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Abstract 
Glioblastoma multiforme (GBM), grade IV Astrocytoma, is the most common 

and deadly form of brain cancer. Despite the low incidence rate (3.2 per 100.000 

people), patient’s median survival is only 14 months. Notwithstanding all new 

diagnostic tools, GBM remains a therapeutic challenge, being extremely difficult to 

prevent recurrence. Therefore, it is essential to conduct research in order to 

understand the molecular pathways in the core of GBM aggressiveness and swift 

evolution. 

GBM is often characterized by hypoxic regions where oxygen levels are 

extremely low. As a natural consequence of tumour growth and expansion, some 

areas of the tumour become distanced from the blood vessels and consequently, from 

the oxygen supply. In such a critical environment, cells activate pro-survival and 

malignancy mechanisms such as the metabolic switch, invasion and angiogenesis. 

Hence we investigated the expression of genes featuring these survival mechanisms 

and identified a panel of hypoxia-driven-malignancy markers.  

To conduct this study, two GBM patient´s biopsy-derived cell lines (UP-029 and 

SEBTA-023) were used and cultured under hypoxic conditions for a selected set of 

time-points (time-course). To characterize the hypoxic response of these cells, 

hypoxia profiler microarrays were ran for normoxia, 6 and 48 hours of hypoxia (1% 

O2). Once identified the induced and repressed genes, these were analyzed and 

validated through qRT-PCR assays. Finally, western-blot analysis was performed to 

detect target proteins and correlate with the previously obtained gene expression data.  

Our study validated ANGPTL4, PIGF, VEGFA, GLUT1, PFKB4, PFKB3, BNIP3, 

DDIT4, NDRG1 and CAIX genes as relevant in GBM’s hypoxia-mediated response. 

We also pointed out MXI1, HNF4A genes as likely significant factors in GBM hypoxia. 

Furthermore, we hypothesize PFKB3 as an adaptive resistance marker in GBM and 

the repression of TFRC as required mechanism for GBM progression.  

 
Keywords: Glioblastoma (GBM); Hypoxia; Angiogenesis; Glycolysis; Invasion 
 



   

 

 
IV 

Resumo 
 

O Glioblastoma multiforme (GBM) é a forma mais comum e letal de cancro no 

sistema nervoso central. Devido às suas caraterísticas altamente invasivas e 

malignas, o Glioblastoma foi considerado pela World Health Organization (WHO) 

como um Astrocitoma grau IV. Contrariamente a outros tipos de cancro de igual grau, 

a capacidade de invasão do GBM é limitada ao tecido cerebral.  

 

Apesar dos avanços nas tecnologias de diagnóstico e dos constantes 

progressos na investigação do cancro, o tratamento do GBM é meramente paliativo. 

A seletividade farmacológica da barreira hemato-encefálica, a elevada 

heterogeneidade tumoral e influência destrutiva do tumor no tecido nervoso, refletem-

se na ineficiência das terapias aplicadas.  

 

Clinicamente, o GBM manifesta-se através de pressão intracranial, cefaleias 

e/ou défices neurológicos tais como, alterações visuais, alterações da fala, 

dificuldades cognitivas e até modificações na personalidade. Embora, menos 

frequentes, convulsões também se encontram descritas como um dos sintomas.  

 

A taxa de incidência deste tipo de carcinoma é de facto baixa, sendo que em 

100000 apenas 3.2 pessoas são afetadas. Não obstante, a média de sobrevida destes 

pacientes é somente 14 meses. Conduzir investigações no sentido de entender os 

mecanismos moleculares que se encontrar subjacentes à expansão e agressividade 

do GBM torna-se, portanto, essencial.  

 

Uma das características mais proeminentes do GBM são as regiões hipóxicas, 

onde os níveis de oxigénio são extremamente baixos. Esta é uma consequência 

natural, derivada da expansão tumoral e do incremento da distância de difusão de 

oxigénio. Estabelecido um microambiente como este, crítico para a sobrevivência 

celular, as células tumorais ativam mecanismos de malignidade tais como “switch” 

metabólico, angiogénese e invasão. Desta forma as células adquirem vantagem 

clonal e capacidade migratória para invadirem zonas de tecido cerebral saudável. 

Para além do incremento da malignidade, a elevada capacidade invasiva destas 
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células constitui um risco em termos de recorrência. De um modo geral, a hipóxia 

integra-se como um marcador de mau prognostico. 

 

Para este estudo, duas linhas celulares obtidas através de biópsias de 

pacientes com GBM (UP-029 e SEBTA-023), foram incubadas a diferentes tempos 

de hipóxia. Após extração de ácido ribonucleico (ARN), realizou-se um microarray de 

perfil de hipóxia a três amostras em diferentes condições: normóxia (controlo), 6 e 48 

horas. O método do microarray baseia-se na tecnologia de reações de polimerase em 

cadeia e em tempo real (RT-PCR). Este, por sua vez, é um método de quantificação 

de expressão génica através da geração de cópias (por ciclo de PCR) a partir de um 

ADN molde. Isto origina uma correlação entre a quantidade inicial de cópias e a 

quantidade acumulada a cada ciclo. Desta maneira, foi possível quantificar a 

expressão génica de 84 genes previamente descritos na literatura como relacionados 

na resposta hipóxica em diversos tipos de cancro. Este ensaio permitiu-nos identificar 

em larga escala diversos marcadores de hipóxia que foram diferencialmente 

expressos com significância. Do painel analisado, destacaram-se os genes 

ANGPTL4, NDRG1, CAIX, PFKB4 e VEGFA como relevantemente induzidos tanto 

nas UP-029 como nas SEBTA-023. Para além destes, os genes MXI1, HNF4A e 

TFRC foram estabelecidos como significativamente sub-expressos durante a hipóxia 

nas duas linhas celulares de GBM.  

 

Continuando com a análise, estudámos através de ensaios de RT-PCR 

quantitativo os vários genes distinguidos acima, tal como outros apenas 

diferencialmente expressos numa das linhas celulares durante a hipóxia. Cada gene 

foi analisado em quatro condições diferentes: normóxia, 6, 24 e 48 horas de hipóxia, 

em pelo menos três corridas diferentes. O método de 2-ΔΔCT foi usado para calcular o 

fold-change de cada gene, que nos transmite a magnitude biológica da expressão de 

um gene relativamente a um controlo. De modo a estudar a significância estatística 

dos resultados, usámos Students T-test  (tipo 2, cauda 2) para calcular os P-values 

de cada amostra. Considerámos três níveis de significância para P-values inferiores 

que 0.05 (*), 0.01 (**) e 0.001 (***).  

 

Desta análise de RT-PCR quantitativo, para além dos genes previamente 

distinguidos, também os genes PIGF, PDK1, PFKB3, BNIP3, DDIT4 e SLC16A3 
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foram detetados como significativamente induzidos nas linhas celulares UP-029 e 

SEBTA-023. Validámos, também, o gene TFRC como significativamente sub-

expresso durante a hipóxia.  

 

De modo a analisar a expressão de proteínas de alguns deste fatores, 

realizaram-se ensaios de Western-blot. Esta é uma técnica vastamente usada em 

laboratório que permite a identificação de proteínas específicas de uma amostra de 

proteína total. Este método consiste na separação de proteínas por pesos 

moleculares através da aplicação de voltagem. Para tal, a amostra proteica é 

desnaturada através de calor e posteriormente pipetada num gel de eletroforese. As 

proteínas (carga negativa) migram através do gel na direção do polo positivo, assim 

que aplicada voltagem. Desta forma, as moléculas menores migram mais 

rapidamente e facilmente para a base do gel que as de maior peso molecular, que 

ficam mais próximas do topo. Após separação e transferência para uma membrana 

de nitrocelulose, é possível sinalizar estas proteínas através de complexos de 

anticorpos e fluoróforos. Assim, pudemos detetar a expressão proteica de alguns 

genes de interesse em diferentes condições: normóxia, 1, 2, 3, 6, 24 e 48 horas de 

hipóxia.  

 

Realizou-se uma análise de expressão proteica de HIF1a para confirmar a 

indução da resposta hipóxica. Uma vez que é regulado a nível da proteína, foram 

detetadas, de facto, bandas de HIF1a durante a hipóxia , apesar de não se 

observarem induções significantes da expressão génica. Como CAIX, foi 

significativamente expresso a nível do gene, foram também realizados blots para a 

proteína correspondente. A proteína CAIX foi detetável nas amostras de 6, 24 e 48 

horas de hipóxia, especialmente nas células SEBTA-023.  

 

A proteína EGFR, vastamente descrita em GBM, foi também analisada.  

Curiosamente não foi detetável nas células UP-029, mas sim nas SEBTA-023, em 

todas as amostras. À semelhança de EGFR, os blots das proteínas UpaR, VEGFC e 

S100A10 foram também analisados. As proteínas UpaR e S100A10 foram detetadas 

em ambas as linhas celulares, com distinção nas amostras SEBTA-023. Nas células 

UP-029 a baixa deteção de proteína pode-se justificar por uma activação mais tardia 
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da expressão de factores de invasão. Curiosamente a expressão de VEGFC, 

detetável em ambas as linhas, diminuí em simultaneidade com o aumento de horas 

de hipóxia.  

   

 Em suma, o nosso estudo identificou ANGPTL4, NDRG1, CAIX, PFKB4, 

VEGFA, PIGF, PDK1, PFKB3, PFKB4, BNIP3, CAIX, DDIT4, NDRG1 e SLC16A3 

como genes significativamente induzidos e HNF4A e TFRC como genes 

significativamente sub-expressos em GBM. Extrapolámos, que por vezes a indução 

das expressões de genes e proteínas de invasão é uma resposta tardia após um 

período considerado crónico de hipóxia. De futuro, deveriam ser estudados tempos 

de hipóxia mais prolongados, como 72 e 96 horas. Sugerimos, também, PFKB3 como 

um provável marcador de resistência à terapia, uma vez que já se encontra descrito 

noutros tumores, e neste estudo foi significativamente induzido. Conjuntamente, 

propõe-se o TFRC como um possível fator importante no impedimento da progressão 

do GBM, uma vez que foi sub-expresso nas diferentes análises. Estudos relativos a 

estes dois genes deverão ser conduzidos no futuro, para confirmar as hipóteses 

acima. Seria também relevante repetir este estudo aumentando o número de linhas 

celulares de modo a elevar a sensibilidade da seleção de possíveis novos marcadores 

de invasão em hipóxia.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Palavras-chave: Glioblastoma (GBM); Hipóxia; Angiogénese; Glicólise; 
Invasão
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1.  Introduction  
Glioblastoma (GBM) is the most common form of brain cancer, with its origin in 

glial cells or neural stem cells from the central nervous system (CNS) (Lombardi & 

Assem, 2017). Due to its highly invasive and aggressive nature, GBM is classified by 

the WHO (World Health Organization) as a grade IV Astrocytoma (Gupta & Dwivedi, 

2017). Unlike other grade IV malignancies, GBM invasiveness seems to be exclusive 

to the brain microenvironment. Nevertheless, the destructive influence on brain tissue, 

and the heterogeneity of the tumour and its associated microenvironment, constitute 

great obstacles for the efficacy of current therapies (Lombardi M, Assem M, 2017). In 

fact, within all human tumours, GBM is considered one of the most lethal and difficult 

to treat (Paolillo, Boselli, & Schinelli, 2018).  

 

The clinical presentation of GBM may vary depending on the location of the 

tumour. The most common symptoms include increased intracranial pressure, 

headache and focal or progressive neurologic deficits. Nearly 25% of the patients have 

seizures as an early event, while at a later stage close to 50% suffer from this symptom 

(Davis, 2016). 

 

The known risk factors for GBM are ionizing radiation and genetic diseases. 

Patients that undergo therapeutic radiation for another tumour or condition may be 

affected in the future by a radiation-induced GBM. Also, there is an increased risk of 

GBM in patients suffering from genetic diseases such as neurofibromatosis 1 and 2, 

tuberous sclerosis, Li-Fraumeni syndrome, retinoblastoma and Turcot Syndrome. 

Approximately 1% of GBM patients are known to have a hereditary disease. 

Environmental exposures to chemicals such as smoking, pesticides, petroleum 

refining, etc. may also be correlated to GBM (Davis M, 2016). Electromagnetic fields 

and nonionizing radiation from cell phones were not proved to lead to GBM 

development (Davis M, 2016).  

 

GBM incidence is slightly higher in men than women, as well as in Caucasians 

as compared to other ethnicities. The average incidence rate is 3.2 per 100.000 

people. The median survival after surgery and chemotherapy acknowledged by 

population-based studies is only 14 months (Delgado-López & Corrales-García, 2016; 
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Davis M, 2016). Even though more common in advanced ages (median 64 years old), 

GBM may occur at any age. In fact, GBM is the most common pediatric solid tumour. 

The prognosis in children is slightly better than in adults, due to biological 

dissimilarities, however it still remains poor (Das K & Kumar R, 2017; Davis M, 2016). 

Despite all treatment efforts, about 70% of GBM patients experience disease 

progression within one year of diagnosis and less than 5% (adulthood GBM) and 20% 

(pediatric GBM) survive five years after the diagnosis. Indeed, second line treatments 

are basically palliative care in order to optimize life quality (Das & Kumar, 2017; Davis, 

2016). 

 

Despite all new diagnostic tools, GBM remains the most deadly type of 

malignant brain tumour with a very low median survival rate (Monteiro, Hill, Pilkington, 

& Madureira, 2017). Nowadays, the inability to predict sensitivity or resistance to 

therapies as well the challenge of achieving an optimal CNS bioavailability lead to an 

unfortunate scenario for GBM patients (Lombardi M, Assem M, 2017). Studies 

regarding this disease are imperative in order to improve prophylaxis, early diagnosis, 

prognosis and treatment prediction to lead to a better outcome. Moreover, 

understanding the molecular pathways in the core of GBM aggressiveness and swift 

evolution may be half way towards a paradigm change (Lombardi M, Assem M, 2017).   

 

1.1 Glioblastoma classification    
GBM can be assembled into two distinct groups: primary and secondary. Primary 

GBM, most common (approximately 90% of all cases), develop from a glioma 

precursor cell without evidences of precursor lesions. On the other hand, secondary 

GBM is the consequence of a lower-grade glioma (e.g. Grade II astrocytoma) 

progression. While primary GBM is more common in elderly, secondary GBM 

manifests preferentially in younger patients. Although histologically similar, primary 

and secondary GBMs are differentiated by distinct genetic and epigenetic landscapes 

(Ohgaki & Kleihues, 2013).  

 
1.1.1 Primary Glioblastoma 

Primary GBMs are typically characterized by PTEN mutations, loss of chromosome 

10 and overexpression of the Epithelial Growth Factor receptor (EGFR) (Ohgaki & 

Kleihues, 2013). Although the loss of heterozygosity (LOH) of chromosome 10q may 
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be found on both GBM types and linked to loss of PTEN in the secondary tumours, 

spontaneous mutations of PTEN are exclusive of primary GBM (Mansouri, 

Karamchandani, & Das, 2017). The LOH of chromosome 10 represents by itself a poor 

molecular prognosis marker. Indeed, this loss can, in some cases, be linked with the 

PTEN inactivation, since this tumour suppressor gene cytogenetic location is 10q23.3, 

as illustrated on Figure 1.1 (Balesaria et al., 1999). 

 

 

 

 

 

 

PTEN (Phosphatase and tensin homolog) mutation is believed to be an early 

event of glioma carcinogenesis (Feng et al., 2016). When lacking this protein, 

PI3K/AKT/mTOR pathway becomes constitutively activated, leading to an immortal 

path of uncontrolled growth and survival. PTEN, as the major regulator of this pathway 

(shown in Figure 1.2), is a key tumour suppressor and as such its inhibition fuels the 

carcinogenesis process (Chalhoub & Baker, 2009). 

 
 

 

 

 

 

 

 

 

 

 

 

 

PTEN gene 
q23.3 

Figure 1.1. PTEN gene cytogenetic location on Chromosome 10. Schematic representation of 
chromosome 10, highlighting the location of the PTEN gene in red. Adapted from 
https://ghr.nlm.nih.gov/gene/PTEN/location.png 
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Figure 1.2. PI3K oncogenic pathway, when PTEN is inactivated. When PTEN protein is 
inactivated PIP3 remains active. This will lead to and over-activation of the mTOR that signals for cell 
survival, metabolism, proliferation and growth. 
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Along with PTEN loss, the EGFR over-activation is intimately related with cell 

survival, proliferation and invasion pathways, which constitute imperative hallmarks 

for cancer progression. Indeed, this protein is overexpressed in ~60% of primary 

GBMs, featuring a more aggressive phenotype (HONGSHENG et al., 2017). This 

membrane receptor signals to some of the most important oncogenic pathways, the 

MAPK/ERK and the PI3K/AKT/mTOR pathways, both illustrated on Figure 1.3.  

 

Nearly 88% of gliomas develop alterations in the MAPK/ERK pathway, which 

is translated in a poor survival prognosis. Moreover, this signaling pathway is also 

known to lead to increased therapy resistance (Pandey, Bhaskara, & Babu, 2016). 

Additionally, the over-activation of the PI3K/AKT/mTOR pathway is also a poor 

prognostic marker (X. Li et al., 2016). Not only the lack of PTEN contributes for the 

abnormal PI3K activity, constitutively active EGFR also induces this pathway. In fact, 

both EGFR and PTEN mutational events seem to be harbored in a significant number 

of GBMs as mutually inclusive genetic events (Arif et al., 2015). 
 

1.1.2 Secondary Glioblastoma 
Secondary GBM mutational landscapes frequently show TP53 and ATRX loss, 

chromosomes 1p and 19q co-deletion and Isocitrate dehydrogenase 1 (IDH1) 

mutations. Indeed, IDH1 mutation is a well-established molecular marker of all 

secondary GBMs, while TP53, ATRX mutations and co-deletion of both chromosomes 

Figure 1.3. EGFR induced signaling pathways. EGFR induces two oncogenic pathways, when 
mutated, which leads to overactivation of the RAS-RAF-MEK-ERK and AKT-mTOR signaling chains. 
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1p and 19q depend on the type of precursor tumour. TP53 and ATRX loss are 

mutational marks of an astrocytoma precursor. On the other hand, loss of 

chromosomes 1p and 19q are typical of oligodendrogliomas (Mansouri, 

Karamchandani, & Das, 2017). More than a molecular marker, IDH1 mutations are of 

great clinical significance since they represent a better prognosis (Cohen A, Holmen 

S & Colman H, 2013).  

 

Mutations targeting IDH1 result in the loss of this enzyme normal activity. While in 

the healthy system, this protein has the catalytic function of producing a-Ketoglutarate 

(a-KG) and NADPH, in a tumour environment, mutated IDH1 produces 2-

hydroxyglutarate (2-HG) and NADP+, as exhibited in figure 1.4.  
 

 

 

 

 

 

 

 

 

NADPH is a very important metabolite for proliferation, since it is involved in cellular 

processes such as defense against oxidative stress, glycolysis and synthesis of fatty 

acids. However, IDH1 mutations result in a decrease of NADPH cellular levels as this 

molecule acts as an electron donor to produce 2-HG. It is not yet clear if the reduced 

levels of this metabolite is the reason why secondary GBMs have a slower tumour 

growth rate (Yang, Ye, Guan, & Xiong, 2012). Since NADPH is a critical metabolite for 

the cellular detoxifying process against Reactive Oxygen Species (ROS), this could 

also be a possible cause for mutated IDH1 better prognosis (van Lith et al., 2014). 

 

Similarly, α-KG plays an important role in GBM tumour cell metabolism. As the only 

structural difference between α-KG and 2-HG molecules is the replacement of the 2-

ketone group for a hydroxyl group. This leads to 2-HG acting as a competitive 

antagonist. This results in the inhibition of many a-KG-dependent dioxygenases, such 

as lysine histone demethylases (KDMs) and Ten-Eleven Translocation (TET) family of 

Mutant: 

2-HG 

NADP+ NADPH 

Isocitrate 

Wild-Type: 

a-KG 

NADP+ NADPH 

IDH1 IDH1 

Figure 1.4. Comparison of IDH1 Wild-type (wt) with IDH1 Mutant. The catalytic reaction lead by wt 
IDH1 has as products NADPH and a-KG. When mutated, NADP+ and 2-HG are the catalytic products. 
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DNA hydroxylases. In this way high 2-HG concentrations in GBM cells lead to a global 

DNA hypermethylation phenotype, illustrated in Figure 1.5, altering gene expression 

and inhibiting differentiation (Maus & Godefridus, 2017).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although not yet clear how IDH1 mutations are translated into better outcomes, 

the hypermethylated phenotype resultant from IDH1 mutations may be a main reason 

by affecting the expression of DNA repair proteins (such as MGMTs), leaving cells 

vulnerable to DNA alkylating therapeutics. Additionally, the fact that mutated IDH1 

lacks the ability to reverse 2-HG or a-KG into Isocitrate, as illustrated in Figure 1.4, 

may also be related with a better outcome. Isocitrate is a substrate to generate citrate 

for lipid synthesis, central in cell proliferation and maintenance. Therefore, low levels 

of citrate may have a great impact on cell survival (van Lith et al., 2014).  

 

Even though IDH1 is a central molecular marker for the identification of secondary 

GBMs, there are more mutational hints in these tumour landscapes. Not only these 

hints may characterize a tumour as a secondary GBM, it might even represent 

evidences of a specific precursor tumour.  

 

Astrocytomas are brain tumours with origin in the star-shaped brain glial cells 

called astrocytes (Killela et al., 2013). As mentioned before, TP53 and ATRX losses 

Figure 1.5. Mutated IDH1 generates 2-HG which by inhibiting TET and KDMs leads to genome 
hypermethylation. This will result in altered gene expression and inhibition of differentiation. 
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are both common in astrocytomas. Indeed, the loss of TP53 is one of the most frequent 

and earliest mutations in the developing astrocytoma. This early event results of a 

mutation G:C®A:T on the CpG sites that mostly occur in the hotspot codons 248 and 

273 (Ohgaki & Kleihues, 2007). In its wild-type form, TP53 is a transcription factor 

activated when DNA damage is detected in the cell cycle. Subsequently, this protein 

is involved in processes such as the regulation of cell cycle arrest and apoptosis, 

illustrated in Figures 1.6a and 1.6b (Sionov & Haupt, 1999). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 1.6. TP53 Wild-Type tumour suppressor pathway for:  a. cell cycle arrest TP53 arrests the 
cell cycle in the G1 phase by inducing the expression of P21. When inhibiting CDKs via P21, pRB 
maintains itself in a hypophosphorylated state, sequestering E2F transcription factor. E2F is repressed, 
as well the transcription of its target genes required for the transition to S phase. Additionally, pRB 
recruits HDAC1 which promotes the compaction of the nucleosomes to prevent transcription. P21 is 
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also able to halt cellular growth by preventing PCNA (Proliferating Cell Nuclear Antigen) from activating 
DNA polymerase d, central in DNA replication (Sionov & Haupt, 1999);  b. cell apoptosis TP53 also 
induce apoptosis if the DNA damage is too extensive or irreversible. Bax releases cytochrome c from 
the mitochondria, subsequently activating caspase-9 (Haupt S., Berger M., Goldberg Z., & Haupt Y., 
2003). PUMA encodes for two proteins: PUMA-a and PUMA-b that bind to Bcl-2 to release cytochrome 
c and induce cell death in a c/Apaf-1-dependent way (Nakano & Vousden, 2001). When released by 
Bax and PUMA proteins, cytochrome c binds to the Apoptotic Protease Activating Factor 1 (Apaf-1) 
forming the Apoptosome. This complex triggers Pro-Caspase 9, turning it into Caspase 9 (activated 
form), which will in its turn trigger Pro-Caspase 3 (into Caspase 3), finally leading to apoptosis (Ooi & 
Ma, 2013). Lastly, Noxa has been indicated as functioning through an analogous pathway to Bax 
(Shibue et al., 2003). 
 

ATRX (alpha-thalassemia/mental retardation X-linked syndrome protein), member 

of the SN2 family of chromatin-remodeling proteins, has a key role in gene expression 

regulation. This protein exists in two isoforms which take part in the maintenance of 

the stability of the genome and chromatin structure at telomeres (Hoelper, Huang, 

Jain, Patel, & Lewis, 2017; Jones et al., 2017). Although ATRX role in gliomas is not 

yet fully understood, low expression levels of this protein have been linked with 

tumours which overexpress genes involved in signal transduction (GTP-related) as 

well as in transport, modification, and ubiquitination of proteins (Jones et al., 2017). 

Moreover, tumours with this mutation exhibit lengthening of the telomeres (Hoelper et 

al., 2017).  

 

It has been shown that ATRX and TP53 loss, alongside with IDH1 mutations are 

the 3 oncogenic hits required to arrest astrocytoma stem cells differentiation. This 

event promotes gliomaneogenesis by maintaining these cells in a perpetual self-

renewing and invasive state. SOX2 was identified as downregulated in tumours 

harboring these 3-hits. SOX2 expression depends on the CTCF-dependent chromatin 

loop to be able to reach its enhancer 700 kb downstream. However, the 3 P53-ATRX-

IDH1 hits induce the hypermethylation of the CTCF motifs which flank the SOX2 locus, 

meaning that the loop is disrupted, clarified in Figure 1.7 (Modrek et al., 2017). 
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Although SOX2 is mainly known for its role in promoting pluripotency, in the 

brain it may promote the transcription of pro-neurogenic factors such as Neurod1, 

Ngn1 and Ngn2 (Amador-Arjona et al., 2015). Downregulation of SOX2 was shown to 

be concurrent with downregulation of these pro-neurogenic genes, which may explain 

the differentiation blockage (Modrek et al., 2017). 
 

Secondary GBMs may also evolve from an oligodendrioma precursor. This rare 

type of glioma (<4%) has origin in the oligodendrocyte cells which give support and 

insulation to the axons in the CNS. Classically, oligodendrogliomas feature loss of 

heterozygosity for chromosome arms 1p and 19q as a result from an aberrant 

translocation t (1:19) (q10:p10). This molecular marker, besides its origin identification 

purpose, is of a high clinical significance since it seems to be associated with 

sensitivity to chemotherapy and improved outcome (Wesseling, Van Den Bent, & 

Perry, 2015). Simultaneous loss of 1p and 19q alleles is indeed one of the earliest 

events in the majority of oligodendrogliomas. Such fact suggests that this genetic 

modification confers a selective growth advantage to oligodendroglioma cells. 

However, it is yet unknown which underlying molecular mechanisms are implicated in 

tumour progression (Reifenberger & Louis, 2003). 

 

1.1.3 Molecular Classification of Glioblastoma Subtypes 
Regardless of their primary or secondary origin, GBMs can be categorized into 4 

molecular subtypes: classical, mesenchymal, proneural and neural. This molecular 

classification of GBMs is based in mutational patterns that bear a resemblance with 
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Figure 1.7. The role of the 3-hits theory, which will lead to the maintenance of the pluripotency 
phenotype by inactivation of CTCF induced chromatin loop and SOX2 enhancer. 



   

 

 
11 

the expression profiles of their putative cells of origin (Verhaak et al., 2010). 

Mesenchymal tumours are enriched with both mesenchymal and astroglial signatures. 

While, proneural tumours have a clear sign of an oligodendrocyte development 

(Alcantara Llaguno & Parada, 2016). The neural subtype has an alignment of genes 

which functions are related with the nervous system function and development. On 

the other hand, similarly to the mesenchymal subtype, classical tumours have stem 

cell markers (Lombardi & Assem, 2017). Each subtype is associated to a singular 

molecular signature, indicative of the cell of origin. Yet, the clinical and scientific 

significance of this categorization relies not in the cell of origin but in the mutational 

markers of each tumour type that may or not confer a better prognosis and an 

enhanced therapeutic response. Distinctive mutated molecular pathways may 

establish advantages or disadvantages in terms of therapy response (Verhaak et al., 

2010). 

  

1.1.3.1 Classical 

The classical subtype commonly characterized by the amplification of 

chromosome 7 paired with loss of chromosome 10, features the amplification of EGFR 

and loss of PTEN and CDKN2A (Lombardi & Assem, 2017; Verhaak et al., 2010). 

 

 1.1.3.2 Mesenchymal 

Mesenchymal tumours similarly to the classical subtype, harbor the amplification 

of chromosome 7 and loss of chromosome 10, amplification of EGFR and loss of 

PTEN. However, this subtype has the particularity of NF1 mutations and 

overexpression of the tumour necrosis factor pathway genes TRADD, RELB and 

TNFRSF1A (a potential consequence of the high overall necrosis associated with this 

class) (Lombardi & Assem, 2017; Verhaak et al., 2010). 

 

 1.1.3.3. Proneural 

In the proneural subtype, both PDGFRA and IDH1 mutations are major 

features. Although amplification of PDGFRA is frequently seen in all GBM classes, the 

rates of amplification are much higher in proneural tumours.  Curiously, in these 

tumours it seems that IDH1 and PDGFRA mutations are mutually exclusive events, 

rarely occurring at the same time. Besides these, TP53 mutations are also common 

in this GBM sub-type (Verhaak et al., 2010). 
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1.1.3.4 Neural 

In neural tumours, the expression of neuronal markers such as NEFL, GABRA1, 

SYT1 and SLC12A5 is extremely common (Dunn et al., 2012; Verhaak et al., 2010). 

 

 

 

 

This molecular categorization of GBMs fits into the generic primary and 

secondary classes with different incidence rates, as shown in Figure 1.8. Indeed, 

primary GBMs may be associated with any of the four subtypes. However, secondary 

GBMs are exclusively proneural tumours, being this the only class comprehending 

IDH1 mutations (Morokoff, Ng, Gogos, & Kaye, 2015).  
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Table 1.1. The 4 molecular classifications of Glioblastomas and their respective prognosis, cell of origin, 
chromosomal aberration and altered pathways (Verhaak et al., 2010; Lombardi & Assem, 2017).   
  = amplification;    = Downregulation  

Figure 1.8. The 4 molecular classifications of GBMs, sorted into the primary and secondary categories 
and their respective incidence by Verhaak et al. (adapted from Morokoff, Ng, Gogos, & Kaye, 2015).  

33%

30%

17%

8%

12%

Mesenchymal
Classical
Neural
Proneural
Proneural

(Primary Glioblastoma) 
(Secondary Glioblastoma) 

Incidence by Verhaak et. al. 2010 



   

 

 
13 

Recently, a new cluster of tumours has been documented: G-CIMP+. This 

molecular subgroup identification is based on the CpG island methylator phenotype 

existent in several GBMs within the four categories previously mentioned, yet 

predominant in tumours which harbor IDH1 mutations (proneural secondary GBMs) 

(Malta et al., 2017; Mansouri et al., 2017). 
 

Generally, these tumours tend to relate with a better outcome and improved overall 

survival translated from the effectiveness of chemotherapy. In G-CIMP+ tumours, the 

MGMT promoter methylation has been established as a favorable prognostic 

molecular biomarker. Moreover, patients with triple combined G-CIMP+ tumours, 

which harbor the co-deletion of 1p/19q chromosomes, IDH mutations and MGMT 

methylation, have a significantly improved overall survival than those who only carry 

the MGMT methylation biomarker (Malta et al., 2017). 
 

1.2 Therapeutic strategies  
Despite all progresses in broad-spectrum cancer therapies development and 

diagnostic technologies, GBM shows one of the worst prognosis, with a high mortality 

rate. Currently, maximal surgical resection followed by concomitant radiotherapy and 

temozolomide chemotherapy is the standard treatment for newly diagnosed tumours. 

Still, there is no standard of care for recurrent or progressive GBM, despite the 

numerous clinical trials. Due to the disease heterogeneity (multiple molecular and 

histological subtypes) and small control groups (low incidence), it is difficult to identify 

the effectiveness of therapies in trials. Alternative therapies, in these cases, vary within 

reoperation, re-irradiation, systemic therapies (new chemotherapies, i.e. 

Bevacizumab) or combined modality therapies (surgery/radiotherapy/chemotherapy) 

(Fernandes et al., 2017). 
 

1.2.1 Surgery  

Surgery is the first therapeutic approach for GBM treatment, aiming to resect 

maximal tumour mass as possible within safety parameters in order to extract tissue 

for pathological diagnosis and delay tumour progression. The more extensive the 

resection is, the longer is the life expectancy. However, the main barrier this method 

faces is the fine balance between the tumour tissue removal and the preservation of 

brain functions and healthy tissue. As a matter of fact, surgeries to tumours located 



   

 

 
14 

within the eloquent cortex have high risk of postoperative neurological deficits 

(Fernandes et al., 2017). 

 

Prior to surgery, the candidates are determined as good surgical candidates 

through the Karnofsky Performance Scale (KPS), shown in table 1.2. Normally, only 

patients with a KPS index equal or greater to 70 are considered for a surgical 

intervention. Nonetheless, selected patients with lower indexes may sometimes 

benefit from surgery, exhibiting improved survival and quality of life after tumour 

reduction (Young, Jamshidi, Davis, & Sherman, 2015). Marina et al. revealed that 

patients with preoperative KPS lower than 50, indeed improved their KPS status after 

surgery increasing their survival time and functional grade (Marina et al., 2011; Young 

et al., 2015). It is essential to understand that the surgical approach may differ between 

individuals, taking in consideration the localization of the tumour, pre- and 

postoperative KPS, survival extension and life quality (Young et al., 2015). 
 

GENERAL RANKING FUNCTIONAL CRITERIA (%) 

 

Able to carry on normal activity and to work; 

no special care needed 

 

100%: No Complains; No evidence of 

disease; 

90%: Able to carry on normal activities; 

minor signs or symptoms of disease; 

80%: Normal activity with effort; Some signs 

or symptoms of disease; 

 

Unable to work; able to live at home and 

care for most personal needs; varying 

amount of assistance needed 

 

70%: Cares for self; Unable to carry on 

normal activity or to do active work; 

60%: Requires occasional assistance but is 

able to care for most personal needs; 

50%: Requires considerable assistance and 

frequent medical care; 

 

Unable to care for self; requires equivalent 

of institutional or hospital care; disease may 

be progressing rapidly 

40%: Disabled; Requires special care and 

assistance; 

30%: Severely disable; hospital admission is 

indicated although death not imminent; 

Table 1.2. Karnofsky performance status adapted from Young et al., 2015 
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1.2.2 Radiotherapy 

After surgery and previously to radiotherapy, patients are administered with 

dexamethasone, a corticosteroid, in order to prevent brain swelling. This is particularly 

important in patients whose tumour exerts were significant. Also, it may prevent 

radiotherapy associated brain swelling that can worsen the patient’s symptoms 

(Kostaras, Cusano, Kline, Roa, & Easaw, 2014). 

 

Currently, the standard radiotherapy is given in concomitance with chemotherapy 

and may vary between 5.000-6.000 cGy doses fractionated over 30 days, in order to 

allow healthy cells of the irradiated zone to recover. Postoperative radiotherapy in 

these doses has been validated as beneficial in terms of survival advantage. However, 

dose-escalation beyond these values resulted in increased toxicity without being 

beneficial in terms of survival  (Barani & Larson, 2015).  

 

Notwithstanding the standards and what is considered the ideal dose, how 

radiotherapy is applied may depend on the age of the patient, tumour size and 

location. Normally, patients up to 70 years old, with a reasonable KPS status receive 

standard treatment of 6.000 cGy in fractions of 2 Gy. Whereas 70 years old patients 

should receive a less aggressive treatment of 4.000 cGy in fractions of 2,66 Gy 

(Cabrera et al., 2016). As a localized treatment, it is crucial to perform imaging 

diagnostics of the tumour prior to therapy. This helps define the target volume and 

localization. There are four important notions that help with the radiotherapy planning 

concerning the volume and localization, as well as the effectiveness and safety: Gross 

Tumour Volume (GTV); Clinical Target Volume (CTV); Planning Target Volume (PTV) 

and Organs at Risk (ORs). The first, GTV refers to the volume to be irradiated which 

can be seen and imaged (primary tumour). Secondly, the CTV means to target the 

spreading cells surrounding the primary tumour, which cannot be fully imaged. 

 20%: Very Sick; Hospital admission 

necessary; Active supportive treatment 

necessary; 

10%: Moribund; Fatal processes progressing 

rapidly; 

0%: Dead. 
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Following, the PTV contains the CTV irradiated volume with slightly wider margins to 

account for possible variations in the beam alignment, patient position, organ motion 

and deformation. Finally, it is important to consider the volumes to be irradiated, in 

order to protect the ORs from being targeted with a higher-than-safe dose (Burnet, 

Thomas, Burton, & Jefferies, 2004). 

 

The side effects of radiotherapy usually start in the first week after initiating 

treatment and include hair loss, nausea and fatigue (“Side effects of radiotherapy | 

Brain tumour (primary),” 2015). Although rare, patients may also experience side 

effects that start months or years after treatment, once the brain tissue damage can 

reduce the blood supply to certain areas of the brain. This effects may vary between 

impaired memory, confusion and personality changes (“Long term side effects of 

radiotherapy | Brain tumour (primary),” 2015). 

 

1.2.3 Chemotherapy 
Following surgery adjuvant chemotherapy is given in concomitance with 

radiotherapy. Despite all lines of treatments GBM prognosis remains one of the 

poorest within all cancer types. Dysregulation of signaling pathways is widely studied 

nowadays and therapeutic approaches have been made to target proteins within these 

pathways. Several oncogenic pathways inhibitors have been tested in pre-clinical and 

clinical trials for this type of cancer. It is assumed that in the future, combinations of 

these drugs with cytotoxic chemotherapeutic (p.e. Temozolomide) and radiation could 

improve the prospective survival of GBM patients. However, cytotoxic chemotherapy 

remains for the moment the standard treatment as the most advantageous in terms of 

survival, within all approved drugs (Minniti, Muni, Lanzetta, & Enrici, 2009). 

 
1.2.3.1 Temozolomide 

Temozolomide is a cytotoxic alkylating agent reportedly discovered by a mix of 

“intelligence, guesswork, dogged persistence and luck” in 1970 (Newlands, Stevenst, 

Wedge, Wheelhouse, & Brock, 1997). This orally administrated drug is non-

enzymatically hydrolyzed into 5-(3-methyltriazen-1-yl)imidazole-4-carboxamide 

(MTIC) at physiological pH, its active form. MTIC, once activated, alkylates DNA at N7 

position of guanine (most common), O3 position of adenosine and O6 position of 

guanosine (most critical). The methylation of these residues leads to DNA strand 
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breaks and subsequent cell apoptosis (Temozolomide, DrugBank Database, 2005). 

The cytotoxic effect of this drug is correlated with the intracellular levels of MGMT. As 

a critical DNA repair protein, MGMT has the ability to reverse temozolomide’s strand-

breaking action. High levels of MGMT are associated with temozolomide resistance. 

On the other hand, MGMT epigenetic silencing (methylation) is correlated with 

enhanced temozolomide sensitivity, which predicts a good outcome as benefit from 

this therapy. It has been reported that the 2-year survival rates for patients treated with 

radiotherapy and temozolomide with no MGMT methylation was 14%, whereas in 

patients with MGMT silencing, it was  46%. Nevertheless, it has been demonstrated 

through clinical trials that temozolomide increases significantly survival rates with 

minimal additional toxicity, when added to radiotherapy. Indeed, the reported 2-year 

survival rate for radiotherapy and temozolomide in concomitance was 27%, while 

radiotherapy by itself was only 10% (Minniti et al., 2009). 

 

1.2.3.2 Carmustine 

Carmustine is an alkylating agent which cross-links in the DNA and RNA to 

inhibit its synthesis and translation, respectively (Carmustine, DrugBank Database, 

2005). In addition, Carmustine causes oxidative stress by inhibiting glutathione 

reductase, leading to activation of caspase-3 and apoptosis (Castaldo, Freitas, 

Conchinha, & Madureira, 2016). Systemic administration of this drug has 

demonstrated low efficacy in GBM treatment. However, a different method was 

developed: Carmustine wafers (Gliadel® wafers). This new method consists in a 

controlled release of carmustine from biodegradable polymer wafers that are placed 

in the cavity left by the surgical removal of the brain tumour. This approach not only 

reduced systemic toxicity, but it also increased the effectiveness of the therapy (Lin & 

Kleinberg, 2008). Carmustine wafers are approved to treat newly-diagnosed and 

recurrent GBM as an adjuvant treatment, alone or in combination with temozolomide, 

when surgical removal of the tumour is possible. Trials have not yet been conducted 

in order to compare carmustine wafers treatment to temozolomide, as single 

therapies. Despite the therapeutic benefits of this approach, risks associated with this 

treatment should not be disregarded. Cerebral edema, healing abnormalities, 

intracranial infections, seizures, intracranial hypertension and cerebrospinal fluid leaks 

are among the side effects that may be experienced by the patients who undergo this 

treatment and should be taken into consideration when prescribing it (Chowdhary, 
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Ryken, & Newton, 2015). Plus, combination of carmustine wafers with the standard 

treatment may carry the risk of increased secondary events and might not significantly 

improve the outcome (De Bonis et al., 2012).  

 

1.2.3.3 Targeted therapies 

As mentioned above, GBM is characterized by aberrant activation of signaling 

pathways that lead to tumour progression. Inhibitors for growth factor receptors and 

pathways such as MAPK/ERK and PI3K/mTOR or cell cycle control were developed 

and could be adapted as GBM adjuvant therapies, as shown on Table 1.3 (Touat, 

Idbaih, Sanson, Ligon, & Ligon, 2017). 

 
 

 

In addition to these target pathways, in 2009 the Food and Drug Administration 

(FDA) approved provisionally an anti-angiogenic target drug called Bevacizumab for 

recurrent GBM treatment (Touat et al., 2017). Angiogenesis, the process of blood 

vessels growth from the existing vasculature, is a major hallmark of carcinogenesis 

and a very important feature in GBM invasion. Vascular Endothelial Growth Factor 

(VEGF) promotes proliferation and migration of vascular endothelial cells, as well as 

vascular permeability. It is consequently the main player of the angiogenic process. 

Bevacizumab is a monoclonal antibody that targets VEGF-A to inhibit its assembly 

with the respective receptor and so inhibits tumour vascularization (Keating, 2014). 

GENE ALTERATION CANDIDATE THERAPY 
Growth Factor Receptors: 

EGFR Amplification Rindopepimut (EGFRvIIi-specific peptide conjugated) 
 

PDGFR Amplification Dasatinib (PDGFR inhibitor) 

MAPK and PI3K/mTOR pathways: 
PTEN Delection Voxtalisib (mTOR/PI3K inhibitor) 

PIK3CA Amplification Buparlisib (PI3K inhibitor) 

BRAF Mutation 
(phosphomimic) 

Trametinib (MEK inhibitor) or Vemurafenib (BRAF 
inhibitor) 

Cell Cycle pathways: 
MDM2 Amplification AMG232 (MDM2 inhibitor) 

CDK4/6 Amplification Ribociclib (CDK4/6 inhibitor) 

Others: 
IDH1 Mutation AG120 (IDH1 inhibitors) 

Table 1.3. Genomic alterations and example of targeted therapies, adapted from Touat et al., 2017    
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Although it failed to prolong overall survival in newly diagnosed GBM and first 

recurrence, it is frequently used as a last-line treatment following temozolomide, 

carmustine and radiotherapy failure (K. J. Wenger et al., 2017). 

 

1.2.3.4 Therapy resistance 

GBM remains a therapeutic challenge being extremely difficult to prevent 

recurrence. Tumour regrowth typically occurs around the surgical cavity due to the 

failure of standard and targeted therapies, which do not comprise tumour 

heterogeneity. GBM cell subgroups are characterized by divergent expression profiles 

and genetic/epigenetic landscapes, derivative of differences in cell of origin and 

accumulation of mutations (Osuka & Meir, 2017). The clonal evolution theory states 

that cancers develop through a process of clonal expansion and selection in which 

tumours adapt to the surrounding environment. This leads to genetic diversification 

within the tumour architecture as shown in Figure 1.9 (Greaves & Maley, 2012).  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Multiple study findings have shown that the higher the tumour heterogeneity 

levels, the lower the response of the patients to anticancer therapies (Dagogo-Jack & 

Shaw, 2017). Some of the tumour cell clones may evade from therapies due to their 

own ‘resistant’ genomic landscape. Indeed, drugs and radiation may artificially select 

resistant cell variants with increased malignant potential (Greaves & Maley, 2012). It 

has been further hypothesized that selection of resistant clones might occur through 

Environment selective 

pressure 
Oncogenic hit 

Original cell 

Normal cell 

M
ut

at
io

n 
ac

cu
m

ul
at

io
n 

Tumour 

Figure 1.9. Clonal evolution theory: The clonal expansion leads to cell populations with different 
mutational landscapes (different colors) and different levels of mutational accumulation. Also, the tumour 
environment and external factors (therapy) contribute for the intratumoral heterogeneity. 
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surgery resection. Non-resected GBM cell populations with stem-like properties that 

through innate and adaptive resistance survive to treatments, repopulate the primary 

tumour site. These resistant cells will then initiate recurrence turning into recurrence-

initiating stem-like cancer (RISC) cells (Osuka & Meir, 2017).  

 

Besides external factors, some environmental features may also interfere with 

selection, introducing the surrounding cells with selection forces that lead to clonal 

assortment (Osuka & Meir, 2017). GBM is characterized by quite diverse histological 

hallmarks. These tumours are organized in specific niches with different features and 

functions within the tumour microenvironment. Three specific tumour niches have 

been identified as the most prominent for GBM regulation: The perivascular, vascular-

invasive and hypoxic niches (Hambardzumyan & Bergers, 2015). The first refers to 

the tumours stem cell nest, where both tumour growth and differentiation are assured. 

In the vascular-invasive region, cells endorse tumour spreading into the brain 

parenchyma by promoting angiogenesis (Hambardzumyan & Bergers, 2015). Finally, 

the hypoxic niche, surrounds the necrotic core and its main feature is the low levels of 

oxygenation which derive from the absence of vasculature. This last precinct might be 

the most influential environment in terms of invasion and tumour spreading. 

Consequently, these cells activate mechanisms to evade from the hypoxic site and 

invade into brain’s healthy tissue (Monteiro et al., 2017). In fact, these cells acquire 

such an invasive  and migratory phenotype that the hypoxic field surroundings is 

characterized by palisading tumour cells, a well-known morphological hallmark of 

GBM (Hambardzumyan & Bergers, 2015). This feature constitutes a poor prognosis 

predictor and challenge in terms of therapy, however hypoxia may defy treatments 

through other individualities. Several studies have shown that hypoxia promotes 

stemness by increasing expression of cancer stem cell markers such as CD133, Sox2, 

Oct4, nestin and Klf4 (Hambardzumyan & Bergers, 2015). This may lead to recurrence 

through RISC cells as already reviewed (Osuka & Meir, 2017). Furthermore, it is also 

known that hypoxia constitutes a barrier to radiotherapy efficacy. Oxygen improves 

cancer cells sensitivity to irradiation and so, the effectiveness of radiotherapy. In 

oxygen privation, cells may survive to therapy to initiate recurrence later (Brown, 

1999).  
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1.3 Hypoxia in Glioblastoma  
As mentioned above, some tumour cells are exposed to hypoxic conditions, 

meaning that the cells demand of oxygen exceeds the supply. This is a natural 

consequence of tumour growth and expansion which leaves cells near the core distant 

from the oxygen supplier blood vessels. In such a critical environment, hypoxic cells 

activate pro-survival mechanisms such as metabolic changes, invasion pathways and 

tumour vascularization signaling. In order to do so, there is a family of transcription 

factors that play the most fundamental role in this hypoxic response: the Hypoxia 

inducible factors (HIFs). (Monteiro et al., 2017) 

 

1.3.1 Hypoxia Inducible Factors 
HIF transcription factors are, without a doubt, the master regulators of the 

hypoxia response. These transcription factors are heterodimeric complexes 

constituted by O2 regulated a subunits (HIF1a, HIF2a and HIF3a) and the 

constitutively expressed b subunit (HIF1b). Within the complex, the a subunits are the 

determinant elements for these transcription factors action.  HIF1a and HIF2a are 

considered the main regulators of the hypoxic response (Monteiro et al., 2017). 

 

When the oxygen levels are normal, prolyl hydroxylases 1-3 (PHD1-3) 

hydroxylate two prolyl residues within the HIFα subunits allowing the binding of the 

von Hippel-Lindau (VHL) protein. This way, VHL protein recruits E3 ubiquitin ligases 

to target HIFα for proteasomal degradation, illustrated in Figure 1.10. However, in a 

hypoxic environment PHDs are inhibited which leads to the stabilization of the HIFα 

subunits. HIFα translocate into the nucleus to bind with HIF1β, forming the 

transcription factor complex which subsequently binds to co-activators and promoters 

of target genes orchestrating the response to hypoxia, Figure 1.10. Although both 

activated by a hypoxic setting, HIF1a and HIF2a are differentially expressed. While 

HIF1a is ubiquitously expressed, HIF2a is selectively expressed in distinct cell 

populations and both play different roles in tumorigenesis, having overlapping as well 

as distinct target genes (Monteiro et al., 2017). 
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When hypoxia-triggered, HIF will induce the transcription of hundreds of genes 

that promote survival mechanisms, angiogenesis, metabolic reprogramming 

(glycolysis), invasion and metastasis. Hence, identifying and characterizing hypoxia 

upregulated pathways in GBM is crucial for the development of novel and more 

effective therapies against this deadly type of tumour (Monteiro et al., 2017). 
 

1.3.2 Angiogenesis 

Angiogenesis is the physiological feature in which new blood vessels are 

developed from pre-existing vessels. Angiogenesis is a well-organized and common 

event in adults (in the menstrual cycle and tissue repair/remodeling), as well in the 

embryonic and fetal development (Kaur, Tan, Brat, & Van meir, 2004). However, it is 

also a very important process for tumour survival and invasion since blood vessels are 

the cells suppliers of oxygen and nutrients (Keating, 2014). GBM is known to be 

among the most vascularized tumours and frequently depicted by microvascular 

hyperplasia (micro-aggregates of endothelial cells). In fact, the hyperbolic form of 

micro-aggregates, called glomeruloid body, is frequently reported in GBM (Kaur et al., 

2004). It is not yet clear if this is a result of a dysfunctional cell proliferation or an 

Normal Oxygen Levels: 
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Figure 1.10. HIFα regulation in normoxia: Hydroxylation of HIF1a’s proline residues promotes VHL 

anchorage, which will target HIF1a for proteasomal degradation; and in hypoxic conditions: HIF1a 

promotes gene transcription. 
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accelerated angiogenesis process, yet it is known to be the result of pro-angiogenic 

factors deregulation (Kaur et al., 2004).   

 

During hypoxia, cells turn on the angiogenic switch by up-regulating the pro-

angiogenic factors such as VEGF proteins, via HIF1α and HIF2α (Keating, 2014; Liao 

& Johnson, 2007). VEGFA is a potent angiogenic factor that appears to be particularly 

important for GBM, since its over-expression and release into the extracellular matrix 

(ECM) is commonly observed (Liang et al., 2002). In addition to the transcriptional 

regulation, hypoxia seems to result in increased stability of VEGFA mRNA. Both 

mechanisms result in a thriving of VEGF signal which is particularly predominant in 

the hypoxic zone (Kaur et al., 2004). When secreted by cells, VEGFA triggers 

angiogenesis by binding to the VEGF receptors 1 (VEGFR1) and 2 (VEGFR2) on the 

endothelial cell surface. These receptors will then signal for endothelial cell 

proliferation and migration, as well for the secretion of matrix metalloproteinases 

(MMPs) (Rundhaug, 2003).  Besides these, the receptors neuropilin 1 (NRP1) and 2 

(NRP2) expressed in neural and endothelial cells surface also play a role in 

angiogenesis (Kaur et al., 2004). Although not yet well-defined what is the role in 

angiogenesis, mice with targeted disruption of these receptors show severe vascular 

defects. Plus, it is known that NRP1 functions as a receptor for a specific isoform of 

VEGFA (VEGF 165), for VEGFB and PLGF, also pro-angiogenic factors (Kaur et al., 

2004).  

During hypoxia the VEGFC and VEGFD isoforms bind to the VEGFR3 receptor 

and are mostly involved in the formation and maintenance of lymphatic vessels, known 

as the lymphangiogenesis process (Chien et al., 2009; Christiansen & Detmar, 2011). 

Despite this process being inexistent in the brain, it has been hypothesized that 

VEGFC and VEGFD cleavage forms can interact with VEGFR2 and promote 

angiogenesis (Jenny et al., 2006). However, little is known about these two VEGF 

isoforms in GBM’s hypoxia driven invasion. 

 The placenta growth factor (PLGF) is a frequently up-regulated gene in 

hypervascularized brain tumours, and its over-expression leads to tumour 

angiogenesis and growth (Kaur et al., 2004). Hence it is a pro-angiogenic protein that 

curiously shares 53% identity with VEGF. It has been shown that in the presence of 
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PLGF, VEGFA is released from VEGFR1 to bind VEGFR2, promoting endothelial cell 

proliferation. Plus, the activation of VEGFR1 by PLGF leads to inter-molecular trans-

phosphorylation of VEGFR2. PLGF functions as an enhancing factor of VEGFA signal 

in GBM (Kaur et al., 2004). 

 

1.3.3 Metabolic reprogramming 
The most important feature in cancer cells metabolic reprogramming is the shift 

from aerobic respiration to anaerobic glycolysis. This reprogrammed mechanism 

allows the use of glucose to synthesize ATP without the need for oxidative 

phosphorylation. Besides being more time-effective and least energetically demanding 

than oxidative phosphorylation anaerobic glycolysis has the bonus of generating 

‘building-blocks’ (nucleotides, lipids, etc.) and it is independent of oxygen levels which 

can vary dramatically during tumour growth. HIF activates the transcription of genes 

that encode for glucose-transporters and glycolytic enzymes, in order to maintain the 

cells energetic balance in an oxygen deprived environment (Labak et al., 2016a; Liberti 

& Locasale, 2016).  

 

HIF1α activates the transcription of GLUT1, GLUT3 and GLUT4 genes, which 

encode for glucose-transporters. These are plasma-membrane proteins that promote 

the entry of glucose from the extracellular environment into the cell. GLUT1 and 

GLUT3 proteins are significantly up-regulated in glioma cells, since a large amount of 

glucose is needed to fulfil the high metabolic demands of these cancer cells (Zhang, 

Behrooz, & Ismail-Beigi, 1999).  

 

Curiously, GLUT1 is either overexpressed or under-expressed in GBM, 

depending on the tumour area. Regularly, the overexpression zone correspond to the 

hypoxic foci, where HIF1a expression is highly predominant. In fact, GLUT1 is an 

established transcript target of HIF1a transcription factor. In addition to GLUT1, 

GLUT3 seems to have a role in GBM. First, GLUT3 is characterized as a brain tissue 

specific transporter, frequently found in neurons. Also, GLUT3 was shown to be over-

expressed in hypoxic GBM cells and to correlate with clinical outcomes. Although not 

yet proven, some studies suggest a positive feedback loop between GLUT3 and OCT4 

(a pluripotency marker), once their expressions are correlated (Labak et al., 2016).  
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Many glycolytic enzymes have been shown to be up-regulated during tumour 

hypoxia. Aldolase-A catalyzes the conversion of Fructose-1-6-bisphosphate into 

glyceraldehyde 3-phosphate. HIF1α activates the transcription of aldolase-A gene in 

response to hypoxia (Semenza et al., 1996). This protein is overexpressed in cancer 

cells not only for its importance in glycolysis, but also for being involved in vesicle 

trafficking, cell motility and epithelial to mesenchymal transition (EMT). In fact, 

aldolase A expression has been correlated with increased fibronectin and vimentin 

levels, as well as with down-regulation of E-cadherine and b-catenin levels (Lincet & 

Icard, 2015).  

 
Lactate dehydrogenase A (LDHA) is a tetrameric enzyme which catalyzes the 

conversion of NADH to NAD+ and pyruvate to lactate. One of the key steps of 

glycolysis is the conversion of GADP to D-1,3-bisphosphoglycerate (1,3BPG) and 

NAD+ (LDH enzymatic product) is a fundamental participant of this process. In hypoxic 

conditions, due to the lack of oxidative phosphorylation which would otherwise 

regenerate NAD+, LDH enzymatic function is essential. Hence its significance in 

glycogenesis (Firth, Ebert, & Ratcliffe, 1995). LDHA synthesis has been shown to be 

upregulated in GBM tumour cells, especially in pseudopalisading cells and throughout 

the hypoxic area (Talasila et al., 2016). 

 

Another mediator of glycolysis metabolism in cancer is Hexokinase 2 (HK2). 

This protein functions as a molecular switch from glycolysis to autophagy, in order to 

ensure the energy homeostasis in response to glucose deprivation (Tan & Miyamoto, 

2015). In the healthy brain, HK2 is negligently expressed. However, in GBM there are 

several transcription and growth factors, such as myc, glucagon and cAMP, that 

regulate HK2 expression. Moreover HIF1a regulates the transcription of HK2 in GBM 

hypoxia cells (Wolf et al., 2011).  

 

PFKB3 and PFKB4 are two isoenzymes from the PFK-2/FBPase-2 family which 

control the levels of fructose-2,6-biphosphate (Fru-2,6-P2). Both PFKB3 and PFKB4 

are known to be upregulated by HIF1a during hypoxia and to promote cell survival 

through metabolic adaptation to this demanding environment (Ros & Schulze, 2013). 

In fact, PFKFB3 was suggested as the isoform that most likely contributes to the 
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glycolytic activity of cancer transformed cells. However, in GBM, PFKFB4 has been 

shown to play a main role in glycolysis (Ros & Schulze, 2013).  

 

  The SLC16A3 protein (also known as MCT4) has been shown as one of the 

most upregulated genes in GBM HSR-GBM1 and JHH-GBM10 hypoxic cell lines (Lim 

et al., 2014). This protein is a well-known lactate exporter and was hypothesized as a 

regulator of proliferation, survival and growth in GBM. In fact, knock down of MCT4 

led to inhibition of proliferation, induction of apoptosis and suppression of HIF 

transcriptional activity. Associated with a poor prognosis and short survival, SLC16A3 

seems to be correlated with a lower G-CIMP (methylation phenotype) typical in the 

most aggressive types of glioma (Lim et al., 2014). 

 

1.3.4 Invasion 
In order for tumour cells to be able to invade the surrounding environment they 

need to go through epithelial to mesenchymal transition (EMT) and promote 

extracellular matrix (ECM) degradation and remodeling. EMT is a feature of epithelial 

origin tumour cells in which the epithelial phenotype is lost in order to acquire a 

mesenchymal phenotype. Cells down regulate cell-cell adhesion molecules and lose 

polarity, leading to increased migration (Gialeli, Theocharis, & Karamanos, 2011). 

Naturally, to allow hypoxic cells to evade from the primary tumour site and invade other 

sites of the brain, HIF1α targets the transcription of genes involved in these steps 

(Martin, Ye, Sanders, Lane, & Jiang, 2013). 

 
The plasmin system in cancer has been widely studied. There are two known 

forms of plasmin activators (PA): the urokinase type-PA (uPA) and the tissue PA (tPA). 

Both promote the enzymatic conversion of plasminogen into the active serine 

protease, plasmin (Zhai et al., 2011a). Capable of promoting the ECM degradation in 

a direct manner, plasmin has a key role in GBM invasion (Zhai et al., 2011a).  

 

The plasminogen receptor annexin A2-S100A10 heterotetramer (AIIt) plays a 

key role in the regulation of plasmin at the cell surface. This complex is formed by a 

dimer of the S100A10 protein (also known as p11) which binds together two molecules 

of annexin A2 (or p36) (P. A. Madureira et al., 2011). When S100A10 is not bound in 

the AIIt, it is targeted for degradation via a proteasome-dependent mechanism. 
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However, when in the AIIt, S100A10 promotes the binding of plasminogen to the 

complex, increasing its affinity with tPA, as well the catalytic reaction efficiency 

(Patricia A Madureira, O’connell, Surette, Miller, & Waisman, 2012). Indeed, S100A10 

activity has been linked to 50% of cellular plasmin generation (Patricia A Madureira et 

al., 2012). Plus, S100A10 expression is widely induced by several factors known to 

be overactivated in GBM, such as EGFR (Madureira P, O’Connell P, Surette A, et. al. 

2012). 

 

 Studies have shown that annexin A2 knockdown leads to a decrease in the 

migration ability of GBM cells. Curiously, annexin A2 was reported as significantly 

more expressed in primary GBMs than in secondary tumours. This is due to a higher 

tumour methylation phenotype of secondary GBMs in which annexin A2 promotor is 

generally methylated, therefore inactivated (Kling et al., 2016). Consequently, annexin 

A2 expression often correlates with tumour grade. Indeed, patients with higher 

annexin A2 expression have a lower Overall Survival and Progression Free Survival 

than those with a lower expression (Maule et al., 2016). Due to its role in cancer, 

annexin A2 has become a protein of interest for GBM target therapy (Zhai et al., 2011). 

Overall, the AIIt heterotetramer leads to an increase in plasmin generation and 

therefore contributes to the breakdown of the basement membrane and ECM, crucial 

for tumour invasion (Madureira P, O’Connell P, Surette A, et. al. 2012). 

 

Another plasminogen activation complex is the uPA system. When uPA binds 

to its receptor, the urokinase-type plasminogen receptor (uPAR), not only increases 

its enzymatic activity, but it also promotes a focal and directional proteolysis of the 

ECM. It is no surprise that uPARs are frequently co-localized with the hypoxic site 

(Mohanam et al., 1997). This system, often overexpressed in GBM, plays therefore an 

extremely important role in hypoxia induced invasion. In addition, the uPA-uPAR 

system also regulates cell motility, adhesion and  proliferation, also crucial invasion 

steps (Chandrasekar et al., 2003). Interestingly, the uPA-uPAR complex co-localizes 

with S100A10 at the cell surface (Madureira P, O’Connell P, Surette A, et. al. 2012).  

 

In addition to the direct breakdown of fibronectin, laminin and proteoglycans 

(ECM components), plasmin is also capable of activating MMPs which contribute to 

ECM degradation as well (Zhai et al., 2011a). MMPs are overexpressed in cancer 
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which leads to ECM remodeling, tumour invasion and metastasis and epithelial-

mesenchymal transition (EMT) by modification of integrins (Radisky & Radisky, 2010). 

In GBM cells the MMP-2 and MMP-9 gelatinases, are frequently over-expressed and 

released into the ECM (Fujiwara et al., 2007). A unique feature of these gelatinases is 

the degradation of type IV collagen, gelatin and fibronectin which are major 

components of the ECM (Cathcart Jillian, Pulkoski-Gross Ashleigh, & Cao Jian, 2015).  

Studies led by Li et. al. have shown that via knockdown of HIF2-α, a decrease in MMP-

2 expression was observed (N. Li, Wang, Zhang, & Zhao, 2016). In addition, MMPs 2 

and 9 were both shown to be enhanced during hypoxia in GBM (Emara & Allalunis-

Turner, 2014). Although known to be related with hypoxia, there are no references of 

gelatinases 2 and 9 expression by HIF1a.   

  

 
 

 

 

 

 

 

 

 

 

 

During hypoxia, angiogenesis, metabolic reprogramming and invasion 

pathways cope as cell survival mechanisms in response to a “life-threatening” 

environment, as illustrated in Figure 1.11. By doing this, hypoxic GBM cells not only 

survive, but gain clonal advantage through an increased malignancy phenotype. 

These cells are prompt to migrate to other parts of the brain and colonize healthy 

tissue, which creates a therapeutic challenge. In conclusion, hypoxia benefits cancer 
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Figure 1.11. Hypoxia mediated invasion in Glioblastoma: HIF1a targets gene transcription to 
induce metabolic reprograming, angiogenesis, ECM destruction and remodeling and epithelial to 
mesenchymal transition. 
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progression by activating malignancy pathways, which reflects into a bad prognosis in 

terms of treatment and patient survival.  (Monteiro et al., 2017) 
 

1.4 Study Objective 
Glioblastoma multiforme is one of the deadliest, with a median survival of 14 

months. GBM remains a therapeutic challenge due to these tumours aggressive 

phenotype and high rates of recurrence. Hence, it is essential to understand the 

molecular pathways in the core of GBM evolution. 

 

One of the main features of GBM is hypoxia. Close to the tumour necrotic core, 

the hypoxic zone is characterized by low levels of oxygen. This harsh environment not 

only prompt cells with clonal selection forces, it activates pro-survival and malignancy 

mechanisms such as the metabolic switch, invasion and angiogenesis. Hence we 

proposed to investigate the expression of genes and proteins featuring these survival 

mechanisms in GBM hypoxia.  

 

To do so, two GBM biopsy-derived cell lines (UP-029 and SEBTA-023) were 

used and cultured in hypoxic conditions for a selected set of time-points. We then 

investigated the hypoxic profile and landscape of these cells through microarrays 

performed for normoxia, six and 48 hypoxia hours of samples. We distinguished a 

panel of significant induction and validated through qRT-PCR assays. Lastly, we 

conducted protein detection assays and correlated with the previously obtained gene 

expression values.  
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2. Materials and Methods 
2.1 Ethical Statement 

The patients’ biopsies from which the cell lines used in this study were derived 

were obtained under the ethics permission within the Brain Tumour Research Centre, 

University of Portsmouth in compliance with the National Research Ethics Service 

(NRES). In addition, patients have concurred prior to surgery, to the use of biopsy 

material for purposes of research through the reading and signing of consent forms. 

This study was accepted by the ethics committees for the University of Portsmouth 

and SEBTA/BTR, reference number 11/SC/0048 of 19th June 2014. 

 

2.2 Cell Lines and Cell Culture 
The cell lines UP-029 and SEBTA-023, used in this study, were cultured at the 

University of Portsmouth and isolated via patient-derived ex-vivo GBM biopsies 

provided to the Brain Tumour Research Centre at University of Portsmouth, U.K. The 

human glioblastoma cell lines were maintained in high glucose (4500mg/l) Dulbecco’s 

modified Eagle’s medium (DMEM) (Sigma-Aldrich) supplemented with 10% Fetal 

Bovine Serum (FBS). Both cell lines were grown in a humidified incubator at 37ºC with 

an atmosphere of 5% CO2. Cells were regularly tested for mycoplasma. 

For experiments requiring cell counting, 10 μL of cells suspended in DMEM 

were mixed with 10 μL of trypan blue (Bio-Rad) and the number of live cells was 

determined using a Countess II FL Automated cell counted (ThermoFisher). For real 

hypoxia experiments the O2 levels were regulated to 1% and cells were plated in 

100mm plates with 10ml of complete DMEM medium per time point. 24 hours after 

platting, the cells were either not treated or treated (1% O2) for different time points as 

described in the results section.   

 

2.3 Western-Blotting 
Western blotting is a widely used laboratory technique that permits the 

identification of individual proteins from a complex mixture. In this technique, proteins 

are separated by their molecular weight. Once denatured by heating, proteins migrate 

in the gel through which voltage is applied. Since these molecules have negative 
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charges, they will travel in direction to the cathode (positive electrode). This procedure 

is hence called gel electrophoresis. Smaller proteins travel faster and more easily 

through the gel pores, than larger proteins. By the end of the run, larger proteins will 

be closer to the top of the gel, while the small ones will be further away (Mahmood & 

Yang, 2012). In addition to protein detection, this is a semi-quantitative method that 

provides a relative comparison of proteins levels between samples. Hence, western-

blot was used in this study to compare protein expression at different hypoxia hours.  
 

2.3.1 Preparation of cell lysates for protein extraction 
To obtain total protein extracts from both UP-029 and SEBTA-023 lines, cell 

lysates from different time points were prepared. Firstly, the medium of each plate was 

discarded and followed by a wash with approximately 2ml of Phosphate Buffered 

Saline (PBS) solution. The PBS was then removed and 200 to 300 µl of Lysis buffer 

(1x Protease Inhibitor cocktail [BIO-RAD], 2,5 mM EDTA, RIPA Buffer [PierceTM]; 

recipe in annex 1) was added to the plate. In this step, the plate was kept on ice to 

minimize the action of proteases and maintain proteins integrity as well. Also, in order 

to optimize the Lysis buffer action, with a spatula, mechanic lysis was induced by 

scrapping and spreading the solution through the plate. The follow-on solution (cell 

lysate) was then pipetted into a previously labeled and sterile 1.5 ml Eppendorf tube 

and left for 10 minutes on ice. These steps were repeated for all time-points of both 

cell-lines. After the 10 minutes incubation, the samples were centrifuged (VWR 

MiniStar silverline centrifuge) for 15 minutes at 15000 G, 4 ºC. This last step aimed to 

precipitate all non-soluble components so that the supernatant was merely the total 

protein extract. Subsequently, the supernatants were pipetted into new labelled and 

sterile Eppendorf tubes, to be kept at -80 ºC and so, preserved from degradation.  

 

2.3.2 Protein Quantification 
Afore preparing protein samples for western-blotting, the protein concentration 

of each sample was determined.  To do so, the Thermo-Scientific’s PierceTM 

Bicinchoninic acid (BCA) Protein Assay Kit was used according to the manufacturer’s 

instructions (annex 2). This assay consists on the biuret reaction: reduction of Cu2+ 

into Cu+ by protein in an alkaline medium. This is a method with high sensitivity and 

colorimetric detection selectivity of Cu+. The stoichiometric reaction involves the 
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chelation of two molecules of BCA with each Cu+, forming a purple water-soluble 

complex which exhibits a strong linear absorbance at 562 nm, directly proportional to 

protein concentrations.  

The samples were prepared in a clear 96 well plate, for the BCA assay. First, 

25 µl of each triplicate of unknown sample was added into a microplate well. Standard 

samples with known concentrations (Table 2.1) were added in triplicates in the plate 

as well, so that a calibration curve could be made. Then 200 µl of the Working reagent 

(50:1, BCA reagent A : BCA reagent B – annex 2) was pipetted into each well 

containing sample or standard solutions. Following, the plate was left in an incubator 

at 37 ºC for 30 minutes to be analyzed afterwards in a plate reader [Polar optima, 

BMG Labtech]. 

 

 
2.3.3 SDS-Page 

In order to cast SDS-Page gels, a BIO-RAD Mini-PROTEAN Tetra Cell Casting 

Module was used. The first step was the assembly of a short glass and a glass spacer 

plate in a casting frame that will hold them in place as the gel polymerizes. The sodium 

dodecyl sulphate poly-acrylamide gel (SDS-PAGE) was then prepared. The 

VIALS VOLUME OF 

DILUENT (µl) 

VOLUME AND SOURCE 

OF BSA (µl) 

FINAL BSA 

CONCENTRATION (µg/ml) 

A 0 300 of stock 2000 

B 125 375 of stock 1500 

C 325 325 of stock 1000 

D 175 175 of vial B dilution 750 

E 325 325 of vial C dilution 500 

F 325 325 of vial E dilution 250 

G 325 325 of vial F dilution 125 

H 400 100 of vial G dilution 25 

I 400 0 Blank 

Table 2.1. Dilution Scheme of Diluted Albumin (BSA) standards. All standard solutions were diluted in 
ddH2O. The Albumin standard stock solution provided with the kit was conserved at 4 ºC in 2 mg/ml 
ampules. 
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running/resolution gel was made up with the following stock solutions: 1M Tris (pH 

8.8), 30% acrylamide:bisacrylamide solution, H2O, 10% Sodium Dodecyl Sulfate 

(SDS), 25% Ammonium Persulfate (APS) and N, N, N’, N’-

Tetramethylethylenediamine (TEMED), as shown on Table 2.2.  

 

 

After adding the TEMED, the solution was mixed and pipetted into the glass 

plates. Water was swiftly added to remove any potential bubbles and provide a smooth 

surface. Once the gel was polymerized, the water was discarded and the plate dried. 

The stacking gel was then prepared using the reagents and amounts shown on Table 

2.3.       

  

 7% 12% 15% 

1M Tris ph 8.8 3ml 3ml 3ml 

30% 
Acrylamide:Bisacrylamide 

1,9 ml 3,2 ml 4 ml 

ddH2O 3 ml 1,7 ml 0,9 ml 

10% SDS 80 µl 80 µl 80 µl 

25% APS 32 µl 32 µl 32 µl 

TEMED 12 µl 12 µl 12 µl 

 1 GEL 2 GELS 3 GELS 4 GELS 5 GELS 6 GELS 

1M Tris ph 8.8 312.5 µl 625 µl 937.5 µl 1.25 ml 1.6 ml 1.9 ml 

30% Acrylamide 550 µl 825 µl 1.2 ml 1.65 ml 2.1 ml 2.5 ml 

ddH2O 2.3 ml 3.5 ml 5.2 ml 6.9 ml 8.6 ml 10.4 µl 

10% SDS 25 µl 50 µl 75 µl 100 µl 125 µl 150 µl 

25% APS 12.5 µl 25 µl 37.5 µl 50 µl 62.5 µl 75 µl 

TEMED 7.5 µl 15 µl 22.5 µl 30 µl 37.5 µl 45 µl 

Table 2.3. Stacking Gel formulation for different gel quantities, being each gel equivalent to a total 
volume of approximately 3 ml.  

Table 2.2. Running gel formulation for different acrylamide percentages, for total volume of 
approximately 8 ml (1 gel).  
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The stacking gel was pipetted into the plates immediately after adding the 

TEMED, once its polymerization is very fast and after checking that there were no air 

bubbles a comb was placed on the top until the gel was fully polymerized.  

 

In order to prepare the samples to load in the gel, fractions containing 20 μg/20 

μl of the extracted protein were mixed with 4x loading buffer [Bio-Rad] in final 

concentration of 1x. The samples were then boiled on a water bath or a Bio TDB-100 

dry block thermostat (BioSan) for 5 minutes and centrifuged for 15 seconds at 

maximum speed. Meanwhile, when the samples were heating up, the already 

polymerized gels were placed in a Mini-PROTEAN ® Tetra Vertical Electrophoresis 

Cell and covered with 1x Running buffer (25 mM Tris base, 250 mM glycine, 0.1% 

SDS). Into the first well of each gel, 3 μl of Precision Plus Protein All Blue Standards 

(BIO-RAD) was loaded and in the following wells the 20 µg protein fractions prepared. 

The cell was then connected to a power supply and the gels ran at 140V for 

approximately 1 hour.  

 

For the transfer, one sheet of nitrocellulose membrane and two sheets of thick 

blot filter paper were cut to the same size as the corresponding gel. They were then 

wetted in PierceTM 1-Step Transfer Buffer for a minimum of 15 minutes. After protein 

separation within the gel, the glass plates are separated and the gel retrieved. One 

sheet of thick blot filter paper was then placed on the Pierce™ G2 Fast Blotter cassette 

cathode, one nitrocellulose membrane was placed on top and the respective gel was 

arranged on top. One sheet of thick blot filter paper was added on top of the gel and 

any bubbles were removed with a blot roller. The anode plate was then gently pressed 

on top and the cassette slid into the control unit. The transfer then took place for 14 

minutes at the high mW setting. Once complete, the membrane was placed in Licor 

Odyssey® Blocking Buffer and incubated for 1 hour at room temperature using a 

horizontal rocker. The blocking buffer was then removed and the primary antibody 

added. The membrane was then incubated overnight at 4ºC. The primary antibody 

was removed and the membrane was then washed 4 times for 5 minutes incubations 

using TBS-T solution (20 mM Tris pH7.5, 120 mM NaCl, 0.05% Tween-20) . The TBS-

T was subsequently removed and the secondary antibody added. The membrane was 

then incubated for an hour at room temperature with shaking before removing the 
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secondary antibody. The membrane was washed using TBS-T for a further 4 times for 

5 minutes each wash. A Licor Odyssey® CLx instrument was then used to visualize 

the membranes. Analysis of the bands was performed using the Image Studio Lite 

software. 

 

2.3.4 Antibodies 
The following primary antibodies listed on Table 2.4 were used for western 

blotting:  
 

 

ANTIBODY REFERENCE 
ACTIN (C-11) SC-1615 
ALDOLASE A SC-12059 

ANXA2 SC-1924 
ANXA2 (D1/274.5) Made in house 

CAIX (H-11) SC-365900 
EGFR (A-10) SC-373746 

GADPH (FL-335) SC-25778 
GLUT1 (A-4) SC-377228 

HIF1A (H-206) SC-10790 
HIF2A SC-46691 
LDHA SC-12059 

MMP2 (8B4) SC-13595 
MMP9 (2C3) SC-21733 
NDRG1 (B-5) SC-398291 

PAI1 (C-9) SC-5297 
PDK1 (4A11F5) SC-293160 

PIGF (H-4) SC-518003 
S100A10 (4E7E10) SC-81153 

UPA (H77A10) SC-59727 
UPAR (E-3) SC-376494 

VEGFA SC-152 
VEGFC (E-6) SC-374628 

VEGFD SC-13085 
 

 

The following secondary antibodies listed on Table 2.5 used for western 

blotting:  
 

Table 2.4. List of primary antibodies used for western-blotting. All “SC” references refer to the Santa 
Cruz Biotechnology company. 
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ANTIBODY REFERENCE 

ANTI-MOUSE 926-32210 (Li-COR) 
ANTI-GOAT 926-32212 (Li-COR) 

ANTI-RABBIT 926-32211 (Li-COR) 
 
 

2.4 Polymerase Chain Reaction arrays 
Real-time Reverse-Transcription Polymerase Chain Reaction (RT-PCR) is a highly 

sensitive and reliable method of gene expression analysis that quantify simultaneously 

genes of the same sample. It allows the measurement of gene amplification by means 

of RNA reverse-transcripts (cDNAs). For this investigation, PCR assays were made to 

quantify the gene expression levels during hypoxia comparing to normoxia.  

 

2.4.1 RNA extraction  
To obtain total RNA extractions from both UP-029 and SEBTA-023 cell lines for 

the different time-points, QIAGEN’s RNeasyâ Plus Mini Kit was used according the 

manufacturer’s instructions (annex 3). First, each plate was washed with 

approximately 2 ml of Hank’s Balanced Salted Solution (HBSS) [Thermo Fisher], 

followed by an incubation with 2 ml of TrypLE™ Express [Thermo Fisher] for 2-3 

minutes at 37 ºC, to detach and suspend the cells. Next, the solutions with the 

suspended cells were pipetted into labelled 15 ml tubes with 3 ml of DMEM previously 

added to centrifuge for 5 minutes at 10 000 G. This centrifuging step meant to 

precipitate the cells in a pellet so that the supernatant with TrypLE™ Express and 

DMEM could be discarded. Right after this, 350 µl of the RTL buffer (lysis buffer 

provided with the kit) was added to each tube and lysis was mechanically instigated 

by pipetting up and down. The resultant RTL solutions were then transferred into 

gDNA Eliminator spin columns placed in previously labelled 2 ml collection tubes (all 

provided with the kit), to centrifuge for 30 seconds at 12000 G. Afterwards, the gDNA 

Eliminator spin columns were discarded and the flow-throughs saved in their 

respective columns to which 350 µl of ethanol 70% was directly added and mixed my 

pipetting up and down. Subsequently, the solutions were transferred into a RNeasy 

spin columns (delivered with the kit) placed in a new and labelled collection tubes to 

be centrifuged for 15 seconds at 12000 G. This step was repeated twice (350 µl each 

time), since the final volume of the previous step was 700µl and such volume could 

Table 2.5. List of secondary antibodies used for western-blotting.  
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not fit the column. The flow-throughs were then discarded and the columns saved in 

the same collection tubes, to be added 700 µl of the Kit’s RW1 Buffer followed by a 

centrifuged of 15 seconds at 12000 G. Similarly to the former, this step was done 

twice, adding 350 µl of RW1 each time. The flow-throughs were again discarded and 

the columns saved in the same collection tubes so that 500 µl of the kit’s RPE buffer 

could be added this time. The columns (in the respective tubes) were again centrifuged 

for 15 seconds at 12000 G and the flow-through discarded. This step was repeated, 

following the manufacturer’s instructions, with a centrifugation time of 2 minutes, at 

the same speed. The flow throughs were discarded. Then, replacing the RNeasy spin 

columns in new and previously labelled 1,5 ml collection tubes, 30 µl of RNase-free 

water (also provided by the kit) was directly added into each of the column’s 

membranes. This was followed by 1 minute centrifugation at 12000 G. Contrarily to 

the prior steps, this time the flow-through was saved, once it already contained the 

RNA extracts. Finally, repeating the last step, this time using 50 µl of RNase-free 

water, a total of 80µl of total RNA was extracted. This sample was then saved in the -

80 ºC to avoid RNA degradation.  

 

2.4.2 Hypoxia RT2 profiler PCR array 

The Hypoxia RT2 profiler PCR array combines the technology of RT-PCRs with 

the multigene profiling capability of microarrays. To analyze the hypoxic profile of both 

UP-029 and SEBTA-023 cell lines, Hypoxia RT2 profiler PCR array kit (QIAGEN) was 

used according to the manufacturer’s instructions (annex 4). First, the concentration 

of the RNAs extracted was quantified and tested for integrity and quality through an 

Agilent 2100 Bioanalyzer machine. To do so, a gel-dye mix (1µl dye; 65 µl filtered gel) 

was prepared following the manufacturer’s instructions (annex 5). Then, 9 µl of gel-

dye mix was loaded at the bottom of the G-marked well of the Bioanalyzer RNA-chip  

which was settled up in the priming station (annex 5). Setting the timer to 30 seconds 

and making sure that the plunger was positioned at 1 ml, the chip priming station was 

closed to pressurize. The plunger of the syringe was pressed down until held by the 

clip and remained for 30 seconds, before releasing the mechanism. After 5 seconds, 

once the plunger moved back to at least the 0.3 ml mark, the plunger was gently pulled 

back to the 1 ml position. The chip priming station was finally opened once the 

pressurizing step was completed. Next, 9 µl of the gel-dye mix was pipetted into the 
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two respectively marked wells. To load the RNA 6000 Nano Marker, 5 µl of the solution 

was pipetted into the left wells. No wells were left empty since that could interfere with 

the run analysis. The ladder aliquots were defrosted and kept on ice to avoid extensive 

warming. Before loading and to minimize secondary structures, the samples were 

heated and denatured at 70 ºC for 2 minutes. Then, 1 µl of the sample was pipetted 

into each of the 12 sample wells. Also, 1 µl of the ladder was pipetted into the well 

marked with the ladder symbol. The timer was set for 60 seconds and the chip was 

placed horizontally in the adapter of the IKA vortex mixer to vortex with a speed of 

2400 rpm. Lastly, the chip was inserted in the Agilent 2100 bioanalyzer to proceed 

with the analysis.  

 

For the RNA reverse transcription into cDNA, the reagents provided with the 

RT2 first strand kit (annex 4) were thaw and briefly centrifuged for 15 seconds to bring 

contents to the bottom of the tubes. The genomic DNA elimination mix was prepared 

according to Table 2.6. for each of the RNA samples.  

 

 

Then the mix was mixed with the samples by gently pipetting up and down, 

followed by a spin down. The samples were then incubated for 5 minutes at 42 ºC 

immediately followed by a second incubation of 1 minute on ice. The reverse-

transcription mix was then prepared as shown on Table 2.7. 
 

 

COMPONENT AMOUNT 
5x Buffer BC3 4 µl 

Control P2 1 µl 

RE3 Reverse Transcriptase Mix  2 µl 

RNase-free water 3 µl 

Total volume 10 µl 

 

COMPONENT AMOUNT 
RNA 2 µg 

Buffer GE  2 µl 

RNase-free water Up to 10 µl final volume 

Table 2.7. Reverse-transcription mix. The amounts designated in the subsequent table refer to 1 
reaction volume.   

Table 2.6. Genomic DNA elimination mix. 
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Once set, 10 µl of reverse-transcription mix was added to each tube containing 

the RNA samples and genomic DNA elimination mix. The solution was mixed by gently 

pipetting up and down, followed by an incubation at 42 ºC for 15 minutes. The reaction 

was then immediately stopped by incubating at 95 ºC for 5 minutes. Finally, each 

sample was supplemented with 91 µl of RNase-free water which was then mixed by 

pipetting up and down several times. The reaction tubes were kept on ice to proceed 

with the real-time PCR protocol.  

 

For the real-time PCR, 4 plates of 96 wells each were provided with the kit. 

Each plate had 84 wells for hypoxia-related genes, 5 housekeeping genes, 1 well 

containing a genomic DNA control, 3 wells containing reverse transcription controls 

and lastly 3 wells with positive PCR controls, as shown on Figure 2.1 

 

 

 

 
 

 

 

 

 

 

 

 

 

The genomic DNA control (GDC) is an assay that specifically detects non-

transcribed genomic DNA. The reverse transcription control (RTC) is an assay that 

tests the efficiency of the reverse transcription reaction performed with the kit by 

detecting template synthesized from the kit’s built-in external RNA control. The 

positive PCR control (PPC) tests the efficiency of the polymerase chain reaction itself. 

The catalogue of Hypoxia related and housekeeping genes is listed on Table 2.8. 

 

 

 

Figure 2.1. RT2 Profiler PCR array plate format. Wells A1 to G12 contain the Hypoxia gene assays. Wells 
H1 to H5 contain the housekeeping genes panel (HKs), to normalize the array data. Well H6 contains a 
genomic DNA control (GDC). Wells H10 to H12 contain replicate positive PCR controls (PPC). 



   

 

 
41 

 
 

Position Gene Name 
A1 Adrenomedullin 

A2 Adenosine A2b receptor 

A3 Aldolase A, fructose-bisphosphate 

A4 Angiopoietin-like 4 

A5 Ankyrin repeat domain 37 

A6 Annexin A2 

A7 APEX nuclease (multifunctional DNA repair enzyme) 1 

A8 Aryl hydrocarbon receptor nuclear translocator 

A9 Ataxia telangiectasia and Rad3 related 

A10 Basic helix-loop-helix family, member e40 

A11 Bloom syndrome, RecQ helicase-like 

A12 BCL2/adenovirus E1B 19 kDa interacting protein 3 

B1 BCL2/ adenovirus E1B 19 kDa interacting protein 3-like 

B2 B-cell translocation gene 1, anti-proliferative 

B3 Carbonic anhydrase IX 

B4 Cyclin G2 

B5 COP9 constitutive photomorphogenic homolog subunit 5 

B6 Cathepsin A 

B7 DNA-damage-inducible transcript 4 

B8 DnaJ (Hsp40) homolog, subfamily C, member 5 

B9 Endothelin 1 

B10 Egl nine homolog 1 

B11 Egl nine homolog 2 

B12 Early growth response 1 

C1 Eukaryotic translation initiation factor 4E binding protein 1 

C2 Enolase 1 (alpha) 

C3 Erythropoietin 

C4 ERO1-like 

C5 Coagulation factor X 

C6 Coagulation factor III 

C7 FBJ murine osteosarcoma viral oncogene homolog 

C8 Glucan (1,4-alpha-), branching enzyme 1 

C9 Glucose-6-phosphate isomerase 

Table 2.8. List of Hypoxia related and housekeeping genes analyzed by the RT2 profiler array and 
respective plate position. 
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C10 Glycogen synthase 1 

C11 Hypoxia inducible factor 1, alpha subunit 

C12 Hypoxia inducible factor 1, alpha subunit inhibitor 

D1 Hypoxia inducible factor 3, alpha subunit 

D2 Hexokinase 2 

D3 Heme oxygenase 1 

D4 Hepatocyte nuclear factor 4, alpha 

D5 Immediate early response 3 

D6 Insulin-like growth factor binding protein 3 

D7 Jumonji domain containing 6 

D8 Lactate dehydrogenase A 

D9 Lectin, galactoside-binding, soluble, 3 

D10 Lysyl oxidase 

D11 Mitogen-activated protein kinase kinase kinase 1 

D12 Met proto-oncogene 

E1 Macrophage migration inhibitory factor 

E2 Matrix Metalloproteinase 9 

E3 Max interactor 1 

E4 Nicotinamide phosphoribosyltransferase 

E5 Nuclear receptor coactivator 1 

E6 N-myc downstream regulated 1 

E7 Nuclear factor kappa light polypeptide gene enhancer in B-cells 1 

E8 Nitric oxidase synthase 3 

E9 Ornithine decarboxylase 1 

E10 Prolyl 4-hydroxylase, alpha polypeptide 1 

E11 Prolyl 4-hydroxylase, beta polypeptide 

E12 Pyruvate dehydrogenase kinase, isozyme 1 

F1 Period homolog 1 

F2 6-phosphofructo-2-kinase/fructose-2,6-biphosphotase 3 

F3 6-phosphofructo-2-kinase/fructose-2,6-biphosphotase 4 

F4 Phosphofructokinase, liver 

F5 Phosphofructokinase, platelet 

F6 Phosphoglycerate mutase 1, brain 

F7 Placental growth factor 

F8 Phosphoglycerate kinase 1 

F9 Pim-1 oncogene 
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F10 Pyruvate kinase, muscle 

F11 Plasminogen activator, urokinase 

F12 Recombination signal binding protein for immunoglobulin kappa J region 

G1 RuvB-like 2 

G2 Serpin peptidase inhibitor, clade E, member 1 

G3 Solute carrier family 16, member 3 

G4 Solute carrier family 2, member 1 

G5 Solute carrier family 2, member 3 

G6 Transferrin receptor 

G7 Tumour protein 53 

G8 Triosephosphate isomerase 1 

G9 Thioredoxin interacting protein 

G10 Upstream transcription factor 2, c-fos interacting 

G11 Voltage-dependent anion channel 1 

G12 Vascular endothelial growth factor A 

H1 Actin, beta 

H2 Beta-2-microglobulin 

H3 Glyceraldehyde-3-phosphate dehydrogenase 

H4 Hypoxanthine phosphoribosyltransferase 1 

H5 Ribossomal protein, large, P0 

 

As for the real-time PCR protocol itself, first the RT2 SYBR Green mastermix 

was briefly centrifuged for 10-15 seconds to bring the contents to the bottom of the 

tube. Then, the PCR components mix was prepared in a 5 ml tube, as demonstrated 

on Table 2.9.  
 

 

Array Format Amount 
2x RT2 SYBR Green Mastermix  1350 µl 

cDNA synthesis reaction  102 µl 

RNase-free water 1248 µl 

Total volume 2700 µl 

 

The RT2 profiler PCR plate was carefully removed from its sealed bag and 25 

µl of PCR components mix was pipetted into each well of the plate. The pipette tip was 

swapped in between wells to avoid cross contaminations. Once concluded the 

Table 2.9. PCR components mix for 96 well array format. The total volume provides an excess amount 
of 300 µl to allow pipetting errors.  
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previous step, the plate was sealed with an optical adhesive film (provided by the kit). 

The plate was centrifuged at room temperature for 1 minute at 1000 G in order to 

remove any bubbles existent in the wells. Finally, the plate was inserted into the 

Lightcycler 96 SW qRT-PCR instrument (Roche) and programmed for a pre-incubation 

step of 1 cycle at 95 ºC (to activate the HotStart DNA Taq Polymerase), followed by 

45 cycles of 15 seconds at 95 ºC and one minute at 60 ºC (to perform fluorescence 

data collection). 

 

2.4.3 qRT-PCR assay 

Real-time quantitative PCR quantifies the nucleic acids in a sensitive, specific 

and reproducible way. This technique generates copies of DNA template per cycle, 

resulting in a quantitative correlation between the initial and the accumulated amounts 

(Arya et al., 2005). Eventually the polymerase reaction ceases due to inhibitors found 

with the template, reaching the end of its exponential rate.  In fact, qRT-PCR is such 

a powerful method that it is able to quantify gene expression of only 1 template (Arya 

et al., 2005).  

For this study a method of relative quantification was used. This method 

analyzes the expression of a target gene relative to a reference group (Livak & 

Schmittgen, 2001). In this study, the target genes were analyzed in hypoxia time-

points of 6, 24 and 48 hours and compared to normoxia (non-treated) samples. 

 For the quantitative real-time PCR assay (qRT-PCR), the One-step NZyRT 

supermix kit (Nzytech) was used.  Nuclease-free water, One-step NZYSpeedy qPCR 

Green master mix, as well as NZyRT mix were provided with the kit. The One-step 

NZYspeedy qPCR Green master mix contains a green intercalating dye for detection, 

stabilizers, enhancers and dNTPs. The NZyRT mix is made up of Reverse 

transcriptase and Ribonuclease inhibitor.  

 

The RNA concentration for this protocol was determined using a nanodrop 

spectrophotometer (Fisher Scientific). To prepare the mastermix for each set of 

primers, the reagents above listed and provided by the kit were mixed as shown on 

Table 2.10. 
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Once set, 9 µl of each mastermix was pipetted into the 12 wells of the respective 

gene/primers, as demonstrated in Figure 2.2.  

 

 

 

 

 

 

 

 

Next, 1 µl of RNA sample (50 ng/µl) was added to each well, swapping pipette 

tips in between wells to avoid cross contaminations. There were 4 time-points (Non-

treated, hypoxia: 6 hours, 24 hours and 48 hours) being analyzed for each gene, in 

triplicates. The RNA samples were distributed throughout the plates as shown in 

Figure 2.3. 

 

 

 

Reagent  Volume 

One-step NZYspeedy qPCR Green master mix 65 µl 

Forward primer 5,2 µl 

Reverse primer 5,2 µl 

NZyRT mix 5,2 µl 

Nuclease-free water 36,4 µl 

Total volume 117 µl 

Table 2.10. NZyRT qRT-PCR Mastermix for 13 wells volume (1 well of excess volume to cover pipetting 
errors).   

 

Master Mix 1 = Gene 1 
Master Mix 2  = Gene 2 
Master Mix 3  = Gene 3 

Figure 2.2. qRT-PCR array plate format. Demonstration of the mastermixes distribution through the plate.  



   

 

 
46 

 

 

 

 

 

 

 

 

Once all the wells had their respective mastermix and RNA sample, the plate 

was sealed with a plastic adhesive (provided with the plate) and centrifuged at 1000 

G for 1 minute. The plate was then placed into the Lightcycler 96 SW qRT-PCR 

instrument (Roche). The light cycler was programmed for a first step of pre-incubation 

and cDNA synthesis at 50ºC for 20 minutes (reverse transcription), followed by a gene 

amplification step at 95ºC for 5 minutes (polymerase activation), a denaturation step 

at 95ºC for 40 cycles of 5 seconds each and finally by an annealing/extension step of 

40 cycles of 50 seconds each at 60ºC. After each annealing cycle the gene products 

were quantified.    

 

2.4.2.1 Primers 

The following primers were used for qRT-PCR: 
GENE FORWARD PRIMER REVERSE PRIMER 

GLUT1 CTCCTGCCCTGTTGTGTATAG CAGGAGTGAGGTGGTGTATTT 

LDHA GCTGGTCATTATCACGGCTG AGCAACTTGCAGTTCGGGCTG 

VEGFA GACCTTGCCTTGCTGCTCTA CACCAGGGTCTCGATTGGATG 

VEGFC GAGGAGCAGTTACGGTCTGTG TCCTTTCCTTAGCTGACACTTGT 

VEGFD ATGGACCAGTGAAGCGATCAT GTTCCTCCAAACTAGAAGCAGC 

HIF1a ATCCATGTGACCATGAGGAAATG TCGGCTAGTTAGGGTACACTTC 

HIF2a GTGCCATGACAAACATCTTCCAG CTCGGGCTCTGTCTTCTTGCT 

UPA CAGGGCATCTCCTGTGCATG AGCCCTGCCCTGAAGTCGTTA 

UPAR GCCTTACCGAGGTTGTGTGT CATCCAGGCACTGTTCTTCA 

NT 
RNA 

Hypoxia 
6h 

RNA 

Hypoxia 
24h 
RNA 

Hypoxia 
48h 
RNA 

Figure 2.3. qRT-PCR assay plate format. Demonstration of the Non-treated (NT), hypoxia: 6 hours, 24 
hours and 48 hours RNA samples distribution throughout the plate. 
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ANXA2 CTCTACACCCCCAAGTGCAT TCAGTGCTGATGCAAGTTCC 

S100A10 AAATTCGCTGGGGATAAAGG AGCCCACTTTGCCATCTCTA 

PAI1 GGGCCATGGAACAAGGATGA CTCCTTTCCCAAGCAAGTTG 

MMP9 CGGACCAAGGATACAGTT AGTGAAGCGGTACATAGG 

MMP2 CGTCTGTCCCAGGATGACATC ATGTCAGGAGAGGCCCCATA 

ANGPTL4 GAGGTCCTTCACAGCCTGCA TGGGCCACCTTGTGGAAGAG 

BNIP3 CGCAGACACCACAAGATACCAAC GCCAGCAAATGAGAGAGCAGC 

SLC16A3 TGTGTGCGTGAACCGCTTT AAACCCAACCCCGTGATGAC 

CAIX CTTGGAAGAAATCGCTGAGG TGGAAGTAGCGGCTGAAGTC 

DDIT4 GACAGCAGCAACAGTGGCTTCG GCTGCATCAGGTTGGCACAC 

EGR1 ACCGCAGAGTCTTTTCCTGACA GGTGCAGGCTCCAGGGAAAA 

HK2 GCCTTTCCGTCCCAGCCTTTAGCC GGACTCCTGCGCCGGAGTTTCATG 

NDRG1 CTGCACCTGTTCATCAATGC AGAGAAGTGACGCTGGAACC 

PDK1 CTGTGATACGGATCAGAAACCG TCCACCAAACAATAAAGAGTGCT 

PFKB3 AGTGCAGAGGAGATGCCCTA TCAGTGTTTCCTGGAGGAGTCAGC 

TFRC ACTTGCCCAGATGTTCTCAG GTATCCCTCTAGCCATTCAGTG 

PFKB4 TTAATTTTGGAGAACAGAATGGC CGTAGCCTCATCACTGTCGC 

PIGF TGCGGCGATGAGAATCTGC AGCGAACGTGCTGAGAGAAC 

RPL0 AGACAATGTGGGCTCCAAGCAGAT GCATCATGGTGTTCTTGCCCATCA 

 

The RPLP0 gene is a housekeeping gene therefore was used to normalize the 

data of the different samples and treatments.   

 
2.4.4 Statistical analysis 
2.4.4.1 Hypoxia RT2 profiler PCR array  

There is an integrated web-based software package for the RT2 Profiler PCR 

Array system that automatically performs all ∆∆CT based fold-change calculations 

from an uploaded raw threshold cycle (CT) data. The CT values refer to the cycle from 

each the amplification of the interest gene indeed started. This value is inversely 

proportional to the number of times the gene is transcript, meaning that the lower the 

CT, the higher the expression of that gene. To calculate the ∆∆CT, this values were 

normalized with housekeeping gene CTs. The web portal 

www.SABiosciences.com/pcrarraydataanalysis.php in which the excel-format data is 
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uploaded, delivers results in formats such as the tabular, scatter, volcano, cluster-

gram and multi-group plots. This web portal also helps to correctly interpret the 

genomic DNA, reverse transcription efficiency, and positive PCR control well data.  

 

The automatic selection from HKG panel was selected to conduct the RT2 

Profiler PCR Array software-based analysis. This method automatically selects an 

optimal set of internal control / housekeeping / normalization genes for the analysis 

from the available housekeeping gene panel on the PCR Array. The software 

measures and identifies the genes with the most stable expression via a non-

normalized calculation. The CT values for these genes are then geometrically 

averaged and used for the ∆∆CT calculations. The CT cut-off was set to 35 cycles.  

 

Fold-Regulation represents fold-change results in a biologically meaningful 

way. Fold-change values greater than one indicate a positive- or an up-regulation, and 

the fold-regulation is equal to the fold-change. Fold-change values less than one 

indicate a negative or down-regulation, and the fold-regulation is the negative inverse 

of the fold-change. In order to calculate the fold-Change, the software used the 2-ΔΔCT 

formula which corresponds to: the normalized target gene expression 2-ΔCT in the test 

sample divided by the normalized gene expression 2-ΔCT in the control group (non-

treated). 

 

2.4.4.2 qRT-PCR arrays  

The results obtained from the Lightcycler 96 SW qRT-PCR instrument were 

quantified using the 2-ΔΔCT method in order to calculate the relative gene induction (fold 

change) between different samples. Each gene expression was quantified through at 

least 3 different runs, in plate triplicates (3 wells per plate). To calculate the fold change 

of 1 run for each gene, the average of the 3 Cts was calculated. Next, the average Ct 

value of the housekeeping gene was then subtracted from the average Ct of each 

genes of interest to give the ΔCt value. For each gene, the ΔCt value of the control 

group (non-treated cells) was then subtracted from the ΔCt of the hypoxia treated 

samples to give the ΔΔCt value. Finally, the formula was used to calculate the fold 

change for each gene. Once all the fold change values were determined, the average 

of the 2-ΔΔCT values of at least three independent runs was calculated for each gene.  
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The standard deviation and P-value was calculated for each gene, using the 

software MicrosoftÒ Excel Office 365 software. Explicitly, the statistical significance of 

gene expression (P-value) was evaluated for a N (nº runs) equal or higher than 3, 

using a type 2, two-tailed Student’s t-test (Type 2, Tail 2). In every case a P-value of 

less than 0.05 (*), 0.01 (**) and 0.001 (***) were considered statistically meaningful in 

3 different levels of significance. 
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3. Results 
3.1 Investigating the expression of hypoxia genes in UP-029 and SEBTA-023 

cell lines 
The QUIAGEN’s RT2 hypoxia profiler assay was used in this study since it allows 

to quantify the expression of a broad panel of genes known to be implied in this cancer 

hallmark. Through these arrays, it was possible to generate a wide number of targets 

for validation and future studies.  

 

The RT2 hypoxia arrays experiments only RNA samples with A260:A230 ratios 

greater than 1.7 and A260:A280 ratios between 1.8 and 2.0 were considered for these 

studies. Both 18S and 28S ribosomal RNA bands and peaks were examined as signs 

of RNA integrity and no RNase degradation. The RNA Integrity Number (RIN) was 

also considered as a quality control parameter and only samples with a RIN higher 

than eight were pondered. The concentration and quality of the RNAs was performed 

using an Agilent 2100 Bioanalyzer machine.   

For the RT2 array quality control, the PCR array reproducibility, the RT efficiency 

and the genomic contamination parameters were considered. The Criteria for 

Genomic DNA Contamination (GDC) was the following:  If CT(GDC) was equal or 

higher than 35, then the GDC QC reports 'Pass'. If CT(GDC) was inferior than 35, then 

the GDC QC reports 'Inquiry'. 

The results of this section are displayed in scatter plots and heat maps in Figures 

3.1 to 3.4. The scatter plot compares the normalized expression of all genes analyzed 

between the control and selected hypoxia time-point groups by plotting them against 

one another to quickly visualize large gene expression changes. The central line 

indicates unchanged gene expression. The dotted lines indicate the selected fold 

regulation threshold. Data points beyond the dotted lines in the upper left and lower 

right sections meet the selected fold regulation threshold. The Heat Map provides a 

visualization of the fold changes in expression between the selected groups (normoxia 

versus hypoxia) for every gene in the array in the context of the array layout.  The heat 

map tables, provided in annex 6 (annex 6a UP-029, annex 6b SEBTA-023), specify 
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the fold regulation data used for the map as well as the comments associated with 

each one.  

In the scatter plot, log10 (fold change) was calculated for each one of the 

analyzed genes to improve the symmetry of the data distribution and a simplified 

visualization. The same was considered for the heatmap, where the log2 (fold change) 

was calculated for each one of the analyzed genes. This last normalization was based 

in a log2 function and not a log10, to obtain a cleaner projection of the fold change in a 

larger scale. These results were then assessed by qRT-PCR analysis. 

 

3.1.1 UP-029 RT2 hypoxia array analysis 
All samples from both 6 and 48 hours time-points passed the PCR array 

reproducibility and RT2 efficiency quality control check-points. However, sample 1, 

equivalent to the Adrenomedullin (ADM) quantification well was reported as 

contaminated with genomic DNA. Due to its genomic contamination, ADM was not 

further analyzed in the qRT-PCR studies or considered in the following RT2 hypoxia 

PCR arrays result's preliminary discussion. 
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Figure 3.1.  UP-029 6 hours (group 1) hypoxia time-point RT2 profiler PCR array: a. scatter plot, 
the y axis corresponds to the log10 of the 2-ΔCT 6 hours time-point group genes and the x axis to the 
log10 of the 2-ΔCT non-treated group genes. The upregulated genes match the yellow dots above the 
threshold line and the downregulated genes the blue dots underneath the threshold line. The black dots 
in between the threshold lines (dotted lines) correspond to unchanged expression genes. b. heat map, 
log2 of the 2-ΔΔCT 6 hours time-point group genes heat map table. The expression magnitude was 
estimated as high when log2 (fold change) was higher than 0 and low when log2 (fold change) was lower 
than 0. 
 

Analysis of Figure 3.1 shows that at 6 hours of hypoxia 17 genes were over-

expressed, marked in yellow above the dotted threshold line and 10 genes were 

under-expressed, marked in blue underneath the dotted threshold line, compared to 

normoxia.  

 

Three genes were highly down-regulated (Figure 3.1.b). Samples D4, G6 and 

B12, corresponding to the Hepatocyte Nuclear Factor 4a (HNF4A), Transferrin 

Receptor (TFRC) and Early Growth Response 1 (EGR1) respectively, with fold values 

below -4. While, samples A4, B3, E3, E6, F2, F3, F7 and G12 are reported as 

upregulated. These correspond to Angiopoietin Like 4 (ADM), Carbonic Anhydrase IX 

(CAIX), Max Interactor 1 (MXI1), N-myc Downstream Regulator 1 (NDRG1), 6-

phosphofructo-2kinase/fructose-2,6-biphosphate 3 and 4 (PFKB3 and PFKB4) and 

Vascular Endothelial Growth Factor A (VEGFA) genes, respectively. All fold-change 

values of these samples were relatively high (> 6). With the exception of MXI1, all 

genes were further investigated by qRT-PCR. 
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Figure 3.2.  UP-029 48 hours (group 2) hypoxia time-point RT2 profiler PCR array: a. scatter plot, 
the y axis corresponds to the log10 of the 2-ΔCT 48 hours time-point group genes and the xx axis to the 
log10 of the 2-ΔCT non-treated group genes. The upregulated genes match the yellow dots above the 
threshold line and the downregulated genes the blue dots underneath the threshold line. The black dots 
in between the threshold lines (dotted lines) correspond to unchanged expression genes. b. heat map, 
log2 of the 2-ΔΔCT 6 hours time-point group genes heat map’s table. The expressions magnitude was 
estimated as high when log2 (fold change) was higher than 0 and low when log2 (fold change) was lower 
than 0. 

 

Figure 3.2.a scatter plot distinguishes 15 over-expressed genes, marked in 

yellow above the dotted threshold line and 14 under-expressed genes, marked in blue 

underneath the dotted threshold line. The 6 hours time-point data revealed a wider 

variety of under-expressed genes than this group. Yet the amount of over-expressed 

samples was approximate. Focusing these data magnitudes, it is clear that discarding 
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relevant outliers, the heatmap turns out to be more sensitive. In fact, it is perceptible 

that samples B3 and E2 magnitudes are extremely high and close to the limit. he B3 

gene (CAIX) was reported in the first time-point with a fold change of 11,55. In the 48 

hours time-point CAIX recounted a fold change of 30,91. Also, the E2 sample, 

correspondent to the Matrix Metalloproteinase 9 (MMP9), was not shown as over-

expressed in the first time-point. Conversely, after 48 hours, MMP9 sample 

represented a fold change of 77,17.  

 

Likewise, samples A4 (ANGPTL4), E3 (MXI1), E6 (NDRG1), F3 (PFKB4), F2 

(PFKB3) and G12 (VEGFA) were also considerably over-regulated with respective 

fold-change values of 9,19, 5,74, 5,66, 5,43, 4,66 and 5,13. These gene samples had, 

however, lower fold changes at 48 hours, compared to 6 hours of hypoxia.  

 

Samples D4, F11, G2 and G7 were shown in Figure 3.2.b as under-expressed. 

These correspond respectively to the Hepatocyte nuclear factor 4 alpha (HNF4A), 

Plasminogen Activator Urokinase (PLAU), Serpin Peptidase Inhibitor Clade E 

(SERPINE1) and Tumour Protein 53 (TP53). HNF4A and PLAU genes showed the 

most prominent magnitudes within the under-expressed samples with fold changes     

-14,52 and -13,18 correspondingly.  SERPINE1 and TP53 also recounted significant 

fold changes of -5,66 and -6,87. Curiously, SERPINE1 and TP53 were not under-

expressed in the 6 hours time-point. Both HNF4A and PLAU, although detected as 

down-regulated in the earliest time-point (with fold changes of -6,68 and -2,22), were 

unchanged at 48 hours. 

 

3.1.2 SEBTA-023 RT2 hypoxia array analysis 
All SEBTA-023 samples from both 6 and 48 hours time-points passed the PCR 

array reproducibility and RT efficiency quality and Genomic DNA contamination 

control check-points.  
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Figure 3.3.  SEBTA-023 6 hours (group 1) hypoxia time-point RT2 profiler PCR array: a. scatter 
plot, the y axis corresponds to the log10 of the 2-ΔCT 6 hours time-point group genes and the x axis to 
the log10 of the 2-ΔCT non-treated group genes. The upregulated genes match the yellow dots above the 
threshold line and the downregulated genes the blue dots underneath the threshold line. The black dots 
in between the threshold lines (dotted lines) correspond to unchanged expression genes. b. heat map, 
log2 of the 2-ΔΔCT 6 hours time-point group genes heat map’s table. The expressions magnitude was 
estimated as high when log2 (fold change) was higher than 0 and low when log2 (fold change) was lower 
than 0. 
 

Figure 3.3. shows 15 over-expressed genes, marked in yellow above the dotted 

threshold line and 6 under-expressed genes, marked in blue underneath the dotted 

threshold line.  

 

The heatmap (Figure 3.3.b) shows that the genes ANGPTL4 (A4), CAIX (B3), 

DNA-Damage-Inducible Transcript 4 or DDIT4 (B7), Hexokinase 2 or HK2 (D2), 

NDRG1 (E6) and PFKB4 (F3) were highly expressed with values between five and 
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eight fold. The B3 sample corresponds to the gene with the highest magnitude and, 

therefore, fold change (15,67).  

 

Figure 3.3.b reported three samples meaningfully under-expressions. These 

samples were C3, D4, and G6 correspondent to the genes Erythropoietin (EPO), 

HNF4A and TFRC.  The HNF4A gene had the highest magnitude and the lowest fold 

change value of -54,57. While EPO and TFRC had correspondent fold-changes of -

4,17 and -4,53. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 
 
 
 
 
 
 

 
Figure 3.4.  SEBTA-023 48 hours (group 2) hypoxia time-point RT2 profiler PCR array: a. scatter 
plot, the y axis corresponds to the log10 of the 2-ΔCT 48 hours time-point group genes and the x axis to 
the log10 of the 2-ΔCT non-treated group genes. The upregulated genes match the yellow dots above the 
threshold line and the downregulated genes the blue dots underneath the threshold line. The black dots 
in between the threshold lines (dotted lines) correspond to unchanged expression genes. b. heat map, 
log2 of the 2-ΔΔCT 6 hours time-point group genes heat map’s table. The expressions magnitude was 
estimated as high when log2 (fold change) was higher than 0 and low when log2 (fold change) was lower 
than 0. 
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The scatter plot exhibited in Figure 3.4.a confirms 21 over-expressed genes, 

marked in yellow above the dotted threshold line and seven under-expressed genes, 

marked in blue underneath the dotted threshold line.  

 

Figure 3.4.b heatmap distinguishes at least eight samples with relatively 

noteworthy magnitudes. From these, CAIX (B3) and NDRG1 (E6) are highly 

expressed. These genes respective fold changes were 116,97 and 30,48. Curiously, 

both genes were detected within the 6 hours time-point group with significant 

magnitudes and meaningful fold changes of 15,67 and 7,26 correspondingly.  

 

The samples ANGPTL4 (A4), DDIT4 (B7), HK2 (D2), Pyruvate Dehydrogenase 

Kinase 1 or PDK1 (E12), and VEGFA (G12) were also up-regulated. These genes 

fold-change values were 3,78, 6,28, 4,63, 3,68 and 4,23 fold, respectively. Except B7, 

that had a 0,17 lower fold-change in the 6 hours group, all other genes expression 

increased approximately 2 fold at 48 hours of hypoxia.  In addition to these data, the 

HNF4A (D4) gene was meaningfully under-expressed, with a fold change of -4,06.  

 
3.2 UP-029 and SEBTA-023 qRT-PCR arrays 
The following qRT-PCR arrays were made in order to quantify and validate the 

expression of genes distinguished in the RT2 profiler array. Each sample was ran at 

least 3 times, in order to increase significance of results. 

 

Like the quality control parameters for the RT2 array protocol, only RNA samples 

with the A260:A230 ratio greater than 1.7 and the A260:A280 ratio between 1.8 and 2.0 

were considered as good quality to use in these experiments. 
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3.2.1 Hypoxia Inducible Factors 1a and 2a expression in GBM  
 

 
Figure 3.5. UP-029 qRT-PCR assay: a. HIF1a fold-change average; b. HIF2a fold-change average; 6 
hours hypoxia time-point (orange), 24 hours hypoxia time-point (yellow) and 48 hours hypoxia time-
point (green). Fold changes and significance levels are relative to the normoxia control (Fold-change = 
1). P-values calculated with student t-test (Type 2, Tail 2) for significance levels of 0.05 (*), 0.01 (**) 
and 0.001 (***). 

 

HIF1a expression in UP-029 cells was slightly up-regulated during hypoxia, as 

shown in Figure 3.5.a. However, these results were not significant (p-value > 0,05). 

Interestingly, the fold change of this gene at 24 hours was lower than both 6 and 48 

hours.  

 

Conversely to HIF1a, HIF2a expression in UP-029 cells was significant, as 

pictured in Figure 3.5.b. The highest over-expressions were detected in the 24 and 48 

hours analysis, approximately 7 fold. Although up-regulated in the 6 hours analysis, 

HIF2a only increased 2 fold when compared to the control.  

 
Figure 3.6. SEBTA-023 qRT-PCR array: a. HIF1a fold-change average; b. HIF2a fold-change 
average; 6 hours hypoxia time-point (orange), 24 hours hypoxia time-point (yellow) and 48 hours 
hypoxia time-point (green). Fold changes and significance levels are relative to the normoxia control 
(Fold-change = 1). P-values calculated with student t-test (Type 2, Tail 2) for significance levels of 0.05 
(*), 0.01 (**) and 0.001 (***). 
  

HIF1a was not significantly over-expressed in hypoxic SEBTA-023 cells 

compared to normoxic counterparts, as disclosed in Figure 3.6.a. Although our data 
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spotted an increase in HIF1a expression parallelly to the increase of hours in hypoxia, 

these values were not statistically significant.  

 

The results in Figure 3.6.b, alike Figure 3.6.a, do not reveal any significant over-

expression of HIF2a gene in SEBTA-023 cells. Again, the fold change values were all 

lower than 2 fold, for all hypoxia time-points.  

 

3.2.2 Expression of angiogenic factors in hypoxic GBM cells 

 

 

 
Figure 3.7. UP-029 qRT-PCR array: a. VEGFA fold-change average; b. VEGFCA fold-change 
average; c. VEGFD fold-change average; d. ANGPTL4 fold-change average; e. PIGF fold-change 
average; fold change for 6 hours hypoxia (light orange), 24 hours (orange) and 48 hours (dark orange). 
Fold changes and significance levels are relative to the normoxia control (Fold-change = 1). P-values 
calculated with student t-test (Type 2, Tail 2) for significance levels of 0.05 (*), 0.01 (**) and 0.001 (***). 
 

Figure 3.7.a shows a time dependent up-regulation of VEGFA in UP-029 cells 

during hypoxia. The fold-change values were 13,39, 39,52 and 44,04 for the 6, 24 and 
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48 hours of hypoxia, respectively. The expression of VEGFC, VEGFD and ANGPTL4 

did not change under hypoxic conditions (Figures 3.7.b-d). Contrarily, PIGF was over-

expressed approximately 4 fold at both 6 and 48 hours of hypoxia (3.7.e). Still, the 

most impressive and significant result was at 24 hours hypoxia with an induction of 

approximately 8 fold. 

 

 

 

 
Figure 3.8. SEBTA023 qRT-PCR array: a. VEGFA fold-change average; b. VEGFC fold-change 
average; c. VEGFD fold-change average; d. ANGPTL4 fold-change average; e. PIGF fold-change 
average; for 6 hours hypoxia (light orange), 24 hours (orange) and 48 hours (dark orange). Fold 
changes and significance levels are relative to the normoxia control (Fold-change = 1). P-values 
calculated with student t-test (Type 2, Tail 2) for significance levels of 0.05 (*), 0.01 (**) and 0.001 (***). 
 

Figure 3.8.a refers to the VEGFA expression in the SEBTA-023 cell line. This 

gene was significantly induced, in a time-dependent manner, with fold change 

expression values of 3,18, 4,06 and 4,63 fold for the 6, 24 and 48 hours of hypoxia, 
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respectively. Expression of VEGFC, VEGFD, ANGPTL4 and PIGF fold-expressions, 

did not significantly change (3.8.b-e).  

 
3.2.3 Expression of Metabolic factors in hypoxic Glioblastoma 

 

 

 
Figure 3.9. UP0-29 qRT-PCR array:  a. Glut1 fold-change average; b. LDHA fold-change average; c. 
HK2 fold-change average; d. PDK1 fold-change average; e. PFKB3 fold-change average; f. PFKB4 
fold-change average; fold change for 6 hours hypoxia (light blue), 24 hours (blue) and 48 hours (dark 
blue). Fold changes and significance levels are relative to the normoxia control (Fold-change = 1). P-
values calculated with student t-test (Type 2, Tail 2) for significance levels of 0.05 (*), 0.01 (**) and 
0.001 (***). 
 

GLUT1 gene (Figure 3.9.a), is significantly over-expressed in UP-029 cells, with 

correspondent fold-changes of 3,95, 9,21 and 7,61 for 6, 24 and 48 hours of hypoxia. 

GLUT1 highest induction was concomitant with the 24 hours hypoxia. Likewise, 

PFKB3 highest over-expression was at 24 hours of hypoxia (Figure 3.9.e). PFKB3 

gene is significantly induced in UP-029 cells with fold-change values of 5,80, 9,91 and 

4,26 at 6, 24 and 48 hours of hypoxia. LDHA and HK2 genes were not significantly 
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induced (Figures 3.9.b and 3.9.c). Contrarily, PDK1 and PFKB4 genes, were slightly 

over-expressed (Figures 3.9.d and 3.9.f). These genes reported fold change values at 

6, 24 and 48 hours hypoxia were 3,33, 2,97 and 3,48 for PDK1 and 3,12, 2,75 and 

2,63 for PFKB4. 

 

 

 
Figure 3.10. SEBTA-023 qRT-PCR array: a. Glut1 fold-change average; b. LDHA fold-change 
average; c. HK2 fold-change average; d. PDK1 fold-change average; e. PFKB3 fold-change average; 
f. PFKB4 fold-change average; fold change for 6 hours hypoxia (light blue), 24h (blue) and 48h (dark 
blue). Fold changes and significance levels are relative to the normoxia control (Fold-change = 1). P-
values calculated with student t-test (Type 2, Tail 2) for significance levels of 0.05 (*), 0.01 (**) and 
0.001 (***). 
 

Figure 3.10.a shows that GLUT1 gene is induced in SEBTA-023 cells during 

hypoxia, with the highest expression at 24 hours. GLUT1 fold change values were 

3,66, 4,83 and 4,34 at the 6, 24 and 48 hours of hypoxia. LDHA was relatively over-

expressed in a time-dependent manner (Figure 3.10.b). Starting with 2,46 fold at 6 

hours hypoxia, this gene expression increased to 3,65 and 4,51 fold at 24 and 48 
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hours of hypoxia, respectively. Similarly, PDK1 was more over-expressed with the 

hypoxia time increment (Figure 3.10.d). PDK1 fold change values were 5,38, 6,40 and 

7,32 for 6, 24 and 48 hours of hypoxia. PFKB3 was significantly induced, especially at 

6 and 48 hours, with correspondent fold change values of 4,42 and 4,67 fold (Figures 

3.10.e). 

 

Both HK2 (Figure 3.10.c) and PFKB4 (Figure 3.10.f) genes did not report major 

fold changes. PFKB4 was only significantly induced at 6 and 48 hours with fold values 

of 3,33 and 2,59, respectively.  

 

3.2.4 Expression of Invasion factors in hypoxic Glioblastoma  
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Figure 3.11. UP-029 qRT-PCR array:  a. UPa fold-change average; b. UPaR fold-change average; c. 
Annexin2 fold-change average; d. S100A10 fold-change average; e. MMP2 fold-change average; f. 
PAI1 fold-change average; g. MMP9 fold-change average; fold change for 6 hours hypoxia (light 
yellow), 24h (yellow) and 48h (dark yellow). Fold changes and significance levels are relative to the 
normoxia control (Fold-change = 1). P-values calculated with student t-test (Type 2, Tail 2) for 
significance levels of 0.05 (*), 0.01 (**) and 0.001 (***). 
 

Figure 3.11 characterizes the expression of different invasion factors in UP-029 

cells. It is observable that most of these genes did not change significantly. In fact, 

Upa and PAI1 genes, charted in Figures 3.11.a and 3.11.f seemed to be down-

regulated in a time-dependent fashion. Upa is significantly under-expressed in UP-029 

GBM cells, with fold change values of 0,77, 0,22 and 0,26 at 6, 24 and 48 hours of 

hypoxia. The UpaR, Annexin2, S100A10 and MMP9 genes did not change 

significantly (3.11.b-d and 3.11.g). Interestingly, Figure 3.11.e, referent to MMP2, 

reported indeed a significant under-expression of 0,68 fold at 6 hours of hypoxia  and 

an over-expression of 9,95 fold at 48 hours of hypoxia.   
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Figure 3.12. SEBTA-023 qRT-PCR array: a. UPa fold-change average; b. UPaR fold-change average; 
c. Annexin2 fold-change average; d. S100A10 fold-change average; e. MMP2 fold-change average; f. 
PAI1 fold-change average; g. MMP9 fold-change average; fold change for 6 hours hypoxia (light 
yellow), 24h (yellow) and 48h (dark yellow). Fold changes and significance levels are relative to the 
normoxia control (Fold-change = 1). P-values calculated with student t-test (Type 2, Tail 2) for 
significance levels of 0.05 (*), 0.01 (**) and 0.001 (***). 
 

No invasion genes analyzed were significantly up-regulated in SEBTA-023 cells 

undergoing hypoxia (Figure 3.12). Yet, Annexin2 and MMP9 were significantly under-

expressed. Annexin2 under-regulation followed a hypoxia time-dependent fashion, 

with fold values of 0,96, 0,79 and 0,56 fold at 6, 24 and 48 hours hypoxia. Also, MMP9 

was under-expressed at 6 and 48 hours of hypoxia with fold-changes of 0,82 and 0,47 

fold.  
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3.2.5 Expression of other factors in hypoxic Glioblastoma 

 

 

 

 
Figure 3.13. UP-029 qRT-PCR array:  a. BNIP3 fold-change average; b. CAIX fold-change average; 
c. DDIT4 fold-change average; d. EGR1 fold-change average; e. NDRG1 fold-change average; f. 
SLC16A3 fold-change average; g. TFRC fold-change average; fold change for 6 hours hypoxia (light 
green), 24 hours (green) and 48 hours (dark green). Fold changes and significance levels are relative 
to the normoxia control (Fold-change = 1). P-values calculated with student t-test (Type 2, Tail 2) for 
significance levels of 0.05 (*), 0.01 (**) and 0.001 (***). 
 

Several factors were significantly induced in UP-029 cells. Figure 3.13.a shows 

BNIP3 gene significantly induced by approximately 4 fold during hypoxia. CAIX is also 
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induced with significance in a hypoxia time dependent manner, as shown in Figure 

3.13.b. This gene fold change values were 6,51, 23,93 and 42,16 at 6, 24 and 48 

hours. Figure 3.13.c shows that DDIT4 is significantly induced, especially at the 24 

hours with a fold value of 23,10.  DDIT4 over-expression values at 6 and 48 hours 

were 7,19 and 4,59, respectively. The same is verified for NDRG1 and SLC16A3 

genes in Figures 3.13.e and 3.13.f. NDRG1 pick of induction was at 24 hours with a 

fold value of 120,07, while at 6 and 48 hours was 18,49 and 76,02. SLC16A3 reported 

fold-change values of 6,00, 8,75 and 7,77 at 6, 24 and 48 hours of hypoxia. EGR1 

was not significantly over-expressed in SEBTA-023 cells (Figure 3.13.d). TFRC gene, 

however, was significantly under-regulates with fold change values of 0,51, 0,53, and 

0,29 at 6, 24 and 48 hours hypoxia (Figure 3.13.g) 
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Figure 3.14. SEBTA-023 qRT-PCR array: BNIP3 fold-change average; b. CAIX fold-change average; 
c. DDIT4 fold-change average; d. EGR1 fold-change average; e. NDRG1 fold-change average; f. 
SLC16A3 fold-change average; g. TFRC fold-change average; fold change for 6 hours hypoxia (light 
green), 24 hours (green) and 48 hours (dark green). Fold changes and significance levels are relative 
to the normoxia control (Fold-change = 1). P-values calculated with student t-test (Type 2, Tail 2) for 
significance levels of 0.05 (*), 0.01 (**) and 0.001 (***). 
  

BNIP3 is significantly over-expressed in a time-dependent fashion in SEBTA-023 

cells with fold change values of 5,18, 6,71 and 10,02 at 6, 24 and 48 hours of hypoxia 

(Figure 3.14.a). Analogously, SLC16A3 gene expression, also seemed to follow 

similar induction, with 5,27, 4,95 and 7,17 fold at 6, 24 and 48 hours of hypoxia (Figure 

3.14.f ). DDIT4 reported a significant over-expression as well, with fold values of 5,75, 

2,58 and 3,99 during hypoxia (Figure 3.14.c). CAIX and NDRG1 genes were highly 

over-expressed with significance in this cell line (Figures 3.14.b and 3.14.e). Both 

genes expression increased during hypoxia in a time-dependent manner. Indeed, at 

6, 24 and 48 hours CAIX gene reported induction values of 4,93,18,83 and 50,19 fold, 

and NDRG1 4,29, 3,89 and 22,20 fold. EGR1 gene was not over-expressed with 

significance in SEBTA-023 cells (Figure 3.14.d). TFRC was significantly under-

regulated in this cell-line, with fold-values of 0,51, 0,53 and 0,29 fold at 6, 24 and 48 

hours of hypoxia (Figure 3.14.g). 

 

3.3 Protein expression analysis 
 

Following the gene expression analysis, western-blot assays were performed in 

order to investigate how the differentially gene expressions were affecting protein 

expression. 
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Figure 3.15. UP-029 and SEBTA-023 western-blots for Non-treated cells (NT) and 1, 2, 3, 6, 24 and 
48 hours real hypoxia treatment. GAPDH blot for loading control. 
 

Figure 3.15 reports the western-blot analysis made for HIF1a, EGFR, CAIX, 

UpaR, VEGFC, S100A10 and GAPDH proteins. The GAPDH blot in this analysis was 

performed as a loading control, to assure the equal loading of protein in each well of 

the eletrophoresis gel. This is indeed validated by the similar intensity of the bands 

pictured. 

 

HIF1a blot was performed in order to validate the hypoxia treatment apllied to 

the cell lines. Yet, it is visible that the correspondent bands are quite fade. This may 

be the result of an inefficiency in the protein extraction protocol done outside the 

hypoxic chamber, since HIF1a protein is rapidily degradated in normoxia. This fact 

may have affected the interpretation of the protein transdution levels.  

 

The CAIX blot was implemented, since the corresponding gene was reported 

as extremelly upregulated in the qRT-PCR analysis. EGFR protein detection was 

included in this section, since it is commonly up-regulated in GBM. Curiously, EGFR 

protein was not detected in the UP-029 samples. Yet, it was observed in the SEBTA-

023 samples, inclusively in normoxia (NT). Additionaly, CAIX was also detecatable at 

6, 24 and 48 hours in both cell lines. The expression of this protein seemed to increase 
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in a time-depend manner. Moreover, SEBTA-023 cell line had a higher protein signal 

than UP-029, during hypoxia. 

 

Although UpaR, VEGFC and S100A10 proteins did not correspond to highly 

over-expressed genes in both cell lines, blots for these proteins were performed. The 

UpaR protein was detectable in both UP-029 and SEBTA-023 in all samples 

(inclusevely normoxia). However, SEBTA-023 showed an higher expression of this 

protein than UP-029. Similiarly, S100A10 protein was detectable in both cell lines. In 

SEBTA-023, S100A10 was extremely expressed at 1, 2, 3 and 6 hours of hypoxia. In 

UP-029 cell line, S100A10 was only detected in the 2, 3 and 48 hours of hypoxia, in a 

much lower level of expression. Curiously, VEGFC protein was fairly detectable in both 

UP-029 and SEBTA-023 cells in normoxia and its detection was slightly reduced 

concomitantly with the increment in time of hypoxia.  
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4.  Discussion 
4.1 Hypoxia gene profile of the UP-029 and SEBTA-023 Glioblastoma cell 

lines 
 Through the RT2 Hypoxia Profiler PCR array, the UP-029 and SEBTA-023 cell 

lines were analyzed for their hypoxic response panorama. The expression values were 

quantified for two different experimental groups (hypoxia 6 hours and hypoxia 48 

hours) and then plotted against the respective non-treated control, as seen in Figures 

3.1-3.4.  

 

 Overall, UP-029 cells were slightly more affected by the hypoxia treatments than 

SEBTA-023, once the first had a total of 56 differentially regulated genes while 

SEBTA-023 had 49. Summing both time-points, the UP-029 cell line had more 

differentially expressed genes than SEBTA-023, with a total of 24 repressed genes 

against 13.  Despite this, SEBTA-023 reported more over-expressed genes (36 total) 

than the UP-029 cell line (32 total). For the graphical construction a cut off of two was 

used, however for the data interpretation only genes above 4 fold for over-expressed 

and -4 fold for under-expressed were considered, as to highlight the categorically 

evocative values.  

 

 Focusing in the UP-029 data, the number of induced genes at 6 and 48 hours of 

hypoxia was approximate, with 17 and 15 over-expressed genes respectively.  

Accordingly, the analysis of Figures 3.1.b and 3.2.b both time-points disclosed eight 

noteworthy over-expressed genes, with fold-change values above four fold. In the first 

experimental cohort, ANGPTL4, CAIX, MXI1, PFKB3, PFKB4, NDRG1 and PIGF 

genes were substantially induced. With the exception of PIGF, all these genes 

maintained over-expressed in the 48 hours time-point. Plus, in this later time-set we 

detected an over-expression of MMP9’s gene, which was not reported at 6 hours of 

hypoxia.  

 

 Still in the UP-029 hypoxia time-point cohorts, it was clear an elevated gene 

repression in the 48 hours group. Comparing both time-course sets, 48 hours hypoxia 

reported 14 under-expressed genes, while at six hour’s showed only eight (excluding 

the outlier). In the first data set, the TFRC, HNF4A and EGR1, genes were identified 
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as meaningfully under-regulated. From these, only TFRC gene was repressed in the 

48 hours time-point. In addition to these, PLAU, TP53, SERPINE1, EGLN2 (Egl nine 

homolog two), LOX (Lysil Oxidase), HPRT (Hypoxanthine Phosphoribosyltransferase 

one), F3 (Coagulation Factor III), MET (Hepatocyte Growth Factor Receptor), IER2 

(Immediate Early Response two), USF2 (Upstream Transcription Factor two), NFKB1 

and HMOX1 (Heme Oxygenase one) were also down-regulated in the 48 hours 

hypoxia group.  

 

 In the SEBTA-023 hypoxia profiling data from Figures 3.3 and 3.4, it is noticeable 

an inferior number of over-expressed genes in the 6 hours cohort (15) than in the 48 

hours (21). Observing the heatmaps data from Figures 3.3.b and 3.4.b, the previous 

number of genes considered indeed meaningful reduced drastically to 6  and 8 in the 

6 and 48 hours time-points. At 6 hours of hypoxia CAIX, ANGPTL4, NDRG1, PFKB4, 

HK2 and DDIT4 genes were significantly over-expressed. All these were again 

reported as induced in the 48 hours cohort with addition of PDK1 and VEGFA. 

 

 Hypoxia did not seem to have a broad repression influence in SEBTA-023 cell 

line. In fact, the sum of the two time-point analysis only reckoned a total of three 

meaningfully repressed genes. In the 6 hours time-point, HNF4A, TFRC and EGR1 

were repressed below minus four fold. Curiously, HNF4A reported -54,57 fold 

expression in the 6 hours cohort and was the only gene with a meaningful fold change 

in the 48 hours group.  

 

 Gathering these UP-029 and SEBTA-023 enquiries, the genes ANGPTL4, 

NDRG1, CAIX, PFKB4 and VEGFA appear to be the most relevant induced genes. As 

for the repressed factors, both cell lines under-expressed the HNF4A and TFRC 

genes. Overall these induced and repressed genes seemed to be key factors in these 

cell lines hypoxia response and were further studied through qRT-PCR analysis, 

conjointly with other cell-line specific induced and repressed factors.  
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4.2 Validation of hypoxia differentially expressed genes in UP-029 and 
SEBTA-023 Glioblastoma cell lines  

 By means of qRT-PCR assays, an effort was made to validate common and 

specific differentially expressed genes in UP-029 and SEBTA-023 cell lines. To do so, 

each gene’s PCR analysis was performed at least three times (n > 3).  

 

4.2.1 Hypoxia Inducible Factors 1a and 2a expression in SEBTA-023 
and UP-029 Glioblastoma cell lines 

The major hypoxia regulators HIF1a and HIF2a were firstly investigated in order 

to evaluate how hypoxic response was induced in the studied time-points.  

 

HIF1a is known and described in the literature as a main driver of the hypoxia 

adaptive response (Monteiro et al., 2017). The RT2 profiler microarray reported HIF1a 

gene as under-regulated in UP-029 and not differentially expressed in SEBTA-023. 

This data was subsequently corroborated in both cell lines by the qRT-PCR analysis 

which did not report a significant HIF1a’s over-expression, with fold-changes below 

three fold (Figures 3.5.a and 3.6.a). Nonetheless, high fold-expression values were 

not expected, since this protein is not regulated at transcriptional level, but at protein 

level (R. H. Wenger, Kvietiko, Rolfs, Gassmann, & Marti, 1997). Furthermore, it has 

been shown that in normoxia, the levels of HIF1a mRNA are rapidly reduced (Gorlach, 

2009). The fact that the RNA extraction was performed in normoxia may have affected 

this gene’s mRNA levels.  

 

 The performed profiler array did not report any over- or under- expression of 

HIF2a gene in both cell lines during hypoxia. This is not a startling outcome since 

HIF2a, which is selectively expressed, is not as key in GBM hypoxic response as 

HIF1a (Monteiro et al., 2017). Moreover, it has been shown that HIF2a is preferentially 

expressed in Glioblastoma stem cells (GSCs) (Z. Li et al., 2009). Intriguingly, the CD44 

stem cell marker was disclosed to interact specifically with HIF2a gene in order to 

stabilize its transcripts in both hypoxia and normoxia environments (Johansson et al., 

2017). Through the qRT-PCR analysis, it was demonstrated that HIF2a gene was 

indeed up-regulated in UP-029 cells during hypoxia (Figures 3.5.b and 3.6.b). The 

SEBTA-023 cell line did not report any significant expression increment in HIF2a, with 
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its highest fold-change being 1,42 fold. Notwithstanding, the UP-029 cell line reported 

significantly high fold-change values for the 6 and 48 hours hypoxia time-points. It 

would be interesting to investigate if this cell-line expresses stem-markers such as 

CD44 to elucidate whether this cell line was originated from GSCs. 

 
4.2.2 Angiogenic factors expression in SEBTA-023 and UP-029 

Glioblastoma cell lines 
In this section, we will analyze the expression of angiogenic factors in both UP-

029 and SEBTA-023 cell lines. In this cohort, we verified the expression ANGPTL4 

and VEGFA genes previously distinguished in the RT2 array. In addition, PIGF results 

are also reviewed in this segment due to its relevant results in the UP-029 qRT-PCR.  

 

VEGFA reported as induced in both cell lines qRT-PCR (Figures 3.7.a and 

3.8.a). Yet, in the UP-029 cell line VEGFA did not report such a high over-expression 

in the RT2 array as in the qRT-PCR. Moreover, while in the RT2 array the fold-

expression decreased at 48 hours of hypoxia, in the qRT-PCR it was almost triplicated 

in a time-dependent fashion. The fact that UP-029 broadly over-expressed VEGFA 

more than the SEBTA-023 cell line, hints for a more aggressive phenotype (Chen et 

al., 2015). In the other hand, this observation may also suggest that this tumour cell 

line had origin in an astrocytoma precursor. Astrocytes naturally have VEGFA 

upregulated and in cancer this induction is even farther enhanced (Stefanik, 2013).  

 

The ANGPTL4 gene codes for a protein that has been implicated in GBM 

progression through the activation of Erk1/2 kinase (Brunckhorst, Wang, Lu, & Yu, 

2010). Furthermore, ANGPTL4 was recently reported as induced during GBM hypoxia 

(Beig et al., 2018). Agreeably with the literature, this factor was indeed induced, 

especially in the first 6 hours of hypoxia in the RT2 hypoxia profiler array. Yet, the 

Figures 3.7.d and 3.8.d qRT-PCR analysis did not confirm the magnitude of the 

microarrays fold-inductions. Oppositely, the fold-change values were below the 

designated cut-off of relevance (2 fold) in both studied cell-lines. ANGPTL4’s induction 

has been associated with chronic hypoxia (Olbryt et al., 2014). Therefore, a possible 

explanation for the fact that ANGPTL4 was not highly over-expressed in the qRT-

PCRs may be that 48 hours was not enough for a fully chronic response.  
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PIGF was not meaningfully over-expressed in the SEBTA-023 RT2 profiler and 

qRT-PCRs arrays. Yet, in the UP-029 cell line PIGF was significantly induced in the 

six and 24 hours time-points. In fact, PIGF highest expression in the qRT-PCR 

analysis occurred at 24 hours of hypoxia and in the microarray analysis was only 

reported in the 6 hours cohort. Curiously, PIGF was demonstrated to regulate HIF1a 

transcription in epithelial cells (Patel & Kalra, 2010).  

 

The PIGF protein is known to enhance VEGFA mediated signaling and 

increase angiogenesis in GBM during hypoxia (Kaur et al., 2004). As denoted above, 

VEGFA was highly induced in the UP-029 cell line as well. The fact that both of these 

angiogenic factors are expressively induced not only suggests a synergist role 

between factors. 

   

4.2.3 Expression of metabolic factors in SEBTA-023 and UP-029 
Glioblastoma cell lines 

This section will discuss and analyze the expression of metabolic factors in both 

UP-029 and SEBTA-023 cell lines.  

 

In both studied cell lines, GLUT1 and LDHA genes were not reported as 

differentially expressed in the RT2 profiler array. However, both genes were reported 

as relevantly over-expressed in the qRT-PCRs, as shown in Figures 3.9.a and 3.10.a 

(GLUT1) and 3.9.b and 3.10.b (LDHA). In the UP-029 cell line both genes had their 

fold-induction peak at the 24 hours of hypoxia. Whereas in the SEBTA-023 cells the 

fold change of GLUT1 and LDHA were higher at 24 and 48 hours of hypoxia 

respectively. Interestingly, GLUT1 has been shown to be up-regulated in GSCs 

through VEGFA (Labak et al., 2016b). Studies regarding this interaction in GBM 

should be considered in the future.  

 

The PDK1 was fairly induced and maintained through the hypoxic time course in 

both cell lines, as shown in Figures 3.9.d and 3.10.d. The protein encoded by this gene 

is key in the ATP synthesis via glycolysis and is commonly up-regulated in cancer due 

to the tumour cells energy uptake (Labak et al., 2016b).  
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Similarly, to PDK1, PFKB3 and PFKB4 are central effectors of the glycolytic 

metabolism. In addition, PFKB4 has been found to be required in GSCs (Chesney et 

al., 2014). The fact that PFKB4 was so noteworthy induced in both cell lines and 

detected in both arrays, hints once again for a stem-like phenotype. Interestingly, 

PFKB3 was described in the literature as less induced than PFKB4 (Chesney et al., 

2014). This was indeed seen in Figures 3.10.e and f which correspond to the SEBTA-

023 cell line. Yet, in Figures 3.10.e and f the opposite was reported, being PFKB3 

significantly more expressed than PFKB4 in UP-029 cells. Interestingly, PFKB3 was 

described as a resistance factor to radiotherapy (Gustafsson et al., 2018). According 

to the available information, the patients from whom this studies’ cell lines were 

derived went through the standard therapy (which includes radiotherapy), previously 

to the biopsy extraction. The fact that only UP-029 up-regulated PFKB3 instead of 

PFKB4, may infer for a more aggressive phenotype and an adaptive resistance 

mechanism of this cell line.  
 

4.2.4 Expression of invasion factors in SEBTA-023 and UP-029 
Glioblastoma cell lines 

This section will disclose the differentially expression of invasion factors in both 

UP-029 and SEBTA-023 cell lines. Unexpectedly, none of the invasion genes 

analyzed through both cell lines qRT-PCR assays, were indeed significantly over-

expressed. Furthermore, only MMP9 was reported as over-expressed in the RT2 

profiler array. 

  

Both UPA and UPAR genes are normally over-expressed in GBM normoxia 

(Brat et al., 2004). Therefore, it was not expected great fold-increments of these 

genes. Also, AnnexinA2 reported low fold-change values, however we extrapolate that 

it might be an later event in hypoxic response. Furthermore, S100A10, which was not 

significantly over-expressed, is ubiquitously expressed and regulated at protein levels 

(Madureira P, O’Connell P, Surette A, et. al. 2012).  

 

PAI1 is an inhibitor of the tPA and uPA plasminogen activation systems and is 

described as up-regulated during hypoxia (Kaur et al., 2005). However, PAI1 was not 

significantly over-expressed in the qRT-PCR assays of both cell lines.  
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Since MMP2 and MMP9 are known to be regulated by HIF2α, an increase of 

these gene’s expression was not expected in the SEBTA-023 cell line (Li N, Whang 

H, Zhang J, Zhao E, 2016). Conversely, the UP-029 reported an over-expression of 

HIF2a gene. Indeed, MMP9 was over-expressed in the 48 hours cohort of the RT2 

array. Yet, MMP2 was not relevantly induced in the qRT-PCR. Curiously, MMP9 is 

reported in the literature as more induced than MMP2 in primary GBM’s (Choe et al., 

2002).  

 
4.2.5 Expression of other hypoxia related genes in SEBTA-023 and 

UP-029 Glioblastoma cell lines 
This last gene expression analysis section will focus in varied factors, non-

specifically integrated in a hypoxic feature such as the above nominated.   

 

 The BNIP3 gene codes for a pro-apoptotic protein of the Bcl-2 family. In normal 

conditions its expression is low in brain. In GBM, BNIP3 expression in highly induced 

during hypoxia. Nevertheless, BNIP3 protein has been reported to be sequestered in 

the nucleus of GBM cells to block their ability of association with the mitochondria and 

inducing cellular death (Burton, Henson, Baijal, Eisenstat, & Gibson, 2006). 

Accordingly, BNIP3 was indeed reported as over-expressed in the RT2 profiler and 

qRT-PCR arrays.  

 

 The DDIT4 gene codes for a protein which functions as an mTOR inhibitor. Yet, 

in GBM over-expression of this protein is associated with poor prognosis (Pinto et al., 

2017). DDIT4 gene was indeed already reported as up-regulated during hypoxia in 

GBM (Mongiardi et al., 2016). However, the mechanisms through which DDIT4 

promotes GBM are poorly understood. Although relatively upregulated in the SEBTA-

023 cell line, the most prominent DDIT4 induction was reported in UP-029 at 6 hours 

of hypoxia. This result validates DDIT4 as a hypoxia-induced factor in GBM.  

 

 SLC16A3 has been reported as a poor outcome marker and as over-expressed 

in astrocytes and GSCs during hypoxia. High expression levels of this gene were 

found especially in the non C-GIMP than any other subtype of GBM. Curiously, the 

protein coded by this gene is known to involved in the glycolytic cycle in  non-
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neoplastic neural stem-cells (Lim et al., 2014). The significant over-expression of this 

gene in both cell lines suggests an non C-GIMP phenotype, as well as astroglial 

characteristics.  

 

TFRC protein functions as an iron transporter and is normally up-regulated in 

cancer stem cells (Schonberg et al., 2015). Curiously, this gene was reported with 

under-expression values in the RT2 profiler array. Accordingly, TFRC was also under-

expressed in its qRT-PCRs analysis. Yet, there is no reference in the literature of the 

repression of this gene in GBM hypoxia, pointing it out as a novel marker in need of 

further studies.  

 

Both NDRG1 and CAIX genes were the leading over-expressed factors of the 

present section. In fact, both these genes are described in GBM hypoxia literature.  

CAIX gene is related with the acid/base homeostasis (Monteiro et al., 2017).  Indeed, 

this gene is a known marker of previous or current chronic hypoxia (Harun M. Said et 

al., 2008). Concurrent with the literature, CAIX was indeed over-expressed in the RT2 

profiler and qRT-PCR arrays and its inducement was directly proportional to the 

increment of hypoxia hours in both cell lines. Additionally, CAIX is a known biomarker 

of chemo- and radiotherapy resistance (Monteiro et al., 2017). Knowing that the 

patients from whom the cell-lines were derived went through standard therapy, we 

may extrapolate that the high levels of CAIX as early as 6 hours of hypoxia may be 

derived from an adaptive resistance. Also, NDRG1 seems to have a meaningful role 

as a tumour suppressor in cancer and is transcriptional regulated by HIF1a in acute 

hypoxia (Harun M. Said et al., 2008; Harun Muayad Said et al., 2017). Indeed, we 

observed significant over-expression of this gene at 24 hours in UP-029 cells with 

concomitant decrease at 48 h of hypoxia. This was previously reported in other studies 

(Harun Muayad Said et al., 2017). Nevertheless, in the SEBTA-023 cell line, the 

NDRG1 gene suffered an over-expression increment throughout the hypoxia time-

course. A possible justification for this result could be that the SEBTA-023 suffered a 

delayed acute hypoxia response.  

 

 

 



   

 

 
81 

4.3 Protein levels analysis in SEBTA-023 and UP-029 Glioblastoma cell lines 
 In this section we will analyze the levels of expression of proteins in both UP-

029 and SEBTA-023 GBM cell lines, during hypoxia. 

 

HIF1a expression was detectable throughout both cell line’s hypoxia time-

points. HIF1a signal was not extremely high due to the fast protein degradation. Yet, 

despite the correspondent gene fold-change values were not significant, there is an 

increase of the protein levels. Once more, it is confirmed that HIF1a is regulated not 

at transcriptional, but protein level.  

 

EGFR was added to this experiment since it is commonly up-regulated in GBM, 

especially in the primary subtype (HONGSHENG et al., 2017). Curiously, this protein 

was only detectable in SEBTA-023 samples. From these results, we query whether 

SEBTA-023 may be an primary GBM.  

 

CAIX protein signal was detected in both cell lines at 6, 24 and 48 hours of 

hypoxia. This results are in concordance with the correspondent gene expression 

values obtained through qRT-PCR. Once more, the detection of CAIX at 6 hours of 

hypoxia may be a result of an adaptive resistance mechanism. Curiously, this protein 

was more predominant in the SEBTA-023 cell line.  

 

UPAR gene was not significantly over-expressed in UP-029 and SEBTA-023 

cells during hypoxia in opposite to what was expected. However, we detected UPAR 

protein in both cell lines, especially in the SEBTA-023 samples. We extrapolate that 

the induction of the uPA system in the this specific cell line may be an later event and 

more time-points should be added to this experiment in order to verify this. 

 

VEGFC was highly detectable in both cell lines during both normoxia and 

hypoxia. Peculiarly, this protein levels seem to decrease in a time-depend manner, 

during hypoxia. However, there is no reports in the literature of this fact or VEGFC role 

in GBM hypoxia.  
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S100A10 was detectable in both cell lines. In the UP-029, protein levels could 

be seen at 2, 3 and 48 hours of hypoxia, while in SEBTA-023 it could be seen at 1, 2, 

3, 4 and 48 hours of hypoxia. This shows that S100A10 is indeed regulated at protein 

level, since it gene expression values were maintained. In addition, it demonstrates 

that the protein levels of AnnexinA2 were increased in these time-points, since without 

the bonding to annexin, S100A10  is immediately degraded.  

  

Overall, we extrapolate that the low detection of invasion proteins in these cell 

lines may be a late event. The activation of metabolic and angiogenic mechanisms 

seem to be an earlier event in the hypoxic response. Reaching the a critical stage of 

survival, in which these signaling features are not enough, cells finally activate 

invasion as a chronic response. Therefore, more time-points such as 72 and 48 hours 

of hypoxia should be added in future studies. Furthermore, the low protein signal in 

the UP-029 cells, especially in the uPAR blot, may be derived of complications in the 

protein extraction or even western-blot sample preparation protocols.  
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5.  Conclusion 
 

The relevance of this research work relies especially in the poor prognosis and low 

overall-survival of GBM patients. Glioblastoma is highly characterized by a hypoxic 

phenotype which leads to invasion, angiogenesis and metabolic shift, all crucial steps 

of carcinogenesis. Understanding the molecular mechanisms underlying hypoxia in 

GBM is therefore of the highest relevance.  

 

In the present study SEBTA-023 and UP-029 biopsy-derived cell lines were used 

in order to identify and validate hypoxia-triggered factors that may be contributing to 

GBM progression and relapse. In addition, an approach to characterize the studied 

cell lines was made throughout this study. Our results distinguished several genes 

related with specific hypoxia-features, such as angiogenesis and the metabolic switch. 

This study identified, ANGPTL4, NDRG1, CAIX, PFKB4, VEGFA, PIGF, PDK1, 

PFKB3, PFKB4, BNIP3, CAIX, DDIT4, NDRG1 and SLC16A3 as genes that were up-

regulated and HNF4A and TFRC as down-regulated genes during hypoxia in GBM 

cells. Indicating that these genes might be important for hypoxia induced GBM 

pathogenesis. Moreover, revising the panel of differentially expressed genes, our data 

suggested a stem-like phenotype of the investigated cell lines. This should be 

confirmed by immune-staining with specific stem cell markers, such as CD44. 

Additionally, we detected low invasion genes and proteins expressions in both cell 

lines. We hypothesize that these factors might be regulated in response to chronic 

hypoxia. Curiously, our findings suggest PFKB3 as a possible novel resistance 

biomarker in GBM. Additionally, we hypothesize TFRC as having an important role as 

a tumour suppressor.  
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6.  Future perspectives 
 

In the future, it would be interesting to repeat this research with more GBM cellular 

types. Since GBM tumours are highly heterogeneous, elevating the number of lines in 

this study would bring more selectivity in targeting novel markers of hypoxia invasion 

from wide panels. Also, both RT2 profiler arrays and qRT-PCRs should be performed 

for a higher n, in order to increase the results significance and avoid fold regulations 

miss-interpretations. Moreover, more hypoxia time-point should be considered in order 

to fully evaluate chronic hypoxic response, especially in invasion genes and proteins. 

 

To confirm and validate the role of each one of the supposed novel markers, functional 

assays in hypoxia should be performed. Studies should be conducted in order to 

understand how standard treatment affects the expression of PFKB3. For example, 

studies regarding the detection of this protein in biopsies pre- and post-standard 

treatment, as well functional studies in GBM cell lines. In addition, TFRC knock-out 

assays should be done in order to understand the relevance of this gene’s repression.  
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8.  Appendix 
8.1 Annex 1: Lysis Buffer preparation protocol 
- First, prepare a box with Ice. 

- Prepare buffer solution as established in the following table (ALWAYS keep 

the Lysis Buffer solution on ice; Don’t save any lysis buffer, always prepare a 

fresh solution for the protocol): 

 
Volume RIPA PIERCE 

buffer 
Proteases 
inhibitor 
(100x) 

MEBTA solution 
(0,5 M) 

0,5 ml 500 µl 5µl 2,5µl 
1 ml 1000 µl 10µl 5µl 
2 ml 2000 µl 20µl 10µl 
3ml 3000 µl 30µl 15µl 
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8.2 Annex 2: BCA assay protocol 
 
 
 
 
 
 
 
 
 
 

(Provided in informatic support) 
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8.3 Annex 3: QIAGEN: RneasyR Plus Mini Kit Protocol 
• Discard the media and wash with HBSS (~2ml). 

 

• Incubate for 2-3 minutes, at 37ºC with Trypsin. 

 

• Pass the cells into a 15ml tube with 3ml of growth medium. 

 

• Centrifugate for 5 min. and discard medium. 

 

• Add 350 µl of RLT Buffer (lysis buffer) to the tube and mechanically instigate 

the lysis process by pipetting. 

 

• Transfer the RLT solution with cells to the gDNA Eliminator spin column (purple) 

placed in a 2ml collection tube. 

 

• Centrifuge 30s at ³10’000 rpm (p.e. 10’500 rpm) and discard the column. SAVE 

THE FLOW-THROUGH.  

 

 

 

 

 

 

• Add 350 µl of ethanol 70% directly to the flow-through and mix it by pipetting. 

 

• Transfer all solution (~700 µl) to a RNeasy spin column (pink) placed in a 2ml 

collection tube. Close lid and centrifuge for 15s at ³10’000 rpm (p.e. 10’500 

rpm). Discard the flow-through. 

 

• Add 700 µl of RW1 Buffer to the same RNeasy spin column (pink) and 

centrifuge for 15s at ³10’000 rpm (p.e. 10’500 rpm). Discard the flow-through. 

 

✓ 
Discard  
column 
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• Add 500 µl RPE Buffer to the same RNeasy spin column (pink) and centrifuge 

for 15s at ³10’000 rpm (p.e. 10’500 rpm). Discard the flow-through. 

 

• Add 500 µl RPE Buffer to the same RNeasy spin column (pink) and centrifuge 

for 2 minutes at ³10’000 rpm (p.e. 10’500 rpm). Discard the flow-through. 

 

• Place the RNeasy spin column (pink) in a new 1,5ml collection tube (similar to 

the normal Eppendorf). Add 30-50 µl RNase-free water directly to the RNeasy 

spin column membrane.  Close the lid and centrifuge for 1 minute at ³10’000 

rpm (p.e. 10’500 rpm). SAVE THE FLOW-THROUGH. 

 

• Repeat elution with another 50 µl RNase-free water applied directly to the 

RNeasy spin column membrane. Close the lid and centrifuge for 1 minute at 

³10’000 rpm (p.e. 10’500 rpm). SAVE THE FLOW-THROUGH. 

 

•  Discard the RNeasy spin column (pink) column and save the flow-through 

(Extracted RNA solution) in the -80ºC. 
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8.4 Annex 4: RT2 array protocol 
 
 
 
 
 
 
 
 
 
 

(Provided in informatic support) 
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8.5 Annex 5: Bioanalyzer protocol 
 
 
 
 
 
 
 
 
 
 

(Provided in informatic support) 
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8.6 Annex 6: RT2 arrays reports- 
a. UP-029  
b. SEBTA-03 
 

 
 
 
 
 
 
 

(Provided in informatic support) 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 


