
Decoding Perfect Maps

Chris J. Mitchell∗ Kenneth G. Paterson†

19th March 1993

Abstract

Perfect Maps are two-dimensional arrays in which every possible sub-array
of a certain size occurs exactly once. They are a generalisation of the de
Bruijn sequences to two dimensions and are of practical significance in cer-
tain position location applications. In such applications the decoding prob-
lem, i.e. resolving the position of a particular sub-array within a specified
Perfect Map, is of great significance. In this paper new constructions for
(binary) Perfect Maps and 2k-ary de Bruijn sequences are presented. These
construction methods, although not yielding Perfect Maps for new sets of
parameters, are significant because the Maps they yield can be efficiently
decoded.

1 Introduction

Perfect maps, i.e. two-dimensional arrays in which every possible rectangular
sub-array (of fixed size) occurs precisely once, have been studied for some 30
years (see, for example, Reed and Stewart’s 1962 paper, [23]). A number of
construction methods have been devised, [6, 7, 12] and the existence question
has recently been completely answered [15].

A number of possible applications exist for such arrays, perhaps the most
obvious of which is their use for two-dimensional position location. The
basic idea is that, if such a map is written in some way onto a planar
surface, then any device capable of examining an appropriately sized rect-
angular sub-array will be able to precisely determine its position on the

∗Computer Science Department, Royal Holloway, University of London, Egham Hill,
Egham, Surrey TW20 0EX, England.

†Mathematics Department, Royal Holloway, University of London. Funded by SERC
CASE award No. 90C/11574

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Royal Holloway - Pure

https://core.ac.uk/display/28894045?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


surface. Brief mention is made of such an application by Reed and Stew-
art, [23], and a more detailed description of applications of this type can
be found in Burns and Mitchell, [3]. Before proceeding also note that, in
the one-dimensional case, similar position-detection applications have been
suggested for de Bruijn and m-sequences by a number of authors (see, for
example, Bondy and Murty, [2], Petriu et al., [17, 18, 19, 20, 21, 22] and
Arazi, [1]).

It is worth pointing out that the position detection application does not
require the ‘extreme’ property of Perfect Maps, namely that each sub-array
occurs exactly once. The key requirement is that each sub-array occurs at
most once. This logic has led some authors to apply the term Perfect Map in
a rather looser way to a much larger class of arrays (see, for example, Reed
and Stewart, [23]). Of particular importance in this context are the pseu-
dorandom arrays (see, for example, Nomura et al., [14], MacWilliams and
Sloane, [13] and Etzion, [6]) which have the property that each sub-array,
apart from the all-zero sub-array, occurs exactly once. Other arrays with
the property that each sub-array occurs at most once have been constructed
by Dénes and Keedwell, [5] and Etzion, [6].

Although the existence problem for such arrays has been addressed by a
number of authors, the problem of decoding these arrays has virtually been
ignored (with the exception of a small amount of work on decoding de bruijn
sequences), even though its solution is essential for the position location
application. By a decoding algorithm we mean an algorithm for computing
the position of a given sub-array within a Perfect Map. In any instance the
‘brute force’ method is available: we could store a complete look-up table
of sub-arrays and their positions. However such a method rapidly becomes
infeasible because of prohibitive memory requirements as the arrays increase
in size. The only other results known to the authors on the array decoding
problem are those of Lloyd and Burns, [11] who present a decoding technique
for a certain special class of (binary) pseudorandom arrays.

This paper is concerned with the construction of a class of Perfect Maps
for which a decoding algorithm exists which is significantly more efficient
than ‘brute force’ decoding. Whilst constructions and possible applications
exist for c-ary Perfect Maps with c > 2, where a c-ary array is one with its
elements drawn from the set {0, 1, . . . , c− 1}, in this paper we are primarily
concerned with the binary case, i.e. where each array contains only elements
from the set {0, 1}.
We start by giving a description of the method of construction of these ar-
rays, which actually form a subset of the Perfect Maps of Etzion [6]. His
constructions for Perfect Maps rely on ordering special sets of sequences and
their shifts to form the columns of an array. We give an explicit description of
these ordering and shifting processes in terms of 2k-ary de Bruijn sequences.

2



Our description naturally leads to a decoding method which reduces the
problem to the decoding of 2k-ary de Bruijn sequences and other related se-
quences. We next give new constructions for classes of such sequences which
allow efficient decoding. More specifically, we present a decoding algorithm
which reduces the decoding of one of these 2k-ary de Bruijn sequences to
repeated decodings of a binary de Bruijn sequence of the same span. We
then briefly consider some techniques for the decoding of binary de Bruijn
sequences. We conclude by combining the decoding of our Perfect Maps
and that of our sequences to produce an efficient Perfect Map decoding al-
gorithm. We indicate the complexity of the proposed decoding technique
and compare it with the ‘brute force’ approach. We first give the necessary
definitions and briefly review the known results on Perfect Maps.

2 Formal definitions and notation

In this paper we consider c-ary m by n integer arrays, which we write as

A = (aij), (0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1)

where each entry aij satisfies 0 ≤ aij ≤ c− 1.

If A is an m by n c-ary array, then we define its u by v sub-arrays to be the
set of c-ary arrays

Ast = (a
(st)
ij , 0 ≤ i ≤ u− 1, 0 ≤ j ≤ v − 1), 0 ≤ s ≤ m− 1, 0 ≤ t ≤ n− 1

defined by

a
(st)
ij = ai+s,j+t

where i+ s is computed modulo m and j + t is computed modulo n. Note
that throughout this paper we consider arrays and sequences ‘periodically’,
i.e. we treat them as if they are written onto the surface of a torus or a circle
respectively.

Using the notation of Fan et al., [7], we can then define a (m,n;u, v)-Perfect
Map, or simply a (m,n;u, v)-PM to be a c-ary m by n array (m ≥ u, n ≥ v)
with the property that each possible u by v c-ary array occurs exactly once
in the set of u by v sub-arrays {Ast : 0 ≤ s ≤ m − 1, 0 ≤ t ≤ n − 1}. Note
that (1, n; 1, v)-PMs are simply the well-known de Bruijn sequences.

We immediately have the following result relating the parameters of a Perfect
Map.

Lemma 2.1 If A is a c-ary (m,n;u, v)-PM then

(i) m > u or m = u = 1,

3



(ii) n > v or n = v = 1, and

(iii) mn = cuv.

Proof (i) is immediate on observing that if m = u then any m× n array
must contain the all-zero u×v sub-array either not at all or at least u times.
(ii) is similar and (iii) follows directly from the definition of perfect map. 2

As an immediate corollary we can deduce that, for the binary case (i.e.
c = 2), we must have m = 2k and n = 2uv−k for some integer k.

It has recently been shown by Paterson [15], that, in the binary case, the
necessary conditions of the previous lemma are in fact sufficient for the
existence of Perfect Maps.

We conclude these remarks by briefly reviewing the one-dimensional ana-
logue of Perfect Maps and Pseudorandom Arrays. As we have already
observed, a (1, n; 1, v)-PM is simply a de Bruijn sequence. We then im-
mediately have the following well-known result, [4, 9, 24].

Theorem 2.2 (De Bruijn, Good, Rees) A c-ary span v de Bruijn se-
quence (i.e. a sequence of length n = cv with entries from {0, 1, . . . , c − 1}
in which every distinct c-ary v-tuple occurs exactly once) exists for every c
and v (c ≥ 2 and v ≥ 1).

In fact, the precise number of distinct de Bruijn sequences is also known.
Many construction methods have been devised for de Bruijn sequences, see,
for example, [8].

The one-dimensional analogue of a pseudorandom array is what we call a
pseudorandom sequence, and is a c-ary sequence of length n = cv−1 with the
property that every c-ary v-tuple occurs, with the exception of the all-zero
v-tuple. The following result is well-known (see, for example, [3]).

Lemma 2.3 There exists a (c−1)-to-one correspondence between the set of
c-ary span v de Bruijn sequences and the set of c-ary span v pseudorandom
sequences.

Given a span v de Bruijn sequence, the corresponding pseudorandom se-
quence is derived by deleting one of the zeros from the unique v-tuple of
zeros. Hence pseudorandom sequences exist for every choice of c and v.
Note that we shall use the term derived pseudorandom sequence throughout
to refer to the sequence obtained from a de Bruijn sequence by this zero
deletion process.

We shall be mainly interested in 2k-ary de Bruijn and pseudorandom se-
quences; we often choose to represent the elements of such sequences by
their binary expansions i.e. by binary k-tuples.

4



3 A construction method for Perfect Maps

Before describing the method of construction we require one additional piece
of notation. Given a finite sequence C = (ci), (0 ≤ i ≤ n − 1), and a non-
negative integer k, we define Tk(C) to be the cyclic shift of C by k places.
I.e. if we write (di) = Tk(C) then

di+k = ci, (0 ≤ i ≤ n− 1)

where i+ k is calculated modulo n.

We also need to consider the existence of Perfect Factors, introduced by
Etzion, [6]. A (u, k)-Perfect Factor consists of a collection of 2u−k binary
sequences (cycles) of length 2k, with the property that every binary u-tuple
occurs in a unique sequence in the collection. Note that a (u, u)-Perfect
Factor is simply a binary, span u de Bruijn sequence. Etzion (Theorem 4 of
[6]) established the following key result.

Theorem 3.1 If u and k are positive integers satisfying

u < 2k ≤ 2u

then there exists a (u, k)-Perfect Factor.

We can now describe the construction method central to this paper.

Construction 3.2 Suppose u, v and k are positive integers satisfying

u+ 1 ≤ 2k ≤ 2u

and
uv ≥ 2k + 1.

Suppose C0, C1, . . . C2u−k−1 are the 2u−k cycles of length 2k of a (u, k)-
Perfect Factor (such a Perfect Factor exists by Theorem 3.1). Let (ri),
(0 ≤ i < 2uv−k), be 2k(v−1) repetitions of a 2u−k-ary span v de Bruijn se-
quence (such sequences always exist by Theorem 2.2). Suppose also that (si),
(0 ≤ i < 2uv−k), is 2v(u−k) repetitions of a 2k-ary span v − 1 pseudorandom
sequence for which the first v− 2 elements are all zeros, preceded by 2v(u−k)

zeros (again such sequences always exist by Theorem 2.2 and Lemma 2.3).
Finally, define the sequence (wi), (0 ≤ i < 2uv−k) by

wi =
i−1∑
j=0

sj mod 2k,

where w0 = 0.

Now define a 2k×2uv−k array by letting it have column i (0 ≤ i ≤ 2uv−k−1)
be equal to Twi(Cri), i.e. the ith column consists of the cycle Cri of the
chosen Perfect Factor cyclically shifted by wi places.

5



Before proving that the above construction yields Perfect Maps, we need the
following.

Lemma 3.3 The sequence (wi) defined in Construction 3.2 satisfies

w2uv−k−1 + s2uv−k−1 ≡ w0 ≡ 0 (mod 2k).

Proof By definition

w2uv−k−1 ≡
2uv−k−2∑

j=0

sj (mod 2k).

But (si) is nothing more than 2v(u−k) repetitions of a 2k-ary span v − 1
pseudorandom sequence (preceded by a collection of zeros). Hence

2uv−k−2∑
j=0

sj = 2v(u−k)S − s2uv−k−1

where S is the sum of the elements of such a pseudorandom sequence. It
should be clear that a 2k-ary span v − 1 pseudorandom sequence contains
each of the elements of the set {0, 1, . . . , 2k − 1} precisely 2k(v−2) times each
and so

S = 2k(v−2)(1 + 2 + . . .+ (2k − 1)) = 2kv−k−1(2k − 1)

and thus

w2uv−k−1+s2uv−k−1 ≡ 2v(u−k)2kv−k−1(2k−1) ≡ 2uv−k−1(2k−1) (mod 2k).

But uv − k − 1 ≥ k by definition and the result follows. 2

Theorem 3.4 Suppose u, v and k are positive integers satisfying

u+ 1 ≤ 2k ≤ 2u

and
uv ≥ 2k + 1.

Then a 2k×2uv−k array A obtained using Construction 3.2 is a (2k, 2uv−k;u, v)-
PM.

Remark Observe that the condition

uv ≥ 2k + 1

is trivially satisfied given v > 1 (except for the single case v = 2 and u = k).

6



Proof Suppose D is a u×v binary array — we need to show that this array
occurs somewhere within the 2k × 2uv−k array A. Consider the v columns
d0,d1, . . . ,dv−1 of D. Each of these columns is a u-tuple and hence each
di occurs within (a unique) one of the cycles C0, C1, . . . C2u−k−1 (since they
form a (u, k)-Perfect Factor); suppose that di occurs in Cei (0 ≤ i ≤ v− 1).
Moreover suppose that the first element of di is located at element fi of Cei

(0 ≤ fi ≤ 2k − 1, 0 ≤ i ≤ v − 1).

Suppose we can find a set of v consecutive columns of A equal to

Tg0(Ce0),Tg1(Ce1), . . . ,Tgv−1(Cev−1)

where g0, g1, . . . , gv−1 is some sequence satisfying

gi − g0 ≡ fi − f0 (mod 2k), (1 ≤ i ≤ v − 1).

Then it should be clear that these v columns will contain a copy of D. We
conclude the proof of the theorem by exhibiting the existence of such a set
of columns within A.

First note that, from the definition of Construction 3.2, the sequence (ri),
(0 ≤ i < 2uv−k), is 2k(v−1) repetitions of a 2u−k-ary span v de Bruijn se-
quence. Now, by definition of de Bruijn sequence, this means that each
repetition of the de Bruijn sequence making up (ri) will contain the v-tuple
(e0, e1, . . . , ev−1) exactly once. Hence, ignoring for the moment the shift
values, the array A will contain the v-tuple of columns (Ce0 , Ce1 , . . . , Cev−1)
exactly 2k(v−1) times at even intervals (of length 2v(u−k)). Suppose the first
occurrence of this v-tuple of columns is at column numbers t, t+1, . . . , t+v−1
(where t satisfies 0 ≤ t < 2v(u−k)), and hence all subsequent appearances
are at column numbers 2v(u−k)y+ t, 2v(u−k)y+ t+1, . . . , 2v(u−k)y+ t+ v− 1
(0 ≤ y < 2k(v−1)), and where column numbers are reduced modulo 2uv−k as
necessary.

The shift values applied to each appearance of the v-tuple of columns (Ce0 , Ce1 , . . . , Cev−1)
are determined by the sequence (wi), (0 ≤ i < 2uv−k). We are thus inter-
ested in the values of

wdy+t, wdy+t+1, . . . , wdy+t+v−1, (0 ≤ y < 2k(v−1)),

where d = 2v(u−k). More specifically, we are concerned with the values of

wdy+t+1 − wdy+t, . . . , wdy+t+v−1 − wdy+t, (0 ≤ y < 2k(v−1)),

since we need to find such a tuple of values which equals

f1 − f0, . . . , fv−1 − f0

for some y (0 ≤ y < 2k(v−1)). But, by definition of (wi), the above tuples of
values are equal to

sdy+t, sdy+t + sdy+t+1, . . . , sdy+t + sdy+t+1 + · · ·+ sdy+t+v−2

7



for every y (0 ≤ y < 2k(v−1)). Note that this applies even when dy+ t+ j ≥
2uv−k since w2uv−k−1 + s2uv−k−1 ≡ 0 (mod 2k) by Lemma 3.3.

Next observe that (si) consists of d repetitions of a pseudorandom sequence
of period 2k(v−1) − 1 (preceded by d zeros), and, by definition, this pseudo-
random sequence will contain every 2k-ary non-zero (v − 1)-tuple of values
precisely once. Now since 2k(v−1) − 1 is co-prime to d, the tuples

sdy+t, sdy+t+1, . . . , sdy+t+v−2

will range through the entire set of (non-zero) 2k-ary (v − 1)-tuples as y
ranges from 1 up to 2k(v−1)−1 (this remains true even when dy+t+j ≥ 2uv−k

since we assumed that the first v−2 elements of the pseudorandom sequence
used to constitute (si) are all zeros). Hence the tuples

sdy+t, sdy+t + sdy+t+1, . . . , sdy+t + sdy+t+1 + · · ·+ sdy+t+v−2

will also range through the entire set of (non-zero) 2k-ary (v−1)-tuples as y
ranges from 1 up to 2k(v−1)− 1. Finally observe that, when y = 0, the tuple

sdy+t, sdy+t+1, . . . , sdy+t+v−2

will be identically zero (by definition — again noting that this holds since
the first v−2 elements of the pseudorandom sequence are all zero) and hence
the tuple

st, st + st+1, . . . , st + st+1 + · · ·+ st+v−2

will also be identically zero.

Thus, as y ranges from 0 up to 2k(v−1) − 1, the (v − 1)-tuples

wdy+t+1 − wdy+t, . . . , wdy+t+v−1 − wdy+t

will range through every possible 2k-ary (v−1)-tuple. Hence there will exist
precisely one such tuple which equals

f1 − f0, . . . , fv−1 − f0.

The result now follows. 2

Example 3.5 As an example of the above construction method, consider
the case u = 3, v = 2, k = 2 (and hence we construct a (4, 16; 3, 2)-PM).
We first need a (3, 2)-Perfect Factor — which will contain 23−2 = 2 cycles
of length 22 = 4. The following is an example:

C0 =
(

0 0 0 1
)
, C1 =

(
0 1 1 1

)
.

8



We also need a 2-ary span 2 de Bruijn sequence and a 4-ary span 1 pseudo-
random sequence, examples of which are provided by(

0 0 1 1
)

and (
1 2 3

)
respectively. Hence (ri), which consists of 4 repetitions of the de Bruijn
sequence is(

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
)

and (si), consisting of 4 repetitions of the pseudorandom sequence preceded
by 4 zeros is(

0 0 0 0 1 2 3 1 2 3 1 2 3 1 2 3
)

and hence (wi) is(
0 0 0 0 0 1 3 2 3 1 0 1 3 2 3 1

)
.

Using (ri) and (wi) as indicated in Construction 3.2 we arrive at the fol-
lowing (4, 16; 3, 2)-PM:

0 0 0 0 0 1 1 1 0 1 0 1 0 0 1 1
0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0
0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 1
1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1

 .

Construction 3.2 above generalises Theorem 1 of Ma, [12], whose construc-
tion corresponds to the special case k = u. Construction 3.2 yields Per-
fect Maps for every parameter set satisfying the conditions of Theorem 3.4.
These are exactly the conditions on the parameters imposed by Etzion in
[6]; indeed our Perfect Maps are actually a subset of those produced by the
method of Etzion. The main significance of the above construction is that
it enables us to find means of decoding these arrays which are significantly
more efficient than brute force techniques.

4 The decoding technique

We now describe a decoding algorithm for the above class of Perfect Maps.
Suppose A is a (2k, 2uv−k;u, v)-PM obtained from Construction 3.2. The de-
coding algorithm described here requires the use of decoding algorithms for

9



the three combinatorial objects used to construct A; we start by defining the
function of these algorithms—efficient implementations will be considered in
subsequent sections.

Let C0, C1, . . . , C2u−k−1 be the (u, k)-Perfect Factor used to construct A.
Now suppose that the function

F1 : {0, 1}u → {0, 1, . . . , 2u−k − 1}

maps a binary u-tuple onto the number of the cycle of the Perfect Factor
which contains it, i.e., given a binary u-tuple h, F1(h) = i if and only if Ci

contains h. The related function

F2 : {0, 1}u → {0, 1, . . . , 2k − 1}

indicates the position of a u-tuple within the cycle in which it is to be found.
More formally, if the binary u-tuple h is located in a cycle

(c0, c1, . . . , c2k−1)

such that the first element of h corresponds to cj , then F2(h) = j.

We define functions G and H1 to respectively be decoding algorithms for the
2u−k-ary span v de Bruijn sequence and the 2k-ary span v−1 pseudorandom
sequence used to construct A. Hence the function

G : {0, 1, . . . , 2u−k − 1}v → {0, 1, . . . , 2(u−k)v − 1}

is defined so that, given a 2u−k-ary v-tuple a, G(a) is equal to the position
within the de Bruijn sequence at which a is to be found. Similarly, the
function

H1 : {0, 1, . . . , 2k − 1}v−1 → {0, 1, . . . , 2k(v−1) − 2}

is defined so that, given a 2k-ary (v − 1)-tuple b, H1(b) is equal to the
position within the pseudorandom sequence at which b is to be found.

Finally we define the function

H2 : {0, 1, . . . , 2k(v−1) − 2} → {0, 1, . . . , 2k − 1}

by

H2(j) =

{
0 if j = 0∑j−1

i=0 αj mod 2k if 1 ≤ j ≤ 2k(v−1) − 2

where (αi), (0 ≤ i ≤ 2k(v−1) − 2) is the 2k-ary span v − 1 pseudorandom
sequence used in the construction of A.

We now describe how the functions F1, F2, G, H1 and H2 can be used to
decode A. Suppose D is a u×v binary array with columns d0,d1, . . . ,dv−1.
Then the following algorithm can be used to locate the position of D within
A.

10



Algorithm 4.1 The algorithm involves three main steps, as follows.

1. Let
g = G(F1(d0), F1(d1), . . . , F1(dv−1))

and

h = H1(F2(d0)− F2(d1), F2(d1)− F2(d2), . . . , F2(dv−2)− F2(dv−1))

(unless

F2(d1)− F2(d0) = F2(d2)− F2(d1) = · · · = F2(dv−1)− F2(dv−2) = 0

in which case set h = −1).

2(a). If h = −1 then let y = g.

2(b). If h ≥ 0 then, using the Euclidean Algorithm (or by any other means),
obtain the unique solution y′ (in the range 0 to 2uv−k − 2v(u−k)− 1) to
the simultaneous congruences:

y′ ≡ g (mod 2v(u−k)),

y′ ≡ h (mod 2k(v−1) − 1);

finally let y = y′ + 2v(u−k).

The value y will now be equal to the number of the column of A in
which the first column of D appears.

3(a). If h = −1 then let
x = F2(d0).

3(b). If h ≥ 0 then suppose y′ = λ(2k(v−1) − 1) + h. Then let

x = λ2kv−k−1(2k − 1) +H2(h) + F2(d0) mod 2k.

The value x will now be equal to the number of the row of A in which
the first row of D appears. This completes the decoding process.

Proof of correctness Suppose X and Y are the numbers of the row
and column in A (respectively) in which the first row and first column of D
appear.

1. It is elementary to verify that Y ≡ g (mod 2v(u−k)). The interpreta-
tion of h is a little more complex. If h = −1 then the first column of D
lies in one of columns 0, 1, . . . , 2v(u−k)−1 of A. If h ≥ 0, then we know
that the first column of D lies in one of columns 2v(u−k), 2v(u−k) +
1, . . . , 2uv−k − 1 of A and that, if we let Y ′ = Y − 2v(u−k), then Y ′ ≡ h
(mod 2k(v−1) − 1).

11



2(a). The reason for this step should be clear from the discussion under (1)
above.

2(b). Since Y ≡ g (mod 2v(u−k)) it immediately follows that we also have
Y ′ ≡ g (mod 2v(u−k)). Hence the algorithm correctly solves for Y ′

and hence for Y .

3(a). In this case it should be clear that the column of A containing the first
column of D will be an unshifted version of the cycle from the Perfect
Factor, and hence X = F2(d0).

3(b). The value of λ indicates the number of times a complete copy of the
pseudorandom sequence has been added to the shift value applied to
the column of A containing the first column of D. The value of h
indicates the number of extra elements of the pseudorandom sequence
also added to this shift value. Hence

X = λS +H2(h) + F2(d0) mod 2k,

where S represents the sum of the elements in the pseudorandom se-
quence. But, as in the proof of Lemma 3.3,

S = 2kv−k−1(2k − 1)

and hence x = X. 2

Example 4.2 As an example of this decoding method we reconsider the
4× 16 array constructed in Example 3.5. Suppose

D =

 1 0
1 0
1 0

 .

Then we have

d0 =
(

1 1 1
)
, d1 =

(
0 0 0

)
.

Now F1(d0) = F1(111) = 1 and F1(d1) = F1(000) = 0. Hence g = G(10) =
3. Similarly, F2(d0) = F2(111) = 1 and F2(d1) = F2(000) = 0, and hence
h = H1(1− 0) = H1(1) = 0. We therefore have

y′ ≡ 3 (mod 4)

and
y′ ≡ 0 (mod 3),

and hence y′ = 3. This gives y = y′ + 4 = 7.

To compute x observe that y′ = 3 = 1×3+0, i.e. λ = 1. In addition observe
that H2(h) = H2(0) = 0. Hence

x = λ2kv−k−1(2k − 1) +H2(h) + F2(d0) = 1× 2× 3 + 0 + 1 = 3 mod 4.

Hence the top left hand corner of D is to be found in column 7, row 3 of A.

12



5 Construction and decoding of 2k-ary de Bruijn
sequences

In this section we present a new construction which builds a 2k-ary span v
sequence from many copies of a binary span v sequence in a well defined
way. The technique allows us to specify a decoding algorithm which reduces
the decoding of a 2k-ary sequence to k decodings of the binary sequence.
The constructions and algorithms given here can easily be generalised to
sequences over alphabets of arbitrary size, but we omit the details. We also
briefly consider the decoding problem for binary de Bruijn sequences.

Construction 5.1 Let b1, b2 and v be positive integers. Let S1 = (s1i ) be a
2b1-ary span v de Bruijn sequence and let S2 = (s2i ) be a 2b2-ary span v de
Bruijn sequence. Suppose that both sequences begin with v zeros. Let (S2)′

denote the pseudorandom sequence derived from S2.

Construct a binary array A with b1+b2 rows and 2(b1+b2)v columns as follows:
the first b1 rows of A consist of the binary representations of 2b2v copies of
S1, and the last b2 rows of A consists of the binary representation of a run
of 2b1v zeros followed by 2b1v copies of (S2)′.

Theorem 5.2 Given positive integers b1, b2 and v, let A be an array ob-
tained from sequences S1, S2 using Construction 5.1. Let S = (si) be the
2b1+b2-ary sequence where si has a binary representation with least signifi-
cant bit the first entry in the ith column of A, second least significant bit the
second entry in the ith column of A, and so on. Then S is a 2b1+b2-ary span
v de Bruijn sequence beginning with v zeros.

Note Because of the ordering of bits specified in the Theorem, the b1 least
significant bits of the binary representations of the terms of (S) are derived
solely from the terms of sequence S1. Likewise the b2 most significant bits
of the binary representations of the terms of (S) are derived solely from the
terms of sequence S1.

Proof Given an arbitrary 2b1+b2-ary v-tuple, we need to find an i such
that the v-tuple occurs in positions i, i + 1, . . . , i + v − 1 of the sequence
derived from A. Equivalently, given an arbitrary binary (b1+ b2)× v matrix
B, we must find an i such that B occurs as the submatrix of A occupying
columns i, i+ 1, . . . , i+ v − 1.

We write B =

(
C
D

)
where C is an b1 × v array and D is an b2 × v array.

Since S1 is a de Bruijn sequence, S1 contains a v-tuple corresponding to C
in some positions x, x+ 1, . . . , x+ v− 1 with 0 ≤ x ≤ 2b1v − 1. We consider
two cases.

13



When D is the all-zero matrix, B will occur beginning at position x in A
since the first 2b1v columns of A are formed from one copy of the de Bruijn
sequence S1 and a run of 2b1v zeros, and since (S2)′ begins with v− 1 zeros.

Suppose now thatD is not identically zero. Then the sequence (S2)′ contains
a v-tuple corresponding to D in some positions y, y + 1, . . . , y + v − 1, with
0 ≤ y ≤ 2b2v − 2. By the Chinese Remainder Theorem we can solve the
system

i ≡ x (mod 2b1v)

i ≡ y (mod 2b2v − 1)

uniquely for i with 0 ≤ i < 2b1v(2b2v − 1). Finally we deduce from the
construction of A that B occurs beginning in column i+ 2b1v of A. 2

Example 5.3 As an example of the above construction method, consider
the case b1 = b2 = 1 and v = 2. Let

S1 = S2 =
(

0 0 1 1
)

and then
(S2)′ =

(
0 1 1

)
.

Construction 5.1 now gives

A =

(
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1

)
and we obtain the following 4-ary span 2 de Bruijn sequence:(

0 0 1 1 0 2 3 1 2 2 1 3 2 0 3 3
)
.

It is clear how Construction 5.1 can be used repeatedly to generate a 2k-
ary de Bruijn sequence from binary sequences of the same span. There are
many ways to combine intermediate sequences to produce a final sequence;
we introduce a family of binary trees to describe the possibilities.

Let k be a positive integer and define a set of binary trees Tk as follows.
The highest vertex of each tree T is labelled k, and the two vertices directly
below a vertex labelled t have labels that are positive integers summing to
t. The lowest vertices of each tree T (called the leaves) all have labels equal
to 1. We shall distinguish between the left and right subtrees at a vertex of
T . We next define a tree traversing algorithm applicable to the trees in Tk

which indicates how Construction 5.1 is used on intermediate sequences to
form a final 2k-ary de Bruijn sequence.

Inputs to the algorithm are: a tree T in Tk and a span v binary de Bruijn
sequence S. In traversing the tree, we store a sequence at each vertex and
the algorithm terminates with a 2k-ary span v de Bruijn sequence stored at
the vertex labelled k.

14



Algorithm 5.4 (Sequence Generation)

store the sequence S at each vertex of T labelled with a 1;
set current vertex to be that with label k;
repeat while (there is no sequence stored at the vertex labelled k)

if (both vertices below current vertex contain sequences) then

join the two sequences using Construction 5.1 with se-
quence S1 equal to the sequence at the head of the left
subtree and sequence S2 equal to the sequence at the
head of the right;
if (current vertex does not have label k)

move up the tree to the next higher vertex;

else

go down leftmost subtree whose head vertex does not
already contain a sequence;

Note that the left-right ordering of branches in a particular tree is of impor-
tance in determining the final sequence obtained with the algorithm. The
set of trees Tk together with the above algorithm then defines the set of pos-
sible repeated applications of Construction 5.1 to produce a 2k-ary sequence
from the sequence S.

We do not discuss here the best choice of tree leading to the fastest or most
memory efficient production of sequences; rather we next concentrate on
how the trees in Tk can be used to define a decoding algorithm for 2k ary
sequences. Below we give a recursive algorithm having inputs a tree T in Tk,
a span v binary de Bruijn sequence S and a 2k-ary v-tuple which we represent
as a k×v binary matrix, Z, having rows z1, . . . , zk. Our algorithm computes
the position of Z in the sequence obtained using tree T and sequence S in
Algorithm 5.4. In traversing the tree T , we store intermediate positions at
the vertices — the algorithm terminates on returning the position x of Z.
A secondary algorithm is invoked to decode the binary v-tuples zi in S —
thus decoding the 2k-ary sequence is reduced to k decodings of a binary
sequence. We briefly discuss below some possible secondary algorithms.

Algorithm 5.5 (Sequence Decoding)

set current vertex to be that with label k;
set i = 1;
x =decode(current vertex);
procedure decode(current vertex)

15



if (current vertex label is 1) then

let x be the decoding of the binary v-tuple zi in S ob-
tained using a secondary algorithm;
increment i;
return (x);

else

let bl, br denote the labels of left and right vertices below
current vertex respectively;
let xl = decode(left vertex);
let xr = decode(right vertex);
if (xr = 0) then

return(xl);

else

using the Euclidean Algorithm solve the sys-
tem

x ≡ xl (mod 2blv)

x ≡ xr − 1 (mod 2brv − 1)

with 0 ≤ x < 2blv(2brv − 1);
return(x+ 2blv);

The correctness of this algorithm follows immediately from the proof of
Theorem 5.2.

We now discuss the efficiency of Algorithm 5.5. In traversing a tree T in Tk,
the algorithm makes at most k−1 uses of the Euclidean algorithm, which can
be implemented very efficiently. The main overhead is therefore in making
k uses of the secondary algorithm to decode sequence S, a span v binary de
Bruijn sequence. The simplest (and fastest) technique for decoding such a
sequence is to store a complete look-up table, requiring the storage of v2v

bits. Recent work in [16] has shown that a restricted class of de Bruijn
sequences can be decoded using 2v bits of storage and time linear in v.
However, for speed and simplicity, our calculations in subsequent sections
will be based on the storage for a complete look-up table. In memory critical
applications, the work of [16], or a Feedback shift register implementation
analogous to the work of Petriu et al. ([19, 22]), can be used to obtain further
reductions in the quoted storage requirements.

16



6 A combined decoding technique and its efficiency

In this section we combine Algorithm 4.1 and the results and algorithms of
Section 5 to produce a decoding algorithm for Perfect Maps which is time
efficient and has markedly better storage requirements than the brute force
decoding method.

We start by considering efficient implementations for each of the functions
F1, F2, G, H1 and H2 of Algorithm 4.1. In order to use the results of
Section 5, we restrict the de Bruijn and pseudorandom sequences used in
Construction 3.2 to be of the type produced in Section 5. We therefore
consider a smaller class of Perfect Maps than that of Construction 3.2.

F1 This function requires a look-up table having 2u entries, each of which
contains a (u − k)-bit number; hence the function requires 2u(u − k)
bits of space.

F2 Similarly this function requires 2uk bits of space.

G This function is a decoder for a 2u−k-ary span v de Bruijn sequence.
Using the techniques of section 5, an efficient decoder G can be ob-
tained using around v2v bits of storage (there is some extra storage
associated with the tree used to define the 2u−k-ary sequence).

H1 As for G, this function can be implemented using about (v − 1)2v−1

bits of storage.

H2 Recall that H2(j) is defined as

H2(j) =


0 if j = 0
j−1∑
i=0

αi mod 2k if 1 ≤ j ≤ 2k(v−1) − 2

where (αi) is a 2k-ary span v − 1 pseudorandom sequence beginning
with v − 2 zeros. Suppose that (αi) is derived from a span v − 1 de
Bruijn sequence (βi) commencing with v − 1 zeros. Then in fact

H2(j) =
j∑

i=0

βi mod 2k for 0 ≤ j ≤ 2k(v−1) − 2

Suppose further that (βi) is derived from an application of Algorithm
5.4 with tree T and span v − 1 binary de Bruijn sequence S = (si).
Then (βi) is made up in a well defined way from the repetition of span
v−1 de Bruijn and pseudorandom sequences whose sums over a period
can be calculated by arguments similar to that of Lemma 3.3. We use
the structure of (βi) to reduce the problem of computing H2(j) to the
problem of summing along intermediate sequences. The reduction is
made clear in the following:

17



Lemma 6.1 Suppose Construction 5.1 is used to produce a 2bl+br -ary
span v− 1 de Bruijn sequence (βi) from 2bl-ary and 2br -ary sequences
Sl = (sli) and Sr = (sri ) respectively. Let H2(j) be as above and define
H l

2(j) =
∑j

i=0 s
l
i mod 2bl+br and Hr

2(j) =
∑j

i=0 s
r
i mod 2bl+br . Then if

pl = j mod 2bl(v−1),

ql = j div 2bl(v−1),

pr = (j − 2bl(v−1)) mod 2br(v−1) − 1, and

qr = (j − 2bl(v−1)) div 2br(v−1) − 1

we have

H2(j) =


H l

2(j) if 0 ≤ j ≤ 2bl(v−1) − 1

H l
2(pl) + ql2

bl(v−1)−1(2bl − 1)

+2bl(Hr
2(pr + 1) + qr2

br(v−1)−1(2br − 1)) mod 2bl+br otherwise

Proof The least significant bl bits of the binary representation of
H2(j) are the bl least significant bits of the sum of ql repetitions of S

l

and the first pl terms of Sl. Using the same argument as in Lemma 3.3,
the sum of the terms of Sl is 2bl(v−1)−1(2bl − 1). When j ≥ 2bl(v−1),
the most significant br bits of H2(j) arise from the most significant
br bits of the previous sum added to the sum of qr copies of Sr and
the terms sr1, s

r
2, . . . , s

r
pr+1 of Sr. When 0 ≤ j ≤ 2bl(v−1) − 1, the most

significant br bits of H2(j) arise solely from the most significant br bits
of the previous sum. 2

Since βi is produced using Algorithm 5.4, we know that the sums
along intermediate sequences may also be obtained by combining sums
along lower intermediate sequences using Lemma 6.1. We can therefore
reduce the calculation of H2(j) until we are faced with the problem of
repeated summing along the binary sequence S. This is achieved by
defining a table U by

U(j) =
j∑

i=0
si mod 2k for 0 ≤ j ≤ 2v−1 − 1

requiring storage of k2v−1 bits. We give a recursive algorithm whose
inputs are the tree T , table U and index j and which returns the value
of H2(j). The correctness of the algorithm follows from Lemma 6.1.

18



Algorithm 6.2 (calculation of H2(j))

H2(j) = sum(j, vertex with label k);

procedure sum(i, current vertex)

if (current vertex has label 1) then

return (U(i));

else

let bl, br denote the labels of left and right vertices
below current vertex respectively;
if (0 ≤ i ≤ 2bl(v−1) − 1) then

return (sum(i, left vertex));

else

let pl = i mod 2bl(v−1);
let ql = i div 2br(v−1);
let pr = (i− 2bl(v−1)) mod 2br(v−1) − 1;
let qr = (i− 2bl(v−1)) div 2br(v−1) − 1;
let H l

2 =sum(pl, left vertex);
let Hr

2 =sum(pr + 1, right vertex);
return (H l

2 + ql2
bl(v−1)−1(2bl − 1)

+2bl(Hr
2 + qr2

br(v−1)−1(2br − 1)) mod 2k);

Combining the storage for the above implementations whilst ignoring any
storage associated with trees T , we deduce that the total space, SA required
for Algorithm 4.1 is given in bits by

SA = 2u(u− k) + 2uk + v2v + (v − 1)2v−1 + k2v−1

which simplifies to
SA = u2u + (k + 3v − 1)2v−1 (1)

We note that each use of Algorithm 4.1 requires v uses of F1 and F2 (simple
look-ups) and one use each of G, H1 and H2 (requiring only simple modular
arithmetic and multiple look-ups during a tree traversal). Hence the time
complexity of our decoder will be very small, and we need only consider its
storage requirements.

The calculations for the ‘brute force’ or direct look-up table approach are
somewhat simpler. In this case, if we suppose the look-up table is to be used
to decode a (2k, 2uv−k;u, v)-PM, the look-up table will contain as entries
all the possible u × v sub-arrays, and each entry will contain the required
positional information. Hence the table will contain 2uv entries, each of
uv bits. Thus the total space, SB required for the brute force decoding
algorithm is given by

SB = uv2uv. (2)

19



Hence, by comparing Equations 1 and 2, and noting that k ≤ u, it is clear
that Algorithm 4.1 coupled with the above implementations of functions F1,
F2, G, H1 and H2 will be better than the brute force approach when u and
v are not too small.

As an example consider the values of SA and SB for the case u = 5, v = 5
and k = 4, i.e. for a (16, 221; 5, 5)-PM. Then we have

SA = u2u + (k + 3v − 1)2v−1

= 5× 25 + 18× 24

= 160 + 288 = 448

Clearly at this level, the storage associated with trees in our algorithms
should be taken into account. In any case

SB = uv2uv

= 5× 5× 25×5

= 25× 33554432 = 838, 860, 800

and hence, in this case, Algorithm 4.1 gives a huge saving in space (from
105 Mbytes to 56 bytes).

7 Areas for further study

The method of construction and the associated decoding algorithm described
in this paper raise a number of further questions. We consider some of them
briefly.

• First and foremost amongst these is whether efficient decoding algo-
rithms for Perfect Maps of parameters different from those described
here can be devised. It would certainly be of practical significance to
produce decoding algorithms for ‘square’ Perfect Maps of the parame-
ters which have been constructed by Fan et al., [7], and for the Perfect
Maps constructed in [15].

• It appears likely that the construction and decoding algorithm pre-
sented in this paper can be generalised in a number of different ways,
in particular to cover the c-ary and multi-dimensional cases. In this
latter respect note that three-dimensional Perfect Maps have previ-
ously been constructed by Iványi, [10].

• Another possible generalisation of the above construction might be to
generate ‘Sub-Perfect Maps’, i.e. arrays where each u by v sub-array
occurs at most once (as mentioned in the introduction). One possi-
ble approach of this type would involve replacing the Perfect Factor

20



(Ci) used in Construction 3.2 with a ‘Sub-Perfect’ Factor, i.e. a set
of sequences of equal length in which every v-tuple occurs at most
once. It is certainly true that Etzion’s construction, [6], does admit
generalisations and modifications of this type.

Acknowledgements

The second author would like to acknowledge the support of Hewlett-Packard
Ltd. under the SERC CASE studentship scheme.

References

[1] B. Arazi. Position recovery using binary sequences. Electronics Letters,
20:61–62, 1984.

[2] J.A. Bondy and U.S.R. Murty. Graph theory with applications. Elsevier,
1976.

[3] J. Burns and C.J. Mitchell. Coding schemes for two-dimensional posi-
tion sensing. In M. Ganley, editor, Cryptography and Coding III. Oxford
University Press (to appear).

[4] N.G. de Bruijn. A combinatorial problem. Proceedings Nederlandse
Akademie van Wetenschappen, 49:758–764, 1946.

[5] J. Dénes and A.D. Keedwell. A new construction of two-dimensional
arrays with the window property. IEEE Transactions on Information
Theory, 36:873–876, 1990.

[6] T. Etzion. Constructions for perfect maps and pseudo-random arrays.
IEEE Transactions on Information Theory, 34:1308–1316, 1988.

[7] C.T. Fan, S.M. Fan, S.L. Ma, and M.K. Siu. On de Bruijn arrays. Ars
Combinatoria, 19A:205–213, 1985.

[8] H. Fredricksen. A survey of full length nonlinear shift register cycle
algorithms. SIAM Review, 24:195–221, 1982.

[9] I.J. Good. Normally recurring decimals. Journal of the London Math-
ematical Society, 21:167–169, 1946.

[10] A.M. Iványi. Construction of three-dimensional perfect matrices. Ars
Combinatoria, 29C:33–40, 1990.

21



[11] S.A. Lloyd and J. Burns. Finding the position of a subarray in a pseudo-
random array. In M. Ganley, editor, Cryptography and Coding III.
Oxford University Press (to appear).

[12] S.L. Ma. A note on binary arrays with a certain window property. IEEE
Transactions on Information Theory, IT-30:774–775, 1984.

[13] F.J. MacWilliams and N.J.A. Sloane. Pseudo-random sequences and
arrays. Proceedings of the IEEE, 64:1715–1729, 1976.

[14] T. Nomura, H. Miyakawa, H. Imai, and A. Fukuda. A theory of two-
dimensional linear recurring arrays. IEEE Transactions on Information
Theory, IT-18:775–785, 1972.

[15] K.G. Paterson. Perfect maps. IEEE Transactions on Information The-
ory, submitted.

[16] K.G. Paterson and M.J.B. Robshaw. Storage efficient decoding for a
class of binary de Bruijn sequences. Preprint (Mathematics Depart-
ment, Royal Holloway, University of London), December 1992.

[17] E.M. Petriu. Absolute-type pseudorandom shaft encoder with any de-
sired resolution. Electronics Letters, 21:215–216, 1985.

[18] E.M. Petriu. Absolute-type position transducers using a pseudorandom
encoding. IEEE Transactions on Instrumentation and Measurement,
IM-36:950–955, 1987.

[19] E.M. Petriu. New pseudorandom/natural code conversion method.
Electronics Letters, 24:1358–1359, 1988.

[20] E.M. Petriu. Scanning method for absolute pseudorandom position
encoders. Electronics Letters, 24:1236–1237, 1988.

[21] E.M. Petriu and J.S. Basran. On the position measurement of auto-
mated guided vehicles using pseudorandom encoding. IEEE Transac-
tions on Instrumentation and Measurement, 38:799–803, 1989.

[22] E.M. Petriu, J.S. Basran, and F.C.A. Groen. Automated guided ve-
hicle position recovery. IEEE Transactions on Instrumentation and
Measurement, 39:254–258, 1990.

[23] I.S. Reed and R.M. Stewart. Note on the existence of perfect maps.
IRE Transactions on Information Theory, IT-8:10–12, 1962.

[24] D. Rees. Note on a paper by I.J. Good. Journal of the London Mathe-
matical Society, 21:169–172, 1946.

22


