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Abstract 

 

In the last two decades the Extracellular Vesicles (EVs) field has attracted a lot of 

attention from the scientific community, especially after the discovery that EVs can shuttle 

functional proteins and nucleic acids between cells. Some recent studies have shown an 

association between tumorigenesis and increased exosomes production. Exosomes and 

their influence has also been reported in the establishment of new metastatic niches. 

Besides that, the EV field remains confusing due to numerous and ambiguous 

definitions, specially caused by the huge heterogeneity of the vesicles, both in 

composition and function. 

Extracellular vesicles are divided into microvesicles which are originated from the 

plasma membrane and exosomes which have an endosomal origin. For now, it is 

technically challenging to obtain a pure exosome fraction, free from non-vesicular 

components, due to the fact the extracellular milieu is quite complex and can contain 

microvesicles or apoptotic bodies similar in size and structure to exosomes. The two most 

used methods, ultracentrifugation and commercial kits, don’t show a good efficiency when 

distinguishing the exosomes fraction specifically from the microvesicles fraction. Due to 

this sub-optimal efficiency demonstrated by these two methods, we have decided to use 

Flow Cytometry to see if we can achieve better exosome purification. We will use 

Fluorescence-activated cell sorting (FACS) to purify endogenous exosomes. 

This would be quite challenging especially due to the exosomes size and 

heterogeneity but on the other hand, if we have success with our approach, it would be 

possible to do downstream analysis in order to know their protein composition, functions 

and elaborate some more studies to try to find some “exosome-specific” marker. This 

would have a huge impact in the pharmaceutical industry, both for diagnosis and therapy. 

 

Keywords: Extracellular Vesicles; Exosomes; FACS; Isolation.    



  

iii 
 

Resumo 

Durante as últimas duas décadas, a investigação desenvolvida sobre Vesículas 

extracelulares (VE), atraíu o bastante interesse por parte da comunidade científica, 

especialmente após ter sido descoberto que as VE podem transportar proteínas funcinais 

e ácidos nucleicos entre diferentes células. Estudos mais recentes mostraram uma 

relação entre tumorogenese e um aumento na produção de exosomas. Estes foram 

também associados ao estabelecimento de novas metástases. 

Apesar de todas estas descobertas, o domínio das VE continua significativamente 

confuso, nomeadamente devido às numerosas e ambíguas definições utilizadas, 

especialmente devido ao facto da imensa heterogeneidade entre as diversas VE, tanto 

a nível de composição como de função. 

Vesículas extracellulares estão divididas em microvesículas, que são originárias 

da membrana plasmática, e exosomas que têm uma oigem endossomal. No presente, é 

tecnicamente bastante complicado de obter uma fracção de pura exosomas que não 

apresente componentes não vesiculares, principalmente pelo facto do meio extracellular 

ser bastante complexo e poder conter microvesícula e corpos apoptóticos semelhantes 

em termos de tamanho e estrutura. Os dois métodos mais usados, a ultracentrifugação 

e kits comerciais, não apresentam uma boa eficiência na distinção de exosomas, 

especialmente das microvesículas. Devido a esta eficiência sub-óptima demonstrada por 

estes dois métodos, decídimos usar a separação celular por citometria de fluxo (FACS) 

para proceder ao isolamento de exosomas endógenos. 

Este objectivo será bastante desafiador especialmente pelo tamanho e 

heterogeneidade dos exosomas mas, por outro lado, se formos suficientemente bem 

sucedidos na nossa abordagem, será possível realizar análises posteriores, de modo a 

conhecer a sua composição proteica, funções e partir para novos estudos de modo a 

tentar identificar um marcador molecular específico para exosomas. Isto teria um impacto 

significativo na indústria farmacêutica, tanto a nível de diagnóstico como terapêutico. 

 

Termos chave: Vesículas extracelulares; Exosomas; FACS; Isolamento.   
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1. Introduction 

 

1.1. A brief historical timeline of extracellular vesicles 

One of the most critical processes of multicellular organisms is intercellular 

communication. Until two decades ago, this communication was divided into direct cell-

cell signaling that can be mediated by a membrane–anchored stimulus, deciphered by 

receptors located in other cells or by junctional complexes and, the transfer of secreted 

molecules such as hormones, growth factors and cytokines. Over the last few years, a 

third mechanism was added to this list: intracellular transfer of extracellular vesicles 

(EVs).1,2 

Extracellular vesicles are membrane-contained vesicles released by a wide range 

of organisms, from prokaryotes to higher eukaryotes. The transfer of information from cell 

to cell, and downstream changes in the recipient cell function are probably the most 

important characteristics of extracellular vesicles.2 

Despite being consider a “hot topic” during the last few years, EVs were first 

observed and reported in 1946 by Chargaff and West as procoagulant platelet-derided 

particles in normal plasma3. Some years later, those EVs were characterized as “platelet 

dust” by Wolf in 1967.4 

In 1995, Raposo G and colleagues were able to demonstrate that small 

externalized vesicles, termed exosomes, exhibited abundant MHC class II molecules and 

were able to specifically present antigenic peptides to T cells. In the same paper, it was 

also suggested to further explore the usefulness of exosomes as biological vehicles.5 

In 2006-2007, the EVs field received a huge boost after a number of different 

papers described the presence of mRNA and miRNA inside EVs which renewed interest 

in the role of EVs as mediators of cell-to-cell communication.6,7 More recently, using deep 

sequencing to analyze RNA from EVs, it was shown that EVs also contain a large variety 

of small noncoding RNA species such as RNA transcripts, protein coding regions, 

structural RNAs, tRNA fragments and small interfering RNAs.8,9  
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The interest in the EVs field has increased over the last years, as demonstrated in 

the following graphic, showing the publication rate that contains the words “Extracellular 

Vesicles” on PubMed® over the years. 

 

 

 

 

 

 

 

 

 

 

1.2. Extracellular vesicles origin 

Today’s most accepted classification of extracellular vesicles divide them in three 

main classes: exosomes, microvesicles/microparticles/ectosomes and apoptotic bodies.  

Exosomes are formed within the endocytic pathway in a two-step process. First, 

as endosomes mature from early endosomes to late endosomes, they become 

multivesicular bodies (MVBs) upon accumulation of intraluminal vesicles (ILVs). These 

intraluminal vesicles contain proteins and nucleic acids that come from the cytosol as the 

endosomal membrane invaginates, or they can contain receptors from the plasma 

membrane that shuttle through the early endosome upon endocytosis. MVBs are either 

destined for fusion with the lysosome where their contents will undergo lysosomal 

degradation, or with the plasma membrane where their contents are released into the 

extracellular space. The ILVs of MVBs become exosomes upon their release.3,10 
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Figure 1.1 Evolution of the number of publications containing “Extracellular Vesicles” on PubMed® 
over the years. 
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Microvesicles (MVs) are produced by outward budding and fission of the plasma 

membrane while apoptotic bodies (ApoBDs) are released as blebs of cells undergoing 

apoptosis.1,2 (Figure 1.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Even if these extracellular vesicles formation processes continue to be the most 

consensual, new data seems to show that EVs indistinguishable from exosomes were 

released directly from the plasma membrane.11 

Within recent publications, several different EVs were described, from both 

hematopoietic and non-hematopoietic origin such as, cytotoxic T Cells, platelets, mast 

cells, neurons, oligodendrocytes, Schwann cells, intestinal epithelial cells and prostate 

epithelial cells.12,13 

Figure 1.2 Extracellular vesicles origin. Adapted from www.abcam.com/primary-antibodies/extracellular-
vesicles-an-introduction. 
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1.3. Extracellular vesicles characteristics 

Other characteristics like the size, shape, membrane markers and sedimentation 

were also generally accepted to characterize different EVs. The following table contains 

a brief summary of those characteristics.13  

 

   Exosomes Microvesicles Apoptotic bodies 

Size (nm) 50 - 100 100 - 1000 400 - 1000 

Appearance in 
EM Cup-shaped Irregular shape Heterogeneous 

shape 

Markers  Tetraspanins, Alix, 
TSG101, ESCRT  

Selectins, integrins, 
CD40 ligand Histones, organelles 

Sedimentation 100,000 x g 1200 x g to 100,000 x 
g 

1200 x g to 100,000 x 
g 

Table 1.1 Most used characteristics applied to classify EVs. 

 

 Like the extracellular vesicles origin presented before, these “specific” 

characteristics have seen a lot of contradictory data in the last years.  

Exosome characteristics have recently been questioned due to three new reports: 

tetraspanins are also plasma membrane vesicles and are not specific for vesicles derived 

from MVB; knockout studies suggest MVB-derived vesicles represent only a portion of 

the 50-200 nm vesicles; exosomes up to 250 nm were recently reported.11,14 Probably the 

most important finding that contradicts several highly ranked publish papers, was the fact 

that the widely accepted cup-shaped morphology could be in fact an experimental 

artefact.15  

In the case of microvesicles, the main criticisms are: in vivo, larger vesicles than 

200 nm are generally not observed, being the most circulating vesicles range between 

50-200 nm; it is impossible to distinguish 50-200 nm microvesicles from exosomes based 
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on sedimentation; tetraspanins can be detected on vesicles of all size ranges; and, the 

microvesicle “specific” markers were demonstrated on vesicles derived from B cells and 

may not be relevant to those microvesicles derived from other cell types. 

 

1.4. Nomenclature problems and the search for consensus 

 

All these new findings give rise to some confusion on the origin and nomenclature 

of EVs, mainly because most of the studies rely on just one of the EVs characteristic, like 

size or morphology. Researchers have also applied different names for secreted vesicles, 

most of them reflecting specific functions (i.e. calcifying matrix vesicles)16 or their cell of 

origin (i.e. platelet dust)4.  

Standardization was suggested to use more generic terms like exosome and 

microvesicle that could have a wider utility. Unfortunately, generic terms can mean 

different things for different investigators, easily seen if we take the word exosome as an 

example. At least three different uses of the word exosome can be found on the literature. 

Some investigators base themselves in a biogenetic definition (i.e. vesicles that bud into 

endosomes and are released when the resulting multivesicular bodies fuse with the 

plasma membrane)5,17, others keep using the original broad definition (i.e. vesicles that 

may serve a physiologic function)18,19 and even some base themselves on differential 

centrifugation (i.e. vesicles that sediment only after centrifugation at about 70000 – 

100000 x g)20. 

Adding to all this misunderstanding, it has also been published that a single cell 

type can release both exosomes and microvesicles. Cells like platelets21, endothelial 

cells22 and breast cancer cells23 are examples of that. Another problem is the 

nomenclature for EVs that can be found throughout the literature, even with different 

scientific societies using different terms for EVs.11 (Figure 1.3) 
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To try to solve this problem, since 2011, collaborative work has been done by the 

members of the International Society of Extracellular Vesicles (ISEV) in order to unify the 

nomenclature on the field. Even so, there is still no consensus about the EV 

nomenclature. The current inability to reach consensus for extracellular vesicles 

nomenclature reflects differences of opinion about the value of scientific precedent, the 

relative merits of empirical versus biogenetics systems for naming extracellular vesicles 

and also scientific disagreement on the current paradigms of EV biogenesis. 11,24 

 In summary, identification criteria have led to confusion rather than consensus, 

with the ISEV suggesting the use of the term “extracellular vesicles” as a generic term for 

all secreted vesicles. 

 

 

 

 

 

Figure 1.3 Different terms used to designate EVs by different scientific societies. Adapted from (11) 
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1.5. Functions of extracellular vesicles 

Very diverse biological functions have been attributed to EVs, from being a 

mechanism to eradicate non-necessary molecules, to the capacity of EVs to act as 

antigen-presenting vesicles in order to stimulate antitumoral immune responses or even 

to induce tolerogenic effects.25–27  Moreover, if the EV number and constitution from 

healthy individuals is known, it may allow the identification of altered patterns and possibly 

help in a differential diagnosis. Therefore, EVs have also been considered valuable 

biomarkers. 

Some of the most relevant and well described functions of EVs in different fields 

are described below. We have chosen these three examples of functions because they 

are consensual and well described in different articles but, this is not an exhaustive list 

and many other functions are identified over the literature.2  

 

1.5.1 Immunology 

In immunology, it is known that tumor cells as other cells in the tumor 

microenvironments secrete EVs, and some studies relate this fact to tumor progression, 

by promoting angiogenesis and metastases.28,29 T lymphocytes and natural killer cells 

may be inactivated by tumor-derived vesicles containing immune-suppressive molecules, 

therefore inhibiting normal immune response.30 On the other hand, it has also been 

described that EVs bearing MHC-II were able to activate T cell responses.5 Macrophages 

and dendritic cells can release EVs with the ability to promote T cells responses.31–33 This 

ability of EVs to influence immune response (Figure 1.4) is attracting a lot of attention, 

especially in the tumor immunology field. Unique EV cargo contents may be used in the 

future as potential predictive biomarkers, allowing a better follow-up from patients both 

before and during treatment.34  
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Figure 1.4 EV’s role in immune response. Adapted from (2).   
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1.5.2. Neuroscience 

Neuroscience is another field in which EVs have received a lot of attention and 

exciting questions are still waiting for an answer. EV exchange may be a common mode 

of neural cell communication as EVs of distinct size and origin can be found in the 

cerebrospinal fluid (CSF) with different studies suggesting the ability to cross the blood-

brain barrier in both directions, even if it is not clear how EVs do that.35–39 Inflammatory 

condition facilitate the entry of peripheral EVs into the brain resulting in genetic 

modulation of the cells of the central nervous system (CNS).40 Microglia, which contribute 

to CNS homeostasis, respond to ATP-mediated P2X7 receptor activation by shedding 

EVs from their plasma membrane. Microglia EVs seem to modulate neurotransmission at 

excitatory glutamatergic as well as inhibitory GABA-ergic synapses. In addition, since 

these EVs carry the pro-inflammatory cytokine IL-1β and were increased in CSF during 

inflammation, they were associated with inflammation propagation in the CNS.37,41–43 

Moreover EVs seem to be involved in the communication between myelinating 

oligodendrocytes and neurons. Electrically active neurons could trigger the release of 

oligodendroglial EVs by neurotransmitter signaling and, furthermore, internalize these 

EVs by endocytosis. (Figure 1.5)36 

 

Figure 1.5 Oligodendroglial exosomes in neuron-glia communication. Adapted from (36). 
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In the nervous system, Schwann cells in the peripheral nervous system (PNS) also 

secret EVs, which are able to enhance axonal regeneration after nerve damage. 

Regenerative functions were also seen in EVs that enter the CNS from the periphery, by 

transfer neuroregenerative miRNAs to astrocytes and neurons in a rat stroke model. 

Myelination enhancement, as well as remyelination was also suggested as possible 

consequences of their uptake.44–46 

The role of EVs in spreading neuropathological agents in neurodegenerative 

diseases as well as in promoting the growth of brain tumors is being studied by several 

research groups.47,48 

 

1.5.3. Liver homeostasis 

 Even though EVs in the brain have received a lot of attention, EVs in the liver are 

proving to be very interesting as well. Their importance has been mainly associated with 

liver homeostasis. EVs are a way used, by either immune or non-immune cells, to 

communicate between themselves, in order to give the appropriate response both for 

stimuli and insults. 

Hepatocyte-derived EVs were able to activate Ito cells to mediate a response to 

liver damage and also EVs from a resident liver population were shown to accelerate the 

morphological and functional recovery of liver in partially hepatectomized rats.49–51 

 

1.6. Interactions of extracellular Vesicles with recipient cells 

EVs functions are dependent on their ability to interact with recipient cells in order 

to deliver their cargo of proteins, lipids and RNAs. Besides the cellular and molecular 

basis for EV targeting still undetermined, the specificity of target cells binding has already 

been described in different occasions. Target cell specificity for binding is likely to be 

determined by adhesion molecules, such as integrins. Differences in tetraspanins 

complexes may also influence target cell selection by modulating the functions of 

integrins.52–54 
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Once bound to the recipient cells, EVs have three different options. They may 

remain stably associated with the plasma membrane, fuse directly with the plasma 

membrane or be internalized through distinct endocytic pathways. In case they are 

endocytosed, EVs become ILVs and may then fuse with the endosomal limiting 

membrane and deliver their cargo into the cytosol, or be sent to lysosomes for 

degradation.1 (Figure 1.6) 

 

 

Figure 1.6 Proteins and RNAs transfer by EVs. MVs and exosomes may dock at the plasma membrane of 
a target cell [1]. Bound vesicles may either fuse directly with the plasma membrane [2] or be endocytosed 
[3]. Endocytosed vesicles may then fuse with the limiting membrane of an endocytic compartment [4]. Adapt 
from (1) 
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1.7. Isolation of extracellular vesicles 

 

1.7.1. Body fluids 

EVs have been reported to be present in a wide range of body fluids, namely 

blood55, semen56,57, urine58, saliva59, breast milk60, bile61, ascites fluid62, cerebrospinal 

fluid63, amniotic fluid64, etc. (Figure 1.7)  

Thanks to the lipid membrane that encapsulates and protects EVs contents from 

degrading enzymes, EVs can be sent over long distances within bodily fluids.2 

 

 

Figure 1.7 Schematic of in vivo-derived EVs isolated from body fluids. Adapted from (2).  

 

1.7.1.1. Nasal fluid 

EVs have been detected in the nasal secretions of healthy humans. For now, the 

functional significance of nasal EVs is far from being well understood, but researchers 

suggest they might have immune modulatory effects. The field of vaccine development is 
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actively looking to these EVs to evaluate their therapeutic effects in the brain, lungs and 

intestines.65–67 

 

1.7.1.2. Saliva 

Saliva-derived contain proteins and different RNA species which can be 

internalized by both oral keratinocytes and macrophages. The source of these EVs is 

mainly from epithelial cells and partly from granulocyte origin. Exosomes and 

microvesicles have both been identified, each one with their characteristic size and RNA 

content. Interestingly, EVs isolated from saliva of healthy donors contain tissue factor (TF) 

which can initiate blood coagulation and this factor is associated with the fact that humans 

and other animals lick a bleeding wound to promote coagulation and the subsequent 

wound healing.59,68–73  

 

1.7.1.3. Bronchoalveolar lavage fluid (BALF) 

 The main role for EVs released by cells residing in the lung, is linked to lung 

immunity in response to different stimuli. Upon exposure to magnetic iron oxide 

nanoparticles, secretion of EVs was shown to increase in a dose-dependent manner. 

These EVs were then quickly eliminated from alveoli into systemic circulation and their 

signals transferred to the immune system. Once transferred to the immune system, 

maturation of DCs and activation of splenic T cells were also observed. In addition to the 

presence of RNA and miRNA, BALF EVs expression of the scavenger receptor CD36, 

was also reported. This receptor has been implicated in bacterial recognition.74–77 

 

1.7.1.4. Blood 

 The main breakthroughs in EV field have been first described in blood. From the 

first EVs observed, the ones named “platelet dust” to the first time the term exosomes 

was originally applied. This article published in 1980s, described that in the maturation 

process, reticulocytes are able to selectively remove proteins, such as the transferrin 
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receptor as well as other membrane-associated enzymes through the formation of 

exosomes. Due to this work, it has been recommended that EV studies should be 

conducted on plasma and not in serum because EVs could be generated during blood 

clotting, after collection.3,4,78–80  

About 25% of the total blood EVs are positive for platelet specific markers (CD41a, 

CD61 and GPIb), which in healthy individuals are mostly derive from megakaryocytes.81,82 

This might be a versatile way for platelets to participate in physiological maintenance 

functions such as haemostasis, immunity or development, because different activatory 

mechanisms are able to induce platelets to form EVs.83  

In the future, blood EVs might have an important role in the identification of 

changes in the physiological state, such as pregnancy or in diagnosis of several 

pathological states like tumors. It has  been shown that the number, as well as the RNA 

content of plasma-derived EVs, is modified by both of these states.84,85 

 

1.7.1.5. Urine 

 After the first descriptions of lipid membrane presence in urine in the 1990s, more 

recent work in this field was able to characterize urinary-derived EV content in detail.86,87 

Despite the fact that CD24 has been proposed as a good urinary EV marker, it is good to 

keep in mind that EVs found in urine might not all come from the kidney but also from the 

ureters, the bladder, the urethra or even from the prostate.88,89 

The analysis of RNA content from urinary EVs revealed that the entire 

genitourinary system might be mapped within EVs, pointing to a role in cell regulation. 

Different Na+ transporter proteins were also found in urinary EVs, which in association 

with EV-resident proteins, such as the angiotensin-converting enzyme may suggest a role 

of these EVs in water balance.90–92 

Still another role suggested for these EVs is as innate immune effectors once they 

are enriched in antimicrobial proteins and peptides, bacterial and viral receptors. 

Coagulations and haemostasis might also be regulated in the genitourinary system by the 

urinary EVs containing tissue factor (TF).93,94 
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Like other fluids EVs, urine EVs are being studied to access their cargo’s potential 

usage as biomarkers. Urine is the least invasive body fluid to obtain, which makes urine 

a good candidate compared to other body fluids. 

 

1.7.2. Methods used to isolate extracellular vesicles 

Since there is no consensus on a “gold-standard” method to isolate and/or purify 

EVs, the ISEV claim that there is no optimal method that should be uniformly used. ISEV 

also state that the most efficient isolation method probably depends on the scientific 

question asked and downstream application.95 Moreover, it is becoming clear that some 

of the described “specific” markers of EVs subsets are just enriched in some of those 

subsets, being possible to find them in other secreted EVs. This lack of specific markers 

of the different subsets of EVs is also a major limitation towards their specific isolation. 

 

1.7.2.1. Ultracentrifugation 

Ultracentrifugation is the most widely used technique to isolate EVs being even, 

as described before, used to classify different EVs classes according to their pellet 

formation. The main criticism to this method is the fact that size/weight is the only criteria 

making it possible to isolate a certain EV class, but impossible to discriminate specific 

EVs inside the same class. A huge loss of EVs is also commonly reported when using 

this method. Other criteria that makes this a difficult method to standardize is its high 

sensitivity to multiple parameters such as, the force of acceleration (g-force), rotor type, 

the angle of rotor sedimentation, radius of the centrifugal force and solution viscosity.96 

 

1.7.2.2. Density Gradient Centrifugation  

In order to improve the results from the classical ultracentrifugation method, some 

groups are using density gradient centrifugation (DGC).20,57,97 In addition to the required 

time that can go from 6 to 90 hours, the gradients used are hyperosmotic which, together 

with the high g-forces, may lead to disruption and loss of biological activity. Another huge 
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limitation from this method is the fact that it is not possible to discriminate EVs and HDL 

when plasma is used, since both have similar densities.98 Also the argument that this 

would be the best approach to discriminate different EVs subsets has been criticized, 

mainly after knowing that different EVs subsets may have overlapping densities making 

them hard to isolate by this method.57,99 

  

1.7.2.3. Commercial Kits 

Another option to isolate EVs is to use commercial kits. There are different kits 

available on the market, with the most used ones being the ExoQuick® (Systems 

Biosciences™) and the Total Exosome Isolation (Life Technologies™). Recent studies 

showed comparable yield results between commercial kits and UC in exosomes isolation. 

Having multiple, less tedious alternatives to isolate exosomes will promote more 

exosome-related studies, helping better understanding of exosomes functions.100,101  

The main limitations of this polymer-based methods are: the fact that they co-

isolate non-vesicular contaminants, including lipoproteins and, once isolated, the 

presence of the polymer material may not be compatible with down-stream 

applications.79,96,102 

 

1.7.2.4. Techniques applied to evaluate EVs isolations 

There are different techniques used to evaluate EV the isolation and/or purity. 

According to the literature, the most used are Western Blot (WB), Transmission Electron 

Microscopy (TEM) and Nanoparticle Tracking Analysis (NTA).103–107 

In terms of WB, among the most used markers to identify exosomes, we can find: 

Alix, Flotillin 1, Caveolin, CD9, CD63, CD81, GAPDH, etc.107–109 

TEM is especially useful because it enables the researcher to visualize the 

approximate size and purity of their purified EVs. However, the size might be slightly 

overestimated due to sample preparation when using negative staining.110,111 
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Another common way to evaluate EVs isolation, is to use an NTA device which 

combines the properties of both light scattering and Brownian motion, to evaluate the size 

distribution and concentration of particles in a liquid suspension.100 

 

1.7.3. Flow cytometry as a method to isolate extracellular vesicles 

 

1.7.3.1. Flow Cytometry 

Flow cytometry is a technique that allows the analysis of thousands of particles per 

second (such us cells, bacteria, yeast, picoplankton, chromosomes and nuclei) detecting 

multiple parameters of each individual particle within heterogeneous populations. In order 

to archive that, the flow cytometer is traditionally divided in three different parts: the 

fluidics, the optical pathway and the electronics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8 Schematic representation of how the 3 main parts of a flow cytometer work together. Adapted 
from www.semrock.com/flow-cytometry.aspx. 
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The main goal of the fluidics part is to take the particles from the sample tube and 

allow them to cross the laser beam one-by-one. The laminar flow and the hydrodynamic 

focusing are the two principles behind the fluidics part. 

The optics are responsible for collecting the light, both scatter and fluorescence 

that each particle emits when it is at the interrogation point (the point where the particle 

crosses the laser beam). While the number of fluorescent channels will be dependent on 

each machine’s configuration, two scatter parameters will always be collected with every 

equipment. These two scatter parameters are the forward scatter (FSC) and the side 

scatter (SSC). While the FSC can only be measured from the reference laser 

(conventionally the 488 nm one), the SSC may be measured with every laser line 

available on the machine. 

The FSC is the measurement of the refraction light measured in the same direction 

as the laser light is travelling (forward) and the intensity of this signal is roughly 

proportional to the particle size and membrane integrity. 
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The SSC is the measurement of the light scattered at 90˚ from the laser’s axis. 

Side scatter is mainly caused by granularity and structural complexity inside the 

cell/particle. 

 

  

 

 

 

 

 

 

Figure 1.9 How FSC and SCC scattered light is measured by a flow cytometer. Adapted from 
https://www.bnitm.de/seeis2010/presentations/introduction_flowcytometry.pdf 

 

The electronics are responsible for quantifying and converting the signal from light 

to digital values, creating a spreadsheet that generates a flow cytometry standard (FCS) 

data file. These FCS files allow the final user to analyze the data using specific software.

  

1.7.3.2. Fluorescent activated cell sorting 

Fluorescence activated cell sorting (FACS) machines came to the market in the 

early 1970s and were well accepted because they allowed researchers to simultaneously 

stain, analyze and sort defined populations from different tissues or fluids. 

The number of fluorescent parameters that can be detected simultaneously has 

increased over the years. Nowadays, we are able to measure eighteen different 

fluorescent parameters, plus two scatter parameters. 

In terms of equipment, a FACS machine is roughly a flow cytometer as described 

before with an extra module that allows breaking of the continuous stream into droplets 

that may be charged and posteriorly deflected, if the drop contains a particle of interest. 
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Figure 1.10 Schematic of how FACS are able to isolate different particles. Adapted from 
www.abcam.com/protocols/fluorescence-activated-cell-sorting-of-live-cells. 

 

1.7.4. FACS of EVs 

Although flow cytometry has already been used to characterize different EV 

subsets, not many researchers are relying on this technology to isolate EVs. As all the 

other methods described before, fluorescence activated cell sorting presents both 

advantages and disadvantages. 

Within the most cited disadvantages are the swarming detection, low sensitivity on 

scatter channels and difficulty to standardize protocols and analysis. On the other hand, 

the promise of increased specificity and high purity of isolated EVs makes researchers 
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aware of FACS and follow its evolution. Both of these disadvantages and advantages will 

be more thoroughly discussed below. 

 

1.7.4.1. Limitations 

1.7.4.1.1. Swarming detection 

First described in 2012, this term is used when more than one EV crosses the laser 

beam at the same time. This is due to the fact that EVs diameter is much smaller than the 

laser’s beam (Figure 1.11). The easiest way to avoid swarm detection is to dilute the 

sample which will decrease EVs concentration, making it less probable to have multiple 

EVs crossing the laser at the same time.112–114 

 

Figure 1.11 Schematic of swarming detection. Adapted from (111). 

 

1.7.4.1.2. Low sensitivity on scatter channels 

It was commonly accepted that a classical flow cytometer could detect polystyrene 

beads of about 200 nm, so this is considered the sensitivity of the instrument regarding 

the scatter parameters. Nowadays, new machines come with an improved sensitivity that 

may detect as low as 100 nm polystyrene beads. An important concept here is that 

polystyrene beads have a refractive index of 1.61, while EV refractive index is lower than 

1.4, meaning that in terms of EVs, the sensitivity proposed is about 180 nm. In order to 
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avoid this limitation there is the valid option of using a fluorescent channel to set the 

threshold instead of using the size detector (FSC).115–117 This approach may not be 

always possible because, at least for now, there is no such thing as a generic fluorescent 

label for all EV subsets.115  

 

1.7.4.1.3. Standardization problems 

 As different flow cytometers have different optical configurations and different 

sensitivities, data interpretation and data comparison between laboratories is not 

straightforward. Different research societies are currently working on it and they were able 

to create a software (available at www.exometry.com) to correct these differences 

between laboratories. The main problems are that this software is not easy to use and 

also from the thirty-three laboratories participating in those studies, about 1/3 was not 

able to detect EVs with ≤ 1µm. 

 

1.7.4.2. Advantages 

1.7.4.2.1. Specificity 

FACS is already widely used due to the capacity of detecting and differentiating 

specific fluorescent wavelengths even when their emission is quite close between them. 

When different subsets of EVs would be clearly characterized and specific fluorescent 

markers would be available, FACS could be a way to isolate a specific subset of EVs 

better than a bulk isolation method such as ultracentrifugation. 

 

1.7.4.2.2. Purity 

Everyone’s dream would be to be able to isolate different subsets of EVs the same 

way we are able to isolate different cell populations now. If, in the future, FACS achieves 

the same performances sorting EVs as sorting cells today, the EVs isolated by FACS 

could potentially be about 99% pure. 
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2. Aim of the project 

The aim of this project is to evaluate the possibility to consider FACS as a 

reference technology to isolate EVs and even their different subsets. 

 

3. Materials and Methods 
 

3.1. Sample Preparation 
 

3.1.1. Cell culture 

Retinal pigment epithelial 1 (RPE-1) cells (RRID: CVCL_4388) were used 

throughout. Cells were grown in DMEM GlutaMAX™ (Gibco® 31966) supplemented with 

10% Fetal Bovine Serum (FBS; Pan Biotech™) and 2 mM antibiotics (P/S: Penicillin and 

Streptomycin). Cells were infected with virus containing mCherry-CD9 (Squadrito ML et 

all118) and were sorted to isolate cells with high expression of mCherry. Aliquots of cells 

were frozen down after sorting and then each aliquot was thawed and only used for 4-5 

passage to keep high expression of mCherry-CD9. For passage, cells were washed once 

with PBS-EDTA (Bio Concept™ 5-32F00-I) and trypsinized (Gibco® 25300-054).  

 

3.1.2. Cell suspension 

Cells were passed as normally to 50% confluency and then media was switched 

to DMEM GlutaMAX™ with 10% GroPro® (Zenbio SER-HPL-GROPRO) and 2 mM 

antibiotic (P/S). After 24-48 hours at 37 °C, conditioned media was removed and spun 10 

minutes at 4000 rpm. Supernatant was carefully removed and saved for sorting.  

For the mass spectrometry analysis, two additional samples were prepared. The 

first one was conditioned media from cells that were exposed to OptiMEM® (OM; 

ThermoFisher™ Scientific CN: 31985062) supplemented with 2mM antibiotic (P/S) 

overnight. The second sample, was conditioned media from cells that were exposed to 
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the media for cell growth (DMEM GlutaMAX® with 10% FBS and 2 mM antibiotics) for 

48h.  

 

3.2. Fluorescent activated cell sorting (FACS) 

 

3.2.1. Equipment configuration 

A Beckman Coulter MoFlo Astrios EQ™ with 4 laser lines spatially separated was 

used for this work. It gives the possibility to go up to seventeen fluorescence parameters 

and two FSC due to a beam splitter option. SSC detection from the violet laser (405 nm) 

by changing the band pass filter in the first detector from that laser is another advantage 

of using this cell sorter. Being a jet-in-air cell sorter makes it faster and more suitable for 

long sorts when compared to a cuvette cell sorter. 

 

Laser BP Filter Laser BP Filter 
    

Violet        
405 nm      
55 mW 

795/70 
Yellow/Green 

561 nm     
200 mW 

795/70 
710/45 710/45 
664/22 664/22 
625/15 620/29 
600/14 586/15 
526/52   
488/59 

Red          
640 nm     
100 mW 

795/70 
  

Blue         
488 nm    
200 mW 

710/45 722/44 

526/52 671/30 

  

Figure 3.1 The Beckman Coulter MoFlo Astrios EQ™ optical configuration. 
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Different options like using or not the FSC beam splitter, the best laser line to 

capture the SSC, which nozzle to use or even what should be the best pressure applied 

were among the discussed and/or tested parameters.  

Final configuration was without the beam splitter on the FSC in order to collect as 

much light as possible on the FSC 1. This allowed us to have the best separation possible 

between the background and the smaller vesicles. No significant difference was found 

between using the SSC from the 488 nm or from the 405 nm laser, so we used the former 

to try to avoid as many configuration changes as possible from the default configuration. 

The 100 µm nozzle was used mainly due to convenience for the facility. This 

machine is used for a large number of users with different applications and changing a 

nozzle in a machine like this is very time consuming and laborious. Temperature applied 

was 4 ˚C for both sample and collection tubes.  

 

3.2.2. Sheath fluid  

The sheath fluid used is an 8x concentrate solution from BioSure® (Cat# 1027), 

diluted to 1x with MilliQ water and filtered using Stericup-VP 0.1 µm PES 1000ml 

Millipore® (Cat# SCVPU11RE). The same 1x PBS filtered at 0.22 µm was also tested 

 

3.2.3. Sample tubes  

BD™ polypropylene Falcon™ 15 mL tubes (Cat# 352097) were used for sample 

tubes. Home-made glass tubes were also tested. 

 

3.2.4. Commercial beads 

For size determination, Apogee Flow Systems™ mix beads (Cat# 1493) were 

used. Each vial consisted of beads with 8 different sizes, ranging from 110 nm to 1300 

nm. The 100 nm and the 500 nm beads are made of latex and emit a green fluorescence 

when excited at 488 nm. All the others are plastic made and non-fluorescent.   
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3.3. Western Blot 

Sorted samples were precipitated using standard acetone protein precipitation and 

resuspended in SDS sample buffer. The protein pellet was denatured by addition of SDS 

sample buffer with β-mercaptoethanol and incubation for 5-10 min at 95 °C. Samples 

were migrated on precast Novex 4-20% or 4-12% polyacrylamide gels (ThermoFisher 

Scientific™), then transferred to Novex nitrocellulose membranes (ThermoFisher 

Scientific™) using iBlot 2. Blocking and antibody steps were performed using 5% milk in 

PBST (PBS with 0.5% Tween-20). Primary antibody steps were incubated overnight at 4 

°C with gentle shaking while the membranes were incubated with secondary antibodies 

for 1 h at room temperature (RT). Antibodies used as primary included: anti-Alix 

(Covalab™ Cat# pab0204, RRID: AB_2716810); anti-Flotillin1 (homemade); anti-

Caveolin (Santa Cruz Biotechnology™ Cat# sc-894, RRID: AB_2072042); anti-α-actin 

(Millipore® Cat# MAB1501, RRID: AB_2223041); anti-GAPDH (Sigma-Aldrich™ Cat# 

G8795, RRID: AB_1078991); anti-α-tubulin (Sigma-Aldrich Cat# T5168, RRID: 

AB_477579); and anti-CD81 (Santa Cruz Biotechnology™ Cat# sc-166028, RRID: 

AB_2275895). Two different secondary antibodies were used, depending on the host 

species of the primary. For the first three, it was HRP-conjugated Donkey anti-Rabbit 

HRP conjugated (GE Healthcare™ Cat# NA934, RRID: AB_772206) and for the last four 

the secondary antibody chosen was HRP-conjugated Sheep anti-Mouse (GE 

Healthcare™ Cat# NA931, RRID: AB_772210). Three to five washes of PBST were 

performed before developing using the Super Signal West Dura solutions (Thermo Fisher 

Scientific™) and the Fusion Solo® chemiluminescence imaging system.  

 

3.4. Nanoparticle Tracking Analysis (NTA) 

The NanoSight® model used was the NS300 from Malvern Instruments Ltd™. The 

wavelength used was the 488 nm and the sample was injected using the NanoSight 

syringe pump, to ensure a constant flow rate.  
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3.5. Transmission Electron Microscopy 

 

3.5.1. Sample preparation 

The method selected was the Negative staining and the grids used for 

transmission electron microscopy (TEM) experiments were carbon film only, square mesh 

and standard thickness, from Electron Microscopy Sciences™ (Cat# CF400-Cu). They 

were glow discharged for 30s at 2.0^10-1 mbar. 

Once this first step was done, the grids were prepared using the subsequent 

negative staining protocol. First, 15 µL were pipetted from the sample into a square of 

laboratory parafilm forming a drop. The microscope grid was placed on top of it with the 

black side down for 2 minutes. The grid was transferred to a wash container with ddH2O 

for 5 minutes. During that time, a drop of 15 µL of uranyl acetate was pipetted into the 

parafilm. Once the 5 minutes were over, the grid was removed from the wash container, 

and the excess of ddH2O was dried out by slightly touching a bit of paper. The grid was 

placed on top of the uranyl acetate drop for 30 seconds. The grid were removed from the 

uranyl acetate, the excess was dried as before and left to dry upside down on the tweezer. 

After 10 minutes, the grid was dry and could be stored for later analysis. 

 

3.5.2. Equipment used 

The electron microscope used was a Tecnai™ Spirit BioTWIN® with 120KV. 

 

3.6. Mass Spectrometry 

Sorted samples were acetone precipitated as for Western blot but then 

resuspended in 50 mM Tris and 2% SDS, and quantified using Bicinchoninic Acid (BCA) 

protein assay (Interchim Uptima™ 40840A).  

Protein extracts were digested using the FASP procedure as previously 

described.119 Peptides were desalted using stageTips120 and dried using a vacuum 
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concentrator. For LC-MS/MS analysis, resuspended peptides were separated by reverse 

phase chromatography on a Dionex Ultimate™ 3000 RSLC nano UPLC system 

connected in-line with a Qexactive HF® (ThermoFisher Scientific™, Waltham, USA). Raw 

data were processed using Proteome Discoverer 2.2. Data analysis was further 

processed and inspected in Scaffold4 (Proteome Software™, Portland, USA). 
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4. RESULTS 

4.1. Is it possible to sort so small? 

In order to answer this question, the first approach was to attempt to sort small 

beads. We used the Apogee™ Mix beads for this experiment, because the 100 nm and 

the 500 nm beads have green fluorescence. In Figure 4.1 it is possible to see the gates 

used to sort these 2 bead sizes, when displaying FSC versus the green fluorescent 

channel.  

The value written below the gate’s name corresponds to the percentage of events 

inside the gate, within the total of displayed events.  

 

Figure 4.1 Gating strategy to sort Apogee beads with two specific sizes. 

 

After checking that the identification of both sizes was possible, we sorted both 

populations into different collection tubes and, to prove that we could correctly sort them, 

we performed a purity control, which is acquiring the collection tubes and verifying what 

we actually sorted. The results are displayed in figure 4.2. 

 



  

30 
 

 

 

 

 

 

 

 

 

 

Figure 4.2 Purity control results from the sorted beads. 

 

It is always important to remember, one of the problems with EVs is the 

background level so in order to have a more correct idea of what we have in the collection 

tubes, we must remove the background level from our analyses. (Figure 4.3) 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Purity control result after excluding the background level. 
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The previous picture shows that we can achieve about 80% purity when sorting 

100 nm and 500 nm beads with our instrument configuration and sorting strategy. 

To confirm these results using a different technique, we decided to try the 

NanoSight NS300®. The result from the NanoSight analysis from the 100 nm sorted beads 

is shown in the following figure (Figure 4.4). 

 

 

Figure 4.4 NTA analysis from the 100nm sorted beads. 

 

The NTA analysis has shown that around 67% of the sorted 100 nm beads had 

sizes between 80 and 120 nm. This NTA analysis confirmed the FACS data shown 

previously. 

 

67% 
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4.2. First Sorting Attempt 

 

4.2.1. Cells  

For our experiments we decided to use RPE-1 cells because we wanted nontumor 

cells and also because these cells are widely used and therefore, well reported on the 

literature.109,121 Our RPE-1 cells expressed CD9-mCherry (Fig.1) after infection with the 

construct described and characterized in Squadrito ML et al.118 As seen below, most of 

the CD9-mCherry fluorescence is punctate in appearance, belonging to vesicle-like 

perinuclear and cytoplasmic regions, consistent with endosomal localization. This is 

reassuring as CD9 is found in MVBs and specifically in ILVs, which is why it is also a 

favored exosomal marker. Some more diffuse CD9-mCherry staining can also be seen at 

the plasma membrane, consistent with CD9 having a cell surface role, as well. Overall, 

labeling CD9 with the mCherry fluorescent protein does not seem to disrupt its natural 

localization.122,123  

 

Figure 4.5 mCherry expression of the RPE-1 used cells. Photo taken by O. Sergeeva. 
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4.2.2. Gating strategy 

 

Encouraged by the results from the beads, we continued to try to isolate EVs, 

namely exosomes, from the cultured cells previously described.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Gating strategy applied on the sort. “mCherry neg” and “mCherry pos” populations were sorted. 
“mCherry pos” selected cells have a homogeneous dispersion regarding the relative size, FSC. 
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As a starting point, the strategy was to follow a simple gating hierarchy, by 

combining the SSC signal from the 405 nm laser with the fluorescent channel for the 

mCherry expression. Then, from this “EVs” gate, we plotted mCherry versus another non-

used fluorescent channel and we sorted those two populations: one that we called 

“mCherry neg” and the other called “mCherry pos”. On the third dot plot we could see that 

the particles inside the “mCherry pos” gate formed a single and homogeneous population 

in terms of size (FSC). 50.000 events from each population were collected. 

 

4.2.3. Western blot results 

We took those sorted samples and checked them for known exosome markers. 

We were able to observe a slight enrichment of different known EV markers (Alix, flotillin, 

tubulin, GAPDH, and caveolin) in the “mCherry pos” sorted vesicles as compared to the 

“mCherry neg” sorted vesicles. However, we could still see some of these markers in the 

“mCherry neg” sample as it could contain unlabeled exosomes or microvesicles that also 

contain Alix, flotillin, tubublin, GAPDH, and caveolin. Some other markers were not 

detected in either sample such as actin and CD81, which is not too surprising as different 

cells have different levels of these various markers. Two different results are shown below 

with both of them showing enrichment in the “mCherry pos” sample as compared to the 

“mCherry neg” sample for Alix, flotillin, and caveolin. 
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Figure 4.7 Western blot results from sorted EVs. 

 

At this point it was clear that we were sorting EVs, but we wanted to characterize 

our EVs by size.  We sorted identical populations as before but were consistently unable 

to get any accurate analysis from the NanoSight equipment, probably because the 

concentration of our samples was too low. 
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B 

To overcome this problem, we went back to flow cytometry and we ran the same 

Apogee beads that we had sorted before with the setting that were applied when we 

sorted EVs. 

  

 

 

 

 

 

 

 

 

Figure 4.8 Relative size comparison between mCherry positive sorted EVs and Apogee™ beads.  

 

 

 

 

 

 

 

 

 

 

Figure 4.9 (A) Apogee™ beads dispersion with new scatter settings. (B) Apogee™ beads sizes and 
fluorescence. Beads with sizes written in green emit green fluorescence. 
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Results from figure 4.8 have shown that those EVs sorted before had an 

approximate size of 500 nm or even bigger, due to the refractive index difference between 

EVs polystyrene or silica beads. EVs below 200 nm would fall below the threshold, making 

them impossible to see and consequently to sort. 

Based on those results, we realized that scatter settings needed further 

optimization in order to be able to see beads with size of about 100 nm. (Figure 4.9 A) It 

is possible to distinguish the different beads sizes based on their fluorescence due to the 

fact that 100 nm and 500 nm Apogee™ beads emit green fluorescence. 

 

4.3. Further optimization 

Looking at the last results from figure 4.9 (A), it became obvious that we needed 

to optimize our sorting conditions before being able to sort exosomes with high purity. 

Results that have determined the machine configuration and materials chosen are shown 

over this section. 

 

4.3.1. Using or not a beam splitter 

 The cell sorter used in this project enables us to use a beam filter that splits the 

light from the 488 nm laser in two (60/40). The main advantage is that we have two 

different detectors for the FSC, meaning we can use one of them to set the threshold and 

the other one to set a gate in order to define our sorting strategy.  

 

 

 

 

 

Figure 4.10 Schematic diagram of a beam filter localization and function. 
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On the other hand, splitting the light from the 488 nm laser decreases the amount 

of light arriving at each detector. In the case of EVs it is essential to get as much light as 

possible into the FSC detector to discriminate them from the background in terms of FSC.  

 

 

 

 

 

 

 

 

 
 

Figure 4.11 Median Intensity Fluorescence (MFI) of the background in the FSC channel. In A with the 488 
nm beam splitter and in B without it. In A, MFI= 4.05 and in B, MFI= 6.27. 
   

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Median Intensity Fluorescence (MFI) of the Apogee beads in the FSC channel. In A with the 
488 nm beam splitter and in B without it. Numbers 1 (300 nm), 2 (590 nm) and 3 (1200 nm) correspond to 
different beads size. In A, MFI 1= 64.9, MFI 2= 2699 and MFI 3= 33301. In B, MFI 1= 115, MFI 2= 5070 
and MFI 3= 62152. 
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These results have shown that removing the 488 nm beam splitter does not have 

a major impact on the background level. On the other hand, not using the beam splitter 

can be useful to better resolve small size populations from the background. Therefore, 

we chose to not use the beam splitter in further sorting procedures.  

 

4.3.2. Measure the SSC from the 488 nm or from the 405 nm laser 

From all the different tests to validate that the 405 SSC would be a better choice 

than the SSC from the 488 nm laser, none of them gave a clear conclusion. Some of them 

even seemed to point the 488 SSC as a better option. Due to these results, we have 

chosen to use the 488 SSC justified by the fact that it is one less change that we need to 

perform from the standard equipment configuration.  

 

4.3.3. Sheath fluid filtration at 0.1 or 0.22 µm 

 

 

 

 

 

 

 

 

 

Figure 4.13 Differences in the background between using 0.1 µm (A) or 0.22 µm (B) filtered PBS as sheath 
fluid. Both (A) and (B) display similar numbers of events. 
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Even though the FACS used in these experiments is already equipped with a 0.04 

µm sheath filter, differences in the background given from both PBS options tested were 

observed. The SSC from the 488 nm laser seems to be one of the most affected detector. 

Based on these results we decided to use PBS filtered at 0.1 µm as sheath fluid in our 

experiments. 

 

4.4. Final Sorting strategy 

After going through all the optimization steps, we set the final instrument 

configuration and the gating strategy. In terms of equipment: no beam filter; 488 SSC 

channel chosen; PBS filtered at 0.1 µm as sheath fluid; and, threshold on the mCherry 

channel. The gating strategy was the one in the following picture. 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 Definition of the mCherry positive gate according to the background level.  

 

We set the mCherry positive gate having as reference the background level for 

that channel (Figure 4.13). Then, from the population selected as “mCherry pos” we plot 

them showing 488 FSC versus 488 SSC. (Figure 4.14) 
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Figure 4.15 (A) Populations inside the “mCherry pos” gate dispersion in 488 FSC versus 488 SSC. (B) 
Background on these two channels. 

 

After that, we removed the background level and defined our sorting gate. (Figure 

4.15) 

 

 

 

 

 

 

 

 

 

Figure 4.16 (A) Populations inside “mCherry pos”. (B) Dot plot showing 2 populations easily distinguishable. 
In both pictures we are seeing all the information minus the background information selected in figure 4.15. 

 

A B 

A B 



  

42 
 

As we can see in figure 4.15 (B), we had two well defined populations above the 

background level. As we already knew from previous attempts, independently from the 

downstream application, we would always need to collect a huge number of vesicles. 

Despite the “P1” population being more closely aligned with theoretical exosome 

size, we decided to sort only the “P2” population. Since it represents about 94% of all the 

mCherry positive vesicles it should give us the opportunity to recover the necessary 

number of vesicles. 
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4.5. Transmission electron microscopy data 

Another method widely used to validate isolated EVs is TEM. Figure 4.16 was 

obtained from sorted EVs by FACS, using the optimized setting described in the last 

section. 

 

 

Figure 4.17 Visualization of sorted EVs by TEM. 18500x magnification was used in this picture. 
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When we analyzed this picture from the “P2” sorted population, we were able to 

see that the big majority of the identified vesicles seemed to have less than 125 nm in 

diameter, matching the size defined for an exosome. 

We have also sorted vesicles from the “P2” population to perform mass 

spectrometry analysis. This sort was performed on 2 different samples, one in OptiMEM® 

(OM) minimal media and the other one in regular cell media with FBS. In terms of total 

protein concentration, we obtained about 2 ug from the OM sample, and 10 ug from the 

FBS. This is not too surprising as the FBS sample may have had proteins from the serum 

that were sticking to the exosomes and therefore increasing the protein amount in the 

final sample. 
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4.6. LC – MS/MS results 

Figure 4.18 Raw data visualization using Scaffold® from Proteome Software™, Inc. 

 

We started the LC – MS/MS results by deleting all the proteins whose origin was 

“Bovine” because they would come from the serum. As expected, it was easily seen that 

the FBS sample had much more bovine proteins than the OM one. After this first step, we 

ended up with the following protein list. (Table 4.1)  
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The next step was to look for the identified proteins on the website www.uniprot.org 

in order to obtain the protein’s complete name and also their subcellular location / cellular 

component. With this information we then eliminated the proteins which where only 

present in the membrane, cytosol, nucleus or extracellular region. All of those are 

highlighted in red in table 4.1. 

 

 

 

Sample Gene Protein Extracellular region or secreted
OM SFN 14-3-3 protein sigma Extracellular exosome / Extracellular space
OM AMY1A Alpha-amylase 1 Extracellular exosome / Extracellular space
OM ENO1 Alpha-enolase Extracellular exosome / Extracellular space
OM ANXA2 Annexin A2 All endosomes / Extracellular exosome / Extracellular space
OM ARG1 Arginase-1 Extracellular region
FBS
OM
OM CASP14 Caspase-14 Nucleus / Cytosol
OM CAT Catalase Extracellular exosome / Extracellular space
OM CSTA Cystatin-A Nucleus / Cytosol
FBS
OM
OM DSC1 Desmocollin-1 Membrane / Extracellular exosome
OM DSC3 Desmocollin-3 Membrane / Cell junctions
OM DSG1 Desmoglein-1 Membrane / Cytosol
OM DSP Desmoplakin Nucleus / Extracellular exosome
OM FABP5 Fatty acid-binding protein 5 Extracellular exosome / Extracellular space
OM NCCRP1 F-box only protein 50 Cytoplasm / Extracellular exosome
FBS
OM
OM FLG Filaggrin Nucleus / Cytosol
OM FLG2 Filaggrin-2 Nucleus / Cytosol
OM ALDOA Fructose-bisphosphate aldolase A Extracellular exosome / Extracellular space
FBS
OM
OM GGCT Gamma-glutamylcyclotransferase Cytoplasm / Extracellular exosome
OM GSDMA Gasdermin-A Membrane / Cytosol
OM GAPDH Glyceraldehyde-3-phosphate dehydrogenase Extracellular exosome / Extracellular space
OM HSPB1 Heat shock protein beta-1 Extracellular exosome / Extracellular space
OM HSP90AB1 Heat shock protein HSP 90-beta Extracellular exosome / Extracellular space
FBS
OM
OM KPRP Keratinocyte proline-rich protein Cytoplasm / Extracellular exosome
OM PRDX1 Peroxiredoxin-1 Extracellular exosome / Extracellular space
OM PRDX2 Peroxiredoxin-2 Cytoplasm / Extracellular exosome
FBS
OM

Extracellular exosome / Extracellular space

HRNR Hornerin Extracellular exosome / Extracellular space

SERPINE1 Plasminogen activator inhibitor 1 Extracellular exosome / Extracellular space

Extracellular region

DCD Dermcidin Extracellular exosome / Extracellular space

FN1 Fibronectin Extracellular exosome / Extracellular space / Blood microparticle

CALML5 Calmodulin-like protein 5

LGALS7 Galectin-7
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Table 4.1 Genes, protein’s full name and localization of all identified proteins from Human origin. 

 

From this table we could conclude that the results from the OM sample where 

much better, not only due to the highest number of those which were considered “proteins 

of interest” by us, but also because all of the “proteins of interest” identified on the FBS 

sample were also present on the OM. 

Finally, we took all designated “proteins of interest” and we checked their known 

and predicted interactions using a web-based tool – String® (www.string-db.org). The 

results are shown in the figure 4.18. The following figure was obtained with no clustering 

criteria, meaning the network is shown as it is. The edge colors indicate the type of 

interaction evidence and it was obtained applying a minimum required interaction score 

of 0.400. 

OM S100A11 Protein S100-A11 Nucleus / Extracellular exosome
FBS
OM
FBS
OM
FBS
OM
OM TGM3 Protein-glutamine gamma-glutamyltransferase E Membrane / Extracellular exosome
OM TGM1 Protein-glutamine gamma-glutamyltransferase K Membrane / Extracellular exosome
OM TF Serotransferrin All endosomes / Extracellular exosome / Extracellular space
OM SERPINB12 Serpin B12 Membrane / Extracellular space
OM SERPINB4 Serpin B4 Cytoplasm / Extracellular space
FBS
OM
OM XP32 Skin-specific protein 32 Membrane
FBS THBS1 Thrombospondin-1 ER / Extracellular space
OM TPI1 Triosephosphate isomerase Cytoplasm / Extracellular exosome
OM VCAN Versican core protein Lysosome / ER / Golgi
FBS
OM

ALB Serum albumin All endosomes / Extracellular exosome / Extracellular space

AZGP1 Zinc-alpha-2-glycoprotein Nucleus / Extracellular exosome

Nucleus / Extracellular exosome

S100A8 Protein S100-A8 Nucleus / Extracellular exosome

S100A9 Protein S100-A9 Nucleus / Extracellular exosome

S100A7 Protein S100-A7
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Figure 4.19 String analysis from the identified proteins, showing the interactions between them. 
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Another analysis done to the “proteins of interest” was to see how many of them 

belong to the top 100 protein list that are often identified in exosomes. (www.exocarta.org) 

Interestingly, 9 of 35 of our “proteins of interest” belong to the top 100 exosomes 

proteins listed, with EXO1, ANXA2 and GAPDH being in the top 10.  
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5. Discussion and Conclusion 

 

At the end of this work, we were able to establish a successful method to isolate 

exosomes using FACS using a shared FACS equipment in a core facility.  

It is important to keep in mind that we faced different limitations that should be 

solved in the near future and would make this process much easier and accurate. Starting 

with new cell sorters with a higher resolution and sensitivity, with features more adapt to 

this kind of isolation. New controls with similar refractive index to exosomes are being 

discussed and would be a really important tool as well as fluorescent markers specific for 

exosomes. 

As there are no specific markers yet to clearly identify exosomes, it is 

recommended to use different techniques to describe as many properties as possible 

from the sorted EVs to help on their identification.  

Having this requirement in mind, we have started to use the NTA equipment to 

classify our sorted EVs in terms of size, but we soon realized that our sorted samples 

were, by far, under the concentration limit from the equipment (1x10^6 to 1x10^9), 

specially knowing from other groups that state that 1x10^7 should be the minimal 

concentration in order to get feasible results. It was due to this fact that we turned to the 

electron microscopy to characterize the size of our vesicles. 

From our negative staining TEM, we were able to get an idea about the size of the 

EVs sorted. Nevertheless, there is space to improvements, especially because the 

contrast should be much higher than what we had and also the quality of the focusing can 

definitely be better. Other option would be to use Cryo-Electron Microscopy (CryoEM) 

that would give us less bias and more detailed picture, but on the other hand, it is a 

technique which is highly time consuming and requires a long training period before being 

able to use the equipment in an independent matter. 

The results from the LC – MS/MS were really encouraging, not also because with 

a relative amount of sorted EVs we were able to identify a fair number of different proteins 

but also, because it seems that when using the OptiMEM® media we have much better 
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results when comparing to the regular FBS alternative. Besides being able to exclude all 

the bovine proteins, as expected, we also identified all the human proteins presented in 

the FBS sample in the OM one. In addition, another 25 proteins than seem to be linked 

with the exosomal pathway were identified only in the OM sample, being proteins well 

correlated with exosomes like: EXO1, ANXA2 and GAPDH among them. There is a good 

chance that the FBS is masking the real exosomal proteins as having 10% FBS in the 

sample gives the bovine proteins higher concentration to be able to interact and coat the 

smaller amount of exosomes in the sample. Of course more replicates of this experiment 

must be done in order to validate this results.  

In the end, we were able to characterize our FACS sorted exosomes by TEM, and 

LC – MS/MS. For all these techniques we obtained results that showed that our FACS-

sorted exosomes were consistent with real exosomes by size and composition. Having 

all of these techniques at our disposal made it easier to better troubleshoot the sorting 

method. 

Having the exosomes labeled with a fluorescent protein was another important 

factor to be able to demonstrate that it is possible to sort EVs that fit in the exosomes 

size-range. Nevertheless, more needs to be done to show that it would also be posible to 

isolate endogenous exosomes, which is indeed the main goal for many researchers. 

All of these techniques are also necessary for many projects outside the EV field 

independently and their use and mastry is beneficial for other future applications.  

As future steps, once we have proved that our methodology works as our results 

seem to show, we would have to compare it with the “gold-standard” that is still the 

ultracentrifugation. Ideally we would like to compare both not only in terms of amount of 

exosomes recovered after the isolation process from similar samples, but also in terms 

of “purity”, meaning which is the proportion of exosomes within the total number of EVs 

isolated. If we do a parellel with cells isolation procedures, is this ability to sort specific 

particles within a diverse population that makes FACS a powerful method in comparisson 

with all the other avalable techniques. 
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