorescent embryos were 

disposed of (Figure 7.4). 

 

Figure 7.3 Live imaging of fluorescent embryos. Representative fluorescent image of 1 cell-stage egg 

embryo injected with custom MO with 3’-Carboxyfluorescein 48hpf. Images were obtained at 100x 

magnification. 
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Figure 7.4 Percentage of fluorescent embryos at 6h post-fertilization. 1cell-stage egg embryos were 

injected either with UAG MO 5ng, SPL MO 5ng or UAG+SPL MO 5ng and the fluorescent embryos determined 

at 6hpf. The total number of counted embryos is indicated at the bottom across three independent days of 

injections. 

  

 To further investigate the effect of Cited2 depletion on zebrafish development, we 

analysed zebrafish embryo death at 24hpf (Figure 7.5). Dead embryos were easily identified 

by the blue staining caused by the penetration of blue methylene contained in the medium. 

We observed that non-injected and Control MO-injected embryo death rate was very similar, 

indicating that the process of microinjection was not directly affecting embryo viability. Next, 

we compared non-injected to Cited2 MO-injected embryos. AUG or SPL MO microinjected 

embryos died more frequently, but the co-injection of both Cited2 MO was the most lethal 

(Figure 7.5). The increased lethality in embryo injected with both AUG and SPL MO is likely 

due to a more efficient KD of Cited2 as both MO have different target sites. 
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Figure 7.5 Percentage of death at 24h post-fertilization. Percentage of alive or dead embryos non-

injected or injected with indicated MO 24hpf. The total number of counted embryos is indicated at the bottom 

with three or more independent days of injections. (** p<0,01; *** p<0.005; **** p<0.001). 

 

 At 24hpf we checked embryo development. Surprisingly, we detected two distinct 

phenotypes at 24hpf. We identified normal looking embryos with their tail clearly separated 

from the yolk and an evident head structure (Figure 7.6A&B), and embryos roundly shaped 

with their body completely attached to the yolk (Figure 7.6C&D). While the first group 

resembles a normal zebrafish embryo at 24hpf, the second group resembles a 12hpf embryo 

rather than a 24hpf embryo. Therefore, we decided to classify embryos that match Figure 

7.6A&B as well developed, whereas embryos that resemble Figure 7.6C&D we classified them 

as delayed or aberrant. 
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Figure 7.6 Morphology of the zebrafish eggs at 24hours post-fertilization. Photos represent the two 

distinct phenotypes observed a 24hpf A) and B) Well developed embryos. C) and D) Delayed or aberrant 

embryos. Embryos were examined at 50X magnification.  

  

 Next, we quantified embryos according to their morphology (Figure 7.6). Almost all 

embryos non-injected or injected with Control MO were well developed. On the other hand, 

the number of delayed or aberrant embryos drastically increased in Cited2 MO-injected 

embryos (Figure 7.7). This supports the idea of the importance of Cited2 during early embryo 

development alike what happens in mice in which, only Cited2 KO in the epiblast consistently 

resulted in embryonic lethality and heart defects (242). 
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Figure 7.7 Development state of zebrafish egg at 24h post-fertilization. Percentage of well-developed 

or delayed/abnormal embryos non-injected or injected with respective MO at 24hpf. Some Cited2 MO-injected 

embryos were also co-injected with 8R-CITED2 or WNT5a and/or WNT11. Green bars injected with AUG 

MO, red bars injected Splicing MO, orange bars injected with both Cited2 MO. The total number of assessed 

embryos is indicated in the top of the graphs. (* p<0.05; ** p<0.01; **** p<0.005). 

 

7.4 Cited2 depletion impairs proper heart development 

 

 At 48hpf the heart is fully formed while the zebrafish larvae are still in the egg. As most 

of the larvae have yet to hatch, looking into the heart becomes much easier as they are mostly 

static. We took this opportunity to record videos of the larvae heart to determine if Cited2 

depletion could have an effect in the heart-beating of the zebrafish. Control larvae had an 

average heartbeat of approximately 180 beatings per minute (bpm), while Cited2-depleted 

larvae bpm were lower. On average the heartbeat of AUG and/or SPL MO-injected larvae 

ranged between 120-130 bpm (Figure 7.8). 
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 Figure 7.8 Zebrafish average heartbeat at 48h post-fertilization. 10-second videos of zebrafish 

heart were recorded and average beating per minute (bpm) was determined. All recordings were performed at 

RT. Each symbol represents the bpm of a randomly selected zebrafish. (** p<0.01; **** p<0.001). 

 

 A slower rhythm than normal, also known as bradycardia, in Cited2 MO embryos, 

suggested a decline in overall cardiac performance in which myocardial contractile function 

might be compromised. As a decreased bpm is likely to be associated with heart problems 

and CHD, we looked at larvae, post-hatching, for potential cardiovascular defects. At 72hpf, 

we separated embryos according to normal, aberrant and dead. Aberrant larvae refer to those 

that while alive, had clear developmental defects. Typical defects observed included: larvae 

that had yet to hatch, presenting low mobility, the presence of edema and abnormal back 

curvature (Figure 7.9). 

 Interestingly, in all zebrafish larvae that had clear developmental defects, cardiovascular 

defects were also observed. The most common and obvious defects observed were: the 

presence of edema, slow beating heart, heart hypotrophy and heart hypertrophy (Figure 7.10). 
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We also observed other cardiovascular defects such as a linear heart or a failure in the 

ventricle-atria separation.  

Figure 7.9 Development defects identified in Zebrafish at 72h post-fertilization. The developmental 

defects identified in zebrafish embryos 72hpf. A) Normal larvae, B) & C) Edema, D) & E) Abnormal Curvature, 

F) Not hatched. 
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Figure 7.10 Cardiovascular defects observed in zebrafish embryos at 72h post-fertilization. 

Cardiovascular defects identified in zebrafish larvae at 72hpf. A) Normal larvae; B) & C) Cardiac hypertrophy; 

D) Edema and one single chamber; E) & F) Linear Heart, Hypotrophy and Edema. Auriculum (red area), Ventricle 

(green area), a single compartment (orange area). 

 

 At 72hpf we separated embryos according to normal, presenting cardiac defects and 

dead (Figure 7.11). Most of the control larvae showed a normal appearance, and only a few 

died throughout development and a very small fraction of them had cardiovascular defects. 

On the other hand, most of the Cited2 MO-injected larvae died and, more cardiovascular 

defects were observed when compared to control larvae. The co-injection of both MO 

resulted in the most severe phenotype. On the other hand, while MO injection resulted in an 



In vivo rescue of Cited2 depletion defects 

118 
 

increased number of larvae with cardiovascular defects, we did not find a specific correlation 

between Cited2 depletion and cardiovascular specific defects (Figure 7.11). 

 

Figure 7.11 Cited2 depletion induces zebrafish lethality and the appearance of cardiovascular 

defects at 72h post-fertilization. At 72hpf we separated embryos according to well developed, 

cardiovascular defects and dead. Green bars injected with AUG MO, red bars injected Splicing MO, orange bars 

injected with both Cited2 MO. Zebrafish embryos were either non-injected or injected with Cited2 MO. Some 

Cited2 MO-injected embryos were also co-injected with 8R-CITED2 or WNT5a and/or WNT11. The total 

number of assessed embryos is indicated in the top of the graphs. 

 

7.5 A Cited2 recombinant protein can rescue Cited2 morpholino defects 

  

We next sought to understand if developmental problems found in Cited2 MO were 

being specifically caused by Cited2 depletion. For that purpose, we co-injected the MO with 

500pg of recombinant CITED2 protein (8R-CITED2) that, in vitro, can translocate towards 

the nucleus and rescue cardiovascular defects caused by Cited2 depletion (264). 

 8R-CITED2 co-injected with Cited2 MO rescued most of the problems caused by 

Cited2 depletion. At 24hpf the average number of delayed embryos decreased substantially 
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(Figure 7.7). Most notably were both SPL MO and AUG+SPL MO that when co-injected with 

8R-CITED2 decreased the number of delayed embryos by more than 6 folds. Next, we 

assessed the heart rate of 8R-CITED2 treated embryos. There was a significant increase in 

the bpm of embryos injected with 8R-CITED2 compared to embryos only injected with 

Cited2 MO (Figure 7.8). Though, this increase in average bpm was not sufficient to match the 

average bpm of control embryos. 

 Lastly, we investigated if cardiovascular defects and cumulative deaths at 72hpf could 

be rescued by 8R-CITED2. On average, the percentage of dead larvae at 72hpf reduced on 

Cited2 MO when treated with 8R-CITED2. Interestingly, 8R-CITED2 treatment largely 

decreased the number of larvae with cardiovascular defects, to levels of defects observed in 

control embryos (Figure 7.11). 

 The overall improvements in terms of viability and cardiovascular function, strongly 

suggests that the defects caused by the MO were being caused by Cited2 depletion. 

 

7.6 WNT5a and WNT11 rescues Cited2 depletion defects in vivo 

 

 As the last goal of the thesis, we hypothesized that WNT5a and/or WNT11 rescued 

zebrafish Cited2 depletion defects, similar to what occurs in vitro. For that purpose, we co-

injected AUG+SPL MO with either 5-10pg of WNT5a and/or WNT11. 

 At 24hpf, the number of delayed embryos due to the MO, greatly reduced in embryos 

treated with WNTs. The best results were obtained when AUG+SPL MO embryos were co-

injected with 5pg of WNT5a and 5pg of WNT11 (Figure 7.8). 

 At 48hpf, Cited2 depleted embryos treated with WNTs significantly increase zebrafish 

bpm compared to embryos injected only with Cited2 MO. Interestingly, co-injection of Cited2 

MO with a combination of 5pg of WNT5a and 5pg of WNT11 increases the average bpm to 

the same levels of control embryos (Figure 7.9). 

 Lastly, we observed whether WNT5a or WNT11 could rescue embryo lethality and 

cardiovascular defects at 72hpf. Co-injection of WNT5a and/or WNT11 largely increased the 

number of well-developed larvae and decreased the number of dead larvae and larvae with 

cardiovascular defects (Figure 7.11).  
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 Overall, this indicates that WNT5a and WNT11 can bypass most developmental 

defects caused by Cited2 depletion. 

  

7.7 Conclusion 

 

 We started by establishing a Cited2 KD system in vivo, using zebrafish as a model 

system. We demonstrated that Cited2 is required for proper embryo development in this 

novel model. As previously reported for mouse KO embryos, we identified more lethality and 

more cardiac defects in Cited2-depleted zebrafish embryos. We also identified that Cited2 

depletion results in a delay of the developmental processes. We were able to rescue Cited2 

depletion defects using a recombinant CITED2 protein, which indicates that developmental 

defects were Cited2 depletion-specific. Like in vitro, WNT5a and/or WNT11 rescued Cited2 

depletion defects in vivo. 
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The importance of Cited2 in heart development and CHD had been previously 

established but its role and mechanisms were largely unknown. In our laboratory, we used 

ESC as a model system since they can differentiate into all the cells that comprise the heart 

while sharing the same mechanisms. But most importantly, because Cited2 null mice embryos 

die in utero which makes it difficult to fully understand the impact of Cited2 in cardiac 

development. 

Previously, we demonstrated in mESC that CITED2 and ISL1 proteins interact and 

synergize together to promote cardiogenesis. However, in that study, we did not answer why 

Cited2 is so critical at the onset of differentiation or development (242, 264).  

As the first goal of this thesis, we started by establishing the impact of Cited2 depletion 

on ESC differentiation and cardiac commitment (264). Cited2 expression was still detected in 

Cited2fl/fl [Cre], treated with 4HT, suggesting an incomplete Cited2 KO. The incomplete 

deletion by Cre recombinase is not uncommon in cells when two copies of floxed sequences 

need to be targeted (244). This effect is even more notorious, in situations where 4HT 

addition and plasmid transfection are involved. Even though we have an incomplete Cited2 

KO, the decrease of Cited2 expression resulted in phenotypic changes as Cited2 

haploinsufficiency is sufficient to result in CHD in mice and humans (242). 

We determined that Cited2 transcripts expression are biphasic during ESC 

differentiation. Since Cited2 expression is both required for ESC pluripotency and cardiac 

differentiation, we hypothesize that the decline of Cited2 expression is required for cells to 

switch from a pluripotent to a cardiac differentiation permissive state. This hypothesis is 

corroborated by the experiments that we performed, where we attempted the rescue cardiac 

differentiation defects in Cited2 depleted ESC with the supplementation of 8R-CITED2 and 

the results obtained with A2UpC2 ESC. We have shown that 8R-CITED2 only rescued cardiac 

defects at D2 of differentiation whereas continuous overexpression of Cited2 at D0 or D1 

impaired cardiac differentiation. One possible explanation is the fact that high levels of Cited2 

result in an increased expression of Nanog. The increase of Nanog expression is likely to result 

in pluripotency maintenance or induction of endoderm differentiation by inhibiting mesoderm 

and ectoderm. As such, it is possible that Cited2 levels are required to go down, to ensure 

that the levels of Nanog also decrease, to ensure that ESC differentiate into mesoderm cell 

lineages. We opted for adding doxycycline every 48h because the half-life of doxycycline is 

approximately 18h-24h (304). Furthermore, since Cited2 protein has a half-life of 1h (305), 
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adding doxycycline every 48h ensures that the levels of Cited2 remained high throughout the 

differentiation process. 

On the other hand, it would be interesting to understand the cell fate decision of 

A2UpC2 ESC treated with Doxycycline at D0. It is very unlikely, that these cells remained 

pluripotent, as, by D8 onwards, they phenotypically resembled differentiated cells rather than 

ESC (data not shown). Since Cited2 null mESC have been reported to have defective ability to 

differentiate into hematopoietic or neuronal lineages (224, 225), we hypothesize that CITED2 

overexpression prior to differentiation may favour one of these two cell fate decisions rather 

than cardiac lineage. 

We observe, that Cited2 depletion impairs cardiac differentiation and the emergence 

of beating colonies. These results were also confirmed by the lack of organization of the 

sarcomere of Cited2 depleted cardiomyocytes. This phenotype is typically found in immature 

cardiomyocytes which indicates that ESC that lack Cited2 do not differentiate well resulting in 

very immature cardiomyocytes.  

To further investigate the mechanisms underlying the loss of pluripotency and 

differentiation of Cited2-depleted cells, we compared the gene expression profiles of control 

cells and Cited2 depleted cells at D4 of differentiation. We opted for analysing the 

transcriptomic impact of Cited2 depletion at D4 because, our previous observations, indicated 

that Cited2 function is the most critical during early mesoderm commitment (264). 

We observed that Cited2 depleted cells at D4 of differentiation are transcriptionally 

similar to undifferentiated cells than control cells at the same day. Curiously, the biggest 

difference between differentiated cells that lack Cited2, and undifferentiated cells, is the fact 

that these cells start to express genes important for gastrulation and cell differentiation, such 

as Brachyury. This resembles the expression profile of mEpiSC which lead us to believe that 

these cells are likely stuck or delayed in the epiblast transition at D4 of differentiation. 

We corroborated these findings by the analysis of different mesodermal transcripts 

and observed that their transcripts peak of expression is always one day earlier in control 

cells than Cited2 depleted cells. Interestingly, our results suggest that the delay in the 

expression of mesodermal genes in Cited2 depleted cells occurs somewhere between D3 and 

D4. This is the point where Cited2 expression starts to increase and the lack of Cited2 

expression becomes evident. As such, it would be interesting to further understand the 
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molecular function of Cited2 at D3 and D4 and identify and validate new transcriptional targets. 

The unregulated expression of mesodermal genes is likely to favour other cell fates 

specification.  

Interestingly, ectoderm cell fate commitment does not seem to be as affected as the 

endoderm or mesoderm. Indeed, the epiblast marker Fgf5 expression, which has been also 

strongly associated with ectoderm cell fate commitment (306), is similar between EtOH and 

4HT treated cells, from D1 to D4, and even remains high in Cited2 depleted cells from D4 

onwards.  

The pathway analysis revealed that Cited2 depletion may strongly affect the 

cardiopoietic factors. We hypothesize that the decrease in the expression of important 

cardiac signalling pathways delayed cell differentiation and cardiac commitment. 

We showed, that the secretome of Cited2 overexpressing ESC rescues the emergence 

of beating colonies in Cited2 depleted ESC. The increase of the expression of Brachyury implies 

that the CM of ESC overexpressing Cited2 supports ESC transition to mesoderm. However, 

the exact mechanism by which Cited2 contributes to mesoderm specification is still unknown. 

Our observations point that Cited2 might be a transcriptional activator of Brachyury¸ or at 

least, positively affect its expression. Since early activation of Brachyury, is responsible for 

activating early cardiac mesoderm genes including Mesp1 (307), the lack of Cited2 expression, 

around D3, is likely to reduce the proper expression of Brachyury, ultimately resulting in a 

reduction of cardiac cell fate commitment and an increase of other mesoderm or endoderm 

derivatives. Furthermore, this would also explain why the secretome of Cited2 overexpressing 

cells did not increase control ESC ability to differentiate into cardiomyocytes, as these cells 

already correctly express Brachyury at the proper time window. 

We identified WNT5a, WNT11, and FGF10 as proteins potentially upregulated in the 

Cited2 induced CM. To identify if these proteins were upregulated in the CM, we performed 

a WB with untreated CM-Control and CM-FC2 using specific WNT5a, WNT11, and FGF10 

antibodies. However, we failed in detecting WNT5a, WNT11, and FGF10 proteins. It is likely 

that these secreted proteins were present in a very low quantity in the CM. Therefore, to 

obtain enriched WNT5a, WNT11 and FGF10 proteins from the CM, we immunoprecipitated 

WNT5a, WNT11 and FGF10 from the media. 
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However, only WNT5a and WNT11 proteins were found substantially altered in the 

CM and crucial for rescuing cardiovascular defects caused by Cited2 depletion. Interestingly, 

immunodepletion of FGF10 from the CM drastically reduced the ability of ESC to 

spontaneously generate cardiomyocytes. This indicates a very promising role of FGF10 on 

initial stages of differentiation and worthy to study in the future. In the following work, we 

were only able to scratch the surface of the CM of Cited2 overexpressing ESC. It is likely that 

there are other proteins with a high cardiogenic potential present in the CM-FC2. To 

understand which proteins are present in the CM, we are currently trying to perform 

proteomic analysis, through mass spectrometry analysis of the CM of Cited2 enriched cells. 

This will also help us understand better the role of Cited2 in cell signalling. 

While we were not able to establish the molecular mechanism behind Cited2 and the 

expression of both Wnt5a and Wnt11, our results indicated that Cited2 is a likely 

transcriptional activator of Wnt5a and Wnt11. Interestingly, in the hematopoietic context, 

Cited2 null murine fetal liver also showed a huge decrease in the expression of Wnt5a (249). 

Furthermore, since Cited2 is co-factor that does not bind into DNA, we need to identify the 

transcription factor responsible for interacting with CITED2 to cooperatively activate Wnt5a 

and Wnt11 transcription. A candidate we have in mind is Tbx1, which has an important role 

in determining the fate of SHF derivatives and previously demonstrated to transcriptionally 

activate Wnt5a and Wnt11 (308-310). 

Treating cells with either WNT5a or WNT11 increased the number of beating 

colonies in Cited2 depleted cells, however, only the combination of both proteins was able to 

match control cells number of beating colonies. Indeed, WNT5a and WNT11 have been 

implicated in many different cell fate decisions, For example, WNT5a is required for normal 

hematopoiesis (256, 311), whereas WNT11 is required for osteogenesis differentiation (312, 

313). This means that WNT5a and WNT11 must be temporally regulated to ensure proper 

cardiac differentiation. Interestingly, while independently, WNT5a and WNT11 might 

promote different cell fate decisions, different authors indicate that WNT5a and WNT11 

synergistically interact to promote cardiogenesis (288, 314, 315). Our results point in the 

same direction, with the addition of WNT5a and WNT11 being the key to rescue cardiac 

defects caused by Cited2 depletion. 

Lastly, we established the importance of Cited2 in zebrafish development. Like what 

had been previously reported in mice, the lack of Cited2 results in increased lethality and an 
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increase in the number of developmental defects and cardiovascular defects in zebrafish 

compared to control embryos. This indicates that the molecular function of Cited2 is 

conserved in vertebrates. Moreover, since the human recombinant CITED2 protein 

compensates the lack of Cited2 in vivo, like what happens with ESC, we can propose the 

zebrafish as a new model to study the function of Cited2. 

Interestingly, no study had yet reported a developmental delay in Cited2 depleted 

embryos. We hypothesize that cardiovascular defects are the likely cause of developmental 

defects. Unfortunately, we lacked specific reporter transgenes to address if the origin of these 

defects were due to the specification or differentiation of CPC or errors in the heart 

formation. It is also important to notice that, for the purpose of this work, we have been 

mostly focusing on the cardiovascular system, but we also noticed back curvature defects and 

occasional iris coloboma, which are indicative of non-cardiac defects in Cited2 morphants. 

We have yet to confirm that CITED2 protein levels are depleted in embryos 

microinjected with Cited2 MO. However, as we were able to recover most of the 

developmental and cardiovascular defects with the co-microinjection of recombinant CITED2 

protein, it is very likely that these defects are Cited2 specific. With these results, we were 

also able to confirm that 8R-CITED2 corrects Cited2 depletion defects in vivo.  

Like what was observed in vitro, rescuing Cited2 depletion defects in vivo, with WNT5a 

and WNT11 corrected most of the developmental delay and cardiovascular defects. The 

injection of WNT5a and WNT11 with Cited2 MO also recovered most development defects 

which further gives evidence on the potential of WNT5a and WNT11 to recover 

developmental defects caused by Cited2 depletion. 

As future perspectives, we would like to translate this work into a clinical application. 

8R-CITED2 is a powerful tool to study and rescue the loss of CITED2 function. This is not 

only particularly useful to avoid the appearance of CHD, but its application can be widened 

to adulthood like maintenance of adult HSC function (230), or the study of tumour growth 

(316). 

 To better understand the impact of WNT5a and WNT11 in cardiovascular 

development and their application on CHD patients, we intend to make use of a model system 

with a cardiovascular system similar to the human such as the mouse. Previous studies provide 

evidence of the beneficial effect of WNT5a and WNT11 in cardiovascular problems. Providing 
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WNT5a to Id KO heart explants was able to correct gene expression, especially cardiac MHC 

which was severely downregulated (278). There are currently available compounds currently 

used in clinical trials and FDA approved with promising potential for future therapies in 

humans. Amongst these compounds is Foxy-5 a WNT5a mimicking peptide with positive 

results in prostate cancer (317) and breast cancer (318). 

 Our goal is, on the long-term, to successfully develop a new therapeutic option to 

prevent the appearance of CHD similar to folic acid, a man-made form of B-vitamin, important 

for the neural tube and proper development of the embryo (319). This newly developed 

compound would then be available and given to any pregnant woman with the increased 

potential of transmitting a CHD to the offspring offering a new method to prevent and reduce 

the number of CHD patients. 
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Table 10.1. Reference list of genes expressed in the three primary embryonic lineages. P-value is 

referent to DEGS in Cited2fl/fl [Cre], treated with EtOH,  compared to Cited2fl/fl [Cre], treated with 4HT, at 

D4 of differentiation. List adapted from (271) 

Gene Name Lineage P-value 
Egr2 Early Growth Response 2 Ectoderm n/s 

Fgf5 Fibroblast growth factor 5 Ectoderm n/s 

Foxj3 Forkhead Box J3 Ectoderm n/s 

Gbx2 Gastrulation Brain Homeobox 2 Ectoderm n/s 

Lhx5 Lim Homeobox protein 5 Ectoderm n/s 

Lmx1a LIM Homeobox Transcription Factor 1 Alpha Ectoderm n/s 

Meis1 Meis Homeobox 1 Ectoderm n/s 

Meis2 Meis Homeobox 2 Ectoderm n/s 

Nes Nestin Ectoderm n/s 

Pard6b Par-6 Family Cell Polarity Regulator Beta Ectoderm n/s 

Pax2 Paired box gene 2 Ectoderm n/s 

Pax6 Paired box gene 6 Ectoderm n/s 

Penk Proenkephalin Ectoderm n/s 

Rbm27 RNA Binding Motif Protein 27 Ectoderm n/s 

Sox1 SRY-Box 1 Ectoderm n/s 

Tfcp2l1 transcription factor CP2-like 1 Ectoderm -1.44 

Trim33 Tripartite Motif Containing 33 Ectoderm n/s 

Tubb3 Tubulin Beta 3 Class III Ectoderm n/s 

Vim Vimetin Ectoderm 1.50 

Zic1 Zinc finger of the cerebellum 1 Ectoderm n/s 

Afp Alpha-fetoprotein Endoderm n/s 

Calcr Calcitonin receptor Endoderm n/s 

Cckbr cholecystokinin B receptor Endoderm n/s 

Cer1 Cerberus 1 Endoderm 2.76 

Cxcr4 chemokine (C-X-C motif) receptor 4 Endoderm 3.40 

Cyp26a1 cytochrome P450, family 26, subfamily a, polypeptide 1 Endoderm 4.12 

Dab2 Disabled homolog 2 Endoderm n/s 

Dkk4 Dickkopf WNT Signaling Pathway Inhibitor 4 Endoderm n/s 

Dlx3 Distal-Less Homeobox 3 Endoderm n/s 
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Dlx5 Distal-Less Homeobox 5 Endoderm n/s 

Elf4 ETS-related transcription factor 4 Endoderm n/s 

Eya2 Eyes absent homolog 2 Endoderm n/s 

Fgf17 Fibroblast growth factor 17 Endoderm n/s 

Foxa2 forkhead box A2 Endoderm 1.83 

Foxa3 forkhead box A3 Endoderm n/s 

Foxc1 forkhead box C1 Endoderm 2.69 

Foxf1 forkhead box F1 Endoderm 3.03 

Foxh1 forkhead box H1 Endoderm 1.84 

Foxq1 forkhead box Q1 Endoderm n/s 

Gata6 GATA binding protein 6 Endoderm 1.54 

Gpc1 Glypican-1 Endoderm n/s 

Hhex hematopoietically expressed homeobox Endoderm 1.39 

Id4 DNA-binding protein inhibitor 4 Endoderm n/s 

Krt19 Keratin, type I cytoskeletal 19 Endoderm n/s 

Nts Neurotensin Endoderm n/s 

Pax9 Paired box gene 9 Endoderm n/s 

Plxna2 plexin A2 Endoderm 2.02 

Prdm1 PR domain containing 1, with ZNF domain Endoderm 1.49 

Pyy Peptide YY Endoderm n/s 

Shisa2 Shisa 2 Endoderm n/s 

Sox17 SRY box 17 Endoderm 2.30 

Sox7 SRY box 7 Endoderm n/s 

Sp6 Transcription Factor Sp6 Endoderm n/s 

Tle2 Transducin-like enhancer protein 2 Endoderm n/s 

Trim22 Tripartite Motif Containing 22 Endoderm n/s 

Tspan7 Tetraspanin-7 Endoderm n/s 

Cxcl12 C-X-C motif chemokine 12 Mesoderm n/s 

Ednrb Endothelin Receptor Type B Mesoderm n/s 

Foxf1 forkhead box F1 Mesoderm n/s 

Lhx1 LIM homeobox 1 Mesoderm 4.23 

Lmo2 LIM domain only 2 Mesoderm n/s 
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Meox1 Homeobox protein MOX-1 Mesoderm n/s 

Meox2 Homeobox protein MOX-2 Mesoderm n/s 

Mesdc2 
Mesoderm candidate gene 2 

Mesoderm n/s 

Msx1 msh homeobox 1 Mesoderm n/s 

Msx2 msh homeobox 2 Mesoderm 1.63 

Myl4 Myosin light chain4 Mesoderm n/s 

Myocd Myocardin Mesoderm n/s 

Pbx1 pre B cell leukemia homeobox 1 Mesoderm 2.09 

Ror2 Receptor Tyrosine Kinase Like Orphan Receptor 2 Mesoderm n/s 

Sox6 SRY box 6 Mesoderm n/s 

Tbx6 T-box 6 Mesoderm 2.88 

Tcf15 Transcription factor 15 Mesoderm n/s 

Wnt5a Wnt Family Member 5A Mesoderm n/s 

Wnt5b Wnt Family Member 5B Mesoderm n/s 

Wnt8a Wnt Family Member 8A Mesoderm n/s 

Anxa4 Annexin A2 Mesoderm/Endoderm n/s 

Bmp2 bone morphogenetic protein 2 Mesoderm/Endoderm 2.13 

Bmp4 bone morphogenetic protein 4 Mesoderm/Endoderm n/s 

Cdx2 caudal type homeobox  Mesoderm/Endoderm 2.28 

Dkk1 dickkopf WNT signaling pathway inhibitor 1 Mesoderm/Endoderm 2.52 

Dsg2 Desmoglein-2 Mesoderm/Endoderm n/s 

Eomes Eomesodermin Mesoderm/Endoderm n/s 

Fgf8 Fibroblast growth factor 8 Mesoderm/Endoderm n/s 

Foxa1 forkhead box A1 Mesoderm/Endoderm 1.77 

Gata3 GATA binding protein 3 Mesoderm/Endoderm n/s 

Gata4 GATA binding protein 4 Mesoderm/Endoderm 2.60 

Gdf3 growth differentiation factor 3 Mesoderm/Endoderm -2.50 

Gsc goosecoid homeobox Mesoderm/Endoderm 1.02 

Hand1 Heart and Neural Crest Derivatives Expressed 
1 Mesoderm/Endoderm n/s 

Hand2 Heart and Neural Crest Derivatives Expressed 
2 Mesoderm/Endoderm n/s 

Hnf4a Hepatocyte Nuclear Factor 4 Alpha Mesoderm/Endoderm n/s 

Hox1a homeobox A1 Mesoderm/Endoderm n/s 
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Hoxb1 homeobox B1 Mesoderm/Endoderm 1.22 

Isl1 ISL1 transcription factor, LIM/homeodomain Mesoderm/Endoderm 2.99 

Kdr Kinase Insert Domain Receptor Mesoderm/Endoderm 5.06 

Mesp1 mesoderm posterior 1 Mesoderm/Endoderm 1.46 

Mesp2 mesoderm posterior 2 Mesoderm/Endoderm n/s 

Mixl1 Mix1 homeobox-like 1 Mesoderm/Endoderm 2.60 

Otx1 Orthodenticle Homeobox 1 Mesoderm/Endoderm n/s 

Otx2 Orthodenticle Homeobox 2 Mesoderm/Endoderm n/s 

Pdgfra platelet-derived growth factor receptor alpha Mesoderm/Endoderm n/s 

Pdgfrb platelet-derived growth factor receptor beta Mesoderm/Endoderm n/s 

Ripk4 Receptor-interacting serine/threonine-protein kinase 4 Mesoderm/Endoderm n/s 

T brachyury, T-box transcription factor T Mesoderm/Endoderm 2.34 

Wnt3a Wnt Family Member 3A Mesoderm/Endoderm n/s 

    

    

    

    

 


