
The Expressive Power of Valued Constraints:

Hierarchies and Collapses ?

David A. Cohen a Peter G. Jeavons b Stanislav Živný b,∗,1

aDept. of Computer Science, Royal Holloway, University of London, UK
bComputing Laboratory, University of Oxford, UK

Abstract

In this paper, we investigate the ways in which a fixed collection of valued constraints
can be combined to express other valued constraints. We show that in some cases,
a large class of valued constraints, of all possible arities, can be expressed by using
valued constraints over the same domain of a fixed finite arity. We also show that
some simple classes of valued constraints, including the set of all monotonic valued
constraints with finite cost values, cannot be expressed by a subset of any fixed
finite arity, and hence form an infinite hierarchy.

Key words: Valued constraint satisfaction, Expressibility, Max-closed cost
functions, Polymorphisms, Feasibility polymorphisms, Fractional polymorphisms

1 Introduction

Building a computational model of a combinatorial problem means capturing
the requirements and optimisation criteria of the problem, using the resources
available in some given computational system. Modelling such problems using

? A preliminary version of this paper appeared in Proceedings of the 13th Inter-
national Conference on Principles and Practice of Constraint Programming (CP),
2007, pp. 798-805.
∗ Corresponding author. Address: Computing Laboratory, University of Oxford,
Wolfson Building, Parks Road, Oxford OX1 3QD, UK. Tel.: +44 (0)1865 273884.
Fax: +44 (0)1865 273839.

Email addresses: dave@cs.rhul.ac.uk (David A. Cohen),
peter.jeavons@comlab.ox.ac.uk (Peter G. Jeavons),
stanislav.zivny@comlab.ox.ac.uk (Stanislav Živný).
1 This work was supported by EPSRC grant EP/F01161X/1.

Preprint submitted to Theoretical Computer Science September 29, 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28894778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

constraints means expressing the requirements and optimisation criteria, using
some combination of basic constraints provided by the system. In this paper,
we investigate what kinds of relations and functions can be expressed using a
given set of allowed constraint types.

The classical constraint satisfaction problem (CSP) model considers only the
feasibility of satisfying a collection of simultaneous requirements [26,9,30].
Various extensions have been proposed to this model, to allow it to deal with
different kinds of optimisation criteria, or preferences between different feasible
solutions. Two very general extended frameworks that have been proposed are
the semi-ring CSP framework and the valued CSP (VCSP) framework [2].

The semi-ring framework is slightly more general 2 , but the VCSP framework
is simpler, and sufficiently powerful to describe many important classes of
problems [30]. In particular, it generalises the classical CSP model, and in-
cludes many standard optimisation problems, such as MIN-CUT, MAX-SAT,
MAX-ONES SAT and MAX-CSP [8].

In this paper, we work with the VCSP framework. In this framework every
constraint has an associated cost function which assigns a cost to every tuple
of values for the variables in the scope of the constraint. The set of cost
functions used in the description of the problem is called the valued constraint
language.

As with all computing paradigms, it is desirable for many purposes to have a
small language which can be used to describe a large collection of problems.
Determining which additional constraints can be expressed by a given valued
constraint language is therefore a central issue in assessing the flexibility and
usefulness of a constraint system, and it is this question that we investigate
here.

The notion of expressibility has been a key component in the analysis of com-
plexity for the classical CSP model [19,5]. It was also a major tool in the
complexity analysis of a wide variety of Boolean constraint problems carried
out by Creignou et al. [9], where it was referred to as implementation. Ex-
pressibility is a particular form of problem reduction: if a constraint can be
expressed in a given constraint language, then it can be added to the lan-
guage without changing the computational complexity of the associated class
of problems. Hence determining what can be expressed in a given valued con-
straint language is a fundamental step in the complexity analysis of valued
constraint problems.

2 The main difference is that costs in VCSPs represent violation levels and have to
be totally ordered, whereas costs in semi-ring CSPs represent preferences and might
be ordered only partially.

2

In order to investigate the expressive power of valued constraint languages,
we make use of a number of algebraic tools that have been developed for this
question [22], and for the related question of determining the complexity of the
associated constraint satisfaction problems [6,8]. By applying these tools to
particular valued constraint languages, we show that some simple constraint
classes provide infinite hierarchies of greater and greater expressive power,
whereas other classes collapse to sets of cost functions of fixed arity which can
express all the other cost functions in the class.

We remark on the relationship between our results and some previous work on
the VCSP. Larrosa and Dechter showed [25] that both the so-called dual rep-
resentation [11] and the hidden variable representation [10], which transform
any CSP instance into a binary CSP instance, can be generalised to the VCSP
framework. However, these representations involve an exponential blow-up (in
the arity of the constraints) of the domain size (i.e., the set of possible values
for each variable). The notion of expressibility that we are using in this paper
always preserves the domain size. Our results clarify which cost functions can
be expressed using a given valued constraint language over the same domain,
by introducing additional (hidden) variables and constraints; the number of
these that are required is fixed for any given cost function.

The paper is organised as follows. In Section 2, we define the standard valued
constraint satisfaction problem and the notion of expressibility for valued con-
straints. In Section 3, we describe some algebraic techniques that have been
developed for valued constraints in earlier papers and show how they can be
used to investigate expressibility. In Section 4, we show that relations of a
fixed arity can express any relation of any arbitrary arity. We show the same
result for max-closed relations. In Section 5, we show that finite-valued cost
functions of a fixed arity can express any finite-valued cost function of any
arbitrary arity. By contrast, we show that the finite-valued max-closed cost
functions form an infinite hierarchy. In other words, finite-valued max-closed
cost functions of different arities have different expressive power. In Section 6,
we show a collapse to finite arity for the set of all general cost functions taking
both finite and infinite values. We show the same result for general max-closed
cost functions. Finally in Section 7, we summarise our results and suggest some
important open questions.

2 Valued Constraints and Expressibility

In this section, we define the valued constraint satisfaction problem, and dis-
cuss how the cost functions used to define valued constraints can be combined
to express other valued constraints. A more detailed discussion of the valued
constraint framework, and illustrative examples, can be found in [2,8].

3

Definition 1 A valuation structure, Ω, is a totally ordered set, with a
minimum and a maximum element (denoted 0 and ∞), together with a com-
mutative, associative binary aggregation operator, ⊕, such that for all
α, β, γ ∈ Ω, α⊕ 0 = α and α⊕ γ ≥ β ⊕ γ whenever α ≥ β.

Definition 2 An instance of the valued constraint satisfaction prob-
lem, VCSP, is a tuple P = 〈V,D, C,Ω〉 where:

• V is a finite set of variables;
• D is a finite set of possible values;
• Ω is a valuation structure representing possible costs;
• C is a set of valued constraints. Each element of C is a pair c = 〈σ, φ〉

where σ is a tuple of variables called the scope of c, and φ is a mapping
from D|σ| to Ω, called the cost function of c.

Definition 3 For any VCSP instance P = 〈V,D, C,Ω〉, an assignment for
P is a mapping s : V → D. The cost of an assignment s, denoted CostP(s),
is given by the aggregation of the costs for the restrictions of s onto each
constraint scope, that is,

CostP(s)
def
=

⊕
〈〈v1,v2,...,vm〉,φ〉∈C

φ(〈s(v1), s(v2), . . . , s(vm)〉).

A solution to P is an assignment with minimum cost.

The complexity of finding an optimal solution to a valued constraint problem
will obviously depend on the forms of valued constraints which are allowed in
the problem [8]. In order to investigate different families of valued constraint
problems, with different sets of allowed constraint types, we use the notion
of a valued constraint language, which is simply a set of possible cost
functions mapping Dk to Ω, for some fixed set D and some fixed valuation
structure Ω. The class of all VCSP instances where the cost functions of the
valued constraints are all contained in a valued constraint language Γ will be
denoted VCSP(Γ).

In any VCSP instance, the variables listed in the scope of each valued constraint
are explicitly constrained, in the sense that each possible combination of values
for those variables is associated with a given cost. Moreover, if we choose any
subset of the variables, then their values are constrained implicitly in the same
way, due to the combined effect of the valued constraints. This motivates the
concept of expressibility for cost functions, which is defined as follows:

Definition 4 For any VCSP instance P = 〈V,D, C,Ω〉, and any list l =
〈v1, . . . , vm〉 of variables of P, the projection of P onto l, denoted πl(P),

4

is the m-ary cost function defined as follows:

πl(P)(x1, . . . , xm)
def
= min

{s:V→D | 〈s(v1),...,s(vm)〉=〈x1,...,xm〉}
CostP(s).

We say that a cost function φ is expressible over a valued constraint language
Γ if there exists an instance P ∈ VCSP(Γ) and a list l of variables of P such
that πl(P) = φ. We call the pair 〈P , l〉 a gadget for expressing φ over Γ.

Showing that a cost function is expressible over a valued constraint language
is a form of problem reduction: if φ is expressible over Γ, then there is a
polynomial-time reduction from VCSP(Γ∪{φ}) to VCSP(Γ), which is obtained
by replacing each constraint involving φ with a suitable gadget.

In this paper we shall examine the expressibility of cost functions over three
particular valuation structures which can be used to model a wide variety of
problems [8]:

Definition 5 Let Ω be a valuation structure and let φ : Dm → Ω be a cost
function.

• If Ω = {0,∞}, then we call φ a crisp cost function.
• If Ω = Q+, the set of non-negative rational numbers with the standard

addition operation, +, then we call φ a finite-valued cost function.
• If Ω = Q+, the set of non-negative rational numbers together with infinity,

with the standard addition operation (extended so that a+∞ =∞, for every
a ∈ Q+), then we call φ a general cost function.

Note that with any relation R over D we can associate a crisp cost function
φR on D which maps tuples in R to 0 and tuples not in R to∞. On the other
hand, with any m-ary cost function φ we can associate a relation Rφ defined
as 〈x1, . . . , xm〉 ∈ Rφ ⇔ φ(x1, . . . , xm) < ∞, or equivalently an m-ary crisp
cost function defined by:

Feas(φ)(x1, . . . , xm)
def
=

∞ if φ(x1, . . . , xm) =∞,

0 if φ(x1, . . . , xm) <∞.

In view of the close correspondence between crisp cost functions and relations
we shall use these terms interchangeably in the rest of the paper.

For crisp cost functions (=relations) the notion of expressibility in Definition 4
corresponds precisely to the established notion of expressibility using conjunc-
tion and existential quantification (i.e., using primitive positive formulas) [5].

5

3 Expressive Power and Algebraic Properties

By Definition 1, adding a finite constant to any cost function leaves the or-
dering of the costs unchanged, and so has no effect on the set of solutions.
Hence, for any valued constraint language Γ with costs in Ω, we define the
expressive power of Γ, denoted 〈Γ〉, to be the set of all cost functions φ
such that φ+ γ is expressible over Γ for some constant γ ∈ Ω where γ <∞.

A number of algebraic techniques to determine the expressive power of a given
valued constraint language have been developed in earlier papers. To make use
of these techniques, we first need to define some key terms.

The i-th component of a tuple t will be denoted by t[i]. Note that any
operation on a set D can be extended to tuples over the set D in a
standard way, as follows. For any function f : Dk → D, and any col-
lection of tuples t1, . . . , tk ∈ Dm, define f(t1, . . . , tk) ∈ Dm to be the tuple
〈f(t1[1], . . . , tk[1]), . . . , f(t1[m], . . . , tk[m])〉.

Definition 6 ([12]) Let R be an m-ary relation over a finite set D and
let f be a k-ary operation on D. Then f is a polymorphism of R if
f(t1, . . . , tk) ∈ R for all choices of t1, . . . , tk ∈ R.

A valued constraint language, Γ, which contains only crisp cost functions (=
relations) will be called a crisp constraint language. We will say that f is a
polymorphism of a crisp constraint language Γ if f is a polymorphism of every
relation in Γ. The set of all polymorphisms of Γ will be denoted Pol(Γ).

It follows from the results of [19] that the expressive power of a crisp constraint
language is fully characterised by its polymorphisms:

Theorem 7 ([19]) For any crisp constraint language Γ over a finite set

R ∈ 〈Γ〉 ⇔ Pol(Γ) ⊆ Pol({R}).

Hence, a crisp cost function φ is expressible over a crisp constraint language
Γ if and only if it has all the polymorphisms of Γ. See [21] for more on the
connection between crisp constraint languages on the one hand, and clone
theory and universal algebra on the other hand.

We can extend the idea of polymorphisms to arbitrary valued constraint lan-
guages by considering the corresponding feasibility relations:

Definition 8 ([6]) The feasibility polymorphisms of a valued constraint
language Γ are the polymorphisms of the corresponding crisp feasibility cost

functions, that is, FPol(Γ)
def
= Pol({Feas(φ) | φ ∈ Γ}).

6

t1

t2
...

tk

t′1 = f1(t1, . . . , tk)

t′2 = f2(t1, . . . , tk)
...

t′n = fn(t1, . . . , tk)

t1[1] t1[2] . . . t1[m]

t2[1] t2[2] . . . t2[m]
...

tk[1] tk[2] . . . tk[m]

t′1[1] t′1[2] . . . t′1[m]

t′2[1] t′2[2] . . . t′2[m]
...

t′n[1] t′n[2] . . . t′n[m]

φ−→

φ(t1)

φ(t2)
...

φ(tk)


k∑
i=1

φ(ti)

≥

φ−→

φ(t′1)

φ(t′2)
...

φ(t′n)


n∑
i=1

riφ(t′i)

Figure 1. Definition of a fractional polymorphism F = {〈r1, f1〉, . . . , 〈rn, fn〉}.

However, to fully capture the expressive power of valued constraint languages
it is necessary to consider more general algebraic properties, such as the fol-
lowing (see Figure 1 for an illustration of Definition 9).

Definition 9 ([6]) A k-ary weighted function F on a set D is a set of the
form {〈r1, f1〉, . . . , 〈rn, fn〉} where each ri is a non-negative rational number
such that

∑n
i=1 ri = k and each fi is a distinct function from Dk to D.

For any m-ary cost function φ, we say that a k-ary weighted function F is a
k-ary fractional polymorphism of φ if, for all t1, . . . , tk ∈ Dm,

k∑
i=1

φ(ti) ≥
n∑
i=1

riφ(fi(t1, . . . , tk)).

For any valued constraint language Γ, we will say that F is a fractional poly-
morphism of Γ if F is a fractional polymorphism of every cost function in Γ.
The set of all fractional polymorphisms of Γ will be denoted fPol(Γ).

It is a simple consequence of the definitions that if {fi}1≤i≤n are polymor-
phisms of a relation R, then any weighted function {〈r1, f1〉, . . . , 〈rn, fn〉}
is a fractional polymorphism of the corresponding crisp cost function φR.
Conversely, if {〈r1, f1〉, . . . , 〈rn, fn〉} is a fractional polymorphism of φ, then
{fi}1≤i≤n are polymorphisms of the corresponding relation Rφ.

It was shown in [6] that the feasibility polymorphisms and fractional poly-
morphisms of a valued constraint language effectively determine its expressive
power. One consequence of this result is the following theorem:

Theorem 10 ([6]) If Γ is a valued constraint language with costs in Q+ such

7

that, for all φ ∈ Γ, and all c ∈ Q+, cφ ∈ Γ and Feas(φ) ∈ Γ, then

φ ∈ 〈Γ〉 ⇔ FPol(Γ) ⊆ FPol({φ}) ∧ fPol(Γ) ⊆ fPol({φ}).

Hence, for all valued constraint languages Γ satisfying the conditions of The-
orem 10, a cost function φ is expressible over Γ if and only if it has all the
feasibility polymorphisms of Γ and all the fractional polymorphisms of Γ.

4 The Expressive Power of Arbitrary Relations and Max-Closed
Relations

In this section, we consider the expressive power of valued constraint languages
containing only crisp cost functions, that is, relations.

We consider the languages containing all relations up to some fixed arity over
some fixed domain, and we also consider an important subset of these relations
defined for totally ordered domains, the so-called max-closed relations, which
are defined below. In both cases, we show that the relations of a fixed arity
can express all relations of arbitrary arities.

Definition 11 Let D be a fixed totally ordered set.

• The k-ary function on D which returns the largest of its k arguments in the
given ordering of D is denoted Maxk.
• The k-ary function on D which returns the smallest of its k arguments in

the given ordering of D is denoted Mink.
• The k-ary function on D which returns the second largest of its k ≥ 2

arguments in the given ordering of D is denoted Secondk.

The function Max2 will be denoted Max and the function Min2 will be
denoted Min.

Definition 12 A cost function φ is called max-closed if {〈2,Max〉} ∈
fPol({φ}).

In this section, we focus on crisp max-closed cost functions. This class of cost
functions was first introduced (as a class of relations) in [23] and shown to be
tractable. In other words, VCSP(Γ) is known to be polynomial-time solvable
for any set Γ consisting of max-closed relations over any finite set D. A number
of examples of max-closed relations are given in [23].

Definition 13 For every d ≥ 2 we define the following:

8

• Rd,m denotes the set of all relations of arity at most m over a domain of

size d, and Rd
def
= ∪m≥0Rd,m;

• Rmax
d,m denotes the set of all max-closed relations of arity at most m over an

ordered domain of size d, and Rmax
d

def
= ∪m≥0R

max
d,m .

It is well-known that any relation can be expressed as a propositional formula
in conjunctive normal form (CNF), hence we have the following characterisa-
tion of Rd,m.

Proposition 14 A relation R ∈ Rd,m if and only if there is some formula ψ
such that 〈v1, . . . , vm〉 ∈ R⇔ ψ(v1, . . . , vm) and ψ is a conjunction of clauses
of the form (v1 6= a1) ∨ . . . ∨ (vm 6= am) for some constants a1, . . . , am.

We also have a similar characterisation for Rmax
d,m , adapted from Theorem 5.2

of [23].

Theorem 15 ([23]) A relation R ∈ Rmax
d,m if and only if there is some formula

ψ such that 〈v1, . . . , vm〉 ∈ R ⇔ ψ(v1, . . . , vm) and ψ is a conjunction of
clauses of the form (v1 > a1) ∨ . . . ∨ (vm > am) ∨ (vi < bi) for some constants
a1, . . . , am, bi.

Note that in the special case of a Boolean domain (that is, when d = 2)
this restricted form of clauses is equivalent to a disjunction of literals with at
most one negated literal; clauses of this form are sometimes called anti-Horn
clauses.

It is well-known that for every d ≥ 2, Pol(Rd) is equal to the set of all possible
projection operations [12]. We now characterise the polymorphisms of Rmax

d .

Definition 16 Let I = {i1, . . . , in} ⊆ {1, . . . , k} be a set of indices. Define
the k-ary function

MaxI(x1, . . . , xk)
def
= Maxn(xi1 , . . . , xin).

For every k, there are exactly 2k − 1 functions of the form MaxI for ∅ 6= I ⊆
{1, . . . , k}.

Proposition 17 For all d ≥ 2,

Pol(Rmax
d) = {MaxI | ∅ 6= I ⊆ {1, . . . , k}, k = 1, 2, . . . }.

PROOF. When |I| = 1, the corresponding function MaxI is just a projection
operation, and every projection is a polymorphism of every relation [12].

9

If Max ∈ Pol({R}), then MaxI ∈ Pol({R}) for every ∅ 6= I ⊆ {1, . . . , k}. This
is because Pol({R}) is closed under function composition and contains all pro-
jection operations, and every MaxI can be obtained by function composition
from the function Max and the projection operations.

We now prove that the operations of the form MaxI are the only polymor-
phisms of Rmax

d . Suppose, for contradiction, that f is a k-ary polymorphism
of Rmax

d which is different from MaxI for every ∅ 6= I ⊆ {1, . . . , k}. It follows
that, for each I such that ∅ 6= I ⊆ {1, . . . , k}, there is a k-tuple tI , such that
f(tI) 6= MaxI(tI). Let n be the total number of different tuples tI , that is,
n = |{tI | ∅ 6= I ⊆ {1, . . . , k}}| ≤ 2k − 1 and denote these tuples by t1, . . . , tn.
Now consider the n-ary relation R = {〈t1[j], . . . , tn[j]〉}1≤j≤k. Define R0 = R
and Ri+1 = Ri ∪ {Max(u, v) | u, v ∈ Ri} for every i ≥ 0. Clearly, Ri ⊆ Ri+1

and since there is only a finite number of different k-tuples, there is an l such
that Rl = Rl+i for every i ≥ 0. Define R′ to be the closure of R under Max,
that is, R′ = Rl. Clearly, R′ is max-closed and every tuple t of R′ is of the
form t = Maxj(ui1 , . . . , uij) for some j ≥ 1 and ui1 , . . . , uij ∈ R. We have
constructed R so that the application of f to the tuples of R results in a tuple
t which is different from every tuple of this form, and hence t 6∈ R′. Therefore,
f 6∈ Pol(R′), which means that f 6∈ Pol(Rmax

d).

We now consider the expressive power of Rd,m and Rmax
d,m .

It is clear that binary relations have greater expressive power than unary rela-
tions, so our first result is not unexpected, but it provides a simple illustration
of the use of the algebraic approach.

Proposition 18 For all d ≥ 2, 〈Rd,1〉 (〈Rd,2〉 and 〈Rmax
d,1 〉 (〈Rmax

d,2 〉.

PROOF. Notice for example that Min ∈ Pol(Rd,1) and consequently Min ∈
Pol(Rmax

d,1) but Min 6∈ Pol(Rd,2) and Min 6∈ Pol(Rmax
d,2). The result then follows

from Theorem 7.

4.1 Relations over a Boolean domain

As a first step, we now focus on the special case of relations over a Boolean
domain, that is, the case when d = 2. This special case has been studied
in detail in [3]. Here, we give a brief independent derivation of the relevant
results using the techniques introduced above. We first show that the set of all
ternary relations over a Boolean domain has fewer polymorphisms than the
set of all binary relations, and hence has a greater expressive power. We also
establish similar results for max-closed relations over a Boolean domain.

10

Proposition 19 Majority ∈ Pol(R2,2) and Majority ∈ Pol(Rmax
2,2), where

Majority is the unique ternary function on a 2-element set which returns
the argument value that occurs most often.

PROOF. Let R be an arbitrary binary Boolean relation. Let a = 〈a1, a2〉,
b = 〈b1, b2〉 and c = 〈c1, c2〉 be three pairs belonging to R. Note that since
the domain size is 2, the pair 〈Majority(a1, b1, c1),Majority(a2, b2, c2)〉 is
equal to at least one of a, b, c, and hence belongs to R.

Proposition 20 Majority 6∈ Pol(R2,3) and Majority 6∈ Pol(Rmax
2,3).

PROOF. Consider the ternary Boolean max-closed relation R consisting of
all triples except 〈0, 0, 0〉. To see that Majority is not a polymorphism
of R, consider the triples 〈0, 0, 1〉, 〈0, 1, 0〉 and 〈1, 0, 0〉. The application of
Majority to these tuples results in the triple 〈0, 0, 0〉 which is not in R.

However, we now show that ternary Boolean relations have the same expres-
sive power as all Boolean relations. In other words, any Boolean relation of
arbitrary arity is expressible by relations of arity at most three. The same
result also holds for max-closed Boolean relations.

Proposition 21 R2 ⊆ 〈R2,3〉 and Rmax
2 ⊆ 〈Rmax

2,3 〉.

PROOF. By Proposition 14, any Boolean relation R ∈ R2 can be expressed
as a CNF formula ψ. By the standard Satisfiability to 3-Satisfiability
reduction [15], there is a 3-CNF formula ψ′ expressing R such that ψ is
satisfiable if and only if ψ′ is satisfiable.

Since the standard Satisfiability to 3-Satisfiability reduction preserves
the anti-Horn form of clauses, the same result holds for max-closed Boolean
relations.

Combining these results with Theorem 7, we obtain the following result.

Theorem 22

(1) 〈R2,1〉 (〈R2,2〉 (〈R2,3〉 = R2;
(2) 〈Rmax

2,1 〉 (〈Rmax
2,2 〉 (〈Rmax

2,3 〉 = Rmax
2 .

11

4.2 Relations over larger domains

For relations over a domain with 3 or more elements, similar results can be
obtained. In fact, in this case we show that any relation can be expressed using
binary relations.

Proposition 23 For all d ≥ 3, Rd ⊆ 〈Rd,2〉.

PROOF. Without loss of generality, assume that D = {0, . . . ,M}, where
M = d− 1. Define the binary relation Rd by

Rd = {〈0, i〉, 〈i, 0〉 | 0 ≤ i ≤M} ∪ {〈i, i+ 1〉 | 1 ≤ i < M}.

It is known that the only polymorphisms of the relation Rd are projection
operations [13]. Hence, by Theorem 7, 〈{Rd}〉 = Rd.

A constructive proof of Proposition 23 can be found in [33].

By investigating the polymorphisms of binary max-closed relations, we now
show that max-closed relations over non-Boolean domains can also be ex-
pressed using binary relations.

Theorem 24 For all d ≥ 3, Rmax
d ⊆ 〈Rmax

d,2 〉.

PROOF. We will show that Pol(Rmax
d,2) ⊆ Pol(Rmax

d). The result then follows
from Theorem 7.

Without loss of generality, assume that D = {0, . . . ,M} where M = d − 1.
Let f ∈ Pol(Rmax

d,2) be an arbitrary k-ary polymorphism. By Proposition 17, it
is enough to show that f = MaxI for some ∅ 6= I ⊆ {1, . . . , k}.

First note that for any subset S ⊆ D, the binary relation R = {〈a, a〉 |
a ∈ S} is max-closed, so f(x1, . . . , xk) ∈ {x1, . . . , xk}. In other words, f is
conservative.

If f = Max{1,...,k} we are done. Otherwise, there exist a1, . . . , ak ∈ D such
that ai = Maxk(a1, . . . , ak) and ai > f(a1, a2, . . . , ak) = aj. Without loss of
generality, in order to simplify our notation, assume that i = 1 and j = 2,
that is, a1 = Maxk(a1, . . . , ak) and a1 > f(a1, a2, . . . , ak) = a2. We will show
that f does not depend on its first parameter.

12

For any fixed x2, . . . , xk ∈ D, we denote the tuple 〈x2, . . . , xk〉 by x̄, and we
define the binary max-closed relation

Rx̄ = ({a2, . . . , ak} × {x2, . . . , xk}) ∪ ({a1} ×D).

Now consider the function gx̄(r) = f(r, x2, . . . , xk). Note that gx̄(r) is a re-
striction of f with all arguments except the first one fixed.

Claim 1 ∀r ∈ D, gx̄(r) ∈ {x2, . . . , xk}.

To establish this claim, note that for all r ∈ D we have 〈a1, r〉 ∈ Rx̄,
and {〈aj, xj〉 | j = 2, . . . , k} ⊆ Rx̄. Since f is a polymorphism of Rx̄ and
f(a1, a2, . . . , ak) = a2, it follows from the definition of Rx̄ that gx̄(r) ∈
{x2, . . . , xk}.

Now we show that if the largest element of the domain, M , is not among
x2, . . . , xk, then gx̄(r) is constant.

Claim 2 M 6∈ {x2, . . . , xk} ⇒ ∀r ∈ D, gx̄(r) = gx̄(M).

To establish this claim, define the binary max-closed relation

R′x̄ = ({M} ×D) ∪ {〈xj, xj〉 | j = 2, . . . , k}.

For all r ∈ D we have 〈M, r〉 ∈ R′x̄ and {〈xj, xj〉 | j = 2, . . . , k} ⊆ R′x̄. By
Claim 1, gx̄(M) = xi for some 2 ≤ i ≤ k. Since f is a polymorphism of R′x̄, it
follows from the definition of Rx̄ that gx̄(r) = xi = gx̄(M) for every r ∈ D.

Next we generalise Claim 2 to show that gx̄(r) is constant whenever x2, . . . , xk
does not contain all elements of the domain D.

Claim 3 {x2, . . . , xk} 6= D ⇒ ∀r ∈ D, gx̄(r) = gx̄(M).

To establish this claim, we will show that for every p ∈ D, if p 6∈ {x2, . . . , xk},
then gx̄(r) = gx̄(M) for every r ∈ D. Note that the case p = M is already
proved by Claim 2. For any p ∈ D\{M}, define the binary max-closed relation
Rp = {〈d,∆p(d)〉 | d ∈ D}, where

∆p(x) =

x if x ≤ p,

x− 1 if x > p.

For all r ∈ D we have 〈r,∆p(r)〉 ∈ Rp and {〈xj,∆p(xj)〉 | j = 2, . . . , k} ⊆ Rp.
Since f is a polymorphism of Rp, it follows from the definition of Rp that for
every r ∈ D, gx̄(r) ∈ ∆−1

p (g∆p(x̄)(∆p(r))).

Since M 6∈ {∆p(d) | d ∈ D}, we know, by Claim 2, that g∆p(x̄)(∆p(r)) is
constant. Say g∆p(x̄)(∆p(r)) = kp. If kp 6= p, then |∆−1

p (kp)| = 1 and so gx̄ is

13

constant. Alternatively, if kp = p, then ∆−1
p (kp) = {p, p + 1}. In this case if

p 6∈ {x2, . . . , xk}, then we know, by Claim 1, that gx̄(r) 6= p, so gx̄ is again
constant. This completes the proof of Claim 3.

Claim 4 gx̄(r) is constant.

To establish this claim, define the binary max-closed relations R+ =
{〈d,∆+(d)〉 | d ∈ D} and R− = {〈d,∆−(d)〉 | d ∈ D}, where

∆+(x) =

x if x 6= M,

x− 1 if x = M

and

∆−(x) =

x if x 6= 0,

x+ 1 if x = 0.

Define ȳ = 〈∆+(x2), . . . ,∆+(xk)〉 and z̄ = 〈∆−(x2), . . . ,∆−(xk)〉. Since M 6∈
{∆+(d) | d ∈ D} and 0 6∈ {∆−(d) | d ∈ D}, we know, by Claim 3, that gȳ and
gz̄ are both constant.

For every r ∈ D, 〈r,∆+(r)〉 ∈ R+ and for every i = 2, . . . , k, 〈xi,∆+(xi)〉 ∈
R+. Since f is a polymorphism of R+, and gȳ is constant, gx̄ is either constant
or for every r ∈ D, gx̄(r) ∈ {M,M−1}. Similarly, for every r ∈ D, 〈r,∆−(r)〉 ∈
R− and for every i = 2, . . . , k, 〈xi,∆−(xi)〉 ∈ R−. Since f is a polymorphism of
R−, and gz̄ is constant, gx̄ is either constant or for every r ∈ D, gx̄(r) ∈ {0, 1}.
Since |D| > 2 we know 3 that |{M,M − 1} ∩ {0, 1}| ≤ 1. Hence, in all cases
gx̄ is constant.

We have shown that if a1 = max(a1, . . . , ak) and f(a1, . . . , ak) < a1, then
f does not depend on its first parameter. Similarly, by repeating the same
argument, we can show that if f 6= Max{2,...,k}, then f does not depend on its
i-th parameter for some i such that 2 ≤ i ≤ k. Moreover, further repeating
the same argument shows that if f does not depend on any parameter outside
of I ⊆ {1, . . . , k} and f 6= MaxI , then f does not depend on any of the
parameters whose index is in I.

Therefore, either there is some set I ⊆ {1, . . . , k} for which f = MaxI or else
f is constant. However, since f is conservative, it cannot be constant.

Combining these results we obtain the following result:

Theorem 25 For all d ≥ 3,

3 This is the only place where we use the condition that |D| ≥ 3.

14

(1) 〈Rd,1〉 (〈Rd,2〉 = Rd;
(2) 〈Rmax

d,1 〉 (〈Rmax
d,2 〉 = Rmax

d .

Figure 2 summarises the results from this section.

〈R2,1〉 〈R2,2〉 〈R2,3〉

R2

〈Rmax
2,1 〉 〈Rmax

2,2 〉 〈Rmax
2,3 〉

Rmax
2

〈Rd,1〉 〈Rd,2〉

Rd

〈Rmax
d,1 〉 〈Rmax

d,2 〉

Rmax
d

Figure 2. Summary of results from Section 4, for all d ≥ 3.

5 Finite-valued Cost Functions

In this section, we consider the expressive power of valued constraint languages
containing only finite-valued cost functions. First we show that the set of all
finite-valued cost functions of a certain fixed arity can express all finite-valued
cost functions of arbitrary arities. On the other hand, we show that the max-
closed finite-valued cost functions of any fixed arity cannot express all finite-
valued max-closed cost functions of any larger arity. Hence we identify an
infinite hierarchy of finite-valued cost functions with ever-increasing expressive
power.

Definition 26 For all d ≥ 2 we define the following:

• Fd,m denotes the set of all finite-valued cost functions (that is, cost functions
whose valuation structure Ω = Q+) of arity at most m over a domain of

size d, and Fd
def
= ∪m≥0Fd,m;

• Fmax
d,m denotes the set of all finite-valued max-closed cost functions of arity

at most m over an ordered domain of size d, and Fmax
d

def
= ∪m≥0F

max
d,m .

15

Cost functions from F2, that is, finite-valued cost functions over a Boolean do-
main, are also known as pseudo-Boolean functions [4]. The class of max-closed
cost functions is discussed in more detail in [8] and shown to be tractable. A
number of examples of max-closed cost functions are given in [8].

Proposition 27 For all d ≥ 2, 〈Fd,1〉 (〈Fd,2〉 and 〈Fmax
d,1 〉 (〈Fmax

d,2 〉.

PROOF. Consider the binary weighted function F = {〈1,Min〉, 〈1,Max〉}.
It is straightforward to verify that F ∈ fPol(Fd,1) and F ∈ fPol(Fmax

d,1).

Now consider the binary finite-valued max-closed cost function φ over any
domain containing {0, 1}, defined by φ(〈0, 0〉) = 1 and φ(〈., .〉) = 0 otherwise.
Note that φ is max-closed but F is not a fractional polymorphism of φ. To see
this, consider the tuples 〈0, 1〉 and 〈1, 0〉 (see the figure below).

Min

Max

0 1

1 0

0 0

1 1

φ−→
0

0

 ∑
= 0

φ−→
1

0

 ∑
= 1

The result then follows from Theorem 10.

Now we prove a collapse result for the set of all finite-valued cost functions
over an arbitrary finite domain. This result was previously known for the
special case when d = 2: as we remarked earlier, any Boolean finite-valued
cost function can be represented as a pseudo-Boolean function; using a well-
known result from pseudo-Boolean optimisation [4], any such function can be
expressed using quadratic pseudo-Boolean functions.

Theorem 28 For all d ≥ 2, 〈Fd,2〉 = Fd.

PROOF. As mentioned above, the case d = 2 follows from well-known results
about pseudo-Boolean functions (see Theorem 1 of [4]). Let φ ∈ Fd,m for some
d ≥ 3 and m > 2. We will show how to express φ using only unary and binary
finite-valued cost functions. Without loss of generality, assume that all cost
functions are defined over the set D = {0, 1, . . . ,M}, where M = d − 1, and
denote by Dm = {t1, . . . , tn} the set of all m-tuples over D. Clearly, n = dm.
Let K ∈ Q+ be a fixed constant such that K > maxt∈Dm φ(t). For any e ∈ D,

16

let χe be the binary finite-valued cost function defined by

χe(x, y) =


0 if (x = e) ∧ (y = 0),

0 if (y 6= e) ∧ (y = 1),

K otherwise.

For any r ∈ Q+, let µr be the unary finite-valued cost function defined by

µr(z) =

r if z = 0,

0 otherwise.

We now start building the gadget for φ. Let x1, . . . , xm be the variables upon
which we wish to construct φ, and let ti ∈ Dm be an arbitrary fixed tuple.
Figure 3 shows the part of the gadget for φ which ensures that the appropriate
cost value is assigned to the tuple of values ti. The complete gadget for φ
consists of this part in n copies: one copy on a new set of variables for every
ti ∈ Dm.

Define new variables yi1, . . . , y
i
m and zi. We apply cost functions on these vari-

ables as shown in Figure 3. Note that each variable yij, 1 ≤ j ≤ m, indi-

x1

yi1

x2

yi2

xm

yim

...χti[1] χti[2] χti[m]

zi µφ(ti)

Figure 3. A part of the gadget for expressing φ in the proof of Theorem 28.

cates whether or not xj is equal to ti[j]: in any minimum-cost assignment,
(yij = 0)⇔ (xj = ti[j]). It remains to define the constraints between the vari-
ables yi1, . . . , y

i
m and zi. These will be chosen in such a way that any assignment

of the values 0 or 1 to the variables yij can be extended to an assignment to zi

with a total cost equal to the same fixed minimum value. Furthermore, in these
extended assignments zi is assigned 0 if and only if all the yij are assigned 0.
(We will achieve this by combining appropriate binary finite-valued cost func-
tions over these variables and other fresh variables as described below.) Then,
for every possible assignment of values ti to the variables x1, . . . , xm, there is
exactly one zi, 1 ≤ i ≤ n, which is assigned the value 0 in any minimum-cost

17

extension of this assignment. The unary constraint with cost function µφ(ti)

on each zi then ensures that the complete gadget expresses φ.

To define the remaining constraints in Figure 3, we define two binary finite-
valued cost functions as follows:

φ1(y, z) =


0 if (y = 0) ∧ [(z = 0) ∨ (z = 1)],

0 if (y 6= 0) ∧ (z 6= 0),

K otherwise

and

φ2(y, z) =


0 if (y = 0) ∧ [(z = 0) ∨ (z = 2)],

0 if (y 6= 0) ∧ (z 6= 0),

K otherwise.

Let P = 〈V,D, C〉 where V = {y1, y2, z} and C = {〈〈y1, z〉, φ1〉, 〈〈y2, z〉, φ2〉}.
(See Figure 4.)

y1 y2

z

φ1 φ2

Figure 4. P, an instance expressing or2 over non-Boolean domains, from Theorem 28.

We define or2 to be the cost function expressed by the gadget 〈P , 〈y1, y2, z〉〉.
The cost function or2(y1, y2, z) has the following properties:

• if both y1, y2 are assigned the zero value, then the total cost is 0 if and only
if z is assigned the zero value, otherwise the total cost is either K (if z = 1
or z = 2) or 2K (if z > 2);
• if y1 is assigned the zero value and y2 a non-zero value, then the total cost

is 0 if and only if z is assigned 1, otherwise the total cost is K;
• if y1 is assigned a non-zero value and y2 the zero value, then the total cost

is 0 if and only if z is assigned 2, otherwise the total cost is K;
• if both x and y are assigned non-zero values, then the total cost is 0 if and

only if z is assigned a non-zero value, otherwise the total cost is 2K.

All these properties of or2 can be easily verified by examining the so-called
microstructure [24] of P , as shown in Figure 5: this is a graph where the
vertices are pairs 〈v, e〉 ∈ V × D, and two vertices 〈v1, e1〉 and 〈v2, e2〉 are
connected by an edge with weight w if and only if there is a valued constraint
〈〈v1, v2〉, c〉 ∈ C such that c(e1, e2) = w.

18

y1

0

1

2

...

z

0

1

2

...

y2

0

1

2

...

Figure 5. Microstructure of the instance P from Theorem 28: circles represent par-
ticular assignments to particular variables, as indicated, and edges are weighted by
the cost of the corresponding pair of assignments. Thin edges indicate zero weight,
and bold edges indicate weight K.

We have shown that, in any minimum-cost assignment for P , the variable z
takes the value 0 if and only if both of the variables y1 and y2 take the value 0.
Hence the cost function or2 can be viewed as a kind of 2-input “or-gate”, with
inputs y1 and y2 and output z. By cascading m − 1 copies of this gadget we
can express a cost function orm(y1, . . . , ym, z), with the following properties:

• if the arguments y1, y2, . . . , ym are all assigned the zero value, then assigning
zero to z gives cost 0, but any non-zero assignment to z gives cost at least
K;
• if not all the arguments y1, y2, . . . , ym are assigned the zero value, then

there is a non-zero value e ∈ D such that assigning e to z gives cost 0, but
assigning zero to z gives cost at least K.

Using this combined gadget on the variables yi1, y
i
2, . . . , y

i
m and zi in Figure 3

completes the gadget for φ, and hence establishes that φ ∈ 〈Fd,2〉.

In contrast to this result, the remaining results in this section establish an
infinite hierarchy of increasing expressive power for finite-valued max-closed
cost functions. We will say that an m-tuple u dominates an m-tuple v, denoted
u ≥ v, if u[i] ≥ v[i] for 1 ≤ i ≤ m.

Proposition 29 ([8]) An m-ary cost function φ : Dm → Ω is max-closed if
and only if Max ∈ FPol({φ}) and φ is finitely antitone, that is, for all m-tuples
u, v with φ(u), φ(v) <∞, u ≤ v ⇒ φ(u) ≥ φ(v).

It follows that the finite-valued max-closed cost functions are simply the finite-
valued antitone functions, that is, those functions whose values can only de-
crease as their arguments get larger. Note that for such functions the expressive
power is likely to be rather limited because in any construction the “hidden
variables” that are “projected out” can always be assigned the highest values

19

in their domain in order to minimise the cost. Hence, using such hidden vari-
ables only adds a constant value to the total cost, and so does not allow more
cost functions to be expressed.

We now extend the separation result shown in Proposition 27 and separate
each possible arity.

Proposition 30 For all d ≥ 2 and m ≥ 2, {〈m−1,Maxm〉, 〈1,Secondm〉} ∈
fPol(Fmax

d,m−1).

PROOF. Let φ be an arbitrary (m − 1)-ary finite-valued max-closed cost
function. Let t1, . . . , tm be (m − 1)-tuples. We show that there is an i such
that the tuple s = Secondm(t1, . . . , tm) dominates ti, that is, s[j] ≥ ti[j] for
1 ≤ j ≤ m− 1. To show this we count the number of tuples which can fail to
be dominated by s. If a tuple tp is not dominated by s, for some 1 ≤ p ≤ m, it
means that there is a position 1 ≤ j ≤ m− 1 such that tp[j] > s[j]. But since
Secondm returns the second biggest value, for every 1 ≤ j ≤ m− 1, there is
at most one tuple which is not dominated by s. Since there are m ≥ 3 tuples,
there must be an i such that ti is dominated by s. Moreover, Maxm(t1, . . . , tm)
clearly dominates all t1, . . . , tm. By Proposition 29, φ is antitone and there-
fore {〈m − 1,Maxm〉, 〈1,Secondm〉} is a fractional polymorphism of φ, by
Definition 9.

Proposition 31 For all d ≥ 2 and m ≥ 2, {〈m−1,Maxm〉, 〈1,Secondm〉} 6∈
fPol(Fmax

d,m).

PROOF. Let φ be the m-ary finite-valued max-closed cost function
over any domain containing {0, 1}, defined by φ(〈0, . . . , 0〉) = 1 and
φ(〈., . . . , .〉) = 0 otherwise. To show that {〈m − 1,Maxm〉, 〈1,Secondm〉}
is not a fractional polymorphism of φ, consider the m-tuples 〈0, . . . , 0, 1〉,
〈0, . . . , 0, 1, 0〉, . . . , 〈1, 0, . . . , 0〉. Each of them is assigned cost 0 by φ. But
applying the functions Maxm ((m− 1) times) and Secondm coordinate-wise
results in m−1 tuples 〈1, . . . , 1〉, which are assigned cost 0 by φ, and one tuple
〈0, . . . , 0〉, which is assigned cost 1 by φ (see Figure 6).

Theorem 32 For all d ≥ 2, 〈Fmax
d,1 〉 (〈Fmax

d,2 〉 (〈Fmax
d,3 〉 (〈Fmax

d,4 〉 · · ·

PROOF. By Propositions 30 and 31 and Theorem 10.

Figure 7 summarises the results from this section.

20

Maxm
...

Maxm

Secondm

0 0 . . . 0 0 1

0 0 . . . 0 1 0
...

1 0 . . . 0 0 0

1 1 . . . 1 1 1
...

1 1 . . . 1 1 1

0 0 . . . 0 0 0

φ−→

0

0
...

0


∑

= 0

φ−→

0
...

0

1


∑

= 1

Figure 6. {〈m− 1,Maxm〉, 〈1,Secondm〉} 6∈ fPol({φ}) for φ from Proposition 31.

〈Fd,1〉 〈Fd,2〉

Fd

〈Fmax
d,1 〉 〈Fmax

d,2 〉 〈Fmax
d,3 〉 . . .

Fmax
d

Figure 7. Summary of results from Section 5, for all d ≥ 2.

6 General Cost Functions

In this section, we show that general cost functions of a fixed arity can express
cost functions of arbitrary arities. Comparing this result with the results of
the previous section provides a striking example of the way in which allowing
infinite cost values in a valued constraint language can drastically affect the
expressibility of cost functions over that language, including finite-valued cost
functions.

Definition 33 For all d ≥ 2 we define the following:

• Gd,m denotes the set of all general cost functions (that is, cost functions
whose valuation structure Ω = Q+) of arity at most m over a domain of

size d, and Gd
def
= ∪m≥0Gd,m;

• Gmax
d,m denotes the set of all general max-closed cost functions of arity at

21

most m over an ordered domain of size d, and Gmax
d

def
= ∪m≥0G

max
d,m .

The class of general max-closed cost functions is known to be tractable [8].

Once again it is straightforward to establish a separation between unary and
binary general cost functions.

Proposition 34 〈Gd,1〉 (〈Gd,2〉 and 〈Gmax
d,1 〉 (〈Gmax

d,2 〉.

PROOF. Identical to the proof of Proposition 27.

As with crisp cost functions, in the special case of a Boolean domain, we can
show a separation between binary and ternary general cost functions.

Proposition 35 〈G2,2〉 (〈G2,3〉 and 〈Gmax
2,2 〉 (〈Gmax

2,3 〉.

PROOF. By Proposition 19, Majority ∈ FPol(G2,2) and Majority ∈
FPol(Gmax

2,2). By Proposition 20, Majority 6∈ FPol(G2,3) and Majority 6∈
FPol(Gmax

2,3). The result then follows by Theorem 10.

Next we show a collapse result for general cost functions.

Theorem 36 For all d ≥ 3, 〈Gd,1〉 (〈Gd,2〉 = Gd. Moreover, 〈G2,1〉 (
〈G2,2〉 (〈G2,3〉 = G2.

PROOF. Let φ ∈ Gd,m for some d ≥ 3 and m > 2. It is easy to check that
the same construction as in the proof of Theorem 28 can be used to express
φ, with K =∞.

Now let φ ∈ G2,m for some m > 2. It is easy to check that a similar construc-
tion to that used in the proof of Theorem 28 can be used to express φ, where
the instance P is replaced by the ternary Boolean relation which expresses the
truth table of a 2-input or-gate.

Note that the proof shows a slightly stronger result: G2 = 〈R2,3 ∪ F2,1〉, and
for all d ≥ 3, Gd = 〈Rd,2∪Fd,1〉. In other words, all general cost functions can
be expressed using unary finite-valued cost functions together with ternary
relations (in the case d = 2), or binary relations (in the case d ≥ 3).

By investigating feasibility polymorphisms and fractional polymorphisms, we
will now show a collapse result for general max-closed cost functions.

22

First we show that general max-closed cost functions of a fixed arity have
the same feasibility polymorphisms as max-closed cost functions of arbitrary
arities.

Proposition 37 For all d ≥ 3, FPol(Gmax
d,2) = FPol(Gmax

d). Moreover,
FPol(Gmax

2,3) = FPol(Gmax
2).

PROOF. Assume for contradiction, that there is an f ∈ FPol(Gmax
d,2), such

that f 6∈ FPol(Gmax
d). By Definition 33, {Feas(φ) | φ ∈ Gmax

d } = Rmax
d . There-

fore, such an f would contradict Theorem 25 since Pol(Rmax
d,2) = Pol(Rmax

d).

Similarly, assume that there is an f ∈ FPol(Gmax
2,3) such that f 6∈ FPol(Gmax

2).
This would contradict Theorem 22 since Pol(Rmax

2,3) = Pol(Rmax
2).

We now prove that general max-closed cost functions of a fixed arity have
the same fractional polymorphisms as general max-closed cost functions of
arbitrary arities. First we characterise the feasibility polymorphisms of general
max-closed cost functions.

Proposition 38 For all d ≥ 2,

FPol(Gmax
d) = {MaxI | ∅ 6= I ⊆ {1, . . . , k}, k = 1, 2, . . . }.

PROOF. It follows from Definition 33 that {Feas(φ) | φ ∈ Gmax
d } = Rmax

d .
Therefore, FPol(Gmax

d) = FPol(Rmax
d) and the result follows from Proposi-

tion 17.

Next we characterise the fractional polymorphisms of general max-closed cost
functions.

Definition 39 Let F = {(r1,MaxS1), . . . , (rn,MaxSn)} be a k-ary weighted
function and S ⊆ {1, . . . , k}.

We define

suppFS
def
= {i | Si ∩ S 6= ∅},

and

wtF(S)
def
=

∑
i∈suppF (S)

ri.

Theorem 40 Let F = {(r1,MaxS1), . . . , (rn,MaxSn)} be a k-ary weighted
function. The following are equivalent:

23

(1) F ∈ fPol(Gmax
d).

(2) F ∈ fPol(Gmax
d,1).

(3) For every subset S ⊆ {1, . . . , k}, wtF(S) ≥ |S|.

PROOF.

We first show that ¬(3)⇒ ¬(2)⇒ ¬(1).

First suppose that there exists an S ⊆ {1, . . . , k} such that wtF(S) < |S|. Let
{a, b} ⊆ D be the two biggest elements of D and a < b. Consider the unary
cost function φ where

φ(x) =


0 if x = b,

1 if x = a,

∞ otherwise.

Certainly φ ∈ Gmax
d,1 .

Now let

xi =

b if i ∈ S,
a if i 6∈ S.

We have that

k∑
i=1

φ(xi) = k − |S|, and

n∑
j=1

rjφ(MaxSj
(x1, . . . , xk)) =

∑
j 6∈suppF S

rjφ(a) +
∑

j∈suppF S

rjφ(b)

= k − wtF(S)

> k − |S|, by assumption.

So F is not a fractional polymorphism of Gmax
d,1 , and hence not a fractional

polymorphism of Gmax
d .

To complete the proof we will show that (3)⇒ (1).

Suppose that, for every subset S ⊆ {1, . . . , k}, wtF(S) ≥ |S|.

24

We will first show the existence of a set of non-negative values pji for j =
1, . . . , n and i = 1, . . . , k where

k∑
i=1

pji = rj,

n∑
j=1

pji = 1 and

pji = 0 if i 6∈ Sj.

Consider the network in Figure 8. The capacity from the source to any node
xi is one. The capacity from node yj to the sink is rj. There is an arc from
node xi to node yj precisely when i ∈ Sj, and the capacity of these arcs is
infinite.

We will use the Min-CutMax-Flow theorem to generate the pji.

source

x1

xk

1

1

sink

y1

yn

r1

rn

rj
yj

∞

∞

∞

∞

∞

∞

Figure 8. The flow from xi to yj in a maximum flow is the value of pji

Suppose that we have a minimum cut of this network. Let A be those arcs in
this cut from the source to any node xi. Let S = {1, . . . , k} − {i | xi ∈ A}.
Since we have a cut we must (at least) cut every arc from the nodes {yj | j ∈
suppF(S)} to the sink. By assumption wtF(S) ≥ |S| and so this cut has total
cost at least k. Certainly there is a cut of cost exactly k (cut all arcs from
the source), and so the max-flow through this network is precisely k. Such a
flow can only be achieved if each arc from the source and each arc to the sink

25

is filled to its capacity. The flow along the arc from xi to yj then gives the
required value for pji.

Now we will use these values pji to show that F is indeed a fractional poly-
morphism of Gmax

d .

Let t1, . . . , tk be m-ary tuples and φ ∈ Gmax
d,m be an m-ary cost function. We

have to show the following:

k∑
i=1

φ(ti) ≥
n∑
j=1

rjφ(MaxSj
(t1, . . . , tk)). (1)

If any φ(ti) is infinite, then this inequality clearly holds.

By Proposition 38, all MaxSj
, 1 ≤ j ≤ n, are feasibility polymorphisms of

Gmax
d . Therefore, if all φ(ti) are finite, then all φ(MaxSj

(t1, . . . , tk)) are finite
as well.

By definition of pji and using that pji = 0 whenever i 6∈ Sj we have that

n∑
j=1

rjφ(MaxSj
(t1, . . . , tk)) =

n∑
j=1

∑
i∈Sj

pjiφ(MaxSj
(t1, . . . , tk)).

Now, since φ is antitone, we have

n∑
j=1

∑
i∈Sj

pjiφ(MaxSj
(t1, . . . , tk)) ≤

n∑
j=1

∑
i∈Sj

pjiφ(ti)

Since pji = 0 whenever i 6∈ Sj we have that

n∑
j=1

∑
i∈Sj

pjiφ(ti) =
n∑
j=1

k∑
i=1

pjiφ(ti)

Finally, since
∑n
j=1 pji = 1 we have established Inequality (1).

Theorem 41 For all d ≥ 3, fPol(Gmax
d,2) = fPol(Gmax

d). Moreover,
fPol(Gmax

2,3) = fPol(Gmax
2).

PROOF. By Proposition 37, Gmax
d,2 and Gmax

d have the same feasibility poly-
morphisms. Also, Gmax

2,3 and Gmax
2 have the same feasibility polymorphisms.

26

By Proposition 38, these feasibility polymorphisms are of the form “max-on-a-
subset”. Clearly, each component function of a fractional polymorphism has to
be a feasibility polymorphism. Therefore, the result follows from Theorem 40.

Theorem 42 For all d ≥ 3, 〈Gmax
d,1 〉 (〈Gmax

d,2 〉 = Gmax
d . Moreover, 〈Gmax

2,1 〉 (
〈Gmax

2,2 〉 (〈Gmax
2,3 〉 = Gmax

2 .

PROOF.

The separation results were obtained in Propositions 34 and 35, by showing
that the valued constraint languages involved have different feasibility poly-
morphisms.

For all d′ ≥ 2, m ≥ 1 and c ∈ Q+, Gmax
d′,m is closed under scaling by c. Therefore,

using Theorem 10, the collapses follow from Proposition 37 and Theorem 41.

Note that the proof shows a slightly stronger result: for all d ≥ 3, Gmax
d =

〈Rmax
d,2 ∪ Fmax

d,1 〉, and Gmax
2 = 〈Rmax

2,3 ∪ Fmax
2,1 〉.

A constructive, gadget-based proof of Theorem 42 can be found in [33].

Figure 9 summarises the results from this section.

〈G2,1〉 〈G2,2〉 〈G2,3〉

G2

〈Gmax
2,1 〉 〈Gmax

2,2 〉 〈Gmax
2,3 〉

Gmax
2

〈Gd,1〉 〈Gd,2〉

Gd

〈Gmax
d,1 〉 〈Gmax

d,2 〉

Gmax
d

Figure 9. Summary of results from Section 6, for all d ≥ 3.

27

Example 43 Consider the ternary finite-valued max-closed cost function φ
over D = {0, 1, 2} which is defined by

φ(t) =

1 if t = 〈0, 0, 0〉,
0 otherwise.

By Proposition 31, φ 6∈ 〈Fmax
3,2 〉. In other words, φ is not expressible using

only finite-valued max-closed cost functions of arity at most 2. However, by
Theorem 42, φ ∈ 〈Gmax

3,2 〉. We now show how φ can be expressed using general
max-closed cost functions of arity at most 2.

Let φ0 be the binary finite-valued max-closed cost function defined as follows:

φ0(t) =

1 if t = 〈0, 0〉,
0 otherwise.

Next, define two binary crisp 4 max-closed cost functions

φ1(t) =

∞ if t = 〈0, 1〉,
0 otherwise

and

φ2(t) =

∞ if t = 〈0, 2〉,
0 otherwise.

Let P = 〈V,D, C〉 where V = {x, y, z, u, v} and

C = {〈〈x, u〉, φ1〉, 〈〈y, u〉, φ2〉, 〈〈y, v〉, φ1〉, 〈〈z, v〉, φ2〉, 〈〈u, v〉, φ0〉}.

We claim that 〈P , 〈x, y, z〉〉 is a gadget for expressing φ over Gmax
3,2 . (See Fig-

ure 10.) If any of x, y, z is non-zero, then at least one of the variables u, v
can be assigned a non-zero value and the cost of such an assignment is 0. Con-
versely, if x, y and z are all assigned zero, then the minimum-cost assignment
must also assign zero to both u and v, and hence has cost 1.

We now show another gadget for expressing φ, using only crisp max-closed
cost functions of arity at most 2 and finite-valued max-closed cost functions
of arity at most 1.

4 Note that a “finite variant” of φ1, defined as φ1(〈0, 1〉) = K for some finite K <∞
and φ1(〈., .〉) = 0 otherwise, is not max-closed. The infinite cost is necessary.

28

Let µ be the unary finite-valued max-closed cost function defined by

µ(x) =

1 if x = 0,

0 otherwise.

Let P ′ = 〈V ′, D, C ′〉 where V ′ = {x, y, z, u, v, w} and

C = {〈〈x, u〉, φ1〉, 〈〈y, u〉, φ2〉, 〈〈y, v〉, φ1〉, 〈〈z, v〉, φ2〉, 〈〈u,w〉, φ1〉, 〈〈v, w〉, φ2〉, 〈w, µ〉}.

See Figure 11. Similarly to the argument above, 〈P ′, 〈x, y, z〉〉 is a gadget for
expressing φ. This can be verified by examining the microstructure of P ′ (see
Figure 12).

7 Conclusions and Open Problems

We have investigated the expressive power of valued constraints in general and
max-closed valued constraints in particular.

In the case of relations, we built on previously known results about the ex-
pressibility of an arbitrary relation in terms of binary or ternary relations. We
were able to prove, in a similar way, that an arbitrary max-closed relation can
be expressed using binary or ternary max-closed relations. The results about
the collapse of the set of all relations and all max-closed relations contrast
sharply with the case of finite-valued cost functions, where we showed an infi-
nite hierarchy for max-closed cost functions. This shows that the VCSP is not
just a minor generalisation of the CSP – finite-valued max-closed cost func-
tions behave very differently from crisp max-closed cost functions with respect
to expressive power. We also showed the collapse of general cost functions, by
characterising the feasibility polymorphisms and fractional polymorphisms of
general max-closed cost functions. This shows that allowing infinite costs in
max-closed cost functions increases their expressive power substantially, and
sometimes allows more finite-valued functions to be expressed.

We remark that all of our results about max-closed cost functions obviously
have equivalent versions for min-closed cost functions, that is, those which
have the fractional polymorphism {〈2,Min〉}. In the Boolean crisp case these
are precisely the relations that can be expressed by a conjunction of Horn
clauses.

One of the reasons why understanding the expressive power of valued con-

29

x y z

u v

φ1 φ2 φ1 φ2

φ0

Figure 10. P, an instance of VCSP(Gmax
3,2) expressing φ, from Example 43.

x y z

u v

w µ

φ1 φ2 φ1 φ2

φ1 φ2

Figure 11. P ′, an instance of VCSP(Rmax
3,2 ∪Fmax

3,1) expressing φ, from Example 43.

x

0 1 2

y

0 1 2

z

0 1 2

u 0 1 2 v0 1 2

w

0 1 2

Figure 12. Microstructure of the instance P ′ from Example 43: circles represent
particular assignments to particular variables, as indicated, and edges are weighted
by the cost of the corresponding pair of assignments. Thin edges indicate zero weight,
bold edges indicate infinite weight, and assigning 0 to variable w gives cost 1.

30

straints is important, is for the investigation of submodular functions. A
cost function φ is called submodular if it has the fractional polymorphism
{〈1,Min〉, 〈1,Max〉}. The standard problem of submodular function minimi-
sation corresponds to solving a VCSP with submodular cost functions over the
Boolean domain [7].

Submodular function minimisation (SFM) is a central problem in discrete
optimisation, with links to many different areas [14,27,32,17]. Although it has
been known for a long time that the ellipsoid algorithm can be used to solve
SFM in polynomial time, this algorithm is not efficient in practice. Relatively
recently, several new strongly polynomial combinatorial algorithms have been
discovered for SFM [31,14,16,18]. Unfortunately, the time complexity of the
fastest published algorithm for SFM is roughly of an order of O(n6), where n
is the total number of variables [28].

However, for certain special cases of SFM, more efficient algorithms are known
to exist. For example, the (weighted) Min-Cut problem is a special case of
SFM that can be solved in cubic time [14]. Moreover, it is known that SFM
over a Boolean domain can be solved in O(n3) time, when the submodular
function f satisfies various extra conditions [1,9,29,34]. In particular, in the
case of non-Boolean domains, a cubic-time algorithm exists for SFM when f
can be expressed as a sum of binary submodular functions [7].

These observations naturally raise the following question: what is the most
general class of submodular functions that can be minimised in cubic time (or
better)? One way to tackle this question is to investigate the expressive power
of particular submodular functions which are known to be solvable in cubic
time. Any fixed set of functions which can be expressed using such functions
can be reduced to a cubic time problem, by replacing certain constraints with
gadgets [6].

One intriguing result is already known for submodular relations. In the case
of relations, having {〈1,Min〉, 〈1,Max〉} as a fractional polymorphism im-
plies having both Min and Max as polymorphisms. The ternary Median
operation can be obtained by composing the operations Min and Max, so
all submodular relations have the Median operation as a polymorphism. It
follows that submodular relations are binary decomposable [20], and hence all
submodular relations are expressible using binary submodular relations over
the same variables.

For finite-valued and general submodular cost functions it is an important
open question as to whether they can be expressed using submodular cost
functions of some fixed arity. If they can, then this raises the possibility of de-
signing new, more efficient, algorithms for submodular function minimisation.

31

Acknowledgements

The authors would like to thank Martin Cooper, Martin Green, Chris Jeffer-
son, Karen Petrie and András Salamon for many helpful discussions, and the
anonymous reviewers for useful comments on an earlier draft of this paper.

References

[1] A. Billionet, M. Minoux, Maximizing a supermodular pseudo-boolean function:
a polynomial algorithm for cubic functions, Discrete Applied Mathematics 12
(1985) 1–11.

[2] S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie,
Semiring-based CSPs and valued CSPs: Frameworks, properties, and
comparison, Constraints 4 (1999) 199–240.

[3] E. Boehler, S. Reith, H. Schnoor, H. Vollmer, Bases for Boolean co-clones,
Information Processing Letters 96 (2005) 59–66.

[4] E. Boros, P. L. Hammer, Pseudo-boolean optimization, Discrete Applied
Mathematics 123 (1-3) (2002) 155–225.

[5] A. Bulatov, A. Krokhin, P. Jeavons, Classifying the complexity of constraints
using finite algebras, SIAM Journal on Computing 34 (3) (2005) 720–742.

[6] D. Cohen, M. Cooper, P. Jeavons, An algebraic characterisation of complexity
for valued constraints, in: CP’06, vol. 4204 of LNCS, 2006.

[7] D. Cohen, M. Cooper, P. Jeavons, A. Krokhin, A maximal tractable class of soft
constraints, Journal of Artificial Intelligence Research (JAIR) 22 (2004) 1–22.

[8] D. Cohen, M. Cooper, P. Jeavons, A. Krokhin, The complexity of soft constraint
satisfaction, Artificial Intelligence 170 (2006) 983–1016.

[9] N. Creignou, S. Khanna, M. Sudan, Complexity Classification of Boolean
Constraint Satisfaction Problems, vol. 7 of SIAM Monographs on Discrete
Mathematics and Applications, SIAM, 2001.

[10] R. Dechter, On the expressiveness of networks with hidden variables, in: AAAI,
1990.

[11] R. Dechter, J. Pearl, Tree clustering for constraint networks, Artificial
Intelligence 38 (3) (1989) 353–366.

[12] K. Denecke, S. Wismath, Universal Algebra and Applications in Theoretical
Computer Science, Chapman and Hall/CRC Press, 2002.

[13] A. Fearnley, A strongly rigid binary relation, Acta Sci. Math. (Szeged) 61 (1995)
35–41.

32

[14] S. Fujishige, Submodular Functions and Optimization, vol. 58 of Annals of
Discrete Mathematics, 2nd ed., Elsevier, 2005.

[15] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, Freeman, San Francisco, CA., 1979.

[16] S. Iwata, A faster scaling algorithm for minimizing submodular functions, SIAM
Journal on Computing 32 (2003) 833–840.

[17] S. Iwata, Submodular function minimization, Mathematical Programming 112
(2008) 45–64.

[18] S. Iwata, L. Fleischer, S. Fujishige, A combinatorial, strongly polynomial-time
algorithm for minimizing submodular functions, Journal of the ACM 48 (2001)
761–777.

[19] P. Jeavons, On the algebraic structure of combinatorial problems, Theoretical
Computer Science 200 (1998) 185–204.

[20] P. Jeavons, D. Cohen, M. Cooper, Constraints, consistency and closure,
Artificial Intelligence 101 (1–2) (1998) 251–265.

[21] P. Jeavons, D. Cohen, M. Gyssens, Closure properties of constraints, Journal
of the ACM 44 (1997) 527–548.

[22] P. Jeavons, D. Cohen, M. Gyssens, How to determine the expressive power of
constraints, Constraints 4 (1999) 113–131.

[23] P. Jeavons, M. Cooper, Tractable constraints on ordered domains, Artificial
Intelligence 79 (2) (1995) 327–339.

[24] P. Jégou, Decomposition of domains based on the micro-structure of finite
constraint-satisfaction problems, in: AAAI, 1993.

[25] J. Larrosa, R. Dechter, On the dual representation of non-binary semiring-based
CSPs, in: Workshop on Soft Constraints – CP’00, 2000.

[26] U. Montanari, Networks of constraints: Fundamental properties and
applications to picture processing, Information Sciences 7 (1974) 95–132.

[27] H. Narayanan, Submodular Functions and Electrical Networks, North-Holland,
Amsterdam, 1997.

[28] J. B. Orlin, A faster strongly polynomial time algorithm for submodular
function minimization., in: IPCO’07, vol. 4513 of LNCS, 2007.

[29] M. Queyranne, Minimising symmetric submodular functions, Mathematical
Programming 82 (1998) 3–12.

[30] F. Rossi, P. van Beek, T. Walsh (eds.), The Handbook of Constraint
Programming, Elsevier, 2006.

[31] A. Schrijver, A combinatorial algorithm minimizing submodular functions in
strongly polynomial time, Journal of Combinatorial Theory, Series B 80 (2000)
346–355.

33

[32] D. Topkis, Supermodularity and Complementarity, Princeton University Press,
1998.

[33] B. Zanuttini, S. Živný, A note on some collapse results of valued constraints,
submitted for publication (2008).

[34] S. Živný, P. Jeavons, Classes of submodular constraints expressible by graph
cuts, in: CP’08, vol. 5202 of LNCS, 2008.

34

