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Abstract: Since the relative role of local and regional abiotic factors on the Odonata diversity in
rainforest streams is still poorly understood, we evaluated the effects of these factors on adult
Odonata (Insecta) from preserved and altered streams in the Amazonian region. Adult Odonata were
sampled in 98 streams in the Eastern Amazon, Pará, Brazil. Six variables were used to measure local
environmental factors: habitat integrity index; mean canopy over the channel; and four physical
and chemical descriptors of the water. To measure regional environmental factors, six variables
were also used: altitude gradient, three bioclimatic variables and two percentage forest variables.
In partial redundancy analysis, both abiotic factors (local and regional) were important to explain the
variation in the Odonata community. The Odonata community can be influenced by regional and local
factors. The relationship between Odonata and the local (e.g., integrity, canopy cover, and physical
and chemical descriptors of the water) and regional (e.g., bioclimatic and forest cover variables)
environmental variables recorded in this study has important implications for the use of these
organisms to monitor small streams of the Eastern Amazon. The scale at which habitat is measured is
an important issue in community structuring studies considering the rapid environmental changes.
It is of great importance to consider the different scales in studies assessing community structure,
once an adequate habitat must meet the ecological needs of all stages of the life of the Odonata.

Keywords: Anisoptera; bioclimatic variables; forest cover; landscape; rainforest streams; variance
partitioning; Zygoptera

1. Introduction

Linking geographic variation of animal communities with variation in local and regional abiotic
variables is a common objective in community ecology studies [1,2]. Understanding the structure of
these associations in the tropical region is extremely important because of the great biodiversity, now
facing increasingly frequent environmental changes [3,4]. Therefore, understanding the primary factors
responsible for determining community structure and species distribution has become one of the main
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objectives in ecology [5] under the conservationist perspective [4]. In tropical regions, local diversity
can be regulated by local and regional factors [6]. Many papers have addressed the effects of local
factors on diversity [7,8] or interactions such as competition, predation, and parasitism (e.g., [9,10]).
Still, in recent years, factors that occur in larger scales have also been identified determinant for the
richness of local communities [11].

The properties of a site are often a consequence of external processes or dynamics, such as
migration and landscape effects. The migration of multiple species among sites connects neighboring
communities along environmental gradients, causing variations in the metacommunity structure
established in the region [12]. The new habitats in a landscape (regional scale) are colonized by
individuals from the regional pool of species that maintain the local populations through dispersal.
The establishment of organisms, populations, and communities depends on local environmental
conditions and interactions with previously established species [13].

There is a long history of studies in aquatic environments that have assessed the relationship
between biodiversity and environmental gradients for aquatic macroinvertebrates [14,15] and fish [16].
Macroinvertebrates can be influenced by both local (e.g., substrate and physical-chemical characteristics
of the water), and regional factors (e.g., climate, altitude and latitude variation; [17]). Therefore, species
composition may vary depending on the environmental characteristics of each system, or following
geographical distances and dispersal limits of the landscape [18]. In addition, the patterns associated
with local and regional factors may be altered by changes in the land use of areas surrounding
aquatic systems, causing biodiversity loss [14]. Any change in local or regional factors may affect the
composition and distribution of aquatic organisms [19].

The distribution, richness, and composition of the Odonata (Insecta) are known for being closely
associated with changes in environmental resources [20]. Odonata have relatively long lifespans in
comparison to many other insects (e.g., most Dipterans) [21]; up to one year in the tropics [22]. They are
widely distributed in aquatic systems [23,24], and present a dual life cycle, where larvae are aquatic and
adults are terrestrial [25]. The fact that Odonata larvae and adults occupy two different environments
suggests that this group can provide valuable information on changes occurring in both aquatic and
terrestrial environments [26].

Studies have shown the importance of environmental gradient effects on the functional traits of
macroinvertebrates (e.g., [27–29]). Environmental filters can select the species that will occur in a given
location due to limiting environmental conditions such as light, temperature, and humidity [30].
This approach of environmental filters [31,32] has been followed in studies on freshwater
macroinvertebrate assemblages [33,34]. These studies have generally considered multiple nested
scales, with the assumption that factors at different scales are hierarchically structured, and that factors
at larger scales determine, at least in part, those at smaller scales [35–37]. Still, the relative role of
landscape and local environmental variables on the diversity of Odonata in tropical streams are poorly
understood, possibly because previous studies did not use large enough scales [15].

In this context, our objective was to evaluate the effects of abiotic factors to local (e.g., quantitative
physical variables of the stream) and regional scales (e.g., altitude, bioclimatic variables, and forest
cover) on Odonata adult communities in preserved and altered streams in the Eastern Amazon. We
hypothesize that both sets of abiotic factors structure the adult community of Odonata in the Eastern
Amazon. Whereas, different studies have reported the association of Odonata species or groups with
local abiotic factors (e.g., [38,39]), climate (e.g., [40]), and surrounding land use conditions (e.g., [41,42]).
We expect the Zygoptera community to be structured by local/regional factors in greater intensity than
the community of Anisoptera. The low dispersal capacity of species with smaller body sizes, such
as the Zygoptera species [43], should increase dependence on environment conditions (e.g., physical
and chemical variables, river channel and vegetation structure) and, consequently, greater habitat
specialization [44]. In contrast, the high vagility of Anisoptera species (individuals of larger body size),
provides species with the ability to leave environments with unfavorable environmental conditions.
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2. Materials and Methods

2.1. Study Areas

Two regions of the Eastern Amazon region were prospected, being one in the municipality of
Paragominas, and the other in the municipalities of Santarém/Belterra, Pará, Brazil. The municipality
of Paragominas (1.9 Mha) is located in the northeast of the state of Pará (02◦59′51′′ S, 47◦21′13′′ W).
The mean annual precipitation is 1,766 mm/year, the mean annual temperature is 27 ◦C and the
relative humidity is 81% [45]. The Santarém/Belterra municipalities (1 Mha; 02◦26′22′′ S, 54◦41′55′′ W
and 02◦41′54′′ S, 54◦53′18′′ W, respectively) are located in the western region of the state of Pará,
with a slightly higher rainfall (on average 1920 mm/year), mean annual temperature of 25 ◦C and
relative humidity of 86% [46]. The prevailing climate of Paragominas is “Af”, of Santarém is “Am”,
and of Belterra is “Amw” according to the Köppen classification, and are characterized as tropical
rainy with a short well-defined dry season (Figure 1). The shortest distance between sites of the two
areas was 1100 km and the largest was 2210 km, which ensures a large, regional-scale, variation of
environmental variables.
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Figure 1. Drainage network and streams sampled in the regions of Santarém/Belterra and Paragominas,
Eastern Amazon, Pará, Brazil. (Source: map developed using the software ArcGIS [47].

The vegetation of the Paragominas region is a dense ombrophylous forest [45], and of Santarém and
Belterra is a tropical rainforest with limited areas of Amazonian savannas located in the northwestern
region [45]. Both regions exhibit a land use gradient [45,48,49] encompassing preserved and altered
areas (Figure 2).
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Figure 2. Land use gradient (from agriculture to secondary forest; that demonstrates altered
environments) and primary forests (that demonstrates preserved environments) in the regions of
Santarém/Belterra and Paragominas municipalities, Eastern Amazon, Pará, Brazil.

2.2. Data Sampling

2.2.1. Biological Sampling and Laboratory Procedures

A total of 98 streams (streams ranging from first to third order, an average of 2 to 5 m wide) were
sampled in the two regions during the dry season; 50 were in Paragominas (from June to August 2011)
and 48 in the region of Santarém and Belterra (from July to August 2010). The rainy season (December
to May) was not included in the study because of the ecophysiological requirements of Odonata (high
precipitation may reduce the effectiveness of sampling procedures; see [23,50,51]. In addition, some
studies have also shown that the greatest richness and abundance of adult Odonata occur in the dry
season [49,52,53]. The shallower depth of the water column during this period causes these insects to
focus on smaller areas, which allowed us to find and capture them more easily [54,55]. The focus on a
single seasonal period also reduces sampling “noise” in the analyses and results [56].

A 150 m reach was delimited in each stream. Each reach was subdivided into 10 longitudinal
sections of 15 m each, separated by transects margin to margin (see [45]). The longitudinal sections of
15 m were subdivided into three segments of five meters each, and only the first two segments from
each section were sampled, amounting to 20 segments of 5 m for each stream (Figure 3).

Air temperature and humidity were measured in a shaded location near each stream. The samples
were collected between 10:00 a.m. and 2:00 p.m., when the sun rays reached the stream, minimum
conditions to ensure that the different adult Odonata groups (thermal conformers, heliotherms, and
endotherms) were active at the collection time [50,51,57]. The sighted adult dragonflies were collected
using a butterfly net (40 cm Ø) following the collection protocol used in Oliveira-Junior et al. [49] and
conditioned following Lencioni [58].

Taxonomic keys and illustrated guides were used to identify the specimens [58–64]. The specimens
identified were compared with identified material from the collection of the Museum of Zoology of the
Federal University of Pará, Brazil, and then were stored as voucher material.
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Figure 3. Schematic drawing of the division into segments of the 150-m stretch for Odonata sampling
in streams in two regions (Santarém/Belterra and Paragominas municipalities), Eastern Amazon,
Pará, Brazil.

2.2.2. Local Abiotic Factors

In total, six variables were used to measure local environmental factors: habitat integrity index
(HII); mean canopy over the channel; and four physical and chemical descriptors of the water (see
Table S1).

The HII [65] was used to quantify the integrity of each stream and classify it in preserved and
altered streams. This index has 12 items that assess the environmental conditions of streams, visually
evaluating the following characteristics: land use pattern adjacent to the riparian vegetation; width
of the riparian forest and its preservation state; state of the riparian forest within a 10 m area around
the stream; condition of the channel as to the type of sediment and presence of retention devices;
structure and wear of stream margins; and river bed characteristics (substrate, aquatic vegetation,
debris, and disposition of rapids, pools, and meander areas). Each item is made up of four to six
alternatives. These alternatives are ranked in an increasing integrity order, and the index value
ranges from 0 (lowest integrity) to 1 (highest integrity). This index is directly related to the degree of
environmental conservation and has been successfully used in other studies to evaluate aquatic system
integrity [41,66–68].

Mean channel shading was estimated using a convex densitometer at the central point of the
channel, where four measurements were taken, upstream, downstream, left, and right banks. Canopy
cover has often been reported as one of the main physical characteristics of the habitat that influences
the distribution pattern of Odonata in tropical streams [39,42].

In addition, four physical and chemical descriptors of the water were measured in each stream
using a U-51 model Horiba® multiparameter probe: water temperature (◦C); electrical conductivity
(µS/cm), dissolved oxygen (mg/L), and pH. Several studies have demonstrated the importance of
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physicochemical variables of the watercourse for structuring aquatic insect communities, such as water
temperature, electrical conductivity [39,69], dissolved oxygen [70], and pH [71].

2.2.3. Regional Abiotic Factors (Bioclimatic and Soil Cover Variables)

In total, six variables were used to measure regional/landscape environmental factors: altitude
gradient, three bioclimatic variables and two forest percentage variables (see Table S1).

The altitude gradient and three bioclimatic variables used ((1)—annual mean temperature;
(2)—annual precipitation; and (3)—coefficient of seasonal rainfall variation) were obtained from
the WorldClim database, version 1.4. The resolution used was approximately 1 km at the equator
(30 arc-seconds). WorldClim provides 19 bioclimatic variables (see http://www.worldclim.org/; [72])
widely used in research studies.

Altitude has been significantly related to the taxonomic variability of macroinvertebrates in
the tropics [73]. Bioclimatic variables have often been used in studies using species distribution
models [72,74,75] and can influence the characteristics of the landscape and as well as community
dynamics [74]. For example, the annual mean temperature can potentially influence the dynamics of
aquatic populations [74,76]; annual precipitation is of great importance in structuring macroinvertebrate
communities in tropical streams [74,77]; and coefficient of seasonal rainfall variation, can be considered
an indirect measure of environmental variability in the system [74].

Land cover data were obtained by interpreting LandSat images, made available by the
environmental organization named Amazonian Institute of Man and Environment (IMAZON). Forest
cover was defined by 200 m buffers, delimiting the landscape where the percentage of coverage was
estimated. The proportion of habitats in preserved environments or of natural cover is among the main
variables that explain species distribution and community structure in natural environments [39,42,78].

2.3. Data Analysis

To evaluate the distinction between the conservation categories of the streams, the values of the
12 items of the HII that describe the prevailing environmental conditions of the study streams were
summarized in a principal component analysis (PCA). To determine which principal components
should be retained for analysis, we used the randomness obtained by the broken-stick model [79].
To test whether the conservation categories (preserved and altered) were significantly different from
one another, the scores generated by the PCA were tested using Student’s t-test (p < 0.05).

To test differences in abundance and species richness based on conservation categories of streams,
we used inference based on the confidence interval of 95%, in which the groups were considered
different when the confidence intervals did not overlap between groups [80].

A principal coordinates analysis (PCoA) was used to summarize the species composition in the
environments according to the conservation category (preserved and altered), using the Bray-Curtis
dissimilarity index [81]. A multivariate analysis of permutational variance (PERMANOVA; pseudo-F)
was performed with 9999 replications [82] to test for significant differences in species composition
among conservation categories. The PERMANOVA does not assume normality or homoscedasticity
and allows to test the interactions between the factors. However, significant results obtained using
the PERMANOVA may indicate differences due to between-group dissimilarity as well as to the
variation of within-group dispersion. The potential role of each of these factors was evaluated through
a permutational dispersion multivariate analysis (PERMDISP; Pperm), using the distance from each
sample to the mean of the group [83], also using the Bray–Curtis distance.

A partial redundancy analysis (pRDA) [81] with the matrices of environmental variables (local and
regional) and of species composition (Odonata, Anisoptera, and Zygoptera) was conducted to evaluate
the relative importance of local and regional factors on the Odonata community. The variation in
community structure was partitioned in the following fractions: [LO] pure local environmental factors
(variance explained only by local environmental variables, and not shared with regional variables); [RE]
pure regional environmental factors (variance explained only by the landscape variables, regardless of

http://www.worldclim.org/
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local environmental variables); [RE:LO] a fraction of variation shared by regional and local variables; and
[RS] a fraction or residue unexplained by local or regional environmental variables [84]. The significance
of each fraction was tested by permutation tests using 999 randomizations [85]. All environmental
variables, except pH, were Z-transformed, homogenizing the scales of the different variables [86].

All analyses (with biotic data) were performed considering the order data as a whole (that is,
total Odonata) and by suborder separately (that is, Anisoptera and Zygoptera). All analyses were
performed with routines of the R software [87], using the vegan, Varpart, labdsv, and mgcv packages.

3. Results

3.1. Conservation Categories of Streams

The HII values varied from 0.15 to 0.99. Based on this variation, the 98 streams were classified in
two arbitrary categories of conservation (Figure 4): altered (HII = 0.15–0.69; 56 streams; Figure 4B)
and preserved (0.70–0.99; 42 streams; Figure 4C). The separation of the streams into two conservation
categories was significant (t = 13.292; df = 96; p < 0.001).
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Figure 4. (A) Ordination of environmental variables (values of 12 items of habitat integrity index
(HII)); and example of stream conservation category (B) altered and (C) preserved in two regions of
Eastern Amazon, Pará, Brazil. (WRF = width of the riparian forest; DPRF—degree of preservation of
the riparian forest; CRF10—condition of the riparian forest within a radius of 10 m).

The association of the two PCA axes represented 58.23% of the environmental variation. Only the
first axis was analyzed, given that the second axis did not present an observed value greater than
that estimated by the broken-stick procedure (which was adopted whenever a situation of this type
arose). The first axis explained 45.04% of the results (eigenvalue = 5.40). In this analysis, the samples
were separated by the conservation category. The preserved streams had a positive relationship with
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environmental integrity, being grouped in the direction of the highest values for the width and degree
of preservation of the riparian forest (Figure 4A). The impacted streams were characterized by a
significant loss and changes in the state of preservation of the riparian forest, with a group of these
streams being associated negatively with the integrity of this vegetation (Figure 4A).

It is important to note here that the variables that most contributed to the formation of the first axis
are closely related to the physical structure of the riparian vegetation. These variables are associated
negatively with the level of conservation of these environments, including the width of the riparian
forest (WRF), degree of preservation of the riparian forest (DPRF), and the condition of the riparian
forest within a radius of 10 m (CRF10) (Figure 4A).

3.2. Abundance, Species Richness and Composition of Odonata

A total of 3588 adult Odonata specimens were collected, encompassing nine families, 49 genera,
and 134 species. The suborder Zygoptera was represented by 2415 individuals, distributed among
six families (Calopterygidae, Coenagrionidae, Dicteriadidae, Megapodagrionidae, Perilestidae, and
Polythoridae), 20 genera, and 71 species. Coenagrionidae was the most abundant Zygoptera family
(n = 1155), and more than 50% of this total (n = 624) is in preserved streams (Table S2). Anisoptera
was represented by 1173 individuals within three families (Aeshnidae, Gomphidae, and Libellulidae),
29 genera, and 63 species. Libellulidae was the most abundant Anisoptera family (n = 1154), and 83% of
this total (n = 963) is in altered streams (Figure 5; see Table S2, for an overview of all sampled species).
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Figure 5. Abundance of Odonata families (Zygoptera-Z and Anisoptera-A), per stream conservation
category (preserved and altered) sampled in two regions of Eastern Amazon, Pará, Brazil. Bars
represent the percentage of abundance (according to Y axis), and numbers within bars represent
absolute abundance.

No differences in abundance and richness of Odonata (Anisoptera and Zygoptera) species were
observed between the conservation categories of streams (Figure 6A,B). Considering the results for
each suborder, Anisoptera had the highest abundance and richness in altered sites, which averaged 13
individuals and three species more than the preserved sites (Figure 6C,D). For Zygoptera, abundance
and richness were higher in preserved sites, which averaged 12 individuals and three species more
than altered sites (Figure 6E,F).
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Figure 6. Abundance and species richness (average ± confidence interval 95%) by site conservation
status: (A) abundance Odonata; (B) species richness Odonata; (C) abundance Anisoptera; (D) species
richness Anisoptera; (E) abundance Zygoptera; and (F) species richness Zygoptera.

The Odonata species composition (considering Anisoptera and Zygoptera together) differed
significantly between the two conservation categories (pseudo-F = 10.323; p = 0.001) (Figure 7A).
The same pattern was observed separately for Anisoptera (pseudo-F = 7.110; p = 0.001; Figure 7B) and
for Zygoptera (pseudo-F = 7.937; p = 0.001) (Figure 7C). The species composition also differed between
groups, as shown by the difference in heterogeneity recorded for Odonata and for Zygoptera (F = 8.029;
Pperm = 0.012; F = 3.115; Pperm = 0.001 respectively). Odonata composition was more heterogenous in
altered than preserved sites, while the opposite pattern was recorded for the Zygoptera. No difference
was recorded for Anisoptera (F = 3.524; Pperm = 0.103).
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and altered) sampled in two regions of Eastern Amazon, Pará, Brazil.

3.3. Response of Odonata Communities to Local and Regional Abiotic Factors

Variance partitioning showed that the effects of local and regional abiotic factors on the composition
of dragonfly species differed (Table 1). The component shared by the two sets of abiotic variables
[RE:LO] played an important role in determining the variation of Odonata species composition (total,
Anisoptera and Zygoptera) (R2

adj. = 0.24), followed by the pure local component [LO] (R2
adj. = 0.12;

p < 0.001), and finally, by the pure regional abiotic component [RE] (R2
adj. = 0.07; p < 0.001) (Table 1).

The component shared by the regional and local abiotic factors [RE:LO] also played an important
role in determining the composition of Anisoptera species (R2

adj. = 0.15), followed by the pure local
abiotic factors [LO] (R2

adj. = 0.11; p = 0.001), and by the pure regional abiotic factors [RE] (R2
adj. = 0.03;

p = 0.036) (Table 1). The same pattern was observed for Zygoptera ([RE:LO] R2
adj. = 0.24; [LO]

R2
adj. = 0.10; p < 0.001; [RE] R2

adj. = 0.08; p < 0.001) (Table 1).

Table 1. Variance partitioning (with associated p Values) using distance matrix of total Odonata,
Anisoptera, and Zygoptera species, in two regions of Eastern Amazon, Pará, Brazil. [LO] Pure local
abiotic factors; [RE] Pure regional abiotic factors; [RE:LO] variance component shared by regional
and local abiotic factors; [RS] variance that is not explained by either local or regional abiotic factors.
Adjusted coefficient of determination (Adj. R2).

Variance PartitioningOrder/Separate Suborders
Adj. R2 p

Odonata
Local [LO] 0.046 0.001

Regional [RE] 0.063 0.001
Shared [RE:LO] 0.100
Residual [RS] 0.790
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Table 1. Cont.

Variance PartitioningOrder/Separate Suborders
Adj. R2 p

Anisoptera
Local [LO] 0.037 0.002

Regional [RE] 0.040 0.001
Shared [RE:LO] 0.084
Residual [RS] 0.837

Zygoptera
Local [LO] 0.022 0.001

Regional [RE] 0.069 0.001
Shared [RE:LO] 0.093
Residual [RS] 0.813

4. Discussion

The structure of the Odonata community (total Odonata, Anisoptera, and Zygoptera) are correlated
to the local and regional abiotic factors, corroborating our hypothesis. Additionally, we observed that
only the combination of both factors can explain this variability. Thus, the combination of the local
and regional factors is key determinants of the richness and abundance of Odonata species in the
studied regions.

Many studies on metacommunities have pointed out that a large percentage of variability remains
unexplained [88–90]. In our results, almost all of the environmental data explained over half of
the composition variability for Odonata, Zygoptera, and Anisoptera. This shows the importance of
the environmental component in structuring dragonfly communities. Different processes operate at
different spatial scales, and processes that operate on small scales can influence large scale patterns [91].
This may explain the importance of both local and regional factors in determining the structure of
Odonata communities.

Local environmental factors have already been identified as important for the biotic structure and
organization of aquatic communities [15,42,92,93]. For example, the integrity of the streams proved
to be an important factor in structuring the two suborders, but with opposite results. Zygoptera
species were sensitive to changes in the physical integrity of the environments, presenting higher
abundance in preserved streams, while Anisoptera species presented higher abundance in altered
streams. This pattern has been a recurrent in studies on Anisopterans [38,41,42,49,67,94]. Another
factor corroborating this argument is the fact Zygoptera species have been associated with more
pristine environments while Anisoptera species are associated with open or modified environments in
most of the studies that evaluated these orders as bioindicators of environmental quality [38,49,67,94].

Riparian vegetation is highly related to stream integrity and has a strong effect on the Odonata
community. Riparian vegetation removal has a negative effect on the abundance and richness of
Zygoptera species, many of which are highly dependent on areas covered by dense vegetation.
Zygoptera species are small and slim bodied and are more subject to overheating and desiccation
because of their high surface:volume ratio, making these individuals more sensitive to environmental
variations due to ecophysiological limitations [23,95], and consequently, also more restricted to shaded
areas [15]. In contrast, the removal of riparian vegetation may increase the abundance of Anisoptera
species. This suborder encompasses heliothermic species. Consequently, their abundance is highly
dependent on solar radiation [96], necessary for warming and to begin their activities [50,95,97].
As such, Anisoptera species tend to avoid shaded areas [96,98,99]. This was the case of Erythrodiplax
fusca (Rambur, 1842) and Orthemis discolor (Burmeister, 1839) sampled in this study, which normally
avoids these areas.

The high local variability of the streams demonstrates the importance of micro and mesoscale
processes in the ecological structuring of benthic communities in different mesohabitats [100,101].
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The functional structure of benthic invertebrate communities is significantly related to local variables,
being the functional variability of stream segments largely dependent on the microhabitat [102].

Many Odonata species require specific habitat characteristics (usually most Zygoptera; [23,103]).
The local environmental conditions tend to be more determinant for the distribution of these specialist
species, which leads to the inference that species selection is a key process in determining the structure
and dynamics of these communities [104]. This corroborates with other studies evaluating the influence
of habitat on the characteristics of the communities that Odonata, in which they identified that some
species are associated with specific habitat types [49,105].

The absence of vegetation can lead to increased water temperature [106]. Thus, the reduced
richness of Zygoptera species may be a reflection of the removal of the marginal vegetation of
these habitats, rather than of the water temperature itself [42,49]. Several studies have shown
that Odonata diversity is affected at a local scale mainly due to changes in vegetation [42,107], the
integrity of the water body [53,108], physical and chemical habitat variables [53,70], and anthropogenic
changes [25,39,41,42,49], as a consequence of the ecophysiological demands of the group. For example,
electrical conductivity may indicate the presence of inorganic nutrients that stimulate algal and
macroinvertebrates growth in Amazonian streams, thereby increasing food for predators, such as
Zygoptera larvae [109]. The amount of wood in the riverbeds also influences the richness of Zygoptera
species, probably because these species present epiphytic or endophytic oviposition [53].

At regional level, variables such as precipitation and altitude also have been recorded as important
in structuring macroinvertebrate communities in tropical streams [77,110]. Precipitation may affect
the dynamics and hydrologic patterns of running waters [111,112]. Consequently, the hydrologic
dynamics affect the structure of aquatic macroinvertebrate communities [113]. Bispo et al. [77] and
Huamantinco and Nessimian [114] indicate that seasonality in rainfall distribution is an important factor
in determining the diversity of invertebrates in streams. Differences in morphology and behavioral
and physiological traits of species along climatic gradients are common [115,116]. Regions with similar
climatic characteristics should favor organisms with similar ecological characteristics, whereas regions
under different climate should favor organisms with different characteristics [115,116]. Consequently,
morphological traits and species composition must change with climatic changes [117,118]. However,
at large spatial scales, Odonata variability may be related to distinct precipitation patterns, such as our
study area (1586 to 2269 mm/year). The characteristics of aquatic environments (e.g., physicochemical
variables of water) can be influenced by the runoff of precipitation throughout the local drainage basin,
consequently affecting species composition.

The number of species, and their frequency of occurrence may decrease with increasing
altitude, mainly due to the high temperature variation associated with height [119]. However,
the relationship between species richness and altitude is not observed between areas with small
altitudinal differences [120], such as our study area (4 to 163 m). Therefore, the altitudinal differences
are possibly too small among the streams sampled in this study and therefore may have had no effect
on the adult Odonata community.

In general, the Odonata composition may be influenced by regional (e.g., water limitation,
temperature, and environmental heterogeneity; [121]) and local factors (e.g., physical and chemical
characteristics of the water, canopy cover, and human impact; [41,42,49,69]). This corroborates with
studies in neotropical regions which reported that the local factors (e.g., width, depth, canopy, flow,
and cover) as well as factors operating on a larger scale (e.g., altitude and precipitation) can explain the
variability in benthic communities structuring [104].

In this context, considering the accelerated climatic changes, the scale in which habitat is measured
becomes a relevant matter to understand community structure. To understand how communities vary
across landscapes or geographic regions (assessing species composition among communities, spatial
heterogeneity within and between communities) and the degree of ecological affinity between species
and environmental factors (local and regional) is of extreme importance for an effective assessment of
diversity maintenance.
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5. Conclusions

The effects of local and regional abiotic factors interact in structuring Odonata communities.
The relationship between the Odonata community and habitat characteristics identified in this study
has important implications, as the use of Odonata for monitoring in small streams of the Eastern
Amazon is considered. The contrasting responses of the two Odonata suborders (abundance, species
richness, and composition) related to the environmental gradient, provide a reliable tool for assessing
aquatic habitat changes. Understanding these patterns is a crucial tool to plan long-term strategies for
the conservation of aquatic biodiversity. Thus, the recovery of aquatic ecosystems becomes a priority
to restore local conditions (restoring them to the landscape), mainly through reconstruction of the
physical conditions (e.g., reforestation) and adjustment of the ecological conditions of the waterbodies.
Finally, we recommend considering different scales (local and regional) in future studies, since an
adequate habitat must meet the ecological needs of all the life stages of these individuals.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4450/10/12/446/s1,
Table S1: Values obtained for the environmental variables used (regional and local), by stream (ST) sampled in
two regions (Santarém—STM and Paragominas—PGM) of the Eastern Amazon, Pará, Brazil: Local: HII (habitat
integrity index); WAT (water temperature ◦C); ECO (electrical conductivity µS/cm); DIO (dissolved oxygen mg/L);
pH (hydrogen potential); CAC (canopy cover%); Regional: FOC (% primary forest at catchment buffer scale); FOR
(% primary forest at riparian network 100m buffer scale); ALT (altitude m); BIO1 (annual mean temperature);
BIO12 (annual precipitation); BIO15 (precipitation seasonality—coefficient of variation). Table S2: List of Odonata
(Insecta) species sampled by type of environment (preserved- PRE and altered-ALT) in two regions (Santarém and
Paragominas) of the Eastern Amazon, Pará, Brazil.
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