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ABSTRACT 

Due to the increasing number of zebrafish (Danio rerio) mutant and 

transgenic lines, there is a high demand for assisted reproductive techniques to 

support facility management. Efficient zebrafish sperm cryopreservation is a 

pressing necessity to manage and preserve the valuable zebrafish genetic resources. 

Although zebrafish sperm cryopreservation was first attempted more than 30 years 

ago, protocols still lack standardization, which translates into high variability in 

post-thaw sperm quality and in vitro fertilization success.  Therefore, the present 

thesis aims to improve the current methodologies used for zebrafish sperm 

cryopreservation and broodstock management towards the standardization of 

procedures in this species. 

The introductory context of the present thesis is approached in chapter 1. In 

this chapter the relevance of zebrafish model is discussed as well as this species 

sperm cryopreservation usefulness. The main factors affecting sperm quality and 

the application of reliable quality analysis are discussed in this chapter. The final 

objective of sperm cryopreservation is to obtain high quality offspring and therefore 

in vitro fertilization, early development and offspring quality analysis are important 

tools for the optimization of sperm cryopreservation methodologies. The current 

knowledge in sperm cryopreservation fundamentals is approached in this chapter, 

as well as the main advances and bottlenecks in zebrafish sperm cryopreservation. 

In chapter 2, the zebrafish sperm motility activation was assessed under 

different conditions of water temperature and conductivity. The environmental 

conditions present in the fertilization microenvironment are responsible for the 

mechanism of spermatozoa motility activation and metabolic modulation that 

influence the probability of fertilization success. Zebrafish is commonly reared at 

28°C, but with variable water conductivity conditions among facilities. However, 

sperm motility analysis is routinely performed with distilled water at room 

temperature. We aimed to understand the effect of water temperature and 

conductivity on sperm motility and fertilization ability. Water at 28°C with lower 

water conductivity (0 and 700 µS/cm) improve sperm motility parameters. 

Standardization of the water conditions (of system water and activation medium 
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used for motility analysis) among facilities is highly relevant to improve the 

reproducibility of sperm quality analysis and thus, to predict with higher accuracy 

fertilization ability.  

Successful cryopreservation depends on high quality sperm, which depends 

on the quality of breeders. Consequently, broodstock selection and management is 

a priority to improve sperm cryopreservation. The broodstock diet has a 

preponderant effect on gamete quality, particularly in phospholipids and 

antioxidants content which are known to promote spermatogenesis. Therefore, in 

chapter 3 we aimed to determine the effects of a tailor-made purified diet 

supplemented with phosphatidylcholine (PC) or phosphatidylethanolamine (PE) on 

the zebrafish reproductive performance, gamete quality and larval skeletal 

malformations. Both dietary supplementations with phospholipids improved sperm 

motility and eggs quality, however PC increased the incidence of skeletal 

malformations on the offspring, as previously observed in other teleosts. Although 

dietary phospholipids classes have a role in the ossification process of the vertebral 

column in teleosts, its mechanisms are still to be understood. Therefore, the 

development and use of a standardized diet for zebrafish broodstock is essential to 

reduce the variability of the reproductive performance among facilities. In chapter 

4, the selection of optimal age and minimum sperm collection frequency was 

evaluated, since these factors are essential to obtain high quality samples. Our 

results indicate that young males (6-8 months) showed higher sperm quality and 

require a minimum of 14 days between sperm collections to recover sperm plasma 

membrane viability. 

An important bottleneck in cryopreservation is the liquid nitrogen 

requirement for storage. Therefore, it was established in chapter 5 a new 

cryopreservation method using an electric ultrafreezer (-150°C) as an alternative to 

liquid nitrogen, for the first time in a teleost species. This protocol reaches a fast 

cooling rate (-66°C/min) in one single step and yields higher sperm viability and 

DNA integrity in comparison to the traditional methods (-20°C/min in liquid 

nitrogen). The synergy obtained by the combination of cryoprotectants is a 

successful cryopreservation strategy that can be beneficial in the optimization of 

zebrafish sperm cryopreservation. Therefore, it was selected the most adequate 
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cryoprotectant combination that generates offspring with normal skeletogenesis. 

Data show that 15% of DMF with 50 mM of bicine or 10% of egg yolk is beneficial 

for the quality of zebrafish offspring sired by cryopreserved sperm. To the best of 

our knowledge, this is the first report on skeletal development of zebrafish offspring 

sired by cryopreserved sperm performed with different extender compositions. 

Zebrafish is especially useful to investigate some of the most prominent 

human diseases such as diabetes. Among other consequences, diabetes (type I and 

II) causes disturbances in the male reproductive system, since glucose metabolism 

is an important event not only in spermatogenesis but also in mature spermatozoa 

metabolism. In chapter 6 we aimed to validate zebrafish as a useful model organism 

to investigate male reproductive dysfunctions mechanisms caused by type I 

diabetes. In this chapter, sperm cryopreservation was applied to a relevant 

zebrafish model of type I diabetes. The transgenic zebrafish under diabetic 

conditions shows higher levels of insulin a (insa), insulin receptor a (inra) and 

glucose carrier 2 (slc2a2) transcripts in spermatozoa when compared to the 

controls. This is because gametogenesis occurred under diabetic conditions, 

changing transcription in the germline. Consequently, spermatozoa carry the 

imprinted transcripts that will be transmitted during fertilization. Sperm quality 

(motility, viability and DNA integrity) was lower in the transgenic fish under 

(transient) diabetic state as observed in human and mouse model. Sperm 

cryopreservation affects sperm quality of fish both under diabetic and non-diabetic 

conditions. However, diabetic conditions were detrimental in sperm freezability, 

which can be explained by the lower initial sperm quality. In this chapter zebrafish 

was validated as a useful model organism to investigate male reproductive 

dysfunctions mechanisms caused by type I diabetes. 

Relevant differences between different zebrafish lines are evidenced in terms 

of sperm quality and susceptibility to damage, which suggests that it is an important 

factor to consider while establishing sperm cryopreservation protocols. This thesis 

offers new insights and a set of guidelines on breeder’s management and sperm 
cryopreservation to improve zebrafish husbandry practices. 

Keywords: Zebrafish, sperm quality, cryopreservation, ultrafreezer, sperm 

motility activation, diet, type I diabetes  
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RESUMO 

O peixe zebra (Danio rerio) tornou-se inquestionavelmente num dos 

organismos modelo mais proeminentes da atualidade, devido às suas características 

favoráveis para investigação. O desenvolvimento de técnicas de edição genética e a 

sequenciação do genoma desta espécie possibilitou o desenvolvimento de milhares 

de linhas transgénicas e mutantes. Consequentemente, a gestão dos numerosos 

genótipos trouxe desafios na manutenção de espaço e gestão destes recursos 

genéticos. A criopreservação de sémen é uma ferramenta valiosa para a gestão 

destes valiosos recursos genéticos, que pode solucionar este problema. No entanto, 

apesar do primeiro protocolo de criopreservação de sémen de peixe zebra ter sido 

desenvolvido há mais de 30 anos, ainda requer otimização e estandardização. 

Consequentemente, existe elevada variabilidade na qualidade do sémen e sucesso 

da fertilização in vitro entre biotérios. O desenvolvimento de uma técnica de 

criopreservação de sémen eficiente é atualmente um dos maiores desafios da 

comunidade de peixe zebra. O objetivo principal da presente tese foi a otimização 

das técnicas de gestão de reprodutores e criopreservação de sémen de peixe zebra, 

no sentido da estandardização das práticas e maior reprodutibilidade dos 

resultados científicos nesta espécie. 

A introdução ao contexto da presente tese é abordada no capítulo 1. Neste 

capitulo a importância do peixe zebra como organismo modelo é abordado assim 

como a utilidade da criopreservação do sémen nesta espécie. Os factores que afetam 

a qualidade do sémen assim como a aplicação de análises de qualidade robustas são 

discutidos neste capítulo. O objetivo final da criopreservação de sémen é a produção 

de progenia com elevada qualidade. Consequentemente, neste capítulo a fertilização 

in vitro, o desenvolvimento emb                                                                                                                                                                                                                                                                                                                 

rionário e a análise da qualidade da progenia é discutida. Neste capítulo são 

explorados os fundamentos de criobiologia, principais avanços e dificuldades no 

desenvolvimento de protocolos de criopreservação de sémen de peixe zebra. 

As condições do ambiente de fertilização são responsáveis pela ativação da 

mobilidade dos espermatozóides e pela modulação do seu metabolismo, afetando 

consequentemente o sucesso da fertilização. O peixe zebra é estabulado a 28°C com 
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parâmetros de condutividade da água variáveis entre biotérios. No entanto, as 

análises de mobilidade espermática são realizadas rotineiramente com água 

destilada a temperatura ambiente. Consequentemente, no capítulo 2 o objetivo do 

nosso trabalho foi caracterizar o efeito da temperatura e condutividade da água na 

mobilidade de sémen de peixe zebra. Adicionalmente, foi estudado o efeito da 

condutividade da água no sucesso da fertilização. A água a 28°C e com baixa 

condutividade (0 e 700 µS/cm) melhorou os parâmetros de mobilidade. A 

estandardização das condições da água (dos sistemas de cultivo e do meio de 

ativação usado na análise da mobilidade) entre biotérios é essencial para a 

otimização das análises de qualidade, reprodutibilidade científica e maior precisão 

na estimação do potencial de sucesso de fertilização de uma amostra de sémen. 

O sucesso da criopreservação depende da qualidade do sémen que, por sua 

vez, depende da qualidade dos reprodutores. Consequentemente, a seleção e gestão 

de reprodutores é uma prioridade, de forma a assegurar o sucesso do método de 

criopreservação. Um dos factores mais importantes na gestão de reprodutores é a 

sua dieta. A nutrição dos reprodutores tem um importante efeito na qualidade dos 

gametas já que afeta a gametogénese, particularmente a composição da dieta em 

fosfolípidos e antioxidantes. O objetivo do capítulo 3 foi determinar o efeito de 

dietas purificadas suplementadas com fosfatidilcolina (PC) e fosfatidiletanolamina 

(PE). A suplementação em fosfolípidos melhorou a mobilidade do sémen; no 

entanto, a suplementação em PC provocou um aumento da incidência de 

malformações esqueléticas na progenia. Estes resultados estão de acordo com 

estudos de nutrição anteriores em teleosteos. O desenvolvimento e utilização de 

dietas estandardizadas nos reprodutores de peixe zebra é essencial para optimizar 

a performance reprodutiva e reduzir a variabilidade entre biotérios. 

A seleção da idade ótima dos machos e a frequência mínima adequada para 

recolha de sémen é essencial para obter amostras com elevada qualidade. No 

capítulo 4 foi determinado o efeito da idade e da frequência de extração na 

qualidade do sémen. O nosso estudo mostrou que machos jovens (6-8 meses) de 

peixe zebra revelam maior qualidade de sémen e necessitam de um mínimo de 14 

dias de repouso para recuperarem a viabilidade da membrana plasmática dos 

espermatozóides.   
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Uma das maiores desvantagens da criopreservação é a necessidade de azoto 

líquido para armazenamento de amostras. Considerando esta questão, foi 

desenvolvido no capítulo 5 o primeiro protocolo de criopreservação de sémen de 

teleósteos utilizando um ultracongelador (-150°C). Este protocolo é realizado num 

só passo, sem a utilização de azoto líquido, sendo as amostras criopreservadas a -

66°C/min. Este protocolo melhorou a viabilidade e integridade do ADN dos 

espermatozóides em comparação com o método convencional (-20°C/min 

armazenado em azoto líquido). A combinação de diferentes crioprotetores é uma 

estratégia de criopreservação com elevado sucesso. Consequentemente, um dos 

objetivos do nosso trabalho foi selecionar a combinação de crioprotetores mais 

adequada para o protocolo de criopreservação estabelecido anteriormente. Os 

resultados deste trabalho indicam que a utilização de 15% de DMF com 50 mM de 

bicina ou 10% de gema de ovo produzem sémen de elevada qualidade do sémen e 

maior sucesso em fertilizações in vitro, assegurando também o adequado 

desenvolvimento esquelético da progenia. Este foi o primeiro estudo de 

caracterização de malformações esqueléticas desenvolvidas na progenia de peixe 

zebra produzido com sémen criopreservado com diferentes composições de 

crioprotetores. 

O peixe zebra é particularmente útil na investigação de doenças humanas 

com elevada prevalência na população mundial tal como a diabetes. Entre outras 

complicações geradas por esta patologia, a diabetes tipo I e II afeta o sistema 

reprodutor masculino. Estas perturbações ocorrem devido à alteração do 

metabolismo da glucose, essencial durante a espermatogénese e no metabolismo 

dos espermatozóides. Comparando com outros modelos, o peixe zebra tem gerações 

mais curtas, consequentemente seria uma ferramenta útil para esta investigação. O 

objetivo do capítulo 6 foi validar o peixe zebra como organismo modelo para o 

estudo dos mecanismos de ação da diabetes tipo I pelos quais afetam o sistema 

reprodutor masculino. Tal como observado em humanos e no organismo modelo de 

diabetes roedor, a qualidade do sémen (mobilidade, viabilidade, integridade do 

ADN) é reduzida na estirpe transgénica sob estado transiente de diabetes tipo I em 

relação ao controlo. O sémen do modelo transgénico em estado diabético revela 

aumento dos níveis de transcriptos de insulina a (insa), receptor de insulina a (inra)  

assim como de um transportador especifico de glucose GLUT 2 (slc2a2). Este facto é 
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devido a uma alteração dos níveis de transcrição destes genes na linha germinal 

durante a gametogénese. O sémen criopreservado de ambos os tratamentos 

(controlo e diabético) revelou um decréscimo na qualidade, tal como esperado. O 

tratamento diabético aumentou a susceptibilidade das células à criopreservação, o 

que se pode dever à sua qualidade seminal inicial inferior. Assim, evidenciamos 

neste modelo transgénico para a diabetes tipo I os mesmos efeitos na qualidade 

seminal observados em humanos e em rato, validando desta forma esta linha para a 

investigação dos efeitos desta doença no sistema reprodutor masculino. 

A presente tese propõe o estabelecimento de medidas de seleção e maneio 

de reprodutores e análise de qualidade seminal. Adicionalmente propomos um 

método inovador de criopreservação de sémen, prático e económico, através do uso 

de um ultracongelador. Verificou-se o impacto de diferentes combinações de 

crioprotectores na qualidade e na esqueletogénese da progénie gerada com sémen 

criopreservado. Resumindo, esta tese propõe procedimentos e metodologias para a 

gestão de reprodutores de peixe zebra relevantes para o estabelecimento de 

medidas de estandardização, promovendo desta forma a reprodutibilidade de 

metodologias científicas. 

 

Palavras chave: Peixe zebra, qualidade de sémen, criopreservação, 

ultracongelador, activação da mobilidade de sémen, dieta, diabetes tipo I 
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PREAMBLE 

 

This thesis is organized into eight main chapters where chapter 4 is divided 

into two sub-chapters. All chapters and sub-chapters, except chapter 1 and 7, are 

organized according to the format of scientific articles and at the beginning of each 

chapter, a preamble will describe the main objectives of the work that it precedes, 

to improve the comprehension of this dissertation. Chapter 1 is a general 

introduction to fish reproduction, spermatology and cryopreservation. Chapter 2 

focus on the optimization of zebrafish sperm motility activation conditions to 

improve the standardization of sperm motility analysis. Chapter 3 addresses the 

effect of breeders diet on reproduction, gametes quality and cryopreservation. In 

chapter 4 a study on the effect of age and sperm collection frequency on sperm 

quality is performed, to select high quality male breeders for cryopreservation 

through repeated non-invasive samplings. Chapter 5 approaches a teleosts novel 

method for sperm cryopreservation and storage in an ultrafreezer, which is an 

advantageous alternative to liquid nitrogen. In addition to this cryopreservation 

method, a study was conducted on the optimization of the extender through the 

modulation of cryoprotectant concentration and the use of protein-based additives. 

Chapter 6 focus on the application of sperm quality analysis and cryopreservation 

on a diabetes type I zebrafish model, to apply the know-how gathered during this 

thesis on a relevant biomedical research model. Finally, in chapter 7 the discussion 

of the results and final conclusions of this dissertation are organized in an 

integrative way, in order to propose guidelines for the standardization of zebrafish 

sperm quality analysis and cryopreservation procedures. 

The author conceived, designed and performed the experiments and 

analytical procedures, and wrote all the manuscripts included in this dissertation. 

Throughout this thesis, the experiments were supported and enriched through 

collaborations with students and colleagues. 
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1.1. Zebrafish model in research 

1.1.1. Zebrafish (Danio rerio) domestication 

Zebrafish is a member of teleost infraclasses, a monophyletic group that is 

estimated to have diverged approximately 340 million years ago from a common 

ancestor (Amores et al., 2011). This ancestor underwent an additional round of 

whole genome duplication denominated teleost-specific genome duplication 

(Meyer and Schartl, 1999). Zebrafish was first described by Hamilton (1822) as a 

small freshwater species found naturally in rivers, small streams, channels and 

paddy fields from Myanmar, Pakistan, India, Bangladesh and Nepal (Arunachalam et 

al., 2013). Zebrafish is a species tolerant to a wide range of environmental conditions 

and food resources. Its natural habitat has a wide range of temperatures from 12.3-

28.4 ˚C, pH 6.2-9.8 (Arunachalam et al., 2013) and water conductivity 10-280 µS/cm 

(Engeszer et al., 2007). This species feeds naturally on allochthonous materials such 

as ants and other insects falling into streams, secondary channels and pools 

(Arunachalam et al., 2013).  

Zebrafish colonies in research facilities are maintained in recirculation 

systems with controlled environmental parameters such as photoperiod, water 

temperature, pH and conductivity. Although this species is established in research 

centers worldwide, the rearing procedures still lack methodological standardization 

(Lawrence, 2016). As a consequence, high variability is observed on biological and 

reproductive performances (Lawrence, 2016; Robles et al., 2009; Torres and 

Tiersch, 2018; Torres et al., 2017; Tsang et al., 2017). Due to its high tolerance and 

robustness, different protocols and methodologies have been employed between 

facilities, according to each laboratory specific needs, influenced by personal biases 

and traditions of specific laboratories (Tsang et al., 2017).  

The domestication of wild species requires the ability to control the 

organism´s husbandry and the comprehension of its specific nutritional and 

reproductive requirements (Duarte et al., 2007; T. Gjedrem, 2005). This control 

enables the closure of the species life cycle under captivity. Aquacultured species 

have high commercial value, therefore requiring high efficiency of fish production 

to improve the profit (Duarte et al., 2007). Since most aquaculture species breed in 
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specific times of the year and are much more vulnerable when compared to 

zebrafish, the efforts in the optimization and standardization of procedures by the 

scientific community were very efficient (Martínez-Páramo et al., 2017). There are 

several zebrafish strains considered domesticated such as AB, TU, SJA or TM1, that 

reveal genomic variations in relation to wild populations, which are typically 

observed in domesticated species (Whiteley et al., 2011). Therefore, the zebrafish 

scientific community would benefit greatly by investing in the optimization and 

standardization of procedures for this species to obtain higher biological efficiency 

and scientific replicability. 

 

1.1.2. History of Danio rerio model species 

Zebrafish (Danio rerio) have become a widely used model species established 

in research centres worldwide to study vertebrate mechanisms on areas such as 

development, regeneration, toxicology and pathologies (Driever et al., 1996; 

Gemberling et al., 2013; Haffter et al., 1996; Meyers, 2018; Patton and Tobin, 2019; 

Sieber et al., 2019; Tanguay, 2018). Zebrafish is a robust small bodied vertebrate, 

cheap to maintain, with high fecundity and year-round reproduction, external 

fertilization, rapid development, transparency of embryos and ease of experimental 

manipulation (Lieschke and Currie, 2007; Ribas and Piferrer, 2013). In addition to 

all these advantageous characteristics, it is a species with the genome fully 

sequenced and there are feasible genome editing technologies established for this 

species (Howe et al., 2013; Liu et al., 2017). Altogether, these characteristics make 

zebrafish a particularly useful model species. During the ͳͻ͹Ͳǯs at the University of Oregon ȋUSAȌ, George Streissinger 
chose for the first time zebrafish as a vertebrate model organism, since it is easy to 

genetically manipulate and have several advantages over mouse such as a shorter 

life cycle (Varga, 2018). During the ͳͻͺͲǯs zebrafish was first characterized as a 
genetically tractable organism. In the ͳͻͻͲǯs two large scale screenings for mutants 
were carried out, one by the Nobel prize winner Christiane Nüsslein-Volhard in 

Tübingen (Germany) and the other by Wolfgang Driever and Mark Fishman in 

Boston (USA). Thousands of zebrafish families were investigated to detect 
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mutations affecting early development. In 1996, around 4000 mutants were 

identified (Driever et al., 1996; Haffter et al., 1996; Meyers, 2018). Those mutations, 

when driven to homozygoty, can produce defects and generate pathologies similar 

to human diseases (Howe et al., 2013). The identification of mutants is a highly 

relevant strategy for biological research because they can provide the first insight 

into the role of a gene during normal development. Moreover, it was possible to 

observe the effect of the mutations, but at that time it was not easy to attribute the 

mutation to a given gene or to know which gene was affected (Driever et al., 1996; 

Haffter et al., 1996). Therefore, the scientific community joined efforts to start the 

zebrafish genome sequencing project in 2001 at the Wellcome Trust Sanger 

Institute in Cambridge (UK) (Meyers, 2018). The earliest assembly became public in 

2002 and the zebrafish genome sequencing is now complete (Howe et al., 2013). The 

zebrafish genome sequencing was performed according to two strategies: 1) whole 

genome shotgun (WGS) assembly (Mullikin and Ning, 2003), with subsequent 

automated annotation in EnsEMBL (Clamp et al., 2003; Hubbard et al., 2002); 2) 

classical clone mapping and clone-by-clone sequencing with subsequent manual 

annotation (Potter et al., 2004), which is displayed by the Vega Web browser. The 

sequencing was also obtained by a hierarchical mapping and clone-by-clone 

sequencing (Lander et al., 2001; Waterston et al., 2002), therefore validating the 

sequencing with the highest genome sequence quality (Jekosch, 2004). In 2013, 

Howe et al. (2013) evidenced more than 26 000 protein-coding genes annotated in 

zebrafish, where approximately 74% are orthologues to human genes (Howe et al., 

2013; Vilella et al., 2009), therefore increasing the validation of zebrafish as a useful 

model. 

The methodological tools to generate zebrafish lines are continuously 

expanding. There are two main methods namely forward and reverse genetics. 

Forward genetics are the tools that use mutagenesis screenings either from the 

random induction of mutations in the genome and subsequent screening for 

individuals displaying mutant phenotypes, through the induction of chemical 

mutagenesis using N-ethyl-N-nitrosourea (ENU) treatment in spermatogonia or 

through insertional mutagenesis (e.g. transposons, retroviruses). After zebrafish 

genome sequencing, reverse genetics techniques have been developed successfully. 

The reverse genetics methods use specific knock-out or knock-down of genes of 
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interest, allowing a rapid understanding of the functions of the predicted/known 

genes. The main reverse genetics techniques employed are morpholino knock-

down, TILLING (targeting induced local lesions in genomes), transgenesis gene‑

editing technology [zinc-finger nucleases (ZFNs), CRISPR/Cas9 system and 

transcription activator-like effector nucleases (TALENs)] (Dahm and Geisler, 2006; 

Housden et al., 2016). 

The research performed with zebrafish contributes to the understanding of 

basic vertebrate biology and development as well as to the understanding of factors 

controlling the specification of cell types, organ systems and body axis (Lleras 

Forero et al., 2018; Resende et al., 2014; Talbot et al., 1995). As a consequence, 

zebrafish is now considered a valuable model organism to investigate human 

diseases (Lieschke and Currie, 2007) and aging (Gerhard, 2003a; Gerhard, 2003b). 

Additionally, zebrafish  is relevant in research areas such as aquatic toxicology (Hill 

et al., 2005; Laizé et al., 2014), drug screenings (Vaz et al., 2018), regenerative 

medicine (Azevedo et al., 2012; Cardeira et al., 2016; Goessling and North, 2014), 

neuroscience and behaviour (Oliveira et al., 2016). 

The practical applicability of zebrafish as a model is more evidently 

demonstrated through the use of established transgenic and mutant lines that model 

prominent human diseases such as diabetes (Pisharath et al., 2007; Zang et al., 

2017), osteoporosis (Barrett et al., 2006) or cancer (Fior et al., 2017). A transgenic 

zebrafish model has additional information on its genome due to the artificial 

insertion of DNA. Through this method, the inserted DNA can produce an 

overexpression of a gene or it can be associated with a fluorochrome, thus allowing 

the visualization of cells and organs where the gene is being expressed (Lieschke 

and Currie, 2007). With the establishment of these lines, it is possible to investigate 

the disease onset, development and progression, followed by pharmacological 

methodologies for its control, treatment and cure. A model of chemo-genetically 

inducible ablation was developed in zebrafish, to address developmental and 

regeneration processes, involving the targeted expression of a bacterial 

nitroreductase (NTR) under a cell-specific promoter, when exposed to a prodrug 

(e.g. metronidazole). The prodrug becomes reduced by NTR into cytotoxic products 

leading to the ablation of targeted cell types (Bergemann et al., 2018). An example 
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of this method is the use of zebrafish to investigate type I diabetes, a prominent 

human pathology. For this purpose, there are NTR zebrafish transgenic lines to 

model this disease such as Tg(ins:nfsb:mCherry) and Tg(ins:NTR*-P2A:mCherry) 

(Bergemann et al., 2018; Pisharath et al., 2007). There are transparent mutant 

zebrafish lines such as transparent (tra) and casper (mitfaw2/w2;roya9/a9) that 

facilitate developmental and cell transplantation studies through direct observation ȋDǯAgati et al., ʹͲͳ͹; Krauss et al., ʹͲͳ͵; Presslauer et al., ʹͲͳ͸; White et al., ʹͲͲͺ). 

There are numerous zebrafish reporter lines suitable for in vivo observation such as 

the marker for cell differentiation runt-related transcription factor 2 

[Tg(runx2:eGFP)] (Cardeira et al., 2016; Pinto et al., 2005), vasa transgene 

[Tg(vasa:EGFP)] with cellular germline labelling (Krøvel and Olsen, 2002) and 

osterix line (signalling sp7 gene) [Tg(Ola.sp7:mcherry)] marking early osteoblasts 

(Tarasco et al., 2017). 

The exponential generation of newly established zebrafish lines for research 

brought space and management constraints for the maintenance of all these 

valuable resources. The cryopreservation of germ cells, particularly spermatozoa, is 

a valuable methodology for the adequate preservation of these valuable genotypes. 

Germ cells are responsible for the transmission of genetic information from one 

generation to another. Mature germ cells, such as mature spermatozoa, are uniquely 

specialized to overcome the challenges associated with the fertilization process and 

to provide a single chromosomal complement to offspring (Murphy et al., 2014). 

Despite the efforts of the scientific community, no cryopreservation protocol for 

teleosts oocytes and embryos have been successfully developed. Therefore, the 

cryopreservation methodologies are targeting primordial germ cells (PGCs) and 

spermatozoa. Male germ cells include spermatozoa and their previous stages of 

maturation such as primordial germ cells (PGCs) and spermatogonia. Several 

cryopreservation protocols are developed for testis, PGCs ȋMarinović et al., ʹͲͳͺa; Marinović et al., ʹͲͳͺbȌ or spermatozoa (Draper and Moens, 2009; Matthews et al., 

2018; Yang et al., 2007). Spermatozoa have small size and have a relatively high 

resistance to chilling, therefore being more advantageous when compared to other 

cell types. For this reason, the cryopreservation of spermatozoa is the most widely 

used technique in aquatic species (Martínez-Páramo et al., 2017). Spermatozoa are 

the most practical cells to be routinely cryopreserved in zebrafish facilities to 
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reconstitute their different lines. The main advantage of sperm over PGCs 

cryopreservation is the fact that sperm collection can be performed through a non-

lethal method (Jing et al., 2009a) and does not require laborious cell transplantation 

methodologies. 

 

 

1.2. Fish reproduction principles 

Sexual reproduction involves the union of two separate gametes with 

parental genome remixture, allowing thus the diversification of genetic variability 

of the species and accelerating evolution (Lehmann, 2018). Sexual reproduction 

occurs through the process of fertilization, which is the union of gametes produced 

by the two sexes (Lehmann, 2018). Gametes are haploid cells; one sex produces a 

lower number of gametes -oocytes- that carry nutritional resources for the embryo 

to develop; the other sex produces substantially smaller gametes in higher numbers –spermatozoa- which are highly specialized motile cells (Schulz et al., 2010). The 

union of the gametes is a species-specific phenomenon (Herberg et al., 2018) which 

produces a zygote that inherits a mixture of the parents genomes that will develop 

into a new unique organism (Lehmann, 2018). 

Sperm was first observed by optic experts Nicolaus Artsuican and Antonie 

van Leeuwenhoek in 1674 (Netherlands). The term spermatozoa, from the Greek σɎέɏɊα "seed" and ζῷɍɋ "living being", was first used by Karls Hernest von Boer 
(Birkhead and Montgomerie, 2009). The production of spermatozoa occurs through 

spermatogenesis, which is a developmental process during which a small number of 

diploid stem cells produce a large number of highly differentiated spermatozoa. 

Spermatozoa are haploid flagellated cells with a recombined genome (Schulz et al., 

2010). During spermatogenesis, the regulation of germ cell development occurs 

according to extrinsic (hormone and growth) and intrinsic (autonomous systems) 

factors (Schulz et al., 2010). The spermatogenesis events relevant for mature sperm 

quality will be described elsewhere in this thesis. 

Fish are the most diverse and numerous group of vertebrates, having a wide 

variety of reproductive strategies, in both marine and freshwater species (Gallego 
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and Asturiano, 2018). Most of them are external fertilizers, where mature 

spermatozoa are released into a hostile environment to reach the oocyte and 

perform fertilization (Cabrita et al., 2014; Cosson et al., 2008a; Gallego and 

Asturiano, 2018). Under captivity, many teleost species experience reproductive 

constraints such as mismatching of the releasing of gametes between sexes or 

incomplete gametogenesis. To overcome these issues several strategies can be 

performed such as artificial reproduction, induction through environmental factors 

(such as manipulating water temperature and photoperiod) or hormonal induction 

(Mañanós et al., 2008). In zebrafish there are methods available for hormonal 

induction (Pang and Ge, 1999; Tokumoto et al., 2011; Wang et al., 2016),  however, 

they are still poorly investigated. The fertilization success is determined by the 

husbandry practices applied, breeders quality, the quality of gametes and 

environmental conditions during fertilization (Cabrita et al., 2011a; Rurangwa et al., 

2004). 

1.2.1. Factors affecting sperm quality 

Broodstock selection has been considered one of the most relevant factors to 

support adequate domestication of a species (Gjedrem, 2005). By artificial selection, 

the individuals with beneficial characteristics are chosen to generate offspring with 

improved genotype, towards a specific objective. One of the main objectives is to 

obtain a population with high reproductive performance and quality under captivity. As a consequence, ǲgoodǳ males characterized by high reproductive 
performance and sperm quality are selected according to a Mendelian perspective 

(Gjedrem, 2005). This selection is performed assuming that high-quality offspring 

will be generated by the inheritance of the genomic information responsible for the 

desired phenotype. In the past decade, the research community made efforts to 

further understand the genomic and non-genomic paternal basis of inheritance 

during sexual reproduction of teleosts, through the novel technological tools 

available such as transcriptome and epigenome investigation (Herráez et al., 2017; 

Labbé et al., 2017). 

Reproduction is the second most important metabolic effort in adulthood. If 

an adult organism finds its health or survival at risk, its metabolism will invest 

preferably on health and survival instead of reproduction, thus decreasing the 
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efficiency of gametogenesis (Fox et al., 1997). Therefore, an individual can only be 

at its highest reproductive potential under optimal welfare conditions. The main 

factors that support adequate broodstock reproduction and gametogenesis process, 

are environmental conditions and husbandry practices (Cabrita et al., 2011a; 

Migaud et al., 2013). The main husbandry conditions and practices affecting gametes 

quality have been extensively reviewed (Alavi and Kazemi, 2006; Cabrita et al., 

2009; Cabrita et al., 2011a; Migaud et al., 2013; Rurangwa et al., 2004) and consist 

of: 1) photoperiod and temperature, 2) nutrition, 3) water and food contamination, 

4) stress, 5) diseases 6) broodstock biological characteristics (heritage, age, length, 

weight, behavior and hierarchical status), 7) type and duration of spermatogenesis,  

8) spawning season, 9) methods and sperm collection frequency, 10) methods of 

spawning induction, and, 11) duration of broodstock participation in the spawning 

program (Figure 1.1 A). Given that high-quality sperm is related to high-quality 

breeders, the selection of male donors is essential for broodstock management and 

cryopreservation programs. 

In zebrafish, the optimal temperature and photoperiod are standardized 

among rearing facilities. Zebrafish is a very useful model for toxicology due to its 

high reproductive susceptibility to contaminants (He et al., 2014; Kollár et al., 2018; 

Tanguay, 2018). With the exception of toxicological studies, zebrafish is reared 

under controlled and uncontaminated conditions. The presence of diseases and 

their impacts on zebrafish health are reviewed in Kent et al., (Kent et al., 2012). The 

type and duration of spermiogenesis in zebrafish is discussed in the following 

sections of this thesis.  

The duration of broodstock participation in the spawning program is highly 

relevant. Although some studies were performed in zebrafish senescence (Gerhard, 

2003a; Gerhard and Cheng, 2002), a deeper understanding of the impact of intensive 

reproduction programs in zebrafish senescence is necessary. Due to the high 

relevance for the present thesis context, we will address in further detail three main 

factors affecting sperm quality namely broodstock nutrition, sperm collection 

frequency and broodstock biological characteristics. On the biological 

characteristics of broodstock and its relation to sperm quality, special attention will 
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be given to male aging, social behavior and heritage in terms of genetic and 

epigenetic inheritance, and maternal contribution.  

Nutrition is an essential factor to optimize broodstock fitness, gamete quality 

and reproductive ability. Therefore, the optimization of fish nutrition can improve 

fertilization rates and larval development (Izquierdo et al., 2001). The maintenance 

of fish body homeostasis is determined by the interaction of nutrition, metabolism, 

gene expression, and epigenetic changes. Altogether, these factors modulate 

intracellular signaling pathways, thereby producing different physiological 

responses (Elsamanoudy et al., 2016). Consequently, a possible biological mechanism of nutritional ǮǮimprintingǯǯ able to modulate gene expression and 

epigenetic patterns that could be inherited by the offspring has been proposed 

(Elsamanoudy et al., 2016; Lucas, 1998; Rocha et al., 2014; Symonds et al., 2009; 

Waterland and Jirtle, 2004). Therefore, the understanding of zebrafish nutritional 

requirements and the development of standardized diets for this species is essential 

to reduce experimental variability and to obtain high-quality sperm and offspring. 

In zebrafish, extruded diets with controlled nutritional composition show improved 

larval quality and growth performance when compared to flaked diets (Siccardi et 

al., 2009). Early weaning with microdiets significantly improves zebrafish growth 

and reproductive performance, decreasing the incidence of vertebral anomalies on 

the offspring when compared to fish fed exclusively with Artemia nauplii (Martins 

et al., 2018). Moreover, the nutritional composition in fatty acids (such as 

docosapentaenoic acid (DHA) and eicosapentaenoic acid (EPA)) are known to 

improve health and reproduction in teleosts such as European sea bass and rainbow 

trout (Sorbera et al., 2001; Asturiano et al., 2001). Although freshwater and marine 

species are known to have different fatty acids requirements since marine species 

are not able to synthesize de novo phospholipids (Tocher et al., 2008), the dietary 

supply of fatty acids is beneficial in both cases, because they incorporate into the 

plasma membranes.  This is especially important in spermatozoa membranes where 

PC and PE count for 50% and 40%, respectively, of total phospholipid content 

(Martínez-Páramo et al., 2012a). These findings suggest a relevant role of zebrafish 

broodstock nutrition on gametes quality and offspring health. Although the 

nutritional requirements of zebrafish are poorly understood, studies point to the 

fact that this species, as other teleost species, can improve its reproductive 
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performance through dietary supplementation with fatty acids (Meinelt et al., 1999; 

Nowosad et al., 2017). 

In teleosts it is commonly accepted that inappropriate sperm collection 

frequency affects sperm quality, however, few studies investigated this subject 

(Büyükhatipoglu and Holtz, 1984; Hochman et al., 1974; Suquet et al., 1992a). 

Considering that each species has different types and duration of spermatogenesis 

cycles, as well as different stress susceptibilities, the adequate sperm collection 

frequency is species specific and should be optimized. The premature collection of 

spermatocytes or spermatids, as well as aging spermatozoa, results in low-quality 

samples. In fact, a negative effect of stripping frequency has been reported on the 

duration and intensity of sperm movement in rainbow trout  (Büyükhatipoglu and 

Holtz, 1984), but not in turbot or Senegalese sole (Beirão et al., 2015a; Suquet et al., 

1992b), where sperm could be collected monthly or fortnightly, respectively (Beirão 

et al., 2019). Therefore, it is important to respect spermatogenic cycles for each 

species to obtain high-quality samples, thus avoiding the biases associated with 

inappropriate sperm collection frequency. 

Male aging affects sperm production and quality (Amaral et al., 2008; 

Ramalho-Santos, 2009) being associated with decreased sperm volume, motility 

and proportion of morphologically normal spermatozoa (Kidd et al., 2017)). Sperm 

quality is expected to decline with age due to the accumulation of de novo mutations 

in the germline cells (Kidd et al., 2017). If there are deleterious mutations in sperm 

mediated by paternal aging, lower sperm quality and fertilization success are 

expected. Therefore in a competition context young males are predicted to be 

favored over old males (Pizzari et al., 2008). The accumulation of mutations in 

germline cells is more problematic in male germ cells since they undergo a higher 

number of divisions to generate a spermatozoon when compared to the egg (Baker 

and Aitken, 2005; Herráez et al., 2017). Therefore, male age has a preponderant 

contribution to germ line mutations (Crow, 2000). Although spermatozoa produce 

reactive oxygen species (ROS), excessive exposure can lead to sperm genetic 

integrity damage, therefore reducing the fertilization ability (Baker and Aitken, 

2005; Wang et al., 2015) and contributing to genomic alterations that can impact 

negatively the offspring. Spermatozoa DNA damage is mainly oxidative and is 
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associated with negative outcomes such as impaired conception rates, increased 

abortion incidence and offspring defects (Herráez et al., 2017). The detrimental 

effects of paternal genotoxicity in the offspring are caused by aberrant repair of 

oxidative DNA damage in the newly fertilized zygote (Baker and Aitken, 2005; 

Fernández-Díez et al., 2015; Fernández-Díez et al., 2018; González-Rojo et al., 2018). 

In the past, spermatozoa were considered mainly carriers of the genomic 

information necessary to form the zygote, therefore husbandry methodological 

improvements were focused on oocyte quality improvement. It is now accepted that 

spermatozoa have a deeper role in embryogenesis (Herráez et al., 2017). Beyond the 

genomic information provided by spermatozoa to the zygote, there are non-genomic 

processes that will take part in embryo development. Some of the most  relevant 

spermatogenesis events with a specific role on embryo development are: 1) 

chromatin processing, 2) chromatin packaging, 3) reorganization of the contacts 

between DNA and nuclear matrix, 4) remodeling of the epigenetic pattern, 5) 

cessation of transcription and 6) presence of a set of remaining RNAs in the 

cytoplasm of mature sperm (Herráez et al., 2017). Zebrafish genes are packaged in 

blocks of structurally diversified chromatin and their cytoplasmatic RNA profile 

correlate with reproductive success (Wu et al., 2011). Additionally, spermatozoa 

epigenetic marks limit the timing of gene expression, as also observed in 

mammalian sperm (Wu et al., 2011). It is still to be understood if there is parental 

epigenetic imprinting in teleosts (Labbé et al., 2017), although there are zebrafish 

studies pointing in that direction (Martin and McGowan, 1995).  

The maternal genes present in spermatozoa (mtDNA) can influence sperm 

quality and therefore fertilization success (Cabrita et al., 2011a; Evans and Simmons, 

2007; Zeh and Zeh, 2005). Mitochondria regulate sperm motility since they control 

oxygen consumption, which is necessary for spermatozoa normal metabolism 

(Amaral et al., 2008; Ramalho-Santos, 2009). Although these studies are scarce in 

teleosts, in Gallus gallus domesticus, the selection of ǲgoodǳ and ǲbadǳ breeders, 
according to the sperm motility profile (regulated by mtDNA in this species), 

showed divergent mitochondria function (Froman and Kirby, 2005).  

Social behavior dynamics and the hierarchical structure of a population is 

known to impact reproductive features in many species (Fox et al., 1997; Parker and 
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Pizzari, 2010). Personality traits, such as boldness and aggressiveness, are often 

related to reproductive success and offspring survival (Vargas et al., 2018). 

Dominant individuals generally have bolder behavior and the dominance is 

established to control critical resources such as food, shelter and reproduction 

(Sloman and Armstrong, 2002). In several species, including zebrafish, proactive 

individuals with bold behavior show greater reproductive success and growth rates 

than reactive individuals (Ariyomo and Watt, 2012; Larson et al., 2006; Paull et al., 

2010; Vargas et al., 2018).  

Zebrafish are social animals that form shoals and dominance hierarchies in 

both sexes (Paull et al., 2010). Interestingly, zebrafish males change sperm quality 

investment according to their social status and breeding population density (Larson 

et al., 2006; Spence et al., 2006). Moreover, there are evidences of sperm 

competition in this species (Zajitschek et al., 2014), in the form of a postcopulatory 

selection that occurs when females breed with multiple males in a single 

reproductive episode (Parker, 1970). Mating with some degree of sexual selection 

and sperm competition can influence the metabolic investment in sperm production 

and quality (Parker and Pizzari, 2010). 
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Figure 1.1 Factors affecting zebrafish sperm quality. Schematic representation the two main factors 
affecting sperm quality: A) the husbandry conditions affecting sperm quality during spermatogenesis 
and B) external environment conditions into which spermatozoa are released and schematic 
representation of zebrafish spermatozoon. The zebrafish testis with cystic spermatogenesis is 
represented according to the description of (Schulz et al., 2010) namely: (I) Type A undifferentiated 
spermatogonia germ cell (II) type A undifferentiated spermatogonia, (III) type A differentiated 
spermatogonia, (IV) spermatogonia type B, (V) leptotenic/zygotenic primary spermatocytes, (VI) 
pachytenic primary spermatocytes, (VII) diplotenic spermatocytes/metaphase I, (VIII) secondary 
spermatocytes/metaphase II, (IX) early spermatid, (X) intermediate spermatid, (XI) final spermatids 
and (XII) spermatozoa.   

 

1.2.2. Sperm motility activation and metabolism 

Spermatozoa from teleost fish are flagellated single cells adapted to external 

fertilization, that undergo a period of spermatogenesis. In the testis, sperm is in a 

safe environment surrounded by seminal plasma, Sertoli and Leydig cells that 

nourish them (Figure 1.1 I-IV). At this point, spermatozoa are under physical-

chemical conditions similar to the body environment (eg. osmolarity 300 
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mOsm/Kg) (Billard, 1986; Schulz and Miura, 2002; Schulz et al., 2010). In these 

conditions, spermatozoa are immotile in the testis and only acquire motility when 

in contact with the hazardous external medium (Cabrita et al., 2014; Cosson et al., 

2008b; Gallego and Asturiano, 2018).  

The triggering of sperm motility occurs through an osmotic differential. In 

freshwater species, sperm motility is activated when in contact with the hypotonic 

environmental medium. Kraznai et al., (2000) proposed for carp (Cyprinus carpio) a 

sperm cell signaling cascade that promotes sperm motility activation. He suggested 

that the hypoosmotic shock causes the opening of K+ channels due to the low ionic 

concentration of the environment, promoting an influx of K+ from the cell that 

hyperpolarizes the plasma membrane. This mechanism would be followed by 

plasma membrane depolarization, and as a consequence, an influx of Ca2+ ions into 

the cell promotes flagellar beating. Once the movement starts, teleost spermatozoa 

have only a few seconds or minutes (depending on the species) to reach the oocytes 

and penetrate the micropyle before it closes up or spermatozoa ceases its movement 

(exhausting their reduced ATP reserves) (Rurangwa et al., 2004). Immediately after 

motility activation, spermatozoa from teleost species reveal the highest ATP content 

and motility efficiency, declining progressively through their lifespan. Interestingly, 

the expenditure of ATP and sperm motility parameters can be modulated by the 

characteristics of the motility activation medium (Cosson et al., 2008a). The 

environmental factors affecting sperm motility are water temperature, osmolarity, 

pH and specific ions on the medium. The biological factors affecting sperm motility 

are the presence of ovarian fluid and chemoattractant properties of the eggs 

(particularly on the micropyle) (Figure 1.1 B) (Beirão et al., 2015b, 2019; Butts et 

al., 2017; Diogo et al., 2010; Lahnsteiner, 2002).  

Water temperature affects the beating frequency of spermatozoa flagella and 

the physiological response is related to the adaptation of each species to the natural 

environment conditions (Alavi and Cosson, 2005). In general, higher temperature 

increases the initial motility and, as a consequence of this energetic expenditure, an 

earlier motility cessation occurs. On the other hand, lower temperature generally 

results in a prolongation of spermatozoa lifespan with reduction of velocity and 

flagellar beating frequency (Dadras et al., 2017).  
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Water temperature also affects spermatozoa biochemical composition and 

motility characteristics (Ishijima, 2012) since it influences ions availability in 

cellular compartments, enzyme activity and metabolic pathways (Dadras et al., 

2017) as well as dynein motors of the flagellum (Cosson et al., 2008a,b). 

Water pH is considered to have a low impact on sperm motility (Cosson, 

2004). However, in rainbow trout (Oncorhynchus mykiss) (Gatti et al., 1990), 

Senegalense sole (Solea senegalensis) (Diogo, 2011), and burbot (Lota lota) (Bokor 

et al., 2018) the external pH has an effect on motility characteristics. In the 

fertilization microenvironment, sperm and oocytes are released into the 

environment along with ovarian fluid. The presence of ovarian fluid in the solution 

is known to improve sperm motility parameters in several species such as longevity 

(Dietrich et al., 2007; Lahnsteiner et al., 1995; Wojtczak et al., 2007), speed, 

trajectory and motility pattern (Beirão et al., 2015b; Butts et al., 2017; Diogo et al., 

2010). The mechanism through which ovarian fluid may affect sperm motility is still 

unknown, although several factors have been proposed as beneficial, such as 

favorable osmotic environment (Ingermann et al., 2008) or the presence of 

nutrients, hormones and metabolites that spermatozoa are able to metabolize 

(Lahnsteiner et al., 1996). Moreover, the egg micropyle contains chemoattractants 

that guide spermatozoa through chemotaxis. Chemotaxis is the process of 

modulation of the direction of motile cells movement in response to a gradient 

stimulus. This motility alteration results in the approach to the chemoattractant or 

retreat from a repellent. Teleosts sperm chemotaxis is still poorly studied, 

nevertheless, these facts imply an important female role during the fertilization 

process and in the modulation of sperm motility (Yanagimachi et al., 1992; 2017). 

Spermatozoa from most teleost species have few mitochondria as well as ATP 

reserves stored prior to the onset of motility (Christen et al., 1987; Lahnsteiner et 

al., 1993; Perchec et al., 1995). In addition, in these species, the period of motility is 

very short, around 60 s (Cabrita et al., 2014; Cosson et al., 2008b; Lahnsteiner et al., 

1999). In fact, motility duration is not only related to the low ATP content and low 

capacity to de novo generate ATP, but also to the deleterious effect of the 

hypoosmotic shock on sperm structure and function (Christen et al., 1987).  
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Despite the fact that zebrafish is extensively used for research purposes, the 

sperm motility activation mechanism and metabolism is still poorly understood. In 

zebrafish, the osmolarity for complete motility inhibition (≥ 300 mOsm/Kg) is 

similar to blood plasma (315 mOsm/Kg) as in most teleosts (Jing et al., 2009a). 

Tsakai and Morisawa (1995) showed that a decrease in intracellular K+ is associated 

to the onset of zebrafish sperm motility, which is in agreement with the model 

previously described by Kraznai et al. (2000). Ingermann et al. (Ingermann et al., 

2011) showed that at the beginning of motility activation, zebrafish sperm relies on 

stored ATP, but prolonged motility relies on oxidative phosphorylation. The 

energetic acquisition through oxidative phosphorylation was associated not only 

with sample total motility (TM), but also to spermatozoa straightness and wobble. 

Consequently, ATP generation and availability affects not only the number of motile 

cells but also their trajectory patterns, therefore suggesting that inadequate ATP 

delivery to flagellar dynein ATPase result in changes in motility characteristics 

(Ingermann et al., 2011) as observed in other cyprinids (Alavi and Cosson, 2006). 

Osmolarity is one of the major factors contributing to sperm motility 

activation (Morisawa et al., 1983). In addition, the osmolarity of the activation 

medium influences the number of waves and curvatures of the flagellum (Alavi et 

al., 2009; Cosson et al., 2008b). In zebrafish, ion-free solutions containing only 

sugars show the same motility triggering pattern as HBSS, suggesting that 

osmolarity is the most important factor controlling this species motility initiation 

(Jing et al., 2009a). Nevertheless, it is possible that after the initial osmolarity 

stimulus, K+ efflux may contribute to the process of sperm motility (Takai and 

Morisawa, 1995).  

Environmental conditions have profound impacts on sperm motility 

initiation and metabolism, which means that the variability of procedures between 

zebrafish facilities becomes an important source of biases both in quality analysis 

and in in vitro fertilization success. Therefore, it is clear that optimal and 

standardized sperm motility activation conditions should be established. 
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1.2.3. Sperm quality evaluation 

Sperm quality is defined as the spermatozoa ability to successfully fertilize 

the oocyte and subsequently progressing to embryo development (Migaud et al., 

2013). In the reproductive context, sperm quality evaluation is important to 

evaluate male status, to perform sperm sample selection for assisted reproduction 

purposes and for broodstock selection. Most of the sperm quality analyses used are 

related to the sperm ability to reach the oocyte instead of the analysis of normal 

embryo development (Herráez et al., 2017). What makes sperm quality particularly 

useful for the previously mentioned purposes is not only its correlation with 

fertility, but more importantly, the reason behind that correlation.  

Spermatogenesis is a highly regulated process where the final spermatozoa 

depend on the conditions to which cells were exposed during spermatogenesis, such 

as nutrition, stress or toxic exposure (Figure 1.2). Spermatogenesis specific genes 

may function during the mitotic and spermatogenic phases in the adult fish (Schulz 

et al., 2010). The configuration of zebrafish spermatozoa is similar to aquasperm of 

external fertilizing teleosts (Mattei, 1991), however, it shows similarities to the 

spermatozoa of other cyprinids (with some inter-specific differences between 

them) (Zhang et al., 2014). Zebrafish spermatozoa have an asymmetric shape due to 

the lateral location of the nuclear fossa, and because of this feature the head is 

lopsided and the flagellum inserted eccentrically (Figure 1.2 B, Figure 1.2 A and B). 

A sperm sample is a heterogeneous mixture of cells originated from different 

spermatogonia, where each spermatogonium produces haploid cells with different 

genotype and characteristics (Cabrita et al., 2011a). Additionally, fish spermatozoa 

display highly variable chromatin organization, which is responsible for the 

protection of the DNA they carry.  

Sperm quality analysis can be performed on its constituents, namely seminal 

plasma and spermatozoa. Seminal plasma can be evaluated according to its 

enzymes, metabolites, sugars, vitamins, amino acids, lipids, fatty acids, glucose, 

lactate and other inorganic compounds (Cabrita et al., 2011a). Spermatozoa status 

can be evaluated by several parameters such as spermatozoa morphology, plasma 

membrane viability and resistance (functionality, composition and resistance to 

osmotic shock) (Figure 1.2 F), mitochondria viability and functionality, spermatozoa 
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motility (Figure 1.2 C and D), spermatozoa metabolism (ATP consumption), DNA 

integrity (Figure 1.2 E) and fertilization ability (Figure 1.2 G and H) (Cabrita et al., 

2009). Additionally, other useful sperm quality markers have emerged in the past 

decade such as quantification of reactive oxygen species (ROS), total antioxidant 

status, lipid peroxidation, mitochondrial dysfunction and protein oxidation, 

transcript markers of sperm quality, proteome analysis (Cabrita et al., 2014; 

Dietrich et al., 2019; Figueroa et al., 2017; Martínez-Páramo et al., 2017) and 

epigenetic markers (Labbé et al., 2017). Moreover, the evaluation of fertility and 

progeny quality are highly relevant (Figure 1.2 I and J), since it demonstrates not 

only spermatozoa fertilizing ability but also its capacity to generate healthy 

offspring. However, fertility and progeny analysis are evaluated less frequently than 

the previously mentioned sperm quality predictors. In fact, the importance of 

paternal contribution in the progeny development is one of the most challenging 

topics in reproduction at the present moment (Herráez et al., 2017; Labbé et al., 

2017). Nevertheless, sperm motility is the most used sperm quality predictor. The 

use of computed assisted sperm analysis (CASA) systems allowed the thorough 

quantification and qualification of spermatozoa motility (Cabrita et al., 2009; Fauvel 

et al., 2010; Kime et al., 2001). The characterization of sperm quality has become a 

useful tool not only for sperm sample selection but also for broodstock selection and 

management, sperm cryopreservation and assisted reproduction techniques 

(Gallego and Asturiano, 2018). Although many sperm quality methods have been 

developed, there are no universal biomarkers to characterize a sperm sample 

quality and therefore, it is recognised that several methods should be employed for 

an accurate evaluation of spermatozoa status. 



21 
 

 

Figure 1.2 Zebrafish sperm quality evaluation. A) zebrafish spermatozoa, B) spermatozoon tail, 
midpiece and head, C) CASA system and programable biofreezer for cryopreservation, D) sperm 
motility analysis through CASA system, E) DNA fragmentation analysis through comet assay, F) 
plasma membrane viability through PI (red cells) and SYBR green (green cells) labelling, G) 
fertilization rate analysis at 3 hpf, H) embryo survival analysis 48 hpf, I) Hatching rate evaluation at 
78 hpf and I) skeletal malformation analysis of the offspring though alcian blue and alizarin S staining. 
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1.3. Fundamentals of sperm cryopreservation 

Cryopreservation is the use of very low temperatures to preserve 

structurally intact living cells and tissues (Pegg, 2007). Most cryopreservation 

applications are related to the ability to stop the biological clock at very low 

temperatures (Benson et al., 2013; Mazur, 1984). However, the cell must be able to 

survive the extreme environmental shifts that cryopreservation produces (Mazur, 

1984). Cryobiology is a multidisciplinary science that studies the biological and 

physical behavior of cells and tissues at low temperatures (Gao and Critser, 2000). 

Cabrita et al., (2010) summarized the benefits of cryopreservation in teleost species 

as follows: 1) synchronization of gametes availability of both sexes, 2) sperm 

economy, 3) simplification of broodstock management, 4) simpler transport of 

gametes, 5) simplification of broodstock management and 6) germplasm storage for 

genetic selection programs or species conservation.  

One of the most important theoreticians of cryopreservation was James 

Lovelock. He suggested that osmotic stress was the main factor contributing to 

blood cells damage during freezing. Spermatozoa were the first mammalian cells to 

be successfully cryopreserved (Polge et al., 1949; Walters et al., 2009). The cellular 

biophysics response during freezing is essential to the development of successful 

cryopreservation protocols. The cryopreservation methodology is specific for each 

species cell type, depending on cell properties such as morphometry, density, 

organelles, compartmentalization of the cell, plasma membrane structure and 

components (Mazur, 1963; Mazur, 1984). Because of these biophysical 

characteristics, the water permeability of a type of cell is species specific and 

therefore the cell requires different cryopreservation methodological 

improvements, such as different cryoprotectants and cooling/thawing rates (Mazur, 

1984; 2008). Gao and Cristser (Gao and Critser, 2000) considered as 

cryopreservation key points the addition of cryoprotective agents to cells/tissues 

before cooling, the cooling rate towards the temperature at which the biological 

material will be stored and the warming of the biological material. Sperm is a 

particularly challenging cell type to cryopreserve under optimal conditions due to 

its small size and non-spherical shape (Hagiwara et al., 2009). 
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As mentioned previously, attempts in cryopreservation of teleosts oocyte 

and embryo failed (Asturiano et al., 2017). Two types of male germ cells are possible 

to cryopreserve in zebrafish, specifically the spermatogonia and mature 

spermatozoa ȋHarvey et al., ͳͻͺʹa; Marinović et al., ʹͲͳͺa 2018b; Matthews et al., 

2018; Wang et al., 2015). The development of new technological methodologies of 

spermatogonia cryopreservation constitutes a great advance in research (Asturiano 

et al., 2017). After thawing the cells, they are transplanted onto a surrogate host that 

will spawn part of the progeny with the desired genotype and, if a triploid surrogate 

parent can be used all the offspring will carry the desired genotype (Yoshizaki and 

Lee, 2018; Yoshizaki et al., 2016). This technique is particularly useful for complex 

double mutant lines such as casper. Nowadays these technologies are being 

successfully developed in zebrafish ȋFraněk et al., ʹͲͳͻ; Marinović et al., ʹͲͳͺa, 

2018b). The main disadvantage is that it requires an experienced practitioner, 

particularly for cell transplantation and therefore is mainly used experimentally. 

Alternatively, zebrafish sperm cryopreservation is easier and has therefore, higher 

practical applicability in bioterios worldwide.  

In research the reporter zebrafish lines are generally heterozygotic, however 

mutant lines frequently require homozygoty to express the desired phenotype. The 

in vitro fertilization must be performed with freshly collected oocytes. 

Consequently, if homozygous or heterozygous females of the same zebrafish line are 

available in the facility, an in vitro fertilization can be performed with cryopreserved 

sperm to obtain heterozygous and homozygous offspring, according to Mendelian 

principles of inheritance. In this scenario, freshly collected oocytes from wild-type 

females can be used to perform in vitro fertilization with the cryopreserved sperm 

from the target zebrafish line. This method allows to obtain heterozygous offspring 

in a Mendelian proportion. 

The ultimate objective of a cryopreservation methodology is to obtain an 

integrated approach that promotes an adequate balance of the bio-physical events 

during cryopreservation, protecting successfully the cell throughout the 

cryopreservation process. Therefore, this methodology should ensure spermatozoa 

structural and genomic integrity as well as its fertilization competence and offspring 

health. 
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1.3.1. Cryoprotectants 

The first successful sperm cryopreservation methodology proposed by 

(Polge et al., 1949) was possible due to the discovery of glycerol cryoprotectant 

properties. Cryoprotectants are substances that allow the protection of cells and 

tissues from freezing damage (Elliott et al., 2017). There are several bacteria, fungi, 

plants, fish, insects and amphibians able to produce natural cryoprotectant 

compounds such as antifreeze proteins, and sugars (e.g. sucrose, trehalose and 

raffinose) which can be employed in the extender composition (Elliott et al., 2017). 

Both compounds allow them to endure very low temperatures. Antifreeze 

polypeptides bind to small ice crystals and inhibit their growth and recrystallization, 

avoiding cellular disruption (Elliott et al., 2017; Robles et al., 2019). These natural 

proteins are used in cryopreservation protocols in several species (Beirão et al., 

2012; Martínez-Páramo et al., 2008) and are considered a cryoprotectant class by 

itself. Additionally, improvements were achieved in post-thaw sperm quality by 

supplementing the extender composition with sugars such as glucose in salmonids 

(Judycka et al., 2018) and with amino acids such as taurine in European sea bass 

(Dicentrarchus labrax) (Cabrita et al., 2011b). 

Cryoprotectants are classified as permeating or non-permeating according to 

their ability to permeate the cell membrane. Permeating cryoprotectants are 

substances with high molecular weight and viscosity that are able to permeate the 

plasma membrane and substitute intracellular water though osmotic differential 

(Elliott et al., 2017; Mazur, 1984; Morris et al., 2006). Consequently, the intracellular 

solute concentration increases (through the cryoprotectant cellular inclusion) 

avoiding the formation of intracellular ice crystals, which are lethal to the cell (Pegg, 

2007). The cryoprotectant concentration must be enough to permeate all cellular 

compartments. However, most of the compounds used are toxic to the cells in high 

concentrations (Elliott et al., 2017). Therefore, a compromise must be achieved 

between cryoprotectant toxicity and effective cellular permeability. A compilation of cryoprotectants named Karows ǲlist of ͷ͸ǳ (Karow, 1969), was reduced by 

Ashwood-Smith (Ashwood-Smith, 1987) to 20 of the most successful 

cryoprotectants, which was updated by Elliot et al. (Elliott et al., 2017).  
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Non-permeating cryoprotectants do not permeate the cell plasma membrane 

(or permeate it at very low rates) and are non-toxic with very few exceptions (Elliott 

et al., 2017). These compounds are added to the extender medium and improve cell 

protection on the outer surface of the cell plasma membrane. The mixture of both 

permeating and non-permeating agents in extenders is often successful (Cabrita et 

al., 2001, 2011b; Martínez-Páramo et al., 2012a, 2013), however the mode of action 

of most non-permeating agents is unclear (Elliott et al., 2017). One interesting 

feature of non-permeating cryoprotectants is the fact that they can allow to decrease 

the concentration of permeating cryoprotectant in the extender composition, and 

therefore its toxicity (Elliott et al., 2017). Additionally, their presence can reduce the 

formation of ice crystals on the cell surroundings, decreasing its susceptibility to 

extracellular ice formation, cell disruption and cold damage (Cabrita et al., 2001). In 

optimized human sperm cryopreservation, the presence of egg yolk is able to form 

an electron dense freeze-concentrated matrix which substituted ice crystals. The 

matrix which surrounds the frozen spermatozoa showed a normal shape in relation 

to fresh sperm (Morris et al., 1999). Considering that the sperm of each species has 

specific cellular and biophysical properties, the cryoprotectants selection 

concentration and combinations that accommodate the cell requirements are 

extremely relevant for the success of a cryopreservation protocol. To predict 

accurately the thermodynamic effects on post-thaw cell quality is one of the most 

challenging objectives in cryobiology and currently new methods, such as machine 

learning techniques, are being applied is this area (Cheng et al., 2019). 

 

1.3.2. Cooling and thawing rate 

There are two main methods to successfully refrigerate cells and tissues after 

exposure to cryoprotectants, namely cryopreservation and vitrification. 

Conventional cryopreservation is considered a slow freezing method, in opposition 

to vitrification, which is a fast-freezing method. Through the vitrification process, 

the formation of ice is prevented by producing a glassy state where viscosity reaches 

such high levels that water behaves like a solid without crystallizing. Vitrification is 

often performed by plunging the vial directly into liquid nitrogen and requires high 

concentrations of cryoprotectants. Although it is very useful to avoid ice formation, 
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the toxic effect of the permeating cryoprotectant is often a handicap in this protocol 

(Pegg, 2007). Mazur et al. (Mazur, 1984) described thoroughly the biophysics during 

the cryopreservation process. The temperature decreases until -5°C, where both 

cells and its surroundings are unfrozen due to supercooling and the depression of 

the freezing point by the protective extender solutes. At approximately -15°C, ice is 

formed in the extracellular medium (spontaneously or by seeding/artificial 

nucleation method). At this point cell contents are supercooled and unfrozen, and 

the intracellular supercooled water has higher chemical potential than the external 

medium. Because of this difference in chemical potential, the water flows out of the 

cell and freezes externally. After this point, all biophysical events depend on the 

cooling rate. If cells are cooled too fast, they are not able to lose water fast enough 

to maintain equilibrium, becoming increasingly supercooled and eventually 

acquiring equilibrium by freezing intracellular space. If the cooling rate is adequate, 

the cthe ells lose water rapidly enough to concentrate the intracellular solutes 

sufficiently to eliminate supercooling. Consequently, cells lose their intracellular 

water through osmotic gradient, and crystallthe ization does not occur inside the 

cell. If the cells are cooled too slowly, there will be severe cell shrinkage and long-

term exposure to high solutes concentration before eutectic temperature is reached 

(Mazur, 1984). The optimal cooling rate is dependent not only on the cell type but 

also on the extender composition and volume of the packaging used. Therefore, for 

each methodological modification, the optimal cooling rate should be investigated 

and adjusted to improve post-thaw results. 

The thawing temperature is the last step of the cryopreservation process and 

it is specific for each protocol since the extender composition and the cooling rate 

to which cells were exposed will affect the final outcome. The thawing rate is 

typically very fast to avoid ice recrystallization. In zebrafish, several thawing 

temperatures were proposed ranging from 36°C to 40°C in a water bath. However, 

considering that all methodologies reported are highly different, this information is 

not useful and for each protocol, an optimization of the thawing temperature should 

be performed.  
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1.4. Zebrafish sperm cryopreservation 

An effective method to perform zebrafish sperm cryopreservation has been 

one of the most important and difficult objectives to achieve in the past years by the 

zebrafish scientific community. Zebrafish sperm cryopreservation methodologies 

lack standardization, and therefore there is high variability in post-thaw sperm 

quality and in vitro fertilization success. The sources of variability reported in 

literature are not only related to key factors affecting cryopreservation success, but 

also to zebrafish management features such as nutrition and dietary protocols, 

sperm collection method, sperm quality analysis method, in vitro fertilization 

procedures (Martins et al., 2018; Paull et al., 2008; Robles et al., 2009; Torres et al., 

2017; Varga et al., 2018).  

Since the development of the first zebrafish sperm cryopreservation protocol 

(Harvey et al., 1982b) more than 30 years ago, there have been many attempts to 

improve and standardize the methodology (Bai et al., 2013; Diogo et al., 2018; 

Draper and Moens, 2009; Hagedorn et al., 2009; Hagedorn et al., 2012; Harvey et al., 

1982b; Matthews et al., 2018; Morris et al., 2003; Wang et al., 2015; Yang et al., 2007; 

Yang et al., 2016) (Table 1.1). Several extenders and cryoprotectants have been 

tested in zebrafish sperm with similar results, but it has been difficult to identify the 

specific effects of cryoprotectants on cryopreservation success (Robles et al., 2009). 

When reviewing the literature, it is remarkably difficult to compare studies of 

zebrafish sperm cryopreservation, since all steps of the methodologies used vary 

considerably. This fact is more evident in studies where the application of different 

solutions and methods are used, without studying their individual effect on freezing 

success. Because of this, the beneficial or detrimental effect of the solution and 

cryopreservation steps are not evident, due to biases associated with the 

interactions between them. Therefore, a consistent strategy to develop protocols 

according to cryobiological principles is necessary.  

The first step in sperm cryopreservation protocols is the sperm collection, 

being an important source of variability among the cryopreservation protocol. 

There is a non-lethal technique to collect sperm by abdominal massage and a lethal 

method through testis dissection. Jing et al. (2009a) observed that sperm collection 

through abdominal massage yielded lower sperm volumes when compared to testis 
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dissection. Although testis dissection improves one of the major bottlenecks of 

sperm cryopreservation, which is the low sperm volumes yielded per male, it 

implies the sacrifice of the fish. Additionally, using this sperm collection method a 

heterogeneous mixture of cells in different maturation stages will be obtained, 

therefore declining the overall sperm quality of the sample. To sacrifice highly 

valuable transgenic and mutant fish is, in many cases, not a viable option.  

After sperm collection, the sample is immediately diluted in a solution with 

composition and osmolarity similar to seminal plasma, thus preventing motility 

activation and maintaining the normal cell functions. In zebrafish, several solutions were tested, such as Ginsburg Ringer solution and Hankǯs Balanced Salt Solution 

(HBSS) (Jing et al., 2009a). Previous studies considered HBSS the most suitable 

diluent for zebrafish sperm (Jing et al., 2009a). Since the development of the first 

zebrafish sperm cryopreservation protocol, a variety of extender media and 

permeating cryoprotectants were tested such as methanol, DMSO dimethyl 

sulfoxide (DMSO), N,N-dimethylformamide (DMF), dimethylacetamide (DMA) 

glycerol and ethylene glycol at concentrations ranging 4 to 20%. The use of non-

permeating cryoprotectants is potentially a powerful tool if used in a comprehensive 

form. 

One of the most relevant and practical applications of cryopreservation in 

zebrafish facilities is the germplasm conservation of valuable zebrafish mutant and 

transgenic strains. There are numerous situations where the facility manager has 

very few individuals of a valuable strain, as in the case of buying or receiving a few 

adults to establish a cohort (but requiring the proper safeguard of the germplasm) 

or in the case of a sudden pathological outbreak. 

 Since one zebrafish male produces only 0.8 to 3 µl of sperm, the packaging 

must meet this species sperm volume to be useful in the challenging situations 

mentioned above. Considering zebrafish average sperm volume per male, the use of 

French straws (250 or 500 µl) is a high investment since it requires high sperm 

volume to be used in a single in vitro fertilization. The first cryopreservation 

protocols used capillary tubes (Harvey et al., 1982b; Morris et al., 1999). There were 

several interesting approaches with French straws (Bai et al., 2013; Hagedorn et al., 

2012; Wang et al., 2015; Yang et al., 2016) (Table 1.1) which are useful for large 
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facilities and central repositories, however they are not useful for small facilities and 

challenging situations. Nevertheless, several protocols were proposed using 

cryovials (Diogo et al., 2018; Draper and Moens, 2009; Matthews et al., 2018) (Table 

1.1) for smaller sperm volumes and lower number of males. This is a useful 

packaging method with high applicability to zebrafish facilities. Therefore, the 

development of a successful cryopreservation protocol must meet both 

cryobiological principles as well as the practical and objective applications in 

zebrafish facilities.  

The cooling rate is one of the major factors affecting sperm cryopreservation 

as discussed previously. In zebrafish, both the dry ice method (Draper and Moens, 

2009; Harvey et al., 1982b; Morris et al., 2003) and controlled cooling through 

biofreezers (Table 1.1) have been performed. The cooling rates tested with 

programable biofreezers ranged from -5 to -35°C/min in one step (Hagedorn et al., 

2009; Matthews et al., 2018; Yang et al., 2007) or two-step protocols (Bai et al., 2013; 

Wang et al., 2015). Interestingly, throughout all the highly variable cooling rates and 

solutions used, the post-thaw sperm quality seemed similar with average sperm 

total motility values around 20%.  

One of the most relevant bottlenecks in germ cell cryopreservation is the 

necessity for liquid nitrogen. Liquid nitrogen is a refrigerator medium able to store 

samples at very low temperatures, and therefore traditionally used for 

cryopreservation purposes and germ cell storage. However, it is hazardous with a 

high evaporation rate, requires appropriate equipment and management and 

requires a continuous supply, which is one of the main costs of the methodology. 

Although tissues and bacteria can be stored without significant loss of cell viability 

at higher temperatures (-80°C), germ cells are more vulnerable and require 

temperatures below -153°C (Mazur, 1984). Nowadays, ultrafreezer storage systems 

refrigerated at -150°C are commonly found in research facilities dedicated to 

zebrafish research. Some attempts in mammalian sperm cryopreservation in 

ultrafreezers (Álamo et al., 2005; Batista et al., 2006, 2009; Medrano et al., 2002; Yavaş and Daskin, ʹͲͳʹȌ with encouraging results. Since this temperature is below 

the threshold necessary for germ cell storage stability it can be potentially an 

alternative storage method for zebrafish sperm.
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Table 1.1 Summary of sperm cryopreservation protocols in zebrafish and a brief description of the methodologies used in this species. 
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1.4.1. Zebrafish in vitro fertilization and offspring quality 

The final objective of sperm cryopreservation is to successfully fertilize the 

oocyte through in vitro fertilization, resulting in healthy offspring. Sperm 

cryopreservation and in vitro fertilization are assisted reproduction technologies 

used to accomplish the fusion between male and female gametes. For successful 

fertilization, sperm must have high-quality parameters, such as motility to reach the 

oocyte and DNA integrity to form a normal zygote. Other factors affecting the 

success of fertilization are the oocyte quality and the in vitro fertilization 

methodology.  

Egg quality is defined as its ability to be fertilized and subsequently develop 

into a normal embryo (Bobe and Labbé, 2010). Egg quality estimation for zebrafish 

in vitro fertilization purposes is a relevant source of biases since it is estimated by 

its appearance and color (good quality, hyaline and yellow), lacking a reliable 

quantification. The quantitative analyses of egg quality that can be performed, 

require considerable time expenditure (Yilmaz et al., 2017). Therefore, these 

analyses are not suitable for the selection of the samples for in vitro fertilization, 

which must be performed within a limited period of time, since after oocyte 

collection their fertilization ability decreases continuously (Poleo et al., 2001). 

There are reports on maximum fertilization ability during the first 20 minutes after 

oocyte collection, using HBSS with BSA or Aquaboost overcoat (Cryogenetics, USA) 

(Poleo et al., 2001; Sakai et al., 1997). Moreover, detailed descriptions of zebrafish 

oocyte activation, fertilization, and early developmental phases show a narrow time 

window of 1 minute after oocyte activation to perform fertilization. In this species, 

the micropyle becomes blocked 60 s post-activation (Wolenski and Hart, 1987).  

Female zebrafish oogenesis requires 10 days to complete the cellular division 

and differentiation (Clelland and Peng, 2009). An important source of low egg 

quality is the post-ovulatory aging, where the oocyte undergoes a decrease in its 

ability to be fertilized (due to morphological and biochemical alterations) and to 

further develop into a normal embryo. Post-ovulatory aging can induce a decrease 

in egg developmental capacities without visible changes in egg appearance (Bobe 

and Labbé, 2010). Overall, oocyte quality variations in zebrafish are a relevant 

source of biological variation and are difficult to overcome. Zebrafish eggs have 

many individual yolk globules connected to the membrane, homogeneously 
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distributed with ooplasm on the mature oocyte (Beams et al., 1985). When zebrafish 

oocytes come in contact with the spawning medium, they activate (Hart and Yu, 

1980).  

The description of zebrafish oocyte activation and fertilization was described 

in detail by several authors (Lee et al., 1999; Hart and Donovan, 1983; Hart and Yu, 

1980; Hart et al., 1992; Wolenski and Hart, 1987)(Figure 1.3). Egg activation begins 

with a rise in intracellular calcium levels, that propagates as a wave of free cytosolic 

calcium throughout the egg (Lee et al., 1999). The zebrafish spermatozoon is 

expected to attach to the micropyle within 5 s post activation (Wolenski and Hart, 

1987). The observation of asymmetric divisions in zebrafish embryos is, therefore, 

an important feature to record for a deeper understanding of the fertilized sample.  

Fertilization success is one of the earliest parameters used to accurately 

estimate egg quality, being also the most integrative estimator of sperm quality 

(Bobe and Labbé, 2010). In teleosts, oocytes generally have only one entry site called 

the micropyle (Hart and Yu, 1980). Sperm is attracted towards the egg micropyle 

through chemotaxis (Dzyuba et al., 2017; Ishimoto et al., 2016; Yanagimachi et al., 

2017). The chemoattractants present both in ovarian fluid (Beirão et al., 2015b; 

Diogo et al., 2010) and egg micropyle (Litvak and Trippel, 1998; Oda et al., 1998) 

guide sperm towards the micropyle.  

Adequate sperm-egg binding is a species-specific phenomenon. However, the 

molecular mechanism by which it occurs is still poorly understood. In zebrafish, the 

penetration of the spermatozoon into the oocyte cytoplasm is accompanied by the 

formation of a fertilization cone beneath the micropyle (Hart et al., 1992) similarly 

to Cyprinus carpio (Kudo, 1980) (Figure 1.3 I-IV). Zebrafish sperm incorporation by 

the oocyte and early post-fertilization events are well described (Hart and Yu, 1980; 

Wolenski and Hart, 1987). Soon after fertilization, there is an elevation of the 

chorion (Figure 1.3 I-IV). Forty-five seconds after the sperm-egg binding moment, 

the region of the egg surface surrounding the bound spermatozoon is swollen and 

slightly elevated (1.3 II). The fertilization cone (Figure 1.3 III) shortens 2 min after 

fertilization and becomes enlarged in a blister shape. The formation of the 

fertilization cone in zebrafish is independent of fertilization by the spermatozoon or 

binding to the micropyle (Wolenski and Hart, 1987). 



33 
 

The management of assisted reproductive techniques has relevant impacts 

on oocyte fertilization and embryo development (Ramos-Ibeas et al., 2019). 

Therefore, the understanding of the fertilization process in zebrafish is essential for 

the establishment of adequate in vitro fertilization methodologies in this species. 

Moreover, the correct identification of normal developmental steps in the embryo 

(Figure 1.4 A-O) is essential in the detection of abnormal divisions or embryo 

malformations. This knowledge is particularly valuable for accurate quality analysis 

of the offspring sired by cryopreserved sperm. 

In assisted reproduction techniques the fertilization success depends on the 

sperm to egg ratio (Butts et al., 2009). However, sperm concentration is often 

disregarded both in aquaculture hatcheries ȋŻarski et al., ʹ017) and zebrafish 

facilities (Torres and Tiersch, 2018). When using cryopreserved sperm, a 

percentage of spermatozoa die during freezing and thawing, thus the effective 

sperm population decreases (Cabrita et al., 2009). Therefore, it is often employed a 

high sperm-egg ratio to improve the probability of oocyte fertilization. Zebrafish 

ensures its monospermy with a morphological strategy in which the micropylar 

entry site is slightly larger than the spermatozoa spherical head (2.5–2.8 µm in 

diameter) (Hart and Donovan, 1983). This zebrafish feature is advantageous for its 

in vitro fertilization methodologies since negative events of polyspermy are 

prevented. 

Of the 12 published articles in zebrafish sperm cryopreservation protocols 

(Bai et al., 2013; Carmichael et al., 2009; Diogo et al., 2018; Draper et al., 2004; 

Hagedorn et al., 2012; Harvey et al., 1982b; Matthews et al., 2018; Morris et al., 2003; 

Silva et al., 2019; Wang et al., 2015; Yang et al., 2007; Yang et al., 2016) 8 perform in 

vitro fertilization (Diogo et al., 2018; Draper et al., 2004; Harvey et al., 1982b; 

Matthews et al., 2018; Morris et al., 2003; Silva et al., 2019; Wang et al., 2015; Yang 

et al., 2016), its success being measured through fertilization rates (Figure 1.4 A-D), 

and the hatching rates have been evaluated only in 4 of those reports (Diogo et al., 

2018; Harvey et al., 1982b; Silva et al., 2019; Wang et al., 2015). To compare those 

results is extremely challenging, considering that the methodologies of each step of 

cryopreservation vary greatly in features such as types of cryoprotectants used and 

their concentration, freezing rates (and methodologies to achieve them), type and 

volume of the packaging, and thawing rates (Table 1.1). Similarly, the in vitro 
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fertilization methodologies are markedly different in features such as a number of 

spermatozoa per egg, volume of water, activation medium, water temperature, 

oocyte collection method, etc. Additionally, there are relevant concerns in terms of 

the standardizations of the analytical methods, for example, the fertilization rate is 

measured in different times post-fertilization (and therefore embryo stages) 

ranging from 2-18 hpf. Altogether, these variables hinder the comparison between 

studies and pose challenges to the improvement of sperm cryopreservation 

methodologies in this species. 

The quality of offspring sired by cryopreserved sperm is still poorly 

investigated in teleosts since the fertilization rate is considered a valid evidence of 

the sperm fertilization ability and embryo viability. In fact, as stated previously only 

4 articles in zebrafish sperm cryopreservation report hatching rates and only Wang 

et al (2015) reported larvae survival at 5 dpf. However, this data is of the utmost 

importance considering that in zebrafish the paternal genotoxic damage results in 

lower survival of the embryos (Fernández-Díez et al., 2015). 

The tolerance of unrepaired sperm DNA is associated with an evolutionary 

mechanism in fish, enabling the introduction of new mutations potentially 

advantageous to environment changes (Fernández-Díez et al., 2018). However, from 

the point of view of assisted reproduction techniques, this characteristic means that 

we can be overlooking relevant factors. If cryopreservation promotes DNA injuries 

on sperm and the oocyte cannot repair this extend of damage, there can be relevant 

consequences on offspring health. A consequence of embryo survival inheriting 

genetic damage is its lower larval quality, which is observed through the occurrence 

of larvae malformations (Fernández-Díez et al., 2015). In teleosts, the evaluation of 

skeletal malformations is an established fish quality evaluation criteria, since it is 

related to the animal health and welfare conditions (Coutteau et al., 1997). Studies 

performed by Fernández-Díez et al., (2015) showed that zebrafish embryos sired 

with damaged sperm resulted in a high degree of malformations that affected 

processes such as skeleton morphogenesis, chondrogenesis, pigmentation and 

angiogenesis, as a result of an impairing or incorrect embryo organogenesis. The 

occurrence of embryonic or larval malformations is a valuable tool to fully 

characterize the developmental potential of fertilized eggs (Bobe and Labbé, 2010; 

Labbé et al., 2001, 2017). Therefore, the offspring health and quality analysis of 
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zebrafish sired by cryopreserved sperm is relevant, since this species is particularly 

permissive to paternal genotoxicity damage, such as injuries due to 

cryopreservation. The offspring quality can be a particularly useful tool for 

improving sperm cryopreservation methodologies since it allows a more accurate 

observation of the effects of the assisted reproduction methodologies employed. 

 

 

Figure 1.3 Zebrafish sperm-egg binding and fertilization. Schematic representation of zebrafish 
fertilization with I) sperm-egg binding, II) fertilization cone initial upward protrusion, III) 
fertilization cone formation and VI) disappearance of fertilization cone. 

 

 

Figure 1.4 Zebrafish embryogenesis. A) oocyte, B) oocyte activation, C) fertilization moment with 
fertilizing spermatozoon on the micropyle, D) perivitelline space and cortical granules exocytosis on 
early zygote, E) , F), G), H), I) eight cell embryo stage, J) blastula stage, K) gastrula stage, L) embryo 
somitogenesis stage, M) embryo prim-25 stage N) embryo high-pec stage, O) early hatched larvae. 
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1.5. Objectives 

Zebrafish have become undoubtedly one of the most important research 

model organisms in the past decade. Thousands of new mutant and transgenic 

strains were developed, posing problems in terms of facilities space and 

management. Therefore, the development of an efficient zebrafish sperm 

cryopreservation method is a pressing necessity to manage and preserve the 

exponentially growing number of zebrafish lines. Even though the first zebrafish 

sperm cryopreservation protocol was developed more than 30 years ago, there is a 

lack of standardization of the assisted reproductive methodologies, which results in 

high variability on post-thaw sperm quality and in vitro fertilization success. 

The main objective of this thesis was to establish guidelines to support the 

management and storage improvement of zebrafish genetic resources. Ultimately, 

this project proposes to establish, through a multidisciplinary approach, the 

improvement of zebrafish sperm cryopreservation methodologies and management 

tools that ensure offspring viability. The strategy used consisted on the 

establishment of broodstock and quality standards for the selection of high-quality 

sperm to be used in cryopreservation. Furthermore, it targets the improvement of 

protocols for the preservation of mutant and transgenic zebrafish lines through 

germplasm cryobanking. Therefore, the specific objectives of this thesis were to:  

1) Identify the specific constraints in zebrafish male donors affecting 

reproductive performance;  

2) Optimize the cryopreservation of zebrafish germ cells for the 

implementation of standardized procedures in zebrafish rearing facilities;  

3) Establish an analytical tool set for standardized quality assessment of 

cryopreserved material;  

4) Develop specific procedures for the cryopreservation of germ cells from 

laboratory animal models showing reproductive constrains.  

To accomplish the mentioned objectives three main tasks were established, 

namely: 1) Development of standardized methods for cryopreservation of zebrafish 

germ cells, 2) Development of an analytical tool set for improving sperm quality 
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assessment and 3) Application of methodologies to zebrafish lines. Considering 

these specific tasks, the improvement of the current knowledge about the optimum 

broodstock and germplasm characteristics in zebrafish were addressed. The 

characterization of zebrafish fresh and cryopreserved sperm and the establishment 

of a standard analytical tool set for zebrafish sperm analysis were essential to 

accomplish the objectives of this work. Moreover, the improvement and 

standardization of the current zebrafish cryopreservation technologies through 

cryobiological principles was one of the main concerns. Ultimately, this thesis aimed 

to improve the understanding of sperm quality from different zebrafish lines and to 

establish a feasible and practical protocol that ensures the adequate genetic 

inheritance of the progeny. 

 

 

 

 

 

 

 

 

 

 



39 
 

 

 

 

 

 

 

CHAPTER 2. SPERM MOTILITY ACTIVATION 
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PREAMBLE 

 

This thesis project is rooted in the standardization of zebrafish sperm quality 

analysis and cryopreservation in order to reduce the variability of assisted 

reproduction techniques intra and inter-facilities. For this purpose, the 

establishment of a quality tools set was proposed in the present project. Sperm 

motility is the most used quality assessment techniques due to its relation to cell 

fertilization ability.  

The use of CASA automated systems allowed an accurate quantification and 

qualification of sperm motility. Teleosts spermatozoa acquire motility through a 

difference in the osmolarity of the medium and the physicochemical properties of 

these medium modulate sperm motility and metabolism. Surprisingly, zebrafish 

sperm motility activation studies activate motility with distilled water and without 

temperature control. Therefore, the current method for sperm quality analysis in 

zebrafish can be a relevant source of biases in research. Consequently, it was highly 

pertinent to investigate the effect of water temperature and conductivity on 

zebrafish sperm motility and in vitro fertilization success.  

This study contributed to the technical improvement of zebrafish sperm 

quality analysis and in vitro fertilization protocols avoiding overestimation of 

spermatozoa fertilizing ability. This chapter represents a manuscript to be 

submitted to Journal of Experimental Biology first authored by Patricia Diogo. 
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2.1.1. Abstract 

Sperm motility is essential to accomplish fertilization and is an established 

tool to estimate sperm fertilizing ability. When spermatozoa are released to the 

environment, temperature and osmolarity modulate motility activation and 

metabolism. In zebrafish recirculation systems, water temperature and conductivity 

are stable and natural reproduction occurs under these conditions. However, sperm 

motility analysis is commonly performed at room temperature with distilled water. 

Across zebrafish facilities, there are highly variable water conductivities and 

consequently different osmolarities. Therefore, this study aimed to assess the effect 

of water temperature and conductivity on zebrafish sperm motility of wild type AB 

line and mitfaw2/w2;roya9/a9 line (casper). Water at 28°C improved motility and high 

conductivity reduced sperm total and progressive movement in AB males. In casper, 

water at 28°C improved motility parameters on the end of spermatozoa lifespan. In 

vitro fertilizations performed with AB line showed no significant differences when 

sperm activation is performed using water at 28°C with conductivity 0, 700 and 

1200 µS/cm. The use of distilled water for motility activation promoted an 

overestimation of sperm motility compared to fertilization conditions in the system 

water. Our study demonstrates that 28°C and low water conductivity conditions are 

the most suited for zebrafish sperm activation, resembling its natural environment.  

 

2.1.2. Introduction 

Zebrafish, Danio rerio,  (F. Hamilton 1822) is a freshwater species with 

natural habitat in shallow rivers and ponds of Myanmar, Pakistan, India, Bangladesh, 

and Nepal (Arunachalam et al., 2013). Due to its natural characteristics, such as 

small body, high fertility and environmental tolerance, it has been successfully 

established as a model species. It is maintained in laboratories worldwide and 

extensively used in numerous research fields including biology, development and 

biomedical research. However, assisted reproduction techniques, like sperm 

cryopreservation and in vitro fertilization, still lack standardization. As a 

consequence, there is high variability on sperm quality and fertilizing ability 

between facilities, as well as low experimental replicability (Robles et al., 2009; 

Tsang et al., 2017). To the best of our knowledge all the studies reporting zebrafish 
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sperm motility with the CASA system, used  distilled or tap water to activate sperm 

(Hagedorn et al., 2012; Ingermann et al., 2011; Matthews et al., 2018; Park et al., 

2012; Wilson-Leedy and Ingermann, 2007; Yang et al., 2007), with the exception of 

the reports by Diogo et al. (2015, 2018) where sperm motility was activated using 

filtered system water. Furthermore, the temperature of the activation solution is 

commonly not controlled, with the exception of the report by Diogo et al. (2018). 

Spermatozoa from teleostǯs are flagellated single cells, adapted to external 

fertilization, that undergo a period of spermatogenesis in a safe environment, 

surrounded by seminal plasma and Sertoli cells in the testes, with physicochemical 

conditions similar to the body environment (Billard, 1986; Schulz et al., 2010). 

Zebrafish, as other teleost species, perform a metabolic effort to maintain body 

fluids with constant osmolarity (~300 mOsm/kg) through osmoregulation 

mechanisms, despite the variable external ionic environment conditions (Boisen et 

al., 2003). Under these conditions, spermatozoa are immotile in the testes and only 

acquire motility when in contact with the external medium. In freshwater species, 

sperm motility is activated when in contact with the hypotonic external 

environment (Cosson, 2004). Motility is acquired under the regulation of many 

extrinsic and intrinsic factors, thus reflecting the specialization of flagellum 

structure (Dadras et al., 2017).  

Sperm motility is the most studied parameter of sperm quality assessment in 

fish due to its proven correlation with fertility (Cabrita et al., 2014; Gallego and 

Asturiano, 2018; Kime et al., 2001). Although sperm motility is an incomplete 

physiological analysis and needs other quality assays to guarantee the status of 

spermatozoa (Bobe and Labbé, 2010), it is associated with the probability of fertility 

success. Due to its high physiological response to the environmental conditions, it is 

a useful tool to analyze the effects of different treatments (Kime et al., 2001), also 

being used as an ecotoxicological biomarker (Kollár et al., 2018).  

Osmolarity is considered one of the most relevant factors in teleostǯs motility 

activation. The evaluation of the ions present in the water can be performed 

according to osmolarity, conductivity or salinity. The ions present in the fertilization 

microenvironment regulate sperm movement patterns (Alavi and Cosson, 2006; 

Alavi et al., 2009) and are related to offspring phenotypes (Ritchie and Marshall, 
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2013).  In zebrafish rearing facilities the amounts of ions in the water are controlled 

through water conductivity, however, this parameter is not standardized, and a 

wide range of water conductivities are used among facilities (400-1500 µS/cm) 

(D´India, 2018).  

The rearing temperature for zebrafish is universally standardized at 28°C, 

however, sperm motility analysis and in vitro fertilization are commonly performed 

at room temperature. This fact may be a relevant source of biases in the 

determination of zebrafish sperm motility. The temperature of the activation 

solution is known to affect spermatozoa since it increases cell metabolism (Dadras 

et al., 2017). The adequacy of the activation medium is species specific, since 

temperature affects the beating frequency of spermatozoa flagella differently, which 

is physiological related to the adaptation of each species to natural environment 

conditions (Alavi and Cosson, 2005). Generally, higher temperature increases sperm 

movement and decreases longevity, while the opposite happens with lower 

temperatures (Dadras et al., 2017). The increase of metabolic activity with higher 

temperature depletes faster the limited energetic resources available on 

spermatozoa (Dadras et al., 2017). In opposition, lower temperatures generally 

prolong sperm motility (Billard and Cosson, 1992; Bombardelli et al., 2013; 

Lahnsteiner, 2011; Lahnsteiner and Mansour, 2012; Lahnsteiner et al., 1999) with a 

reduction in velocity and flagella beating frequency (Cosson et al., 1985; Dadras et 

al., 2017). Moreover, both pre-fertilization (spermatogenesis) and sperm activation 

thermal environments are known to affect sperm quality, offspring phenotype and 

post-hatching performance (Fenkes et al., 2017; Kekäläinen et al., 2018). Therefore, 

the temperature of the fertilization microenvironment may have relevant 

transgenerational effects that must be considered both in the context of 

environmental climate changes, with ecological and evolutionary implications 

(Marshall, 2015), and under rearing conditions, to improve colony management and 

fish welfare. 

Apart from the wild type lines, there are some zebrafish mutant and 

transgenic lines that present reproductive constraints which are poorly investigated 

(Lawrence, 2016). In our study, we used a wild type (AB) line and a transparent 

double mutant casper (mitfaw2/w2/roya9/a9) line with reproductive constraints 
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ȋDǯAgati et al., 2017; Lawrence, 2016; White et al., 2008). The use of AB and casper 

zebrafish lines in sperm activation with different environmental conditions enable 

to understand their practical consequences under zebrafish facilities rearing 

conditions. 

The objective of this study was to evaluate the effect of water temperature 

and conductivity on sperm motility, activation and metabolism on AB and casper 

zebrafish lines. Additionally, we evaluated the effect of water conductivity on in vitro 

fertilization success of AB zebrafish.   

 

2.1.3. Methods 

2.1.3.1. Fish husbandry  

A population of wild-type AB line (ZFIN ID: ZDB-GENO-960809-7) was 

maintained at the Centre of Marine Sciences (CCMAR, Faro, Portugal) for more than 

10 generations and used to generate the adults necessary for all experimental 

designs. The genetic variability of this colony is maintained through a yearly import 

of AB zebrafish established in different laboratories worldwide. The mutant 

mitfaw2/w2;roya9/a9 (casper) line was obtained from a breeding stock kept at 

Champalimaud Foundation (Lisbon, Portugal). 

Adult AB zebrafish and casper males (8-12 months old) were selected 

according to similar size and maintained separated from females in 3.5 l tanks, with 

15 fish each. Fish were reared in a ZebTEC® (Tecniplast, Buguggiate, Italy) 

recirculation system with 980 l of water, as previously described in Diogo et al. 

(2018). The water was maintained at 28.2±0.5°C, 700±75 µS/cm and pH 7.5±0.2 in 

the system. The fish were fed ad libitum twice a day, from the larval stage until 

adulthood, with Artemia nauplii (AF480, INVE, Dendermonde, Belgium) and 

ZEBRAFEED® diet (Sparos Lda, Olhão, Portugal).  

All animal manipulations were performed in compliance with the Guidelines 

of the European Union Council (86/609/EU) and transposed to the Portuguese law 

for the use of laboratory animals on research by ǲDecreto Lei n° 129/92 de 06 de 

Julho, Portaria n° 1005/92 de 23 de Outubroǳ, and according to the European 
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parliament council directiveǯs for protection of animals used for scientific research 

(2010/63/EU). All animal protocols were performed under a ǲCoordinator-researcherǳ license from the Direção-Geral de Veterinária, Ministério da Agricultura, 

do Desenvolvimento Rural e das Pescas, Lisbon, Portugal, under the ǲDecreto Lei 

n°113/2013 de 7 de Agostoǳ relative to the protection of animals used for scientific 

research. All the fish sampling procedures were performed by licensed researchers.  

 

2.1.3.2. Sperm collection and motility analysis 

On the day prior to sperm collection, males and females were placed in 1 l 

breeding tanks in 1:1 sex-ratio (Tecniplast, Buguggiate, Italy) and maintained 

separated while sharing the same water for 16 h (Diogo et al., 2018). This 

methodology is used to promote hormonal stimulation, improving the release of 

gametes. Sperm collection was performed, within 1 h after the lights turned on. 

Zebrafish males were anesthetized with 0.168 mg/ml tricaine sulfonate solution 

(MS-222, Sigma-Aldrich, Madrid, Spain) according to Westerfield (2007). The males 

were rinsed with Phosphate Buffered Saline (PBS) solution and carefully dried with 

a paper towel. An abdominal massage was performed to AB (n=8) and casper (n=8) 

males to collect the sperm using a glass capillary tube attached to a mouth piece. 

After collection, the sperm was immediately diluted to a final volume of 10 Ɋl using 

sterilized and filtered (0.20 ɊmȌ Hank´s Balanced Salt Solution (HBSS) at 300 

mOsm/Kg (8.0 g NaCl, 0.4 g KCl, 0.16 g CaCl2·2H2O, 0.2 g MgSO4·7H2O, 0.06 g 

Na2HPO4, 0.06 g KH2PO4, 0.35 g NaHCO3, 1.0 g C6H12O6 in 1000 ml of mili-Q water, 

pH 7.5) (Jing et al., 2009a).  

Sperm motility analysis was performed using computer assisted sperm 

analysis (CASA) system (ISAS Integrated System for Semen Analysis, Proiser, 

Valencia, Spain). Briefly, 0.5 µl of each sperm sample was immediately diluted with 

5 µl of the activation solution and placed in a Makler chamber (Microptics S.L., 

Barcelona, Spain) under a phase contrast microscope (Nikon E-200, Nikon, Tokyo, 

Japan) with a ×10 negative phase contrast objective. Sperm motility images were 

captured with a ISAS 782C camera (Proisier, Spain) and processed with CASA 

software. The settings of CASA system were adapted for this species namely 25 

frames s-1, connectivity 14, 1 to 90 mm for head area. For sperm concentration a 
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dilution (1:19) was performed with HBSS and analyzed in CASA system, to calculate 

the sperm concentration to be used in in vitro fertilization. Sperm motility was 

characterized each 10 s post-activation during 1 minute, according to total motility 

(TM; %), progressive motility (PM; %), curvilinear velocity (VCL; µm s-1), straight 

line velocity (VSL; µm s-1), velocity according to smoothed path (VAP; µm s-1), 

linearity (LIN; %), straightness (STR; %), curvilinear path wobble (WOB; %), 

amplitude of lateral displacement of sperm head (ALH; µm) and beat-cross 

frequency (BCF; Hz). LIN (VSL/VCLx100). STR (VSL/VAPx100) and WOB 

(VAP/VCLx100) were calculated by the CASA system using other analyzed 

parameters. All motility parameters were described by Boyers et al. (1989). Sperm 

samples with VCL > 10 µm s-1 were considered motile.  

 

2.1.3.3. Experiment 1 – Effect water temperature and conductivity on 

sperm motility activation and metabolism 

System water conductivities were obtained by programming ZebTEC® 

rearing system settings with a wide range of water conductivities commonly used 

in zebrafish facilities. This was done to verify the relationship of water conductivity 

with osmolarity. The conductivity probe was calibrated with a TDS calibration 

solution 700 µS/cm (HM digital Inc, California, USA) at 25°C, according to the 

product specifications. The device accuracy was tested by an external probe TDS 

Meter – COM-100 (HM digital Inc, California, USA). Both devices were calibrated 

with the same solution. The osmolarity of the water conductivities used in zebrafish 

facilities (300-1400 µS/cm) (D´India, 2018) was measured with a semi-micro 

osmometer K7400S (Knauer, Berlin, Germany) (Supplementary figure). 

Sperm was collected from individual males from wild type AB (n=8) and 

casper (n=8) lines. Both collection and motility analysis were performed as 

previously described. Sperm was activated at 20°C or at 28°C, either with distilled 

water (0 µS/cm) or with system water set at 700 µS/cm or 1200 µS/cm. All 

activation solutions were filtered (0.20 µm) and sterilized. For sperm motility 

activation, two of the most common water conductivities established in zebrafish 

rearing facilities were selected namely 700 and 1200 µS/cm (D´India, 2018). In 
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addition, distilled water with 0.067 µS/cm (0 µS/cm) was used since it is commonly 

applied in zebrafish sperm activation in the CASA system (Figure 2.1.). 

 

Figure 2.1 Experimental design to evaluate the effect of water conductivity and temperature on 
sperm motility of AB and casper zebrafish lines 

 

2.1.3.4. Experiment 2 – Effect of the water conductivity on in vitro 

fertilization 

To complement the previous study an experiment was set up to study how 

water conductivity affects in vitro fertilization. Adult AB (n=70) males with 6-8 

months of age were sampled for sperm collection. This experiment was performed 

only using the AB line since sperm activation with different water conductivities in 

casper line showed no significant differences (Table 2.1). The male selection to 

perform sperm pools was performed by motility analysis at 10 s post activation. 

Males with total motility higher than 50% and cell concentration over 3 x 107 

cells/ml were selected to perform the pools. Each sperm pool (n=5) contained 

sperm from 7 males. Sperm concentration was evaluated with the CASA system and 

motility was activated with distilled and system water set at 0, 700 and 1200 µS/cm 

of conductivity. All activation mediums were at 28°C for sperm motility analysis 

according to the results from experiment 1. The motility of the sperm pools was 

recorded each 10 s post activation for one minute (Figure 2.1.2). 
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Females used for in vitro fertilization (6-8 months) were maintained in a 1 l 

breeding tank separated from males for a period of 16 h prior to oocyte collection. 

Females were anesthetized with MS-222, rinsed with sterile PBS (pH 7.4) and placed 

in a 35 mm Petri dish (Falcon® by Corning, New York, USA). The oocytes were 

collected by abdominal massage, carefully performed to avoid touching the oocytes. 

If the clutch had good quality characteristics (Bobe and Labbé, 2010; Carmichael et 

al., 2009), the oocytes were immediately used for in vitro fertilization. In vitro 

fertilization was performed with AB line, however in Figure 2.3 (A and B) oocyte 

collection and a good quality clutch are illustrated with the casper line, taking 

advantage of its transparency, which improves the observation of oocyte collection. 

Only good quality clutches (n=35) with 100-200 oocytes were selected to test all 

treatments. Fertilization was performed within 1 minute after oocyte collection by 

adding 3-3.5 x 106 spermatozoa to the oocytes (3-3.5x103 spermatozoa/oocyte). 

Sperm motility activation was immediately performed with 360 µL of activation 

medium at 28°C. After 5 min, when all sperm is immotile, 5 ml of system water (700 

µS/cm) at 28°C were added to the Petri dish. The embryos were maintained in an 

incubator at 28°C with the same photoperiod (14L: 10D, lights on at 09:00 a.m.) of 

the zebrafish facilities. Survival rate was calculated at 24 hpf (hours post 

fertilization) and hatching rate at 72 hpf. Additionally, the hatching rates were 

calculated at 48 hpf, according to Kimmel et al. (1995), and at 72 hpf due to delays 

in hatching. These calculations were performed according to the initial number of 

oocytes of each clutch. Each sperm pool was used to fertilize 2-3 clutches of oocytes 

with each activation medium (n=35 fertilizations). At 120 hpf, 40 larvae of each 

treatment resulting from each sperm pool were photographed with a MZ 7.5 

stereomicroscope (Leica, Wetzlar, Germany) equipped with an F-View II camera 

(Olympus, Hamburg, Germany). The analysis of larvae standard length was 

performed using Fiji software (Schindelin et al., 2012). 
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Figure 2.2 Experimental design to evaluate the effect of water conductivity on in vitro fertilization 
success of AB zebrafish line. 

  

 

Figure 2.3 Representation of oocyte collection with casper zebrafish. A) oocyte collection, B) good 
quality clutch example to use in in vitro fertilization. 

 

2.1.3.5. Data analysis 

IBM SPSS Statistics 25.0 (IBM, New York, USA) software was used for 

statistical analysis. Data were expressed as mean±s.d. (Standard Deviation) and 

normalized by logarithmic, or arcsine transformation when results were expressed 

as percentages, to meet assumptions of normality and homoscedasticity. Sperm 

motility parameters in experiment 1 were analyzed through ANOVA (repeated 

measures, P<0.05). The correction of Greenhouse-Geisser was used since the 

sphericity of the data was not assumed. Post hoc test Bonferroni (P<0.05) was used 

to investigate differences in water conductivity and independent t-test for water 

temperature (P<0.05). For the second experiment, one-way ANOVA (post hoc 



53 
 

Student–Newman–Keuls, P<0.05) was applied on sperm motility, in vitro 

fertilization parameters and larvae length.  

 

2.1.4.  Results 

2.1.4.1. Experiment 1 – Effect water temperature and conductivity on 

sperm motility activation and metabolism 

To investigate the optimal environmental conditions for zebrafish sperm 

activation, two temperatures (20 and 28°C) and three water conductivities (0, 700 

and 1200 µS/cm) were tested in AB and in casper zebrafish lines. 

Through an initial analysis the effect of the zebrafish line, water temperature 

and conductivity on sperm motility parameters were analyzed through repeated 

measures ANOVA (P<0.05). The zebrafish line and time post activation were the 

factors with the largest main effect on sperm motility parameters (Table 2.1). The 

AB line displayed significantly higher results in all motility parameters when 

compared to casper line (Table 2.1). This fact is most evident in the motility recorded 

in the last seconds (Table 2.2). As expected, time significantly decreased all motility 

parameters throughout post activation time in both zebrafish lines (Table 2.1, Table 

2.2, Figure 2.4, 2.5 and supplementary figure 2). 

The differences displayed between both zebrafish lines and the occurrence 

of significant interactions between factors impaired the accurate analysis of the 

effect of water temperature and conductivity on sperm motility. Therefore, repeated 

measures of ANOVA was applied for each zebrafish line independently (Table 2.1). 

Higher water temperature improved significantly sperm velocities, LIN and ALH for 

both zebrafish lines.  

Independent t-test samples were used to study the effect of water 

temperature on sperm motility parameters, due to the reduced number of groups 

(Table 2.2). Higher water temperature (28°C) significantly improved all motility 

parameters in the AB line, except ALH (Table 2.1, Figure 2.1.5 E and Supplementary 

figure 2). The detailed analysis with t-test shows that this effect of temperature is 

increasingly relevant in the last seconds of motility (Table 2.2). The water 
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conductivity affected significantly sperm velocities in the AB line, however, this was 

not observed in casper line (Table 2.1). The interaction between water temperature 

and conductivity is significant, where 28°C with 0 and 700 µS/cm increases 

significantly ALH (Table 2.1, Figure 2.1.5 F).   In the casper line, higher water 

temperature improved motility parameters related to velocity and trajectory 

namely VCL, VSL, VAP, LIN, STR, WOB (Table 2.1 and 2.2, Figure 2.1.5 and 

Supplementary figure 3). The positive effect of higher water temperature in casper 

line is particularly important at 60 s post activation in all motility parameters except 

PM, ALH and BCF (Table 2.2). 

In the AB line, water conductivity significantly affects progressive motility 

(Table 3). Water conductivity affected significantly sperm velocities, LIN, STR, WOB 

and BCF in AB line, however, water conductivity showed no significant effects on 

casper line motility parameters.  (Table 2.1 and 2.3). 
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Table 2.1 Zebrafish sperm motility analysis (recorded for 1 minute each 10 s post activation) of AB and casper line when activated with different water temperatures 
(20°C and 28°C) and conductivities (0, 700 and 1200 µS/cm) and their interactions (P values). 

 

 TM 
(%) 

PM 
(%) 

VCL 
(µm/s) 

VSL 
(µm/s) 

VAP 
(µm/s) 

LIN 
(%) 

STR 
(%) 

WOB 
(%) 

ALH 
(µm) 

BCF 
(Hz) 

Repeated measures ANOVA            

Time 
 <0.001

* 
<0.001
* <0.001* <0.001* <0.001* 

<0.001
* 

<0.001
* <0.001* <0.001* <0.001* 

Line x time 
 <0.001

* 
<0.001
* 0.001 <0.001* <0.001* 

<0.001
* 

<0.001
* <0.001* <0.001* <0.001* 

Temperature x time 
 <0.001

* 0.153 0.001 <0.001* <0.001* 
<0.001
* 

<0.001
* <0.001* 0.007 0.001 

Conductivity x time 
 <0.001

* 0.432 0.210 0.772 0.871 0.677 0.604 0.517 0.296 0.055 
Line x temperature x time  0.004 0.178 0.209 0.302 0.263 0.207 0.200 0.108 0.099 0.106 
Line x conductivity x time  0.649 0.004* 0.574 0.211 0.721 0.646 0.447 0.315 0.038* 0.188 
Line x temperature x conductivity x 
time 

 
0.112 0.027* 0.674 0.573 0.842 0.673 0.666 0.609 0.374 0.577 

AB Repeated measures ANOVA            
Temperature x time  0.009* 0.072 0.049* 0.036* 0.043* 0.044* 0.075 0.065 0.029* 0.091 

Conductivity x time  0.061 0.113 0.022* 0.015* 0.019* 0.021* 0.002* 0.002* 0.077 0.033* 

Temperature x conductivity x time  0.018* 0.111 0.031* 0.053 0.037* 0.015* 0.004* 0.003* 0.113 0.040* 

Casper Repeated measures ANOVA            
Temperature x time  0.186 0.001* 0.015* 0.042* 0.006* 0.021* 0.021* 0.126 0.027* 0.012* 
Conductivity x time  0.129 0.064 0.310 0.330 0.609 0.509 0.353 0.67 0.055 0.141 

Temperature x conductivity x time  0.119 0.114 0.737 0.350 0.546 0.330 0.414 0.050* 0.056 0.061 
 

Time means post-activation time TPA – Time post activation (s), TM- Total motility, PM- Progressive motility, VCL – curvilinear velocity, VSL- straight line velocity, 
VAP- velocity according to smoothed path, LIN- linearity, STR- straightness, WOB- curvilinear path wobble, ALH- amplitude of lateral displacement of sperm head, 
BCF- beat-cross frequency. Significant differences (repeated measures ANOVA, p < 0.05) are represented with an asterisk.
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Figure 2.4 Effect of water temperature (20°C and 28°C) and water conductivity (0, 700 and 1200 
µS/cm) on sperm motility parameters of zebrafish AB line (n=8). Sperm was activated, and motility 
parameters were recorded each 10 s for 1 min in terms of: A) TM, B) PM, C) VCL, D) VSL, E) ALH and 
F) BCF. The values plotted represent mean, continuous line represent 20°C and dashed line represent 
28°C of the activation medium. Activation medium with 0 µS/cm is represented with a white circle, 
700 µS/cm with a dark circle and 1200 µS/cm without the symbol. 
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Figure 2.5 Effect of water temperature (20°C and 28°C) and water conductivity (0, 700 and 1200 
µS/cm) on sperm motility parameters of zebrafish casper line (n=8). Sperm was activated, and 
motility parameters were recorded each 10 s for 1 min in terms of: A) TM, B) PM, C) VCL, D) VSL, E) 
ALH and F) BCF. The values plotted represent mean, continuous line represent 20°C and dashed line 
represent 28°C of the activation medium. Activation medium with 0 µS/cm is represented with a 
white circle, 700 µS/cm with a dark circle and 1200 µS/cm without the symbol. 
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Table 2.2 Statistical differences (P values) of AB and casper zebrafish lines sperm motility when activated with different water temperatures throughout post-
activation time. 

 

 
Zebrafish 
line 

AB Casper 

Time post-
activation 

10 20 30 40 50 60 10 20 30 40 50 60 

TM (%) 0.053 0.466 0.965 0.221 0.021* 0.019* 0.482 0.551 0.739 0.342 0.010* 0.002* 
PM (%) 0.028* 0.067 0.140 0.301   0.611 0.734 0.908 0.323 0.312 0.323 
VCL (µm/s) 0.134 0.157 0.133 0.703 0.670 0.083 0.391 0.706 0.078 0.003* 0.041* 0.028* 
VSL (µm/s) 0.123 0.098 0.118 0.056 0.009* 0.041* 0.520 0.878 0.100 0.182 0.062 0.025* 
VAP (µm/s) 0.089 0.125 0.117 0.268 0.053 0.064 0.449 0.782 0.231 0.026* 0.075 0.031* 
LIN (%) 0.504 0.255 0.384 0.009* 0.024* 0.061 0.890 0.734 0.479 0.750 0.210 0.009* 

STR (%) 0.812 0.277 0.366 0.034* 0.016* 0.061 0.783 0.443 0.799 0.563 0.088 0.023* 
WOB (µm) 0.062 0.097 0.426 0.020* 0.092 0.073 0.985 0.325 0.249 0.253 0.066 0.016* 
ALH (µm) 0.133  0.063 0.832 0.440 0.145 0.323 0.442 0.396 0.086 0.676 0.316 
BCF (Hz) 0.192 0.810 0.555 0.114 0.013* 0.022* 0.989 0.416 0.764 0,603 0.692 0.650 

Significant differences (independent samples t-test, P<0.05) are represented with an asterisk 
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Table 2.3 Statistical differences (P values) of water conductivity on zebrafish sperm motility 
parameters. 

Zebrafish line  AB Casper 

Motility Conductivity (µS/cm) 0 700 1200 0 700 1200 

TM (%) 

0  0.204 0.007*  0.437 0.999 

700 0.204  0.505 0.437  0.999 

1200 0.007* 0.505  0.999 0.999  

PM (%) 

0  0.069 0.013*  0.999 0.999 

700 0.069  0.999 0.999  0.999 

1200 0.013*  0.999 0.999 0.999  

VCL (µm/s) 

0  0.999 0.999  0.999 0.114 
700 0.999  0.680 0.999  0.688 
1200 0.999 0.680  0.114 0.688  

VSL (µm/s) 

0  0.999 0.999  0.362 0.471 

700 0.999  0.913 0.362  0.999 

1200 0.999 0.913  0.471 0.999  

VAP 

0  0.999 0.999  0.551 0.447 

700 0.999  0.675 0.551  0.999 

1200 0.999 0.675  0.447 0.999  

LIN (%) 

0  0.999 0.999  0.999 0.999 

700 0.999  0.999 0.999  0.999 

1200 0.999 0.999  0.999 0.999  

STR (%) 

0  0.999 0.999  0.588 0.935 

700 0.999  0.999 0.588  0.999 

1200 0.999 0.999  0.935 0.999  

WOB (%) 

0  0.999 0.999  0.663 0.581 

700 0.999  0.999 0.663  0.999 

1200 0.999 0.999  0.581 0.999  

ALH (µm) 

0  0.423 0.999  0.999 0.768 

700 0.423  0.867 0.999  0.710 

1200 0.999 0.867  0.768 0.710  

BCF (Hz) 

0  0.999 0.354  0.999 0.999 

700 0.999  0.483 0.999  0.999 

1200 0.354 0.483  0.999 0.999  
 

Significant differences (Repeated measures ANOVA, post hoc Bonferroni, P<0.05) are 
represented with an asterisk. 

 

2.1.4.2. Experiment 2 – Effect of the water conductivity on in vitro 

fertilization  

To understand the effect of water conductivity (0, 700 and 1200 µS/cm) not 

only on sperm motility activation but also in vitro fertilization, 5 sperm pools of AB 
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line were analyzed with activation medium at 28°C. The activation medium 

conductivity had a significant effect on TM and PM, where 0 µS/cm improved these 

parameters when compared to 1200 µS/cm. However, at 0 µS/cm TM and PM were 

not significantly different when compared to 700 µS/cm (Figure 2.1.6 A and B). 

Sperm velocities showed no significant differences between treatments (Figure 

2.1.6 C and D). Supplementary figure 2.2 illustrates the effect of water conductivity 

on sperm motility on the same sperm pool, additionally, the respective sperm 

motility videos are available as supplementary data for 0 (Video S1), 700 (Video S2) 

and 1200 µS/cm (Video S3). 

No significant differences were observed on any of the biological 

performance of larvae resulting from in vitro fertilization using different water 

conductivities (Figure 2.1.7 and Table 2.4). Sperm activated with 0, 700 and 1200 

µS/cm during in vitro fertilization did not show significant differences in parameters 

such as embryo survival at 24 hpf, hatching rate (Figure 2.1.7), hatched larvae at 48 

hpf and at 72 hpf, malformed hatched larvae (Table 2.4) and larvae length at 120 

hpf. 

 

Figure 2.6 Effect of water conductivity (0, 700 and 1200 µS/cm) on sperm motility parameters of 
zebrafish AB line pools of sperm (n=5 containing sperm of 7 males). Sperm was activated, and 
motility parameters were recorded each 10 s for 1 min in terms of: A) TM, B) PM, C) VCL and D) VSL. 
The values plotted represent mean. Activation medium with 0 µS/cm is represented with a white 
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circle, 700 µS/cm with a dark circle and 1200 µS/cm without the symbol. Different letters represent 
statistical differences (one-way ANOVA, post hoc SNK P<0.05). 

 

 

Figure 2.7 In vitro fertilization performed with sperm pools (n=5 pools) of AB zebrafish line 
activated with water conductivities 0 (n=11 clutches) 700 (n=13 clutches) and 1200 µS/cm (n=11 
clutches). The fertilization success was measured through: A) embryo survival at 24 hpf, B) hatching 
rate at 48 hpf, C) total hatching rate at 72 hpf. Additionally, it was evaluated D) malformed larvae at 
hatching and larvae standard length (5 dpf). The values plotted represent means±SD. 

 

Table 2.4 Biological performance of larvae sired by the sperm of AB (n=8) zebrafish line, 
activated with different water conductivities. 

Water conductivity 0 µS/cm 700 µS/cm 1200 µS/cm 

Hatched larvae at 48 hpf (%) 14.16 ± 18.74 5.27 ± 8.34 5.76 ± 15.01 

Hatched larvae at 72 hpf (%) 30.13 ± 28.92 35.28 ± 26.86 11.80 ± 15.01 

Malformed hatched larvae (%) 13.86 ± 16.43 12.89 ± 12.24 15.75 ± 20.76 

Larvae length at 120 hpf (mm) 3.16 ± 0.08 3.15 ± 0.11 3.16 ± 0.08 

 

 

2.1.5.  Discussion 

Each species is adapted to specific environmental conditions, where cellular 

metabolism functions run under optimal conditions. This fact is also true for teleostǯs spermatozoa cellular metabolism, especially since they are released into an 

external hazardous environment. Zebrafish is a freshwater species adapted to warm 

shallow waters of rivers and ponds (Arunachalam et al., 2013). However, this 

species is established in research centers with higher water conductivities (400 to 

1500 µS/cm) when compared to its natural environment (10-270 µS/cm) 

(Arunachalam et al., 2013). This is a prophylactic measure to control pathogens 

adapted from aquaculture (Fashina-Bombata and Busari, 2003; Martins et al., 2016) 
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considering this species high tolerance to salinity variations (Boisen et al., 2003; 

Uliano et al., 2010), however there are no studies to our knowledge on its 

effectiveness. Moreover, zebrafish sperm motility activation is routinely performed 

with distilled water without temperature control. Altogether, the variable 

environmental conditions used in zebrafish can be a relevant biases source in this 

species research. 

Sperm motility is the most studied sperm quality parameter, it is commonly 

used as a tool to select and characterize sperm samples and its ability to fertilize the 

oocyte. However, sperm motility is dependent on several factors that modulate its 

activation, duration and motility such as medium osmolarity (Alavi and Cosson, 

2006), temperature (Dadras et al., 2017), pH (Alavi and Cosson, 2005), ions (Alavi 

and Cosson, 2006) and presence of ovarian fluid (Butts et al., 2017; Diogo et al., 

2010). Spermatozoa motility depends on the energy released with ATP hydrolysis 

to produce flagellum beating (Alavi and Cosson, 2005). Water temperature affects 

motility characteristics (Dadras et al., 2017) and dynein motors of the flagellum 

(Cosson et al., 2008a). 

Progressive motility is considered to be the parameter most related to sperm 

fertilizing ability (Rurangwa et al., 1998). In our study, we observed at 10 s post 

activation that 28°C showed significantly higher progressive motility when 

compared to 20°C in the AB line. The duration of total motility and the forward 

movement are reported to decrease when the temperature of the activation medium 

increases, along with initial beat frequency (Alavi and Cosson, 2005). However, this 

was not observed in the AB line since spermatozoa activated with 28°C do not show 

earlier loss of motility in comparison to 20°C. Zebrafish optimal rearing 

temperature is 28°C (Avdesh et al., 2012), consequently, the results obtained with 

our study are in agreement with this species physiological adaptation to warm 

temperatures (28°C). Our work suggests that 28°C can be the optimal temperature 

for an enzymatic activity to produce ATP and flagellum beating. The optimal 

environmental temperature at which this species is adapted to (28°C) is therefore 

especially relevant in the last seconds of motility, to prolong sperm longevity and 

improve fertilization. Therefore, the use of controlled water temperature (28°C) in 

zebrafish rearing, sperm motility analysis and during in vitro fertilization 
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procedures is essential to reduce variability and improve research replicability in 

this species.  

Osmolarity is one of the major factors contributing to sperm motility 

activation through cell signaling cascade (Morisawa et al., 1983), where the 

hyposmotic shock causes plasma membrane alterations that promote flagellar 

beating (Krasznai et al., 2000). In zebrafish rearing systems, the ions are added 

automatically to the system water and the high variability of water conductivities 

among zebrafish facilities (Avdesh et al., 2012) may interfere with the sperm 

activation mechanism. The osmolarity of the activation medium influences the 

number of spermatozoa flagellum waves and curvatures (Alavi et al., 2009). This fact 

was observed in marine species such as Atlantic cod (Gadus morhua, Linnaeus, 

1758), European sea bass (Dicentrarchus labrax, Linnaeus, 1758) and hake 

(Merluccius merluccius, Linnaeus, 1758) (Cosson et al., 2008a; Cosson et al., 2008b). 

In opposition, our study in a freshwater species showed that higher osmolarity 

decreased motility parameters in the AB line. In our work, sperm activated with 

distilled water at 20°C showed low motility parameters in this line, however, there 

is an interaction between water temperature and conductivity. In fact, spermatozoa 

motility parameters were improved throughout their lifespan when activated with 

distilled water at 28°C. In our study, the longer spermatozoa motility duration is 

observed at 28°C with 0 and 700 µS/cm of system water. Therefore, our data 

indicate that this species is physiologically well adapted for high water 

temperatures with low conductivities.  

Mutant casper line was used as an example of lines that are considered more 

vulnerable when compared to wild type lines (Lawrence, 2016). Overall, the motility 

parameters of this line were lower when compared to the wild type AB line, 

especially velocities, total and progressive motility. In casper line, the sperm 

activation medium temperature has significant interaction with post activation 

time, both in sperm total motility and curvilinear velocity. Casper results from the 

conjugation of nacre line, that harbors an inactivating mutation of the mitfa gene 

impairing melanocyte pigmentation (Lister et al., 1999), and the roy mutation (Ren 

et al., 2002). The gene responsible for roy orbison phenotype remained unknown 

until recently. Roy orbison mutation causes a loss of function of the mitochondrial 
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inner membrane protein mpv17, due to a perturbation of the first intron of mpv17 

and consequent aberrant splicing ȋDǯAgati et al., 2017). Therefore, casper has a loss 

of function of the mitochondrial inner membrane protein mpv17 that causes a 

reduction in mitochondrial folate pools (Alonzo et al., 2018), which impairs 

oxidative phosphorylation (Morscher et al., 2018). Mitochondrial metabolism 

disorders are known to affect sperm motility (Demain et al., 2016), which is in 

agreement with our observations. Zebrafish sperm relies on oxidative 

phosphorylation in the last seconds of motility (Ingermann et al., 2011), which is 

defective in casper line. Therefore, casper is highly dependent on the adequate 

sperm activation medium temperature to optimize oxidative phosphorylation for 

energy production and extend their lifespan, improving thus the probability of 

oocyte fertilization. Although the effect of water conductivity was clear in AB line, in 

casper line there was a lack of response to different water conductivity 

environments. The characterization of sperm quality in zebrafish lines is a matter 

poorly addressed and our study evidences the high relevance of this investigation. 

The results obtained in our first experiment were potentially relevant to 

improve zebrafish in vitro fertilization conditions. Despite the fact that in our second 

experiment the in vitro fertilization parameters had no significant differences, it is 

interesting to notice that 1200 µS/cm is the treatment with lower hatching rate. In 

addition, this treatment showed a high percentage of malformed hatched larvae, 

although not significant. The embryos resulting from all treatments showed a delay 

in hatching (Table 2.4) in relation to the standard development (Kimmel et al., 

1995). This fact can be a stress-related consequence of assisted reproduction 

methodologies (Ramos-Ibeas et al., 2019). Therefore, we suggest that zebrafish 

should be reared at 28°C and low water conductivity (0-700 µS/cm). It is striking 

that the sperm motility analysis should be performed with system water to avoid 

biased studies. Moreover, for in vitro fertilization purposes, 700 µS/cm of system 

water at 28°C is the most adequate environmental conditions for sperm motility 

activation on zebrafish facilities. These conditions will avoid overestimation of 

sperm motility in relation to natural spawns and to in vitro fertilization performed 

with system water. 
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Our work emphasizes not only the necessity to standardize sperm motility 

activation methodology and zebrafish water conductivity in the systems, but also 

allows the comprehension that different zebrafish strains have specific reproductive 

features. As in casper line, other zebrafish lines have similar lesions in mpv17, such 

as transparent (trab6) (Krauss et al., 2013) spontaneous mutant. The specific 

reproductive features of zebrafish lines are essential to consider while planning 

experimental design and assisted reproduction methods, such as sperm 

cryopreservation. Additionally, the use of zebrafish lines with metabolic disorders 

can be a powerful tool for the comprehension of their consequences on reproductive 

performance.  

The most suitable temperature for zebrafish to breed is 28°C, coinciding with 

this species natural environmental adaptations. It is striking that sperm motility 

activation should be performed with system water to avoid the overestimation of 

sperm motility obtained when the activation is performed with distilled water. 

These guidelines contributed not only to the improvement of the sperm motility as 

a tool to predict spermatozoa fertilizing ability under natural spawning conditions, 

but most importantly support the standardization of zebrafish husbandry 

procedures and analysis. 
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Chapter 3. BROODSTOCK NUTRITION 
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PREAMBLE 
 

Broodstock nutrition has direct implications on teleosts gamete quality and 

on the resulting progeny health. This fact is well studied in many aquaculture 

species; however, in zebrafish, the dietary effect on reproduction only recently 

started to be a focus of attention. Zebrafish nutritional requirements are still poorly 

understood, therefore a deeper understanding is required. Dietary phospholipids 

are an important source of energy in teleosts. Moreover, phospholipids are relevant 

sources of fatty acids involved in fish growth and reproduction. Altogether, the lack 

of knowledge on zebrafish nutritional requirements and the lack of standardized 

feeds in this species can lead to variable sperm quality and post-thaw results. 

It is increasingly evident the necessity to use a standardized diet to improve 

experimental reproducibility among the facilities dedicated to zebrafish research. 

The effect of dietary phospholipids was assessed with purified diets fed to zebrafish. 

The dietary supplementations were evaluated in terms of zebrafish growth, gamete 

quality, reproductive performance and offspring skeletal malformations to 

understand the overall effect on fish fitness. This chapter represents an article 

published in the Journal of Applied Ichthyology first authored by Patricia Diogo. This 

work was performed under the ZEBRAFEEDS project, which resulted in the 

development of a standardized diet for zebrafish by SPAROS Lda, now commercially 

available worldwide. 
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3.1.1. Abstract 

The objectives of this study were to determine the effects of a tailor-made 

purified diet (PUR) supplemented with phosphatidylcholine (PC) or 

phosphatidylethanolamine (PE) on the reproductive performance, gamete quality, 

embryo development and growth as well as skeletal malformations of the larvae in 

zebrafish, Danio rerio. The PUR diet was tested against a commercial diet as a 

negative control (CD). For each diet, one experimental group of eight adult zebrafish 

(three males, five females) was maintained in 3 l tanks in a water recirculating 

system under continuously controlled conditions (photoperiod 14 h L: 10 h D, water 

flow rate 7.3 l/h 1; 28°C; pH 7.5; 700 µS/cm). Two trials were performed to confirm 

the results. The CD treatment resulted in the highest final weight of the breeders 

(0.60±0.18 g); however, the fish failed to spawn. The PC supplemented diet 

promoted a reasonable final weight of the breeders (0.48±0.10 g) similar to the CD 

and with a mean hatching rate of 93.80±6.9%. Nevertheless, the PC treatment 

induced the highest rate of skeletal malformations in progeny (82.40±4.1%), which 

could be related to the low larval survival at 28 days post-fertilization (dpf) 

(48.00±1.3%). In comparison to the control groups, broodstock fed the PE diet 

showed the best results in sperm quality, which was revealed by higher total and 

progressive motility and higher velocities than sperm from males fed the CD and 

PUR diets. Furthermore, the PE group produced significantly higher egg diameters 

(1.20±0.05 mm) when compared to the PUR diet (1.14±0.03 mm). This study 

highlights the importance of phospholipids in zebrafish gamete quality, and that 

supplying PE in broodstock diets can improve the reproductive performance of 

zebrafish 

 

3.1.2. Introduction 

Zebrafish is an established model species and a powerful tool to study the 

modulation of reproductive processes through broodstock nutrition. It has already 

been used successfully to assess the role of specific nutrients such as fatty acids and 

vitamins on the reproductive performance of other zebrafish (Jaya-Ram et al., 2008; 

Miller et al., 2012). The role of broodstock nutrition is increasingly considered to be 

an essential factor to optimize fitness and reproductive ability of the breeder and 
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improve gamete quality, ensuring higher fertilization rates and an adequate larval 

development (Izquierdo et al., 2001). However, feeding fish larvae is still 

challenging, remaining a major concern and bottleneck in marine aquaculture 

production. This is mainly due to the poor knowledge of larval nutritional 

requirements and digestive physiology, which complicates the adaptation to inert 

microdiets (Rønnestad et al., 1999). The quality of maternal nutrition is directly 

related to good larval development during the endogenous feeding period 

(Rainuzzo et al., 1997). Broodstock nutrition is highly relevant for gonad growth, 

fecundity (Watanabe, 1985) and fertilization rates (Fernández-Palacios et al., 1997), 

where lipids are important nutrients (Watanabe, 1985). In both marine and 

freshwater fish, the phospholipids are abundant in the spermatozoa membranes 

and include phosphatidylcholine (PC) and phos- phatidylethanolamine (PE) 

(Drokin, 1993a). In European sea bass (Dicentrarchus labrax) spermatozoa 

membrane, PC and PE represent about 50 and 40%, of these substances, 

respectively (Martínez-Páramo et al., 2012a), and accounts for 57 and 12% of the 

total yolk lipid content, respectively, in halibut egg yolk PC and PE (Rønnestad et al., 

1995). This high content in the plasma membrane highlights the importance of 

supplying these nutrients in the zebrafish diet to improve sperm quality, enhance 

reproduction and support progeny development. The essential fatty acids present 

in phospholipids are required for embryo cell membrane development, which is 

vital for successful larval development (Migaud et al., 2013).  

The composition of essential fatty acids in broodstock diets and their 

metabolites can play a physiological role in the reproductive physiology, steroid 

production and oocyte maturation, as observed by (Sorbera et al., 2001) in 

European sea bass, where arachidonic acid metabolism seems to participate in 

oocyte maturation, and thereby suggesting the involvement of other 

polyunsaturated fatty acids (PUFAs) and prostaglandins in the oocyte maturation 

process. Furthermore, the broodstock dietary composition in fatty acids can alter 

the sperm fatty acid composition, as demonstrated in several fish species such as 

rainbow trout (Oncorhynchus mykiss) (Labbé et al., 1995), European sea bass 

(Dicentrarchus labrax) (Asturiano et al., 2001) and Eurasian perch (Perca fluviatilis) 

(Henrotte et al., 2010). In European eel (Anguilla anguilla) sperm, PC has a 

protective effect against osmotic and cold stress (Asturiano, 2008). The fatty acid 
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contents present in PC and PE are variable, depending on the species. Thus, since 

the ratio of polyunsaturated to saturated fatty acids in PC does not differ in marine 

and fresh water species, in PE this ratio is generally higher in sperm membrane of 

marine than in freshwater species (Drokin, 1993b). Furthermore, PC has been 

mentioned as having an important role in sperm cryopreservation, acting as a 

protective agent and increasing cryoresistance (Cabrita et al., 2010). In fish 

spermatozoa the plasma membrane is responsible for the reception of the 

environmental stimulus, triggering responses such as motility activation (Cabrita et 

al., 2008). Plasma membrane is composed of a lipid bilayer highly sensitive to 

environmental stress (Cabrita et al., 2008), and its composition and integrity is 

essential to ensure sperm functionality (Lahnsteiner et al., 2009), and to guarantee 

correct interaction spermatozoa–egg, necessary for the successful fertilization 

process (Hart, 1990). The PUFAs influence spermatozoa cell membrane fluidity, 

whereas permeability to water and ions is determined by membrane lipids and 

proteins (Bobe and Labbé, 2010).  

The objectives of the study were to determine the influence of specific 

phospholipids (phosphatidylcholine, phosphatidylethanolamine) supplemented in 

purified diets specifically formulated for broodstock zebrafish feeding, with the aim 

to modulate broodstock reproductive performance, gamete quality and larval 

growth and skeletal quality. 

 

3.1.3.  Methods 

3.1.3.1. Experimental diets 

Four dietary treatments, chemically controlled formulated with purified 

ingredients, were tested in this experiment. As a control diet, a high quality 

commercial marine fish larval diet (CD; GEMMA Micro 300; Sketting) with 60% 

crude protein, 14% fat and known to contain high levels of marine proteins and 

marine phospholipids that had been commonly used to feed zebrafish. A purified 

diet (PUR) was used as an experimental control, containing 60% crude protein and 

12% crude fat (Table 3.1). For dietary supplementation, phosphatidylcholine (PC; 5 

g/Kg) and phosphatidylethanolamine (PE; 5 g/Kg) were added to the PUR diet. 
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Table 3.1 Dietary and chemical composition of the purified diet (PUR) fed to zebrafish broodstock 
and larvae 

 

Ingredient, % PUR 

Fish gelatin 16.0 
Casein 40.0 
Wheat gluten 5.0 
Dextrine 14.3 
Cellulose 4.1 
Fish oil 11.5 
Vit & Min Premix PV1 2.0 
Betaine 0.1 
Soy lecithin 0.2 
Binder (sodium alginate) 2.0 
Antioxidant 0.2 
MCP 2.7 
L-Lysine 1.0 
DL-Methionine 0.5 
L-Arginine 0.4 

  

Proximate composition   
Crude protein (g/Kg DM) 60.4 
Digestible protein (g kg-1 DM) 56.2 
Crude fat (g/Kg DM) 12.1 
Fiber (g/Kg DM) 0.0 
Starch (g/Kg DM) 14.5 
Gross Energy (Kj/g DM) 21.2 

 

3.1.3.2. Fish rearing and sampling 

Young adult zebrafish (3 months of age) were selected according to similar 

size and separated into four groups each composing three males and five females. 

The experiment was repeated in two trials. For each experimental group, males and 

females were isolated in 3 l tanks connected to a water recirculation system with 

980 l of water containing a ceramic biofilter and mechanical filtration (50 µm), UV 

sterilization and a granular activated carbon filter (Tecniplast ZebTEC). The rearing 

system water was partially (10%) replaced daily and the temperature kept at 

28.5±0.5°C, 700±50 µS/cm and pH 7.5±0.1. After 2 days of acclimation, each 

experimental group was fed ad libitum twice a day for 68 days, with each 
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corresponding experimental diet. Food consumption was visually controlled, and 

any remains were removed daily. The broodstocks were sampled to determine the 

weight and standard length. length at the beginning (day 1), middle (day 25) and 

end (day 68) of the experiment. After 3 weeks of experimental feeding, fish from 

each group were regularly mated every week to guarantee a washout of matured 

eggs originating from prefeeding conditions. Embryos from two successful spawns 

per trial of each broodstock were collected and incubated in 1 l of system water 

(28.5±0.5°C, 700±0 µS/cm and pH 7.5±0.1) containing 50 ppt of methylene blue 

(Sigma-Aldrich, Saint Louis, MO) in static conditions with A daily renewal of 95% 

water volume. Egg diameter and perivitelline space (distance from the egg 

membrane to the embryo) were measured 2 h (64-cell stage) after fertilization 

(n=20) and hatched larvae (n=20) were sampled for standard length and dry weight 

at 5, 10 and 28 days post-fertilization (dpf). Measurements were performed through 

photographic images of samples (Canon power shot G12, Japan) using a 

stereomicroscope (Leica MZ6, Germany), and posterior analysis in AXIO VISION 

software (Carl Zeiss, Germany). The larvae dry weight was determined after 

dehydration for 24 h at 60°C. 

In order to evaluate larvae skeletal deformities, 20 larvae per treatment were 

sampled at 28 dpf, anesthetized with a lethal dose of MS-222 (Sigma-Aldrich) and 

stained. For that purpose, larvae were washed with a phosphate buffer saline 0.1 M, 

pH 7.4 solution and stored in 75% ethanol. The acid-free double stain protocols 

were done using alcian blue 8GX for cartilage detection and Alizarin red S (both from 

Sigma-Aldrich) for bone detection (Walker and Kimmel, 2007b). Samples were 

stained in alcian blue for 1.5 h and stained overnight with alizarin red S in a 1% KOH 

solution. The tissues were cleared with a 0.5% KOH solution. Samples were stored 

in a solution of 50% glycerol (Merk Millipore, Billerica, MA) at 20°C until the 

evaluation of the skeleton was performed.  

After 68 days of feeding, to avoid stress during the mating trials zebrafish 

males from each treatment were sampled for sperm motility analyses at the end of 

the experiment. Males were anesthetized in tricaine methane sulfonate solution 

(MS-222) prepared according to (Westerfield, 2005), and sperm collected by an 

abdominal massage using a micropipette. 0.5 µl of sperm were placed on a Makler 
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chamber and activated immediately by mixing with 10 µl of water from the system. 

Motility parameters were recorded at 15 s after activation, using the CASA software 

(Proiser, Spain). Two replicates of each sperm sample were analyzed for each 

individual male (n=6 males per treatment) (Table 3.1). The images were captured 

with a Basler camera A312f (Basler Afc, Germany) and processed with the ISAS 

software (Proiser). TM (%); PM (%), VCL (µm/s), VSL (µm/s) and LIN (%) were 

determined to assess sperm quality in each treatment. Only those spermatozoa with 

VCL>10 µm/s were considered motile. 

 

Figure 3.1 Experimental design to evaluate the effect of control diets (CD, PUR) and phospholipid 
(PL) supplemented diets (PC and PE) on zebrafish growth, reproduction, gametes quality and skeletal 
development. 

 

3.1.3.3.  Data analysis 

SPSS 18.0 software was used for statistical analysis. Data were expressed as 

means±SD, and normalized by logarithmic or arcsine transformation when results 

were expressed as percentages. All data were subjected to one-way ANOVA at each 

sampling. Statistical differences between treatments were detected using Tukey´s 

multiple comparison tests (P<0.05).  

 

3.1.4. Results 

After 25 days from beginning the experimental feeding period, the 

broodstock fed commercial control diet (CD) revealed a significantly higher weight 
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than PUR and PE, but it was not significantly different from the PC treatment. At the 

end of the experiment (68 days), the final weight of the breeders fed the CD 

treatment was significantly higher than the PE treatment, but not significantly 

different from the PUR and PC treatments (Table 3.2). However, fish from the CD 

treatment did not reproduce successfully and no eggs were obtained. PUR treatment 

obtained an average of 173 eggs per spawn, while in PE the yield was 183 eggs, and 

80 eggs per spawn in the PC treatment (Table 3.3). There were no significant 

differences in the standard length among the different broodstock groups 

throughout the experiment (Table 3.2).  

Egg diameters were significantly higher in the PE treatment relative to PUR, 

but no different from the PC treatment (Figure 3.3 A). The PUR treatment results 

showed a significantly smaller perivitelline space (0.20±0.02 mm) in the developing 

egg (64 cells stage) compared to PC and PE treatments (Figure 3.3 B).  

 

Table 3.2 Zebrafish broodstock mean standard length and mean wet weight for dietary treatments 
(CD, PUR, PC, PE) at experiment days 1, 25, and 68. Data expressed as means±SD (n=16 broodfish, 
including males and females). 

 

Different superscripts in the same column=significant differences between treatments (one-way ANOVA-Tukey, 

P<0.05). 

 

Table 3.3 Total number of fertilized eggs, hatched larvae, larvae hatching rate, larvae standard length 
(5, 15 and 28 dpf) and survival for dietary treatments (CD, PUR, PC, PE). 

 

Different superscripts in the same column=significant differences between treatments (one-way ANOVA-Tukey, 

P<0.05). 
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Figure 3.2 Effect of dietary treatments (CD, PUR, PC, PE) on zebrafish (64 cell stage) A) egg diameter 
and B) perivitelline space. Columns represent means±SD deviation (n=20 eggs). Different letters 
represent significant differences (one-way ANOVA-Tukey, P<0.05). 

 

Sperm total motility, progressiveness, and curvilinear and straight-line 

velocities were significantly improved by PE treatment when compared to PUR and 

CD treatments, but the values obtained were not significantly different from the data 

of the PC treatment (Figure 3.3 A–D), 15 s after activation. The PC supplemented diet 

resulted in higher curvilinear velocity of spermatozoa than those obtained in the CD 

test (Figure 3.3 C). Straight-line velocity was also improved by the PE treatment at 

15 s post-activation when compared to data from the PUR and CD treatments; 

however, it was not significantly different from the PC treatment (Figure 3.3 D). 

Linearity did not reveal any significant differences among treatments (Figure 3.3 E).  
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Figure 3.3 Zebrafish breeders: effect of dietary treatments (CD, PUR, PC, PE) on sperm quality after 
68 days of feeding. Figures represent average sperm motility parameters: A) TM, B) PM, C) VSL, D) 
VCL, and E) LIN. Columns represent means±SD bars (n=6 males). Different letters represent 
significant differences (one-way ANOVA-Tukey, P<0.05). 

 

Although there were no significant differences, the highest hatching rate was 

observed for PC the treatment, followed by progeny obtained from PE and PUR-

treated broodfish (Table 3.3). The highest larval survival rate observed was for fish 

derived from the PE treatment, followed by PUR and PC treatments, without 

statistical differences (Table 3.3). There were no significant differences in larval 

standard lengths among treatments (P<0.05) throughout the experiment (Table 

3.3). Larvae dry weight showed no significant differences among treatments at 5 and 

15 dpf. However, at 28 dpf larvae from PE treatment had significantly higher dry 
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weights when compared to larvae from the PUR treatment, although the data were 

not significantly different from the PC test (Figure 3.4). 

 

Figure 3.4 Zebrafish larvae: dry weight at 5, 15 and 28 dpf for dietary treatments (CD, PUR, PC, PE). 
Columns represent means±SD (n=20). Different letters represent significant differences (one-way 
ANOVA-Tukey, P<0.05). 

 

The PC treatment produced a significantly higher incidence of skeletal 

deformities in the progeny (as defined in Figure 3.5), when compared to those 

malformations in larvae from the PE and PUR treatments (Figure 3.5).  

 

Figure 3.5 Effect of dietary treatments (CD, PUR, PC, PE) on zebrafish larvae skeletal deformities (28 
dpf). Columns represent means±SD (n=20). Different letters represent significant differences (one-
way ANOVA-Tukey, P<0.05) between treatments. 
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The main bone deformities observed in the PC treatment were fused and 

compressed caudal fin vertebrae (29–30 vertebrae) (Figure 3.6 A) and fused caudal 

and caudal fin vertebrae (Figure 3.6 B). Deformities in the caudal fin arches and the 

presence of ectopic elements were also observed (Figure 3.6 C). 

 

Figure 3.6 Deformities affecting the vertebral column of zebrafish at 28 dpf A) fused and compressed 
caudal fin vertebrae 28-29 (arrow), with malformed neural and haemal arches. B) Fused caudal and 
caudal fin vertebrae (arrow), with malformed neural and haemal arches. C) Presence of an ectopic 
element in the caudal fin (arrowhead) and ectopic arches over urostyle (arrow). 

 

3.1.5. Discussion 

Phospholipids and, in particular, fatty acids are the structural components 

participating in the regulation of plasma membrane properties. The phospholipids 

phosphatidylcholine and phosphatidylethanolamine and their plasmalogens are the 

most abundant forms present in the semen of both freshwater and marine fish 

species (Drokin, 1993b; Martínez-Páramo et al., 2012a).  
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Nutrition is known to be highly important for successful broodstock 

spawning (Izquierdo et al., 2001; Migaud et al., 2013). Specific diets are commonly 

supplied to broodstock in commercial aquaculture during the reproduction period 

to enhance reproductive potential and gametes quality (Fernández-Palacios et al., 

1997). In our work, the use of a commercial diet (CD) led to a significant weight 

improvement however, at the expense of a dramatic reproductive impairment. The 

other treatments were formulated with purified ingredients to allow detailed 

control over its composition. The fatty acid composition of phospholipid classes 

determines the effect of these phospholipids. While PC is known to contain PUFAs 

(Izquierdo et al., 2000), PE has a higher proportion of docosahexaenoic acid (DHA) 

than PC, destined for membrane formation (Bruce et al., 1999). An adequate 

modulation of the n- 3/n-6 HUFA ratio in broodstock diets is known to improve the 

levels of arachidonic (ARA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) 

acids transferred to eggs, improving the hatching rate and progeny survival (Bruce 

et al., 1999). Although final weights of the PC and CD broodstock were not 

significantly different in the zebrafish, a major difference in spawning success was 

evident, indicating that particular nutrients such as phospholipids and essential 

fatty acids also have a great effect on their reproduction success. These results 

demonstrate the necessity of a dietary formula that fulfills the zebrafish broodstock 

nutritional requirements for growth and gametogenesis.  

Using purified diets to study fish nutritional requirements is a powerful 

research tool since it allows precise and controlled manipulation of nutrients in the 

diet (Carvalho et al., 2006). Our study of the effects of PC and PE in the diet. resulted 

in a better understanding of their role in the reproductive process; this diet is an 

adequate tool to assist in the study of the nutritional requirements and dietary 

effects on gametes and progeny of zebrafish.  

Fecundity and egg hatching success and larval quality are known to improve 

through optimization of the n-3 and n-6 long-chain polyunsaturated fatty acids (LC-

PUFA) intake (Pavlov et al., 2004). In our study, the PC treatment group achieved 

the highest hatching rate when compared to the other treatments. PC 

supplementation is known to promote the highest growth rates in several fish 

species (Hamre et al., 2013) when compared with other phospholipid classes; 
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however, it is highly associated with the occurrence of skeletal deformities (Geurden 

et al., 19971998) as also observed in the results of the present study. PC is the main 

product of phospholipid synthesis in fish enterocytes, inducing enhanced 

lipoprotein synthesis that can be responsible for the growth promotion effect of PC 

through the energy flux increment from the intestinal mucosa into the blood (Hamre 

et al., 2013). In our work, larvae resulting from the PC supplemented parents 

showed no significant differences in growth when compared to the other 

treatments. However, a significantly higher incidence of skeletal deformities was 

observed, which may help to explain the lowest survival rates observed in this 

group. Since PC is an important source of essential fatty acids (DHA and EPA) for 

embryos (Hamre et al., 2013), the optimal PC demand in larvae should be assessed 

in future studies. Rønnestad et al.  (1995) observed in larvae at 5 and 10 dpf a better 

growth performance with a PC supplemented diet, since at first feeding there is PC 

catabolism and PE net synthesis to body development, and consequently there is a 

high demand on PC. In our work at 28 dpf there was a dramatic improvement of 

larval dry weight in PE treatment, a fact that could be explained by the important 

role of this phospholipid on larval body development (Rønnestad et al., 1995). Lipid 

metabolism and turnover are associated with cell death initiation and progress 

(Tyurina et al., 2000) through signaling mechanisms, where cells expose PE on the 

cell surface in the early stages of apoptosis (Emoto et al., 1997). PE is the primary 

phospholipid reported to delay oxidative degradation in animal cells (Reiss et al., 

1997), thus it may be responsible for better sperm quality. Larval survival rates of 

PE (62.5%) were also the highest when compared to the other treatments and to the 

work of Carvalho et al. (2006) (55%) using purified diets for zebrafish during larval 

growth.  

The spermatozoa plasma membrane typically has a high content of 

polyunsaturated fatty acids, being thus more susceptible to lipid peroxidation 

caused by reactive oxygen species (ROS) (Nagasaka et al., 2004). This oxidative 

stress may compromise spermatozoa functionality (Lahnsteiner et al., 2009), since 

it affects membrane integrity, fluidity and permeability (Nagasaka et al., 2004). 

Furthermore, sperm motility in European sea bass (Dicentrarchus labrax) was found 

to be negatively correlated with lipid peroxidation and cholesterol/phospholipid 

ratio (Martínez-Páramo et al., 2012a). The broodstock dietary supplementation in 
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phospholipids seems to improve sperm total motility, progressiveness and velocity 

mainly in the first seconds of sperm motility. This fact could be due to the 

incorporation of these phospholipids in the spermatozoa membrane, as have been 

demonstrated in other species (Asturiano et al., 2001; Henrotte et al., 2010; Labbé 

et al., 1995). However, further studies are needed to confirm this hypothesis in our 

study.  

It has been suggested by Pickova et al. (1999) that the dietary lipids during 

gonad maturation can alter fatty acid egg composition and disturb subsequent 

embryonic development. This could be observed in our work where PE diet 

supplementation improved the egg diameter and perivitelline space compared to 

the control (PUR). Both phospholipids are significantly similar, revealing that the 

maternal nutrient supplementation successfully enhances egg dimensions. 

Moreover, it is important for further studies to check the lipid and fatty acid profile 

of the zebrafish egg yolk as well as the spermatozoa plasma membrane. The 

perivitelline space develops after egg activation and is shown in zebrafish that a 

large perivitelline space is related to spawning quality, with unhealthy eggs having 

a narrow perivitelline space  (Kwon et al., 2015; Otani et al., 2009). However, for a 

better understanding of egg quality, further biochemical analyses should be 

performed as a complement to the mor- phological parameters, perivitelline space 

and egg diameter (Cabrita et al., 2008).  

In conclusion, PC fed fish showed good sperm quality parameters and the 

highest hatching rate of eggs; however, the survival, growth and incidence of 

skeletal deformities revealed some deleterious effects on the larvae. On the other 

hand, diets with PE promoted not only the production of good quality sperm but also 

did not affect the growth or quality of larvae. This work proves the importance of 

dietary control on the reproductive success of zebrafish and shows that 

supplementation in phospholipids may help to improve sperm and egg quality. 

Further studies are needed to understand the role of these phospholipids in larvae 

growth, which highlights the importance of different diet formulations in specific 

periods of the zebrafish life cycle for optimization of rearing. 

. 
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PREAMBLE 
 

One of the major sources of variability in previous studies focusing on 

zebrafish reproduction was the high variability of gametes quality between males. 

This is a common issue in broodstocks, especially in teleost species. This fact is 

particularly relevant in terms of assisted reproduction techniques since they require 

high-quality gametes to avoid increased labor, animal manipulation and costs 

related to low-quality samples. The fact that assisted reproduction techniques can 

reduce the initial quality of gametes due to manipulation, refrigeration and/or 

cryopreservation, increases the necessity of the selection of high-quality breeders. 

In addition, high-quality zebrafish breeders are valuable assets, especially 

from transgenic and mutant zebrafish lines. Therefore, the application of the 3R´s 

principles is essential in zebrafish facilities and a non-lethal sperm collection 

method that allows repeated non-invasive samplings is an important methodology 

to apply in the facilities. Male aging is considered a factor related to poor sperm 

quality. Moreover, the use of an inadequate sperm collection frequency can lead to 

low sperm sample quality in teleost species. Consequently, it was highly relevant to 

understand the time required for zebrafish males to recover baseline sperm quality 

after the first sperm collection.  

The objective of this chapter was to evaluate the optimal broodstock 

conditions in terms of age and sperm stripping frequency related to the highest sperm quality to support sample donorǯs selection for cryopreservation. This 
chapter represents an article published in the Zebrafish journal first authored by 

Patricia Diogo. 

. 
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4.1.1. Abstract 

Selection criteria for sperm cryopreservation are highly relevant in zebrafish 

since sperm quality is particularly variable in this species. Successful 

cryopreservation depends on high-quality sperm, which can only be ensured by the 

selection of breeders. Consequently, male selection and management are a priority 

to improve cryopreservation, and therefore, this study aimed to characterize 

optimal age and sperm collection frequency in zebrafish. For this purpose, males 

from wild-type (AB) and from a transgenic line (Tg(runx2:eGFP)) were sampled at 

6, 8, 12 and 14 months. For each age, sperm was collected at time 0 followed by 

samplings at 2, 7 and 14 days of rest. Sperm quality was assessed according to 

motility and membrane viability parameters. The quality assessment showed that 

Tg(runx2:eGFP) displayed significantly higher motility than AB and younger males 

showed higher motility in both lines. Sperm collection frequency affected 

membrane viability. While AB fish recovered sperm viability after 14 days of rest, 

Tg(runx2:eGFP) could not recover. Consequently, it may be important to study the 

sperm quality of each zebrafish line prior to sperm cryopreservation. Taking into 

consideration the results achieved in both lines, sperm collection should be 

performed between 6 to 8 months of age with a minimum collection interval of 14 

days. 

 

4.1.2.  Introduction 

Successful cryopreservation depends on several factors, the selection of high-

quality sperm is one of the most important since the freezing process induces 

damage that decreases sperm quality significantly (Cabrita et al., 2010). Since high-

quality sperm is related to high-quality breeders (Cabrita et al., 2010), the selection 

of male donors is essential for broodstock management and cryopreservation 

programs. Zebrafish is an established model species maintained in laboratories 

worldwide and extensively used in numerous research fields, including biological 

and biomedical research (Howe et al., 2013; Lieschke and Currie, 2007). As a 

consequence, in the past years, abundant and valuable wild-type, mutant and 

transgenic zebrafish lines were established, posing problems in terms of space and 

management. To solve this issue, sperm cryopreservation can be used to support 
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zebrafish facility management and to safeguard all those valuable genetic resources 

(Hagedorn et al., 2012).  Zebrafish sperm cryopreservation was achieved for the first 

time more than 30 years ago by Harvey et al. (1982). However, until today, the most 

relevant issue for successful and reproducible results using cryopreservation is the 

lack of methodological standardization among laboratories and rearing facilities, 

which translates into high variability in post-thaw sperm quality and in vitro 

fertilization success.  

Sperm quality is defined by the ability of sperm to successfully fertilize an egg 

(Bobe and Labbé, 2010; Migaud et al., 2013), which is dependent on factors such as 

heritage (Hansen and Price, 1999), spermiation period, favorable environmental 

conditions for activation of sperm motility (Pizzari et al., 2008), parental age 

(Gasparini et al., 2010; Kidd et al., 2017) and sperm output frequency.  

It has been reported that the age of males affects both sperm production and 

quality (Gasparini et al., 2010; Johnson et al., 2015), resulting in lower reproductive 

success. This phenomenon is associated to the accumulation of de novo mutations in 

germ cells (Hansen and Price, 1995; Hansen and Price, 1999), thus decreasing the 

genetic quality of gametes (Hansen and Price, 1995; Pizzari et al., 2008) and altering 

sperm functionality. It has been reported that in humans, age is associated with 

lower sperm volume, motility and percentage of normal sperm cells (Johnson et al., 

2015; Kidd et al., 2017). Furthermore, advanced parental age in several species is 

associated with a decline in sperm competition (Pizzari et al., 2008; Radwan, 2003). 

However, the decrease of sperm competition with age was not observed in teleosts, 

such as reported for sockeye salmon (Oncorhynchus nerka) (Hoysak et al., 2004) in 

in vitro fertilization experiments and for guppy (Poecilia reticulata) natural spawns 

(Rowe and Pruett-Jones, 2011). Consequently, the effect of age on sperm quality is 

not similar in all vertebrates and should be investigated thoroughly in zebrafish to 

ensure the highest sperm quality for cryopreservation purposes.  

From animal welfare and practical point of view, the most convenient 

technique for sperm collection in a zebrafish facility is through abdominal massage, 

since it is a non-lethal technique (Buchanan-Smith et al., 2005). In this way, sperm 

collection can be performed repeatedly on the same male (Pruneda et al., 2005). 
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The influence of sperm collection frequency on sperm quality has been 

assessed in teleost species such as trout (Salmo trutta) (Billard et al., 1971; 

Büyükhatipoglu and Holtz, 1984) turbot (Scophthalmus maximus) (Suquet et al., 

1992a), European sea bass (Dicentrarchus labrax) (Zohar et al., 1984) , and white 

fish (Coregonus peled) (Hochman et al., 1974). However, it is commonly accepted 

that an inappropriate sperm collection frequency affects sperm quality (Migaud et 

al., 2013) and this must be determined for each species. Consequently, the 

assessment of an appropriate sampling frequency that allows full recovery of sperm 

quality in zebrafish is essential for assisted reproduction purposes.  

Motility is the most widely studied quality parameter in fish sperm (Gallego 

and Asturiano, 2018; Rurangwa et al., 2004) and although other analyses are needed 

to guarantee the status of spermatozoa, it is a useful tool to infer the probability of 

successful fertilization and to assess the previously mentioned factors (Fauvel et al., 

2010; Gallego and Asturiano, 2018). Still, there are no universal sperm quality 

biomarkers, therefore, besides motility, other parameters are needed or accurate 

quality analysis (Bobe and Labbé, 2010; Rurangwa et al., 2001). The viability of the 

plasma membrane is an important feature in spermatozoa since it characterizes the 

integrity of the cell (Rurangwa et al., 2004). Membrane alterations in spermatozoa 

can affect motility initiation (motility is triggered by membrane signaling), motility 

maintenance (loss of intracellular ATP) and the ability of the sperm nucleus to 

produce the first embryonic cell after fertilization (Fauvel et al., 2010; Herráez et al., 

2017; Pérez-Cerezales et al., 2010). In this way, analysis of sperm quality is a useful 

tool to select the most appropriate conditions to collect zebrafish sperm for 

cryopreservation and assisted reproduction purposes.  

This study aimed to characterize the optimal age for sperm collection in 

zebrafish and to evaluate the effect of the frequency of non-invasive sperm sampling 

on motility and plasma membrane viability. 
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4.1.3. Methods 

4.1.3.1.  Zebrafish maintenance 

Zebrafish AB wild-type and transgenic Tg(runx2:eGFP) (Knopf et al., 2011), 

lines, with an AB background, were housed in a standard aquatic recirculation 

system (Zebtec®, Tecniplast, Italy) with 980 L of water and containing a biological 

filter (ceramic beads), mechanic filtration (50 µm), granular activated carbon filter 

and UV sterilization (180 000 µWs/cm2) to maintain water quality. The water 

temperature (28±0.5°C), conductivity (750±70 µS/cm) and pH (7.5±0.2), 

parameters were constantly monitored through automatic probes and water was 

partially replaced daily (10%) through an automatic mechanism. The fish room had 

a controlled photoperiod with a 14:10 h light: dark cycle, an independent air 

conditioning system (26±1°C) and an air extraction system to guarantee the air 

renewal in the room, maintaining the humidity close to 60%. Males and females 

were maintained separately in 3.5 l tanks. The fish were fed twice a day ad libitum 

with ZEBRAFEED® (Sparos Lda, Portugal) and Artemia nauplii (AF 480; INVE, 

Belgium) and fish debris were removed daily.  

 

4.1.3.2.  Sperm collection and quality analysis  

On the day prior to sperm collection (16 h before the sampling) (Diogo et al., 

2018), males and females were placed in 1 l breeding tanks at a 1:1 sex-ratio 

(Tecniplast, Italy) and maintained separated while sharing the same water, in order 

to promote hormonal stimulation for improved release of gametes. Males were 

anesthetized with 0.168 mg/ml of tricaine methane-sulfonate solution (MS-222) 

(Sigma Aldrich, Spain) prepared according to Westerfield (Westerfield, 2005) and 

sperm was collected (1 h after the lights turn on) by an abdominal massage using a 

glass capillary tube connected to a mouth piece. Sperm was immediately diluted with ͳͲ µl of sterilized and filtered ȋͲ.ʹͲ μmȌ Hankǯs Balanced salt solution (HBSS) 

at 300 mOsm/Kg (Hagedorn and Carter, 2011) to prevent motility activation, in 

accordance with previous studies (Yang and Tiersch, 2009). After sperm collection, 

the samples were maintained at 4°C in the dark until quality analysis was performed 

(between 1-2 hours after collection). Meanwhile, the males recovered from the 
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anesthesia in clean system water and were returned to the rearing tanks. Sperm 

motility was evaluated using CASA (Proiser, Spain). Only samples with a 

concentration higher than 3x107 sperm cells/ml were analyzed (Diogo et al., 2018). 

To evaluate motility parameters, 0.5 µl of sperm at room temperature was placed 

on a Makler chamber under a 10 x negative phase-contrast objective (Nikon E200, 

Tokyo, Japan) and immediately activated with 5 µl of filtered and sterilized system 

water at 28±1°C. Motility was recorded every 10 s post-activation, for 1 min for each 

sample. The images were captured with a Basler camera A312f (Basler Afc, 

Germany). Total motility (TM, %), progressive motility (PM, %), curvilinear velocity 

(VCL, µm/s), straight-line velocity (VSL, µm/s) and linearity (LIN, %) were 

determined to assess sperm quality. Only those spermatozoa with VCL>10 µm/s 

were considered motile. 

To evaluate spermatozoa membrane viability, the percentage of viable cells 

was quantified using the fluorescent dyes propidium iodide (PI) (Invitrogen, Spain) 

and SYBR 14 (Invitrogen, Spain). Before the addition of the fluorescent dyes, the 

sperm sample was re-diluted (1:10) in HBSS, to reduce cell concentration. 

Incubation with 5 µM SYBR 14 and 220 µM PI was performed in the dark at 4°C for 

5 min. Cell viability was quantified under an epifluorescence microscope (Nikon 

E200, Tokyo, Japan), equipped with triple excitation filter block DAPI-FITC-Texas 

Red (excitation filter wavelengths: 395–410 nm (bandpass, 403 CWL), 490–505 nm 

(bandpass, 498 CWL), and 560–580 nm (bandpass, 570 CWL)). Dead cells with 

disrupted membrane labeled in red (PI-stained cells) and live cells labeled in green 

(SYBR 14 stained cells) were counted, and the percentage of viable cells was 

determined. At least 100 cells per slide were counted, and two slides per sample and 

per condition were observed. 

 

4.1.3.3. Effect of zebrafish line, male age and sperm collection frequency 

on sperm quality 

Males from wild-type (AB n=90) and Tg(runx2:eGFP  n=85) zebrafish lines 

were sampled for sperm collection as previously described. To study the effect of 

age, sperm motility index was evaluated from: a) AB line at 6 (n=26), 8 (n=13), 12 

(n=27) and 14 (n=24) months of age; b) Tg(runx2:eGFP) line at 6 (n=23), 8 (n=17), 
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12 (n=18) and 14 (n=27) months of age. The analysis of membrane viability was 

performed for the same males: a) AB line at 6 (n=20), 8 (n=13), 12 (n=27) and 14 

(n=21) months of age; b) Tg(runx2:eGFP) line at 6 (n=23), 8 (n=12), 12 (n=18) and 

14 (n=27) months of age. 

Sperm collection frequency was evaluated in terms of motility in AB (n=90) 

and Tg(runx2:eGFP) (n=85) zebrafish lines. From the 90 AB and 85 Tg(runx2:eGFP) 

males a total of 78 (AB) and 69 (Tg(runx2:eGFP)) males had sperm samples above 

3x107 sperm cells/ml and were used to establish 3 treatment groups (AB n=26; 

Tg(runx2:eGFP) n=23). The first group was sampled 2 days after the first sampling 

(AB n=13; Tg(runx2:eGFP) n=17). The second group was sampled after 7 days of rest 

(AB n=26; Tg(runx2:eGFP) n=18). The third group was sampled after 14 days of rest 

(AB n=24; Tg(runx2:eGFP) n=23). 

The analysis of membrane viability was performed for the same males in: a) 

AB line at the first sampling (n=23), 2 (n=18), 7 (n=23) and 14 (n=11) days of rest; 

b) Tg(runx2:eGFP) line at the first sampling (n=22), 2 (n=13), 7 (n=22) and 14 

(n=22) days of rest. Not all the samples analyzed for motility were analyzed for 

membrane viability due to the low sperm volume. 

Sperm motility parameters of the individual males were assessed through 

CASA system every 10 s post-activation during 1 min, to determine TM, PM, VCL, 

VSL and LIN. Viability of the plasma membrane was evaluated as previously 

described (Figure 4.1).   
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Figure 4.1 Experimental design to evaluate the effect of male age and sperm collection frequency on 
sperm motility and viability of AB and Runx2 zebrafish lines. 

 

4.1.3.4.  Data analysis 

Due to the high number of variables related to sperm motility measured for 

each sample (5 motility parameters × 6 post-activation times = 30 motility-related 

variables), we started by evaluating their degree of redundancy. Principal 

Component Analysis (PCA) was used in order to assess whether it was possible to 

aggregate all 30 variables into a small number of variables, without significant 

information loss. After a preliminary exploratory analysis, we observed that the LIN 

variables displayed very low variance, except for sperm samples with extremely low 

motility and no particularly relevant linear correlation with the other variables. As 

such, we have no longer considered the LIN parameters for analysis. In contrast, all 

other parameters (TM, PM, VCL and VSL) displayed a high degree of positive 

correlation among them, which was reflected by the fact that it is possible to 

aggregate these 24 variables into a single variable (PC1), that still retains 52% of 

observed variation (after mean-centering and auto-scaling of these variables, to 

ensure that PCA does not give preference to higher variance variables) and which can be interpreted as a general ǲmotility indexǳ. 
This motility index (i.e. the first component of the PCA analysis) consisted of 

a weighted mean of these motility measurements (after standardization), which was 

used for further ANOVA analysis. 
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SPSS 18.0 software was used for statistical analysis. Data were expressed as 

means±95% C.I. (95% of the confidence interval of the mean), and normalized by 

arcsine transformation when results were expressed as percentages. Statistical 

differences between treatments were detected by ANOVA and Student-Newman-

Keuls (SNK) multiple comparison post hoc tests (P<0.05). A three-way ANOVA (SNK, 

P<0.05) was performed on all motility (PC1) data. For each zebrafish line, a two-way 

ANOVA (SNK, P<0.05) was applied to evaluate the effect of age and sperm collection 

frequency on sperm quality. 

 

4.1.4.  Results 

Sperm motility parameters from CASA analysis are presented in 

supplementary table 1 (AB) and 2 (Tg(runx2:eGFP)) where we could observe a 

decrease of motility with aging and with low post-stripping recovery times. A three-

way ANOVA (SNK, P<0.05) was performed on motility index (PC1) data which 

showed that zebrafish line is the factor with the largest main effect on motility 

(Table 4.1), since Tg(runx2:eGFP) had significantly higher sperm motility when 

compared to AB (Figure 4.2 A and B, 4.3 A and B). Given the high number of observed 

significant interaction effects between factors (line, age and stripping frequency) 

(Table 4.1), which impair interpretation of the main treatments effects, a two-way 

ANOVA (SNK, P<0.05) was applied for each line independently, to study the main 

effects of age and stripping frequency (along with possible interactions between 

these factors).  
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Table 4.1 Zebrafish sperm motility analysis of Principal component related to age, stripping 
frequencies and their interactions in AB and Tg(runx2:eGFP) line. 

Significant differences (three-way ANOVA (SNK, P<0.05)) are represented with an asterisk. 

 

Both lines had a consistent main effect of age, where younger males (6 and 8 

months) had significantly higher sperm motility when compared to older males (12 

and 14 months) (Figure 4.1.4.1 A and B). 

 

Figure 4.2 Zebrafish sperm motility index according to age of: A) AB line at 6 (n=26), 8 (n=13), 12 
(n=27) and 14 (n=24) months of age. B) Tg(runx2:eGFP) line at 6 (n=23), 8 (n=17), 12 (n=18) and 14 
(n=27) months of age. The analysis was performed with the baseline data of the first sampling. Bars 
represent means±95% of the confidence interval and statistical differences (two-way ANOVA-SNK, 
P<0.05) between fish age are represented with letters. 

Three-way ANOVA (p value < 0.005) Motility (PC1) 

Line 

Age 

<0.001* 

<0.001* 

Frequency 

Strain*age 

Strain*frequency 

Age*frequency 

Strain*age*frequency 

 

0.437 

0.480 

0.212 

<0.001* 

0.024* 

AB (two-way ANOVA) (p value < 0.005)  

Age 0.025* 

Frequency 0.825 

Age*frequency 

 

0.002* 

runx2 (two-way ANOVA) (p value < 0.005)  

Age 0.001* 

Frequency 0.179 

Age*frequency 0.001* 
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The results of stripping frequency on sperm motility were also consistent 

between both lines, with no significant main effect being observed (Table 4.1; Figure 

4.3 A and B). In both lines, there was an age interaction with frequency effect, which 

means that stripping frequency had an effect on sperm motility that depends on age 

(Figure 4.4), though stripping frequency seems to have little effect on sperm motility 

on younger fish, older fish tend to display lower motility when the recovery time is 

below 14 days. 

 

 

Figure 4.3 Zebrafish sperm motility index after different sperm stripping frequencies. The number of 
the stripping frequency is related to the time of rest between sperm collections. After the first 
sampling sperm was collected after 2, 7 and 14 days of rest between samplings.  The analysis was 
performed in: A) AB line at first stripping (n=26) and after 2 (n=13), 7 (n=27) and 14 (n=24) days of 
rest, B) Tg(runx2:eGFP) line at first sampling (n=23) and after 2 (n=17), 7 (n=18) and 14 (n=27) days 
of rest. The analysis was performed with males with 6 months of age.  Bars represent means±95% of 
the confidence interval and statistical differences (two-way ANOVA-SNK, P<0.05) between sperm 
collection frequencies are represented with letters. 

 



 

102 
 

 

Figure 4.4 Effect of the interaction in zebrafish sperm motility index between males age and sperm 
stripping frequency in (A) AB wild-type line and (B) Tg(runx2:eGFP) line. The number of the stripping 
frequency is related to the time of rest between sperm collections. Analysis was performed in the 
first sampling [AB n=24; Tg(runx2:eGFP) n=27] and after 2 [AB n=14; Tg(runx2:eGFP) n=23], 7 [AB 
n=33; Tg(runx2:eGFP) n=22], and 14 [AB n=19; Tg(runx2:eGFP) n=13] days of rest between 
samplings. This analysis is related to males with 6–8 months [AB n=39; Tg(runx2:eGFP) n=40] and 
12–14 months [AB n=51; Tg(runx2:eGFP) n=45] of age. Bars represent 95% of confidence interval. 

 

The percentage of viable cells was analyzed with a three-way ANOVA (SNK, 

P<0.05) after arcsin transformation, with zebrafish line displaying no main effect on 

sperm viability (Table 4.2). However, the high number of interaction effects 

impaired a clear interpretation of the effect of age and stripping frequency on sperm 

viability, so, as previously, a two-way ANOVA (SNK, P<0.05) was applied to each line 

independently to study the effect of age and stripping frequency. The AB line showed 

no significant differences between all the studied ages in terms of sperm viability 

(Figure 4.5 A and B), while Tg(runx2:eGFP) line had significantly higher sperm 

viability at 8 months of age. 
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Table 4.2 Zebrafish sperm membrane viability analysis related to age, stripping frequencies and their 
interactions in AB and Tg(runx2:eGFP) line. 

Significant differences (three-way ANOVA (SNK, P<0.05)) are represented with an asterisk. 

 

 

Figure 4.5 Zebrafish sperm viability (%) according to age of: A) AB line at 6 (n=20), 8 (n=13), 12 
(n=27) and 14 (n=21) months of age and B) sperm viability (%) of Tg(runx2:eGFP) line at 6 (n=23), 
8 (n=12), 12 (n=18) and 14 (n=27) months of age. The analysis was performed with the baseline data 
of the first sampling. Bars represent 95% of confidence interval and statistical differences (two-way 
ANOVA-SNK, P<0.05) between fish age are represented with letters. 

 

In the AB line, males sampled for the first time had significantly higher sperm 

viability when compared to 2 and 7 days after stripping, but it was not significantly 

different from 14 days after stripping (Figure 4.6 A and B). Consequently, AB males 

Three-way ANOVA (p value < 0.005) Viability 

Line 

Age 

0.267 

0.007* 

Frequency 

Strain*age 

Strain*frequency 

Age*frequency 

Strain*age*frequency 

 

<0.001* 

0.083 

<0.001* 

<0.001* 

0.346 

AB (two-way ANOVA) (p value < 0.005)  

Age 0.145 

Frequency <0.001* 

Age*frequency 

 

0.003* 

runx2 (two-way ANOVA) (p value < 0.005)  

Age <0.001* 

Frequency <0.001* 

Age*frequency 0.001* 
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were able to recover membrane viability 14 days after stripping. On the other hand, 

Tg(runx2:eGFP) males were not able to recover membrane viability 14 days after 

stripping, since males in the first sampling point had significantly higher sperm 

viability compared with males after 7 and 14 days of recovery (Figure 4.6 B).  

 

Figure 4.6 Zebrafish sperm viability after different sperm stripping frequencies. The number of the 
stripping frequency is related to the time of rest between sperm collections. After the first sampling 
sperm was collected after 2, 7 and 14 days of rest between samplings. The analysis was performed 
in: A) AB line at the first sampling (n=23) and 2 (n=18), 7 (n=29) and 14 (n=11) days of rest, B) 

Tg(runx2:eGFP) line at the first sampling (n=22) and 2 (n=13), 7 (n=22) and 14 (n=23) days of rest. 
The analysis was performed with males with 6 months of age.  Bars represent 95% of the confidence 
interval and statistical differences (two-way ANOVA-SNK, P<0.05) between sperm collection 
frequencies are represented with letters. 

 

4.1.5.  Discussion 

The selection of sperm donors is highly relevant for cryopreservation since 

it can help in reducing post-thaw variability in zebrafish sperm used for in vitro 

fertilization. In captivity, zebrafish has natural longevity of 42 to 66 months, 

depending on reproductive effort and caloric intake (Gerhard and Cheng, 2002). In 

our study, younger zebrafish males (6 to 8 months) showed significantly higher 

sperm motility when compared to older males (12-14 months). In agreement, 

Johnson et al. (2018) observed that older zebrafish males had a decline in sperm 

production and motility, although displaying higher offspring survival. In guppy, 

male age affected negatively sperm morphology, velocity and sperm number but not 

membrane viability. Older males had slower sperm, with longer flagellum and 

higher sperm volume than younger males (Gasparini et al., 2010), but these 

differences did not affect sperm competition success when compared to younger 
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males. It is interesting to observe that both in zebrafish and in guppy there is a 

decrease in sperm motility in older males, which might be associated to the 

accumulation of oxidized proteins and a decline in mitochondrial functionality 

(Payne and Chinnery, 2015). Mitochondria aging-related alterations are among the 

most remarkable features observed in senescent cells. Mitochondrial oxidation is 

the major source of oxidation lesions accumulated with age, affecting mitochondrial 

energy metabolism, which is essential for male reproductive function. The damage 

produced by excessive reactive oxygen species (ROS) in the sperm membrane cause 

reduced sperm motility and impairs its ability to fuse with the oocyte (Ramalho-

Santos, 2009). Oxidative stress reduces sperm motility and viability (Fujihara and 

Howarth, 1978; Hagedorn et al., 2012; Sanocka and Kurpisz, 2004; Wishart, 1984) 

and could be one of the possible explanations for the lower motility in older 

zebrafish males. 

Zebrafish are hierarchical fish with dominant-subordinate relationships, 

which are related to body size and levels of aggression, associated with reproductive 

success (Paull et al., 2010). The hierarchical relationships established among 

zebrafish are strongly connected to sperm competition, which is a post-copulatory 

selection that occurs when females breed with multiple males in the same 

reproductive episode. In this process, sperm from rival males compete to fertilize 

the oocytes (Parker, 1970). In sperm competition for fertilization, there is a strong 

selection for spermatozoa quality parameters that enhance fertilization success, 

such as sperm quantity and quality (Parker and Pizzari, 2010; Rowe et al., 2010). 

Therefore, the reproductive set-up established to determine sperm quality is 

extremely important since changes in the social environment rapidly affects sperm 

competition and therefore sperm quality (Zajitschek et al., 2014) found that under 

high sperm competition environment (two males and one female), males display 

higher sperm motility and velocity than reproductive set-ups where one male was 

available to two females (low sperm competition environment). In our study, males 

of each age were permanently maintained separated from females and the 

reproductive set-up was established in breeding tanks in a sex ratio of 4:4 to 

stimulate reproduction and collect the sperm on the following day.  
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Therefore, the results obtained with our experimental design emphasize the 

effect of age and sperm collection frequency in sperm quality, reducing biases 

associated with sperm competition effects.  

Considering this information, it largely explains the differences observed 

between studies on the effects of zebrafish age on reproduction and sperm quality. 

Not only are the samples highly heterogeneous, but they also manifest adaptations 

and different investments in gamete production according to the social environment 

and hierarchical relationships. Characterization of the effect of zebrafish age on 

sperm competition should be undertaken in the future. 

Spermiogenesis is a complex and highly regulated process, where diploid 

cells called spermatogonia proliferate and differentiate onto mature spermatozoa 

through mitosis, meiosis, and spermiogenesis (Leal et al., 2009). Zebrafish 

spermatogenesis has a cystic pattern with one of the teleosts fastest spermiogenesis 

cycle taking only 6 days to reach spermatozoa full maturation (Leal et al., 2009). 

Reinardy et al. (Reinardy et al., 2013a) observed that with stripping frequencies 

with a maximum of 7 days of rest, the DNA integrity was not altered, despite the fact 

that sperm concentration was affected. Consequently, it was necessary to determine 

the adequate stripping frequency that allows the full recovery of sperm quality. Our 

data showed that stripping frequency does not affect sperm motility, though it does 

affect membrane viability. The AB zebrafish line was able to recover the initial 

membrane viability after 14 days of rest. However, this recovery was not observed 

in the transgenic line, where sperm membrane viability was still decreased after 7 

and 14 days of rest.  

In our study recovery time in younger fish is seemingly faster than in older 

fish, which is observed through the interaction effects of age and stripping 

frequency: older fish display lower sperm motility when the recovery time between 

collections is short, while sperm motility for younger fish seems insensitive to the 

recovery time between collections. Consequently, it is highly advisable to respect 14 

days of rest between sperm collection events, particularly in older fish. The fact that 

younger fish are less susceptible to cellular distress, related to sperm collection 

events, reinforces the selection criteria of using younger fish for sperm collection. 
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The experimental design used in our work allowed a better comprehension 

of the interaction between treatments, that would not be possible otherwise. Both 

zebrafish lines are commonly used in zebrafish facilities and the transgenic model 

was used as a comparison between wild-type fish breeders with genetically 

modified zebrafish lines. The Tg(runx2:eGFP) line has an AB background and 

expresses the Tg(runx2:eGFP) transcription factor which is related to osteoblast 

differentiation but also to the regulation of cell proliferation. Although most studies 

on zebrafish sperm cryopreservation and assisted reproduction are performed with 

wild-type lines, its application is most useful in transgenic and mutant lines, and 

their particularities are generally unknown or disregarded. 

Throughout our experiments the Tg(runx2:eGFP) transgenic line had 

systematically higher sperm motility when compared to AB line. The fact that 

Tg(runx2:eGFP) fish displayed significantly higher sperm motility, but lower 

capacity to recover membrane viability at 7 and 14 days after sperm collection, 

suggests the existence of relevant differences between zebrafish lines in terms of 

sperm quality and susceptibility to damage. Consequently, each zebrafish transgenic 

and mutant line should be investigated prior to the establishment of sperm 

cryopreservation programs.  

The knowledge obtained by this work allows the determination of suitable 

zebrafish age and sperm collection frequencies to obtain the highest sperm quality 

possible to facilitate cryopreservation procedures, respecting the 3 R´s principle. 

Therefore, we consider that males between 6 to 8 months of age have the highest 

sperm quality and at least 14 days of rest should be respected between sperm 

collection events. 
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PREAMBLE 
 

One of the main constrains in cryopreservation techniques is the necessity 

for liquid nitrogen, since it is expensive and hazardous. Nowadays, research facilities 

dedicated to investigation with zebrafish have available electric ultrafreezers (-

150°C). Since this temperature is below the limit considered optimal for germ cell 

storage (-135°C), these equipmentǯs are suitable candidates for an alternative to 
liquid nitrogen storage of cryopreserved samples. Zebrafish sperm 

cryopreservation freezing rates have been the focus of attention by the scientific 

community, however, the maximum freezing rate tested was -25°C/min. The direct 

placement of cryovials on electric ultrafreezer (-66°C/min) would simplify the 

method of zebrafish sperm cryopreservation and storage and would be extremely 

practical in zebrafish facilities. The objective of the first part of this chapter was to 

develop an alternative method to liquid nitrogen for the storage of cryopreserved 

samples in ultrafreezers and the improvement of the freezing rate for this species. 

This study constitutes the first sperm cryopreservation method with ultrafreezers 

in a teleost species.  

To improve the cryopreservation protocol developed in this chapter the 

optimization of the cryoprotectants composition in the extender was performed in 

the second part of this chapter. The concentration of permeating cryoprotectant and 

the combination of permeating and non-permeating cryoprotectants was evaluated 

not only on post-thaw sperm quality and in vitro fertilization success but also on the 

skeletal development of the offspring. 

Overall this chapter proposed a fast and simple method of zebrafish sperm 

cryopreservation in ultrafreezers which constitutes a technological improvement 

highly relevant for this species gene banking. The first part of this chapter 

represents an article published in Journal of Fish Physiology and Biochemistry and 

the second part represents a manuscript submitted on Cryobiology journal; both 

works are first authored by Patricia Diogo. 
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5.1.1. Abstract 

Zebrafish sperm cryopreservation is a fundamental methodology to manage 

and back-up valuable genetic resources like transgenic and mutant strains. 

Cryopreservation usually requires liquid nitrogen for storage, which is expensive and hazardous. Our objective was to evaluate if electric ultrafreezers ȋ−ͳͷͲ°CȌ are a 
viable alternative for zebrafish sperm storage. Zebrafish sperm was cryopreserved in the same conditions ȋ−ʹͲ°C/minȌ, stored either in liquid nitrogen or in an 
ultrafreezer, and thawed after 1 week, 1 month, and 3 months. Sperm motility, 

membrane integrity, and fertilization ability were assessed. There were no 

significant differences in motility and hatching rate throughout storage time. 

Additionally, we aimed at understanding if cryopreservation directly in an ultrafreezer ȋ−͸͸°C/minȌ could improve post-thaw sperm quality. Freezing at −20°C/min was performed as before, and compared to samples cryopreserved with a fast cooling rate by placing directly in an ultrafreezer ȋ−͸͸°C/minȌ. Sperm quality 
was assessed according to motility, viability, DNA fragmentation, and apoptosis 

(annexin VȌ. The −͸͸°C/min cooling rate showed significantly higher membrane and 
DNA integrity, and lower number of cells in late apoptosis in comparison to the other 

treatments. This study showed that zebrafish sperm cryopreservation and storage 

in an ultrafreezer system is possible and a fast cooling rate directly in ultrafreezer 

improves post-thaw sperm quality. 

 

5.1.2. Introduction 

Sperm cryopreservation is a useful tool applied in assisted reproduction in 

over 200 species (Tiersch et al., 2007). It constitutes a long-term storage technique 

that preserves structurally intact living cells (Tsai and Lin, 2012). Cryopreservation 

usually requires liquid nitrogen for storage since it has high thermal stability in 

ultra-low temperatures ȋ−ͳͻ͸°CȌ; however, it is expensive, with limited availability, 
can be hazardous for users, and carry the risk of cross-contamination of the stored 

samples (Grout and Morris, 2009; Larman et al., 2014). Consequently, the use of 

liquid nitrogen has been considered one of the most relevant bottlenecks for 

cryopreservation practical application (Larman et al., 2014; Yuan et al., 2016). 

Although mammalian tissue cultures and microbial suspensions can be stored in 
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−80°C freezers (Esteves-Ferreira et al., 2013; Polak and Pitombo, 2011), these 

conditions are not adequate for storage of gametes, since the traces of liquid water 

observed at this temperature are considered to be responsible for the low stability 

of samples stored under these conditions (Mazur, 1984).  

Nowadays, with the technological advances in the past years, electric ultrafreezer systems ȋ−ͳͷͲ°CȌ are easily available (Álamo et al., 2005; Medrano et al., ʹͲͲʹ; Yavaş and Daskin, ʹͲͳʹȌ in the facilities dedicated to zebrafish research. Liquid water does not exist below −ͳ͵ͷ°C where diffusion rates are negligible 
(Mazur, 1984); therefore, theoretically, gametes could be stored indefinitely using 

these systems. Batista et al (2009) summarize the advantages of electric ultrafreezer 

systems over liquid nitrogen storage. It has higher storage capacity, easier sample 

manipulation, unlike liquid nitrogen storage it does not require periodic reposition 

and the global costs of cryopreservation are more cost-efficient. The disadvantages 

of ultrafreezer are the limited mobility, which in zebrafish facilities is not required, 

and for cryopreservation, the cooling rate is not programmable.  

Altogether, electric ultrafreezers have the potential to be an alternative to 

liquid nitrogen for sperm cryopreservation and storage. There are few studies on 

sperm cryopreservation and storage in an ultrafreezer and the only reports found 

using this technique were in canine (Álamo et al., 2005; Batista et al., 2006), caprine 

(Batista et al., 2009; Medrano et al., 2002), and bull sperm ȋYavaş and Daskin, ʹ ͲͳʹȌ, 

reporting encouraging post-thaw quality results. However, there are no studies on 

this subject using sperm from teleost species.  

Zebrafish is an important model species with increasing interest to the 

scientific community in the past years. Since the development of feasible genome 

editing technologies in the past two decades, such as Tol2 transposon and 

CRISPR/Cas9 (Liu et al., 2017; Suster et al., 2009), thousands of new mutant and 

transgenic strains were developed, posing problems in terms of facilities space and 

management, which cryopreservation can solve (Cabrita et al., 2010; Harvey et al., 

1982a; Robles et al., 2009). However, despite the fact that the first zebrafish sperm 

cryopreservation protocol was developed more than 30 years ago (Harvey et al., 

1982a), there is a lack of standardization of the methodologies (e.g., sperm collection 

and analysis, cryopreservation procedure), which results in high variability on post-
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thaw sperm quality and in vitro fertilization success (Robles et al., 2009). The 

objective of this work was to evaluate if ultrafreezer is a viable alternative to liquid 

nitrogen for zebrafish sperm storage. Furthermore, we aimed to understand if a fast and simple cooling rate ȋ−͸͸°C/minȌ directly in an ultrafreezer is beneficial for 
zebrafish post-thaw sperm quality. 

 

5.1.3.  Methods 

5.1.3.1. Fish rearing and sperm collection 

Adult AB zebrafish males (n=110) and females (n=363) (6–8 months old) 

were selected as main broodstock, according to similar size and maintained 

separated by sex into 3.5 l tanks. Males were distributed in 10 aquariums, in a 

density of 11 males per tank. The 363 females were distributed in 33 aquariums at 

the same density. The fish were maintained in a ZebTEC® (Tecniplast, Italy) 

recirculation system. The fish room had a controlled photoperiod with a 14:10 h 

light/dark cycle, an independent air conditioning system (26±1°C) and an air 

extraction system to guarantee the air renewal in the room, maintaining the 

humidity close to 60%. The water rearing system was partially replaced (10%) daily and the water system maintained at ʹͺ.ͷ±Ͳ.ͷ°C, ͹ͲͲ±ͷͲ μS/cm and pH ͹.ͷ±Ͳ.ͳ. The 
fish were fed twice a day with Artemia nauplii (AF480, INVE, Belgium) and 

ZEBRAFEED® diet (Sparos Lda, Portugal) ad libitum. Food consumption was 

visually controlled, and the debris removed daily.  

For sperm collection, males were anesthetized in 0.168 mg/ml tricaine 

sulfonate solution (MS-222) (Sigma-Aldrich) according to Westerfield (Westerfield, 

2005), rinsed with phosphate buffered saline (PBS) solution and the abdominal 

massage was performed to collect the sperm, using a glass capillary tube attached to a mouth piece. The collected sperm from each individual ȋͳ to ͵ μlȌ was immediately diluted in ͳͲ μl of sterilized and filtered ȋͲ.ʹͲ μmȌ HBSS (Hagedorn et 

al., 2012; Jing et al., 2009a) and pooled after quality analysis and sample selection. 

The sperm samples were maintained at 4°C in the dark until analysis and 

cryopreservation were performed (no longer than1 h). Two sets of experiments 

were performed. 
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5.1.3.2. Experiment 1 — effect of zebrafish sperm storage throughout 

time in an ultrafreezer ȋ−ͷͻͶ°CȌ and in liquid nitrogen 

To understand the viability of zebrafish sperm storage in an ultrafreezer, we 

conducted an experiment where sperm samples from the broodstock established 

previously (n=110), with total motility over 50% (at 10 s post-activation) and cell 

concentration over 3 × 107 cells/ml were selected to perform3 pools (n=12), each pool contained sperm from Ͷ males. A control cooling rate ȋ−ʹͲ°C/minȌ (Yang et al., 

2007) was applied to all samples in a programmable biofreezer (Asymptote Grant 

EF600, UK). Sperm was cryopreserved with a final concentration of 10% N-N 

dimethylformamide (DMF) in HBSS (Asturiano et al., 2015), with a dilution rate of 

pre-diluted sperm to extender of 1:1, in a final volume of ͳͲ μl and stored in ʹ ml 
cryovials (VWR® Low Temperature Freezer Vials). The samples were stored either 

in a liquid nitrogen tank (LN) or in an ultrafreezer (UF). Thawing was performed in 

a 40°C water bath during 8 s (Yang et al., 2007). Samples (n=3 pools) were thawed 

after 1 week, 1 month, and 3 months post-storage. Sperm quality was evaluated 

through sperm motility, membrane integrity and in vitro fertilization success 

(Figure 5.1). 

 

5.1.3.3. Experiment 2 — effect of a fast cooling rate ȋ−ͼͼ°C/minȌ on 

zebrafish post-thaw sperm quality 

To understand if zebrafish sperm can be directly cryopreserved using an 

ultrafreezer system, an experiment was set up where sperm samples from the 

broodstock established previously (n=110), with total motility over 50% (at 10 s 

post-activation) and cell concentration over 3×107 cells/ml, were selected to 

perform 7 pools (n=35). Each pool contained sperm from 5 males. The first treatment was a fast cooling rate of −͸͸°C/min performed by placing the samples 

directly in the ultrafreezer. This method is not programmable, the cooling rate 

obtained was verified through a thermocouple (Hanna Instruments, USA). Two control treatments were performed, both had a −ʹͲ°C/min cooling rate in a 

programmable biofreezer. However, one treatment was stored in a liquid nitrogen 

tank and the other in an ultrafreezer system. The samples were thawed in a 40°C 
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water bath during 8 s. Sperm quality was evaluated in terms of terms of sperm 

motility and membrane integrity. Additionally, other cell quality tests such as cell 

apoptosis (annexin V assay) and DNA integrity (Comet assay) were performed to 

ensure the viability of this process (Figure 5.2). 

 

Figure 5.1 Experimental design to evaluate the effect of the storage type (LN, UF) of cryopreserved 
zebrafish sperm throughout storage time on sperm motility, viability and in vitro fertilization 
success. 

 

Figure 5.2 Experimental design to evaluate the effect of cooling rate (-20°C/min and -66°C/min) 
and storage method (LN, UF) on zebrafish cryopreserved sperm motility, viability, DNA 
fragmentation and apoptosis. 

 

5.1.3.4. Sperm concentration and motility 

Sperm concentration and motility were evaluated using CASA system (ISAS 

Integrated System for Semen Analysis, Proiser, Valencia, Spain) coupled to a phase 
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contrast microscope (Nikon E-200, Nikon, Tokyo, Japan) with an x10 negative phase 

contrast objective. The images were captured with a Basler camera A312f 

(BaslerAfC, Germany) and processed with CASA software. The settings of the CASA 

system were adapted for this species. For sperm concentration, pre-diluted sperm 

(individual males and pools) was diluted 1:19 in HBSS and 3 fields were sampled to determine sample concentration. For motility analysis, Ͳ.ͷ μl of sperm was placed on a Mackler chamber and immediately activated with ͷ μl of filtered ȋͲ.ʹͲ μmȌ and 
sterilized system water at 28°C. Each pool was measured twice. Sperm motility was 

characterized at 10 s post-activation for each pool and treatment according to TM ȋ%Ȍ, PM ȋ%Ȍ, VCL ȋμm/sȌ, VSL ȋμm/sȌ and LIN ȋ%Ȍ. Only sperm samples with VCL>ͳͲ μm/s were considerate motile. 
 

5.1.3.5.  Membrane integrity 

Sperm membrane integrity was assessed through flow cytometry using SYBR 

14 (Invitrogen, Spain) and propidium iodide (PI) (Sigma Aldrich, Spain) labeling. 

SYBR 14 is a permeant nucleic acid stain that crosses the plasma membrane and PI 

is a membrane impermeable dye that label cells with the disrupted membrane. Cells 

with disrupted membrane are labeled in red from PI and viable cells are labeled in 

green from SYBR 14 (Daly and Tiersch, 2012). SYBR 14 was prepared to dilute ͷ μl of stock solution in ͳʹͲ μl of sterilized and filtered HBSS and PI was used undiluted. 
The pre-diluted sperm samples were re-diluted (1:200) in HBSS and each stain was 

added in a final concentration of 6.7 nM of SYBR 14 and 3.3 M of PI. Analysis was 

performed after 5 min of incubation in the dark at room temperature (21 to 25±1°C), in a flow cytometer ȋBD FACSCalibur™,BD Biosciences, SpainȌ adjusted for the 
detection of SYBR 14 through a 530 nm bandpass filter (FL1) and PI was detected 

with a 670 nm long pass filter (FL3). Flow cytometer settings were previously 

adjusted using a positive (100% dead cells) and a negative control (fresh sperm). 

For negative control spermatozoa were exposed to cycles of freezing-thawing 

(Cabrita et al., 2005). A total of 5000–10,000 events were counted for each sample. 

5.1.3.6. Cell apoptosis The Muse™ Annexin V & Dead Cell Assay ȋThermo Fisher Scientific, SpainȌ 
analysis quantifies live cells, early and late apoptosis, and necrotic/dead cells by 
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other mechanisms. The pre-diluted sperm samples were re-diluted (1:200) in HBSS 

with 1% of Bovine Serum Albumin (BSA) and the labeling was conducted according to manufacturerǯs specifications. Samples were acquired in a flow cytometer 
equipped with a 488 nm laser for excitation a 530/30 BP filter and a 690/50 nm BP 

filter for fluorescence emission. A total of 5000–10,000 events were counted for 

each sample. For the annexin V apoptosis tests, the total events were collected as 

the relation of forward scatter (FSC; cell size characterization) and side scatter (SSC; 

cell granularity) plots. The gating (R1) of the sperm population was used to exclude 

non-sperm events and it was based on the FSC and SSC profile of zebrafish fresh 

sperm (Figure 5.3 A) The annexin V component has a high affinity to the 

phosphatidylserine in the outer leaflet of the membrane in apoptotic cells and 7-

AAD (7-amino-actinomycin D) is a dead cell marker. Early apoptotic cells are labeled 

with annexin V, late-stage apoptotic and dead cells have both 7-AAD and annexin V 

labeling, necrotic/dead cells by other mechanism are labeled with 7-AAD and non-

apoptotic cells (viable) are not labeled. This allows the detection of 4 subpopulations 

corresponding to viable cells (lower left, LL), cells in early apoptosis (lower right, 

LR), cells in late apoptosis (upper right, UR) and necrotic/dead cells by other 

mechanism (upper left, UL) (Figure 5.3 B). Flow cytometer settings were previously 

adjusted using a positive (100% dead cells) and a negative control (fresh sperm) 

where controls were incubated with each dye (annexin V or 7-AAD), separately and 

in combination. 
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Figure 5.3 Flow cytometry analysis of annexin V of post-thaw zebrafish sperm.  A) Sperm cell 
population gating (R1) B) sperm cell subpopulations corresponding to viable cells (lower left, LL), a 
cell in early apoptosis (lower right, LR), cells in late apoptosis (upper right, UR) and necrotic/dead 
cells by other mechanism (upper left, UL). 

 

5.1.3.7.  DNA fragmentation 

DNA integrity was evaluated through Comet assay adapted from Reinardy 

(Reinardy et al., 2013b) with slight modifications. After sample thawing, 3 μl of sperm was diluted in ͸Ͳ μl of low melting point agarose ȋͲ.ͷ%Ȍ, distributed into pre-

coated slides with 0.5% of agarose (dried overnight) and covered with a coverslip ͳͷ min at Ͷ°C. A positive control ȋʹ μl sperm + ʹ μl ͳͲͲ μM H2O2, incubated for 20 

min at 4°C) was set up to induce DNA fragmentation. The coverslip was removed, 

and the slides were incubated in lysis solution (2.5 M NaCl, 100 mM EDTA, 10 mM 

Tris and 1% Triton X-100) for 1 h at 4°C. Subsequently, the samples were placed in 

an alkaline electrophoresis solution (300 mM NaOH and 1 mM EDTA, pH 13), 20 min 

followed by 20 min of electrophoresis (25 V, 280–300 mA). The slides were washed 

twice with a neutralization solution (0.4 M Tris– HCl, pH 7.5) for 5 min and fixed in 

ethanol for 15 min. For slide observation, DNA was labeled with ͳͲ μl of PI ȋͳ 
mg/ml) and slides observed at ×600 in a fluorescence microscope (Olympus IX 81, 

Olympus, Japan) with blue excitation 450–480 nm. Images were captured and 

recorded with a digital camera (F-view, Olympus, Japan) and processed with the 

CellF image software (Olympus, Japan). At least 100 cells per slide were scored and 

then analyzed using Kinetic Imaging Komet 5.5 software (Andor Technology Ltd., 
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United Kingdom). The DNA fragmentation was expressed in terms of DNA in tail (%) 

since it relates the amount and size of the DNA fragments. 

 

5.1.3.8. In vitro fertilization 

Females used for in vitro fertilization were maintained in a breeding tank 

separated from males for 16 h previously to the experiments. Females were 

anesthetized with MS-222 rinsed with sterile PBS (pH 7.4) and placed in a 35 mm 

Petri dish. To collect the oocytes, an abdominal massage was carefully performed 

and if the clutch had good quality characteristics (Bobe and Labbé, 2010; Carmichael 

et al., 2009), ͳͲͲ μl of AquaBoost®OvaCoat ȋCryogenetics,USAȌ was immediately 
added to avoid oocyte dehydration and prolong oocyte fertilization ability up to 30 

min. Only good quality clutches (n=99) with 100–200 oocytes were selected to test 

all treatments. For each sperm sample (fresh or thawed), in vitro fertilizations were 

performed immediately and simultaneously for all oocyte clutches (3–6). The 

AquaBoost® OvaCoat was removed with a pipette before fertilization and 1 × 106 

spermatozoa (Hagedorn and Carter, 2011) of either fresh or post-thaw samples 

were added to the oocytes (0.5-1×104 spermatozoa/oocyte) and immediately activated with ͵͸Ͳ μl of sterilized and filtered ȋʹͲ μmȌ system water at ʹͺ°C. After 
5 min, 5 ml of system water was added to the Petri dish. The embryos were 

maintained in an incubator at 28°C with the same photoperiod as in the zebrafish 

facilities (14 L: 10 D). The fertilization rate was measured 3 h post-fertilization (3 

hpf), at the morula stage. All the dead embryos were removed, and the viable 

embryos transferred to 100 mm Petri dishes. Survival and hatching rates were 

calculated at 24 hpf and 72 hpf, respectively, according to the initial number of 

oocytes of each clutch. For each treatment and sampling point, each sperm pool was 

used to fertilize 3 to 6 clutches of oocytes. A total of 99 fertilizations were performed, 

where at least 13 fertilizations were done per treatment. 

 

5.1.3.9. Data analysis 

IBM SPSS Statistics 25.0 software was used for statistical analysis. Data were 

expressed as means±SD and normalized by logarithmic, or arcsine transformation 
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when results were expressed as percentages. To check the robustness of obtained 

data within our sample dimension (n=3), a hierarchical cluster analysis was applied to the data obtained in experiment ͳ. The Wardǯs method (Ward, 1963) was applied since this methodology is appropriate for small samples. To apply Wardǯs method, 
the squared Euclidean distance was fixed computationally. This methodology is a 

mechanism of agglomerative hierarchical clustering procedure to classify pools, 

according to a multivariate perspective. All the variables were considered in this 

statistical treatment adjusted according to sperm motility, viability and in vitro 

fertilization measures. This analysis is represented through a dendogram 

(Supplementary data 5.1), labeled by pools of sperm, which resulted in a mixture 

per clustering group. When we consider a rescale distance cluster combined inferior 

to 5, we can observe 5 clusters of sperm pools with both storage methods. The 

cluster representation allows the observation of sperm pools groups formation 

without differentiation between LN and UF storage methods. This fact reensured the 

lack of differentiation per storage treatments, according to the considered variables 

(motility, viability and in vitro fertilization) and therefore one-way and two-way 

ANOVA was performed to compare storage time and treatments and t-test to 

compare fresh samples and post-thaw samples.  

The data of the cooling rate experiment (Experiment 2, n=7) was subjected 

to one-way ANOVA. Statistica differences between treatments were detected by post 

hoc Student-Newman-Keuls (SNK) multiple comparison tests (P<0.05). 

 

5.1.4.  Results 

5.1.4.1.  Experiment 1 — effect of zebrafish sperm storage throughout 

time in a ultrafreezer ȋ−ͷͻͶ°CȌ and in liquid nitrogen 

The pools of fresh sperm yielded an average of 55% of total motility (at 10 s 

post-activation). As expected, the percentage of total motility, VCL, and VSL (Figure 

5.4 A–C) of cryopreserved sperm were significantly lower when compared to fresh 

sperm. However, linearity was not significantly different between fresh and 

cryopreserved samples (Figure 5.4 D). Most importantly, there were no significant 

differences between treatments throughout storage time in all motility descriptors 
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(Figure 5.1.4). In agreement with this information, we observed that membrane 

viability was not significantly different between samples stored in liquid nitrogen or 

ultrafreezer at each sampling point (Figure 5.5). 

 

Figure 5.4 Motility of zebrafish sperm (n=3 pools) cryopreserved at -20°C/min and stored in liquid 
nitrogen (LN) or in ultrafreezer (UF). The samples were thawed 1 week, 1 month and 3 months after 
storage and characterized in terms of A) TM, B) VCL, C) VSL and D) LIN. Data is expressed as 
means±SD. Statistical differences (t-test, P˂Ͳ.ͲͷȌ between fresh and cryopreserved sperm are 
represented with asterisc. 

 

 

Figure 5.5 Plasma membrane integrity of zebrafish sperm (n=3 pools). Samples were cryopreserved 
with a -20°C/min and stored in liquid nitrogen (LN) or in a ultrafreezer (UF) and thawed 1 week, 1 
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month and 3 months after storage. Data is expressed as means±SD. Statistical differences within 
periods of storage (two-way ANOVA with post hoc SNK, P˂Ͳ.ͲͷȌ are represented with different 
letters. No differences were found between the two storage methods. 

 

Nevertheless, we observed a decrease of membrane viability throughout 

time in both storage conditions, where membrane viability was significantly lower 

at 3 months post-storage when compared to 1 week of storage.  

An average of 88% fertilization rate was obtained when using fresh sperm 

for in vitro fertilization (Figure 5.6 A) and it was not significantly different when 

using cryopreserved sperm. There was a decrease in the embryo survival at 24 hpf 

and in the hatching rate, when compared to the fertilization rate at 3 hpf. However, 

the hatching rate had similar values to the observed for survival at 24 hpf (Figure 

5.6 B and C). There were no significant differences in the hatching rate and survival 

at 24 hpf between liquid nitrogen and ultrafreezer storage throughout time.  

 

5.1.4.2.  Experiment 2 — effect of a fast cooling rate ȋ−ͼͼ°C/minȌ on 

zebrafish post-thaw sperm quality Sperm cryopreserved with a cooling rate of − ͸͸°C/min, by placing the 
samples directly in an ultrafreezer, had significantly higher total motility than sperm 

cryopreserved with a cooling rate of −ʹͲ°C/min and stored in ultrafreezer ȋFigure ͷ.͹ AȌ. Sperm cryopreserved with a −͸͸°C/min cooling rate did not show any 
significant differences in total motility when compared with sperm cryopreserved with a −ʹͲ°C/min rate and stored in liquid nitrogen (Figure 5.1.4.4 A). 
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Figure 5.6 In vitro fertilizations performed with zebrafish sperm (n=3 pools) cryopreserved at -
20°C/min and stored in liquid nitrogen or in an ultrafreezer. The samples were thawed 1 week, 1 
month and 3 months after storage and the fertilization success was evaluated according to A) 
Fertilization rate at 3 hpf, B) Embryo survival at 24 hpf, C) Hatching rate at 72 hpf. Data are expressed 
as mean values±SD. Statistical differences within periods of storage (one-way ANOVA with post hoc 
SNK, P˂Ͳ.ͲͷȌ are represented with different letters. No differences were found between the two 
storage methods. 

 

There were no significant differences between treatments in terms of 

progressive motility (PM) and velocity (VCL and VSL) (Figure 5.7 B–D), however, there were no progressive cells in the sperm cryopreserved at −ʹͲ°C/min and stored in ultrafreezer. Sperm cryopreserved with a −͸͸°C/min cooling rate had no significant differences in linearity when compared to −ʹͲ°C/min followed by liquid 
nitrogen or ultrafreezer storage (Figure 5.7 E).  
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Figure 5.7 Post-thaw zebrafish sperm motility (n=7 pools) obtained from samples cryopreserved and 
stored directly in a ultrafreezer (-66°C/min, UF) and with a -20°C/min cooling rate with storage in 
ultrafreezer (-20°C/min, UF) and liquid nitrogen (-20°C/min, LN). The samples were characterized 
in terms of A) TM, B) PM, C) VCL, D) VSL and E) LIN. Data is expressed as mean values±SD. Statistical 
differences between treatments (two-way ANOVA with post hoc SNK, P˂Ͳ.ͲͷȌ are represented with 
different letters. 

 

The membrane viability was significantly improved in sperm with a −66°C/min cooling rate when compared to the other treatments (Figure 5.8 A). Sperm cryopreserved with a −͸͸°C/min cooling rate showed significantly lower 
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DNA fragmentation when compared to the other treatment conditions (Figure 5.8 

B). 

 

 

Figure 5.8 Post-thaw zebrafish sperm analysis (n=7 pools) of A) Plasma membrane integrity analyzed 
with flow cytometry, B) DNA fragmentation detected through comet assay. The sperm was 
cryopreserved directly in a ultrafreezer (-66°C/min, UF) or with a -20°C/min cooling rate with 
storage in ultrafreezer (-20°C/min, UF) and liquid nitrogen (-20°C/min, LN). Data is expressed as 
mean values±SD. Statistical differences between treatments (two-way ANOVA with post hoc SNK, P˂Ͳ.ͲͷȌ are represented with different letters. 

 The highest DNA fragmentation was observed in the −ʹͲ°C/min with ultrafreezer storage conditions. Sperm cryopreserved with a −͸͸°C/min cooling 
rate had significantly higher viable cells (Figure 5.9 A) when compared to the other 

treatments as observed before, and significantly lower late apoptosis (Figure 5.9 B) when compared to the other treatments. However, −͸͸°C/min cooling rate with 
ultrafreezer sperm storage also had a significantly higher number of necrotic/dead 

cells by other mechanisms (Figure 5.9 B) when compared to control method ȋ−ʹͲ°C/min cooling rate and liquid nitrogen storageȌ. Consequently, the main cause of cells death in cryopreserved samples with −ʹͲ°C/min was apoptosis, whereas in −66°C/min cryopreserved samples was another cell death cause. There were no 

significant differences in early apoptosis values between treatments (Figure 5.9 A). 
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Figure 5.9 Post-thaw zebrafish sperm (n=7 pools) apoptosis detection through annexin V pathway of 
cryopreserved sperm directly in ultrafreezer (-66°C/min, UF) or with a -20°C/min cooling rate with 
storage in ultrafreezer (-20°C/min, UF) and liquid nitrogen (-20°C/min, LN). The sperm 
subpopulation was analyzed in terms of A) Viable cells and cells in early apoptosis, B) Cells in late 
apoptosis and necrotic or dead by other mechanisms. Data is expressed as mean values±SD. 
Statistical differences between treatments (two-way ANOVA with post hoc SNK, P˂Ͳ.ͲͷȌ are 
represented with different letters. 

 

5.1.5.  Discussion 

To the best of our knowledge, this is the first report of cryopreservation and 

storage of teleost sperm using an ultrafreezer. The ability to store cryopreserved 

sperm from zebrafish lines in an ultrafreezer would be extremely practical and 

inexpensive in these types of facilities. Consequently, it was relevant to compare the effect of sample storage throughout time in liquid nitrogen ȋ−ͳͻ͸°CȌ and in an 
ultrafreezer ȋ−ͳͷͲ°CȌ, to ensure the viability of the storage technique. There is no 

other characterization of post-thaw zebrafish sperm quality using different 

cryostorage periods besides the present study.  

Although all zebrafish sperm cryopreservation protocols have different 

methodologies, we selected the studies that used the CASA system to compare our 

data. While Yang et al. (2016) and Wang et al. (2015) started with samples of fresh 

sperm ranging from 80 to 95% of motility, our fresh sperm pools had an average of 

55% of motility, similar to previous data published by our group (Diogo et al., 2015). 

This discrepancy can be explained by the fact that our motility activation is performed with system water, set at ͹ͲͲ μS/cm (13±3 mOsm/Kg) for a correct 

approximation of the fertilization microenvironment conditions to avoid 
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overestimations of motility, while previous studies used tap or distilled water, with 

lower osmolarity.  

The post-thaw sperm motility registered by Wang et al (2015) after 12 h of 

storage was 16±3%, whereas Yang et al (2016) after 3 days of sperm storage 

obtained 28±15% motility. In our first experiment, we obtained 8±8% of motility 

after 1 week of storage. Although there were differences in methodologies and 

storage time since authors used different cryoprotectants, cooling rates and storage 

devices, it is obvious that the present study showed lower loss of motility after 

thawing (compared to the fresh sperm) when compared to these studies. This fact 

can be explained by the difference in the type of cryoprotectant used, since methanol 

and DMSO are known to affect negatively zebrafish sperm motility when compared 

to DMF (Hagedorn et al., 2012).  

The analysis of membrane integrity by flow cytometry is considered a 

reliable method to evaluate sperm membrane viability at different conditions during 

storage (Figueroa et al., 2016). There were no significant differences between both 

storage techniques at each sampling point, which is in agreement with data reported 

for goat, canine and bull sperm (Álamo et al., 2005; Batista et al., 2006; Batista et al., 

2009), where no significant differences were observed in motility and membrane 

integrity. However, there was an evident loss of membrane viability throughout 

storage time in both liquid nitrogen and ultrafreezer storage. Although it is generally accepted that life is on ǲholdǳ in liquid nitrogen, there are evidences of sperm quality 
loss over time of storage in human (Desrosiers et al., 2006) and bull sperm (Lessard 

et al., 2000). Lessard et al. (2000) observed a detrimental effect of storage time in 

the fertility marker P25b protein in bull sperm. The author hypothesized that 

physical vibrations at the interface between extracellular ice and plasma membrane 

during storage could explain P25b cryoelution. These mechanisms are still poorly 

understood; however, it is likely that the answer comes from the interaction of cell 

structures and cryosolvents. Buffers and extenders that provide different 

osmolarities of the cells can interact with the isotonic cytoplasm and may influence 

sperm viability during cryopreservation and storage (Fuller, 2004). 

Although there are no universal sperm quality biomarkers, in vitro 

fertilization is considered one of the most reliable and integrative estimators of 
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sperm quality, since it shows the sperm ability to fertilize the oocyte (Bobe and 

Labbé, 2010). Yang et al. (2016) reported 62±14% of fertilization rates, which is 

similar to the fertilization rate (57±17%) after 1 week of storage reported in this 

study. Between 3 hpf and 24 hpf we observed a high degree of embryos abortion, 

predominantly in embryos with abnormal divisions observed initially. It has been 

previously described that non-motile post-thaw spermatozoa may obstruct the 

micropyle being forced to fertilize the eggs (Rurangwa et al., 2001), which can 

explain the high number of abortions and low hatching rates. It is also known that 

the oocyte has a mechanism that is able to repair, to some extent, spermatozoa DNA 

damage (Bobe and Labbé, 2010; Kopeika et al., 2004). However, in teleosts, it is 

reported that most embryos fertilized with damaged spermatozoa will not survive 

and abortion occurs between blastula and gastrula stages, where de novo gene 

expression starts to occur (Pérez-Cerezales et al., 2010). The fertilization rates can 

be calculated a few hours after initial cleavage, however hatching rate is a more 

reliable parameter, although the results take more time to be obtained (Cabrita et 

al., 2009). Considering the in vitro fertilization results achieved and the fact that 

hatching rates were very similar to survival at 24 hpf, we propose that the survival 

at 24 hpf is the most simple and accurate method to evaluate sperm fertilization 

ability and progeny viability produced with post-thaw zebrafish sperm.  

This study validated the possibility of zebrafish sperm storage in an 

ultrafreezer, a method that is simpler to apply in zebrafish research facilities. 

However, zebrafish sperm cryopreservation would be even more simplified if it 

could be performed by placing samples directly in an ultrafreezer system. Therefore, in our second experiment, we tested if a fast cooling rate of −͸͸°C/min performed 
directly in an ultrafreezer would benefit post-thaw sperm quality. The cooling rate 

is known to affect sperm survival and to interact with a medium composition 

(Woelders et al., 1997). Fast cooling rates can reduce the time of cell exposure to the 

unfavorable conditions that result from ice formation and compromise cell viability 

(Woelders et al., 1997). In species from zebrafish family (Cyprinidae) such as 

Cyprinus carpio (Bernáth et al., 2016) and Perca fluviatilis (Bernáth et al., 2015), a fast cooling rate of −ͷ͸°C/min resulted in improved post-thaw sperm motility. Our results showed that −͸͸°C/min produced improved post-thaw sperm quality in 

terms of total motility, membrane viability, DNA integrity and late apoptosis events 
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when compared to the control cooling rate of −ʹͲ°C/min. Consequently, it seems that a −͸͸°C/min cooling rate in zebrafish sperm cryopreservation reduces cryodamage risks when compared to a slower cooling rate of −ʹͲ°C/min.  
To perform a deeper post-thaw sperm quality characterization, we tested the 

effect of freezing and storage systems on zebrafish sperm DNA fragmentation and 

on the detection of plasma membrane phosphatidylserine externalization occurring 

during apoptosis mechanism. This apoptosis biomarker is a good candidate to 

measure damage induced by cryopreservation. Intrinsic apoptosis pathway is 

triggered by cell stressful factors such as radiation, toxins, hypoxia, hyperthermia, 

viral infections, and free radicals (Elmore, 2007). Sperm cryopreservation induces 

intrinsic apoptosis pathway through cold exposure or free radical production. DNA 

integrity is a key factor in sperm quality and progeny viability (Bobe and Labbé, 

2010). The DNA fragmentation occurs late in the apoptosis process after apoptosis-

inducing factors being translocated from the mitochondria to the nucleus, causing 

DNA fragmentation (Elmore, 2007). Annexin V is a recombinant 

phosphatidylserine-binding protein that binds specifically to phosphatidylserine 

residues. The Annexin V & Dead cell marker combination used in this study enables 

the quantification of different populations of cells according to the type of damage: 

viable cells (non-stained), apoptotic cells (early or late apoptosis) and necrotic/dead 

cells by another mechanism. This last subpopulation has compromised plasma 

membrane integrity but does not show any phosphatidylserine externalization and, 

therefore, cell death can be attributed to mechanisms such as ice crystal injury. This 

subpopulation is significantly higher in sperm cryopreserved directly in the 

ultrafreezer (59.27±10%), probably due to the rapid cooling which difficult water 

movement through the cell, allowing ice crystal formation that can cause plasma 

membrane disruption. However, this treatment also revealed the lowest values of 

late apoptosis and lower DNA fragmentation when compared to the other 

treatments. There are no references in the literature on zebrafish post-thaw sperm 

quality analysis in terms of apoptosis tests through annexin V and DNA damage. 

However, Reinardy et al (Reinardy et al., 2013b) obtained 9–12% of DNA damage in 

fresh zebrafish sperm, which is very similar to the values determined in our study using cryopreserved sperm ȋͳʹ.͵͹% DNAt for −͸͸°C/min in ultrafreezerȌ. Although 
slightly different values were obtained in cell viability determined by IP/SYBR 14 
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and the annexin-V dead kit, both methodologies are in agreement, sustaining that a faster cooling rate of −͸͸°C/min is more appropriate for zebrafish sperm when compared to −ʹͲ°C/min cooling rate.  
These results show that sperm cells cryopreserved directly in an ultrafreezer 

present a decrease in cell apoptosis and DNA fragmentation and that the main cause 

of cell death in this treatment have occurred through other mechanisms, such as the 

ones previously suggested. 

 In conclusion, our study demonstrates that ultrafreezers are a viable 

alternative for zebrafish sperm storage. Furthermore, a fast cooling rate of −66°C/min performed directly in an ultrafreezer improved post-thaw zebrafish 

sperm quality. This study optimized the cooling rate of zebrafish sperm 

cryopreservation, which is an important contribution to support future 

methodological improvements. This methodology facilitates the cryopreservation 

process without the need for access to expensive programmable biofreezers and can 

be easily applied in zebrafish facilities, reducing the global costs of 

cryopreservation. 
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5.2.1. Abstract 

The synergy obtained by the combination of cryoprotectants is a successful 

strategy that can be beneficial on the optimization of zebrafish sperm 

cryopreservation. Recently, a protocol was established for this species using an 

electric ultrafreezer (-150°C) performing cooling rate (-66°C/min) and storage 

within one step. The ultimate objective of sperm cryopreservation is to generate 

healthy offspring. Therefore, the objective of this study was to select the most 

adequate cryoprotectant combination, for the previously established protocol, that 

generate high quality offspring with normal skeletogenesis. Among the permeating 

cryoprotectant concentrations studied 12.5% and 15% of N,N-dimethylformamide 

(DMF) yielded high post-thaw sperm quality and hatching rates. For these two 

concentrations, the presence of bovine serum albumin (10 mg/ml), egg yolk (10%), 

glycine (30 mM) and bicine (50 mM) was evaluated for post-thaw sperm motility, 

viability, in vitro fertilization success and offspring skeletal development (30 days 

post fertilization). Higher concentration of permeating cryoprotectant (15%) 

decreased the incidence of deformed arches and severe skeletal malformations, 

which suggests higher capacity to protect the cell against cold stress and DNA 

damage. Bicine and egg yolk were the non-permeating cryoprotectants with higher 

post-thaw quality. The use of these compounds results in a reduction in vertebral 

fusions, compressions and severity of skeletal malformations in the offspring. 

Therefore, 15% of DMF with 50 mM bicine was shown to be beneficial for the quality 

of zebrafish offspring sired by cryopreserved sperm with -66°C/min freezing rate. 

To the best of our knowledge, this is the first report on skeletal development of the 

offspring sired by cryopreserved sperm performed with different extender 

compositions in zebrafish. 

 

5.2.2. Introduction 

Zebrafish is the second most used model organism with increasing interest 

by the scientific community in the past decade. Consequently, new mutant and 

transgenic lines are developed continuously in laboratories across the world, posing 

challenges in terms of space and management that cryopreservation can solve. Until 

today, zebrafish sperm cryopreservation lacks standardization, yielding variable 
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post-thaw sperm quality and in vitro fertilization success (Asturiano et al., 2017; 

Robles et al., 2009; Yang and Tiersch, 2009). Recently, our laboratory developed the 

first cryopreservation protocol in a teleost species using an electric ultrafreezer (-

150°C). This protocol does not require liquid nitrogen or dry ice, samples are placed 

directly on the electric ultrafreezer where the freezing rate (-66°C/min) and storage 

occur in one single step (Diogo et al., 2018). The use of ultrafreezers for sperm 

cryopreservation and storage allows the reduction of the global costs of 

cryopreservation and simplify the procedure. Therefore, it is a valuable alternative 

cryopreservation method for zebrafish facilities management. Following the 

establishment of this protocol, the present work aims to optimize the extender by 

modulating the permeating and non-permeating cryoprotectants composition. 

A cryoprotectant agent is a solute that when present in the cells medium, 

allow higher post-thaw recoveries than if it is not present (Karow, 1969). 

Cryoprotectants are categorized as permeating and non-permeating, according to 

their ability to penetrate cellular membranes (Devismita and Kumar, 2015; Elliott 

et al., 2017). In cryobiology, it has become clear that distinct cryoprotectant classes 

can efficiently protect cells against freezing injuries through multiple mechanisms, 

many of which are still poorly understood (Elliott et al., 2017; Martínez-Páramo et 

al., 2017). The combination of permeating and non-permeating cryoprotectants is 

considered a successful strategy (Elliott et al., 2017) widely used among sperm 

cryopreservation protocols of teleost species (Cabrita et al., 2010). 

The protocol developed in our facilities for zebrafish sperm cryopreservation 

(Diogo et al., 2018) comprises an extender with 10% of N,N-dimethylformamide 

(DMF) in Hank´s balanced salt solution (HBSS) for a -66°C/min freezing rate. This 

method improved post-thaw sperm DNA integrity, plasma membrane viability and 

late apoptosis (Diogo et al., 2018). The permeating cryoprotectant concentration 

was previously selected for slower cooling rates performed in dry ice (Asturiano et 

al., 2015; Diogo et al., 2018). Considering that cell biophysical properties vary with 

temperature (Elliott et al., 2017), it was essential to investigate the most appropriate 

concentration of DMF for a -66°C/min freezing rate, to improve the previously 

established protocol. In other cyprinid species similarly fast cooling rates improved 

post-thaw sperm quality (Bernáth et al., 2015; 2016). There are structural, 
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morphological and biophysical similarities observed between spermatozoa of 

zebrafish and other cyprinid species (Zhang et al., 2014). These facts suggest that 

methodological improvements for cryopreservation in cyprinid species may benefit 

zebrafish sperm post-thaw quality. In cyprinids, extenders commonly contain bicine 

and glycine ȋCabrita et al., ʹͲͳͲ; Glogowski et al., ʹͲͲͳ; Yavaş et al., ʹͲͳͶȌ, therefore 

it was pertinent to investigate the effect of these compounds in zebrafish sperm 

cryopreservation. Additionally, Bovine Serum Albumin (BSA) and Egg Yolk (EY) 

were selected as non-permeating cryoprotectants due to their extensive use in 

cryopreservation of sperm from several species, with beneficial post-thaw 

outcomes (Cabrita et al., 2010; Pérez-Cerezales et al., 2009; Riesco et al., 2017).  

Sperm fertilizing ability is considered the most effective quality analysis to 

validate the effectiveness of a sperm cryopreservation protocol (Cabrita et al., 2010; 

Gallego and Asturiano, 2018; Rurangwa et al., 1998). However, the quality of the 

offspring generated by cryopreserved sperm beyond hatching rate have been poorly 

addressed  (Dziewulska et al., 2011; Labbé et al., 2001; Miskolczi et al., 2005; Pérez-

Cerezales et al., 2010; Yang et al., 2012; Young et al., 2009), particularly the 

incidence of malformations (Miskolczi et al., 2005; Young et al., 2009) which were 

only studied immediately after hatching. Since skeletal development and incidence 

of malformations is a well-established fish quality evaluation system (Boglione et 

al., 2013a; b), it is a useful tool for the characterization of offspring quality sired by 

cryopreserved sperm. 

The description of skeletal malformations generates complex data sets with 

high biological variability, being therefore difficult to analyze in depth through 

traditional statistical methods. Machine learning is a method focused on the 

development of algorithms that are particularly useful for data mining. These 

algorithms are able to automatically learn to recognize complex patterns based on 

data. Classification or decision trees are machine learning methods that can provide 

guidelines for decision making (Breiman et al., 1984). Decision trees are non-

parametric models that use algorithms to split data sets into increasingly 

homogeneous subsets, representing class membership through hierarchal distribution. Therefore, classification trees are considered a ǲknowledge discoveryǳ 
technique (Cios et al., 2007), which have been considered a powerful tool for the 
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optimization of cryopreservation technologies (Ramón et al., 2012; Sambu, 2015), 

although it is still poorly explored. This modeling technique is flexible enough to 

handle complex problems with multiple interacting elements, yielding a 

straightforward interpretation (Cios et al., 2007). Consequently, it is an ideal 

method to explore the effects of cryoprotectant combinations during zebrafish 

sperm cryopreservation on the resulting offspring skeletogenesis. 

The objective of this study was to select the optimal combination of 

permeating and non-permeating cryoprotectants for zebrafish sperm 

cryopreservation, performed with an electric ultrafreezer (-66°C/min freezing 

rate). For that purpose, the effect of permeating cryoprotectant (DMF) 

concentration on post-thaw sperm quality and in vitro fertilization was investigated. 

Additionally, the interactions between the combinations of two concentrations of 

the permeating cryoprotectant (12.5% and 15% DMF) and the addition of non-

permeating cryoprotectants (10 mg/ml of BSA, 10% of EY, 30 mM glycine and 50 

mM of bicine) were evaluated. Finally, the skeletal malformations of the offspring 

sired by sperm cryopreserved with different extender compositions were studied 

for the first time, to select the protocol which generated offspring with the higher 

skeletal quality.  

 

5.2.3. Methods 

5.2.3.1. Fish rearing 

Adult AB zebrafish males and females were selected according to the age 

selection criteria previously established in our laboratory (6-8 months old) (Diogo 

et al., 2019). Zebrafish with similar size were maintained separated according to sex 

into 3.5 L tanks (n=15) to improve fecundity, egg viability and early larvae survival 

(Kurtzman et al., 2010). The fish were maintained in a water recirculation system 

(ZebTEC® Tecniplast, Italy). The fish room had a controlled photoperiod with a 

14:10 h light/dark cycle, an independent air conditioning system (26±1°C) and an 

air extraction system to guarantee the air renewal in the room, maintaining the 

humidity close to 60%. The water rearing system was partially replaced (10%) daily 

and the water system maintained at 28.5±0.5°C, 700±50 µS and pH 7.5±0.1. The fish 
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were fed ad libitum twice a day with Artemia nauplii (AF480, INVE, Belgium) and 

ZEBRAFEED® diet (Sparos Lda, Portugal). Food consumption was visually 

controlled, and the remains removed daily. All animal manipulations were 

performed in compliance with the Guidelines of the European Union Council 

(86/609/EU) and transposed to the Portuguese law for the use of laboratory animals on research by ǲDecreto Lei n° ͳʹͻ/ͻʹ de Ͳ͸ de Julho, Portaria n° 1005/92 de ʹ͵ de Outubroǳ, and according to the European parliament council directive´s for 
protection of animals used for scientific research (2010/63/EU). All animal protocols were performed under a ǲCoordinator-researcherǳ license from the 
Direção-Geral de Veterinária, Ministério da Agricultura, do Desenvolvimento Rural e das Pescas, Lisbon, Portugal, under the ǲDecreto Lei n°ͳͳ͵/ʹͲͳ͵ de ͹ de Agostoǳ 
relative to the protection of animals used for scientific research.  

 

5.2.3.2. Sperm collection 

On the day prior to the sperm collection, males (n=4) and females (n=4) were placed 

in 1 L breeding tanks in 1:1 sex-ratio (Tecniplast, Buguggiate, Italy) and maintained 

separated while sharing the same water for 16 h (Diogo et al., 2018). This method 

allows the exposure to the pheromones of the mating partners, which promotes the 

synchronization of mating behavior and oocyte release (Gerlach, 2006; Hurk and 

Lambert, 1983; van den Hurk et al., 1987). Sperm collection was performed, within 

1 h after the beginning of the light phase of the photoperiod. Males were properly 

anesthetized with 0.168 mg/ml tricaine sulfonate solution (MS-222, Sigma-Aldrich, 

Madrid, Spain) according to Westerfield (Westerfield, 2007). When the gill 

movement decreased, the males were rinsed with Phosphate Buffered Saline (PBS) 

solution and carefully cleaned with paper towels. For sperm collection, an 

abdominal massage was performed and the sperm collected using a glass capillary 

tube attached to a mouth piece. Immediately after collection, sperm was diluted into 

10 μl of sterilized and filtered (0.20 μmȌ Hank´s Balanced Salt Solution (HBSS) at 

300 mOsm/Kg (NaCl 8.0 g, KCl 0.4 g, CaCl2 x 2H2O 0.16 g, MgSO4 x 7H2O 0.2 g, 

Na2HPO4 0.06 g, KH2PO4 0.06 g, NaHCO3 0.35 g, C6H12O6 1.0 g in 1000 ml of milli-Q 

water, pH 7.5) (Hagedorn et al., 2012; Jing et al., 2009a).  
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5.2.3.3. Experiment 1 – Permeating cryoprotectant: DMF concentration 

An experiment was conducted to evaluate the adequate N-N 

dimethylformamide (DMF) concentration necessary to protect spermatozoa from 

cold damage using a -66°C/min freezing rate in an electric MDF-C2156VAN ultra-

low temperature freezer (Sanyo, Demark). To perform sperm pools (n=6 pools) for 

this experiment, we selected sperm samples from males with total motility over 

50% (at 10 s post activation) and cell concentration over 3 x 107 cells/ml. Each 

sperm pool contained sperm from 10 males. A cooling rate of -66°C/min was applied 

placing the samples directly in an ultrafreezer system (-150°C) as previously 

described (Diogo et al., 2018). Sperm was cryopreserved with 5%, 7.5%, 10%, 

12.5% and 15% of DMF in HBSS in a final volume of 10 µl and stored in 2 ml cryovials 

(VWR® Low-Temperature Freezer Vials). After 5 days of storage in the ultrafreezer 

system, thawing was performed in a 40°C water bath during 8 s. Sperm quality was 

evaluated through sperm motility, membrane integrity and in vitro fertilization 

success (Figure 5.10).  

 

 

Figure 5.10 Experimental design to evaluate the effect of the storage type (LN, UF) of cryopreserved 
zebrafish sperm throughout storage time on sperm motility, viability and in vitro fertilization success. 
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5.2.3.4. Experiment 2 – Non-permeating cryoprotectants: BSA, egg yolk, 

glycine and bicine 

According to the results obtained in experiment 1, 12.5% and 15% DMF were 

selected to evaluate the effect of non-permeating cryoprotectants on the extender 

used for zebrafish sperm cryopreservation. For each DMF concentration, a control 

(Ctrl) without non-permeating cryoprotectant was used and it was evaluated the 

effect of 10 mg/ml BSA (BSA), 10% egg yolk (EY), 30 mM glycine (Gly) and 50 mM 

of bicine (Bici) on the extender. The concentrations of non-permeating 

cryoprotectants were chosen according to the commonly used in other successful 

sperm cryopreservation protocols for teleost species (He and Woods III, 2003; 

Martínez-Páramo et al., 2013; Matthews et al., 2018; Riesco et al., 2017). To 

characterize post-thaw sperm quality (n=5 pools, each pool containing sperm of 16 

males), the evaluation of sperm motility, plasma membrane viability and in vitro 

fertilization success was performed (Figure 5.11). 

 

 

Figure 5.11 Experimental design to evaluate the effect of cooling rate (-20°C/min and -66°C/min) 
and storage method (LN, UF) on zebrafish cryopreserved sperm motility, viability, DNA 
fragmentation and apoptosis. 
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5.2.3.5. Sperm concentration and motility analysis 

Sperm concentration and motility were evaluated using computer assisted 

sperm analysis (CASA) system (ISAS Integrated System for Semen Analysis, Proiser, 

Valencia, Spain) coupled to a phase contrast microscope (Nikon E-200, Nikon, 

Tokyo, Japan) with a ×10 negative phase contrast objective. The images were 

captured with ISAS 782C camera (Proisier, Spain) and processed with CASA 

software. The settings of the CASA system were adapted previously for this species 

namely 25 frames/s, connectivity 14, 1 to 90 mm for head area and only sperm 

samples with VCL > 10 µm/s were considerate motile. For sperm concentration, a 

dilution (1:19) was performed with HBSS and 3 fields were sampled to determine 

cell concentration. For motility analysis 0.5 µl of fresh sperm or 1.5 µl of 

cryopreserved sperm was placed on a Mackler chamber and immediately activated 

with 5 µl of filtered (0.20 µm) and sterilized system water at 28°C. Sperm motility 

was characterized at 10 s post-activation according to total motility (TM; %), 

progressive motility (PM; %), curvilinear velocity (VCL; µm/s), straight-line velocity 

(VSL; µm/s) and linearity (LIN; %).  

 

5.2.3.6. Membrane integrity 

Sperm membrane integrity was assessed through flow cytometry using SYBR 

14 (Invitrogen, Spain) and Propidium Iodide (PI) (Sigma Aldrich, Spain) labeling, 

according to previously established methodology (Diogo et al., 2018).  SYBR 14 is a 

permeant nucleic acid stain that crosses the plasma membrane and PI is a 

membrane impermeable dye that label cells nucleic acids when the plasma 

membrane is compromised. Consequently, spermatozoa with compromised plasma 

membrane are labeled in red from PI and viable cells are labeled in green by SYBR 

14 (Daly and Tiersch, 2012). SYBR 14 was prepared diluting 5 µl of stock solution in 

120 µl of sterilized and filtered HBSS and PI was used undiluted. The pre-diluted 

sperm samples were re-diluted (1:300) in HBSS and each stain was added in a final 

concentration of 6.7 nM of SYBR 14 and 3 ng/ml of PI. Sperm was incubated for 5 

min in the dark at room temperature. The analysis was performed in a flow cytometer ȋBD FACSCalibur™, BD Biosciences, SpainȌ adjusted for the detection of 
SYBR 14 through a 530 nm bandpass filter (FL1) and PI was detected with a 670 nm 
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long pass fia lter (FL3). Flow cytometer settings were previously adjusted using a 

positive (100% dead cells) and a negative control (fresh sperm). As negative control, 

spermatozoa were exposed to successive cycles of freezing thawing (Cabrita et al., 

2005). A total of 5000-10000 events were counted for each sample. 

 

5.2.3.7. In vitro fertilization 

Females used for in vitro fertilization were maintained in a breeding tank 

separated from males for 16 h previously to the experiments. Females were 

anesthetized with MS-222, as described above. When the gill movement decreased, 

the females were rinsed with sterile PBS (pH 7.4) and placed in a 35 mm Petri dish. 

An abdominal massage was carefully performed to collect the oocytes, avoiding any 

mechanical contact. If the clutch of oocytes had good quality characteristics (Bobe 

and Labbé, 2010; Carmichael et al., 2009), in vitro fertilization was performed within 

1 min after collection. Only good quality clutches were selected both for experiment 

1 (n=20) and experiment 2 (n=24). The sperm contained in one cryovial was used 

for each fertilization. Therefore, a total of 1.5 - 2 x 106 spermatozoa was added to the 

oocytes (100-200) of either fresh or thawed samples. Sperm motility activation was 

immediately performed with 360 µl of sterilized and filtered (0.2 µm) system water 

at 28°C. After 5 min, 5 ml of system water was added to the Petri dish containing the 

eggs. The embryos were maintained in an incubator at 28°C with the same 

photoperiod as in the zebrafish facilities (14L:10D). All the dead embryos were 

removed, and the viable embryos transferred to 100 mm Petri dishes 3 - 4 hours 

post fertilization (hpf). Survival and hatching rates were calculated at 24 hpf and 72 

hpf, respectively according to the initial number of oocytes of each clutch 

(approximately 100-200). For each treatment, each sperm pool was used to fertilize 

2-5 clutches of eggs.  

 

5.2.3.8. Skeletal development analysis of the offspring obtained from 

both experiences 

The evaluation of skeletal malformations in the offspring generated by 

cryopreserved sperm in both experiments was performed at 30 days post 
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fertilization (dpf). The fish were anesthetized with a lethal dose of MS-222 (300 

mg/ml) (Sigma-Aldrich, Saint Louis, MO) (Matthews and Varga, 2012) and fixed in a 

4% buffered paraformaldehyde solution at 4°C for 24 h. Larvae were further washed 

with PBS, pH 7.4 and stored in 75% ethanol at room temperature (Gavaia et al., 

2000). A modified method of whole-mount acid-free double staining was performed 

using alcian blue 8GX (Sigma-Aldrich, Saint Louis, MO) for cartilage and alizarin red 

S (Sigma-Aldrich, Saint Louis, MO) for bone (Walker and Kimmel, 2007a). Briefly, 

samples were stained in alcian blue 8GX for 1.5 h and passed through a decreasing 

series of ethanol concentrations (96 to 25%) and hydrated with distilled water 

before being stained with alizarin red S in a potassium hydroxide solution 0.5% 

overnight. The samples were cleared with a 0.5% KOH solution and stored in a 

solution of 90% glycerol (Merk Millipore, Billerica, MA) at room temperature. The 

detection of skeletal anomalies was performed following the nomenclature by Bird 

and Mabee (Bird and Mabee, 2003). Briefly, the description of skeleton 

malformations was performed for each skeleton structure namely arches (neural 

and haemal) and centra (vertebrae) distributed within each region of the axial 

skeleton (Weberian apparatus, precaudal vertebrae, caudal vertebrae and caudal fin 

vertebrae). The severe malformations considered were lordosis, kyphosis and 

scoliosis. The occurrence of fusions, compressions, abnormal arches, extra arches, 

opened arches and deformed centra were evaluated and images acquired with a 

stereomicroscope SteREO Lumar.V12 (Zeiss, Germany). 

 

5.2.3.9. Data analysis 

IBM SPSS Statistics 25.0 software was used for statistical analysis. Data were 

expressed as means±SD (Standard Deviation) and normalized by logarithmic, or 

arcsine transformation when results were expressed as percentages. In experiment 

1 to evaluate the significance of the permeating cryoprotectant concentration effect 

on post-thaw sperm quality and in vitro fertilization success, a one-way ANOVA 

multiple comparison tests (Student–Newman–Keuls, P<0.05) was performed. In 

experiment 2, significant differences between fresh and cryopreserved sperm were 

detected through independent samples t-test (P<0.05) and differences between 

permeating cryoprotectant concentration and non-permeating cryoprotectants 
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were detected through a two-way ANOVA, with Student–Newman–Keuls post hoc to 

evaluate differences between non-permeating cryoprotectants and independent 

samples t-test to evaluate the effect of cryoprotectant concentration (P<0.05). 

The incidence of malformations, their severity, distribution and load per fish 

obtained by each treatment was investigated through Pearson´s Chi-square analysis 

(P<0.05).  

For a deeper comprehension of the relationship between cryoprotectant 

composition during zebrafish sperm cryopreservation and the onset of skeletal 

malformations on the resulting offspring, a machine learning technique was 

performed, complementing the traditional statistical analysis. Since the variables 

are potentially correlated with each other a decision tree was applied through the 

algorithm CART (classification and regression), that uses GINI index splicing criteria 

(a measure of statistical dispersion). These tree models classify cases into groups or 

predict values of a dependent variable (criterion), based on values or categories of 

the independent variables (predictors). The criterion used was the malformed 

individuals in relation to the following predictors: permeating cryoprotector 

concentration, non-permeating cryoprotector, treatment (a combination of 

cryoprotectants), vertebral compression, fusions, additional arches, opened arches, 

deformed arches, deformed centra and a number of a load of deformations. A 

maximum tree depth of 5 levels was specified with a minimum number of classes in 

the initial and terminal nodes set at 20 and 10 respectively. Variables were not 

considered if a regression tree could not be generated. 

 

5.2.4. Results 

5.2.4.1. Permeating cryoprotectant: DMF concentration 

The effect of different permeating cryoprotectant concentrations on sperm 

quality and in vitro fertilization success displayed a normal curve behavior on the 

analysis of total motility, progressive motility, embryo survival at 24 hpf and 

hatching rate (Figure 5.12). These parameters were more representative of the 
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effect of permeating cryoprotectant concentration when compared to sperm 

velocities and linearity.  

Post-thaw sperm quality was significantly lower than fresh sperm in terms 

of total motility, progressive motility and plasma membrane viability (Figure 5.12 

A, B and F). Extender containing 12.5% and 15% of DMF showed significantly higher 

post-thaw sperm total motility and plasma membrane viability (Figure 5.12 B and 

F). Additionally, these treatments showed no significant differences when compared 

to fresh sperm curvilinear and straight-line velocity (Figure 5.12 C and D). Linearity 

was affected in cryopreserved sperm with 5 and 10% of DMF when compared to 

fresh sperm and sperm cryopreserved with 12.5 and 15% of DMF (Figure 5.12 E). 

The use of 5% of DMF yielded significantly lower embryo survival when 

compared to fresh sperm and the other cryopreserved treatments (Figure 5.12 G). 

The hatching rate was significantly higher in fresh sperm and sperm cryopreserved 

with 10% and 12.5% of DMF when compared to 5%, however, both concentrations 

showed no significant differences when compared to 7.5 and 15% of DMF (Figure 

5.12 H). The treatment that yielded lower post-thaw sperm quality was 5% of DMF.  

Considering the overall sperm quality and in vitro fertilization analysis, 

12.5% and 15% of DMF were selected to investigate the effect of non-permeating 

cryoprotectants on post-thaw sperm quality and offspring skeletal development. 
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Figure 5.12 Effect of different concentrations of permeating cryoprotectant (DMF) on zebrafish 
sperm (n=6 pools containing sperm of 10 males) A) TM, B) PM, C) VCL, D) VSL, E) LIN and F) viability 
of the plasma membrane. For the same pools of sperm, the success of in vitro fertilizations performed 
with fresh (n=4) and cryopreserved sperm with 5% (n=5), 7.5% (n=4), 10% (n=5), 12.5% (n=5) and 
15% (n=4) was evaluated through G) embryo survival 24 hpf and H) hatching rate at 72 hpf. The 
values plotted in white (fresh sperm) and black (cryopreserved sperm) bars represent means±SD. 
Different letters on the bars indicate significant differences (one-way ANOVA, post hoc SNK P<0.05). 
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5.2.4.2. Non-Permeating cryoprotectants: BSA, egg yolk, glycine and 

bicine 

The post-thaw sperm quality and in vitro fertilization parameters analyzed 

did not show significant interactions (two-way ANOVA, P<0.05), except for total 

motility (Table 5.1). Consequently, the effect of permeating cryoprotectant 

concentration and non-permeating cryoprotectants can be studied independently, 

except in total motility. Progressive motility, velocities and linearity were 

significantly dependent on the presence of non-permeating cryoprotectants, but not 

on the permeating cryoprotectant concentration. Plasma membrane viability was 

significantly dependent on both permeating cryoprotectant concentration and non-

permeating cryoprotectants addition (Table 5.1). 

Fresh sperm had significantly higher total and progressive motility, 

velocities, linearity and plasma membrane viability when compared to 

cryopreserved sperm. However, the in vitro fertilization parameters were not 

significantly different from cryopreserved sperm (Figure 5.13). The use of BSA had 

a negative effect on post-thaw sperm quality, especially in sperm total motility, 

progressive motility and plasma membrane viability (Figure 5.13). 

The use of egg yolk as a non-permeating cryoprotectant in the extender with 

15% DMF improved significantly sperm total motility when compared to the other 

treatments, however, it was not significantly different from control (Figure 5.13 A). 

The addition of bicine on the extender composition significantly improved 

progressive motility when compared to BSA, but it was not different from to the 

other treatments (Figure 5.13 B). Both velocities were significantly improved in 

control treatment when compared to BSA, however, control was not significantly 

different to the egg yolk and glycine treatment (Figure 5.13 C and D). Spermatozoa 

linearity movement was significantly higher in control treatment when compared 

to BSA, but not to the other non-permeating cryoprotectants (Fig Figure 5.13 E). 

The plasma membrane viability of control and bicine treatment was 

significantly higher than BSA, but there were no differences when compared to the 

egg yolk and glycine treatment (Fig Figure 5.13 F).  
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Although there were no statistical differences in vitro fertilization 

parameters, it is interesting to observe that sperm cryopreserved with 12.5% of 

DMF with bicine and sperm cryopreserved with 15% of DMF with egg yolk, showed 

the highest embryo survival and hatching rates (Figure 5.13 G and H). 

 

Table 5.1 Post-thaw zebrafish sperm quality analysis related to the effect of permeating 
cryoprotectant concentration, non-permeating cryoprotectants and their interactions in post-thaw 
zebrafish sperm. 

Two-way 
ANOVA (P 
value<0.05) 

Permeating Non-permeating Permeating*non-permeating 

TM 
PM 

0.010* 
0.284 

0.003* 
0.032* 

0.047* 
0.230 

VCL 
VSL 
LIN 
Viability 
Embryo survival 
Hatching rate 

0.114 
0.082 
0.076 
0.050 
0.925 
0.406 

0.023* 
0.008* 
0.005* 
0.013* 
0.105 
0.289 

0.118 
0.085 
0.062 
0.145 
0.367 
0.723 
 

Significant differences (two-way ANOVA (SNK, P<0.05)) are represented with an asterisk. 
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Figure 5.13 Zebrafish sperm (n=5 pools containg sperm of 16 males) cryopreserved with 12.5% 
(black bars) and 15% (grey bars) of DMF without non-permeating cryoprotectant (Ctrl) and with 10 
mg/ml of BSA (BSA), 10% egg yolk (EY), 30 mM glycine (Gly) and 50 mM of bicine (Bici). Sperm 
quality was evaluated according to A) TM, B) PM, C) VCL, D) VSL, E) LIN and F) viability of the plasma 
membrane. For the same sperm pools in vitro fertilizations were performed and their success was 
measured through G) embryo survival 24 hpf and H) hatching rate at 72 hpf. White bars represent 
fresh sperm, black bars represent sperm cryopreserved with 12.5% of DMF and grey bars represent 
sperm cryopreserved with 15% of DMF. Values plotted represent means±SD, an asterisk indicates 
significant differences between fresh and cryopreserved sperm (independent samples t-test, 
P<0.05). Uppercase letters represent significant differences between permeating cryoprotectant 
concentration and lowercase letters significant differences between non-permeating 
cryoprotectants (two-way ANOVA, post hoc SNK P<0.05). 
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5.2.4.3. Axial Skeleton malformations 

The characterization of severe skeletal malformations was more conclusive 

in terms of differences between permeating cryoprotectant percentage, in 

comparison to the total percentage of skeletal malformations incidence on the 

offspring sired by cryopreserved sperm (Figure 5.14 A and B). The percentage of 

deformities observed between zebrafish sired by cryopreserved sperm is highly 

dependent of the cryoprotectants composition used in the extender (Figure 5.  A). 

However, sperm cryopreserved with 15% of DMF generated a significant reduction 

of the incidence of severe skeletal malformations on the offspring comparing with 

fresh sperm, except in control treatment (Figure 5.14 B). Severe skeletal 

malformations of zebrafish sired by cryopreserved sperm, namely lordosis, scoliosis 

and kyphosis, were reduced when non-permeating cryoprotectants were added to 

an extender with 15% of DMF. The BSA treatment resulted in very low survival and 

no skeletal analysis was performed. The axial skeleton malformations in zebrafish 

were mainly focused on the caudal and caudal fin vertebrae (Figure 5.15 A-C). 

Offspring generated by cryopreserved sperm display predominantly a load of 2 

anomalies on the axial skeleton, although not significant (Figure 5.15 D and E). 

These anomalies were located on the transition between caudal vertebrae and 

caudal fin vertebrae (vertebrae 27-30) (Figure 5.15). In figure 5.16 are represented 

some of the most common skeletal malformations observed. In this figure is 

represented a fusion in precaudal vertebrae (Figure 5.16 A), abnormal vertebral 

bodies with ectopic calcifications (Fig 5B) and a fish with absent hypural connection 

to the urostyle (Figure 5.16 C). Additionally, in this figure is represented a fish with 

malformed secondary haemal arch on vertebrae number 29 with demineralization 

of hypural (Figure 5.16 D), an individual with abnormal neural arches, with ectopic 

calcification on parhypural and demineralization in hypurals (Fig 5E) and a fish with 

severe scoliosis (Figure 5.16 F). 

To explore the potential relationships between cryoprotectant composition 

and the offspring skeletogenesis, the complete description of skeletal abnormalities 

was applied to a decision tree through the CART method (Figure 5.17). Considering 

if the fish were malformed or displayed a normal skeletal development (dependent 

variable), the severity of skeletal malformations was the factor that discriminates 
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treatments the most, followed by the incidence of abnormalities on the arches 

(Figure 5.17).  

The decision tree allows to observe that the use of 15% of permeating 

cryoprotectant (DMF) on cryopreserved treatments reduces the onset of deformed 

arches on the offspring produced with cryopreserved sperm (Figure 5.17). The use 

of non-permeating cryoprotectants was discriminated through the incidence of 

fusions, and on a subsequent tree node, vertebral compression on the offspring 

where two non-permeating cryoprotectant groups were formed. The group formed 

by fresh sperm, BSA and glycine show lower number of normal individuals (53.8%) 

and the group formed by control, egg yolk and bicine treatments (72.9%) show a 

significantly higher number of normal individuals. 

 

 

Figure 5.14 Offspring axial skeleton malformations (30 dpf) analysis through alcinan blue alizarin 
red staining in terms of A) malformed fish, B) severe skeletal malformations. White bars represent 
fresh sperm (43 fish resulting from 3 sperm pools). Black bars represent zebrafish that resulted from 
in vitro fertilization with cryopreserved sperm with 12.5% of DMF without non-permeating 
cryoprotectant (Ctrl, 233 fish that resulted from 8 sperm pools) and with 10 mg/ml of BSA (BSA, 37 
fish that resulted from of 2 sperm pools), 10% egg yolk (EY, 14 fish that resulted from of 1 sperm 
pool), 30 mM glycine (Gly, 10 fish that resulted from 2 sperm pools) and 50 mM of bicine (Bicil, 90 
fish that resulted from 4 sperm pools). Grey bars represent zebrafish that resulted from in vitro 
fertilization with cryopreserved sperm with 15% of DMF without non-permeating cryoprotectant 
(Ctrl, 59 fish that resulted from 3 sperm pools) and with 10% egg yolk (EY, 168 fish that resulted 
from of 7 sperm pools), 30 mM glycine (Gly, 37 fish that resulted from 2 sperm pools) and 50 mM of 
bicine (Bici, 73 fish that resulted from 3 sperm pools). Values plotted represent means±SD. 
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Figure 5.15 Offspring axial skeleton malformations (30 dpf) analysis through alcinan blue alizarin 
red staining. Upper graphics represent the distribution of malformations through zebrafish skeleton 
of the offspring generated from sperm cryopreserved with A) 12.5% of DMF and B) 15% of DMF. 
Lower graphics represent the charge of malformations on the offspring generated from sperm 
cryopreserved with C) 12.5% of DMF and D) 15% of DMF. For each permeating cryoprotectant 
concentration was tested a control without non-permeating cryoprotectant (Ctrl, 233 fish that 
resulted from 8 sperm pools) and the addition of 10 mg/ml of BSA (BSA, 37 fish that resulted from 
of 2 sperm pools), 10% egg yolk (EY, 14 fish that resulted from of 1 sperm pool), 30 mM glycine (Gly, 
10 fish that resulted from 2 sperm pools) and 50 mM of bicine (Bici, 90 fish that resulted from 4 
sperm pools). Values plotted represent mean±SD  (Standard Deviation) and different shades of grey 
represent zebrafish skeleton location (A and B) or number of anomalies (C and D). 
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Figure 5.16 Representation of the most abundant axial skeleton malformations (30 dpf) of zebrafish 
sired by cryopreserved sperm A) Fusion in precaudal vertebra associated to compressive forces 
(black arrow), B) enlarge vertebral bodies (white arrows) with ectopic calcifications (black arrows), 
C) absence of hypural 1 connection to the urostyle (black arrow), D) secondary haemal arch on 
vertebrae No. 29 (white arrow); demineralized hypural 1 (black arrow); broken neural arch on 
urostyle (asterisk), E) abnormal neural arches (white arrows); ectopic calcification on parhypural 
(black arrow); demineralized regions in hypural 1 and 2 (black arrows); broken neural arch on 
urostyle (asterisk) F) Severe scoliosis associated to compressive forces (white arrow). 
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Figure 5.17 Decision tree obtained through the CART method with high significance for the 
malformed zebrafish sired by cryopreserved sperm with different extender compositions. The 
skeletal malformations analysis details the occurrence of compressions, fusions, opened arches, 
deformed arches, deformed centra (vertebrae). The zebrafish analyzed were obtained from sperm 
cryopreserved with 12.5% and 15% of DMF without non-permeating cryoprotectant (Ctrl, 233 fish 
that resulted from 8 sperm pools) or with the addition of 10 mg/ml of BSA (BSA, 37 fish that resulted 
from of 2 sperm pools), 10% egg yolk (EY, 14 fish that resulted from of 1 sperm pool), 30 mM glycine 
(Gly, 10 fish that resulted from 2 sperm pools) and 50 mM of bicine (Bici, 90 fish that resulted from 
4 sperm pools). Statistical significance is represented in each tree node when ramification stops no 
significant differences are observed within the group. 
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5.2.5. Discussion 

The ultimate objective of assisted reproduction techniques such as sperm 

cryopreservation is not only to accomplish oocyte fertilization but most importantly 

to obtain viable and healthy offspring. Spermatozoa are more than carriers of 

genomic information, they have a crucial role on the genetic control of the first 

embryonic events after fertilization (Carrell, 2011; Herráez et al., 2017; Labbé et al., 

2017; Ward, 2010; Wu et al., 2011). However, the spermatozoa ability to repair DNA 

damage is absent (Pérez-Cerezales et al., 2010; Smith et al., 2013) and depend on 

oocyte DNA repair machinery to perform its genomic repair, onto some extent 

(Fernández-Díez et al., 2015). Cryopreservation can produce oxidative stress and 

increase sperm DNA damage (Cabrita et al., 2011b; Diogo et al., 2018; Martínez-

Páramo et al., 2017). Fertilization with high DNA damaged spermatozoa is an 

important factor that leads to abortion (Ciereszko et al., 2005; Pérez-Cerezales et al., 

2010). Beyond spermatozoa lethal DNA damage, there are sub-lethal effects, such as 

longer telomeres on offspring (Pérez-Cerezales et al., 2011), abnormal juvenile 

weight and cortisol response to stress (Hayes et al., 2005), malformations at 

hatching (Miskolczi et al., 2005; Young et al., 2009) and haploidy (Miskolczi et al., 

2005) that affect progeny quality. 

Cells response to the freezing process depend on the cell biophysical 

characteristics, which are species-specific and change in a nonlinear mode with 

temperature (Devismita and Kumar, 2015). Data show total post-thaw sperm 

motility and viability values within the previously reported in zebrafish (Diogo et 

al., 2018; Wang et al., 2015; Yang et al., 2016). There are few reports of zebrafish 

hatching rates obtained with cryopreserved sperm (Diogo et al., 2018; Harvey et al., 

1982b). Hatched larvae obtained by in vitro fertilization with fresh sperm in our 

work yielded an average of 23%, whereas in Diogo et al. (2018) an average of 12% 

was reported. Consequently, the assisted reproduction methods may impact 

negatively the hatching rates of zebrafish as in mammalian species (Ramos-Ibeas et 

al., 2019).  

Permeating cryoprotectants are among the most relevant players for 

cryopreservation success, they permeate the sperm plasma membrane and increase 

total intracellular solute concentration (Elliott et al., 2017; Martínez-Páramo et al., 



 

158 
 

2017). Consequently, water leaves the cells through the osmotic gradient, avoiding 

the formation of intracellular ice crystals, which are lethal to the cell (Mazur, 

1963;1984). The disadvantage of permeating cryoprotectants is their toxicity and 

therefore, to accomplish a feasible cryopreservation protocol, a compromise 

between low toxicity and complete cellular penetration must be attended 

(Asturiano et al., 2017; Elliott et al., 2017; Martínez-Páramo et al., 2017; Mazur, 

1984). In our work, the post-thaw total and progressive sperm movement as well as 

in vitro fertilization parameters show a normal curve behavior, which represents 

the balance between cryoprotectant toxicity and cellular protection against cold 

damage. Data showed that low variations on permeating cryoprotectant 

concentrations impacts post-thaw sperm quality. The extender containing 5% of 

DMF was deleterious to sperm in all sperm quality parameters, especially in 24 hpf 

embryo survival and hatching rates. This result suggests that 5% of DMF is not 

enough to protect zebrafish spermatozoa from the cryopreservation process. Post-

thaw sperm total motility and membrane viability were improved by 12.5% and 

15% of DMF. These DMF concentrations produced hatching rates similar to fresh 

sperm and the highest of the cryopreserved treatments. Therefore, these DMF 

concentrations were used to study the interaction of permeating with non-

permeating cryoprotectants.  

Non-permeating cryoprotectants such as sugars and amino acids are able to 

establish interactions with membrane lipidic bilayers (Carpenter and Crowe, 1988), 

protecting the cells during the freezing process and improving post-thaw results 

(Cabrita et al., 2011b; Martínez-Páramo et al., 2013). The addition of BSA and Gly to 

the extender yielded lower progressive motility. Permeating and non-permeating 

cryoprotectants in our study showed significant interaction in total motility, where 

egg yolk and bicine treatment with 15% of DMF maintain higher total motility 

compared to the other treatments. This synergy between DMF concentration and 

non-permeating cryoprotectants suggest that DMF toxic effects in higher 

concentrations are balanced through the presence of egg yolk and bicine. This 

cryoprotectants combination protects therefore the plasma membrane components 

responsible for the triggering of zebrafish sperm motility. It is interesting to observe 

that the additives used in the extender composition reduce the sperm velocities and 

linearity when compared to the control. However, lower sperm velocity does not 
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result in lower 24 hpf embryo survival and hatching rates. Egg yolk yielded high 

post-thaw sperm quality and hatching rates, which might be explained by its high 

viscosity that protects the cell during cryopreservation (Morris et al., 2006) and the 

increase of the flagellar beating frequency in viscoelastic fluids (Lauga, 2007). 

Viscosity stabilizes the fertilization microenvironment, which is important in 

teleosts external fertilization (Lahnsteiner, 2002), particularly in species that yield 

low sperm volumes such as Senegalese sole (Diogo et al., 2010; Riesco et al., 2017) 

and zebrafish. The main disadvantages of egg yolk are difficult standardization and 

high susceptibility to contamination (Aires et al., 2003).  

Bicine is an amino acid [N,N-Bis(2-hydroxyethyl)glycine] with high buffer 

capacity and recommended for biological research at low temperatures (Good et al., 

1966). Bicine is commonly used in fresh water species extender composition 

(Cabrita et al., 2010) and was recently used in a zebrafish sperm cryopreservation 

protocol (Matthews et al., 2018). However, its isolated effect on post-thaw sperm 

quality required deeper comprehension. The use of 15% of DMF significantly 

reduced plasma membrane viability when compared to 12.5% of DMF. However, 

extenders containing 15% of DMF with egg yolk and bicine showed a reduction of 

skeletal malformations severity on the resulting offspring.  

Sub-optimal cryopreservation protocols are known to produce genetic and 

epigenetic alterations with negative consequences on offspring biological 

performance and phenotype, affecting thus their health and lifespan (Pérez-

Cerezales et al., 2011). Traditionally, skeletal malformations are associated with 

nutritional factors, however, the perturbation of genes responsible for the 

ossification is known to be responsible for abnormal skeletogenesis (Forero et al., 

2018). Sperm cryopreservation in trout was associated to the alteration of genes 

involved in the regulation of embryo early development, particularly symmetry, 

axis, segmentation, gastrulation, organogenesis and tissues differentiation 

(Fernández-Díez et al., 2015), which are associated to skeletal development. Our 

results indicate that the severe skeletal malformations of the offspring sired by 

cryopreserved sperm provide relevant information on the effectiveness of the 

cryopreservation protocol, that would be otherwise disregarded. The skeletal 

malformations incidence on zebrafish sired by fresh sperm through in vitro 
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fertilization within the normal range for this species in natural spawns (Diogo et al., 

2015; Martins et al., 2018). In our work, severe skeletal malformations that change 

fish external body shape such as lordosis, scoliosis and kyphosis were significantly 

higher with 12.5% of DMF when compared to 15% DMF. This fact suggests that 15% 

of DMF can protect the cell against residual intracellular ice crystals formation, cold 

damage or cellular stress that lead to genomic alternations and consequently to 

abnormal skeletal development. On early embryo, three embryonic layers are 

formed through extensive cellular rearrangements namely ectoderm, mesoderm 

and endoderm (Berendsen and Olsen, 2015). Each one of these embryonic layers 

will originate different body structures. Zebrafish vertebrae derive from notochord 

(Fleming et al., 2004) while arches derive from somite cellular line (Berendsen and 

Olsen, 2015). The regions most affected by skeletal anomalies in our study were 

caudal and precaudal fin vertebrae, which is in agreement with the typology of 

skeletal malformations reported in previous works in zebrafish (Bensimon-Brito et 

al., 2010; Diogo et al., 2015; Martins et al., 2018). Control, egg yolk and bicine 

treatments reduced the onset of deformed arches, vertebral fusions and 

compressions on the offspring. Therefore, sub-optimal extender composition in 

cryopreservation may cause a perturbation of the early embryo genome and 

structures relevant for ossification, disturbing thus zebrafish normal skeletal 

development. The detailed analysis of skeletal malformations generates complex 

data sets with inherent high biological variability, being therefore difficult to analyze 

through traditional statistical methods. Using decision trees, a machine learning 

modeling technique, it was possible to observe that using 15% of DMF reduces 

deformations on the arches. This fact suggests that 15% of DMF was able to protect 

spermatozoa genes involved on embryo somitogenesis. Our work evidences that the 

extenders composition that yields consistently improved sperm and offspring 

quality is 15% of DMF with bicine or egg yolk. However, considering egg yolk 

sanitary risks and standardization difficulties, we suggest that 15% of DMF with 50 

mM of bicine is the adequate cryoprotectant composition of the extender for the 

previously established cryopreservation protocol (Diogo et al., 2018).  

To the best of our knowledge, this is the first report on the skeletal 

malformations description of the offspring sired by cryopreserved sperm with 

different extender compositions in zebrafish. Our work shows that sub-lethal 
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damage of spermatozoa resulting from under-optimized cryopreservation protocols 

can increase the incidence of skeletal malformations in zebrafish offspring. 

Therefore, offspring skeletal development evaluation is a valuable tool for the 

selection of efficient cryopreservation protocols. The extender optimization 

performed by the present study represents an important improvement of zebrafish 

sperm cryopreservation through electric ultrafreezers. 
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CHAPTER 6.  APPLICATION OF SPERM 

QUALITY ANALYSIS AND CRYOPRESERVATION 

METHODOLOGIES IN A TRANSGENIC 

ZEBRAFISH LINE 
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PREAMBLE 
 

The major consequence of the lack of sperm cryopreservation 

standardization is the fact that the results achieved by these methodologies are 

unreliable, with low reproducibility. Therefore, the security of the highly valuable 

genotypes developed in laboratories and reference centers can be put at risk. 

Cryopreservation is a particularly valuable method for zebrafish lines that require 

high genomic stability and therefore are highly inbred. There are zebrafish 

transgenic and mutant lines more susceptible than wild type lines and with 

reproductive constrains. However, reliable sperm quality analysis of zebrafish 

strains is scarce. 

Type I diabetes is a human pathology with increasing incidence worldwide 

that require further investigation since the cause is unknown. The development of a 

diabetes type I zebrafish model is highly relevant for this research. The Tg(ins:nfsb-

mCherry) is a zebrafish line with Escherichia coli nitroredutase gene inserted in its 

genome, that upon the exposure to a pro-drug (Metronidazole) promotes the 

ablation of insulin-expressing Ⱦ cells of the pancreas. Zebrafish has fast generations 
and cellular regeneration ability, and therefore the diabetic condition is transient until full Ⱦ cells regeneration, which is useful for this pathology investigation. 
Similarly, to humans, zebrafish under type I diabetes transient state show negative 

consequences on sperm motility, plasma membrane viability and DNA integrity. 

Additionally, sperm obtained from Tg(ins:nfsb-mCherry) males under diabetic 

conditions shows a higher quantity of insulin (insa) and glucose carrier (slc2a2) 

transcripts. Since diabetes has relevant negative outcomes in the male reproductive 

system, this study aimed to understand if zebrafish is a useful model to support the 

investigation of the mechanisms by which this disease affects sperm quality and 

potentially its transgenerational effect.  
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6.1.1 Abstract 

Type I diabetes is a human pathology with increasing incidence however, its 

causes are still largely unknown. Diabetes promotes detrimental effects on 

reproduction such as lower sperm motility and DNA integrity. Hence, investigating 

the underlying mechanisms of this metabolic disturbance in reproduction and 

transgenerational consequences is of utmost importance. Zebrafish is a useful model 

considering its high homology to human genes, fast generation turnover and 

regeneration ability. Therefore, we proposed to investigate the putative effects of 

diabetes in sperm quality, particularly in sperm motility, the viability of plasma 

membrane, DNA integrity and in the expression of insulin a (insa), insulin receptor a 

(insra) and glucose transporter 2 (slc2a2) transcripts in spermatozoa. The 

Tg(ins:nfsb-mCherry) transgenic zebrafish line was used as model for type I diabetes. 

Diabetic Tg(ins:nfsb-mCherry) males showed a significantly higher quantity of 

transcripts of insa and slc2a2 compared to control. Sperm obtained from these diabetic 

fish showed significantly lower sperm motility, plasma membrane viability and DNA 

integrity when compared to the non-diabetic controls. Considering the pathology onset 

in early age progressing with time, sperm cryopreservation can be a useful tool to 

safeguard the possibility of in vitro fertilization. Upon sperm cryopreservation, sperm 

freezability from diabetic males was reduced, which could be a consequence of their 

initial poor sperm quality, highlighting the necessity of sample selection in 

cryopreservation of diabetic patients. Our data show similar detrimental effects of type 

I diabetes in spermatozoa at the cellular and molecular level and validates the 

zebrafish model for type I diabetes research in germ cells. 

 

6.1.2 Introduction 

Diabetes mellitus is a metabolic disorder characterized by chronic 

hyperglycemia with disturbances of carbohydrate, fat and protein metabolism. This 

metabolic unbalance results from defects in insulin secretion and/or action (Alberti 

KG, 1998) (Alberti). It is estimated that 382 million people suffer from diabetes with 

8.2% of prevalence (Guariguata et al., 2014). The projection the for human 

population suffering from diabetes in 2035 is expected to increase up to 592 million 

people (Guariguata et al., 2014). Type I diabetes is a chronic autoimmune disease 
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characterized by the loss of insulin-producing Ⱦ cells in the pancreas, leading to 

insulin deficiency. Type II diabetes is the acquired insulin resistance, which can 

occur in combination with reduced insulin secretion (Butler et al., 2003). Both types 

of diabetes show a growing incidence among the human population. The cause of 

type II diabetes is known to be primarily life style factors and genetic predisposition 

(Kahn et al., 2006; Risérus et al., 2009). However, the cause of type I diabetes is still 

to be fully understood (Xia et al., 2019). 

Considering the alarming increase of diabetes incidence and the fact that 

environmental factors affect both maternal and paternal germ cells, there is a great 

need for intergenerational and transgenerational studies of type I diabetes (Ding et 

al., 2015) on offspring inheritance and reproductive function. For this purpose, a 

model species with fast generation turnover is necessary. Zebrafish is a promising 

candidate for this type of research since it is a small teleost with fast generations, 

the genome fully sequenced and presents 74% homology with human genes (Howe 

et al., 2013). Additionally, there are established transgenic zebrafish models for type 

I diabetes (Bergemann et al., 2018; Pisharath et al., 2007). The Tg(ins:nfsb-mCherry) 

type I diabetes model was developed by Pisharat et al (Pisharath et al., 2007) with a 

Tübingen AB background to investigate pancreatic Ⱦ cells regeneration. The earliest 

known marker of Ⱦ cells in zebrafish embryo is the preproinsulin (ins) gene, its 

promoter is expressed in the nascent endocrine pancreas (Huang et al., 2001). This 

zebrafish line expresses nfsb gene and produces nitroreductase (NTR) enzyme, 

which converts prodrugs such as metronidazole (Met; Sigma-Aldrich, Spain) to 

cytotoxins, resulting in cell apoptosis (Pisharath et al., 2007). Consequently, the 

Tg(ins:nfsb-mCherry) line in the presence of Met will convert this prodrug into 

cytotoxins through the NTR enzyme, therefore ablating the pancreatic Ⱦ cells and 

losing the mCherry fluorescence on the pancreas.  The fact that this species has high 

regeneration ability, therefore being able to regenerate the ablated pancreatic Ⱦ 

cells (Carvalho et al., 2017), makes it a particularly useful model for the investigation 

of type I diabetes.  

Among other complications, diabetes causes disturbances in the male 

reproductive system, since glucose metabolism is an important event not only in 

spermatogenesis (Ding et al., 2015) but also in mature spermatozoa metabolism 



 

170 
 

(Dias et al., 2014; Urner and Sakkas, 2005). When critical developmental points of 

spermatogenesis are affected, environmentally-induced epigenetic modifications 

may become permanent in the germ line epigenome with potential consequences on 

subsequent generations (Anway et al., 2005; Ding et al., 2015). Numerous studies 

were performed both in humans and murine models, confirming the deleterious 

effects of diabetes on reproduction and gametes quality (Ding et al., 2015; López-

Escobar et al., 2015). In males, these deleterious consequences were particularly 

evident in sperm quality parameters such as DNA fragmentation, chromatin quality, 

sperm motility and seminal plasma composition (Agbaje et al., 2008). These 

deleterious effects on reproduction are observed both in type I and type II diabetes 

(Ding et al., 2015), and even in pre-diabetic and obesity conditions (Palmer et al., 

2012; Rato et al., 2013). 

In human male populations, the onset of type I diabetes occurs typically in 

children and adolescents and the disease progresses with age towards several 

andrological and reproductive complications (La Vignera et al., 2009; Xia et al., 

2019). Sperm cryopreservation is a valuable resource to support assisted 

reproduction (Cabrita et al., 2008; Diogo et al., 2018; Morris et al., 1999). Therefore, 

sperm cryopreservation can be a valuable tool to safeguard the possibility of in vitro 

fertilization later in life (Ranganathan et al., 2002). The zebrafish type I diabetes 

model is a useful tool to understand if sperm freezability is affected by the diabetic 

condition. 

Spermatozoa need the energy to acquire and maintain motility in order to 

reach the oocyte. This process requires the consumption of adenosine triphosphate 

(ATP). The metabolic pathways for energy production in spermatozoa are anaerobic 

glycolysis, mitochondrial oxidative phosphorylation and the pentose phosphate 

pathway (Bucci et al., 2013). Sperm uses primarily sugars such as glucose, mannose 

and fructose as energy fuels for ATP production (Bucci et al., 2013). These sugars 

are incorporated passively through lipid bilayers in a slow and inefficient manner 

and therefore require carriers. Hexoses (sugars) are transported into sperm actively 

through sodium-dependent glucose transporters, or passively through glucose 

transporters (GLUTs) (Scheepers et al., 2004). GLUTs, currently known as solute 

carrier family 2 (SLC2A), are essential during the passive glucose transport through 
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the blood-testes barrier during spermiogenesis. In addition, GLUTs are present in 

mature spermatozoa, which require carriers to incorporate energetic resources as 

mentioned previously. GLUT 2 is expressed at a very high level in pancreatic Ⱦ cells 

and is a high-affinity glucose transporter. This protein is located on acrosomal and 

end pieces of the tail of human spermatozoa (Bucci et al., 2013). The GLUTs are 

markers of sperm quality, useful for both clinical and commercial purposes (Bucci 

et al., 2013).  

Unexpectedly, it was demonstrated that mammalian spermatozoa have 

stores of insulin (Aquila et al., 2005; Carpino et al., 2010; Kim and Moley, 2007). 

Moreover, spermatozoa are known to secrete this hormone in a short autocrine loop 

to recruit glucose as energetic subtract (Andò and Aquila, 2005). This recruitment 

of glucose through insulin secretion is performed according to their metabolic needs 

or alterations in the systemic energy homeostasis (Andò and Aquila, 2005). The 

presence of insulin in teleosts sperm is still to be investigated. However, if similar to 

mammals, the role of insulin can be relevant not only in somatic but also in germ 

cells. Therefore, it is pertinent to understand the alterations of the transcripts of 

insulin and insulin receptor and glucose carrier under transient diabetic conditions. 

The objective of this study was to investigate the sperm quality in a type I 

zebrafish transgenic model under transient diabetic condition. The evaluation of 

target genes relevant for diabetes research such as insulin a (insa), insulin receptor 

a (inra) and glucose carrier 2 (slc2a2) were also studied in zebrafish sperm for a 

deeper understanding of the usefulness of this type I diabetes model for the study 

of reproductive complications. 

 

6.1.3  Methods 

1.1.1.1. Fish husbandry  

Adult AB zebrafish males and Tg(ins:nfsb-mCherry) (8-12 months old) were 

selected according to similar size and maintained in 3.5 l tanks with 15 fish each. 

The wild type AB line was provided by Max Planck Institute for Heart and Lung 

Research (Bad Nauheim, Germany) and maintained at the Centre of Marine Sciences 
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(CCMAR, Portugal). The reporter line Tg(ins:nfsb-mCherry) was kindly given by the 

Laboratory of Molecular Biology and Genetic Engineering (GIGA Research, Liege, 

Belgium). The Tg(ins:nfsb-mCherry) was previously screened and selected according 

to the presence of cell signalling on the pancreas during larval stage. Both fish lines 

were reared in a ZebTEC® (Tecniplast, Italy) recirculation system with 980 l of 

water, as previously described in Diogo et al. (Diogo et al., 2018). The water system 

was maintained at 28.2±0.5°C, 700±75 µS and pH 7.5±0.2. The fish were fed twice a 

day with Artemia nauplii (AF480, INVE, Belgium) and ZEBRAFEED® diet (Sparos 

Lda, Portugal) ad libitum. The Tg(ins:nfsb-mCherry) type I diabetes model was 

developed by Pisharat et al (Pisharath et al., 2007) with a Tübingen AB background 

to investigate pancreatic Ⱦ cells regeneration. The earliest known marker of Ⱦ cells 

in zebrafish embryo is the preproinsulin (ins) gene, its promoter is expressed in the 

nascent endocrine pancreas (Huang et al., 2001).  

All animal manipulations were performed in compliance with the Guidelines 

of the European Union Council (86/609/EU) and transposed to the Portuguese law for the use of laboratory animals on research by ǲDecreto Lei n° ͳʹͻ/ͻʹ de Ͳ͸ de Julho, Portaria n° ͳͲͲͷ/ͻʹ de ʹ͵ de Outubroǳ, and according to the European 
parliament council directive´s for protection of animals used for scientific research ȋʹͲͳͲ/͸͵/EUȌ. All animal protocols were performed under a ǲCoordinator-researcherǳ license from the Direção-Geral de Veterinária, Ministério da Agricultura, 

do Desenvolvimento Rural e das Pescas, Lisbon, Portugal, under the ǲDecreto Lei n°ͳͳ͵/ʹͲͳ͵ de ͹ de Agostoǳ relative to the protection of animals used for scientific 
research. All the fish sampling procedures were performed by licensed researchers. 

 

1.1.1.1. Induction of diabetes on Tg(ins:nfsb-mCherry) zebrafish model 

The Tg(ins:nfsb-mCherry) zebrafish line has inserted the nfsB gene of 

Escherichia coli and the florescent protein mCherry downstream to the promoter 

region of the insa gene in the Tg(ins:nfsb-mCherry) line.  

The diabetes induction was performed with metronidazole (Met; Sigma-

Aldrich, Spain) resulting in ablation of Ⱦ cells in Tg(ins:nfsb-mCherry) line. Met was 

dissolved in 0.5 ml/l of dimethyl sulfoxide (DMSO) and diluted in system water in a 
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final concentration of 10 mM by vigorous agitation. This concentration was selected 

since in zebrafish it does not produce germ cells ablation below 48 h of exposure to 

the drug (Dranow et al., 2013) and have no significant effect on sperm parameters 

in several species (Foote, 2002). For the control, the same conditions of water and 

fish housing were used with the exception of Met exposure. Males from both 

treatments were incubated at 28ºC in the dark for 24 h in glass tanks (14 fish/l of 

water). After incubation, the males were returned to clean system water tanks. 

Zebrafish have regeneration ability, therefore the transient diabetic conditions 

reach a maximum Ⱦ cells ablation 3 days after the exposure to the drug and fully 

regenerate pancreatic cells 14 days after Met exposure (Moss et al., 2009). 

Additionally, zebrafish males require 6 days to complete spermatogenesis (Leal et 

al., 2009). Due to the previously mentioned factors, a second induction was 

performed 7 days after the first Met exposure, as described above, to ensure that all 

males have the full spermatogenic cycle exposed to diabetic (or control) conditions. 

 

 

Figure 6.1 Experimental design to evaluate the effect of a transient type I diabetes state on zebrafish 
Ins2 line of fresh and post-thaw sperm motility, viability and DNA fragmentation. 
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Figure 6.2 Experimental design to evaluate the effect of a transient type I diabetes state on zebrafish 
Ins2 line on zebrafish sperm RNA transcripts. 

 

6.1.3.1 Experimental design 

Adult AB and Tg(ins:nfsb-mCherry) zebrafish males (8-12 month) were 

selected and separated into 2 groups the control and the diabetic treatment 

respectively. A second group of males was used as control where males were only 

exposed to the vehicle in the system water. The sperm and blood were collected three 

days after the second exposure to Met, when the maximum Ⱦ cells ablation occurs 

(Moss et al., 2009) for further analysis. 

To understand the impact of the diabetic conditions on zebrafish 

spermatozoa at the molecular level, a set of target transcripts was investigated with 

high relevance for this metabolic disorder. In fresh sperm, the levels of insa, inra and 

slc2a2 transcripts was evaluated in both zebrafish lines in Met treated and untreated 

males. 

 

6.1.3.2 Sperm collection 

Zebrafish were euthanized by hypothermal shock in ice and water slurry at 

2±2ºC (monitored with a probe). The ice was removed from the slurry to avoid the 

direct contact of fish skin with the ice. This method avoids the known interference 

of anesthetics with blood glucose analysis (Eames et al., 2010) and allows a fast 

euthanasia respecting fish welfare (Matthews and Varga, 2012; Wilson et al., 2009). 
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In less than 3 min after the beginning of the tank manipulation, the fish were 

properly euthanized, the males were rinsed in phosphate buffered saline (PBS) 

solution and cleaned with a paper towel to avoid sperm motility activation. Sperm 

was collected immediately by an abdominal massage using a glass capillary tube 

connected to a mouthpiece. Sperm was immediately diluted with 10 µL of sterilized 

and filtered (0.20 µm) Hankǯs Balanced salt solution (HBSS) at 300 mOsm/kg (Jing 

et al., 2009) to prevent motility activation, in accordance with previous studies 

(Hagedorn and Carter, 2011). After sperm collection, the samples were maintained 

at 4ºC in the dark until quality analysis was performed (between 1 and 2 h after 

collection). 

 

6.1.3.3 Blood glucose determination and pancreas fluorescence 

observation 

To confirm the diabetic conditions of the zebrafish Tg(ins:nfsb-mCherry) 

males, the blood glucose levels were evaluated. In zebrafish, blood glucose rises 3 

min after the exposure to stress (Eames et al., 2010).To avoid blood glucose analysis 

biases related to stress, 3 days prior to blood collection males were separated into 

glass tanks (2 l of water) with 2 males of the same treatment. Therefore, on the 

sampling day, males of each tank could be collected and euthanized within 3 min, 

without blood glucose increase due to stress. Moreover, prior to sampling, males 

were fasted for 24 h to avoid differential blood glucose fluctuations related to food 

consumption. The tail of the fish was excised and the blood of the peduncle was 

immediately measured with a blood glucose monitoring system (Glucocard™ 

G+meter, Arkray Europe B.V., Netherlands) according to the manufacturerǯs 

instructions. The use of hand-held glucose meters designed for use by human 

diabetics yields valid results with zebrafish blood (Eames et al., 2010). Glucose 

analysis was performed in AB males from control (n = 7) and Met treated fish (n = 

24), and in Tg(ins:nfsb-mCherry) from control (n = 8) and Met treatment (n = 21). 

Glucose levels were also evaluated in zebrafish AB males randomly collected from 

their housing tanks under stress-free conditions (n = 7) to control the fish handling 

effect. 
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The observation of fluorescence in the pancreas of Tg(ins:nfsb-mCherry) 

males were immediately performed after the blood glucose measurements. In adult 

fish, the observation of fluorescence in the pancreas is impaired due to the high 

muscular density surrounding the tissues. Therefore, each fish was dissected and the 

fluorescence observed under a MZ 7.5 fluorescence stereomicroscope (Leica 

Microsystems GmbH, Wetzlar, Germany) equipped with a green light filter ȋλex =530–

560 nm and λem =580 nm) coupled to a black and white F-View II camera (Olympus, 

Hamburg, Germany), controlled by the Cell^F v2.7 software (Olympus Soft Imaging). 

 

6.1.3.4 RNA extraction and complementary DNA synthesis 

Total RNA was extracted from sperm pools of AB (n = 4) and Tg(ins:nfsb-

mCherry) (n = 7) untreated males (control) and met treated (n = 4 and n = 7 

respectively). Each pool contained sperm from 5 males. The sperm sample of each 

male (1-2 µl) was collected and immediately diluted in 10 µl of Phosphate buffer 

(PBS) and added to 400 µl of NZYol Reagent (NZYTech, Portugal) according to the manufacturerǯs specifications. To improve the efficiency of the RNA extraction 0.5 µl 

of glycogen (Thermo fisher scientific, US) was added to the sample according to the manufacturerǯs specifications. The concentration and purity of the total RNA 

samples were evaluated using NanoDrop 1000 (Thermo Fisher Scientific, USA). The 

integrity of the obtained RNA was assessed through Experion RNA analysis (Biorad, 

USA). Complementary DNA (cDNA) was synthesized from 500 ng of the total RNA 

using M-MLV reverse transcriptase kit (Thermo Fisher Scientific, USA) with an oligo 

(dT) primer rate groups following the manufacturer protocol. Reverse transcription 

conditions were 37ºC for 1 h, 70ºC for 15 min and samples were stored at -20ºC 

until further analysis. 

 

6.1.3.5 Quantitative real-time polymerase chain reaction (qPCR) 

Relevant genes affected by diabetes and hyperglycemia were selected for 

analysis in zebrafish spermatozoa namely insa, insra and slc2a2 according to 

previous studies (Ahmed Alfar et al., 2017; Im et al., 2005; Michel et al., 2016; 
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Schoeller et al., 2012). A DNAse treatment was performed with RQ1 RNase-Free 

DNase product (Promega, USA) to remove genomic DNA contamination. 

The qPCR primers were designed using Perl Primer software (open-source 

PCR primer design). The nucleotide sequences of the primers are described in Table 

6.1. The quantitative real-time PCR (qPCR) conditions were optimized for the 

different primers (Table 6.1). The amplification was monitored and analyzed by the 

intercalation of the fluorescent dye, SYBR Green, to double-stranded DNA. Reaction 

mixtures (20 μl of total volume) contained template cDNA (100 ng cDNA), SYBR 

Green PCR Master Mix (10 μlȌ and 10 µM of forward and reverse primer (0.8 μlȌ. The 

qPCR reaction was initiated with a pre-incubation phase of 30 s at 95°C followed by 

50 cycles of 95ºC of denaturation for 10 s and the temperature for primer extension 

(60ºC) (Table 6.1) for 20 s. To check the specificity of qPCR amplifications, 

dissociation curve analysis was also included: 1 cycle of 95ºC for 15 s, 60ºC for 1 

min, followed by slow ramping of the temperature to 95ºC and finally 95ºC for 15 s. 

qPCR was carried out in a StepOnePlus™ System (Applied Biosystems, USA) 

according to the guidelines provided. StepOnePlus™ Systems software v.2.0 was 

used to calculate threshold cycle values (Ct). The ef1Ƚ was used as the endogenous 

reference gene to correct for the differences in reverse transcription efficiency and 

template quantity (McCurley and Callard, 2008). The mRNA levels were calculated 

as fold expression relative to the reference group, for each zebrafish line the met 

treated males were compared to untreated males. Each sample (n = 4 to 7 pools of 

sperm) was analyzed in technical replicates and the results were expressed 

according to the method described by Bustin (Bustin et al., 2009). Relative changes 

in gene expression were quantified using the 2−ΔΔCt methods (Livak and Schmittgen, 

2001). 
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Table 6.1 Forward and reverse primers used for target genes analysis through real-time PCR. 

Target 
gene 

Gene name 
Forward primer ȋͷ′-͵′Ȍ 

Reverse primer ȋͷ′-͵′Ȍ 
Annealingt 
emperature 
(°C) 

ef1a 
elongation 
factor 1alpha 

AGCCCCTCCTGGCTTTCACCC TGGGACGAAGGCAACACTGGC 60 

     

insa preproinsulin CATTCCTCGCCTCTGCTTC TGCCTGGGTTAGTGCTTACA 60 

 
 

   

insra 
insulin 
receptor a 

TCTACAGCGAGGAAAACAAGC AGAGATAAGATGCGTCCGTTTT 60 

     

Slc2a2  
solute carrier 
family 2 
member 2 

GCCATAACAGCAGGACTACT GATGACAGACCACAGTACAATCC 60 

 

6.1.3.6 Sperm cryopreservation and thawing 

For sperm cryopreservation, sperm samples from individual Tg(ins:nfsb-

mCherry) males were re-diluted in HBSS (1:2) containing 10% of DMF. Sperm was 

cryopreserved in a final volume of 10 µl in each cryovial with a controlled freezing 

rate of -10ºC/min through a programmable biofreezer (Assymptote EF600M, Grant, 

UK). The cryopreserved samples were then plunged into liquid nitrogen and stored 

in the cryobank. The samples were thawed in a 33ºC bath for 8 s and immediately 

analyzed for motility, cell viability and DNA integrity. 

 

6.1.3.7 Sperm plasma membrane viability analysis 

Sperm membrane viability of fresh and cryopreserved samples was assessed 

through flow cytometry using SYBR 14 (Invitrogen, Spain) and propidium iodide 

(PI) (Sigma Aldrich, Spain) labeling. The plasma membrane viability of spermatozoa 

was evaluated in untreated Tg(ins:nfsb-mCherry) males (n = 5) and males treated 

with Met (n = 6). SYBR 14 is a permeant nucleic acid dye that permeates the cellular 

plasma membrane and PI is a membrane impermeable dye, therefore PI only labeled 

cells with the disrupted membrane. Consequently, cells with disrupted membranes 

are labeled in red from PI and viable cells are labeled in green from SYBR 14 (Daly 

and Tiersch, 2012). The SYBR 14 used was diluted with 5 µl of stock solution added 

to 120 µl of sterilized and filtered HBSS, while PI was used undiluted. The pre-

diluted sperm samples were re-diluted (1:300) in HBSS and each stain was added 

for a final concentration of 6.7 nM of SYBR 14 and 3 ng/ml of PI. The samples were 
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incubated for 5 min in the dark at room temperature (21 to 25±1°C). The flow 

cytometer (BD FACSCalibur™, Biosciences, Spain) settings were adjusted for the 

detection of SYBR 14 through a 530 nm bandpass filter (FL1) and PI was detected 

with a 670 nm long pass filter (FL3). Prior to the beginning of the experiments, the 

settings were adjusted for zebrafish sperm analysis using a positive (100% dead 

cells) and a negative control (fresh sperm). For negative control, spermatozoa were 

exposed to cycles of freezing-thawing (Cabrita et al., 2005). A total of 5000– 10,000 

events were counted for each sample.  

 

6.1.3.8 Sperm motility analysis 

Sperm motility analysis was evaluated in fresh and cryopreserved sperm 

obtained from untreated Tg(ins:nfsb-mCherry) (n = 5) and Met treated males (n = 8 

and n = 10 respectively). Sperm motility was evaluated using computer-assisted 

sperm analysis (CASA) system (ISAS Integrated System for Semen Analysis, Proiser, 

Valencia, Spain) coupled to a phase contrast microscope (Nikon E-200, Nikon, 

Tokyo, Japan) with a x10 negative phase contrast objective. The images were 

captured with a Basler camera ISAS 782C camera (Proisier, Spain) and processed 

with CASA software. The settings of CASA system were adapted for this species with 

25 frames/s, connectivity 14, 1 to 90 mm for head area and only sperm samples with 

VCL > 10 µm/s were considered motile. Motility analysis was performed by placing 

1 μl of pre-diluted sperm in a Mackler chamber and immediately activate its motility 

with 5 μl of filtered (0.20 μmȌ and sterilized system water set at 28 °C and 700 

µS/cm. Sperm motility was characterized during 1 min each 10 s post activation 

according to total motility (TM; %), progressive motility (PM; %), curvilinear 

velocity (VCL; μm/sȌ, straight-line velocity (VSL; μm/sȌ and linearity (LIN; %). 

 

6.1.3.9 DNA integrity evaluation through comet assay 

DNA integrity was evaluated in fresh and cryopreserved sperm obtained 

from untreated Tg(ins:nfsb-mCherry) males (n = 4 and n = 5 respectively) and Met 

treated males (n = 8 and n = 6 respectively). The DNA fragmentation was evaluated 

through Comet assay methodology adapted from Reinardy et al. (2013), with some 



 

180 
 

modifications, as previously described (Diogo et al., 2018). The fresh prediluted 

sperm (1 μlȌ or thawed sperm (3 μlȌ were diluted in 60 μl of low melting point 

agarose (0.5% in PBS). The samples diluted in low melting point agarose were 

distributed into pre-coated slides with 0.5% of agarose in PBS (dried overnight) and 

covered with a coverslip 15 min at 4°C. For positive control, 2 μl of pre-diluted 

sperm was incubated with 2 μl of 100 μM H2O2 20 min at 4°C to ina duce DNA 

fragmentation. The coverslip was removed, and the slides were incubated in lysis 

solution (2.5 M NaCl, 100 mM EDTA, 10 mM Tris and 1% Triton X-100) for 1 h at 

4°C. Afterward, the slides were placed in an alkaline electrophoresis solution (300 

mM NaOH and 1 mM EDTA, pH 13) for 20 min to unwind the DNA. The 

electrophoresis was performed during 20 min set at 25 V and 280–300 mA. The 

slides were washed twice with neutralization solution (0.4 M Tris– HCl, pH 7.5) for 

5 min and fixed in ethanol during 15 min. For sample visualization, the DNA present 

in each slide was labelled with 10 μl of PI (1 mg/ml) and immediately observed at 

×600 in a fluorescence microscope (Olympus IX 81, Olympus, Japan) with blue 

excitation (450–480 nm). Images were captured and recorded with a digital camera 

(F-view, Olympus, Japan) and processed with the Cell^F image software (Olympus, 

Japan). At least 100 cells per slide were scored and further analysed using Kinetic 

Imaging Komet 5.5 software (Andor Technology Ltd., United Kingdom). DNA 

fragmentation was expressed in terms of DNA in tail (%).  

 

6.1.3.10  Data analysis 

IBM SPSS Statistics 25.0 software was used for statistical analysis. Data were 

expressed as mean ± SD (Standard Deviation) and normalized by logarithmic, or 

arcsine transformation when results were expressed as percentages. Blood glucose 

analysis was evaluated by one-way ANOVA with post hoc Tukey (P<0.05). The 

genomic transcripts present in spermatozoa obtained from qPCR were evaluated 

through one-way ANOVA with post hoc Student–Newman–Keuls (SNK) (P<0.05). 

Plasma membrane viability results were compared with independent samples t-test 

(P<0.05). A repeated measures ANOVA was applied for sperm motility analysis and 

each time post activation was evaluated with independent samples t-test for fresh 

and cryopreserved sperm (P<0.05).  
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To evaluate if sperm freezability was affected by the diabetic condition, fresh 

and cryopreserved sperm from untreated and Met treated Tg(ins:nfsb-mCherry) 

males were evaluated according to sperm motility and DNA fragmentation 

parameters. Viability of the sperm plasma membrane was not used since the 

preliminary data analysis revealed that it was not useful in the comparison between 

fresh and cryopreserved samples in the present work. Due to the high number of 

variables related to sperm quality (4 DNA fragmentation parameters + 5 motility 

parameters x 6 post activation times = 34 sperm quality variables) measured for 

each sample, their degree of redundancy was investigated. Consequently, a Principal 

Component Analysis (PCA) was used to assess the possibility to aggregate all 

variables into a small number of components, without significant loss of 

information.  

To check the sperm freezability of untreated (fresh n = 5; cryopreserved n = 

4) and Met treated (fresh n = 7; cryopreserved n = 9) Tg(ins:nfsb-mCherry) males, a hierarchical cluster analysis was applied to the scores PCA components. The Wardǯs 
method (Ward, 1963) was applied since this methodology allows to form 

hierarchical groups of mutually exclusive subsets, where each member of the group 

maximally similar in relation to their inherent characteristics (i.e. sperm motility and DNA fragmentationȌ. To apply Wardǯs method, the squared Euclidean distance 
was fixed computationally. This methodology is a mechanism of agglomerative 

hierarchical clustering procedure to classify the homogeneity of samples, according 

to a multivariate perspective. All the variables were considered according to 

treatment (control and diabetic) and sperm (fresh and cryopreserved) sample. This 

analysis is represented through a dendrogram. 

 

6.1.4 Results 

To evaluate the effectiveness of induction of diabetic and control conditions 

in Tg(ins:nfsb-mCherry) males, two methods were used, namely blood glucose 

analysis and observation of the pancreas under a fluorescence stereomicroscope. 

For a comprehensive analysis of glucose conditions of the fish, a set of controls were 

used namely AB males with and without exposure to Met and males without 
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manipulation (collected directly from the ZebTec housing tanks). The AB and 

Tg(ins:nfsb-mCherry) males from control showed no significant differences in blood 

glucose levels when compared to stress-free AB males, however, they were also not 

significantly different from Met treatments. Both AB and Tg(ins:nfsb-mCherry) lines 

showed significantly higher blood glucose levels when compared to stress-free AB 

males (Figure 6.1 A). 

Immediately after the dissection of the Tg(ins:nfsb-mCherry) males the 

fluorescence of Ⱦ-cells in the pancreas was observed. The loss of fluorescence in the 

pancreas of Tg(ins:nfsb-mCherry) males exposed to Met when compared to the 

control allowed the confirmation of the pancreatic Ⱦ-cells ablation and onset of 

diabetes (Figure 6.1 C and D). 

In spermatozoa, the transcripts of insa and glucose carrier slc2a2 were 

significantly upregulated in Met treated Tg(ins:nfsb-mCherry) males when 

compared to untreated Tg(ins:nfsb-mCherry) males, and to AB males with and 

without Met exposure (Figure 6.2 A and B). The insra transcripts were present in 

significantly higher quantities in sperm from Met treated Tg(ins:nfsb-mCherry) 

males when compared to AB males exposed to Met, however, it was not significantly 

different to sperm from both untreated zebrafish lines (Figure 6.2 C).  

In fresh sperm, the plasma membrane viability of Tg(ins:nfsb-mCherry) 

males under diabetic conditions was significantly reduced when compared to 

untreated males (Figure 6.3). After cryopreservation, the Tg(ins:nfsb-mCherry) 

sperm plasma membrane viability was compromised with no significant differences 

between both treatments (Figure 6.3). 

For sperm motility analysis, initially a repeated measures ANOVA was used 

to investigate the effect of the treatments (control and diabetic) and sperm 

cryopreservation through post activation time on sperm motility parameters and 

their interactions (Table 6.2). Both treatment and cryopreservation factors showed 

significant differences in sperm motility parameters without interactions between 

these factors (Supplementary data 6.1). To investigate thoroughly the effects of each 

treatment an independent samples t-test was used to study the differences at each 

time post activation on fresh and cryopreserved sperm (Supplementary data 6.1). 
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The sperm total motility was significantly reduced in males from Tg(ins:nfsb-

mCherry) under diabetic conditions when compared to the control (Figure 6.4 A, 

Table 6.2) in the last seconds of the spermatozoa lifespan both in fresh and 

cryopreserved sperm (Supplementary data 6.1). Progressive motility was 

significantly lower in sperm from Met treated males when compared to untreated 

males. Sperm from males with transient diabetes showed no post-thaw sperm 

progressive motility (Figure 6.4 B). The Tg(ins:nfsb-mCherry) males under diabetic 

conditions showed significantly reduced sperm velocities and linearity when 

compared to the control (Figure 6.4 C-E) after 30 s post activation until the end of 

their lifespan. This result was observed both in fresh and cryopreserved sperm 

(Supplementary data 6.1).  

The DNA fragmentation was, as expected, significantly increased due to 

cryopreservation procedure both in sperm from Tg(ins:nfsb-mCherry) untreated 

males and in diabetic conditions (Figure 6.5). The Tg(ins:nfsb-mCherry) males under 

diabetic conditions produced significantly higher spermatozoa DNA fragmentation 

when compared to the control (Figure 6.5). 

The sperm quality components obtained by PCA (i.e., component PC1, PC2, 

PC3 and PC4) consisted of a weighted median of the motility and DNA integrity 

measurements (after standardization). The scores of the components obtained with 

PCA were used for further cluster analysis since these components retain a total of 

94.1% of the accumulated variance. With the exception of PM at 40 and 50 s post 

activation, all sperm motility parameters (TM, PM, VCL, VSL and LIN) displayed a 

high degree of positive correlation among them, being aggregated into a single latent 

variable (PC1), which retains 74.3% of the observed variation. All DNA 

fragmentation parameters were completely differentiated from motility 

parameters, being positively correlated among each other and aggregated into a 

variable (PC2) retaining 11.5% of the observed variation. The components PC3 and 

PC4 explained 5.3% and 3% of the observed variance respectively. The components 

obtained by PCA data correlation of sperm motility and DNA fragmentation of fresh 

and cryopreserved sperm from diabetic and control treatment of Tg(ins:nfsb-

mCherry), were used to investigate the levels of association among samples and 

therefore sperm freezability through a hierarchical cluster analysis (Figure 6.6). 
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Data were aggregated into 3 clusters where one cluster contain samples of fresh 

sperm both from untreated and Met treated males. The other two clusters are 

predominantly composed by cryopreserved sperm.  One cluster is composed mainly 

of cryopreserved samples of the control treatment (except one sample of fresh 

sperm of control). However, in this cluster, there is one sample of cryopreserved 

sperm of Met treated males, that is more distant and with lower homogeneity 

compared to the other samples. The last cluster is composed predominantly of 

cryopreserved samples from Met treated males (Figure 6.6). Overall, in fresh sperm, 

both treatments are homogeneously mixed, however, after cryopreservation sperm 

from transient diabetic conditions are separated from the control treatment. 

Consequently, sperm from Met treated males has reduced freezability when 

compared to the control. 

The mechanism of action of diabetic conditions in Tg(ins:nfsb-mCherry) 

zebrafish spermiogenesis and sperm quality is systematized in Figure 6.7. 

 

Figure 6.3 Confirmation of pancreatic Ⱦ cells ablation and onset of diabetes in zebrafish males. AȌ 
graphic representation of the construct inserted in Tg(ins:nfsb-mCherry) genome; B) blood glucose 
analysis of stress-free AB males (n=7), AB males in control (=7) and Met treatment (n=24), and 
Tg(ins:nfsb-mCherry) in control (n=8) and Met treatment (n=21); C) observation of pancreas 
fluorescence in Tg(ins:nfsb-mCherry) control males after dissection; D) observation of pancreas lack 
of fluorescence in Tg(ins:nfsb-mCherry) diabetic males. The values plotted represent means±SD. 
Different letters represent statistical differences (one-way ANOVA, post hoc Tukey, P<0.05). 
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Figure 6.4 Genes relative expression to efͷȽ in zebrafish sperm pools using 2−ΔΔCt method: A) insa in 
spermatozoa pools of AB males in control (n=4) and Met treatment (n=4), and Tg(ins:nfsb-mCherry) 
in control (n=5) and Met treatment (n=7); B) insra in spermatozoa pools of AB males in control (n=4) 
and Met treatment (n=4), and Tg(ins:nfsb-mCherry) in control (n=7) and Met treatment (n=7); C) 
slc2a2 in spermatozoa pools of AB males in control (n=4) and Met treatment (n=4), and Tg(ins:nfsb-
mCherry) in control (n=5) and Met treatment (n=6). The values plotted represent means±SD. 
Different letters represent statistical differences (one-way ANOVA, post hoc SNK, P<0.05). 

 

Table 6.2 Statistical analysis of sperm motility parameters (data for 1 minute, each 10 s post 
activation) of Tg(ins:nfsb-mCherry) zebrafish line under control and diabetic conditions and their 
interactions (P values). 

Repeated measures ANOVA TM (%) PM (%) VCL (µm/s) VSL (µm/s) LIN (%) 

Treatment (control/diabetic) 0.017* 0.050* 0.023* 0.018* 0.006* 

Sperm (fresh/cryopreserved) <0.001* <0.001* 0.045* 0.005* 0.005* 

Treatment x sperm 0.530 0.165 0.717 0.943 0.999 

 

Significant differences (repeated measures ANOVA, P<0.05) are represented with asterisk. 
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Figure 6.5 Spermatozoa plasma membrane viability of fresh and cryopreserved sperm from 
untreated Tg(ins:nfsb-mCherry) males (n=5) and met treated males (n=6). The values plotted 
represent means±SD.  Asterisk represent statistical differences (independent samples t-test, P<0.05).  
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Figure 6.6 Sperm motility parameters of fresh sperm obtained from untreated Tg(ins:nfsb-mCherry) 
males (n=5) and metronidazole (Met) treated males (n=8), and cryopreserved sperm from untreated 
(n=5) and Met treated males (n=10). Sperm was activated, and motility parameters were recorded 
every 10 s for 1 minute in terms of: A) total motility (%); B) progressive motility (%); C) curvilinear 
velocity (µm/s); D) straight line velocity (µm/s) and E) Linearity (%). The values plotted represent 
means. Dashed line represents fresh sperm and continuous line represent cryopreserved sperm. 
Sperm from untreated males is represented with white circle and sperm from Met treated males with 
dark circle. 
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Figure 6.7 DNA integrity in zebrafish sperm: A) comet with high DNA fragmentation; B) comet with 
low DNA fragmentation; C) DNA fragmentation of fresh sperm obtained from untreated Tg(ins:nfsb-

mCherry) males (n=4) and metronidazole (Met) treated males (n=8), and cryopreserved sperm from 
untreated males (n=5) and Met treated males (n=6). The values plotted represent means±SD. 
Different letters represent statistical differences between treatments and asterisk represent 
statistical differences between fresh and cryopreserved sperm (independent samples t-test, P<0.05). 

 

Figure 6.8 Dendogram of Ward´s hierarchical cluster analysis for fresh and cryopreserved sperm (of 
principal components resulting from motility and DNA fragmentation data) of zebrafish sperm 
cryopreserved with a -10°C/min cooling rate. Rectangles discriminate clusters of samples within 
fresh and cryopreserved sperm from untreated and Met treated Tg(ins:nfsb-mCherry) males. 
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Figure 6.9 Hypothetic model of putative effect of diabetes in sperm quality. 

 

6.1.5 Discussion 

Among the most important complications related to diabetes mellitus is the 

impairment of male reproduction, affecting both spermatogenesis and mature 

sperm metabolism (Dias et al., 2014). This disease modulates spermatozoa 

substrate consumption and/or production due to altered glycolytic behavior, with a 

deregulation of the glucose uptake and metabolism (Dias et al., 2014). Zebrafish is a 

strong candidate to model prominent human pathologies such as diabetes mellitus. 

These species has been considered a useful vertebrate model for research in 

reproduction (Hoo et al., 2016) and metabolic diseases such as diabetes (Patton and 

Tobin, 2019). Therefore, zebrafish is a suitable model for the investigation of 

diabetes effect in the male germ line. 

The onset of diabetes promotes impaired insulin secretion and high systemic 

glucose levels. In our study, we observed that Tg(ins:nfsb-mCherry) zebrafish with 

impaired pancreatic activity produced sperm with an increase in the number of 

transcripts of insa, and slca2a2. This event can be a consequence of cellular 

transcription during spermatogenesis exposed to high glucose levels. The onset of 
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diabetes promotes impaired insulin secretion and high systemic glucose levels 

(Carvalho et al., 2017; Moss et al., 2009; Pisharath et al., 2007). Our data 

demonstrate that Tg(ins:nfsb-mCherry) zebrafish sperm showed higher levels of 

slc2a2 transcripts relative to control, which suggests that glucose uptake was 

favored. A zebrafish mutant model lacking a functional leptin receptor has a similar 

glucose homeostasis phenotype, shows reduced reproductive competence and 

upregulation of insa and slc2a2 transcripts in the liver, where systemic glucose 

metabolism occurs (Michel et al., 2016). As in liver, spermatozoa have high glucose 

metabolism. Similarly, to this study higher levels of insa and slc2a2 transcripts along 

with low sperm quality occurs under transient diabetic conditions. Therefore, our 

results suggest that during zebrafish spermatogenesis the lack of systemic insulin 

secretion promotes an increase in insa and slc2a2 in spermatozoa. In our study, insra 

transcripts in sperm from males under transient diabetes conditions were 

significantly higher than sperm from Met treated WT males, indicating a response 

to the experimental diabetes induction. The observed upregulation of insulin-

related genes can be a consequence of cellular transcription during spermatogenesis 

under diabetic conditions. 

In type I diabetes male patients, spermatogenesis disruption and germ cells 

apoptosis is observed. Upon the activation of the apoptosis cascade, the cell 

experiences a series of cellular degradation events, including DNA fragmentation, 

that leads ultimate to cell death (Elmore, 2007; Martinvalet et al., 2005). In patients 

with type I diabetes, changes in the expression of the genes involved in DNA repair 

and replication were correlated with the increase in sperm DNA fragmentation 

(Agbaje et al., 2008). In our work, it was possible to observe that sperm from 

zebrafish under diabetic conditions show significantly lower sperm motility, plasma 

membrane viability and DNA integrity when compared to sperm from untreated 

males. This data suggests that the ablation of the pancreatic Ⱦ cells, which have been 

shown to impair insulin secretion (Moss et al., 2009; Pisharath et al., 2007), 

produced germ cells apoptosis leading to reduced sperm quality and DNA integrity. 

The spermatozoa plasma membrane viability of diabetic and untreated males was 

compromised after cryopreservation. This result shows high susceptibility of 

Tg(ins:nfsb-mCherry) zebrafish line to cryopreservation and methodological 
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improvements in the protocol could be adopted to improve post-thaw viability, as 

in previous works (Diogo et al., 2018). 

In zebrafish, stored ATP is considered the basis for motility soon after 

initiation of motility. However, prolonged motility relies on oxidative 

phosphorylation and de novo ATP synthesis (Ingermann et al., 2011). Our results 

show that sperm collected from diabetic conditions, both in fresh and cryopreserved 

sperm, show significant lower motility parameters when compared sperm from 

untreated males. There is a significant decrease in sperm motility parameters such 

as VCL, VSL and LIN, particularly after 30 s post activation in sperm from Tg(ins:nfsb-

mCherry) males under diabetic conditions. This result suggests that under diabetic 

conditions, the ATP stores allow sperm normal motility in the first seconds of 

motility. In the lasts seconds of motility when de novo ATP synthesis through 

oxidative phosphorylation occurs (Ingermann et al., 2011) motility is impaired 

which suggests mitochondria deregulation as observed in sperm from human 

patients (Agbaje et al., 2007). The high levels of glucose uptake can promote 

inhibition of glycolysis pathway, which can lead to mitochondrial activity 

impairment, promoting a decrease in sperm motility (Agbaje et al., 2007; Ding et al., 

2015). 

Factors affecting the plasma membrane composition and fluidity (Cabrita et 

al., 2008), sperm subpopulations structure (Flores et al., 2009), intrinsic male 

variability (Pérez-Patiño et al., 2019; Roca et al., 2006) and differences in the 

abundance of proteins relevant for sperm function (Dietrich and Ciereszko, 2018; 

Pérez-Patiño et al., 2019) are associated to sperm freezability. However, sperm 

freezability predictors are not universally manifested in sperm quality traits across 

species prior to cryopreservation (Roca et al., 2006). Recently, good freezability in carp 

(Cyprinus carpio) sperm were related to high concentrations of proteins responsible 

for the maintenance of flagella structure, membrane fluidity, sperm motility and 

energy production, which can be markers of spermatozoa full maturation (Dietrich 

and Ciereszko, 2018). The freezability was reduced in sperm from diabetic 

treatment. We hypothesize that this result could be caused either by their lower 

initial sperm quality, due to apoptotic events caused by systemic metabolic 

malfunction, or failure in sperm full maturation due to abnormal glucose transport 
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during spermatogenesis. This data suggest that additional care should be taken in 

sperm quality analysis and sample selection of diabetic patients for 

cryopreservation purposes.  

We propose a hypothetic model for the mechanism of action of pancreatic 

cells impairment on sperm quality in Tg(ins:nfsb-mCherry) zebrafish (Figure 6.7) as 

a consequence of high systemic glucose levels which can affect affects sperm microenvironmental conditions. The pancreatic Ⱦ cell ablation promotes impaired 
insulin secretion in the pancreas, hyperglycemia, high ROS production and oxidative 

stress, low antioxidant defenses, and high apoptosis (Alfar et al., 2017; Delgadillo-

Silva et al., 2019). With low insulin secretion in the pancreas and hyperglycemia, it 

is expected upregulation of ins transcripts in germ cells (Aquila et al., 2005; Michel 

et al., 2016). Moreover, with the high glucose present in the organism, it is expected 

that germ cells in the testes increase the transcripts for glucose carriers which 

favors an increase in intracellular glucose levels, which can potentially promote cell 

stress. Consequently, in zebrafish under transient diabetic conditions it is expected 

that during spermatogenesis, germ cells in the testes are exposed to oxidative stress, 

mitochondrial dysfunction and high apoptosis environment that can lead to DNA 

fragmentation, loss of cell viability. Moreover, under these conditions, spermatozoa 

have deficient differentiation and maturation and therefore upon sperm 

cryopreservation shows lower sperm freezability. If spermatozoa mitochondria are 

affected by oxidative stress events, after the exhaustion of ATP stores, its de 

novo synthesis through oxidative phosphorylation is impaired, affecting sperm 

motility at the end of their lifespan, therefore reducing sperm fertilizing ability. 

The results of this work reveal that under diabetic conditions detrimental 

effects are observed on zebrafish sperm viability, motility and DNA fragmentation 

similar to human patients. Therefore, this species is a suitable model to assay 

reproductive dysfunctions. The use of zebrafish in diabetes research respects the ͵R´s rule, since this species regenerate the pancreatic Ⱦ cells and the diabetic 
condition can be induced repeatedly on the same individuals. The present work 

reveals compelling evidence that zebrafish is a suitable model to investigate the 

effects of type 1 diabetes mellitus on male reproductive function.  
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General Discussion 

The methodological standardization of zebrafish sperm cryopreservation is 

essential to overcome the high variability of post-thaw sperm quality and in vitro 

fertilization success. The improvement of this methodology is highly relevant for 

research centres worldwide with facilities dedicated to the use zebrafish as a model 

for research areas such as biomedicine, toxicology, pharmacology and 

developmental biology, among many others. There is an urgent need for an 

improved and consistent cryopreservation method to support the management of 

zebrafish lines, since the lack of space for the exponential generation of new 

zebrafish lines is one of the main constrains in zebrafish facilities. This thesis 

provided an integrative approach to tackle this issue, with a multidisciplinary 

research strategy. 

 

7.1. Identification of specific constraints in zebrafish male donors affecting 

reproductive performance 

Successful cryopreservation depends on high quality sperm, which is 

ensured by having high quality breeders. Consequently, broodstock selection and 

management is a priority to improve sperm cryopreservation. Broodstock nutrition 

is considered one of the most important factors affecting reproduction and progeny 

quality (Beirão et al., 2015a; Izquierdo et al., 2001). Diet has a preponderant effect 

on gamete quality, particularly phospholipid and fatty acid contents (Meinelt et al., 

1999; Nowosad et al., 2017), that are one of the main constituentes of plasma 

membranes.  Nutrition is one of the earliest factors affecting gametogenesis, and 

therefore the quality of gametes. Zebrafish are fed with highly different diets and 

feeding protocols in research centres worldwide, which might be a contributing 

factor for reported reproduction variability (Martins et al., 2018). In chapter 3 of the 

present thesis, we investigated how the supplementation of the phospholipids 

phosphatidylcholine (PC) and phosphatidylethanolamine (PE) included in purified 

diets affected zebrafish reproductive performance, gamete quality and incidence of 

skeletal malformations in the progeny (Diogo et al., 2015). Both phospholipids are 



 

196 
 

particularly relevant for teleosts, considering that spermatozoa membranes and egg 

yolk contain high quantities of PC and PE (Drokin, 1993b; Rønnestad et al., 1995). 

The inclusion of these phospholipids may be particularly important in zebrafish 

spermatozoa, which have lower viability than other species, since these cells need 

to maintain the integrity of plasma membrane when exposed to the fertilizing 

media, suffering an hypoosmotic stress. It has been seen in other species 

(Senegalese sole) that plasma membrane can be modulated through diet promoting 

an increase in the resistance to osmotic stress under fertilization conditions (Beirão 

et al., 2015a). The experimental data obtained showed that fish fed with PC 

supplemented diet presented good sperm quality parameters and the highest 

hatching rate. However, this diet also revealed deleterious effects on zebrafish 

larvae skeletal development. Broodstock fed with diets supplemented with PE 

promoted good quality sperm without compromising the offspring skeletal 

development. This work provided evidences on the relevance of dietary 

phospholipids on sperm quality and supported the development of a standardized 

diet, which is essential for the reduction of variability on the reproductive 

performance among facilities. 

Sperm quality is defined by the ability to successfully fertilize an egg, which 

is dependent on factors such as spermiation period, favourable environmental 

conditions for activation of sperm motility, parental aging and sperm output 

frequency (Alavi and Kazemi, 2006; Cabrita et al., 2011a; Migaud et al., 2013; 

Rurangwa et al., 2004). Therefore, the establishment of optimal age and sperm 

collection frequency is a relevant resource for zebrafish broodstock management 

and supports zebrafish sperm cryopreservation. The non-lethal method for sperm 

collection is more adequate for zebrafish management purposes and respects the 3 Rǯs rule. Consequently, sperm can be collected repeatedly from the same individual 

through a non-invasive method (reuse), the same fish can be used for other 

experiments after an appropriate resting time (recycle), and therefore a lower 

number of fish can be used for experimental purposes (reduce). In zebrafish, the 

comparison between lethal and non-lethal sperm collection methods was already 

investigated (Daly and Tiersch, 2012; Jing et al., 2009a; Morris et al., 2003). The non-

lethal technique has become more used in research due to its benefits (Diogo et al., 

2015; 2018; Draper and Moens, 2009; Hagedorn and Carter, 2011; Hagedorn et al., 
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2012; Harvey et al., 1982b; Matthews et al., 2018; Panigrahi et al., 2018; Park et al., 

2012; Silva et al., 2019) when compared to the lethal method (Bai et al., 2013; 

Hagedorn et al., 2009; Yang et al., 2007; Yang et al., 2016).  

In chapter 4 the minimum required time for males to rest between sperm 

collections was investigated, in order to ensure optimal sperm quality recovery. 

With this study it was possible to establish a minimum of 14 days of rest between 

non-invasive samplings to the same individual. Moreover, it was determined that 

zebrafish between 6 to 8 months of age presented a higher sperm quality in 

comparison to older fish (12-14 months), and therefore, younger males should be 

selected for cryopreservation purposes, decreasing the labour-intensive process of 

sample selection (Diogo et al., 2019).  

 

7.2. Optimization of zebrafish sperm cryopreservation methodologies 

Under the objectives of the present thesis, a new sperm cryopreservation and 

storage method is presented in chapter 5.1. This new procedure uses an ultrafreezer 

and was established for the first time in a teleost species (Diogo et al., 2018). This 

methodological innovation is highly relevant for zebrafish facilities management, 

since it decreases the overall costs of cryopreservation. The extender solution was 

improved according to cryobiological principles and, to the best of our knowledge, 

we reported for the first time the incidence of skeletal malformations in zebrafish 

offspring sired by cryopreserved sperm. 

The hypothesis of an alternative storage method in an ultrafreezer was 

validated through the comparative assessment of cryopreservation of pooled sperm 

in a programmable biofreezer and subsequent storage in either liquid nitrogen or in 

a ultrafreezer. To evaluate the storage efficiency, samples were thawed at different 

time points. Storage in an ultrafreezer was not significantly different to liquid 

nitrogen storage in terms of sperm motility, viability and hatching rates. 

Ultrafreezer storage was beneficial in relation to liquid nitrogen since it has higher 

storage capacity, easier sample manipulation and, unlike liquid nitrogen storage, it 

does not require periodic reposition, making the global costs of cryopreservation 

lower (Batista et al., 2009). Considering these results, we aimed to understand if it 
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was possible to simplify even more the protocol and to improve it using a fast-

freezing rate, placing the samples directly in the ultrafreezer (-66ºC/min). This was 

a particularly relevant hypothesis, since the fastest freezing rate reported for 

zebrafish sperm was -25ºC/min (Bai et al., 2013; Wang et al., 2015).  

As previously discussed, zebrafish spermatozoa are similar to sperm from 

other cyprinids (Zhang et al., 2014). Spermatozoa structure depends on the cell 

water content; as such, spermatozoa can have different cryoprotectant 

permeability. Therefore, spermatozoa structure is an important cryobiological 

feature contributing to the species-specific cell biophysical properties that affect the 

freezing process and post-thaw survival (Hagedorn et al., 2009). Since in species 

such as Cyprinus carpio (Bernáth et al., 2016) and Perca fluviatilis (Bernáth et al., 

2015) a fast cooling rate of −ͷ͸°C/min improved post-thaw sperm motility, the 

hypothesis of a fast freezing rate to improve zebrafish post-thaw sperm quality was 

evaluated. The post-thaw sperm quality was improved as shown by the evaluation 

of sperm viability, DNA fragmentation and late apoptosis in relation to the 

conventional cryopreservation methodology. Our study demonstrated that 

ultrafreezers are a viable alternative for zebrafish sperm storage and a fast cooling rate of −͸͸°C/min performed directly in an ultrafreezer improve post-thaw 

zebrafish sperm quality. The optimization of the cooling rate for zebrafish sperm 

cryopreservation, represents an important contribution to support future 

methodological improvements. This methodology facilitates the cryopreservation 

process without the need of expensive programmable biofreezers and can be easily 

applied in zebrafish facilities, reducing the global costs of cryopreservation. 

Considering the relevant findings described previously, in chapter 5.2 we 

performed a refinement of the extender composition for the previously established 

protocol using an electric ultrafreezer, according to cryobiological principles. 

Therefore, the optimal concentration of permeating cryoprotectants was evaluated 

with narrow ranges, because low differences in cryoprotectant concentrations are 

known to have a high impact on the freezing process and on post-thaw sperm quality 

(Anchordoguy et al., 1987; Judycka et al., 2018). Non-permeating cryoprotectants 

such as sugars and amino acids are able to establish interactions with membrane 

lipidic bilayers (Carpenter and Crowe, 1988), protecting the cells during the freezing 
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process and improving post-thaw results (Cabrita et al., 2011b; Martínez-Páramo et 

al., 2013). 

Our results showed that concentrations of 12.5 to 15% of N-N 

dimethylformamide (DMF) were able to protect spermatozoa during the 

cryopreservation process yielding high total and progressive motility, plasma 

membrane viability and hatching rates. Egg yolk yielded high post-thaw sperm 

quality and hatching rates, which might be explained by its high viscosity that 

protects the cell during cryopreservation (Morris et al., 2006). Viscosity stabilizes 

the fertilization microenvironment, which is important in teleosts external 

fertilization (Lahnsteiner, 2002), particularly in species that yield low sperm 

volume such as Senegalense sole (Diogo et al., 2010; Riesco et al., 2017) and 

zebrafish. The main disadvantages of egg yolk are the difficult standardization 

probably due to the variation of biochemical composition depending of the source, 

the high susceptibility to contamination by pathogenic agents (Aires et al., 2003) 

and the fact that is a animal-derived product that presents sanitary risks due to 

possible contamination due to the introduction of exotic diseases via semen media 

containing egg yolk (Gavin-Plagne et al., 2018; 2019).  Additionally, egg yolk 

provides aromatic amino acids and therefore contributes to the production of 

reactive oxygen species by dead spermatozoa to the detriment of live spermatozoa 

(Shannon and Curson, 1982; Vishwanath and Shannon, 2000).  

Bicine is an amino acid [N,N-Bis(2-hydroxyethyl)glycine] with high buffer 

capacity and recommended for biological research at low temperatures (Good et al., 

1966). Bicine is commonly used in fresh water species extender composition 

(Cabrita et al., 2010) and was recently used in a zebrafish sperm cryopreservation 

protocol (Matthews et al., 2018). However, its isolated effect on post-thaw sperm 

quality required deeper comprehension. We observed that bicine yields high post-

thaw sperm quality and in vitro fertilization success without the disadvantages of 

egg yolk mentioned previously. 

The incidence of severe malformations, namely lordosis, scoliosis and 

kyphosis and the occurrence of deformed arches were the main effects observed 

within skeletal malformations in the offspring sired by cryopreserved sperm. The 

skeletal malformations incidence on control treatment of zebrafish obtained with 
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fresh sperm are within the normal range for this species in natural spawns (Diogo 

et al., 2015; Martins et al., 2018). It was observed higher incidence of skeletal 

malformations in caudal and precaudal fin vertebrae in zebrafish sired with 

cryopreserved sperm. The extender composition affects differently the occourence 

of severe malformations (lordosis, kyphosis and escoliosis) and deformed arches of 

the offspring. These results suggest that different types and concentrations of 

cryoprotectants, and their combinations, are differently able to protect cells against 

deleterious effects on genes involved in developmental processes that will affect 

skeletal formation. This characterization allowed to observe effects of the extender 

composition that could be otherwise disregarded. Therefore, our study evidences 

that the characterization of the skeletal development of offspring sired by 

cryopreserved sperm is a useful tool for evaluation of the quality of the gametes and 

can be used on the optimization of sperm cryopreservation protocols. 

 

7.3.  Zebrafish sperm quality assessment methodologies 

One of the most striking issues among zebrafish studies related to sperm 

cryopreservation is the considerably high number of studies relying only on sperm 

motility estimations (Hagedorn et al., 2012; Harvey et al., 1982a; Morris et al., 2003; 

Yang et al., 2007; 2016) rather than quantitative analysis through computer-

assisted sperm analysis (CASA) system (Bai et al., 2013; Diogo et al., 2015; 2018; 

Matthews et al., 2018; Wang et al., 2015). As previously mentioned, CASA systems 

allow for a precise quantification and qualification of motility parameters. 

Therefore, the high number of studies relying on motility estimation rather than 

quantification with CASA system consists in an important source of variability 

among studies and on post-thaw sperm quality analysis. Zebrafish are reared in 

captivity under controlled environmental conditions. 

 Water osmolarity is the most important factor controlling zebrafish sperm 

motility activation (Dadras et al., 2017; Jing et al., 2009a). In the recirculation 

systems water is maintained at 28ºC, and ions present in the water are controlled 

through addition of salts and a water conductivity probe controlling the automatic 

adjustment. Therefore, the settings used for water temperature and conductivity, 
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will be the system water conditions present in the fertilization microenvironment 

of natural spawns that can affect the fertilization success. However, the research 

community does not have this parameter standardized and the water conductivity 

is highly variable among facilities (≥400 up to 1600 µS/cm). This fact, by itself, could 

affect sperm motility activation and characteristics. Surprisingly, throughout the 

literature the activation of sperm motility for quantification procedures is 

performed with distilled water, or using several buffers diluted in distilled water, in 

different proportions with few exceptions (Caetano Da Silva et al., 2019; Diogo et al., 

2015, 2018).  

Spermatozoa motility depends on the energy released with ATP hydrolysis 

to produce flagellum beating (Alavi and Cosson, 2005). Water temperature affects 

motility characteristics (Dadras et al., 2017) and dynein motors of flagellum (Cosson 

et al., 2008a). In comon carp spermatozoa sperm motility is longer at 20°C than at 

26-30°C (Billard and Cosson, 1992), decreasing sperm motility duration at lower 

temperatures (Billard et al., 1995). No differences were found in sperm motility 

duration of brown trout spermatozoa between 2-28ºC, however Atlantic salmon 

decrease sperm motility duration with higher temperature ȋVladiĉ and Jätrvi, ͳͻͻ͹Ȍ. 

Therefore, the optimal temperature for sperm motility activation is species specific 

and determined by each species ecological adaptations (Dadras et al., 2017).  In 

zebrafish sperm motility activation is routinely performed without temperature 

control. We demonstrated that water temperature affects zebrafish sperm 

metabolism, and showed that, for zebrafish, 28°C improves sperm motility 

throughout sperm lifespan.  

Osmolarity is one of the major factors contributing to sperm motility 

activation through cell signaling cascade (Morisawa et al., 1983). Osmolarity os the 

activation medium is the main responsible for zebrafish motility activation 

(Ingermann et al., 2011). Osmolarity is correlated with water conductivity as 

observed in our study. It was observed that distilled water in zebrafish sperm 

motility activation improve sperm longevity in relation to 0.3% of NaCl and HBSS 

170 mOsm/Kg. In our study, distilled water yields higher motility values in relation 

to the water conductivity set up in the systems, which results in sperm analysis 

biases in relation to spermatozoa behaviour under natural spawning conditions. 
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The results of our work suggest that this species is adapted to low water 

conductivity conditions, hence 700 µS/cm is the most suitable conductivity to set up 

in the recirculation systems. This work constitutes a powerful tool for the 

standardization of the sperm quality analysis as well as hatchery management.  

 Standardization or harmonization of methodologies implies the 

normalization, according to an established common consensus, to reduce variability 

and ensure consistent results (Torres and Tiersch, 2018). Therefore, 

standardization of procedures is essential to improve experimental reliability and 

replicability (Hagedorn et al., 2018; Lawrence, 2016; Martínez-Páramo et al., 2017; 

Torres and Tiersch, 2018; Torres et al., 2017; Varga et al., 2018). Although the 

standardized procedures might not be useful or applicable in all experimental 

designs, they would allow comparison between studies and facilitate knowledge 

improvements in a faster and more reliable manner. The lack of standardization of 

zebrafish sperm cryopreservation has been routinely considered the most 

important reason behind the low post-fertilization success (Hagedorn et al., 2018; 

Torres et al., 2017; Varga et al., 2018). We consider that this is an important source 

of biases, but not the only responsible for low embryo survival. Throughout the 

several experiments performed in the present thesis, several in vitro fertilization 

trials were performed where fertilization with fresh sperm yielded similarly low 

hatching rates. Therefore, the methodologies used during in vitro fertilization, such 

as sperm pipetting and oocyte manipulation may be relevant stressors for zebrafish 

in vitro fertilization, as observed in assisted reproduction techniques applied to 

other species such as human, bovine and mouse (Ramos-Ibeas et al., 2019). 

In addition to the improvement of sperm motility activation and analysis 

through CASA system, DNA fragmentation analysis through comet assay, flow 

cytometry evaluations of plasma membrane viability and cell apoptosis, proved to 

be valuable tools for sperm quality analysis and sample selection. One of the most 

relevant issues in sperm zebrafish studies is the few methods employed in the 

characterization of sample quality. The use of sperm samples with inconsistent 

quality is an important source of variability in this species. The gathered analysis of 

sperm plasma membrane viability and motility, particularly progressive movement, 

are robust, practical to apply and predictive of hatching rates. One of the main 
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constraints in this species is the very low sperm volume available. Therefore, flow 

cytometric analysis using dyes to characterize cellular constituents are the most 

appropriate methods, since with low sample volume a robust analysis is obtained 

rapidly. DNA fragmentation analysis is an important but complex analysis relevant 

for protocol optimization purposes. To the best of our knowledge, this is the first 

study where an analysis of spermatozoa apoptosis was conducted in zebrafish.  

In vitro fertilization is considered the most accurate way to observe 

spermatozoa fertilizing ability (Rurangwa et al., 2004) and the final objective of 

assisted reproductive techniques. There are few reports in zebrafish sperm 

cryopreservation performing in vitro fertilization with post-thaw sperm. Among 

these studies, the characterization of hatching rates was only reported twice and 

fertilization rates at 3 hpf consist the main measure of success of in vitro fertilization 

(Harvey et al., 1982b). However, at 3 hpf an embryo sired with spermatozoa 

containing DNA damage is still being repaired. The maternal machinery responsible 

for repairing paternal DNA damage only stops its action at 8 hpf (Fernández-Díez et 

al., 2018). Therefore, fertilization rates only describe the entry of sperm in the 

oocyte, disregarding possible damage that this cell may contain, and consequently 

embryo putative abortion. In chapter 5.1 it is possible to observe high abortion rates 

between 3 and 24 hpf in embryos sired with cryopreserved sperm. In agreement 

with our work, Fernández-Diez et al. (2018) observed high embryo abortion due to 

paternal genotoxicity between 8 and 24 hpf. Considering the in vitro fertilization 

results achieved in our work and the fact that hatching rates were very similar to 

survival at 24 hpf, we propose that the survival at 24 hpf is the most simple and 

accurate method to evaluate sperm fertilization ability and progeny viability 

produced with post-thaw zebrafish sperm. In this work we observed a high 

discrepancy between fertilization and hatching rate and concluded that fertilization 

rate is a highly biased quality assessment in zebrafish. Although fertilization rates 

are often used as representation of in vitro fertilization success, zebrafish embryo 

survival at 24 hpf is the earliest and most accurate measure to predict embryo 

viability.  
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7.4. Application of sperm cryopreservation to relevant animal models 

Zebrafish natural populations have a wide range of genotype and phenotypes 

variations associated to their ecology and evolution (Whiteley et al., 2011). 

However, this species was domesticated and established in research centres 

worldwide. The domestication of the species introduced genetic variations 

modulating also parameters such as behaviour and reproduction (Holden and 

Brown, 2018; Whiteley et al., 2011; Wilson et al., 2014), especially in highly inbred 

lines (Balik-Meisner et al., 2018). Moreover, zebrafish lines produced with gene 

editing tools have additional genomic alterations that can have an impact in this 

species biological performance ȋDǯAgati et al., ʹͲͳ͹; Lawrence, ʹͲͳ͸Ȍ. The 

characterization of gametes quality and reproductive success is poorly investigated 

in most of zebrafish lines, and it is highly important in the establishment of 

reproductive programs, assisted reproduction and sperm cryopreservation 

methodologies. The last objective of this thesis was the application of sperm 

cryopreservation in relevant zebrafish lines.  

The application of zebrafish sperm cryopreservation protocols is particularly 

relevant for valuable mutant and transgenic lines, due to their high value and in 

some cases difficulty in breed naturally. However, all the twelve zebrafish sperm 

cryopreservation studies rely uniquely on wild-type AB line (Diogo et al., 2018; 

Draper and Moens, 2009; Hagedorn et al., 2012; Harvey et al., 1982a; Matthews et 

al., 2018; Morris et al., 2003; Silva et al., 2019; Wang et al., 2015; Yang et al., 2007; 

2016) and/or uncharacterized wild type zebrafish (Bai et al., 2013; Yang et al., 

2016); and one is a general protocol description (Carmichael et al., 2009). In our 

work, sperm quality of mutant (e.g. casper) and transgenic lines (e.g Tg(runx2:eGFP) 

and Tg(ins:nfsb-mCherry)) were evaluated, and shown to present considerable 

differences in relation to wild-type lines. The casper mutant line is known to have 

reproductive constraints (Lawrence, 2016) and here we demonstrated that sperm 

motility and metabolism is impaired in comparison to AB wild type males. In 

opposition, the Tg(runx2:eGFP) males showed significantly higher sperm motility 

and plasma membrane viability, although they require more time to rest between 

samplings to recover sperm quality (Diogo et al., 2019).  
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The trangenic line Tg(ins:nfsb-mCherry) was used in chapter 6 to study the 

effect of type I diabetes in zebrafish reproductive performance. This model has a 

high biomedical relevance since could be used to compare the effects of this desease 

in humans. The hyperglycemia present in the organism during spermatogenesis 

under diabetic conditions can cause an abnormal glucose intake on the germ cells in 

the testes. High cellular glucose is known to promote oxidative stress events, which 

are detrimental to the cell and can lead to apoptosis and autophagy (La Sala et al., 

2015; Ma et al., 2013; Zhang et al., 2009). Moreover, the high levels of glucose uptake 

in the cell can promote an inhibition of glycolysis pathway, leading to mitochondrial 

activity impairment and decreasing sperm motility (Agbaje et al., 2007). Our work 

revealed that similarly to human patients, zebrafish under transient diabetic 

conditions have detrimental effects on sperm quality, namely in sperm motility, 

plasma membrane viability and DNA integrity. The decrease in all these quality 

parameters in the zebrafish males under transient diabetic conditions when 

compared with the same males without treatment suggest that oxidative stress 

could be the primary damage affecting several functionalities in the cell. Although in 

the present study, ROS (reactive oxygen species) were not determine, and therefore 

could be other causes behind these effects, its has been shown in several species 

including zebrafish that high production of free radicals (e.g. H2O2, O-) reduces 

spermatozoa functionality (Hagedorn et al., 2012; Sanocka and Kurpisz, 2004).   The 

use of molecular tools allowed to observe that sperm from zebrafish under diabetic 

conditions have higher levels of transcripts related to this pathology such as insulin 

a (insa) and glucose carrier 2 (slc2a2). The same findings were observed by previous 

studies in mouse models (Alfar et al., 2017; Im et al., 2005; Michel et al., 2016; 

Schoeller et al., 2012). This means that during gametogenesis this transgenic line 

under diabetic conditions suffers an overexpression of these transcripts, which will 

pass to spermatozoa as remanants. Other effects has been shown during 

spermatogenesis of diabetes patients such as lower testicular volume, azoospermia, 

altered epidimary volume and altered thickness of seminal vesicles (La Vignera et 

al., 2009). The diabetic conditions during spermatogenesis are also known to 

imprint the paternal genome and epigenetic marks that will be inherited by the 

offspring (Ding et al., 2015).  
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With our work we validate zebrafish as a useful model for the investigation 

of type I diabetes in male germline. Considering the pathology onset in early age and 

progressing with time, sperm cryopreservation is a useful tool to safeguard the 

possibility of in vitro fertilization. Upon sperm cryopreservation, Tg(ins:nfsb-

mCherry) under diabetic conditions showed lower sperm freezability which can be 

a consequence of their lower initial sperm quality. Therefore, the selection of sperm 

samples from type I diabetes patients with the highest quality possible (early age) 

is essential to improve the post-thaw sperm quality.  

Sperm cryopreservation protocols are particularly relevant for vulnerable 

zebrafish lines, particularly when they have reproductive constraints. Therefore, 

Tg(ins:nfsb-mCherry) zebrafish model for type I diabetes is a valuable model for the 

investigation of male reproductive dysfunctions associated to this pathology. 
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Main conclusions and perspectives 

This thesis allowed the identification of specific constraints in zebrafish assisted 

reproduction. The methodologies established during this thesis are particularly 

relevant for small and intermediate zebrafish facilities since we established 

practical and cost-effective procedures. Overall, the present doctoral thesis allowed 

the establishment of relevant guidelines for zebrafish sperm cryopreservation and 

in vitro fertilization.  

One of the major objectives of the present thesis was to detect specific 

constraints of zebrafish male donors that affect reproductive performance, which 

we summarize as: 1) very low sperm volume, 2) high uncertainty of sperm volume, 

biasing values of sperm concentration yielded by each male, 3) high male to male 

variability, 4) low number of males with high quality, which is variable between 

populations and facilities, 5) high variability between sperm quality of model 

zebrafish strains, 6) high variability on sperm motility activation for its analysis and 

in vitro fertilization purposes, and 7) highly variable fertilization media 

composition, osmolarity and volume used during in vitro fertilization.  

There are several major sources of variability among sperm 

cryopreservation methodologies such as extender composition, freezing and 

thawing rates. However through this study it was possible to detect the following 

constraints were detected: 1) reduced quantitative selection of sperm samples prior 

cryopreservation, 2) biases produced by sperm activation with distilled water with 

uncontrolled environmental temperature, 3) use of new cryopreservation 

methodologies and solutions without previous investigation on post-thaw quality 

by themselves in comparison with an adequate control, 4) use of inadequate vials 

for small/medium zebrafish research centres, since a single French straw requires 

a high number of males with high quality sperm that will be used only for one 

fertilization, as opposed to cryovials. 

With the gathered knowledge obtained by the present thesis we provide 

robust guidelines for sperm quality analysis as well as male donor management and 

selection guidelines, as follows: 1) sperm motility analysis and activation for in vitro 

fertilization should be performed with solutions at 28°C, 2) the sperm motility 
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should be activated with system water with low water conductivity (we propose 

700 µS/cm), 3) the diet should be optimized for the species and standardized among 

facilities, 4) males from 6 to 8 months old should be selected for sperm collection, 

5) males require at least 14 days of rest between non-invasive sperm collections, 6) 

sperm quality of each zebrafish line should be studied prior to cryopreservation 

protocols, 7) ultrafreezer is a viable alternative to liquid nitrogen storage, 8) a fast 

freezing rate of -66°C/min is beneficial for zebrafish post-thaw sperm quality, 9) 

embryo survival at 24 hpf is the most accurate measure to predict embryo viability.   

In future studies special attention should be payed to this species hierarchical 

structure and dominance-subordinate relationships to understand the impact of 

male selection criteria for cryopreservation on the offspring. Additionally, the in 

vitro fertilization methodologies would require refinements regarding gametes 

collection and manipulation, particularly oocyte handling. 
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SUPLEMENTARY DATA CHAPTER 2 

 

 

Supplementary Figure 2.1- Relation between system water conductivity and osmolarity. The water 
conductivities plotted are the most used in zebrafish rearing. 

 



 

212 
 

Supplementary Figure-2.2 Zebrafish AB line sperm motility activation (with the same pool) using 
CASA system with different water conductivities: A) 0 µS/cm, B) 700 µS/cm and C) 1200 µS/cm. The 
lines with different colors represent different spermatozoa velocities. Red lines represent fast 
spermatozoa (10-45 µm/s), green lines represent medium velocities (45-100 µm/s) and blue lines 
represent slow spermatozoa (<150 µm/s). Yellow crosses represent immotile spermatozoa (>10 
µm/s). 
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Supplementary Figure 2.3 Effect of water temperature (20°C and 28°C) and water conductivity (0, 
700 and 1200 µS/cm) on sperm motility parameters of zebrafish AB line (n=8). Sperm was activated, 
and motility parameters were recorded each 10 s for 1 minute in terms of: A) linearity (%), B) 
average path velocity (µms/s), C) straightness (%) and D) curvilinear path wobble (%). The values 

plotted represent means, continuous line represent 20°C and dashed line represent 28°C. The values 

plotted represent mean, continuous line represent 20°C and dashed line represent 28°C of the 
activation medium. Activation medium with 0 µS/cm is represented with white circle, 700 µS/cm 
with a dark circle and 1200 µS/cm without symbol. 
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Supplementary Figure 2.4 Effect of water temperature (20°C and 28°C) and water conductivity (0, 
700 and 1200 µS/cm) on sperm motility parameters of zebrafish casper line (n=8). Sperm was 
activated, and motility parameters were recorded each 10 s for 1 minute in terms of: A) linearity (%), 
B) average path velocity (µm/s), C) straightness (%) and D) curvilinear path wobble (%). The values 

plotted represent means, continuous line represent 20°C and dashed line represent 28°C. The values 

plotted represent mean, continuous line represent 20°C and dashed line represent 28°C of the 
activation medium. Activation medium with 0 µS/cm is represented with white circle, 700 µS/cm 
with a dark circle and 1200 µS/cm without symbol. 
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SUPLEMENTARY DATA CHAPTER 4 

Supplementary table 4.1 Sperm motility parameters from CASA system of zebrafish AB line at 10 s 
post-activation

 

a In baseline (0) sperm collection frequency 
b Males with 6 months of age 
 

Supplementary table 4.2 Sperm motility parameters from CASA system of zebrafish Tg(runx2:eGFP) 

line at 10 s post-activation. 

 

 
a In baseline (0) sperm collection frequency 
b Males with 6 months of age 

 

 

Sperm motility VCL (µm/s) VSL 

(µm/s) 

TM (%) PM (%) LIN (%) 

Age (months)a 

6 months 

8 months 

 

84.4 ± 16.1 

70.2 ± 8.7 

 

53.0 ± 24.5 

56.6 ± 12.3 

 

22.6 ± 12.4 

27.8 ± 25.9 

 

17.0 ± 9.4 

12.0 ± 9.4 

 

59.6 ± 19.5 

80.2 ± 11.9 

12 months 

14 months 

 

Frequency (days)b 

0 

2 

7 

14 

71.3 ± 34.8 

65.5 ± 14.5 

 

 

84.4 ± 16.1 

71.3 ± 15.0 

85.9 ± 18.7 

59.4 ± 32.3 

50.6 ± 28.7 

39.8 ± 12.4 

 

 

53.0 ± 24.5 

42.4 ± 16.0 

57.8 ± 20.0 

40.4 ± 23.6 

21.3 ± 14.2 

34.0 ± 18.6 

 

 

22.6 ± 12.4 

23.3 ± 16.0 

31.3 ± 21.7 

32.6 ± 17.5 

8.7 ± 10.6 

7.3 ± 3.0 

 

 

17.0 ± 9.4 

8.7 ± 8.2 

11.3 ± 9.2 

8.2 ± 6.0 

62.2 ± 24.2 

58.3 ± 8.3 

 

 

59.6 ± 19.5 

58.3 ± 14.2 

65.8 ± 9.8 

67.6 ± 35.2 

 

Sperm motility VCL (µm/s) VSL (µm/s) TM (%) PM (%) LIN (%) 

Age (months)a 

6  

8  

 

105.9 ± 22.3 

96.6 ± 20.0 

 

73.9 ± 19.8 

63.1 ± 16.7 

 

58.9 ± 2 1.6 

53.7 ± 30.3 

 

25.0 ± 13.6 

21.2 ± 16.5 

 

68.6 ± 4.8 

64.2 ± 5.9 

12  

14  

 

Frequency (days)b 

0 

2 

7 

14 

69.0 ± 16.0 

54.3 ± 26.5 

 

 

105.9 ± 22.3 

78.4 ± 4.6 

103.2 ± 31.3 

86.2 ± 5.4 

51.8 ± 15.0 

40.5 ± 20.3 

 

 

73.9 ± 19.8 

56.0 ± 9.0 

71.0 ± 24.5 

61.8 ± 7.5 

36.3 ± 25.2 

23.8 ± 22.3 

 

 

58.9 ± 21.6 

32.8 ± 21.7 

52.2 ± 27.8 

50.2 ± 7.9 

18.5 ± 14.9 

9.5 ± 11.1 

 

 

25.0 ± 13.6 

14.0 ± 10.4 

22.8 ± 14.1 

20.0 ± 5.0 

74.3 ± 8.1 

65.0 ± 26.6 

 

 

68.6 ± 4.8 

71.0 ± 1.2 

68.0 ± 4.4 

71.2 ± 4.9 
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SUPLEMENTARY DATA CHAPTER 5.1 

Supplementary Figure 5.1.  Dendogram of cluster analysis through Ward´s method with an evenly 
distribution of liquid nitrogen (LN) and ultrafreezer (UF) storage methods. 
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