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ABSTRACT 
 
 
Multi-voxel pattern analysis (MVPA) is proving very powerful in the analysis of 

fMRI time-series data, yielding surprising sensitivity, in many different contexts, to 

the response characteristics of neurons in a given brain region. However, MVPA 

yields a metric (classification performance) that does not readily lend itself to 

quantitative comparisons across experimental conditions, brain regions or people. 

This is because performance is influenced by a number of factors other than the 

sensitivity of neurons to the experimental manipulation. One such factor that varies 

widely but has been largely ignored in MVPA studies is the amplitude of the response 

being decoded. In a noisy system, it is expected that measured classification 

performance will decline with declining response amplitude, even if the underlying 

neuronal specificity is constant.  We document the relationship between response 

amplitude and classification performance in the context of orientation decoding in the 

visual cortex. Flickering sine gratings were presented at each of two orthogonal 

orientations in a block design (multivariate experiment) or an event-related design 

(univariate experiment). Response amplitude was manipulated by varying stimulus 

contrast. Orientation classification performance in retinotopically defined occipital 

area V1 increased approximately linearly with the logarithm of stimulus contrast. As 

expected, univariate response amplitude also increased with contrast. Similar results 

were obtained in V2, V3 and V3A. Plotting classification performance against 

response amplitude gave a function with a compressive non-linearity that was well fit 

by a power function. Knowledge of this function potentially allows adjustment of 

classification performance to take account of the effect of response size, making 

comparisons across brain areas, categories or people more meaningful. 
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INTRODUCTION 
 
 

Multivoxel pattern analysis (MVPA) has recently been applied, in conjunction with 

functional magnetic resonance imaging (fMRI), to a wide variety of different issues in 

human sensory and cognitive neuroscience. Numerous successful studies have 

identified specificities of neural response properties that, at least in some cases, were 

not evident from univariate fMRI studies. The sensitivity of the technique is 

impressive in relation to traditional univariate analysis, in which sensitivity is limited 

by the restricted quantity of information obtainable from a single voxel. 

 

However,  MVPA yields a metric (classifier performance) that does not readily lend 

itself to numerical comparisons across experimental conditions, sessions, brain 

regions or subjects. This is because decoding performance is influenced by a number 

of factors other than the sensitivity of neurons to the experimental manipulation. 

These include some factors that can readily be controlled, such as the number of 

voxels used for pattern analysis and the number of stimulus repetitions in the 

experiment, but also others that cannot. One such factor is the amplitude of the 

response being decoded. In a noisy system, it is expected that measured decoding 

performance will increase with response amplitude (or ‘effect size’) if all other factors 

are held constant. The expected effect of amplitude is large since, in the extreme, 

performance must decline to near chance for very small activations, where signals are 

dominated by noise. Yet this factor has received little attention in the literature. The 

problem cannot be circumvented by assuming that response amplitude is correlated 

with response specificity. For example, it is easy to imagine one population of 

neurons that is highly responsive to visual stimuli but relatively unselective for 

colour, and another that responds in a highly colour-specific way but not particularly 

strongly. Clearly an index of colour specificity should favour the latter, but MVPA 

might well yield greater decoding efficiency for the former.  

 

A number of recent studies have compared numerical decoding efficiencies across 

brain regions and have implicitly or explicitly taken high performance to indicate high 

neuronal specificity. Most such studies have conducted separate MVPA analyses in 

two or more different brain regions and have confined analysis and conclusions to 
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statements of whether performance is or is not significantly above chance in each 

area, with no explicit comparison across areas (Brouwer and Ee, 2007; Etzel et al., 

2008; Fu et al., 2008; Haynes et al., 2007; Li et al., 2007; Mannion et al., 2009; 

Preston et al., 2008; Serences and Boynton, 2007; Sterzer et al., 2008). In such cases, 

any indication that one brain area has greater specificity for the experimental variable 

than another is implicit, or at least not endorsed by statistical comparisons. A few 

studies have gone further and made quantitative comparisons among classification 

efficiencies from different brain regions. For example, Ostwald et al. (2008) used 

MVPA to document the ability to decode the global structure of Glass patterns in 

various visual areas. They found a progressive increase in classification performance 

from V1 to LOC, the reliability of which they tested with an ANOVA. Similarly, Eger 

et al. (2008) presented participants with pictures of objects and compared numerical 

classifier performance between posterior and anterior parts of LOC, finding 

statistically significant superior performance for posterior regions. Beauchamp et al. 

(2009) decoded the anatomical location of a somatosensory stimulus in S1, S2 and 

MST/STP. They obtained different classification performances in different areas 

which they compared in order to demonstrate differences.  

 

Comparing classifier accuracies in this way raises the potential problem that the cause 

of the observed difference may lie elsewhere than in differences of neuronal 

selectivity. Any statement that one brain region is more sensitive than another to a 

particular stimulus attribute assumes that equally sensitive measurements have been 

obtained in both areas. This may not be the case if one area responds more strongly 

than the other. Quantitative comparisons across different classification pairs within 

the same brain region (e.g. Reddy and Kanwisher, 2007) or indeed within the whole 

brain (e.g. Shinkareva et al., 2008) may be somewhat safer, since at least the brain 

tissue included will be invariant across the results compared, but again results may be 

confounded by differences in response amplitude. Similar considerations apply to 

quantitative comparisons across subject populations. For example Yoon et al. (2008) 

measured the ability to decode faces, objects, scenes and scrambled images in a large, 

object-sensitive region of the ventral occipital cortex. They compared decoding 

performance in schizophrenics with that in healthy controls and found a statistically 

reliable difference. The difference may well be real, but the interpretation of such 

differences may not be straightforward.  
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It would be highly desirable to move towards a metric that was derived from 

classification performance but allowed greater scope for quantitative comparisons of 

the kind discussed above. In this paper, we introduce the concept of amplitude-

weighted classification performance. In principle, if the relationship between response 

amplitude and classification performance were known, it would be possible to adjust 

observed performance values to account for the influence of amplitude and so to make 

it possible to compare decoding performance across stimuli, brain regions and subject 

groups in a more meaningful and reliable way. As a first step, we measure this 

relationship in the context of responses in human visual cortex to simple visual 

stimuli. It has been shown (Haynes and Rees, 2005; Kamitani and Tong, 2005) that 

the orientation of a grating stimulus can be decoded from the pattern of responses 

elicited  across voxels in the visual cortex. We use a similar paradigm but 

systematically vary stimulus contrast so as to vary response amplitude and we 

document and quantify the effect of this manipulation on decoding efficiency. 

 
 
METHODS 
 
Participants 

 

Five healthy volunteers (mean age 25 years) participated. All had normal or corrected-

to-normal vision and were screened according to standard MRI exclusion criteria. Local 

research ethics approval and written informed consent were obtained.  

 

Data Acquisition 

 

MRI images were obtained with a 3-Tesla Siemens Magnetom Trio scanner and either 

a standard Siemens 8-channel array head coil (anatomical scans) or a custom 8-

channel posterior-head array coil  (Stark Contrast, Erlangen, Germany) that gives 

improved SNR in occipital cortex (functional scans). For each participant, a high-

resolution T1-weighted 3D anatomical image was acquired (modified driven-

equilibrium Fourier transform, MDEFT (Deichmann et al., 2004), 176 axial slices, in-

plane resolution 256 x 256, 1 mm isotropic voxels, TR = 7.92 ms, TE = 2.45 ms, flip 

angle = 16°, bandwidth = 195 Hz/pixel). This anatomical image was used as a 
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reference to which all the functional images from all experiments were co-registered. 

It was also used to generate flattened cortical representations of occipital cortex for 

use in ROI definition. MDEFT was chosen in place of standard 3D anatomical 

sequences because of its improved contrast between grey matter and white matter, 

which is beneficial for segmentation. The functional data were acquired with a 

gradient echo, echoplanar sequence (TR = 2000ms, 28 contiguous axial slices 

covering the occipital cortex, interleaved acquisition order, 3 mm isotropic voxels, 

FoV 192x192 mm, flip angle = 80°, TE = 32 ms, bandwidth = 1396 Hz/pixel). 

  

Stimuli and design 

 

Computer-generated visual stimuli were projected by an LCD projector onto a rear-

projection screen located at the head end of the scanner bore. This could be seen by 

participants via a mirror attached to the headcoil. The mean luminance of the stimuli 

was approximately 1500 cd.m-2. Three separate experiments were conducted on 

different days: one to allow estimation of decoding efficiency, one to allow estimation 

of response magnitude and one to provide an independent region of interest (ROI) for 

use in the analysis. 

 

Multivariate experiment (decoding orientation) 

 

This experiment was similar to previous studies of orientation decoding (Haynes and 

Rees, 2005; Kamitani and Tong, 2005) except that stimulus contrast was varied. The 

stimuli were counterphasing sine gratings (2 cycles/deg, 4 Hz) presented in one of 

two orthogonal orientations (±45 deg from vertical). Gratings were presented in a 

large circular window (diameter 24 deg visual angle) so as to stimulate most of the 

primary visual cortex. A central fixation cross was present throughout but there was 

no task other than fixation. Five contrasts were used, ranging from 1% to 100% in 

equal log steps. Contrast is defined as ( Lmax - Lmin)/(Lmax + Lmin) where Lmax and Lmin 

are the grating luminances occurring at the peak and trough respectively. The range 

chosen spans the visible range (absolute detection thresholds are in the region of 0.5% 

contrast).  
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A block design was employed. The block duration was 16s and the two orientations 

alternated between blocks, with no blank intervals. Each scan run had 31 blocks and 

lasted 8 min 16s. The first block was discarded, leaving 30 blocks. Stimulus contrast 

was constant throughout a given run. Five such scan runs were performed, one for 

each of the five contrasts, separated by short rest breaks. A different random order of 

contrasts was used for each participant. The data from the five runs were analysed 

separately. Each run can be regarded as a standard orientation decoding experiment 

performed at one contrast, and the five runs as independent repetitions of the 

experiment at different contrasts. 

 

Univariate Experiment (estimating response amplitude) 

 

Accurate estimation of response amplitude is difficult using a block design of the type 

described above. Estimation benefits greatly from the inclusion of baseline blocks that 

contain no stimulus. In order to make it possible to independently decode five pairs of 

stimuli (five contrasts) with data from one scan, we maximized the number of 

exemplars by alternating the two orientations with no baseline blocks. Thus the 

timecourses were essentially flat. We verified empirically that it was not possible to 

obtain meaningful amplitude measures with a standard univariate analysis. We 

therefore conducted a separate experiment to estimate the effect of cntrast on 

amplitude. This had an event-related design because, in our view, several factors 

militate towards using event-related designs for studying the effect of an independent 

variable on response amplitude. First, block designs are afflicted by confounding 

effects of adaptation during the block, whereas adaptation is minimal for brief events. 

Second, event-related designs more readily allow five different stimuli to be 

interleaved. Third, block designs are more vulnerable to contamination by low-

frequency noise near the frequency of the block cycle.  

 

The same participants were therefore scanned again using an event-related design. 

The same set of stimuli (5 contrasts, 2 orientations) was used but each stimulus was 

presented for only 2s. Stimulus events were separated by a variable inter-trial interval 

(range 7-13s), selected at random on each trial with a rectangular probability 

distribution. During the ITI, the screen was uniform apart from the fixation cross. Its 

luminance was the same as the space-average luminance of the gratings. Trials of the 
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five contrasts were intermixed within each scan run, in an order that was pseudo-

random with the constraint that each contrast was presented the same number of times 

(six, to give 30 trials per scan run). For each trial, grating orientation was selected 

randomly from the two possible values (±45 deg), again with the constraint that equal 

numbers of each were presented within a run. Each scan run lasted an average of  

6min 10s, depending on the ITIs. Eight such scans were performed, separated by short 

rest breaks. 

 

Retinotopic mapping 

 

Retinotopic mapping was performed in the same participants on a third occasion. In 

most cases, this had already been done in connection with other projects and so this 

scan was the first of the three scans. Standard methods were used to map visual field 

polar angle in terms of temporal response phase (Sereno et al., 1995). A 

counterphasing checkerboard ‘‘wedge’’ stimulus (a 24º sector) rotated clockwise at a 

rate of 64 s/cycle. Eight rotation cycles were completed per run. The counterphase 

frequency was 8 Hz. The rotating wedge covered an area 24º visual angle in diameter, 

as in the main experiments. Check size was scaled by eccentricity in approximate 

accordance with the cortical magnification factor. Participants fixated a central 

fixation spot throughout. 

 

Data analysis 

 

Data analysis was carried out with BrainVoyager QX (version 2.0.7, Brain 

Innovation, The Netherlands). The data for each participant was analysed separately 

and the final results averaged across participants. The data were first corrected for 

head motion by aligning each functional volume to a template volume acquired at the 

beginning of the session. Each timeseries was filtered with a high-pass temporal filter  

with cut-off  at 0.01 Hz. The functonal data were accurately co-registered with the 3D 

anatomy. Co-registration accuracy was checked visually. A flattened representation of 

each hemisphere was created by segmenting and reconstructing the border between 

grey and white matter within each hemisphere of the MDEFT scan. The resulting 

surfaces were smoothed, inflated, and cut along the calcarine sulcus. Finally, the 
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surface was flattened and corrected for linear distortions. Functional data could then 

be viewed either on the sliced 3D anatomy or on the flatmap. 

 

For retinotopic mapping, a model was fitted to the timecourse obtained with the 

rotating wedge stimulus. This consisted of a rectangular wave of duty cycle 24/360, 

reflecting the duration of stimulation at any portion of the visual field, convolved with 

a canonical haemodynamic response function (HRF). The phase of the fitted response 

was taken as an index of visual-field location, in terms of polar angle. Phases were 

projected onto the flattened surface as a colour overlay. Reversals of the direction of 

phase change across the cortical surface were taken as boundaries of visual areas. The 

boundary of visual areas V1-V3A were drawn by eye in each hemisphere and the ROI 

created was projected back onto the participant’s reference anatomy, to generate a 

voxel cluster. The left and right V1 clusters were then combined to provide a single 

ROI corresponding to bilateral V1 for use in the multivariate and univariate 

experiments. The mean number of voxels in this combined ROI across the five 

participants was 505 (SD 37). Figure 1 shows a typical V1 ROI and its derivation. 

The analysis focussed on V1 but additional analyses were performed using data from 

V2, V3 and V3A for comparison. 

 

For the multivariate experiment, the core analysis used a linear support vector 

machine (SVM). In BrainVoyager, a model, consisting of the event time convolved 

with a canonical HRF, is fitted separately to each event or block in a general linear 

model (GLM) regression analysis. The resulting beta value (effect size) is then taken 

as the exemplar for that trial or block. Thus, each scan run yielded 15 exemplars of 

each orientation. For each scan run, the first 8 volumes (one block) were discarded 

and the remainder of the timeseries was divided into five sections, each containing six 

consecutive blocks. Four of these sub-runs (80% of the data) were used for training 

and the fifth for testing. The multivariate analysis was performed using the bilateral 

V1 ROI defined in the same participant. All  voxels in the ROI were included in the 

analysis, irrespective of whether significant activity was present in the multivariate 

experiment. The analysis looked at each 16s test block in turn and established whether 

the pattern of activity across V1 voxels better matched one orientation or the other, 

based on the patterns established by the training runs. Performance was defined as 
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percent correct decisions. The analysis was repeated five times, using a different sub-

run for testing each time, and the results were averaged.  

 

For the univariate experiment, a standard GLM analysis was conducted with one 

regressor for each contrast. Instances of the two orientations were treated as a single 

event type in each case. Thus both orientations were represented but they were not 

distinguished. Six additional regressors  (three translation, three rotation) derived 

from the head movement data were also included, as was a “session regressor” 

modelling the baseline activity in each run. The data from all eight runs were included 

to give a single parameter estimate (beta) for each stimulus contrast. This was then 

converted to percent signal change. An estimate of baseline activity was derived from 

the session regressor (mean signal over the whole timecourse after modelling out the 

responses and effects of head movement). Stimulus-related signal change was then 

divided by the baseline estimate. 

 

 

RESULTS 

 

The results of the multivariate experiment are shown in Figure 2(a). This shows mean 

orientation classification performance in V1 as a function of stimulus contrast, which 

is plotted on a logarithmic scale. In line with previous studies, stimulus orientation 

could readily be decoded from the data, at least at high contrast. Performance 

improves monotonically with contrast and a straight line (in log contrast space) 

provides an acceptable fit to the data. Figure 2(b) shows the results of the univariate 

analysis for the same ROI in the same participants. Mean response amplitude is 

shown, expressed as percent signal change from baseline derived from the GLM, as a 

function of stimulus contrast. As previously shown (Buracas and Boynton, 2007), the 

response increases monotonically with contrast. The response is a saturating function 

of contrast on a linear contrast axis but is approximately a linear function of log 

contrast (our data show a modest expansive non-linearity).  

 

Since it would be desirable to obtain estimates of amplitude and decoding 

performance from the same dataset, we attempted to decode orientation using the data 

from the event-related experiment. However, performance was at chance due to an 
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insufficiency of exemplars at each contrast. In our hands, orientation can be decoded 

for a single contrast based on a one-hour event-related scan, but it cannot be done five 

times over in a single scan unless a block design is used. 

 

The orientation tuning bandwidth of neurons in V1 is essentially invariant with 

contrast (Sclar and Freeman, 1982; Skottun et al., 1987). Therefore the effect of 

contrast on classification performance shown in Fig 2(a) probably does not reflect 

variations in orientation specificity in the brain with contrast, but instead reflects a 

measurement problem: the confounding effect of response amplitude. In short, 

orientation specificity is invariant but our estimate of it varies widely with response 

amplitude.  

 

Figure 3(a) plots the results of the two experiments against each other, to show the 

effect of response amplitude on classification performance. This function shows that 

classifier performance increases with response amplitude, sharply at low amplitude 

and then more gradually. A good fit is provided by a power function of the form: 

 

 Praw = k * Aresp
0.2   

 

where Praw is uncorrected classifier performance, Aresp is response amplitude and k is 

a scaling constant. For our data, the fitted value of k is 102 but this can be expected to 

vary among studies. The exponent 0.2 may be more consistent. Figure 3(b) shows the 

same data together with the corresponding results for V2, V3 and V3A. The results 

are similar in all areas and the fit to the pooled data is similar to that for V1 alone. 

 

In principle, this function enables us to adjust classification performance. If we 

assume that the orientation tuning bandwidth of neurons in V1 is invariant with 

contrast, then a transformed version of the function in Figure 2(a) that accounts for 

the contaminating effect of amplitude on classifier performance will be a straight line 

of zero slope. We could therefore establish a transformation that is based on the 

function in Figure 3 and transforms Figure 2(a) with such a result. The same 

transformation could then be applied to other data, where the underlying neuronal 

specificity is not constant, in order better to estimate it. However, developing a 
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generic correction that can be applied in other contexts would require solving several 

problems (see Discussion) and would need to be tested in other contexts before its use 

could be advocated. 

 

Finally, the estimates of amplitude and classification performance to be compared 

should be derived from the same dataset. We attempted to obtain classification 

performance measures from the event-related data used for the amplitude estimates. 

However, classification performance was around chance levels for all contrasts. We 

attribute this to having insufficient data from each participant. MVPA with an event-

related design has been implemented successfully in a few studies but it requires quite 

large numbers of trials (e.g. Beauchamp et al, 2009). It is not feasible to decode 

orientation independently for five contrasts based on data from a single one-hour 

scan, and it is undesirable to combine data across repeated scans because of the 

difficulty of ensuring that the voxels are placed in exactly the same location. 

 

 

DISCUSSION 

 

Our results show that MVPA orientation classification performance is strongly 

dependent on the mean amplitude of the responses being decoded. If it is assumed that 

orientation specificity does not change with stimulus contrast then our results indicate 

that classification performance cannot be taken as a straightforward index of stimulus 

specificity. A possible problem with this assumption is that even though the 

orientation bandwidth of individual neurons may be unchanged, the number of 

responsive neurons may increase with contrast. Different neurons have different 

contrast thresholds (e.g. Albrecht and Hamilton, 1982), although most are responsive 

over most of the range we used, and there is psychophysical evidence for high-pass 

contrast “channels” (Georgeson, 1985). Thus, the amount of information about 

orientation in a voxel could increase with no change in tuning bandwidth, simply 

because of recruitment of an increasing proportion of neurons as contrast increases. 

Ultimately, it is the amount of information in a neural population that is estimated 

with MVPA, not the tuning properties of the neurons. Variable recruitment of this 

type is very plausible at low contrasts, however it becomes less so at high contrasts, 

where essentially all neurons are expected to be active. Such a mechanism therefore 
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predicts a large effect of contrast on classification performance at low contrasts but 

little or none at high contrasts. In fact we see a large effect of contrast even when only 

high contrasts are considered (Figure 2a). Contrast-related changes in neuron 

recruitment could contribute to our result but are unlikely to explain it fully. 

 

In light of our results, we argue that it is not safe to rely on precise numerical 

comparisons of classifier performance across stimuli, stimulus categories, brain 

regions or people unless either (i) it is known that the mean univariate response 

amplitudes are similar across the instances compared or (ii) a correction is applied to 

the classification performance data to take account of differences in response 

amplitude. This is not to say that such comparisons are completely meaningless, only 

that they may be inaccurate or misleading. We have outlined a general strategy for 

calculating a correction that could be used to give an improved index of neural 

specificity that can be characterised as amplitude-weighted classification 

performance. We have restricted ourselves to outlining a principle and we have not 

developed a full method for calculating adjusted performance. Although we have 

fitted curves to our plots, our point is fundamentally a qualitative one. 

 

In order to implement amplitude-weighted classification performance, it is necessary 

to have a good estimate of amplitude. In our study, we obtained this from a separate 

experiment. The multivariate and univariate experiments used designs optimized for 

multivariate and univariate analysis, respectively. This might be unsatisfactory as a 

routine method of performing both types of analysis: it is both more desirable and 

more efficient to obtain both measures from the same dataset. This requires a design 

that is amenable to both types of analysis but still provides acceptable measurement 

efficiency for each. This is challenging because block designs pose problems for 

amplitude measurement (see Results) and event-related designs require many trials 

for successful MVPA analysis. We have found the use of a single experiment not to 

be feasible when attempting to decode five different pairs of stimuli in one scan, but it 

should be feasible when decoding only one pair.  

 

In addition to genuine variations of response amplitude, it is also necessary to 

consider confounding methodological factors relating to the way in which amplitude 

is calculated. For instance, increasing or decreasing the size of an ROI could lead to a 



14 

change in the mean amplitude, depending on the proportion of included voxels that 

are strongly active. This is likely to have a bigger effect on amplitude than on 

classification performance, changing the quantitative relationship between the two. 

The problem should not be severe in our case because we used retinotopically defined 

visual areas. Within these, response amplitude will be broadly uniform and the mean 

will be broadly independent of ROI size. However, it becomes more severe if an ROI 

is defined by thresholding functional data, because of the arbitrary choice of statistical 

threshold and because statistical significance depends on the number of trials as well 

as the amplitude of the response to each. The way in which responses are modelled is 

also important, since estimated amplitude is highly dependent on the fit of the model. 

It may appear that this is not a major factor when comparing brain regions or 

participants within a single study that uses a consistent method, but variability in the 

waveform of the BOLD response should also be considered. There have been clear 

demonstrations of differences in temporal characteristics between brain regions and 

between subjects (e.g. Miezin et al., 2000). For a variety of reasons, developing a 

reliable universal method for compensating for effects of response amplitude on 

MVPA performance is challenging.  

 

The use of separate experiments with different designs means that the function 

relating decoding performance to amplitude (Fig, 3) may not be quantitatively 

accurate or typical. However, this is largely a matter of scaling; the form of the 

function is expected to be similar however the two variables are estimated. Thus, our 

conclusion can be expected to generalize to other MVPA studies qualitatively, even if 

not quantitatively. 

 

It is difficult to know the extent to which failure to correct for response amplitude has 

already led to misleading conclusions. Univariate amplitudes are generally not stated 

in MVPA papers and even if they were, it would be difficult to know whether the 

level of variability was sufficient to have caused serious distortions. Moreover, the 

effect of a given amplitude difference will be greater when the responses decoded are 

strong than when they are weak (because of the non-linearity in Figure 3). Relatively 

few studies involving numerical comparisons have so far been conducted and it may 

be that all their conclusions are valid. However, as the MVPA literature burgeons, it is 

likely that false conclusions will sometimes be drawn if no correction for amplitude is 
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applied. The danger is perhaps illustrated by existing studies of orientation selectivity 

in human visual cortex. Both the original studies in this field (Haynes and Rees, 2005; 

Kamitani and Tong, 2005) compared orientation classification performance across 

visual areas V1, V2 and V3 and report that performance is greatest in V1 and least in 

V3, the difference being marked in one case and subtle in the other. A possible 

interpretation (although the authors do not state it in either study) is that orientation 

coding is strongest in V1 and degrades as response properties become more complex 

in later areas. Such a phenomenon would not be in line with macaque physiology, 

which shows that orientation selectivity is well preserved in V2 and V3. A better 

explanation comes from other fMRI data. In our hands (see for example Fig. 1c of  

Wall and Smith, 2008), visual stimuli consistently yield large activations in human 

V1 while response amplitude progressively diminishes as we progress from V1 to V2, 

V2 toV3 and V3 toV4. The typical univariate response in V3 is little more than half 

that in V1. We suggest that this may be what causes the decline in orientation 

classification accuracy from V1 to V3 as measured with MVPA and that, in fact, 

underlying neuronal tuning may be unchanging, or changing in some different way 

through this progression. Indeed, Haynes and Rees (2005) are careful on this point, 

saying “we cannot exclude the possibility that V2 and V3 are weakly activated by 

orientation stimuli.” 

 

In conclusion, we have highlighted the clear confounding effects that neuronal 

response amplitudes can have on MVPA performance measures. Studies that utilise 

these approaches should exercise some caution in their interpretation, particularly 

when comparisons between performance measures are being made. 
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FIGURE LEGENDS 

 
 

Figure 1 

Illustration of the V1 region of interest used in the analysis. (a) Inflated view of the 

segmented grey matter surface of the occipital cortex (medial view) in the right 

hemisphere of one participant. Response phases from the retinotopic mapping 

experiment are overlaid in colour (see key to visual field location, inset) and the 

location of V1 is shown by a white outline. The location of the fundus of the calcarine 

sulcus is marked with a pink line. (b) A sagittal slice through the occipital cortex 

showing significant (p<0.001 unc.) activity from the 100% contrast trials of the 

univariate experiment (orange and yellow). The green overlay shows voxels in the 

slice that fall within the V1 region of interest, outlined in white. 

 

Figure 2 

Results of the two experiments. (a) Multivariate orientation classification 

performance in primary visual cortex (V1), averaged across participants, as a function 

of stimulus contrast. (b) Univariate response amplitude, averaged across all voxels in 

V1 and across participants. Error bars show ±1 SEM based on the means for 

participants (n=5). 

 

Figure 3 

(a) Relationship between orientation classification performance and response 

amplitude in V1, derived from the results in Figure 2. The curve fit is a power 

function with exponent 0.2. (b) Results for three additional visual areas in the same 

format. The curve is fitted to the pooled data. 
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