
CardSpace-Liberty Integration for CardSpace Users

Haitham S. Al-Sinani
∗

Information Security Group
Royal Holloway, University of

London
http://www.isg.rhul.ac.uk

H.Al-Sinani@rhul.ac.uk

Waleed A. Alrodhan
Information Security Group

Royal Holloway, University of
London

http://www.isg.rhul.ac.uk
W.A.Alrodhan@rhul.ac.uk

Chris J. Mitchell
Information Security Group

Royal Holloway, University of
London

http://www.isg.rhul.ac.uk
C.Mitchell@rhul.ac.uk

ABSTRACT
Whilst the growing number of identity management sys-
tems have the potential to reduce the threat of identity at-
tacks, major deployment problems remain because of the
lack of interoperability between such systems. In this paper
we propose a novel scheme to provide interoperability be-
tween two of the most widely discussed identity management
systems, namely Microsoft CardSpace and Liberty. In this
scheme, CardSpace users are able to obtain an assertion to-
ken from a Liberty-enabled identity provider that will satisfy
the security requirements of a CardSpace-enabled relying
party. We specify the operation of the integration scheme
and also describe an implementation of a proof-of-concept
prototype. Additionally, security and operational analyses
are provided.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and protection

General Terms
Security

Keywords
Identity Management, CardSpace, Liberty Alliance Project,
Interoperability, SAML, Browser Extension

1. INTRODUCTION
In line with the continuing increase in the number of on-

line services requiring authentication, there has been a pro-
portional rise in the number of digital identities needed for
authentication purposes. This has contributed to the re-
cent rapid growth in identity-oriented attacks, such as phish-
ing, pharming, etc. In an attempt to mitigate such attacks,

∗This author is sponsored by the Diwan of Royal Court,
Sultanate of Oman.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IDtrust ’10, April 13–15, 2010, Gaithersburg, MD
Copyright 2010 ACM ISBN 978-1-60558-895-7/10/04 ...$10.00.

a number of identity management systems have been pro-
posed.

Identity management deals with uniquely identifying indi-
viduals in a system, and with effectively controlling access to
the system resources by managing the rights and privileges
associated with digital identities. The most important ser-
vice provided by an identity management system is authenti-
cation. Such a system may also support other services, such
as pre-authentication, authorisation, single sign-on, identity
repository management, user self-service registration, and
audit. Examples of identity management systems include
CardSpace1, Liberty2, OpenID3, and Shibboleth4 [5, 8, 17,
46, 50].

Most identity management architectures involve the fol-
lowing main roles.

1. The identity provider (IdP), which issues an identity
token to a user.

2. The service provider (SP), or the relying party (RP) in
CardSpace terminology, which consumes the identity
token issued by the IdP in order to identify the user,
before granting him/her access.

3. The user, also known as the principal.

4. The user agent, i.e. software employed by a user to send
requests to webservers and receive data from them,
such as a web browser. Typically, the user agent pro-
cesses protocol messages on behalf of the user, and
prompts the user to make decisions, provide secrets,
etc.

An identity provider supplies a user agent with an authen-
tication token that can be consumed by a particular service
provider. Whilst one service provider might solely support
CardSpace, another might only support Liberty. Therefore,
to make these systems available to the largest possible group
of users, effective interoperability between systems is needed.
In this paper we investigate a case involving a CardSpace-
enabled relying party, a Liberty-enabled identity provider,
and a user agent that is (only) CardSpace-enabled. The goal
is to develop an approach to integration that is as transpar-
ent as possible to both identity providers and relying parties.

1http://msdn.microsoft.com/en-us/library/aa480189.
aspx
2http://www.projectliberty.org/
3http://openid.net/
4http://shibboleth.internet2.edu/

We have chosen to consider the integration of Liberty
with CardSpace because of Liberty’s wide adoption (see sec-
tion 2.2.1). Currently, it is a leading identity management
architecture, that has gained the acceptance of a number of
technology-leading companies and organisations. Comple-
menting this, the wide use of Windows, recent versions of
which incorporate CardSpace, means that enabling interop-
eration between the two systems is likely to be of significance
for large numbers of identity management users and service
providers. Another reason for choosing Liberty is because of
the similarity between the message flows in its ID-FF profile
and CardSpace.

The remainder of the paper is organised as follows. Sec-
tion 2 presents an overview of CardSpace and Liberty, and
section 3 contains the proposed integration scheme. In sec-
tion 4, we provide an operational analysis of the scheme and,
in section 5, we describe a prototype implementation. Sec-
tion 6 highlights possible areas for related work, and, finally,
section 7 concludes the paper.

2. CARDSPACE AND LIBERTY
We provide an introduction to the CardSpace and Lib-

erty identity management systems. SAML is also briefly
outlined.

2.1 CardSpace
We first give a general introduction to CardSpace, cover-

ing relevant operational aspects.

2.1.1 Introduction to CardSpace
CardSpace is Microsoft’s implementation of a digital iden-

tity metasystem, in which users can manage digital identities
issued by a variety of identity providers, and use them in a
range of contexts to access online services. In CardSpace,
digital identities are represented to users as Information
Cards (or InfoCards). From the CardSpace perspective,
InfoCards are XML-based files that list the types of claim
made by one party about itself or another party. CardSpace
is designed to reduce reliance on username-password authen-
tication, and to provide a consistent authentication experi-
ence across the Web to improve user understanding of the
authentication process. It is claimed that CardSpace is also
designed to reflect the seven identity laws promulgated by
Microsoft [6, 10, 17, 34].

The concept of an InfoCard is inspired by real-world cards,
such as driving licences and credit cards. A user can employ
one InfoCard with multiple websites. Alternatively, just as
different physical ID cards are used in distinct situations,
separate InfoCards can be used at different websites, help-
ing to enhance user privacy and security. If InfoCards are
obtained from different IdPs, the credentials referred to by
such cards are stored in distinct locations, potentially im-
proving reliability and security, as well as giving users flexi-
bility in choosing points of trust.

There are two types of InfoCards: personal (self-issued)
cards and managed cards. Personal cards are created by
users themselves, and the claims listed in such an InfoCard
are asserted by the self-issued identity provider (SIP) that
co-exists with the CardSpace identity selector on the user
machine. In this paper we use personal cards to enable
interoperation between CardSpace and Liberty. Managed
cards, on the other hand, are obtained from remote identity
providers.

The InfoCards themselves do not contain any sensitive
information; instead an InfoCard carries metadata that in-
dicates the types of personal data that are associated with
this identity, and from where assertions regarding this data
can be obtained. The data referred to by personal cards is
stored on the user machine, whereas the data referred to by
a managed card is held by the identity provider that issued
it [6, 16, 18, 24, 34, 35, 38].

By default, CardSpace is supported in Internet Explorer
(IE) from version 7 onwards. Extensions to other browsers,
such as Firefox5, and Safari6 also exist. Microsoft has re-
cently released an updated version of CardSpace, known
as Windows CardSpace 2.0 Beta 27. However, in this pa-
per we refer throughout to the CardSpace version that is
shipped by default as part of Windows Vista and Windows
7, which has also been approved as an OASIS standard un-
der the name ‘Identity Metasystem Interoperability Version
1.0’ (IMI 1.0) [28].

2.1.2 CardSpace Personal Cards
The core idea introduced in this paper is to use CardSpace

personal cards to make Liberty identity providers available
via the CardSpace identity selector. We therefore next de-
scribe CardSpace personal cards.

Creation of Personal Cards.
Prerequisites for use of a CardSpace personal card include:

1. a CardSpace-enabled RP; and

2. a CardSpace-enabled user agent, e.g. a web browser
capable of invoking the CardSpace identity selector,
such as those shipped as part of Windows Vista and
Windows 7.

The identity selector allows a user to create a personal
card and populate its fields with self-asserted claims. To pro-
tect users from disclosing sensitive information, CardSpace
restricts the contents of personal cards to non-sensitive data,
such as that published in telephone directories. Personal
cards currently only support 14 editable claim types, namely
First Name, Last Name, Email Address, Street, City, State,
Postal Code, Country/Region, Home Phone, Other Phone,
Mobile Phone, Date of Birth, Gender, and Web Page. Data
inserted in personal cards is stored in encrypted form on the
user machine.

When a user creates a new personal card, CardSpace gen-
erates an ID and a master key for this card. The card ID is
a globally unique identifier (GUID), and the master key is
32 bytes of random data.

Using Personal Cards.
When using personal cards, CardSpace adopts the follow-

ing protocol. We describe the protocol for the case where
the RP does not employ a security token service (STS8).

1. User agent → RP. HTTP/S request: GET (login
page).

5https://addons.mozilla.org/en-US/firefox/addon/
10292
6http://www.hccp.org/safari-plug-in.html
7http://technet.microsoft.com/en-us/library/
dd996657(WS.10).aspx
8The STS is responsible for security policy and token man-
agement within an IdP and, optionally, within an RP [27].

2. RP → user agent. HTTP/S response. A login page
is returned containing the CardSpace-enabling tags in
which the RP security policy is embedded.

3. User → user agent. The user agent offers the user the
option to use CardSpace (e.g. via a button on the RP
web page); selection of this option causes the agent to
invoke the CardSpace identity selector, passing the RP
policy to the selector. Note that if this is the first time
that this RP has been contacted, the identity selector
will display the identity of the RP, giving the user the
option either to proceed or to abort the protocol.

4. User agent → user agent (identity selector → Info-
Cards). The CardSpace identity selector, after evalu-
ating the RP security policy, highlights the InfoCards
that match the policy, and greys out those that do
not. InfoCards previously used for this particular RP
are displayed in the upper half of the selector screen.

5. User→ user agent (user→ identity selector). The user
chooses a personal card. (Alternatively, the user could
create and choose a new personal card). The user can
also preview the card (with its associated claims) to
see which claim values are being released. Note that
the selected InfoCard may contain several claims, but
only the claims explicitly requested in the RP security
policy will be passed to the requesting RP.

6. User agent
 user agent (identity selector
 SIP).
The identity selector creates and sends a SAML-based
Request Security Token (RST) to the SIP, which re-
sponds with a SAML-based Request Security Token
Response (RSTR).

7. User agent → user agent (identity selector → user
agent). The RSTR is then passed to the user agent,
which forwards it to the RP.

8. RP → user. The RP validates the token, and, if satis-
fied, grants access to the user.

The managed card operational protocol is similar, except
that the remote IdP specified in the InfoCard is contacted
instead of the SIP. The CardSpace identity selector then
uses the standard identity metasystem protocols (see sec-
tion 2.1.3) to first retrieve the IdP security policy9 and then
obtain a security token representing the selected digital iden-
tity from the STS of the remote IdP. The identity selector
then passes the received token to the user agent, optionally
after first obtaining permission from the user10 [27, 41].

For CardSpace to work, both the RP and the IdP must
be CardSpace-enabled. The problem that we address here
is the incompatibility issue that will occur if the RP is
CardSpace-enabled whereas the IdP is not, but is instead
Liberty-enabled. Addressing this issue could help to extend
the applicability of CardSpace.

9Depending on the IdP security policy, the user may be re-
quested to provide credentials for authentication to the se-
lected IdP. The authentication methods currently supported
by CardSpace include username-password authentication, a
KerberosV5 service ticket, an X.509v3 certificate, and a self-
issued token.

10This may involve presenting the user with a ‘display token’,
prepared by the remote IdP, listing the claim values asserted
in the ‘real’ security token; the identity selector will only
continue if the user is willing to release such values.

Private Personal Identifiers.
The private personal identifier (PPID) is a unique iden-

tifier linking a specific InfoCard to a particular RP [6, 7,
38]. CardSpace RPs can use the PPID along with a digital
signature to authenticate a user.

When a user uses a personal card at an RP for the first
time, CardSpace generates a site-specific:

• PPID by combining the card ID with data taken from
the RP certificate; and

• signature key pair by combining the card master key
with data taken from the RP certificate.

In both cases, the domain name or IP address of the RP is
used if no RP certificate is available.

Since the PPID and key pair are RP-specific, the PPID
does not function as a global user identifier, helping to en-
hance user privacy. In addition, compromising the PPID
and key pair for one RP does not allow an adversary to im-
personate the user at other RPs. The CardSpace identity
selector only displays a shortened version of the PPID to
protect against social engineering attacks and to improve
readability.

When a user first registers with an RP, the RP retrieves
the PPID and the public key from the received authentica-
tion token, and stores them. If a personal InfoCard is re-used
at a site, the supplied authentication token will contain the
same PPID and public key as used previously, signed us-
ing the corresponding private key. The RP compares the
received PPID and public key with its stored values, and
verifies the digital signature. If all checks succeed it has
assurance that it is the same user.

The PPID could be used on its own as a shared secret
to authenticate a user to an RP. However, it is recom-
mended that the associated (public) signature verification
key, as held by the RP, should also always be used to verify
the signed authentication token to provide a more robust
authentication method [6].

2.1.3 CardSpace Protocols
In order to maximise interoperability with non-Windows

platforms, CardSpace has been specifically designed to use
open standards-based protocols, notably the WS-* standards,
the most significant of which are listed below.

WS-Policy/WS-SecurityPolicy is used to describe se-
curity policies [3, 21]. Note that a website can also
describe its policy in HTML/XHTML.

WS-MetadataExchange is used to fetch security policies
and exchange service description metadata over the
Internet [4]. Note that a website can also transmit its
security policy using HTTP/S.

WS-Trust is used to acquire security tokens (e.g. SAML
tokens) from IdPs [2].

WS-Security is used to securely deliver security tokens to
RPs [37]. Note that HTTP/S can also be used.

2.1.4 Proof Keys
A SAML security token can be coupled with cryptographic

evidence to demonstrate the sender’s rightful possession of
the token. A ‘proof key’ is a key associated with a security
token, and the data string used to demonstrate the sender’s

knowledge of that key (e.g. through the inclusion of a digital
signature or MAC computed using the key) is called the
‘proof-of-possession’ of the security token [27, 38].

A security token can be associated with two types of proof
key.

1. Symmetric proof keys

If a symmetric key token is requested, a symmetric
proof key is established between the identity selector
and the CardSpace-enabled IdP [38], which is then re-
vealed to the RP. This key is used to prove the sub-
ject’s rightful possession of the security token. Whilst
the use of such a key may optimise token processing in
terms of speed and efficiency [36], it involves revealing
the identity of the RP to the IdP, which is not ideal
from a privacy perspective.

2. Asymmetric proof keys

If an asymmetric key token is requested, the iden-
tity selector generates an ephemeral RSA key pair and
sends the public part of the key to the CardSpace-
enabled IdP. The identity selector also sends a sup-
porting signature to prove ownership of the correspond-
ing private key [38]. If approved by the IdP, the public
part is sent to the RP in the security token. The pri-
vate part of the RSA key pair is then used to prove
the subject’s rightful possession of the security token.
Although the use of such a key may not be as efficient
as the symmetric approach, it helps to protect user
privacy since the identity of the RP does not need to
be disclosed to the IdP.

It merits mentioning that the default behaviour of the
CardSpace identity selector is different in the special case
of browser-based client interactions with a website, in which
case ‘bearer’ tokens are requested. Because a web browser
is only capable of submitting a token to a website passively
over HTTP without any proof-of-possession, bearer tokens
with no proof keys are used [36].

2.2 Liberty
We next give a general introduction to Liberty, covering

relevant operational aspects.

2.2.1 Introduction to Liberty
The Liberty Alliance is a large consortium, established

in 2001 by approximately 30 organisations; it now has a
global membership of more than 15011. The Liberty Al-
liance Project (or simply Liberty) builds open, standards-
based specifications for federated identity, provides interop-
erability testing, and helps to prevent identity theft. Liberty
also aims to establish best practices and business guidelines
for identity federation. According to its website, Liberty has
been widely adopted with, as of 2006, more than one billion
Liberty-enabled identities and devices12. As of mid 2009,
the work of the Liberty Alliance is being adopted by the
Kantara Initiative13.

Figure 1 shows the general Liberty model, which is essen-
tially a single sign-on (SSO) model [11]. In this model, a

11http://www.projectliberty.org/liberty/membership/
current_members/

12http://www.projectliberty.org/liberty/adoption/
13http://kantarainitiative.org/

Figure 1: The Liberty model

principal (or a user) can federate its various identities to a
single identity issued by an identity provider, so that the user
can access services provided by service providers belonging
to the same circle of trust by authenticating just once to
the identity provider. This relies on a pre-established re-
lationship between the identity provider and every service
provider in the circle of trust.

The Liberty specifications are divided into three frame-
works: the identity federation framework (ID-FF) [49], the
identity web services framework (ID-WSF) [47] and the ser-
vice interface specifications (ID-SIS) [30]. In this paper we
focus on the ID-FF. The ID-FF provides approaches for im-
plementing federation and SSO, including supporting mech-
anisms such as session management and identity/account
linkage.

2.2.2 Liberty Functional Requirements
The Liberty architecture [49] supports the following ac-

tivities.

Identity federation This is the process of linking a user’s
SP identity with a specific IdP (given user consent).
At the time of federation, two user pseudonyms14 are
created for the IdP-SP association, one for use by each
party. De-federation is the reverse process.

Single sign-on This feature enables a user to log in once
to an IdP in a Liberty circle of trust and subsequently
use SPs belonging to this circle without the need to
log in again. Global log-out is the reverse process.

Anonymity A Liberty SP may request a Liberty IdP to
supply a temporary pseudonym that will preserve the
anonymity of a user. This identifier may be used to
obtain information for or about the user (given their
consent) without requiring the user to consent to a
long term relationship with the SP [49].

2.2.3 Single Sign-on and Federation Profiles
The Liberty ID-FF protocol specification [14] defines the

SSO and federation protocol. The ID-FF bindings and pro-
file specification [12] defines profiles, i.e. mappings of ID-
FF protocol messages to particular communication protocols
(e.g. HTTP [22]). The latter document also describes the
common interactions and processing rules for these profiles.

The single sign-on and federation protocol has three asso-
ciated profiles, summarised below.

14A pseudonym is an opaque but unique handle (identifier)
for the user, enabling the user’s real identity to remain pri-
vate. Pseudonyms can be temporary or persistent, and are
included in SAML tokens exchanged between a Liberty IdP
and SP.

Liberty artifact profile The Liberty artifact profile in-
volves embedding an artifact (i.e. an opaque handle)
in a URI exchanged between the IdP and SP via Web
redirection, and also requires direct (background) com-
munication between the SP and IdP [49]. The SP uses
the artifact to retrieve the full SAML assertion from
the IdP. As it requires direct SP-IdP communication,
which is inconsistent with the CardSpace approach15,
the proposed scheme does not support this profile.

Liberty browser post profile JavaScript-enabled brows-
ers can perform an HTTP redirect between IdPs and
SPs by using JavaScript to automatically send a form
(containing the authentication data). This profile em-
beds the entire SAML assertion in an HTML form. As
a result, it does not use an artifact and does not re-
quire any direct communication between the SP and
the IdP. The scheme proposed here supports this pro-
file.

Liberty-enabled client (and proxy) profile This prof-
ile defines interactions between Liberty-enabled clients
(and/or proxies), SPs, and IdPs. A Liberty-enabled
client (LEC) is a user agent that can directly com-
municate with the IdP that the user intends to use
to support its interactions with an SP. In addition,
the LEC sends and receives Liberty messages in the
body of HTTP requests/responses using ‘post’, rather
than relying upon HTTP redirects and encoding pro-
tocol parameters into URLs. Therefore, LECs do not
impose any restrictions on the size of the protocol mes-
sages. Interactions between a user agent and an IdP
are SOAP-based, and the protocol messages include
Liberty-specified HTTP headers.

Although it adds complexity, this profile seems like a
natural fit to the proposed scheme. We propose to use
the CardSpace identity selector to act as a Liberty-
enabled client. In our scheme, the identities of the
IdPs are stored on CardSpace personal cards.

2.2.4 Proof Keys
The Liberty ID-FF supports SAML 2.0 assertions as a se-

curity token type. The SAML 2.0 specifications offer three
proof-of-possession methods (also referred to as subject con-
firmation methods): Holder-of-Key (HoK), Sender-Vouches,
and bearer [13].

The HoK method [45] can be used to address both the
symmetric and asymmetric proof-of-possession requirements
of a CardSpace-enabled RP.

2.3 SAML
SAML is an XML-based standard for exchanging identity-

related information across the Internet. The SAML specifi-
cations cover four major elements.

A SAML assertion can contain three types of statement:

1. an authentication statement, asserting that a user
was authenticated at a particular time using a
particular authentication method;

2. an attribute statement, asserting that a user is
associated with certain attributes; and

15In CardSpace, all RP-IdP communications must go through
the identity selector on the user machine.

3. an authorization decision statement, asserting that
a particular user is permitted to perform a certain
action on a specific resource.

SAML protocols define data structures for sending SAML
requests and returning assertions.

SAML bindings map SAML protocol messages onto stan-
dard communication protocols, e.g. HTTP.

SAML profiles describe how SAML assertions, protocols
and bindings are combined together to support a par-
ticular use case.

SAML 1.0 [26] was first adopted as an OASIS standard in
2002; a minor revision, SAML 1.1 [33], was formally adopted
in 2003. A major revision led to SAML 2.0 [13], which be-
came a standard in 2005. The differences16 between version
1.1 and 2.0 are significant, and SAML assertions of the two
types are incompatible.

Finally note that the CardSpace SIP currently only is-
sues tokens conforming to SAML 1.1 [38], whereas the Lib-
erty specifications require IdPs to generate assertions using
SAML 2.0 syntax.

3. THE INTEGRATION SCHEME
This section provides an overview of the scheme, and also

gives a brief description of its protocol flow. However, we
first highlight the main differences between the integration
scheme proposed here and a previously proposed scheme of
this type.

3.1 Previous Work
The integration scheme proposed here builds on a previ-

ous proposal for CardSpace-Liberty integration [1], referred
to below as the AM scheme. Whilst the scheme proposed
here has some properties in common with this previous pro-
posal, for example both approaches concentrate on support-
ing integration at the client rather than at the server, there
are a number of important differences.

Instead of focusing on CardSpace users only, as is the case
with the scheme described here, the AM scheme allows for
full interoperability even in the case where the SP is Liberty-
enabled and the IdP is CardSpace-enabled. However, since
no prototype has been developed, issues which might arise
during deployment have not been explored. By contrast,
the scheme described below has been prototyped, and hence
greater confidence can be derived in its practicality.

One important goal for any identity management system
is ease of use. However, user interface issues, notably the
operation of the integration software on the client platform,
have not been explored for the AM scheme, whereas the pro-
posal here addresses this through a combination of a browser
extension and the CardSpace interface. In addition, whereas
the relationship between the integration software and the
web browser is not specified for the AM scheme, this issue
has been resolved for the scheme presented here by imple-
menting the functionality in a web browser plug-in residing
on the user machine.

The means by which the integration software is triggered
is also not clear for the AM scheme. For example, if the
integration software is assumed to run at all times, then

16https://spaces.internet2.edu/display/SHIB/
SAMLDiffs

problems arise if the user wants to use CardSpace or Liberty
without integration. By contrast, several ways of addressing
this particular issue are described in sections 3.2.3 and 4.3.

The AM scheme does not address how to handle the pri-
vate personal identifier (PPID), described in section 2.1.2,
when supporting interoperation between RPs and Liberty-
enabled IdPs. Additionally, it is not clear whether providing
the full address of the IdP is the responsibility of the RP, the
integration software, or the user. These issues are addressed
in sections 3.2 and 5.

3.2 Integration Protocol
We now present the novel protocol.

3.2.1 System Parties
As stated earlier, the integration scheme addresses the

incompatibility issue arising if the RP is CardSpace-enabled
and the IdP is Liberty-enabled. The parties involved are as
follows.

1. A CardSpace-enabled RP.

2. A CardSpace-enabled user agent (e.g. a suitable web
browser).

3. A Liberty-enabled IdP.

4. The integration browser extension (which must first be
installed).

Note that there is no need for a Liberty-enabled user
agent. Instead the user only needs to install the integra-
tion browser extension.

Figure 2 gives a simplified picture of the high-level inter-
actions between system parties on the user machine. The
parties shown are the browser extension, the user agent
(browser), the identity selector, and the SIP. The arrows
indicate information flows.

Figure 2: Data flows between client parties

3.2.2 Preconditions
The scheme has the following requirements.

• The user must have an existing relationship with a
CardSpace RP.

• The user must have an existing relationship with a
Liberty-enabled IdP, and hence the IdP has a means
of authenticating the user.

• The CardSpace-enabled RP must not employ an STS
(see section 4.7). Instead, the RP must express its se-
curity policy using HTML/XHTML, and interactions
between the CardSpace identity selector and the RP
must be based on HTTP/S via a web browser. This
is because of the use of a browser extension (see sec-
tion 3.2.4) in the scheme, and a browser extension by
itself is incapable of managing the necessary commu-
nications with an STS.

• The CardSpace-enabled RP must support SAML 2.0
(see section 2.3).

• As well as being able to verify the InfoCard signature,
the CardSpace-enabled RP must be able to verify the
the IdP digital signature in the provided SAML token.

• The Liberty-enabled IdP must be prepared to provide
SAML assertions for SPs for which a federation agree-
ment does not exist for the user concerned17. In the
absence of the IdP-SP-specific user pseudonyms (which
would exist if federation had occurred) the IdP is pre-
pared to use the InfoCard PPID for the user in place
of Liberty pseudonyms in the SAML request and re-
sponse messages (and in the created SAML assertion).
This avoids changes to the Liberty message formats,
but does require a minor policy/operational change to
the Liberty-enabled IdP.

3.2.3 LibertyCards
Either prior to, or during, use of the integration protocol,

the user must create a special personal card, referred to as
a LibertyCard, which will represent the Liberty IdP. This
card must contain the URL of the Liberty IdP it represents,
and must also contain a predefined sequence of characters,
e.g. the word ‘Liberty’, which will be used to trigger the
integration software (see section 4.3).

The browser extension, described in section 3.2.4, must
process the policy statement provided by the RP before it is
passed to the identity selector. It must first decide whether
or not the RP policy requirements can be met by one or
more of the LibertyCards; if not then it leaves the policy
statement unchanged, and the browser extension plays no
further active part in processing. However, if use of a Liber-
tyCard is appropriate, then the browser extension changes
the policy to include the types of claim employed by Liberty-
Cards. For example, if the URL of the Liberty IdP is stored
in the web page field of the LibertyCard, then the browser
extension must modify the RP security policy to add the
web page claim (see section 5.3.1 for further details). Note
that adding the claim types to the RP security policy is nec-
essary to ensure that the token supplied by the SIP contains
the values of these claims, which can then be processed by
the browser extension; otherwise these values would not be
available to the browser extension18.

17It is thus not necessary for the user to Liberty-federate
the IdP with the RP (which would in any case be difficult
to achieve given that we are not requiring the RP to be
Liberty-enabled).

18Unfortunately, whilst necessary for the operation of the
browser extension, adding claims to the RP policy means
that CardSpace-compliant IdPs for which the user has ‘man-
aged’ InfoCards, and which might otherwise be acceptable
to the RP, cannot be selected by the user.

One approach that would avoid the need to store the URL
of the IdP in a personal card would involve the browser ex-
tension prompting the user to enter the URL of the IdP that
they wish to contact, after they have selected a card. This
could occur as part of step 8 in section 3.2.5. However this
approach is not adopted here because it would require the
user to manually enter the URL every time a LibertyCard
is used, causing usability issues.

3.2.4 Browser Extension
The integration scheme is based on a browser extension

that is able to:

• automatically execute;

• read and inspect browser-rendered web pages;

• modify rendered web pages if certain conditions hold;

• intercept, inspect and modify messages exchanged be-
tween a CardSpace identity selector and a CardSpace-
enabled RP (via a browser);

• automatically forward security tokens (via browser-
based HTTP redirects) to Liberty-enabled IdPs and
to CardSpace-enabled RPs; and

• provide a means for a user to enable or disable it.

3.2.5 Protocol Operation
Figure 3 gives a simplified sketch of the integration scheme.

The protocol operates as follows (with step numbers as shown
in figure 3). Steps 1, 2, 4–7 and 12 of the integration scheme
are the same as steps 1, 2, 3–6 and 8, respectively, of the
CardSpace personal card protocol given in section 2.1.2, and
hence are not described again here.

3. User agent→ user agent (browser extension→ brows-
er). The browser extension scans the login page to
detect whether the RP website supports CardSpace.
If so, it starts to process the browser-rendered login
page, including embedding a function into the page to
intercept the authentication token that will later be
returned by the CardSpace identity selector. If not,
the browser extension terminates.

8. User agent → user agent (identity selector → browser
extension). Unlike in the ‘standard’ case, the RSTR is
not sent to the RP; instead the browser extension in-
tercepts the RSTR (a SAML authentication response),
converts it into a SAML authentication request, and
forwards it to the appropriate Liberty-enabled IdP.
Note that the detailed format of the SAML authenti-
cation request will depend on the Liberty profile being
used (see discussion below).

9. Liberty-enabled IdP
 user. If necessary, the Liberty-
enabled IdP authenticates the user.

10. Liberty-enabled IdP → user agent. The IdP sends a
SAML authentication response to the user agent. This
response is also Liberty profile-dependent (see discus-
sion below).

11. User agent → RP. The user agent forwards the token
to the RP, optionally after first obtaining permission
from the user (see section 4.4).

The detailed operation of steps 8 and 10 is dependent on
the Liberty profile in use between the user agent and the
IdP. The construction of the SAML authentication request
in step 8 differs depending on whether the Liberty browser
post (LBP) profile or the Liberty-enabled client (LEC) pro-
file is in use. For example, the URI identifier ‘URI: http://
projectliberty.org/profiles/brws-post’ must be used
when employing the LBP profile, whereas ‘URI: http://

projectliberty.org/profiles/lecp’ must be used when
employing the LEC profile. In addition, when using the
LEC profile, the authentication request must be submitted
to the IdP as a SOAP [25] request with a Liberty-enabled
header, whereas when using LBP, the authentication request
to the IdP can be embedded in an HTML form.

The details of steps 10 and 11 differ significantly depend-
ing on which of the two Liberty profiles is in use. In the
LEC profile, in step 10 the IdP returns the authentication
response to the client (which is responsible for forwarding
it to the specified SP). In the LBP profile, however, the
IdP sends the HTML form carrying the authentication re-
sponse to the user agent, and redirects the user via the user
agent to the specified SP. Such a procedure would deny
the browser extension the opportunity to intercept the com-
munication and give the user the choice whether or not to
allow the token to be sent to the RP (as is normally the
case for CardSpace). We therefore require a small modifica-
tion to the way that the Liberty-enabled IdP operates. The
IdP must be modified to redirect the user agent to a web
page at the IdP server, rather than at the RP, thereby giv-
ing the browser extension control. This could be achieved
by requiring the IdP to set the action attribute19 of the
HTML form to an empty string or to #20. In step 11, the
browser extension resets the action attribute to the URL
address of the appropriate CardSpace RP, and, after ob-
taining user permission to release the authentication token
to the given RP, automatically submits the HTML form,
redirecting the user agent to the RP website. This small
change to the normal operation of the Liberty IdP helps
to enhance user control (see sections 4.4 and 5.3.3), hence
implementing Microsoft’s first identity law [6, 10, 17, 34].
It merits mentioning that both the LBP and LEC profiles
require the SP URL address to be specified as the value
of the ‘<lib:AssertionConsumerServiceURL>’ statement in
the SAML authentication request [12]. To keep the changes
at the IdP side to a minimum, the value of this field could
be set to #, implicitly instructing the IdP to include this
value instead of the SP’s URL in the action attribute of the
HTML form sent back to the user agent. Further discussion
of the LBP and LEC profiles is given in section 4.2.

Given that we have assumed that the RP supports SAML
2.0 tokens, there is no need to modify the proof-of-possession
data since the RP can use the Liberty ID-FF supported
HoK [45] method (which can be symmetric or asymmetric)
to express its proof-of-possession requirements. However, a

19Observe that, in the standard LBP profile case, the action
attribute of the HTML form is set to the URL address of
the requesting SP, and the IdP redirects the user agent to
that SP.

20Note that whilst this has been shown to work successfully
with IE7 and IE8, other browsers may not support an action
attribute of an empty string or hash (#); hence setting the
action attribute to a relative URL for the IdP login page
may be required for such browsers.

symmetric proof key should only be used if the user is will-
ing to disclose the identity of the RP to the IdP, and if the
RP holds a valid certificate. For browser-based applications
(and also where no proof-of-possession is needed), the pro-
posed scheme supports bearer tokens [13, 36, 38].

Finally observe that the additional steps above can be
integrated into the current CardSpace framework relatively
easily, as the prototype implementation shows.

Figure 3: Protocol exchanges

4. DISCUSSION AND ANALYSIS
We now consider implementation and applicability issues

of the scheme.

4.1 Differences in Scope
There is a key difference between the Liberty ID-FF and

CardSpace frameworks. CardSpace allows IdPs to assert a
range of attributes about users (including simple authen-
tication assertions), whereas Liberty ID-FF only supports
authentication assertions. In CardSpace, the user attributes
to be asserted are specified in a SAML attribute statement
contained in a SAML request that can be processed by the
local SIP or the remote CardSpace-enabled IdP. However,
a Liberty ID-FF conformant IdP is only required to gener-
ate SAML authentication statements (and not assert user
attributes), which gives rise to an interoperation problem.
Two possible solutions are as follows.

1. It could be assumed that the CardSpace RP is only
concerned with user authentication (which seems likely
to be a common case). In such a case a LibertyCard
contains the IdP URL and the trigger word, and a Lib-
ertyCard will only be used if the RP policy requests an
assertion solely of the PPID attribute, e.g. by including
‘http://schemas.xmlsoap.org/ws/2005/05/identity/
claims/privatepersonalidentifier’ in the list of re-
quired claims. In such a case, the browser extension
will modify the RP policy to ensure it includes the
fields used in LibertyCards (see section 3.2.3). On se-
lection of a LibertyCard, the browser extension (as in
step 8 in section 3.2.5) intercepts, creates and forwards

a SAML authentication request to the user-selected
IdP. While this is a straightforward task, it limits the
scope of applicability of the scheme.

2. Alternatively, it could be assumed that the CardSpace-
enabled RP is concerned with both user authentication
and the assertion of user attributes, and that the RP
policy permits assertions (for user attributes only) to
be provided by the SIP. In this case, along with re-
quiring the PPID, the RP security policy would also
specify the attributes required, leading the identity se-
lector to highlight the user-created LibertyCards that
satisfy the requirements. To ensure that no changes
are required at either the RP or the IdP, the browser
extension could store attribute assertions created by
the SIP. The browser extension would then create the
SAML authentication request according to the Liberty
ID-FF standards, and forward it to the specified IdP.
When the browser extension receives the response con-
taining the authentication assertion from the IdP, it
would add appropriate attribute assertion(s) from its
local cache and then forward the entire package to the
RP. However, if the RP security policy dictates that
security tokens must be wholly signed by the issuing
IdP, then this solution would fail.

The prototype implementation, described in section 5, im-
plements the first approach.

4.2 Liberty Profiles
To maximise applicability, the integration scheme sup-

ports both the Liberty browser post (LBP) and Liberty-
enabled client (LEC) profiles, introduced in section 2.2.3.
However, the prototype described in section 5 only imple-
ments the LBP profile.

In the LEC profile, interactions between a user agent and
an IdP are SOAP-based, and the protocol messages include
Liberty-specified HTTP headers indicating that the sender
is Liberty-enabled. Under the LEC profile, the client must
submit the authentication request to the IdP as a SOAP re-
quest, whereas, when using the LBP profile, the request can
be embedded in an HTML form containing a field called
‘LAREQ’ set to the ‘<lib:AuthnRequest>’ protocol mes-
sage [12, 14]. In order to support both profiles, the integra-
tion software must therefore be capable of supporting both
forms of communications with the IdP.

The two profiles have many properties in common. For
example, they both support SAML. In both profiles, the
HTML form containing the authentication response must
be sent to the user agent using an HTTP POST; this form
must contain the field ‘LARES’ with value equal to the
authentication response, as defined in the Liberty protocol
schema [14]. In both profiles, the value of the ‘LARES’ field
must be encoded using a base-64 transformation [23].

Despite the differences between the profiles, the protocol
steps given in section 3.2.5 apply to both profiles.

4.3 Triggering the Browser Extension
As stated in section 3.1, the means by which the integra-

tion software is triggered needs to be chosen carefully. The
means included in the scheme described in section 3.2.3 is
to include a trigger sequence (e.g. the word ‘Liberty’) in a
specific field of a LibertyCard. This is also the method used

in the prototype described in section 5. However, other ap-
proaches could be used, e.g. as follows.

1. The browser extension could start whenever CardSpace
is triggered. When a user submits an InfoCard, the
browser extension would offer the user two options
(based on HTML forms): to continue to use CardSpace
as usual, or to use a Liberty-enabled IdP. This ap-
proach gives a greater degree of user control, and hence
implements Microsoft’s first identity law [6, 10, 17,
34]. However, it is not particularly convenient, since
it would always require users to choose whether or not
to use the integration software.

2. Alternatively, the browser extension could ask the user
whether they wish to activate the integration protocol
(e.g. via a JavaScript pop-up box). This has advan-
tages and disadvantages similar to those of the first
alternative.

4.4 Token Forwarding
The means by which the security token is forwarded to the

RP needs to be chosen carefully. We refer to the numbered
protocol steps given in section 3.2.5.

The responsibility for delivering the security token could
be given to the Liberty IdP (as is normally the case when
using the LBP profile). In this case the RP address could
be added to the SAML authentication request (as prepared
in step 8) so that the IdP knows which RP it must forward
the token to (again as is normally the case for the Liberty
profiles). Although this would avoid the need for changes to
the normal operation of the Liberty IdP and potentially also
help auditing, such an approach has privacy implications
since the IdP would learn the identity of the RP.

As a result, as specified in step 11 of the proposed scheme,
the responsibility for sending the security token to the RP is
given to the user agent. Thus a means is required for giving
the browser extension the address of the RP, so that it can
forward the token. We next consider three possible ways in
which the RP address might be made available.

• The RP address could be stored in the browser exten-
sion itself. Whilst this puts the user in control, it is
not user-friendly, as it would require users to manu-
ally add the address of each RP into the code of the
browser extension.

• After the security token is returned from the Liberty
IdP, the browser extension could ask the user to enter
the RP address, e.g. using a JavaScript pop-up box or
an HTML form. This has advantages and disadvan-
tages similar to those of the previous alternative.

• The browser extension could store the RP address en-
crypted in a cookie as part of step 3, so that the
browser extension can obtain the address in step 11.
In order to adhere to cookie security rules [31], this
must be done in such a way that the browser believes
it is communicating with the same domain when the
cookie is set and when it is retrieved21.

To achieve this, the browser extension encrypts and
stores the RP address in a cookie in step 3, before

21Note that creation of and access to the cookie can be han-
dled by the browser extension transparently to RPs and
IdPs.

the identity selector is invoked. As part of step 8, the
browser extension retrieves the encrypted value from
the cookie and sends it to the IdP as a hidden HTML
variable in an HTML form or as a query URL parame-
ter. As part of step 10, the IdP returns the encrypted
RP address to the user agent (again as a hidden form
variable or as a URL parameter22). In step 11, the
browser extension obtains the encrypted value and de-
crypts it to obtain the RP address.

Note that the IdP is unable to read the RP address,
hence protecting user privacy, since it is encrypted us-
ing a key known only to the browser extension. If the
IdP, however, needs the RP address for auditing pur-
poses (e.g. for legal reasons), or the IdP policy requires
the disclosure of the RP identity (e.g. so it can encrypt
the security token using the RP’s public key), then the
RP address could be sent in plain text to the IdP.

4.5 Defeating Phishing
Use of LibertyCards helps to mitigate the risk of phishing.

The LibertyCard contains the URL of the IdP entered by
the user, and the user will only be forwarded to that IdP,
i.e. the RP will not be able to redirect the user to an IdP of
its choice. By contrast, in the Liberty artifact and Liberty
browser post profiles (and in OpenID [44, 48]), a malicious
SP might redirect a user to a fake IdP, which could then
capture the user credentials. This is a particular threat for
static credentials, such as usernames and passwords.

4.6 Integration at the Client Side
Some IdPs and RPs/SPs may not be prepared to accept

the burden of supporting two identity management systems
simultaneously, at least unless there is a significant financial
incentive. Currently, major Internet players, such as MSN23,
do not provide any means of interoperating between identity
management systems. As a result, a client-side technique for
supporting interoperation could be practically useful.

In addition, building the integration scheme on the client
means that the performance of the server is not affected,
since the integration overhead is handled by the client. Such
an approach also reduces the load on the network.

4.7 STS-enhanced RPs
STS-enhanced RPs are not supported by the integration

scheme. This is because use of an STS involves direct com-
munication (i.e. not via a browser) between the CardSpace
identity selector and the RP STS [27], which the integra-
tion browser extension is currently not capable of inter-
cepting. For example, the identity selector directly con-
tacts the RP STS to obtain its security policy using WS-
MetadataExchange.

In the scheme described in this paper, the interaction with
the RP uses HTTP/HTML via a web browser. This is a
simpler and probably more common scenario for RP interac-
tions [19]. As discussed in section 2.1.3, an RP security pol-
icy can be expressed using HTML, and both the policy and
the security token can be exchanged using HTTP/S. There-
fore, to act as a CardSpace-enabled RP, a website is not

22The use of HTML forms (with the POST method) is prefer-
able to query URL parameters, since the latter may suffer
from size restrictions; hence the former approach is used in
the prototype implementation described in section 5.

23http://www.msn.com

required to implement any of the WS-* specifications [19,
27].

4.8 Applicability of the Scheme
Although the proposed integration scheme is presented

as Liberty-specific, we suspect that the scheme could also
be applicable for SAML-compliant IdPs; this, nevertheless,
requires certain modifications to the current scheme. For ex-
ample, the technical differences24 between Liberty ID-FF 1.2
and SAML 2.0 must be carefully examined. However, given
that SAML 2.0 is the successor to SAML 1.1, Liberty ID-
FF 1.2 and Shibboleth 1.3 [15], a mapping seems likely to
be possible.

Reconfiguring the integration scheme to interoperate with
SAML-aware IdPs potentially significantly increases its ap-
plicability and practicality. For example, the exchange of
identity attributes, which is not supported under the cur-
rent scheme, would then be feasible. The reconfiguration of
the scheme remains possible future work.

5. PROTOTYPE REALISATION
This section provides technical details of a prototype im-

plementation of the integration scheme when used with the
Liberty browser post profile. A number of prototype-specific
properties and possible limitations of the current prototype
are also described.

5.1 User Registration
Prior to use, the user must have accounts with a CardSpace

RP and a Liberty-enabled IdP. The user must also cre-
ate a LibertyCard for the relevant Liberty IdP (or it could
be created at the time of use). This involves invoking the
CardSpace identity selector and inserting the URL of the
target Liberty IdP in the web page field25 and the trigger
word (Liberty) in the city field. For ease of identification,
the user can give the personal card a meaningful name, e.g.
of the target IdP site. The user can also upload an image
for the card, e.g. containing the logo of the intended IdP or
simply of Liberty. When a user wishes to use a particular
Liberty IdP, the user simply chooses the corresponding card.
An example of a LibertyCard is shown in figure 4.

Figure 4: A LibertyCard

24https://spaces.internet2.edu/display/SHIB/
SAMLLibertyDiffs

25The web page field was chosen to contain the Liberty IdP
URL since it seems the logical choice; however, this is an
implementation option.

5.2 Implementation Details
The prototype, described in section 5.3, was coded as

a client-side plug-in26 using JavaScript [40, 42], chosen to
maximise portability. Indeed, JavaScript27 appears to be the
most widely browser-supported and commonly used client-
side scripting language across the Web today. Use of browser-
specific client-side scripting languages, e.g. VBScript, was
ruled out to ensure the widest applicability [20].

The implementation uses the Document Object Model
(DOM) [32] to inspect and manipulate HTML [43] pages
and XML [9] documents. Since the DOM defines the objects
and properties of all document elements and the methods to
access them, a client-side scripting language can read and
modify the contents of a web page or completely alter its
appearance [20].

The prototype does not use any of the published Card-
Space application programming interfaces (APIs). This will
ease migration of the plug-in to other CardSpace-like sys-
tems such as the Linux/Mac-based DigitalMe28 and the Fire-
fox/Safari InfoCard extensions.

5.3 Operation of the Prototype
In this section we consider specific operational aspects of

the prototype. We refer throughout to the numbered proto-
col steps given in section 3.2.5.

5.3.1 Prototype-specific Operational Details
In step 3, before the HTML login page is displayed, the

plug-in uses the DOM to perform the following processes.

1. The plug-in scans the web page in the following way29.

(a) It searches through the HTML elements of the
web page to detect whether any HTML forms are
present. If so, it searches each form, scanning
through each of its child elements for an HTML
object tag.

(b) If an object tag is found, it retrieves and ex-
amines its type. If it is of type ‘application/x-
informationCard’ (which signals website support
for CardSpace), it continues; otherwise it aborts.

(c) It then searches through the param tags (child
elements of the retrieved CardSpace object tag)
for the ‘requiredClaims’ tag, which lists the claims
required by the RP security policy.

(d) If the required claims include attributes other than
the PPID claim, then the plug-in terminates, giv-
ing CardSpace the opportunity to operate nor-
mally. However, if only the PPID claim is re-
quested, then the plug-in adds the city and web
page claims to the ‘requiredClaims’ tag, marking
them as mandatory (see section 3.2.3).

26We use the term plug-in to refer to any client-side browser
extension, such as a user script, plug-in, etc.

27Throughout the description the term JavaScript is, for sim-
plicity, used to refer to all variants of the language.

28http://code.bandit-project.org/trac/wiki/
DigitalMe

29The relevant user guide [27] specifies two HTML extension
formats for invoking an identity selector from a web page,
both of which include placing the CardSpace object tag in-
side an HTML form. This motivates the choice of the web
page search method.

2. The plug-in adds a JavaScript function to the head sec-
tion of the HTML page to intercept the XML-based au-
thentication token before it is sent back to the RP (such
a token will be sent by the identity selector in step 8).

3. The plug-in obtains the current action attribute of the
CardSpace HTML form, encrypts it using AES [39]
with a secret key known only to the plug-in, and then
stores it in a cookie. This attribute specifies the URL
address of a web page at the CardSpace-enabled RP to
which the authentication token must be forwarded for
processing. If the obtained attribute is not a fully qual-
ified domain name address, the JavaScript inherent
properties, e.g. document.location.protocol and docu-
ment.location.host, are used to help reconstruct the full
URL address.

4. After storing it, the plug-in changes the current action
attribute of the CardSpace HTML form to point to
the newly created ‘interception’ function (see step 2
above).

5. The plug-in creates and appends an ‘invisible’ HTML
form to the HTML page to be used later for sending
the SAML token request to the Liberty-enabled IdP.

In step 8 the plug-in uses the DOM to perform the follow-
ing steps.

1. It intercepts the RSTR message sent by the CardSpace
identity selector using the added function (see above).

2. It parses the intercepted token. If the city field con-
tains the word Liberty, the plug-in proceeds; if not,
normal operation of CardSpace continues. It also reads
the web page field to discover the URL address of the
IdP. In addition, all other fields, including the PPID
and InfoCard public key with its digital signature, are
parsed. The city, web page, and PPID fields are con-
tained in a SAML attribute statement, whereas the
public key and signature values are contained in a
SAML signature statement.

The plug-in uses an XML parser built into the browser
to read and manipulate the intercepted XML token.
The plug-in passes the token to the parser, which reads
it and converts it into an XML DOM object that can
be accessed and manipulated by JavaScript. The DOM
views the XML token as a tree-structure, thereby en-
abling JavaScript to traverse the DOM tree to read
(and possibly modify) the content of the token ele-
ments. New elements can also be created where nec-
essary.

3. It converts the token format from a SAML response
message into a SAML request message, compatible
with Liberty-conformant IdPs supporting the browser
post profile. This involves converting a SAML 1.1-
based RSTR into a SAML 2.0 authentication request.
Moreover, as outlined in section 3.2.2, the plug-in adds
the PPID and the InfoCard public key along with its
signature to the SAML request message, because the
token must be signed by the Liberty-enabled IdP to
provide integrity and authenticity services.

4. It writes the entire SAML request message as a hidden
variable into the invisible HTML form created earlier.

5. It retrieves the encrypted RP URL from the cookie,
and writes it into the invisible form as a hidden vari-
able.

6. It writes the URL address of the Liberty IdP into the
action attribute of the invisible form.

7. It auto-submits the HTML form (transparently to the
user), using the JavaScript method ‘click()’ on the
‘submit’ tag.

5.3.2 Liberty IdP-specific Details
For steps 8 to 10, we have created an experimental web-

site to act as a Liberty-enabled IdP supporting the Lib-
erty browser post profile. PHP is used to enable the IdP
to parse the SAML request and perform the user authen-
tication. The user credentials, i.e. username and password,
that the IdP uses to authenticate the user are stored in a
MySQL database. They are salted, hashed with SHA-1,
and protected against SQL injection attacks. PHP supports
a variety of XML parsers, such as XML DOM, Expat parser,
and SimpleXML. The prototype uses XML DOM.

5.3.3 User Consent and Token Forwarding
In step 11, the plug-in operates as follows.

1. It obtains the encrypted value of the RP URL from the
appropriate HTML hidden variable, decrypts it using
its internally stored secret key, and inserts it into the
action attribute of the HTML form carrying the re-
ceived SAML token.

2. The plug-in then displays the token to the user and
requests consent to proceed. The displayed token indi-
cates the types of information the authentication token
is carrying, as well as the exact URL address of the RP
to which the token will be forwarded. The JavaScript
‘confirm()’ pop-up box is used to achieve this.

3. If the user approves the token, the plug-in seamlessly
submits it to the RP using the JavaScript ‘click()’
method.

5.3.4 CardSpace RP-specific Details
To test the prototype, we built an experimental website

to act as a CardSpace-enabled RP. On receipt of the SAML
authentication token, the RP uses PHP in step 11 to parse
and validate the received token. As is the case with the
Liberty IdP, the user identifying data is salted, hashed and
stored in a MySQL database that is resistant to SQL in-
jection attacks. The validation process includes verifying
the digital signatures and checking the conditions, e.g. time
stamps, included in the token. The PPID and the InfoCard
public key in the token are compared to the values stored
in the RP database, and the authentication status is also
checked.

5.3.5 Other Issues
The JavaScript-driven plug-in was built using IE7PRO,

an IE extension, chosen to expedite the prototype imple-
mentation. Users of the prototype must therefore install
IE7PRO, freely available at the IE7PRO website30, prior
to installing the integration plug-in. To enable or disable

30http://www.ie7pro.com

the integration prototype, a user can simply tick or un-tick
the appropriate entry in the ‘IE7PRO Preferences’ interface.
This provides the means to achieve the final objective listed
in section 3.2.4.

Finally note that the integration plug-in does not require
any changes to default IE security settings, thereby avoid-
ing potential vulnerabilities resulting from lowering browser
security settings.

5.4 Limitations
The current version of the prototype has not been tested

with CardSpace relying parties using TLS/SSL. Therefore,
we are not able to provide precise operational and perfor-
mance details in this case.

If the RP has a certificate, then the identity selector will,
by default, encrypt the SAML-based RSTR message using
the public key of the requesting RP. Clearly, the plug-in
does not have access to the RP’s private key, and hence
will not be able to decrypt the token. Therefore, it will not
know whether to trigger the integration protocol, and will
be unable both to discover which IdP it must contact, and
to obtain the user identifier (the PPID).

One solution to these issues would be for the plug-in to
first ask the user whether the integration protocol should be
activated (e.g. via a JavaScript prompt window), and, if so,
it should then forward the SAML token to the RP and notify
the RP to wait for another token. The RP should decrypt
the token, read the PPID, and then wait. At the same time,
the plug-in should prompt the user to enter the URL of
the Liberty-enabled IdP, and then create and send a SAML
request message to the Liberty IdP, which authenticates the
user and responds with a SAML response token. The plug-
in could then, optionally, seek user consent, and, if the user
approves, the plug-in would then forward the token to the
RP. The RP must issue the plug-in with a nonce (and a
time-stamp) which the plug-in sends back with the second
token to both link the two tokens together and help protect
against replay and guessing attacks.

One of the most obvious drawbacks to this solution is
that it requires changes at the CardSpace-enabled RP, as
the RP must be reconfigured to accept two tokens. However,
this would not be a major change since both tokens will be
constructed using SAML, and since the RP is not required
to directly contact the Liberty-enabled IdP. Therefore, the
major overheard remains with the client. Nevertheless, we
are working on a revised version of the prototype that is
fully compatible with SSL/TLS encryption but without the
requirement of RP reconfiguration.

The integration plug-in must scan every browser-rendered
web page to detect whether it supports CardSpace, and this
may affect system performance. However, informal tests on
the prototype suggest that this is not a serious issue. In ad-
dition, the plug-in can be configured so that it only operates
with certain websites.

The integration plug-in has not been tested with Card-
Space 2.0, because it was completed well before its release.
Therefore, we are not yet able to provide precise operational
details for this version.

Finally note that some older browsers (or browsers with
scripting disabled) may not be able to run the integration
plug-in, as it was built using JavaScript. However, most
modern browsers support JavaScript (or ECMAscript), and
hence building the prototype in JavaScript is not a major

usability obstacle.

6. RELATED WORK
The Bandit31 and Concordia32 projects are currently de-

veloping open source technologies to support interoperation
between identity management systems. Unlike the inte-
gration scheme proposed in this paper, these systems are
not based on client-side models. Concordia has proposed
a CardSpace and SAML/WS-Federation integration model.
This could be used as the basis for supporting Liberty/Card-
Space interoperation by taking advantage of the similarities
between the Liberty ID-FF SSO profiles and the SAML SSO
profiles.

Another scheme supporting interoperation between Card-
Space and Liberty has been proposed by Jørstad et al. [29].
In this scheme, the IdP is responsible for supporting inter-
operation. The IdP must therefore perform the potentially
onerous task of maintaining two different identity manage-
ment schemes. In addition, this scheme requires the user
to possess a mobile phone supporting the Short Message
Service (SMS). Moreover, the IdP must always perform the
same user authentication technique, regardless of the iden-
tity management system the user is attempting to use. The
IdP simply sends an SMS to the user, and, in order to be au-
thenticated, the user must confirm receipt of the SMS. This
confirmation is also an implicit user approval for the IdP to
send a security token to the RP. By contrast, the scheme
proposed in this paper does not require use of a handheld de-
vice, and does not enforce a specific authentication method.

Finally, we observe that Liberty is apparently also working
on a scheme somewhat similar to that described here. No
specifications have yet been released, but the plans are de-
scribed in a presentation available at the Liberty website33.

7. CONCLUSIONS AND FUTURE WORK
We have proposed a means of interoperation between two

leading identity management systems, namely CardSpace
and Liberty. CardSpace users are able to obtain an as-
sertion token from a Liberty-enabled identity provider that
satisfies the security requirements of a CardSpace-enabled
relying party. The scheme uses a client-side browser ex-
tension, and requires no major changes to servers. It uses
the CardSpace identity selector interface to integrate Lib-
erty identity providers with CardSpace relying parties. The
scheme extends the use of personal cards to allow for such
interoperability.

The integration scheme takes advantage of the similarity
between the Liberty ID-FF and the CardSpace frameworks,
and this should help to reduce the effort required for full sys-
tem integration. Also, implementation of the scheme does
not require technical co-operation between Microsoft and
Liberty.

Planned future work includes investigating the possibil-
ity of using the CardSpace identity selector to enable access
to identity providers of other identity management systems,
such as OpenID and Shibboleth. In addition, we also plan to

31http://www.bandit-project.org
32http://www.projectconcordia.org
33http://www.projectliberty.org/liberty/content/
download/4541/31033/file/20080ICP-Cardspace-DIDW.
pdf

investigate the possibility of extending the proposed integra-
tion protocol to support CardSpace-enabled relying parties
that employ security token services.

8. REFERENCES
[1] W. A. Alrodhan and C. J. Mitchell. A client-side

CardSpace-Liberty integration architecture. In
Proceedings of the 7th Symposium on Identity and
Trust on the Internet (IDtrust 08), pages 1–7. ACM,
New York, NY, USA, 2008.

[2] S. Anderson et al. Web Services Trust Language
(WS-Trust). Actional Corporation, BEA Systems,
Computer Associates International, International
Business Machines Corporation, Layer 7 Technologies,
Microsoft Corporation, Oblix, OpenNetwork
Technologies, Ping Identity Corporation, Reactivity,
RSA Security, and VeriSign, 2005.
http://download.boulder.ibm.com/ibmdl/pub/

software/dw/specs/ws-trust/ws-trust.pdf.

[3] S. Bajaj et al. Web Services Policy Framework
(WS-Policy). BEA Systems, International Business
Machines Corporation, Microsoft Corporation, SAP
AG, Sonic Software, and VeriSign, 2006. http:
//download.boulder.ibm.com/ibmdl/pub/software/

dw/specs/ws-polfram/ws-policy-2006-03-01.pdf.

[4] K. Ballinger et al. Web Services Metadata Exchange
(WS-MetadataExchange). BEA Systems, Computer
Associates International, International Business
Machines Corporation, Microsoft Corporation, SAP
AG, Sun Microsystems, and webMethods, 2006.
http://download.boulder.ibm.com/ibmdl/pub/

software/dw/specs/ws-mex/metadataexchange.pdf.

[5] A. Berger. Identity Management Systems —
Introducing Yourself to the Internet. VDM Verlag,
Saarbrücken, Germany, 2008.

[6] V. Bertocci, G. Serack, and C. Baker. Understanding
Windows CardSpace: An Introduction to the Concepts
and Challenges of Digital Identities. Addison-Wesley,
Reading, Massachusetts, USA, 2008.

[7] K. Bhargavan, C. Fournet, A. D. Gordon, and
N. Swamy. Verified implementations of the
information card federated identity-management
protocol. In Proceedings of the 2008 ACM symposium
on Information, Computer and Communications
Security (ASIACCS 08), pages 123–135. ACM, New
York, NY, USA, 2008.

[8] D. Birch. Digital Identity Management: Technological,
Business and Social Implications. Gower Publishing,
Farnham, UK, 2007.

[9] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau (editors). Extensible Markup Language
(XML) 1.0. W3C Recommendation, 5th edition, 2008.
http://www.w3.org/TR/xml/.

[10] K. Cameron. The Laws of Identity. Microsoft
Corporation, 2005. http://www.identityblog.com/
stories/2005/05/13/TheLawsOfIdentity.pdf.

[11] K. Cameron and M. B. Jones. Design Rationale behind
the Identity Metasystem Architecture. Microsoft
Corporation, 2006. http://www.identityblog.com/
wp-content/resources/design_rationale.pdf.

[12] S. Cantor, J. Kemp, and D. Champagne (editors).
Liberty ID-FF Bindings and Profiles Specification.

Liberty Alliance Project, 2004.
http://www.projectliberty.org/liberty/content/

download/319/2369/file/

draft-liberty-idff-bindings-profiles-1.

2-errata-v2.0.pdf.

[13] S. Cantor, J. Kemp, R. Philpott, and E. Maler
(editors). Assertions and Protocols for the OASIS
Security Assertion Markup Language (SAML) V2.0.
OASIS, 2005. http://docs.oasis-open.org/
security/saml/v2.0/saml-core-2.0-os.pdf.

[14] S. Cantor and J. Kemp (editors). Liberty ID-FF
Protocols and Schema Specification. Liberty Alliance
Project, 2005. http://www.projectliberty.org/
resource_center/specifications/liberty_

alliance_id_ff_1_2_specifications.

[15] S. Cantor (editor). Shibboleth Architecture —
Protocols and Profiles, 2005.
http://shibboleth.internet2.edu/docs/

internet2-mace-shibboleth-arch-protocols-200509.

pdf.

[16] D. Chadwick. FileSpace: an alternative to CardSpace
that supports multiple token authorisation and
portability between devices. In Proceedings of the 8th
Symposium on Identity and Trust on the Internet
(IDtrust 09), pages 94–102. ACM, New York, NY,
USA, 2009.

[17] D. W. Chadwick. Federated identity management. In
A. Aldini, G. Barthe, and R. Gorrieri, editors,
Foundations of Security Analysis and Design V,
FOSAD 2007/2008/2009 Tutorial Lectures, volume
5705 of Lecture Notes in Computer Science, pages
96–120. Springer, Berlin/Heidelberg, Germany, 2009.

[18] D. W. Chadwick and G. Inman. Attribute aggregation
in federated identity management. IEEE Computer,
42(5):33–40, 2009.

[19] D. Chappell. Introducing Windows CardSpace. MSDN,
2006. http://msdn.microsoft.com/en-us/library/
aa480189.aspx.

[20] N. Daswani, C. Kern, and A. Kesavan. Foundations of
Security: What Every Programmer Needs to Know.
Apress, Berkeley, CA, USA, 2007.

[21] G. Della-Libera et al. Web Services Security Policy
Language (WS-Security Policy). International
Business Machines Corporation, Microsoft
Corporation, RSA Security, and VeriSign, 2005.
http://download.boulder.ibm.com/ibmdl/pub/

software/dw/specs/ws-secpol/ws-secpol.pdf.

[22] R. Fielding, J. Getty, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol — HTTP/1.1. RFC 2616, The
Internet Society, 1999.
http://tools.ietf.org/html/rfc2616.

[23] N. Freed and N. Borenstein. Multipurpose Internet
Mail Extensions (MIME) Part One: Format of
Internet Message Bodies. RFC 2045, Internet
Engineering Task Force, 1996.
http://www.ietf.org/rfc/rfc2045.txt.

[24] S. Gajek, J. Schwenk, M. Steiner, and C. Xuan. Risks
of the CardSpace protocol. In Proceedings of the 12th
International Conference on Information Security
(ISC 09), pages 278–293. Springer-Verlag,
Berlin/Heidelberg, Germany, 2009.

[25] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau,
H. F. Nielsen, A. Karmarkar, and Y. Lafon (editors).
SOAP Version 1.2 Part 1: Messaging Framework.
W3C Recommendation, 2007.
http://www.w3.org/TR/soap12-part1/.

[26] P. Hallam-Baker and E. Maler (editors). Assertions
and Protocol for the OASIS Security Assertion
Markup Language (SAML) V1.0. OASIS, 2002.
http://www.oasis-open.org/specs/#samlv1.0.

[27] M. B. Jones. A Guide to Using the Identity Selector
Interoperability Profile V1.5 within Web Applications
and Browsers. Microsoft Corporation, 2008.

[28] M. B. Jones and M. McIntosh (editors). Identity
Metasystem Interoperability Version 1.0 (IMI 1.0).
OASIS Standard, 2009. http://docs.oasis-open.
org/imi/identity/v1.0/identity.html.

[29] I. Jørstad, D. Van Thuan, T. Jønvik, and D. Van
Thanh. Bridging CardSpace and Liberty Alliance with
SIM authentication. In Proceedings of the 10th
International Conference on Intelligence in Next
Generation Networks (ICIN 07), pages 8–13. Adera,
BP 196 - 33608 Pessac Cedex, France, 2007.

[30] S. Kellomäki and R. Lockhart (editors). Liberty
ID-SIS Employee Profile Service Specification. Liberty
Alliance Project, 2005. http://www.projectliberty.
org/liberty/content/download/1031/7155/file/

liberty-idsis-ep-v1.1.pdf.

[31] D. Kristol. HTTP State Management Mechanism.
RFC 2045, Internet Engineering Task Force, 2000.
http://tools.ietf.org/html/rfc2965.

[32] A. Le Hors, P. L. Hégaret, L. Wood, G. Nicol,
J. Robie, M. Champion, and S. Byrne (editors).
Document Object Model (DOM) Level 2 Core
Specification. W3C Recommendation, 2000.
http://www.w3.org/TR/DOM-Level-2-Core/.

[33] E. Maler, P. Mishra, and R. Philpott (editors).
Assertions and Protocol for the OASIS Security
Assertion Markup Language (SAML) V1.1. OASIS,
2003.
http://www.oasis-open.org/committees/download.

php/3406/oasis-sstc-saml-core-1.1.pdf.

[34] M. Mercuri. Beginning Information Cards and
CardSpace: From Novice to Professional. Apress, New
York, USA, 2007.

[35] Microsoft Corporation. Microsoft’s Vision for an
Identity Metasystem, May 2005. http://msdn.
microsoft.com/en-us/library/ms996422.aspx.

[36] Microsoft Corporation and Ping Identity Corporation.
An Implementer’s Guide to the Identity Selector
Interoperability Profile v1.5, 2008.

[37] A. Nadalin, C. Kaler, R. Monzillo, and
P. Hallam-Baker (editors). Web Services Security:
SOAP Message Security 1.1 (WS-Security 2004).
OASIS Standard Specification, 2006.
http://docs.oasis-open.org/wss/v1.1/wss-v1.

1-spec-os-SOAPMessageSecurity.pdf.

[38] A. Nanda and M. B. Jones. Identity Selector
Interoperability Profile V1.5. Microsoft Corporation,
2008. http://www.identityblog.com/wp-content/
resources/2008/Identity_Selector_

Interoperability_Profile_V1.5.pdf.

[39] National Institute of Standards and

Technology (NIST). Announcing the Advanced
Encryption Standard (AES), FIPS 197, November
2001. http://csrc.nist.gov/publications/fips/
fips197/fips-197.pdf.

[40] T. Negrino and D. Smith. JavaScript and Ajax for the
Web: Visual QuickStart Guide. Peachpit Press,
Berkeley, CA, USA, 7th edition, 2008.

[41] R. Oppliger, S. Gajek, and R. Hauser. Security of
Microsoft’s identity metasystem and CardSpace. In
Proceedings of the Kommunikation in Verteilten
Systemen (KiVS 07), pages 63–74. VDE Publishing
House, Berlin, Germany, 2007.

[42] T. A. Powell and F. Schneider. Javascript: The
Complete Reference. McGraw-Hill Osborne Media,
Berkeley, CA, USA, 2nd edition, 2004.

[43] D. Raggett, A. L. Hors, and I. Jacobs (editors).
HTML 4.01 Specification. W3C Recommendation,
1999. http://www.w3.org/TR/html401/.

[44] D. Recordon, L. Rae, and C. Messina. OpenID: The
Definitive Guide. O’Reilly Media, Sebastopol, CA,
USA, 2010.

[45] T. Scavo (editor). SAML V2.0 Holder-of-Key
Assertion Profile Version 1.0. OASIS, 2009.
http://www.oasis-open.org/committees/download.

php/34962/sstc-saml2-holder-of-key-cd-03.pdf.

[46] D. Todorov. Mechanics of User Identification and
Authentication: Fundamentals of Identity
Management. Auerbach Publications, New York, USA,
2007.

[47] J. Tourzan and Y. Koga (editors). Liberty ID-WSF
Web Services Framework Overview. Liberty Alliance
Project, 2005. http://www.projectliberty.org/
liberty/content/download/1307/8286/file/

liberty-idwsf-overview-v1.1.pdf.

[48] R. Ur Rehman. Get Ready for OpenID. Conformix
Technologies, Chesterbrook, Pennsylvania, USA, 2008.

[49] T. Wason (editor). Liberty ID-FF Architecture
Overview. Liberty Alliance Project, 2003.
http://www.telenor.com/rd/idm/

liberty-idff-arch-overview-v1.2.pdf.

[50] G. Williamson, D. Yip, I. Sharoni, and K. Spaulding.
Identity Management: A Primer. MC Press, Big
Sandy, TX, USA, 2009.

