Nasr et al., IJPSR, 2020; Vol. 11(2): 605-614.

E-ISSN: 0975-8232; P-ISSN: 2320-5148

# IJPSR (2020), Volume 11, Issue 2



# PHARMACEUTICAL SCIENCES RESEARCH



Received on 18 April 2019; received in revised form, 21 August 2019; accepted, 01 September 2019; published 01 February 2020

# IN-VITRO ANTIOXIDANT AND ANTI-INFLAMMATORY ACTIVITIES OF PITURANTHOS CHLORANTHUS AND ARTEMISIA VULGARIS FROM TUNISIA

Soumeya Ben Nasr <sup>1</sup>, Smail Aazza <sup>2</sup>, Wissem Mnif <sup>3, 4</sup> and Maria Graça Miguel <sup>\* 1</sup>

Faculdade de Ciências e Tecnologia <sup>1</sup>, Departamento de Química e Farmácia, Universidade do Algarve, Edifício 8, Centro para os Recursos Biológicos e Alimentos Mediterrânicos (MeditBio), Campus de Gambelas, 8005-139 Faro, Portugal.

Laboratory of Phytochemistry <sup>2</sup>, National Agency of Medicinal and Aromatic Plants (NAMAP). BP. 159, Principal, 34000, Taounate, Morocco.

Department of Chemistry <sup>3</sup>, Faculty of Sciences and Arts in Balgarn, University of Bisha, Bisha 61922, P.O. BOX 199, Kingdom of Saudi Arabia.

Université de Manouba <sup>4</sup>, Institut Supérieur de Biotechnologie Sidi Thabet, LR Biotechnologie et Valorisation des Bio-Géo Ressources (BVBGR-LR11ES31), Biotechpole Sidi Thabet, Ariana 2020, Tunisia.

### **Keywords:**

Radical scavenging ability, Lipid peroxidation prevention, Lipoxygenase, Guezzah, Aljen, Mugwort

# Correspondence to Author: Maria Graça Miguel

Associate Professor with Habilitation, Faculdade de Ciências e Tecnologia, Departamento de Química e Farmácia, Universidade do Algarve, Edifício 8, Centro para os Recursos Biológicos e Alimentos Mediterrânicos (MeditBio), Campus de Gambelas, 8005-139 Faro, Portugal.

E-mail: mgmiguel@ualg.pt

ABSTRACT: Pituranthos chloranthus and Artemisia vulgaris L. are two of the most important aromatic and medicinal species from the Apiaceae and Asteraceae families, respectively. They are traditionally used in certain pathologies in which inflammatory processes are involved. The present study investigates the potential of aqueous extracts of Tunisian P. chloranthus and A. vulgaris as a natural alternative source of antioxidant and anti-inflammatory activities using *in-vitro* techniques. The antioxidant activities of aqueous extracts were evaluated through several assays: capacity for scavenging free radicals (ABTS, DPPH, hydroxyl, superoxide, nitric oxide); and total antioxidant capacity by ferric reducing power activity and inhibition of lipid peroxidation by thiobarbituric acid reactive species (TBARS) method. The anti-inflammatory activity was evaluated through the lipoxygenase (LOX) inhibitory activity. P. chloranthos aqueous extract presented higher concentration of total phenols than A. vulgaris extract, nevertheless higher capacity for scavenging ABTS, superoxide, hydroxyl, and NO free radicals. In the presence of liver homogenate, both extracts had poorer antioxidant activity than in the remaining lipid substrates. P. chloranthos extract had a higher ability for inhibiting lipoxygenase twice higher than A. vulgaris, while it had lower capacity for reducing Fe<sup>3+</sup> than P. chloranthos extract. Our results suggest that there are differences of antioxidant activity between both samples, but also the strength for inhibiting the oxidation is highly dependent on the method used.

**INTRODUCTION:** *Pituranthos chloranthus* (Bent. Et Hook.) (Apiaceae) is an aromatic plant from North Africa.



**DOI:** 10.13040/IJPSR.0975-8232.11(2).605-14

This article can be accessed online on www.ijpsr.com

**DOI link:** http://dx.doi.org/10.13040/JJPSR.0975-8232.11(2).605-14

This species grows naturally in central and southern Tunisia. The Arabian name of this species in this country is 'Guezzah' <sup>1, 2</sup> and 'Aljen' <sup>3, 4</sup>. However, there is also an indication that 'Guezzah' is the Arabian name of *P. scoparius* <sup>5</sup> or *P. tortuosus* <sup>4, 6</sup>.

Over time, *P. chloranthus* has been used either in agriculture or as a remedy. In the agriculture, the stems can be used as a straw to dry figs and grapes or as insecticide or for disinfecting the underground

cisterns of the rainwater storage after suspending a tuft of the plant to the surface. In traditional medicine, the plant has been used for diverse purposes: treatment of pain, rheumatism, spasms, fever, digestive difficulties, hepatitis, urinary infections, and scorpion stings <sup>2</sup>. However, there are authors, who attribute some of these applications to *P. tortuosus* <sup>6</sup> or *P. scoparius* <sup>5</sup>. According to the review <sup>5</sup>, *P. chloranthus* has only been traditionally used on diabetes and fever, whereas another author <sup>7</sup> indicates that this species is only used for combating headache after the application of cataplasms on head.

The chemical composition, the antimicrobial, antioxidant, antimutagenic and anti-genotoxic properties of the essential oils of P. chloranthus from Tunisia have been the aim of the study of several authors <sup>1, 2, 4, 8, 9, 10, 11, 12</sup>. Only very few reports 13 about the chemical composition of extracts of this species could be found: the flavonoids [isorhamnetin- 3glucoside, 0isorhamnetin- 3- O-rutinoside, apigenin-6, 8-di-Cglucoside (vicenin-2), and tamarixetin-3-Oglucoside]. These flavonoids were obtained from extracts of the aerial parts of flowering P. chloranthus collected in Algeria 13. From Tunisia, the authors <sup>3</sup> identified coumarins, two in the aerial parts (isoimperatorin and osthol) and two other the coumarins in roots (bergapten nodakenetin). The antioxidant and anti-microbial activities of extracts of P. chloranthus have also been reported <sup>14, 15</sup>.

Artemisia vulgaris L. (Asteraceae), known as mugwort or common wormwood, is an aromatic plant naturally growing in Europe, Africa and India <sup>16</sup>. In addition, Hooper <sup>17</sup> refers 'afsantin-e-hindi' as the Arabian name given to Artemisia vulgaris L, whereas USAID; Chemonics International, Inc 18 attributes 'Chih' as being the Arabian name for Artemisia vulgaris. On the other hand, there are also authors who attributed the name 'Chih' to the species A. herba-alba 19. In folk medicine, A. vulgaris is generally used as an antispasmodic, antiseptic, anthelmintic, carminative, sedative, and in the treatment of menstrual problems, irregular periods, menopause and premenstrual syndrome <sup>20</sup>, 1. In some other regions of the world (Nepal, Pakistan), the leaves of A. vulgaris also have other applications, such as stopping nose bleeding, to

treat oral ulcers, ophthalmic diseases, malaria, and fevers, to prevent and to treat some types of allergic reactions <sup>22, 23</sup>.

Other properties have been reported for mugwort: antimicrobial <sup>24, 25</sup>, antioxidant <sup>16, 24, 25</sup>, antiinflammatory <sup>21, 26</sup>, hepatoprotective <sup>27</sup>, hypolipidemic <sup>21</sup> and antihypertensive properties <sup>26</sup>
although some authors have advised against the use of *A. vulgaris* for this purpose <sup>28</sup>. The antioxidant and antimicrobial activities of the mugwort extracts have led to use them for fabricating silver nanoparticles with high potential biomedical applications <sup>29</sup>. The chemical composition and biological properties of essential oils of *A. vulgaris* have been deeply investigated <sup>16, 27, 30, 31, 32, 33</sup>. Biological properties of extracts of this species have also been evaluated and reviewed <sup>21, 24, 25, 34, 35</sup> nevertheless their chemical composition has been much less scrutinized <sup>16, 36, 37, 38</sup>.

As aforementioned, A. vulgaris and P. chloranthus have been used in folk medicine in certain pathologies in which inflammatory processes are involved. When there is an uncontrolled and excessive production of reactive oxygen species (ROS) a process called oxidative stress occurs. These ROS can react with biomolecules, such as lipids, proteins, and nucleic acids. Under hypoxia, mitochondrial respiratory chain produces nitric oxide (NO), which is able to generate other reactive nitrogen species (RNS), which in turn, can produce other reactive species.

The reaction of all these reactive species with cellular lipids induces excessive lipid peroxidation products, such as lipid-derived aldehydes (*e.g.* malonaldehyde, 4-hydroxy-2-nonenal) that can be responsible for several oxidative stress-induced inflammatory diseases <sup>39, 40</sup>. The capacity of compounds to prevent lipid peroxidation and/or generation of reactive species may contribute to retard, decrease or prevent inflammation.

The present work aimed at evaluating the potential antioxidant and anti-inflammatory activities using *in-vitro* techniques of aqueous extracts of Tunisian *A. vulgaris* and *P. chloranthus*.

### **MATERIALS AND METHODS:**

**Plant Material and Preparation of Extracts:** Plant material was collected in 2014 from natural

E-ISSN: 0975-8232; P-ISSN: 2320-5148

populations located at the Center of Tunisia. The plant specimens were identified by Prof. Mohamed Chaieb, a botanist in the Faculty of Sciences of Sfax-Tunisia, and vouchers specimens (AVU-2 for A. vulgaris and PCH-3 for P. chloranthus) deposited in the Higher Institute of Biotechnology of Sidi Thabet-Tunisia. Extraction was performed by decoction of 5 g of dried aerial parts of Tunisian A. vulgaris and P. chloranthus for 1 h in 100 mL of distilled water. The aqueous phases were centrifuged for 10 min, at 2,000 g, at 20 °C and the supernatant was removed and kept at -20 °C until the determination of total phenols and in vitro antioxidant activities.

**Determination of Total Phenols (Folin-Ciocalteau):** The total phenol content of the extracts was determined according to <sup>41</sup>. Gallic acid was used as standard. The aqueous extracts (0.5 mL) and 2 mL of sodium carbonate (75 g/L) were added to 2.5 mL of 10% (v/v) Folin-Ciocalteau reagent. After 60 min at room temperature, the absorbance was measured at 765 nm. Tests were carried out in triplicate and the results presented as mg gallic acid equivalent (GAE)/g.

Determination of ABTS (2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) Radical Cation Scavenging Capacity: The ABTS radical cation decolorization assay was carried out using the previously reported methods <sup>41</sup> with slight modifications. The aqueous extracts (10 μL) at various concentrations was mixed with 990 μL diluted ABTS<sup>-+</sup> solution. The absorbance at 734 nm was measured after reaction at room temperature for 6 min. The ability to scavenge the ABTS<sup>-+</sup> was calculated using the formula:

Scavenging activity (%) =  $[(A_0 - A_1) / A_0] \times 100$ 

Where  $A_0$  is the absorbance of the control (without sample) and  $A_1$  is the absorbance in the presence of the sample. Tests were carried out in triplicate and the inhibition percentage was plotted against extract concentration (w/v) and the results presented as  $IC_{50}$  values (concentration of extract able to prevent 50% of lipid peroxidation).

Determination of DPPH (2, 2-diphenyl-1-picrylhydrazyl) free radical scavenging activity (DPPH): The aqueous extracts (50  $\mu$ L) at different concentrations were placed in a cuvette, and 2 mL

of 60 mM methanolic solution of DPPH was added  $^{41}$ . Absorbance measurements were made at 517 nm after 60 min of reaction at room temperature. The ability to scavenge the DPPH free radicals was calculated using the formula: Scavenging activity (%) =  $[(A_0 - A_1) / A_0] \times 100$ , where  $A_0$  is the absorbance of the control (without sample) and  $A_1$  is the absorbance in the presence of the sample. The values of  $IC_{50}$  were determined as reported above. Tests were carried out in triplicate and the results presented as  $IC_{50}$  values.

Hydroxyl Radical Scavenging Activity: The assay of hydroxyl scavenging activity was performed as 42 with small modifications. Briefly, the reaction mixture was prepared using 10 mM  $FeSO_4.7H_2O$ , 10 mM EDTA, 10 mM deoxyribose, 0.1 M phosphate buffer and sample at different concentrations to give a total volume of 1.8 mL. Finally, 200 µL of H<sub>2</sub>O<sub>2</sub> was added to the mixture, which was incubated at 37 °C for 4 h. After this period, 1 ml trichloroacetic acid (2.8%) and 1 mL thiobarbituric acid (1%) was added and boiled for 10 min to develop the pink colored malondialdehyde-thiobarbituric acid. cooling, its absorbance was measured at 520 nm. The hydroxyl scavenging activity (%) was calculated using the following equation: Inhibition =  $[(A_0 - A_1) / A_0] \times 100$  where  $A_0$  is the absorbance of the control (without sample) and  $A_1$  is the absorbance in the presence of the sample. The values of IC<sub>50</sub> were determined as reported above. Tests were carried out in triplicate and the results presented as IC<sub>50</sub> values.

Superoxide Anion Scavenging Activity (Non-Enzymatic Method): Measurements of superoxide anion scavenging activity of samples and positive control were based on the method previously described 41. Superoxide anions were generated in a phenazine non-enzymatic methosulfate nicotinamide adenine dinucleotide (PMS/NADH) system by oxidation of NADH and assayed by reduction of nitroblue tetrazolium (NBT). The method involved mixing the aqueous extracts (25 μL) at different concentrations with 25 μL nitroblue tetrazolium (0.42 mg/mL) and 25 µL NADH (1.32 mg/mL) and ethanol (125  $\mu$ L) followed by 25  $\mu$ L phenazine methosulfate (PMS) (0.25 mg/mL). The absorbance was measured at 560 nm, after 10 min of reaction.

E-ISSN: 0975-8232; P-ISSN: 2320-5148

The superoxide scavenging activity (%) was calculated using the following equation: Inhibition =  $[(A_0 - A_1) / A_0] \times 100$  where  $A_0$  is the absorbance of the control (without sample), and  $A_1$  is the absorbance in the presence of the sample. Tests were carried out in triplicate and the results presented as  $IC_{50}$  values.

Nitric Oxide (NO) Scavenging Capacity: The NO scavenging activity of aqueous extracts was determinate according to 41. The aqueous extracts (75 µL) at diverse concentrations were added to 75 μL of 10 mM sodium nitroprusside into a 96-well plate and left standing at ambient temperature for 35 min. The reaction was initiated by adding Griess reagent [40 µL of sulfanilamide solution and 40 µL of N-1-napthylethylenediamine dihydrochloride (NED) solution to the mixture. The absorbance was measured at 532 nm without previous incubation. The NO scavenging activity (%) was calculated using the following equation: Inhibition =  $[(A_0 - A_1) / A_0] \times 100$  where  $A_0$  is the absorbance of the control (without sample) and  $A_1$  is the absorbance in the presence of the sample. Tests were carried out in triplicate, and the results presented as IC<sub>50</sub> values.

Inhibition of Lipid **Peroxidation** by Thiobarbituric Acid Reactive Species (TBARS) Method: This assay was performed using three distinct lipid substrates: egg yolk, liver, and liposomes. The assay was carried out as described by  $^{41}$ . Egg yolk or liver (100 mg/mL) (250  $\mu$ L) homogenates were mixed with acetic acid (750 µL) and the solution of TBA (8 mg/mL) (750  $\mu$ L) dissolved in sodium dodecyl sulfate (SDS) (11 mg/mL), and 100 μL aqueous extracts at different concentrations. The mixtures were heated for one hour in water bath at 95 °C. After cooling, the final volume was adjusted to 2 mL by adding butanol followed by centrifugation for 10 min at 3,000 g. The absorbance of the upper layer was read at 532 nm. The percentage of inhibition was calculated as follows:  $[(A_0 - A_1 / A_0) \times 100]$ , in which  $A_0$  is the absorbance of the control reaction (without extract), and  $A_1$  is the absorbance of the extracts. Analyses were run in triplicate. The IC<sub>50</sub> values were determined (concentration of extract able to prevent 50% of lipid peroxidation). The liposome solution was made as follows: 0.4 g lecithin in 80 mL chloroform.

This solution was dried and submitted to nitrogen flux for 30 s and then to vacuum for at least two hours until complete dryness. After that, the reaction was initiated by mixing 50  $\mu$ L of different extract concentrations with 100  $\mu$ L of liposome suspension, FeCl<sub>3</sub> (100  $\mu$ L, 4 mM) and 50  $\mu$ L of ascorbic acid (0.018 mg/mL). After incubation at 37 °C for one hour, 2 mL of TBA solution (0.6%) was added. The mixture was heated for 10 min at 95 °C. Afterward, 2 mL butanol was added and the final solution was centrifuged for 5 min at 3,000 g. The percentage of inhibition and the IC<sub>50</sub> values were calculated as described above.

Ferric Reducing Power Activity: The reducing power of each extract at different concentrations was measured as previously reported 41. Fifty microliters of each sample were mixed to 0.5 mL of potassium phosphate buffer (200 mM, pH 6) and 0.5 mL of potassium ferricyanide (1%). The mixtures were incubated in a water bath (50 °C), for 20 min. After this period, 0.5 mL of trichloroacetic acid (10%, w/v) was added to the cooled mixture and submitted to centrifugation at 3,000 g, for 10 min. Finally, distilled water (0.5) mL) and 0.1 mL FeCl<sub>3</sub> (0.1%, w/v) were added to the supernatant and the absorbance was measured at 700 nm. The ferric reducing power capacities of the extracts were expressed graphically by plotting absorbance against concentration.

**Lipoxygenase (LOX) Inhibitory Activity:** The inhibition of the lipoxygenase enzyme was performed as reported  $^{41}$ . The reaction was started with the mixture of 10  $\mu$ L of aqueous extracts at different concentrations, 5  $\mu$ L of enzyme solution (0.054 g/mL), 50  $\mu$ L of linoleic acid (0.001 M) and borate buffer 937  $\mu$ L (0.1 M, pH 9). The measurement of the absorbance was recorded at 234 nm. The percentage of inhibition was calculated as follows:  $[(A_0 - A_1 / A_0) \times 100]$ , in which  $A_0$  is the absorbance of the control reaction (without extract), and  $A_1$  is the absorbance of the extracts. Analyses were run in triplicate. The percentage of inhibition and the IC<sub>50</sub> values were calculated as described above.

**Statistical Analysis:** Statistical analysis was performed using the Statistical Package for the Social Sciences (SPSS) 23.0 software (SPSS Inc., Chicago, IL, USA). Statistical comparisons were

made with one-way ANOVA followed by Tukey multiple comparisons. The level of significance was set at P<0.05. The paired Student t-test was used in some tests to determine differences at 95% significance.

**RESULTS: Table 1** depicts the content of phenols and antioxidant activities, measured through

diverse methods, of P. chloranthus and A. vulgaris aqueous extracts. The antioxidant activity is expressed in IC<sub>50</sub> (concentration of the extract that is able to prevent 50% lipid peroxidation or to scavenge free radicals or to inhibit lipoxygenase activity). The lower the IC<sub>50</sub> values are, the higher the antioxidant activities will be.

TABLE 1: PHENOL CONTENT AND ANTIOXIDANT ACTIVITY OF AQUEOUS EXTRACTS OF A. VULGARIS AND P. CHLORANTHUS

| Sample      | Phenol         | Hydroxyl              | DPPH                  | ABTS              | Superoxide        | Egg yolk          | Liposomes            | NO                   | Liver                | Lipoxygenase        |
|-------------|----------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------------|----------------------|----------------------|---------------------|
|             |                |                       |                       |                   |                   | (TBARS)           | (TBARS)              |                      | (TBARS)              |                     |
| Р.          | 1.36           | 0.38                  | 0.44                  | 0.58              | 1.57              | 0.18              | 0.12                 | 4.83                 | 0.36                 | 0.02                |
| chloranthos | $\pm 0.02^{*}$ | $\pm 0.02^{de^{***}}$ | $\pm 0.01^{\rm d,ns}$ | $\pm 0.03^{c***}$ | $\pm 0.05^{b***}$ | $\pm 0.07^{f,ns}$ | $\pm 0.01^{f^{***}}$ | $\pm 0.04^{a^{***}}$ | $\pm 0.03^{e^{***}}$ | $\pm 0.00^{g^{**}}$ |
| A. vulgaris | 0.91           | 0.17                  | 0.47                  | 0.17              | 0.57              | 0.10              | 0.06                 | 2.30                 | 0.57                 | 0.04                |
|             | $\pm 0.18^{*}$ | $\pm 0.00^{d***}$     | $\pm 0.03^{c,ns}$     | $\pm 0.01^{d***}$ | $\pm 0.02^{b***}$ | $\pm 0.01^{e,ns}$ | $\pm 0.01^{f***}$    | $\pm 0.01^{a^{***}}$ | $\pm 0.01^{b***}$    | $\pm 0.00^{f^{**}}$ |

Values in the same row followed by the same letter are not significant different (P<0.05) by the Tukey's multiple range test; Means  $\pm$  standard deviation; \*: Statistically significant differences between phenol content of A. vulgaris and P. chloranthus extracts (p<0.05; t-Student test); \*\*Statistically significant differences between antioxidant activities of A. vulgaris and P. chloranthus extracts (p<0.01; t-Student test); \*\*Statistically significant differences between antioxidant activities of A. vulgaris and P. chloranthus extracts (p<0.001; t-Student test); \*\*Statistically significant between the capacity for scavenging DPPH free radicals and preventing lipid peroxidation in the presence of egg yolk of A. vulgaris and P. chloranthus extracts.

P. chloranthos aqueous extract presented higher concentration of total phenols than A. vulgaris extract, nevertheless higher capacity for scavenging ABTS, superoxide, hydroxyl, and NO free radicals, since  $IC_{50}$  values (0.17; 0.57; 0.17; and 2.30 mg/mL, respectively) were lower than those of P. chloranthos (0.58; 1.57; 0.38; and 4.83 mg/mL, respectively **Table 1**. When liposomes were used as lipid substrate, the capacity for preventing their peroxidation was better in the presence of A. *vulgaris* extract ( $IC_{50} = 0.06 \text{ mg/mL}$ ), nevertheless in the presence of liver homogenate, *P. chloranthos* extract had a higher capacity for preventing its oxidation (IC<sub>50</sub> = 0.36 mg/mL). In addition, in the presence of egg yolk, the activities of both extracts were not significantly different Table 1. It is noteworthy the different ability of both extracts to act as antioxidants depending on the lipidic substrate. In the presence of liver homogenate, both extracts had poorer antioxidant activity than in the remaining lipid substrates. P. chloranthos extract had higher ability for inhibiting lipoxygenase (IC<sub>50</sub> = 0.02 mg/mL) than A. vulgaris (IC<sub>50</sub> = 0.04mg/mL) Table 1.

Since, the activity unities are in all cases the same,  $IC_{50}$  values; it is possible to compare the effectiveness of samples as antioxidants in the diverse assays. The antioxidant activity is highly dependent on the method used. For example, and

by descending order, the antioxidant activity of P. chloranthos extract was: lipoxygenase inhibition > prevention of lipid peroxidation in the presence of liposome or egg yolk homogenate > prevention of lipid peroxidation in the presence of liver homogenate > hydroxyl scavenging activity > DPPH scavenging activity > ABTS scavenging activity > superoxide scavenging activity > NO scavenging activity. For A. vulgaris extract, the order was: lipoxygenase inhibition or prevention of lipid peroxidation in the presence of liposome > ABTS scavenging activity or hydroxyl scavenging activity > DPPH scavenging activity > superoxide scavenging activity or prevention of lipid peroxidation in the presence of liver homogenate NO scavenging activity.

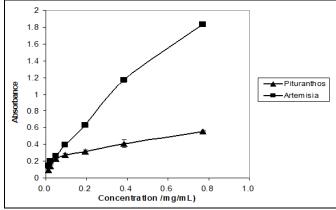



FIG. 1: REDUCING POWER OF A. VULGARIS AND P. CHLORANTHUS EXTRACTS

**Fig. 1** presents the reducing power of *A. vulgaris* and *P. chloranthos* extracts. Higher absorbance means better capacity for reducing  $Fe^{3+}$ , and according to the results *A. vulgaris* extract had a better capacity for reducing these ions than *P. chloranthos* extract.

predominantly used for preparing extracts from plant material <sup>43</sup>. In the present work, the solvent used was water and the extraction method was decoction. With this procedure, the secondary metabolites extracted will be predominantly hydrophilic compounds. Generally, medicinal plants when used as folk medicines, and per os, were under aqueous form and not under other way using organic solvents, either an infusion or decoction. For this reason, water was the choice solvent, and decoction, the extraction method.

For evaluating lipid peroxidation, several substrates may be used such as homogenous lipids (fats and oils), or aqueous microheterogenous systems (micelles, liposomes) <sup>44</sup>. In the present work, pork liver homogenates, egg yolk and liposomes containing lecithin were used as lipid substrates. Lecithin liposomes were used as a model-system of biological membranes <sup>45</sup>. The modified Thiobarbituric Acid Reactive Species (TBARS) was the method used for measuring the antioxidant effectiveness of extracts.

Both aqueous extracts possessed the capacity for preventing lipid peroxidation, nevertheless such ability was dependent on the extract and lipidic substrate as well **Table 1**. The effectiveness of both extracts to prevent lipid peroxidation of liver was much weaker than those lipids of egg yolk or liposomes. Such difference may be correlated to the different lipidic profile of the substrate, as previously reported by some authors 46 when studying the antioxidant activity of essential oils, isolated from diverse aromatic plants, on egg yolk, chicken or rat livers. Generally, the antioxidant activity was associated with the amount of phenols in samples as well as with their structures, along with the method of antioxidant determination used 43, 47.

In the present work, two extracts obtained from two plants, using the same extraction procedure, had

different amounts of phenols and distinct behaviors as antioxidants depending on the lipid substrates used. For example, P. chloranthus had a stronger ability to prevent lipid oxidation of liver, whilst A. vulgaris extract was a better antioxidant in the presence of liposomes (p<0.001; t-Student). In the case of egg yolk as lipidic substrate, there were no differences between extracts Table 1. These differences cannot only be attributed to the different phenol concentration of extracts (1.36 mg GAE/g and 0.91 mg GAE/g for P. chloranthus and A. vulgaris respectively). The amount of total phenol detected in A. vulgaris extract was within the range to that reported by 48 for methanolic extracts Table 1 and 2. P. chloranthus extract of the present work had higher amounts of total phenols (1.36 mg GAE/g) when compared to those previously reported Table 1.

The capacity for scavenging free radicals was also dependent on the extracts and type of radicals assayed. A. vulgaris extract was the best scavenger of almost all free radicals (p<0.001, t-Student) although its lower concentration of total phenols than P. chloranthus extract, with the exception of DPPH free radicals in which there were no differences between the extract **Table 1**.

After the research with the words "Artemisia vulgaris antioxidant" made in Web of Knowledge, it was possible to find the references listed in **Table 2**. According to the table, the capacity for scavenging DPPH free radicals (eight references) was the method mainly used by the authors, followed by FRAP (Ferric Reducing Antioxidant Power) (four references), ABTS method (two references) and finally TBARS, ORAC (Oxygen Radical Absorbance Capacity), NO and total antioxidant activity (one reference each).

Percentages of inhibition and IC<sub>50</sub> values were ways to present the results for the DPPH method, and we can only compare our results with those also expressed as IC<sub>50</sub> values. The results obtained in the present work (IC<sub>50</sub> = 0.47 mg/mL) were closer to those found by  $^{25}$ . Temraz and El-Tantawy  $^{34}$  found IC<sub>50</sub> = 11.4  $\mu$ g/mL, much lower (and consequently much higher activity) than that obtained in the present work, though having the same extraction solvent used.

TABLE 2: REVIEW OF THE ANTIOXIDANT ACTIVITY OF A. VULGARIS AND P. CHLORANTHUS EXTRACTS

|                                 |                   |                           | misia vulgaris               |                                   | CHLORANTHUS EXTRACTS                                               |
|---------------------------------|-------------------|---------------------------|------------------------------|-----------------------------------|--------------------------------------------------------------------|
| Extract                         | Method            | Total phenol content      | Units                        | Activity                          | Units                                                              |
| Hydroalcoholic                  | DPPH              | 28.62                     | mg GAE/g                     | $IC_{50} = 976$                   | μg/mL                                                              |
| Hydroalcoholic <sup>25</sup>    | TBARS (egg yolk)  | 28.62                     | mg GAE/g                     | $IC_{50} = 0.36$                  | mg/mL                                                              |
| Methanol                        | DPPH              | 7920                      | μg GAE/g                     | $IC_{50} = 16$                    | μg/mL                                                              |
| Methanol 16                     | ORAC              | 7920                      | μg GAE/g                     | 5700                              | μmol Trolox/g                                                      |
| Methanol                        | DPPH              | 217.46                    | mg GAE/L                     | 43.3%                             | 0.25 mg/4 mL                                                       |
| Methanol 24                     | ABTS              | 217.46                    | mg GAE/L                     | $TEAC^* = 4.40$                   | mM/mg                                                              |
| Methanol <sup>47</sup>          | DPPH              | CE: 141.9                 | mg GAE/g                     | CE: $IC_{50} = 22.2$              | μg/mL                                                              |
| 1.1001111101                    | 21111             | UE: 135.0                 | mg GAE/g                     | UE: $IC_{50} = 26.5$              | μg/IIIE                                                            |
|                                 |                   | SE: 123.4                 | mg GAE/g                     | SE: $IC_{50} = 28.1$              |                                                                    |
| Methanol 52                     | DPPH              | 321.23                    | mg GAE/g                     | 92.33%                            | *                                                                  |
| Aqueous                         | DPPH              | 19                        | mg GAE/g                     | $IC_{50} = 11.4 (19)$             | μg/mL                                                              |
| Aqueous 34                      | NO                | 19                        |                              |                                   | . &                                                                |
|                                 |                   |                           | mg GAE/g                     | $IC_{50} = 125$                   | mg/mL                                                              |
| Methanol                        | ABTS              | 956                       | μg GAE/g                     | TEAC = 2.86                       | μmol Trolox/g                                                      |
| Methanol 48                     | FRAP              | 956                       | μg GAE/g                     | 2.12                              | μmol Fe <sub>2</sub> <sup>+</sup> /g                               |
| HA-1 <sup>53</sup>              | DPPH              | 18.17                     | μg GAE/mg                    | > .40 and $<$ 50                  | Percentage inhibition                                              |
| HA-2                            |                   | 9.24                      | μg GAE/mg                    |                                   |                                                                    |
| HA-3                            |                   | 17.28                     | μg GAE/mg                    |                                   |                                                                    |
| HA-4                            |                   | 9.37                      | μg GAE/mg                    |                                   |                                                                    |
| HA-5                            |                   | 11.90                     | μg GAE/mg                    |                                   |                                                                    |
| HA-6                            |                   | 11.36                     | μg GAE/mg                    |                                   |                                                                    |
| HA-7                            |                   | 13.27                     |                              |                                   |                                                                    |
| HA-8                            |                   | 26.29                     | μg GAE/mg                    |                                   |                                                                    |
| HA-9                            |                   | 25.81                     | μg GAE/mg                    | > 80 and $<$ 90                   | Percentage inhibition                                              |
|                                 |                   |                           | μg GAE/mg                    | %inhibition >.8                   | Percentage inhibition                                              |
| HA-1                            | FRAP              |                           |                              | 0                                 |                                                                    |
| HA-2                            | 114.11            |                           |                              | v                                 | Ascorbic acid equivalent (mg/mL)                                   |
| HA-3                            |                   |                           |                              | > 130 and < 140                   | riscorbie deld equivalent (mg/mz)                                  |
| HA-4                            |                   |                           |                              | > 150 and < 140                   |                                                                    |
|                                 |                   |                           |                              |                                   |                                                                    |
| HA-5                            |                   |                           |                              |                                   |                                                                    |
| HA-6                            |                   |                           |                              |                                   |                                                                    |
| HA-7                            |                   |                           |                              |                                   |                                                                    |
| HA-8                            |                   |                           |                              |                                   |                                                                    |
| HA-9                            |                   |                           |                              |                                   |                                                                    |
|                                 |                   |                           |                              |                                   | Ascorbic acid equivalent (mg/mL)                                   |
| HA-1                            | Total antioxidant |                           |                              | > 170  and  < 180                 | Ascorbic acid equivalent (mg/mL)                                   |
| HA-2                            | activity          |                           |                              | > 170  and  < 180                 | Ascorbic acid equivalent (mg/mL)                                   |
| HA-3                            |                   |                           |                              | > 90 and $< 100$                  | Ascorbic acid equivalent (mg/mL)                                   |
| HA-4                            |                   |                           |                              | > 80 and $< 90$                   | Ascorbic acid equivalent (mg/mL)                                   |
| HA-5                            |                   |                           |                              | >90 and < 100                     | Ascorbic acid equivalent (mg/mL)                                   |
| HA-6                            |                   |                           |                              | > 80  and  < 90                   | Ascorbic acid equivalent (mg/mL)                                   |
| HA-7                            |                   |                           |                              | >90 and < 100                     | ,                                                                  |
| HA-8                            |                   |                           |                              | . ,                               |                                                                    |
| HA-9                            |                   |                           |                              |                                   |                                                                    |
| Methanol 54                     | DPPH              | 86.62                     | mg GAE/g                     | 80                                | Percentage inhibition (at 100 μg/mL                                |
| 1,100101101                     | Dilli             | 00.02                     | 5 O/ IL/ 5                   | 00                                | Absorbance ( $\lambda = 700 \text{ nm}$ ), at                      |
|                                 | FRAP              |                           |                              | 2.104                             | Absorbance ( $\lambda = 700 \text{ hm}$ ), at $1000 \text{ µg/mL}$ |
| Methanol 55                     |                   | Dectar 40 - 1 - 50        | CAE/                         |                                   | . 5                                                                |
| Methanol                        | FRAP              | Roots: >40 and < 50       | mg GAE/g                     | > 7  and  < 8                     | M FeSO <sub>4</sub> /mg                                            |
|                                 |                   | Leaves: $> 70$ and $< 80$ |                              | > 9 and $< 10$                    | M FeSO <sub>4</sub> /mg                                            |
|                                 |                   | Inflorescences: > 100     |                              | >10  and < 15                     | M FeSO <sub>4</sub> /mg                                            |
|                                 |                   | and < 110                 |                              |                                   |                                                                    |
|                                 |                   |                           | thos chloranthus             |                                   |                                                                    |
| Methanol                        | DPPH              | 77.59                     | μg/mg                        | $IC_{50} = 71.67$                 | μg/mL                                                              |
| Aqueous 15                      | DPPH              | 91.03                     | μg/mg                        | $IC_{50} = 56.67$                 | μg/mL                                                              |
| Hexane                          | DPPH              | 117                       | mg PyE/100 g                 | $IC_{50} = 2.22$                  | μg/mL                                                              |
| Ethyl acetate                   | DPPH              | 380                       | mg PyE/100 g                 | $IC_{50} = 2.24$                  | μg/mL                                                              |
| Methanol                        | DPPH              | 317                       | mg PyE/100 g                 | $IC_{50} = 2.01$                  | μg/mL                                                              |
| Water 14                        | DPPH              | 372                       | mg PyE/100 g                 | $IC_{50} = 4.59$                  | μg/mL                                                              |
| Hexane                          | ABTS              | 117                       | mg PyE/100 g                 | TEAC = 0.20                       | mM Trolox equivalent of extract                                    |
|                                 |                   |                           |                              |                                   | mivi Troiox equivalent of extract                                  |
| Ethyl acetate                   | ABTS              | 380                       | mg PyE/100 g                 | TEAC = 0.36                       |                                                                    |
| Methanol<br>Water <sup>14</sup> | ABTS<br>ABTS      | 317<br>372                | mg PyE/100 g<br>mg PyE/100 g | TEAC = 0.75 $TEAC = 0.40$         |                                                                    |
|                                 |                   | 4 / /                     | ma PVH/IIII a                | $I \vdash A \vdash - \cup A \cup$ |                                                                    |

CE: classical extraction; FRAP: Ferric Reducing Antioxidant Power; GAE: Gallic Acid Equivalent; ORAC: Oxygen Radical Absorbance capacity; PyE: Pyrogallol equivalent; SE: Sohlet extraction; TEAC: Trolox equivalent antioxidant capacity; UE: ultrasound extraction.

<sup>\*</sup>The concentration responsible for this percentage is not given

E-ISSN: 0975-8232; P-ISSN: 2320-5148

The capacity for scavenging ABTS free radicals obtained in the present work is not possible to compare to those presented in **Table 2** since the ways used to express the activities are different. The capacity for scavenging NO radicals, expressed as  $IC_{50}$  values, observed by <sup>34</sup> for the aqueous extracts was significantly lower than our extracts ( $IC_{50} = 4.83 \text{ mg/mL}$ ), therefore presenting higher activity.

The same research made for *A. vulgaris* was repeated for *P. chloranthus* in Web of Knowledge, but in this case, no reference was found. Only research using Google allowed finding references; some of them are listed in **Table 2**. The capacity for scavenging DPPH and ABTS free radicals were the methods preferentially used by the authors. The activities found by the authors were 6 - 200-fold higher than those found in the present work.

Compounds that inhibit lipoxygenase may possibly prevent the formation of peroxides from unsaturated fatty acids containing a Z,Z-1,4pentadiene system, and consequently biosynthesis of leukotrienes that play an important role in inflammatory processes <sup>49</sup>. Such compounds have antioxidant and anti-inflammatory activity. The extracts of A. vulgaris and P. chloranthus had capacity for inhibiting lipoxygenase, although P. chloranthus possessed higher activity than A. *vulgaris* extract (p<0.01, t-Student).

P. chloranthus extract revealed to be better antioxidant acting through the inhibition of lipoxygenase and prevention of lipid peroxidation when the lipid substrate was liver than as scavenging free radicals **Table 1**. Among all tests assayed, the capacity for inhibiting lipoxygenase activity was also the best for A. vulgaris extract, followed by the inhibition of lipid peroxidation when using egg yolk and liposomes as lipidic substrates. In addition, this extract had also good capacity for scavenging hydroxyl and ABTS free radicals, not observed for P. chloranthus **Table 1**.

The antioxidant activities of *P. chloranthus* and *A. vulgaris* aqueous extracts, measured through diverse methods, found in the present work, were generally poorer when compared to the positive controls assayed in our laboratory in another time period <sup>50, 51</sup>. Briefly, the IC<sub>50</sub> values found for BHT (butylated hydroxytoluene) used as positive control

in ABTS, DPPH; TBARS (egg yolk as liposomes used as substrate) methods were 0.004 mg/mL; 0.089 mg/mL; 0.096 mg/mL; and 0.002 mg/mL. respectively. These values were lower than those obtained for plant extracts Table 1. Ascorbic acid used was used as positive control in the evaluation of the ability for scavenging superoxide anion radicals. The  $IC_{50}$  value was lower (better activity) (0.017 mg/mL) than the plant extracts **Table 1**. The IC<sub>50</sub> value of mannitol, the positive control for the determination of the ability for scavenging hydroxyl radicals, was 0.0007 mg/mL, much lower (much better activity) than the samples **Table 1**. Nordihydroguaiaretic acid (NDGA) was the sole positive control studied in which the respective IC<sub>50</sub> value was the same as that of P. *chloranthus* extract ( $IC_{50} = 0.02 \text{ mg/mL}$ ) **Table 1**.

**CONCLUSION:** The results observed in the present work not only show that there are differences of antioxidant activity between A. vulgaris and P. chloranthus extracts, but also the strength for inhibiting the oxidation is highly dependent on the method used, that is, it is possible to have samples that show better capacity for scavenging some free radicals and lower activity for scavenging other ones or preventing lipid peroxidation and vice-versa. The evaluation of the antioxidant activity of one sample can be a timeconsuming process since several methods based in several mechanisms must be assayed. The oxidation process involves several steps and mechanisms, therefore diverse based-mechanisms assays must be done.

**ACKNOWLEDGEMENT:** The authors wish to acknowledge the financial support provided by the Portuguese National Funding Agency for Science, Research and Technology (Fundação para a Ciência e Tecnologia – FCT; Portugal), under the projects UID/BIA/04325/2013–MEDTBIO.

**CONFLICTS OF INTEREST:** The authors declare that they have no conflicts of interest.

## **REFERENCES:**

 Neffati A, Bouhlel I, Ben Sghaier M, Boubaker J, Limem I, Kilani S, Skandrani I, Bhouri W, Le Dauphin J, Barillier D, Mosrati R, Chekir-Ghedira L and Ghedira K: Antigenotoxic and antioxidant activities of *Pituranthos chloranthus* essential oils. Environ Toxicol Pharmacol 2009; 27(2): 187-94.

- Yangui T, Bouazzi M, Dhouib A and Sayadi S: Potential use of Tunisian *Pituranthos chloranthus* essential oils as a natural disinfectant. Let App Microb 2009; 48(1): 112-17.
- 3. Aloui L, Kossentini M, Geffroy-Rodier C, Guillard J and Zouari S: Phytochemical investigation, isolation and characterization of coumarins from aerial parts of roots of Tunisian *Pituranthos chloranthus* (Apiaceae). Pharmacogn Commun 2015; 5(4): 237-43.
- Mighri H, Sabri K, Eljeni H, Neffati M and Akrout A: Chemical composition and antimicrobial activity of Pituranthos chloranthus (Benth.) Hook and Pituranthos tortuosus (Coss.) Maire essential oils from Southern Tunisia. Adv Biol Chem 2015; 5(7): 273-78.
- Hammiche V and Maiza K: Traditional medicine in central Sahara: Pharmacopoeia of Tassili N'ajjer. J Ethnopharmacol 2006; 105(3): 358-67.
- Abdelwahed A, Hayder N, Kilani S, Mahnoud A, Chibani J, Hammami M, Chekir-Ghedira L and Ghedira K: Chemical composition and antimicrobial activity of essential oils from Tunisian *Pituranthos tortuosus* (Coss.) Maire. Flavour Fragr J 2006; 21(1): 129-33.
- Nadia NS: Étude phytochimique des extraits chloroformiques des plantes: Pituranthos chloranthus et Marrubium vulgare. Diplôme de Magister. Université El-Hadj Lakhdar-Batna, Faculté des Sciences, Algérie 2005.
- 8. Dahia M, Laouer H, Chaker AN, Prado S, Meierhenrich UJ and Baldovini N: Chemical composition and antibacterial activity of *Pituranthos chloranthus* volatile oil. Nat Prod Commun 2007; 2(11): 1159-62.
- Neffati A, Hennequin D, Basset B, Chekir-Ghedira L, Ghedira K, Barillier D and Ledauphin J: Influence of growth phase and geographic origin on the essential oil composition of *Pituranthos chloranthus* from Tunisia. Nat Prod Commun 2009; 4(11): 1585-94.
- Neffati A, Bouhlel I, Ben Sghaier M, Boubaker J, Limem I, Kilani S, Skandrani I, Bhouri W, le Dauphin J, Barillier D, Mosrati R, Chekir-Ghedira L and Ghedira K: Antigenotoxic and antioxidant activities of *Pituranthos chloranthus* essential oils. Environ Toxicol Pharmacol 2009; 27(2): 187-94.
- Lahmar A, Bedoui A, Mokdad-Bzeouich I, Dhaouifi Z, Kalboussi Z, Cheraif I, Ghedira K and Chekir-Ghedira L: Reversal of resistance in bacteria underlies synergistic effect of essential oils with conventional antibiotics. Microb Pathog 2017; 106: 50-59.
- Lahmar A, Morcuende D, Andrade M-J, Chekir-Ghedira L and Estévez M: Prolonging shelf-life of lamb packed under high-oxygen modified atmosphere by spraying essential oils from North-African plants. Meat Sci 2018; 139: 56-64.
- Touil A, Rhouati S and Crèche J: Flavonoid glycosides from *Pituranthos chloranthus*. Chem Nat Comp 2006; 1: 104-05.
- Bouaziz M, Dhouib A, Loukil S, Boukhris M and Sayadi S: Polyphenols content, antioxidant and antimicrobial activities of extracts of some wild plants collected from the south of Tunisia. Afr J Biotechnol 2009; 8: 7017-27.
- Khettaf A, Belloula N and Dridi S: Antioxidant activity, phenolic and flavonoid contents of some wild medicinal plants in Southeastern Algeria. Afr J Biotechnol 2016; 15(13): 524-30.
- Melguizo-Melguizo D, Diaz-de-Cerio E, Quirantes-Piné, Švarc-Gajić J and Segura-Carretero A: The potential of Artemisia vulgaris leaves as a source of antioxidant phenolic compounds. J Funct Foods 2014; 10: 192-00.
- Hooper D: Useful Plants and Drugs of Iran and Iraq. Botanical Series, Publication 387. Field Museum of Natural History, Chicago, USA 1937; 87.

- Anonymous (Chemonics international, inc. Contract No. 608-M-00-05-00043-01): Filière des Plantes Aromatiques et Médicinales (Note de Synthèse). USAID/Morocco Mission U.S. Agency for International Development 2005.
- Zaim A, El-Ghadraoui L and Farah A: Effects of Artemisia herba-alba essential oils on the survival of adult locusts of *Euchorthippus albolineatus* (Lucas, 1849). Bulletin de l'Institut Scientifique, Rabat, section Sciences de la Vie 2012; 34(2): 127-33.
- de Boer HJ and Cotingting C: Medicinal plants for women's healthcare in southeast Asia: a meta-analysis of their traditional use, chemical constituents, and pharmacology. J Ethnopharmacol 2014; 151: 747-67.
- 21. El-Tantawy WH: Biochemical effects, hypolipidemic and anti-inflammatory activities of *Artemisia vulgaris* extract in hypercholesterolemic rats. J Clin Biochem Nutr 2015; 57(1): 33-38.
- Gaire BP and Subedi L: Medicinal plant diversity and their pharmacological aspects of Nepal Himalayas. Pharmacogn J 2011; 3(25): 6-17.
- 23. Joshi RK, Satyal P and Setzer Wn: Himalayan aromatic medicinal plants: a review of their ethnopharmacology, volatile phytochemistry and biological activities. Medicines 2016; 3: 6.
- 24. Erel ŞB, Reznicek G, Şenol SG, Yavaşoğulu NÜK, Konyalioğlu S and Zeybek AU: Antimicrobial and antioxidant properties of Artemisia L. species from Western Anatolia. Turk J Biol 2012; 36(1): 75-84.
- Oyedemi SO and Coopoosami RM: Preliminary studies on the antibacterial and antioxidative potentials of hydroalcoholic extract from the whole parts of *Artemisia vulgaris* L. Int J Pharmacol 2015; 11(6): 561-69.
- 26. Tigno X, de Guzman F and Flora A: Phytochemical analysis and hemodynamic actions of Artemisia vulgaris L. Clin Hemorheol Microcirc 2000; 23(2-3): 167-75.
- 27. Jiang Z, Guo X, Zhang K, Sekaran G, Cao B, Zhao Q, Zhang S, Kirby GM and Zhang X: The essential oils and eucalyptol from *Artemisia vulgaris* L. prevent acetaminophen-induced liver injury by activating Nrf2-Keap1 and enhancing APAP clearance through non-toxic metabolic pathway. Front Pharmacol 2019; 10: 782.
- Nguyen HTT, Nguyen HT, Islam Md Z, Obi T, Pothinuch P, Zar PPK, Hou DX, Nguyen TV, Nguyen TM Dao CV, Shiraishi M and Miyamoto A: Pharmacological characteristics of *Artemisia vulgaris* L. in isolated porcine basilar artery. J Ethnopharmacol 2016: 182: 16-26.
- 29. Rasheed T, Bilal M, Iqbal HMN and Li Chuanlong: Green biosynthesis of silver nanoparticles using leaves extract of *Artemisia vulgaris* and their potential biomedical applications. Colloid Surf B 2017; 158: 408-15.
- 30. Zhigzhitzhapova SV, Radnaeva LD, Gao Q, Chen S and Zhang F: Chemical composition of volatile organic compounds of *Artemisia vulgaris* L. (Asteraceae) from the Qinghai-Tibet Plateau. Ind Crops Prod 2016; 83: 462-69.
- 31. Lohani H, Gwari G, Bhandari U, Haider SZ, Andola H and Chauhan N: Variability in the essential oils from aerial parts of *Artemisia vulgaris* L. grown in Uttarakhand (India). J Essent Oil Bear Plants 2016; 19(1): 103-07.
- 32. Malik S, de Mesquita LSS, Silva CR, de Mesquita JWC, Rocha ES, Bose J, Abiri R, Figueiredo PMS and Costa-Júnior LM: Chemical profile and biological activities of essential oil from *Artemisia vulgaris* L. cultivated in Brazil. Pharmaceuticals 2019; 12: 49.
- 33. Balasubramani S, Sabapathi G, Moola AK, Solomon RV, Venuvanalingam P and Diana RKB: Evaluation of leaf essential oil from *Artemisia vulgaris* and its larvicidal and repellent activity against dengue fever vector *Aedes*

- aegypti an experimental and molecular docking investigation. ACS Omega 2018; 3: 15657-65.
- Temraz A and El-Tantawy W: Characterization of antioxidant activity of extract from *Artemisia vulgaris*. Pak J Pharm Sci 2008; 21(4): 321-26.
- 35. Abiri R, Silva ALM, Mesquita LSS, Mesquita JWC, Atabaki N, Almeida EB, Shaharuddin NA and Malik S: Towards a better understanding of *Artemisia vulgaris*: Botany, phytochemistry, pharmacological and biotechnological potential. Food Res Int 2018; 109: 403-15.
- Lee S, Chung H, Maier C, Wood A, Dixon R and Mabry T: Estrogenic flavonoids from *Artemisia vulgaris* L. J Agric Food Chem 1998; 46(8): 3325-29.
- 37. Pires JM, Mendes FR, Negri G, Duarte-Almeida JM and Carlini EA: Antinociceptive peripheral effect of *Achillea millefolium* L. and *Artemisia vulgaris* L.: Both plants known popularly by brand names of analgesic drugs. Phytother Res 2009; 23(2): 212-19.
- 38. Nikolova M, Gussev CH and Nguyen T: Evaluation of the antioxidant action and flavonoid composition of Artemisia species extracts. Biotechnol Equip 2010; 24: 101-03.
- 39. Georgieva E, Ivanova D, Zhelev Z, Bakalova R, Gulubova M and Aoki I: Mitochondrial dysfunction and redox imbalance as a diagnostic marker of "free radical diseases". Anticancer Res 2017; 37: 5373-81.
- 40. Kruk J, Aboul-Enein H, Kładna A and Bowser JE: Oxidative stress in biological systems and its relation with pathophysiological functions: the effect of physical activity on cellular redox homeostasis. Free Rad Res 2019; 53(5): 497-21.
- Majdoub N, El-Guendouz S, Rezgui M, Carlier J, Costa C, bem Kaab LB and Miguel MG: Growth, photosynthetic pigments, phenolic content and biological activities of Foeniculum vulgare Mill., Anethum graveolens L. and Pimpinella anisum L. (Apiaceae) in response to zinc. Ind Crops Prod 2017; 109: 627-36.
- 42. Chung TO, Osaka T and Kawakishi S: Hydroxyl radical-scavenging effects of species and scavengers from brown mustard (*Brassica nigra*). Biosci Biotechnol Biochem 1997; 61(1): 118-23.
- Dai J and Mumper RJ: Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 2010; 15: 7313-52.
- 44. Roginsky V and Lissi EA: Review of methods to determine chain-breaking antioxidant activity in food. Food Chem 2005: 92: 235-54.
- 45. Bozin B, Mimica-Dukic N, Bogavac M, Suvajdzic L, Simin N, Samojlik I and Couladis M: Chemical

composition, antioxidant and antibacterial properties of *Achillea collina* Bercker ex Heimerl s.l. and *A. pannonica* Scheele essential oils. Molecules 2008; 13: 2058-68.

E-ISSN: 0975-8232; P-ISSN: 2320-5148

- 46. Baratta MT, Dorman HJD, Deans SG, Biondi DM and Ruberto G: Chemical composition, antimicrobial and antioxidative activity of laurel, sage, rosemary, oregano and coriander essential oils. J Essent Oil Res 1998; 10(6): 618-27.
- 47. Karabegović I, Nikolova M, Veličković D, Stojičević S, Veljković V and Lazić M: Comparison of antioxidant and antimicrobial activities of methanolic extracts of the Artemisia sp. Recovered by different extraction techniques. Biotechnol Bioeng 2011; 19(3): 504-11.
- 48. Bahorun T, Leeximon-Ramma A, Crozier A and Aruoma OI: Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of Mauritian vegetables. J Sci Food Agric 2004; 84(12): 1553-61.
- Aazza S, Lyoussi B, Megías C, Cortés-Giraldo I, Vioque J, Figueiredo AC and Miguel MG: Anti-oxidant, antiinflammatory, anti-prioliferative activities of Moroccan commercial essential oils. Nat Prod Commun 2014; 9(4): 587-94.
- Boulanouar B, Abdelaziz G, Aazza S, Gago C and Miguel MG: Antioxidant activities of eight Algerian plant extracts and two essential oils. Ind Crop Prod 2013; 46: 85-96.
- 51. Popova M, Lyoussi B, Aazza S, Antunes D, Bankova V and Miguel G: Antioxidant and α-glucosidase inhibitory properties and chemical profiles of Moroccan propolis. Nat Prod Commun 2015; 10(11): 1961-64.
- Ghimire BK, Seong ES, Kim EH, Ghimeray AK, Yu CY, Ghimire BK and Chung IM: A comparative evaluation of the antioxidant activity of some medicinal plants popularly used in Nepal. Journal of Medicinal Plants Research 2011; 5(10): 1884-91.
- 53. Hamad A, Arfan M, Khan SA, Fatima N, Abbasi AM and Mannan A: Evaluation of antioxidant, antimicrobial and cytotoxic potential in *Artemisia vulgaris* L. Rev Rom Med Lab 2018; 26(4): 431-41.
- 54. Pandey BP, Thapa R and Upreti A: Chemical composition, antioxidant and antibacterial activities of essential oil and methanol extract of *Artemisia vulgaris* and *Gaultheria fragrantissima* collected from Nepal. Asian Pac J Trop Med 2017; 10(10): 952-59.
- 55. Bandli JK, Heidari R and Mohammadkhani N: Phenolic content and ferric reducing antioxidant power of *Artemisia fragrans* Willd. and *Artemisia vulgaris* L. herbs. Pharm Chem J 2017; 51(1): 52-55.

#### How to cite this article:

Nasr SB, Aazza S, Mnif W and Miguel MG: *In-vitro* antioxidant and anti-inflammatory activities of *Pituranthos chloranthus* and *Artemisia vulgaris* from Tunisia. Int J Pharm Sci & Res 2020; 11(2): 605-14. doi: 10.13040/IJPSR.0975-8232.11(2).605-14.

All © 2013 are reserved by International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This article can be downloaded to Android OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Play store)