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I IntroductionA De Bruijn sequences and the decoding problemDe Bruijn sequences, i.e. periodic sequences with elements taken from a �nite alphabetin which every possible v-tuple of elements appears precisely once in a period (for somev), have been well-studied for many years, see, for example, [1, 2]. Many constructionsare known, and a useful survey has been given by Fredricksen, [2].However, the decoding problem, i.e. the problem of discovering the position within aparticular sequence of any speci�ed v-tuple, has been much less well studied. This isnotwithstanding the fact that for certain well known practical applications of de Bruijnsequences, including their use for position location (see, for example, [3, 4, 5]), the decod-ing problem is an important one. Over and above its practical signi�cance, the decodingproblem has been listed by Chung, Diaconis and Graham, [6], as one of the `fundamentalquestions' for the study of de Bruijn sequences.Previous work on the decoding problem can be summarised as follows.� The obvious approach is the `brute force' method of storing a look-up table of thepositions in the sequence of all possible v-tuples. Alternatively, successive states ofthe sequence can be generated until the desired v-tuple is found. These methodsare too ine�cient for use with anything except relatively short sequences.� A `milestone' approach to the decoding of the de Bruijn sequences derived fromm-sequences can be derived from the work of Petriu, [5]. The idea is a simpledevelopment of the brute force approach of stepping a linear feedback shift register,equipped with feedbacks which generate the m-sequence, through all possible statesuntil the desired tuple is obtained. The milestone idea is to store every nth shift2



register state (i.e. every nth tuple in the sequence) for some n; these form themilestone values. A particular v-tuple to be `decoded' is then used to de�ne theinitial state of the register, which is stepped until a stored value is obtained. Thisapproach does not reduce the computational complexity of decoding below the bruteforce value; it is simply a time/space trade o� (albeit not without practical meritfor relatively small values of v).� Another decoding method also applies to the de Bruijn sequences derived frombinary m-sequences. Consider the successive states of a v-stage `Galois' feedbackregister, equipped with feedbacks corresponding to a primitive polynomial. It is awell-established fact (see, for example, [7]) that, if these states (binary v-tuples) areregarded as binary vectors with respect to an appropriate basis, then the successivestates are simply successive powers of a primitive element in the �nite �eld GF(2v)when regarded as a v-dimensional vector space over GF(2). Hence �nding theposition of any given state in this sequence of states is precisely equivalent to �ndingdiscrete logarithms in this �eld.Massey and Liu, [8], showed that there always exists a linear transformation map-ping the sequence of states of a Galois register into the corresponding sequence ofstates of a `conventional' feedback register. This means that the decoding problemfor m-sequences (and de Bruijn sequences derived from them) is equivalent to thediscrete logarithm problem over GF(2v). Although �nding discrete logarithms isnon-trivial, algorithms considerably more e�cient than the brute force approachare known; see, for example, [9].� The only other method known to the authors applies to a di�erent class of de Bruijnsequences, namely those derived by repeated application of the inverse of Lempel's3



homomorphism, [10]. Paterson and Robshaw, [11], have shown that such sequencescan be decoded recursively. Although this technique achieves a time/space trade-o�, its overall complexity remains essentially the same as the brute force methods,unless some information is already available about the approximate location of thev-tuple in the sequence.It should be clear that all the existing approaches have signi�cant limitations; even thediscrete logarithm method is computationally complex, and is non-trivial to implement.In this paper we present two related methods of construction for de Bruijn sequences.We also describe algorithms which can be used to decode these sequences much moree�ciently than any of the previously known techniques.B Preliminary de�nitions and notationWe �rst set up some notation which we will use throughout the paper.We are concerned here with c-ary periodic sequences, where by the term c-ary we meansequences whose elements are drawn from the set f0; 1; : : : ; c� 1g. We refer throughoutto c-ary cycles of period n, by which we mean periodic sequences (s0; s1; : : : ; sn�1) wheresi 2 f0; 1; : : : ; c� 1g for every i, (0 � i < n).If t = (t0; t1; : : : ; tv�1) is a c-ary v-tuple (i.e. ti 2 f0; 1; : : : ; c�1g for every i, (0 � i < v)),and s = (s0; s1; : : : ; sn�1) is a c-ary cycle of period n (n � v), then we say that t occursin s at position j if and only if ti = si+jfor every i, (0 � i < v), where i+ j is computed modulo n.Throughout we will write 0 i for the i-tuple of all zeros and 1 i for the i-tuple of all ones.4



If s = (s0; s1; : : : ; sn�1) is a c-ary cycle of period n, then we say that s is a v-windowsequence if no c-ary v-tuple occurs in s in two distinct positions within a period of s .Equivalently, s contains n distinct v-tuples in a period of the cycle. A c-ary de Bruijnsequence of span v is then simply a v-window sequence of period equal to cv; equivalentlyevery possible c-ary v-tuple occurs precisely once in a period of a de Bruijn sequence.A c-ary punctured de Bruijn sequence of span v (sometimes called a pseudorandom se-quence) is a v-window sequence in which every c-ary v-tuple except for 0 v occurs, andso a punctured de Bruijn sequence has period cv � 1. A span v de Bruijn sequence canbe `punctured' by deleting one of the zeros in 0 v, and a punctured de Bruijn sequencecan be transformed into a de Bruijn sequence by adding a zero to any one of the c � 1occurrences of 0 v�1. Similarly, a c-ary doubly punctured de Bruijn sequence of span v is av-window sequence in which every c-ary v-tuple occurs except for 0 v and 1 v, and hencea doubly punctured de Bruijn sequence has period cv � 2. A de Bruijn sequence can be`doubly punctured' by �rst puncturing it and then deleting one of the ones in 1 v, and adoubly punctured de Bruijn sequence can be transformed into a de Bruijn sequence byadding a zero to any of the c � 1 occurrences of 0 v�1, and adding a one to any of thec� 1 occurrences of 1 v�1.If s = (s0 ; s1 ; : : : ; sn�1) and t = (t0 ; t1 ; : : : ; tn�1) are two cycles of the same length, nsay, then the interleaving of these cycles, denoted I(s ; t), is de�ned to be the followingcycle of length 2n: (s0; t0; s1; t1; : : : ; sn�1; tn�1):II An interleaving construction for window sequencesWe now present a method for constructing a c-ary cycle with the window property.5



A The construction methodBefore describing the method of construction we need the following de�nition.De�nition 1 If a is a c-ary v-window sequence of period n, then a is said to satisfyCondition A if and only if the following three conditions are met:� n is even,� a does not contain the all-zero v-tuple, and� a contains 0 v�1 at position 0 (it may contain other occurrences of 0 v�1).Construction 2 Suppose n; c; v are positive integers (c � 2). Moreover suppose thata = (a0; a1 : : : ; an�1) is a c-ary v-window sequence of period n satisfying Condition A.Let b be the cycle of period n + 2 obtained from a by inserting two extra zeros at thestart of the cycle; this has the e�ect of replacing 0 v�1 at position 0 with 0 v+1. (Observethat b is `almost' a v-window sequence, with the single exception that 0 v occurs twice inconsecutive positions|this fact is of key importance to the construction method).Now let d = I(bn=2;an=2+1);where, as throughout, as denotes the cycle obtained by concatenating s copies of cycle a.We can now state and prove the following result.Theorem 3 Suppose n; c; v and a satisfy the conditions of Construction 2. If d is con-structed from a using Construction 2 then d is a 2v-window sequence of period n(n+ 2)which satis�es Condition A. 6



Proof If 0 � i < n, let ai be the v-tuple occurring in a at position i; similarly, if0 � j < n+ 2, let bj be the v-tuple occurring in b at position j. Then the 2v-tuples of dare precisely: I(b2i;a2j) 0 � i � n=2; 0 � j � n=2� 1;I(b2i+1;a2j+1) 0 � i � n=2; 0 � j � n=2� 1;I(a2i; b2j+1) 0 � i � n=2� 1; 0 � j � n=2;I(a2i+1; b2j) 0 � i � n=2� 1; 0 � j � n=2:All tuples of this form occur exactly once in d , because (n; n+ 2) = 2.Next observe that each of the above four classes consists of n=2(n=2 + 1) distinct 2v-tuples, and the four classes are pairwise disjoint. This latter point follows because the setof tuples fa2ig is precisely the same as the set of tuples fb2ig (with the exception of 0 v),and the set of tuples fa2i+1g is precisely the same as the set of tuples fb2i+1g (again withthe exception of 0 v). Hence d is a 2v-window sequence.It remains for us to show that d satis�es Condition A. First observe that d has periodn(n + 2) which is even since n is even. Next observe that since a does not contain 0 v itfollows immediately that d cannot contain 0 2v. Finally observe that, since 0 v+1 occursat position 0 in b and 0 v�1 occurs at position 0 in a , then 0 2v�1 occurs at position 0 ind . The result follows. 2B Application of the construction methodFirst observe that if c is odd then an example of a v-window sequence a of period cv � 1satisfying Condition A can be obtained by taking an appropriate cyclic shift of a c-ary span v punctured de Bruijn sequence. The cycle d resulting from an application ofConstruction 2 to a will then have period (cv�1)(cv+1) = c2v�1, and will be a c-ary span7



2v punctured de Bruijn sequence (enabling the construction to be applied recursively).The situation is not so convenient in the case where c is even (which obviously includesthe binary case), where the best that can be done is to note that an appropriately shiftedc-ary span v doubly punctured de Bruijn sequence (of period cv � 2) is an example of asequence satisfying Condition A. We will address this case in Sections III and IV below.C ExampleBefore proceeding we consider two simple examples of the construction method.Example 4 Let n = 6, c = 2 and v = 3. Let a be the following cycle:( 0 0 1 0 1 1 ):Note that a is a 2-ary span 3 doubly punctured de Bruijn sequence. The cycle b is asfollows: ( 0 0 0 0 1 0 1 1 ):We then haved = I(b3;a4)= (0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 1 1 1):d is a binary 6-window sequence of period 48.Example 5 Let n = 8, c = 3 and v = 2. Let a be the following cycle:( 0 1 1 0 2 1 2 2 ):Note that a is a 3-ary span 2 punctured de Bruijn sequence. The cycle b is as follows:( 0 0 0 1 1 0 2 1 2 2 ):8



Then bn=2 is:(0 0 0 1 1 0 2 1 2 2 0 0 0 1 1 0 2 1 2 2 0 0 0 1 1 0 2 1 2 2 0 0 0 1 1 0 2 1 2 2);and an=2+1 is:(0 1 1 0 2 1 2 2 0 1 1 0 2 1 2 2 0 1 1 0 2 1 2 2 0 1 1 0 2 1 2 2 0 1 1 0 2 1 2 2):Hence d is:(0 0 0 1 0 1 1 0 1 2 0 1 2 2 1 2 2 0 2 1 0 1 0 0 0 2 1 1 1 2 0 2 2 0 1 1 2 1 2 00 2 0 1 0 2 1 2 1 0 0 1 2 1 1 0 2 2 2 1 0 2 0 2 0 0 1 1 1 1 0 0 2 2 1 1 2 2 2 2);and d is a 3-ary span 4 punctured de Bruijn sequence.D A decoding algorithmWe now present a simple algorithm for decoding cycles which have been derived usingConstruction 2. This algorithm makes use of a decoder for the cycle a used as input tothe construction.Algorithm 6 Suppose n; c; v and a satisfy the conditions of Construction 2, and that dhas been constructed from a using this construction. Suppose also that the function E isa decoder for a, i.e. if x is some v-tuple occurring in a then 0 � E(x ) < n and x occursin a at position E(x ).De�ne the function F : T ! f0; 1; : : : ; n(n+ 2)� 1g as follows, where T is the set of allc-ary (2v)-tuples which occur in d . First suppose x 2 T , and letx = I(y ; z ):9



Let m be the unique solution (mod n(n + 2)=2) to the simultaneous congruences:m � 8>>><>>>: E(z ) if y = 0 v or E(z )� E(y) is evenE(y) if z = 0 v or E(z )�E(y) is odd (mod n)m � 8>>>>>>>>>>>><>>>>>>>>>>>>: 0 or 1 if y = 0 vn + 1 or 0 if z = 0 vE(y) + 2 if E(z )�E(y) is evenE(z ) + 1 if E(z )�E(y) is odd (mod n + 2)Then let F (x ) = 8>>><>>>: 2m if y = 0 v or E(z )�E(y) is even2m+ 1 if z = 0 v or E(z )� E(y) is oddTheorem 7 If n; c; v;d and F are de�ned as in Algorithm 6, then F is a decoder for d .Proof It should be immediately clear that every c-ary (2v)-tuple will be covered byone of the four `cases' of the algorithm. We now consider each case in turn. We supposethroughout that x occurs at position p in d , where 0 � p < n(n+ 2) (we know that p iswell-de�ned by Theorem 3).If y = 0 v then y must occur in b , and hence x occurs at an even position in d , i.e. p = 2qfor some integer q. Thus, given that 0 v occurs at positions 0 and 1 in b , we have thatq � 0 or 1 (mod n + 2):Now z occurs at position E(z ) in a , and henceq � E(z ) (mod n):Given that p is well-de�ned, F must be well-de�ned, and the correctness of the �rst caseis established. 10



If z = 0 v then z must occur in b , and hence p is odd, say p = 2q + 1 for some integer q.Thus, given that 0 v occurs at positions 0 and 1 in b , we have thatp � 2n + 3 or 1 (mod 2(n+ 2))and hence q + 1 � 0 or 1 (mod n + 2):In addition y occurs at position E(y) in a , and hencep � 2E(y)+ 1 (mod 2n)and so q � E(y) (mod n):As before, given that p is well-de�ned, F must be well-de�ned, and the correctness of thesecond case is established.If y and z are both non-zero, then either(a) p is even, p = 2q say, y occurs in b at position E(y) + 2 and z occurs in a atposition E(z ), or(b) p is odd, p = 2q + 1 say, z occurs in b at position E(z ) + 2 and y occurs in a atposition E(y).In case (a) we have: q � E(y)+ 2 (mod n+ 2);and q � E(z ) (mod n):In case (b) we have: p � 2E(z ) + 3 (mod 2(n+ 2))11



i.e. q + 1 � E(z ) + 2 (mod n + 2);and p � 2E(y) (mod 2n)i.e. q � E(y) (mod n):The above discussion covers the �nal two cases, and the result follows. 2E Complexity of decodingWe now consider the complexity of the decoding method of Algorithm 6, when applied toa c-ary (2v)-window sequence d constructed from a c-ary v-window sequence a of periodn using the technique of Construction 2.Suppose it takes e arithmetic operations to �nd the position of a c-ary v-tuple in a . Thenit is not di�cult to see that the number of arithmetic operations involved in decoding asingle c-ary v-tuple is bounded above by 2e + EA(n) + k, where EA(n) is the number ofoperations required to �nd the unique solution (modulo n(n + 2)=2) to a pair of simul-taneous congruences (modulo n and n + 2), and k is a small constant. Solving a pair ofsimultaneous congruences can be achieved using the well-known (and simple) EuclideanAlgorithm.III A related construction method for window sequencesWe now present a second method for constructing a c-ary cycle with the window prop-erty. This method is a variant of the method presented in the previous section|it has12



advantages for cycles with even size alphabets.A The construction methodBefore describing the method of construction we need the following de�nition.De�nition 8 If a is an c-ary v-window sequence of period n, then a is said to satisfyCondition B if and only if the following three conditions are met:� 2jn and 4 6 jn,� a does not contain 0 v or 1 v, and� a does contain at least one occurrence of 0 v�1 and at least one occurrence of 1 v�1.Construction 9 Suppose n; c; v are positive integers (c � 2). Moreover suppose thata = (a0; a1 : : : ; an�1) is a c-ary v-window sequence of period n satisfying Condition B. Letb be a cycle of period n+4 obtained from a by replacing an occurrence of 0 v�1 with 0 v+1and an occurrence of 1 v�1 with 1 v+1. Observe that b is `almost' a v-window sequence,with the two exceptions that 0 v and 1 v both occur twice in consecutive positions|thisfact is of key importance to the construction method.Now let d 0 = I(bn=2;an=2+2):Finally derive d from d 0 by inserting a zero followed by a one after one of the (2v � 1)-tuples equal to I(1 v�1;0 v�1) followed by a one, in order to make it into a (2v+ 1)-tupleequal to I(1 v;0 v) followed by a one.We can now state and prove the following result.13



Theorem 10 Suppose n; c; v and a satisfy the conditions of Construction 9. If d isconstructed from a using Construction 9 then d is a (2v)-window sequence of periodn(n+ 4) + 2 which satis�es Condition B.Proof The proof that this construction works is almost identical to that of Theorem 7.Using the same argument as given in that proof, it is straightforward to see that d 0 is a2v-window sequence. We therefore need only establish that� the derivation of d from d 0 is well-de�ned,� d is a 2v-window sequence, and� d satis�es Condition B.The �rst point follows from the observation that, since a contains 0 v�1, and b contains1 v+1, then d must contain the (2v � 1)-tuple: I(1 v�1;0 v�1) followed by a one. Toestablish the second point we note that the two `extra' 2v-tuples which d contains areI(1 v;0 v) and I(0 v;1 v). Since a does not contain 0 v or 1 v, then neither of these 2v-tuples occur in d 0. Hence, since d 0 is a 2v-window sequence then so is d .Finally we need to show that d satis�es Condition B. First note that d has period n(n+4)+2, which, since 2jn, satis�es 2jn(n+4)+2 and 4 6 jn(n+4)+2. Secondly, since a doesnot contain 0 v or 1 v, then d does not contain 0 2v or 1 2v. Thirdly, d contains at leastone occurrence of 0 2v�1 and at least one occurrence of 1 2v�1 by an exactly analogousargument to that used to show that d 0 contains an alternating (2v � 1)-tuple.The result now follows. 214



B Application of the construction methodAnalogously to Section B, if c is even then an example of a v-window sequence a of periodcv � 2 satisfying Condition B can be obtained by taking a c-ary span v doubly puncturedde Bruijn sequence. The cycle d resulting from the application of Construction 9 to awill have period (cv � 2)(cv + 2) + 2 = c2v � 2, and will also be a doubly punctured deBruijn sequence (since it satis�es Condition B and has period c2v � 2), thus enabling theconstruction to be applied recursively.Hence Constructions 2 and 9 provide a pair of methods for recursively generating deBruijn sequences for all alphabet sizes; both methods double the window length at eachiteration. For the odd size alphabet case we have already seen how a computationally verysimple decoder for a double-length window sequence can be derived from a decoder forthe single-length window sequence used to construct it. In the sequel we will demonstratea corresponding simple recursive decoder for the even size alphabet case.C ExampleBefore proceeding we consider a simple example of the construction method (and how thecycle produced can be made into a de Bruijn sequence).Example 11 Let n = 6, c = 2 and v = 3. Let a be the following cycle:( 0 0 1 0 1 1 ):Note that a is a 2-ary span 3 doubly punctured de Bruijn sequence. The cycle b is asfollows: ( 0 0 0 0 1 0 1 1 1 1 ):15



We then haved 0=I(b3;a5)=(000001001101101011100101000011001111101001000101100011101111):d 0 is a binary 6-window sequence of period 60, and the only 6-tuples missing are( 0 0 0 0 0 0 ); ( 1 1 1 1 1 1 ); ( 0 1 0 1 0 1 ); and ( 1 0 1 0 1 0 ):The sequence d is obtained from d 0 by inserting an extra zero and one following the tuple`10101'. Underlining the inserted bits, we obtaind=(00000100110110101011100101000011001111101001000101100011101111);which is a binary, span 6, doubly punctured de Bruijn sequence. To make d into deBruijn sequence we insert an extra zero and one to make the (unique) all-zero and all-one5-tuples into 6-tuples, yielding the following binary de Bruijn sequence of period 64 (thetwo added bits are underlined):(0000001001101101010111001010000110011111101001000101100011101111):D A decoding algorithmWe next present a simple algorithm for decoding cycles which have been derived usingConstruction 9; this decoding method is very similar to that presented in Algorithm 6above. As with that algorithm, use is made of a decoder for the cycle a used as input tothe construction.Algorithm 12 Suppose n; c; v and a satisfy the conditions of Construction 9, and thatd has been constructed from a using this construction. Suppose also that the function Eis a decoder for a, i.e. if x is some v-tuple occurring in a then 0 � E(x ) < n and x16



occurs in a at position E(x ). Similarly suppose that the function E0 is a decoder for b(de�ned only for the tuples which occur in a, and hence E0 is well-de�ned).Suppose also that the particular occurrences of 0 v�1 and 1 v�1 which are modi�ed inderiving b from a, occur at positions s and s0 in a respectively. Suppose also, withoutloss of generality, that s < s0. Finally suppose that the (2v� 1)-tuple of alternating zerosand ones, which is augmented to obtain d from d 0, occurs at position t in d 0.De�ne the functions F 0 : T 0 ! f0; 1; : : : ; n(n+2)�1g and F : T ! f0; 1; : : : ; n(n+2)+1gas follows, where T is the set of all c-ary (2v)-tuples which occur in d and T 0 is the setof all c-ary (2v)-tuples which occur in d 0. First suppose x 2 T 0, and letx = I(y ; z ):Let m be the unique solution (mod n(n + 4)=2) to the simultaneous congruences:m � 8>>><>>>: E(z ) if y = 0 v or y = 1 v or E(z )�E(y) is evenE(y) if z = 0 v or z = 1 v or E(z )� E(y) is odd (mod n)m � 8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:
s or s+ 1 if y = 0 vs0 + 2 or s0 + 3 if y = 1 vs� 1 or s if z = 0 vs0 + 1 or s0 + 2 if z = 1 vE0(y) if E(z )� E(y) is evenE0(z )� 1 if E(z )� E(y) is odd (mod n + 4)Then let F 0(x ) = 8>>><>>>: 2m if y = 0 v or y = 1 v or E(z )� E(y) is even2m+ 1 if z = 0 v or z = 1 v or E(z )�E(y) is odd17



Finally, if x 2 T , letF (x ) = 8>>>>>>>>>>>><>>>>>>>>>>>>: F 0(x ) if x 2 T 0 and F 0(x ) < tt if x = I(1 v;0 v)t + 1 if x = I(0 v;1 v)F 0(x ) + 2 if x 2 T 0 and F 0(x ) � tRemark 13 It is important to note that the function E0 can very simply be derived fromE as follows. Suppose x is a v-tuple occurring in a. Suppose also that s and s0 are asde�ned in Algorithm 12 (and s < s0). Then:� if 0 � E(x ) � s then E0(x ) = E(x ),� if s < E(x ) � s0 then E0(x ) = E(x ) + 2, and� if s0 < E(x ) < n then E0(x ) = E(x ) + 4.Theorem 14 If n; c; v;d and F are de�ned as in Algorithm 12, then F is a decoder ford .Proof Rather than go through the proof in great detail we observe that it follows using avery similar argument to that used to establish Theorem 7. It should be immediately clearthat every c-ary (2v)-tuple will be covered by one of the six `cases' of the algorithm. Thesix individual cases then follow using exactly analogous arguments to those employed todeal with the four cases in the proof of Theorem 7. The change from F 0 to F is necessaryto `correct' for the addition of the extra 0 and 1 to derive d from d 0. 2E Complexity of decodingWe complete this section by brie
y considering the complexity of the decoding method ofAlgorithm 12, when applied to a c-ary (2v)-window sequence d constructed from a c-ary18



v-window sequence a of period n using the technique of Construction 9. It should beclear that, because of the great similarity between the two algorithms, the complexity ofAlgorithm 12 is approximately the same as that of Algorithm 6, with the exception that,for each iteration, there is a need to store the values of s, s0 and t.Hence, if it takes e arithmetic operations to �nd the position of a c-ary v-tuple in a ,then the number of arithmetic operations involved in decoding a single c-ary v-tuple isbounded above by 2e + EA0(n) + k0, where EA0(n) is the number of operations requiredto �nd the unique solution (modulo n(n + 4)=2) to a pair of simultaneous congruences(modulo n and n + 4), and k0 is a small constant. Storage space is also required for thethree values s, s0 and t.IV An alternative approach for even size alphabetsBecause Construction 2 only enabled the recursive construction of de Bruijn sequenceswith odd size alphabets, Construction 9 was devised to deal with the even size alphabetcase. However, an alternative approach exists for recursively constructing de Bruijn se-quences with even size alphabets using Construction 2 directly. We sketch that approachhere.Suppose c > 1 is even and a is a c-ary span v de Bruijn sequence which ends with 1 vand begins with 0 v (there are always such de Bruijn sequences|for example, the `preferones' sequence, [2]). By deleting a zero from 0 v and a one from 1 v we obtain a doublypunctured de Bruijn sequence a 0 with the property that the sequence ends with 1 v�1 andbegins with 0 v�1; we call this Property C.We give a method involving Construction 2 which produces a new doubly punctured deBruijn sequence also having Property C, and thus the method can be iterated.19



We �rst apply Construction 2 to a 0 to obtain a sequence d of period c2v � 2cv. Thefollowing properties of d are a consequence of Theorem 3 and the construction method.1. d is a 2v-window sequence.2. d begins with 0 2v�1 and ends with 1 2v�2.3. d contains all 2v-tuples, except for 0 2v and the tuples I(w ;1 v) and I(1 v;w), wherew is an arbitrary v-tuple.Now let e denote the sequence obtained from a by deleting a one from 1 v and shiftingthe resulting sequence right by (v � 1) places. Thus e has period cv � 1 and begins with1 v�1 followed by a zero. Let f = I(e ;1 cv�1);then f has period 2cv � 2 and begins with the 2v-tuple 1 2v�2 followed by a zero and aone.It is easily checked that, for each w 6= 1 v, f contains as 2v-tuples both I(w ;1 v) andI(1 v;w), neither of which occur in d .From Property 2 above, d contains an occurrence of the 2v-tuple made up of 1 2v�2followed by two zeros (i.e. the `conjugate' of the �rst 2v-tuple of f ) at position c2v�2cv�2v + 2. Hence f can be joined into d at position c2v � 2cv � 2v + 2 using Lempel's cyclejoining method, [10]. We obtain a new sequence d 0 which is a doubly punctured de Bruijnsequence satisfying Condition C.It is not di�cult to see how the decoding of d 0 can be reduced to the decoding of a 0. Weleave the details to the reader, noting only that the complexity of the resulting decodingalgorithm is marginally greater than that of Algorithm 6.20



V Summary and conclusionsA Decoding long de Bruijn sequencesWe now brie
y consider how de Bruijn sequences can be recursively constructed usingConstructions 2 and 9, and, in addition, how they can be recursively decoded. Supposewe wish to construct and subsequently decode a span v de Bruijn sequence over a c-aryalphabet. Suppose also that v = 2hv0, where v0 is odd.A.1 Odd size alphabetsWe start by considering use of Construction 2, and hence suppose c is odd. First construct,by some means, a c-ary span v0 de Bruijn sequence a 0. In addition, a decoding algorithmneeds to be provided for this cycle. Note that if c is composite then, using a special caseof Lemma 5.1 of [12], a c-ary span v0 cycle can be constructed by combining span v0 cyclesover alphabets of sizes equal to the prime factors of c, and decoding the combined cyclecan be reduced to decoding the component cycles.Next derive a punctured de Bruijn sequence a from a 0 by deleting a single zero from0 v0 . We can now recursively apply Construction 2 h times to a , obtaining a puncturedde Bruijn sequence after each iteration. The �nal output will be a punctured c-aryde Bruijn sequence of span v = 2hv0. This cycle can then be decoded by recursivelyapplying Algorithm 6 h times, which (by the discussion in Section E) will involve atmost 2h decodings of the span v0 cycle a , together with the solution to 2h � 1 pairs ofsimultaneous congruences. 21



A.2 Even size alphabetsWe next consider use of Construction 9, and hence suppose c is even. As previously,construct, by some means, a c-ary span v0 de Bruijn sequence a 0 with a decoding method.Again as previously, if c is composite then the methods of [12] can be used to simplifythe decoding of the span v0 cycle.Next derive a doubly punctured de Bruijn sequence a from a 0 by deleting a single zerofrom 0 v0 and a single one from 1 v0 . We can now recursively apply Construction 9 h timesto a .The �nal output will be a doubly punctured c-ary de Bruijn sequence of span v = 2hv0.This cycle can then be decoded by recursively applying Algorithm 12 h times, which (bythe discussion in Section E) will involve at most 2h decodings of the span v0 cycle a ,together with the solution to 2h � 1 pairs of simultaneous congruences and the storage of3h values.Alternatively, the approach of Section IV can be used to produce a doubly puncturedde Bruijn sequence of span 2hv0. This cycle can be decoded using an algorithm basedon Algorithm 6, and having complexity roughly the same as for the case covered inSection A.1.A.3 Decoding complexityIt should be clear that, given h > 0, the described approaches are far more e�cientthan any of the previously known methods for both odd and even size alphabets. In the`best case', where v = 2h, decoding requires the solution of v � 1 pairs of simultaneouscongruences (involving numbers of size at most cv) and v decodings of the trivial sequence;hence the complexity of decoding is O(v2), i.e. it is polynomial in the span of the de Bruijn22



sequence.B Future workWe conclude by brie
y noting two areas for further work.� Similar constructions to those described can be used to recursively construct Per-fect Factors in the de Bruijn graph, with corresponding simple decoding algorithms.Perfect Factors have previously been studied because of their importance in con-structing Perfect Maps, see, for example [12, 13, 14, 15], and readily decoded PerfectFactors will enable the construction of Perfect Maps with simpler decoding algo-rithms (see [16]).� Decoding cycles with large odd window length is still non-trivial, and further re-�nement of existing techniques (possibly combined with new techniques) remains adesirable goal.AcknowledgementsThe authors would like to thank an anonymous referee for pointing out that, in an unpub-lished paper, H. Fredricksen has shown how to decode the `prefer ones', `prefer sames',and `lexicographic composition' de Bruijn sequences using techniques like the milestoneresults of Petriu.References[1] N. de Bruijn, \A combinatorial problem," Proceedings Nederlandse Akademie vanWetenschappen, vol. 49, pp. 758{764, 1946.23
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