
An Evaluation of Depth Camera-Based Hand Pose
Recognition for Virtual Reality Systems

by

Andrew William Clark

Submitted to the School of Mathematics, Statistics and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science (Computer Science)

at the

UNIVERSITY OF KWAZULU-NATAL

December 2018

© University of KwaZulu-Natal 2018. All rights reserved.

Author .
School of Mathematics, Statistics and Computer Science

December 14, 2018

Certified by. .
Prof Deshen Moodley

Associate Professor
Thesis Supervisor

Certified by. .
Mr Anban Pillay

Lecturer
Thesis Supervisor

II

An Evaluation of Depth Camera-Based Hand Pose

Recognition for Virtual Reality Systems

by

Andrew William Clark

Submitted to the School of Mathematics, Statistics and Computer Science
on December 14, 2018, in partial fulfillment of the

requirements for the degree of
Master of Science (Computer Science)

Abstract

Camera-based hand gesture recognition for interaction in virtual reality systems
promises to provide a more immersive and less distracting means of input than the
usual hand-held controllers. It is unknown if a camera would effectively distinguish
hand poses made in a virtual reality environment, due to lack of research in this area.
This research explores and measures the effectiveness of static hand pose input with a
depth camera, specifically the Leap Motion controller, for user interaction in virtual
reality applications. A pose set was derived by analyzing existing gesture taxonomies
and Leap Motion controller-based virtual reality applications, and a dataset of these
poses was constructed using data captured by twenty-five participants. Experiments
on the dataset utilizing three popular machine learning classifiers were not able to
classify the poses with a high enough accuracy, primarily due to occlusion issues affect-
ing the input data. Therefore, a significantly smaller subset was empirically derived
using a novel algorithm, which utilized a confusion matrix from the machine learning
experiments as well as a table of Hamming Distances between poses. This improved
the recognition accuracy to above 99%, making this set more suitable for real-world
use. It is concluded that while camera-based pose recognition can be reliable on a
small set of poses, finger occlusion hinders the use of larger sets. Thus, alternative
approaches, such as multiple input cameras, should be explored as a potential solution
to the occlusion problem.

Thesis Supervisor: Prof Deshen Moodley
Title: Associate Professor

Thesis Supervisor: Mr Anban Pillay
Title: Lecturer

III

IV

Acknowledgments

I would like to thank the UKZN/CSIR Meraka Centre for Artificial Intelligence Re-

search for their financial assistance during my Master’s years. Furthermore, I would

like to extend my gratitude towards my supervisors Anban Pillay and Deshen Mood-

ley for their endless patience and insight into even the most esoteric topics within

Computer Science.

V

Preface

The research contained in this dissertation was completed by the candidate while

based in the Discipline of Computer Science, School of Mathematics, Statistics and

Computer Science of the College of Agriculture, Engineering and Science, University

of KwaZulu-Natal, Westville, South Africa. The research was financially supported

by the Center for Artificial Intelligence Research (CAIR).

The contents of this work have not been submitted in any form to another uni-

versity and, except where the work of others is acknowledged in the text, the results

reported are due to investigations by the candidate.

VII

VIII

Declaration: Plagiarism

I, Andrew Clark, declare that:

(i) the research reported in this dissertation, except where otherwise indicated or

acknowledged, is my original work;

(ii) this dissertation has not been submitted in full or in part for any degree or

examination to any other university;

(iii) this dissertation does not contain other persons’ data, pictures, graphs or other

information, unless specifically acknowledged as being sourced from other per-

sons;

(iv) this dissertation does not contain other persons’ writing, unless specifically

acknowledged as being sourced from other researchers. Where other written

sources have been quoted, then:

a) their words have been re-written but the general information attributed to

them has been referenced;

b) where their exact words have been used, their writing has been placed

inside quotation marks, and referenced;

(v) where I have used material for which publications followed, I have indicated in

detail my role in the work;

(vi) this dissertation is primarily a collection of material, prepared by myself, pub-

lished as journal articles or presented as a poster and oral presentations at

conferences. In some cases, additional material has been included;

(vii) this dissertation does not contain text, graphics or tables copied and pasted

from the Internet, unless specifically acknowledged.

X

Contents

1 Introduction 1

1.1 Background . 1

1.1.1 Devices . 2

1.2 Problem Statement, Aim and Objectives 8

1.2.1 Aim . 9

1.2.2 Objectives . 9

1.3 Contributions . 10

1.4 Thesis Breakdown . 10

2 Literature Review 13

2.1 Pose Recognition with the Kinect and LMC 13

2.2 Hand Poses for VR . 15

2.2.1 User Elicitation Studies . 15

2.2.2 VR Hand Poses in Literature 17

2.2.3 Non-VR Hand Poses in Literature 17

2.2.4 VR Hand Poses in Games and Simulations 18

2.3 Gesture Taxonomies . 19

2.4 Machine Learning Classifiers for Hand Pose Recognition 26

3 A Benchmark Pose Dataset for Virtual Reality 29

3.1 A Static Pose Set for Virtual Reality 29

3.1.1 Outline of the Benchmark Pose Set 32

3.1.2 Fist Poses . 33

XI

3.1.3 Index Pointing Poses . 34

3.1.4 Open-Palm Poses . 34

3.1.5 Finger Touches and Loops . 35

3.1.6 Finger Crosses . 35

3.1.7 Thumbs-Up Poses . 35

3.1.8 Analysis of the Pose Set . 36

3.2 Construction of the Dataset . 40

4 Pose Recognition 45

4.1 Feature Engineering . 45

4.2 Machine Learning for Pose Recognition 50

4.2.1 Evaluation Metrics . 50

4.2.2 Experiment Descriptions . 51

4.3 Parameter Tuning . 52

4.3.1 k-Nearest Neighbour . 53

4.3.2 Artificial Neural Network . 55

4.3.3 Support Vector Machine . 61

4.3.4 Improving the Initial Results 64

5 Results and Analysis 69

5.1 Experimental Results and Analysis 69

5.1.1 Orientation-Independent Experiment 69

5.1.2 Requested Orientation Experiment 73

5.1.3 Thumbs-Orientation Experiment 76

5.2 Pose Similarity and Simplification . 79

5.2.1 Measuring Similarity via Confusion Matrix 79

5.2.2 Measuring Similarity via String Distance 81

5.2.3 Final Pose Selection . 85

6 Discussion 89

6.1 Introduction . 89

XII

6.2 Formation of the Benchmark Pose Set 90

6.3 Pose Recognition Experiments . 92

6.3.1 Orientation-Independent Experiment 93

6.3.2 Requested-Orientation Experiment 94

6.3.3 Thumbs-Orientation Experiment 95

6.3.4 The Classifiers . 96

6.3.5 The Benchmark Pose Set . 97

6.3.6 Comparison to Literature . 98

6.4 Formation of the Reliable Pose Set 99

6.5 Final Remarks . 100

7 Conclusion 103

8 Appendix 105

8.1 Benchmark Pose Set . 105

8.1.1 Fist Poses . 105

8.1.2 Index Pointing Poses . 106

8.1.3 Open-Palm Poses . 106

8.1.4 Finger Touches and Loops . 107

8.1.5 Finger Crosses . 108

8.1.6 Thumbs-Up Poses . 109

XIII

XIV

List of Figures

1-1 The Oculus Rift and its positional-tracking camera 3

1-2 The Leap Motion Controller . 4

1-3 LMC feature points . 4

1-4 The LMC mounted onto the Oculus Rift 5

1-5 The Microsoft Kinect . 6

1-6 Features extracted by the Kinect . 6

2-1 Common hand shapes by Epps et al. 16

2-2 Common hand shapes identified by Vafei 22

2-3 Finger poses defined in GeLex . 23

2-4 Finger Inter-relations defined in GeLex 23

2-5 Taxonomy by Choi et al. 24

2-6 Finger poses and inter-relations by Choi et al. 25

3-1 Elements of 3D hand gestures by Choi et al. 30

3-2 Notations for Hand Orientation and Hand Shape by Choi et al. . . . 31

3-3 A modified version of Choi et al.’s notation 33

3-4 Fist Poses . 33

3-5 Index Pointing Poses . 34

3-6 Open-Palm Poses . 34

3-7 Finger Touches and Loops . 35

3-8 Finger Crosses . 35

3-9 Thumbs-Up Poses . 36

3-10 A participant interacting with the experimental setup 42

XV

4-1 Finger Tri-Area illustration . 47

4-2 Accuracy and latency dependence on k for kNN 55

4-3 Accuracy and latency dependence on number of hidden nodes in single

hidden layer for ANN . 57

4-4 Accuracy of the ANN with two hidden layers 58

4-5 Accuracy and latency dependence on ANN learn rate 59

4-6 Accuracy and latency dependence on hidden node count for ANN with

raw input . 61

4-7 Accuracy and latency dependence on SVM complexity constant . . . 64

4-8 Accuracy of the PUK SVM with varying PUK parameters 65

4-9 Accuracy and latency dependence on exponent of a polynomial SVM

kernel . 66

8-1 Fist Poses . 106

8-2 Index Pointing Poses . 106

8-3 Open-Palm Poses . 107

8-4 Finger Touches and Loops . 108

8-5 Finger Crosses . 109

8-6 Thumbs-Up Poses . 110

XVI

List of Tables

1.1 Comparison between the LMC and Microsoft Kinect 7

3.1 Data captures per participant for experimentation 43

4.1 Initial results for the k-Nearest Neighbour classifier 53

4.2 Initial results for the kNN classifier with raw data input 54

4.3 Initial results for single layer MLP . 56

4.4 Initial results for multiple MLP layers 57

4.5 Initial accuracies for two hidden MLP layers 58

4.6 Initial results across different learning rates 59

4.7 Initial ANN results using raw input data 60

4.8 Initial SVM results with varied kernels 62

4.9 Initial SVM results with PUK kernel across complexity constants . . 63

4.10 Initial SVM results with linear polynomial kernel across complexity

constants . 63

4.11 Initial SVM accuracies with varying PUK kernel parameters 65

4.12 Initial SVM results with varying polynomial kernel parameters 66

5.1 Results for the Orientation-Independent Experiment 70

5.2 kNN confusion matrix for the Orientation-Independent Experiment . 70

5.3 ANN confusion matrix for the Orientation-Independent Experiment . 71

5.4 SVM-PUK confusion matrix for the Orientation-Independent Experiment 71

5.5 SVM-Lin confusion matrix for the Orientation-Independent Experiment 72

5.6 Results for the Requested Orientation Experiment 73

XVII

5.7 kNN confusion matrix for the Requested Orientation Experiment . . 73

5.8 ANN confusion matrix for the Requested Orientation Experiment . . 74

5.9 SVM-PUK confusion matrix for the Requested Orientation Experiment 74

5.10 SVM-Lin confusion matrix for the Requested Orientation Experiment 75

5.11 Results for the Thumbs-Orientation Experiment 76

5.12 kNN confusion matrix for the Thumbs-Orientation Experiment 76

5.13 ANN confusion matrix for the Thumbs-Orientation Experiment . . . 77

5.14 SVM-PUK confusion matrix for the Thumbs-Orientation Experiment 77

5.15 SVM-Lin confusion matrix for the Thumbs-Orientation Experiment . 78

5.16 SVM-PUK confusion matrix of orientation-independent data in the

benchmark pose set. 80

5.17 Heatmap of Hamming Distances between poses 82

5.18 Finger Pose Distance Weightings . 83

5.19 Finger Inter-Relation Distance Weightings 83

5.20 Weighted Hamming Distance heatmap 84

8.1 Fist Poses . 105

8.2 Index Pointing Poses . 106

8.3 Open-Palm Poses . 107

8.4 Finger Touches and Loops . 108

8.5 Finger Crosses . 108

8.6 Thumbs-Up Poses . 109

XVIII

Chapter 1

Introduction

1.1 Background

Virtual Reality (VR) systems simulate a three-dimensional environment to make users

feel as though they are physically immersed in the generated environment. Such an

effect is achieved through a VR head-mounted display, which blocks vision of the real

world and displays a stereoscopic view of the simulated world. A means to inter-

act with the environment is also provided, using hand-held controllers, cameras, or

gloves. The immersion and fluidity of VR interaction over the traditional mouse and

keyboard has given rise to VR being used in fields including entertainment, education,

rehabilitation, training simulations, and remote operation.

A hand gesture is any movement of the hand to convey an idea or carry a meaning.

Gestures can be either static or dynamic [7]. Static gestures involve the hand not

changing shape or position over the duration of the gesture, while dynamic gestures

involve some form of hand, finger or arm movement. A static hand gesture is referred

to as a hand pose. Thus, hand pose recognition is the process of taking a hand pose

as input, and outputting the type of pose.

1

1.1.1 Devices

Depth cameras have proven to be effective input devices for vision-based hand pose

recognition, as they make the task of separating foreground from background consid-

erably easier than RGB cameras. Depth cameras that capture infrared are especially

useful as they are independent of both skin colour and visual lighting conditions. Of

these cameras, the Leap Motion Controller (LMC) and Microsoft Kinect have been

popularly used in vision-based hand pose recognition research.

This section provides a detailed description of the primary devices mentioned in this

thesis, namely the Oculus Rift DK2 display, Leap Motion Controller, and Microsoft

Kinect. A comparison between the Kinect and Leap Motion Controller is also pro-

vided.

1.1.1.1 Oculus Rift DK2

The Oculus Rift is a Virtual Reality (VR) Head-Mounted Display (HMD) that renders

graphics stereoscopically for an immersive user experience. The specific display used

in this research is the Oculus Rift DK2 (Development Kit 2), an older beta version

of the consumer version. The Oculus Rift CV1 (Consumer Version 1) has recently

become available to consumers, but the use of this newer HMD will not affect the pose

recognition measurements made in this research. The DK2 was used in this research

to render the VR environment to users.

The Oculus Rift has one display and lens for each eye to achieve a wide field of vision.

Each of the two displays render slightly different images to create an illusion of three-

dimensional space for the wearer. The Oculus Rift comes with an infrared camera

to track the HMDs position, while the HMD itself tracks its own orientation. The

orientation and positional updates get sent to the VR rendering application so that

it may adjust its camera accordingly, giving users the illusion that they are able to

physically look around in the environment.

2

Figure 1-1: The Oculus Rift DK2 and positional-tracking camera.1

1.1.1.2 Leap Motion Controller

The Leap Motion Controller (LMC) is a lightweight and affordable commercial stereo-

scopic infrared camera that specializes in tracking a user’s hands with sub-millimeter

accuracy [16]. The device consists of three infrared LEDs and two infrared cameras,

to create an interaction space of eight cubic feet [32]. The two cameras give the LMC

a stereoscopic view of the user’s hands, allowing it to create a depth map. The in-

frared LEDs and cameras allow the LMC to work under any lighting conditions and

skin colour. Thanks to its lightweight nature, the device can also be mounted onto

the Oculus Rift, as seen in figure 1-4. The device and the features it captures can be

seen in figures 1-2 and 1-3.

The raw image data from the LMC is first processed by the LMC driver software in

order to provide intuitive data to the programmer. This allows the programmer to

avoid any image processing steps entirely. The processed data is accessed through the

Leap Motion API, which provides data in the form of Frames. Each frame represents

the data processed by the driver in a single instance of time. Frames contain a list of

Hand objects that the controller is able to identify. Each Hand stores data about one

particular hand, such as the palm position, palm normal, and a list of Finger objects.

1Image source: https://s3.amazonaws.com/static.oculus.com/website/2014/03/camera_
dk2.jpg

3

https://s3.amazonaws.com/static.oculus.com/website/2014/03/camera_dk2.jpg
https://s3.amazonaws.com/static.oculus.com/website/2014/03/camera_dk2.jpg

Figure 1-2: The Leap Motion Controller. Figure 1-3: Yellow marks represent the fea-
tures captured by the LMC.

Each Finger object stores data about one finger, such as the positions of each joint

and the tip of the finger. These features were used instead of depth images for pose

classification. The API also provides limited data correlating to pose recognition.

This data includes:

• Pinch Strength: A value from 0 to 1 indicating how close the hand is to a

pinching pose.

• Grab Strength: A value from 0 to 1 indicating how close the hand is to a

grabbing pose.

• Circle Gesture: Whether a circular motion was made by a finger.

• Swipe Gesture: Whether the hand moved in a straight line with fingers ex-

tended.

• Screen Tap Gesture: Whether a finger tapped or poked forward.

• Key Tap Gesture: Whether a finger tapped downwards.

1.1.1.3 Microsoft Kinect

The Microsoft Kinect contains an infrared depth camera, infrared emitter, RGB cam-

era and multiple microphones to detect voice commands as well as the posture of the

4

Figure 1-4: The LMC mounted onto the Oculus DK2.2

human body [42]. The Kinect was initially designed as an additional peripheral to the

Xbox 360 gaming console. A newer version of the Kinect has been released, known

as the Kinect for Xbox One, which has improved features such as a higher resolution,

and is often sold with the newer Xbox One gaming console. The device is usually

available at retail gaming or electronics stores. In research, the data captured by the

Kinect is extracted through its API.

The Kinect API [41] processes the data received by the Kinect device into frames of

data. A notable type of frame is the BodyFrame. This frame contains a collection

of all calculated joint positions for all human bodies seen by the Kinect, as seen in

Figure 1-6. In terms of hands, the API provides the positions of the tip of the hand,

the thumb, the wrist, and the hand itself. The API does not provide positions of

individual fingertips.

1.1.1.4 Comparison of the LMC and Kinect

Both the LMC and Kinect are widely available in electronics stores, with the LMC

being cheaper than the Kinect. The LMC is also much smaller and lighter than

the Kinect, allowing it to be mobile. The bulkier Kinect is expected to be in a

fixed position, while the LMC can still operate effectively while mounted on a VR

head-mounted display. As discussed in Chapter 1, the API of the Kinect provides

limited data pertaining to the hand, while the LMC’s API provides detailed hand data

2Image source:
http://riftybusiness.com/wp-content/uploads/2014/08/Leap-Motion-VR.jpg

5

http://riftybusiness.com/wp-content/uploads/2014/08/Leap-Motion-VR.jpg

Figure 1-5: The Microsoft Kinect.3

Figure 1-6: The joint features captured by the
Kinect.4

only. The raw depth image data collected by either device is accessible through their

respective APIs, so hand pose recognition via image processing can be performed if

necessary. Libraries such as the Nimble SDK used in [39], are available for researchers

using the Kinect to detect hand features. The Kinect has a much larger interaction

space than the LMC, with a maximum viewing range of approximately 6m, while

the LMC has a range of approximately 0.6m. The field of view of the LMC is 150°

by 120°, while the Kinect’s field of view is approximately 57° horizontally by 43°

vertically. The LMC has been shown to have sub-millimeter accuracy [16], while the

Kinect is not able to achieve such an accuracy [64].

3Image source: https://i-msdn.sec.s-msft.com/dynimg/IC584396.png
4Image source: https://i-msdn.sec.s-msft.com/dynimg/IC741371.png

6

https://i-msdn.sec.s-msft.com/dynimg/IC584396.png
https://i-msdn.sec.s-msft.com/dynimg/IC741371.png

Table 1.1: Comparison between the LMC and Microsoft Kinect.

LMC Kinect

Specialization Hand and finger tracking Full body tracking

Availability Retail electronics stores Retail electronics and games stores

Price $70 standalone. $75 with mount [33] $150 Developers’ Kinect for Xbox One [40]

Mobility Small, light, mobile, VR mount Larger, heavier and stationary

Interaction Space Shorter range, wider angle. Much longer range, narrower viewing angle

Versatility Only hand tracking using infrared. Body tracking, RGB camera & microphones

Data from API Detailed hand features only Body features, minimal hand features

Table 1.1 compares the various aspects of the LMC against the Kinect. While the

Kinect is a popular depth camera in vision-based pose recognition, the LMC is a more

suitable candidate for pose recognition in a virtual reality environment. The LMC

specializes in capturing hand and finger data, while the Kinect is used for full-body

tracking, and does not support individual finger tracking by default. Furthermore,

the LMC software processes the images fed to it by the camera to provide positional

and orientation feature data to the programmer, as opposed to the raw image data

from the Kinect. The low weight and small size of the LMC allow it to be mounted to

the front of an HMD, allowing the user to always have their hands tracked provided

their hands are in their field of view. In contrast, the Kinect has to be left in a

stationary position, and if the user were to turn their back to it, their hands would

become occluded by their body. Having the LMC attached to the front of an HMD

allows the user to have a significantly higher degree of mobility when interacting in

virtual reality when compared to the Kinect. The LMC has thus been deemed more

suitable for the purposes of this research than the Kinect, due to its compatibility

with VR via mounting and its specialization in hand pose tracking.

Many researchers have used the LMC in the field of hand pose recognition, but of

these very few have applied it to VR scenarios. Those that used the LMC in VR

did not create a system to classify a very wide array of poses using machine learning

algorithms. The performance measurements outside of VR made by other researchers

may not necessarily be the same as performance measurements in VR. Most non-VR

research involving the LMC has the device placed flat on a table, such that the camera

7

will be able to see the user’s palm. However, when mounted, the LMC will see the

back of the user’s hand most of the time. Being able to see the palm might reduce the

occurrence of finger occlusion, as a bent finger will still be visible to a camera viewing

the palm, but be occluded to a camera viewing the back of the hand. Furthermore,

an LMC mounted onto a VR head-mounted display will no longer be stationary, pos-

sibly causing further recognition issues. Furthermore, the time it takes for a pose to

be recognized is an important factor for real-time 3D gestural interaction [29], and

this latency is often not recorded. For these reasons, it is reasonable to assume that

evaluating the performance of the LMC outside of VR may yield different results to

performance tests inside VR. Thus, there is a need to make performance measure-

ments for the LMC in VR.

A wide range of poses is important to measure the effectiveness of a pose recognition

system. Most of the researchers that used the LMC in VR used the few recognizable

poses built into the Leap Motion software to achieve the aim of using the camera

within a particular context. It is thus an important step in this research to construct

a set of poses that represent as many hand poses that can be made in VR as possible.

Other researchers have introduced data sets of poses, but without the context of VR

included. Certain pose types have become a common trend amongst LMC-based VR

applications, and a pose set emphasizing these poses is required for this research.

Thus, a set of hand poses to be tested will be defined in the course of this research.

1.2 Problem Statement, Aim and Objectives

By exploring an intuitive means of interaction in VR, immersion in VR applications

can be improved, thus allowing for more meaningful and engaging applications. One

such means of interaction is by recognizing a user’s hand poses, and translating it to

an action on the environment. This provides a natural means of interaction over the

keyboard and mouse as humans predominantly use their hands to interact with their

environments. Current virtual reality displays for the PC, such as the HTC Vive and

8

Oculus Rift, utilize hand-held controllers for gestural VR interaction. These devices

accurately track positional hand data, but not individual finger data. They partly

rely on button presses for VR interaction, rather than purely relying on natural and

intuitive hand poses. Future VR systems are expected to evolve towards natural hand

gestures as the primary input, thus there is a need to explore different methods of

capturing more complete hand data. One such method is a camera or vision-based

method, where image recognition techniques and classification methods are combined

to recognize a hand pose. Vision-based methods are able to track the posture of

individual fingers while not encumbering users’ hands, thus possibly replacing cum-

bersome hand-held controllers. There is a lack of research in the field of camera-based

pose recognition in VR, especially with measurements of camera effectiveness. Thus,

there is a need to explore the effectiveness of camera-based hand pose recognition for

VR environments. It is not known if a depth-based camera would effectively distin-

guish hand poses made in a VR environment.

Previous work was done on a set of four distinct poses [10]. It is also not known how

effectively a depth-based camera could distinguish a larger and more comprehensive

set of poses.

1.2.1 Aim

The aim of this research is to evaluate the effectiveness of using a depth camera for

pose recognition as a means of interaction in virtual reality.

1.2.2 Objectives

In order to achieve the aim, this research has been broken into sequential objectives

as follows:

• Review gesture taxonomies and select a taxonomy to use for pose set creation.

• Create a benchmark pose dataset through use of the LMC in VR. The pose

types are chosen using the selected taxonomy and VR applications.

9

• Evaluate the performance of three machine learning classifiers for pose recogni-

tion on the benchmark pose dataset, using features constructed from the LMC

API.

• From the findings of the experiments, determine a subset of poses from the

dataset that yields a very high degree of accuracy.

1.3 Contributions

This research explores an immersive and natural means of interaction for VR. Sev-

eral contributions are made to the fields of hand pose recognition and virtual reality.

Very little research exists that measures the performance of camera-based pose recog-

nition systems in VR. This research provides results measuring the performance of

various machine learning classifiers on poses made in VR and captured via camera.

Furthermore, a benchmark set of poses is derived from an existing gesture taxonomy

and other existing VR applications. Previously, no dataset of hand poses for VR

existed. Researchers can use this benchmark set of poses for comparison, or base

their own pose sets on this one. A novel algorithm is also provided to reduce a pose

set to achieve a certain accuracy goal. A reliable pose set with over 99% accuracy

was formed using the novel algorithm, and could be practically used in current VR

applications where high accuracy is necessary. The same algorithm with different

parameters could be used to form other reliable pose sets.

1.4 Thesis Breakdown

The structure of the thesis is as follows: Chapter 2 highlights the state of the art in

pose recognition for virtual reality, followed by Chapter 3, where the creation of the

pose dataset is described. Chapter 4 describes the pose recognition experiments and

methods of the research. Chapter 5 displays the results obtained from the experi-

ments, and describes a means by which the pose set is reduced to form a new reliable

pose set for a significantly improved recognition rate. Findings of the experiments are

10

described in the discussion in Chapter 6, which is followed by the concluding Chapter

7.

11

12

Chapter 2

Literature Review

This chapter provides a comprehensive review of pose recognition in general and pose

recognition for VR in particular. Section 2.1 gives an overview of the use of the Kinect

and LMC in research, and compares the two devices. Section 2.2 provides a review of

the pose types used in literature and current VR applications. Section 2.3 describes

several different gesture taxonomies. Finally, hand pose recognition algorithms from

other studies will be highlighted in Section 2.4.

2.1 Pose Recognition with the Kinect and LMC

A variety of input devices besides hand-held controllers have been used in hand pose

recognition research. The more popular amongst these include gloves and depth

cameras. Most research, however, has not been concerned with VR applications.

Popular depth camera-based devices for hand gesture recognition in research include

the Microsoft Kinect and the LMC, while glove-based research usually utilizes the

CyberGlove [65, 68]. Glove-based devices, such as the CyberGlove, are cumbersome

and not as easily available as cameras are, but do not suffer from occlusion as cameras

do. Thus, this section only discusses the use of the LMC and Kinect depth cameras

in research.

Researchers using the raw data from depth cameras often employ the use of RGB-D

13

segmentation to extract meaning from images [17, 22, 62]. These techniques may be

useful for constructing one’s own input features straight from the raw image data.

However, there is very limited research measuring the effectiveness of the LMC and its

API for VR. As such, this research is more concerned with using this already-available

input library, namely the LMC API, and measuring pose recognition effectiveness

from it.

Researchers have used the Kinect to manipulate virtual objects using the positions of

the hands from the API [28], while others used the Nimble SDK to detect hand joint

positions from the Kinect depth image to interact with virtual objects [39]. Various

machine learning techniques were compared for gesture classification using the Kinect,

where a highest average accuracy of 96.99% was achieved using a neural network [59].

Various researchers have used the Kinect for Sign Language recognition, achieving

accuracies of over 80%. [2, 38, 58].

A significant amount of research utilizing the LMC for gesture recognition has been

completed. For example, it has been extensively applied to the field of Sign Language

recognition [9, 11, 38, 44, 49, 36, 63]. Other studies outside of VR have used the LMC

for 3D virtual scene and object manipulation [15, 25], television remote control [61],

3D painting [56], and medical rehabilitation [1, 21, 55].

Due to its lightweight design, the LMC has been used in several VR research papers.

Our previous research used the LMC mounted to the Oculus Rift for data visualiza-

tion and interaction through hand poses [10]. Other research combining the LMC

for gestural input and a VR head-mounted display for visual output include robotic

arm remote operation [57], 3D model manipulation and visualization [51, 4, 26], 3D

virtual navigation [27], and medical rehabilitation [5].

Extensive research has been done on evaluating the performance of depth cameras

outside of VR, most notably in Sign Language recognition research, but not within

VR. More specifically, very little research into gathering the performance metrics of

a hand pose recognition system in VR has been done.

14

2.2 Hand Poses for VR

In order to develop a VR hand pose recognition system, there needs to be a set of

hand poses to be recognized. Defining such pose sets allow other researchers to com-

pare their hand pose recognition results on a common set of poses.

Publicly available datasets of hand poses do exist, such as the Innsbruck Multi-View

Hand Gesture dataset [53] (captured by the Kinect), the ChaLearn dataset [18] (cap-

tured by the Kinect), and the dataset by Molina et al. [45] (captured by a time-of-

flight camera). Datasets captured by an LMC have also been created, such as the

LeapMotion-Gesture3D Dataset and Handicraft-Gesture Dataset both by Lu et al.

[35], however these datasets consist of dynamic gestures. All of the above datasets

do not contain gestures that were made in VR environments.

2.2.1 User Elicitation Studies

User elicitation studies involve having users define the hand poses they feel are most

natural for a task. While the following studies were not performed in a virtual reality

context, some of the poses made by users could provide insight into which poses might

feel natural within virtual reality.

Hand poses users made when performing specific tasks on a computer were recorded

[13]. The findings show that the "index finger" pose (i.e. only the index finger raised,

all other fingers curled), is by far the most common hand shape for gesture interac-

tion on a tabletop display. Other hand poses used include the spread hand, flat hand,

grab/release motion, vertical hand, five-finger pinch, fist, ’L’ shape, ’C’ shape, and

curved hand. Figure 2-1 depicts these poses.

User-defined gestures for interaction with objects on a tabletop display were gathered

by [67]. The gestures used to interact with the tabletop display are not mid-air 3D

hand poses, but are instead dynamic and make contact with a 2D tabletop display.

Some findings of note is that users prefer to use a single hand over two when inter-

facing with the display, and that it may be more effective to provide the user with an

15

Figure 2-1: Common hand shapes extracted from the work of Epps et al [13].

on-screen widget for more complex commands instead of expecting them to perform

a difficult or abstract gesture. Users in this study made extensive use of an index

pointing pose to interact with elements on the screen, highlighting the importance of

the index finger in gestural interaction.

Insights into user-elicited gestures for television interaction captured by the LMC is

given in [61]. Of the gesture-based commands performed by the users, several received

high agreement rates (i.e a high percentage of users all made the same gesture for that

command). While most gestures made were dynamic, some did include static poses.

The high agreement static poses were the open palm, closed palm, and thumbs-up

poses.

In a recent elicitation study, gestures were captured via the LMC for musical interac-

tion in a virtual reality environment [34]. Poses that were involved in gestures with

high agreement include an index pointing pose, open hand pose, and index-thumb

pinch. Many gestures used the same hand pose as one another, but with different

motions.

Other smaller studies show that users prefer the five-finger pinch (finger purse) for

in-air manipulation [23].

16

2.2.2 VR Hand Poses in Literature

The LMC was used for a VR Computer Aided Design application [4]. In this ap-

plication, the two-fingered pinch pose (the thumb and index finger touch) was used

to pick up a stationary component of a virtual mechanical device, and users could

freely move this component around provided the pinch pose is held. Upon releasing

the pinch pose, the component is once again frozen in space. Other actions such as

resetting the positions of all components to their default locations were mapped to

virtual user interface buttons that the user would touch with their hands.

Hand poses were also used to control movement in VR [27]. The user avatar’s move-

ment was controlled by the direction of the palm normal, and making a fist ceased

movement.

2.2.3 Non-VR Hand Poses in Literature

The LMC and Kinect were used in a pose recognition system to control a 3D molecular

graphics application [51]. The LMC was used for one-handed poses only, while the

Kinect poses usually involved two hands. In the one-handed poses, a closed hand

causes input to be ignored, while any other posture of the hand causes the system

to respond. Translation along an axis is performed by moving the hand along the

corresponding axis. Rotation is detected by pivoting the hand about the wrist. For

example, in order to rotate about the x-axis relative to the monitor, the user would

hold their hand with the palm facing the monitor and wave it forwards while keeping

the wrist stationary. The mouse cursor can be moved around by extending the index

finger and moving the hand around, while mouse clicks are performed by poking at

the screen with the index finger. The mouse click is often used to select certain

components in the 3D view.

The Kinect was also used in the manipulation system of [39]. An object is selected

by making the hand intersect with that object. A grasping motion can then be made

to make the object follow the hand around. Pointing with the index finger moves the

17

camera forward or backward through the world, depending on how far forward the

hand is.

2.2.4 VR Hand Poses in Games and Simulations

2.2.4.1 LMC-based Games and Simulations

Many VR applications have been created specifically for the LMC. Most of these VR

applications make use of the default information provided by the Leap Motion API,

such as pinch and grab strength, to interact with the environment.

The World of Comenius is an educational VR simulation utilizing the LMC for ges-

tural input [37]. The primary means of interaction is performed through intersecting

the User Interface (UI) elements with the index finger. These UI elements could take

the form of floating spheres showing new worlds to explore or classic windows con-

taining buttons floating in the virtual space. Users may use a grasping motion then

open their hands again to attach an object to their hands in order to move the object

around. Doing the same grasp-then-release motion releases the object from the hand.

Blocks is an application developed by Leap Motion to demonstrate the effectiveness

of their new Orion software [31]. A menu pops up when left hand’s palm is turned up-

wards, and menu items are selected by intersecting them with the right hand’s index

finger. The grabbing gesture is used to pick up blocks, a two-handed pinch-and-drag

gesture creates new blocks, and turning both palms upwards while moving the hands

upwards toggles gravity. The thumbs-up pose is used to continue with the tutorial at

the start.

Besides The World of Comenius and Blocks, multiple other VR applications have

made use of button-based menu items, such as Geometric [52] and Virtual Strangers

[20]. Many VR applications partially rely on menu buttons for interaction, however

the buttons are usually placed diegetically, such as on a virtual terminal in the user’s

view. Interacting with the menu buttons is intuitively done through contact with the

index finger, however it is often acceptable for any part of the hand to touch them.

Therefore, a finger pointing pose, usually the index pointing pose, is an important

18

pose for VR interaction. Other important poses from the above applications that

either form part of a dynamic gesture or are used as-is include: Open Hand, Fist,

Pinch, and Thumbs-Up.

2.2.4.2 Other Games and Simulations

The Kinect was also used to control an avatar in the Second Life virtual world [47].

Users are able to control the camera by pretending to hold an imaginary window pane

in their hands. This means that both hands are roughly the same distance in front

of the user and are in a grasping pose as though they were holding the imaginary

pane. Moving the pane to the left or right pans the camera left or right respec-

tively, while pushing the pane forward or backwards zooms the camera in or out

respectively. The camera is rotated clockwise by moving the left hand forward and

the right hand back, which is the motion the user makes to rotate the imaginary pane.

2.3 Gesture Taxonomies

Gesture taxonomies group hand gestures with similar characteristics into categories.

These taxonomies are thus useful in deriving a comprehensive set of hand poses as it

allows researchers to take a sample of poses from each category to represent a much

larger set of hand poses.

One way to categorize gestures is by the style of gesture [24]. For example, gestures

can be classified as being either acts or symbols, where sign languages often employ

symbolic gestures, while acts are context-sensitive [54].

Karam and Schraefel created a comprehensive and abstract taxonomy by which hand

gestures could be separated into four major categories [24]:

• Gesture Style: This describes the gesture itself. This category is further

separated into the following subcategories:

– Deictic: Context-sensitive gestures used to identify an object with an ap-

19

plication domain, such as pointing to an object.

– Semaphores: Gestures that could be either static or dynamic and have a

meaning to be communicated to the application. Most gesture recognition

research focuses on this gesture style.

– Gesticulation: Gestures that are used naturally during conversations.

– Manipulation: Gestures that have a strong relationship between how the

hand moves and how a manipulated object moves, such as grabbing and

moving an object.

– Sign language: Gestures similar to semaphoric gestures, with the difference

being that they are based on a spoken language.

• Application Domain: The application in which the gestures are applied, such

as desktop use or virtual reality.

• Enabling Technologies: The technologies used in order to capture the ges-

tural data from the user.

• System Response: The means by which the system responds to a gesture,

for example visual, audio, or through commands to the CPU.

This taxonomy is broad, but lacks detail in separating hand shapes from one another.

In more recent research, Vafaei argues that previous taxonomies, such as the one by

Karam and Schraefel [24], are too broad, and do not capture specific dimensions, such

as the physical form of the hand [60]. It is claimed that the older taxonomies are not

related to gestural interaction with computers, and rather just gestures for human

communication. Vafaei proposed a taxonomy by adjusting and combining dimensions

used in the taxonomies of Wobbrock et al. [67] and Ruiz et al. [50]. The categories

defined in the taxonomy include: Nature, Form, Binding, Temporal, Context, Dimen-

sionality, Complexity, Body Part, Handedness, Hand Shape, and Range of Motion.

A dimension of note is the Hand Shape dimension, which has assignable values such

as Flat, Open, Bent, and Curved. At the time of his investigations, Vafaei states that

Hand Shapes were not used as a dimension for taxonomies. A user elicitation study

20

was performed to determine the common hand shapes that users make in gestural

interaction. Figure 2-2 lists the common hand shapes discovered.

21

Figure 2-2: Common hand shapes extracted from the user elicitation study by Vafei [60].

While the hand shapes listed by Vafei provide insight into what could be contained

22

in a comprehensive list of poses, there are no further sub-categories of the Hand Shape

dimension. This makes it difficult to create and verify the comprehensiveness of a set

of hand poses, as ideally one would want to ensure that the set of hand poses covers

all sub-categories of the Hand Shape dimension.

Mo devised a means to notate hand poses by proposing a notating language named

GeLex [43]. In GeLex, each finger was described by a Finger Pose (Figure 2-3), and

each relationship between two fingers was described by a Finger Inter-relation (Figure

2-4).

Figure 2-3: Finger poses defined in GeLex [43]. The poses illustrated in the right-hand figure,
described from top-left to bottom-right: Point, BendHalf, Bend, CloseHalf, and Close.

Figure 2-4: Finger Inter-relations defined in GeLex [43]. From left to right: Group, Separate,
Cross, and Touch.

From these definitions of finger poses and inter-relations, an encoding technique

was devised to describe a single hand pose using a series of integers. Each hand pose

was described using five integers describing the pose of each finger, followed by four

integers describing the relationship between the thumb and each of the other fingers,

23

followed by three integers describing the relationship between adjacent non-thumb

fingers. Therefore, a single hand pose is described by a twelve-dimensional vector of

integers.

GeLex separates hand poses very well into intuitive categories, and could provide a

solid foundation for a set of representative gestures.

Since many recent studies in hand gesture recognition involve user-elicitation, Choi

et al. set the focus of their study on developing a taxonomy that allows researchers

to notate these gestures systematically [8]. Figure 2-5 depicts how they separated

gestures into categories.

Figure 2-5: The taxonomy developed by Choi et al. [8]

The Hand Shape category is analogous to hand pose, and unlike most previous

taxonomies, the Hand Shape category was further separated into sub-categories. Choi

et al. based their categorization of Hand Shape on GeLex by Mo [43], and divided

Hand Shape into Finger Poses and Finger Inter-relations. They simplified the Finger

Poses and expanded on the Finger Inter-relations in GeLex. Figure 2-6 illustrates

the Finger Poses and Finger Inter-Relations proposed by Choi et al.

24

Figure 2-6: a) Finger Pose states. b) Finger Inter-relation states. Extracted from Choi et
al. [8]

Another category of note in their taxonomy is the Hand Orientation category,

which is further divided into Palm Orientation and Fist Face Orientation. Palm

Orientation is the direction of the palm normal, while Fist Face Orientation is the

direction the knuckles would point in if a fist were to be made. Both of these sub-

categories could have an assignable state of forwards, backwards, left, right, up, or

down.

Older taxonomies are very broad, and such general categorization is not applicable for

the purposes of this research. In order to evaluate the performance of a camera-based

system, it is obvious that changes in hand shape and orientation will have more of a

direct impact on recognition performance than gesture meanings and styles. Of the

taxonomies reviewed, Choi et al.’s taxonomy expands on GeLex and provides an in-

depth means of separating gestures by hand shape and orientation. This will provide

a strong basis to create a comprehensive pose set, as the evaluation of the set will

simply involve ensuring that each sub-category of Choi et al.’s Hand Shape and Hand

Orientation categories are represented in the comprehensive pose set. The construc-

tion of this pose set and a more in-depth view of Choi et al.’s notation method can

be seen in Chapter 3.1.

25

2.4 Machine Learning Classifiers for Hand Pose Recog-

nition

Multiple researchers have employed various techniques for recognizing hand poses

utilizing different input devices and feature sets for the classification process. Widely

used techniques include the Support Vector Machine, k-Nearest Neighbour algorithm,

and Artificial Neural Networks.

Our previous research utilized the Leap Motion Controller mounted onto the Ocu-

lus Rift to capture hand poses for a virtual reality application [10]. The k-Nearest

Neighbour algorithm was used as a classifier for the purposes of that research. A

recognition rate of 82.5% was achieved on four distinct poses with a value of 𝑘 = 3.

The LMC can provide inconsistent data at times, and thus the idea of combining

the LMC and Microsoft Kinect to perform gesture recognition was investigated [38].

Data features extracted from the two camera-based devices was used to train a multi-

class Support Vector Machine. The Support Vector Machine’s recognition rate on

ten hand poses was recorded using the data features extracted from only the LMC,

then from the Kinect, and finally from both. The LMC features achieved a 80.86%

accuracy, the Kinect achieved a 89.71% accuracy rate, and the combination of the

features achieved an accuracy of 91.28%.

The LMC was used to detect the American Sign Language alphabetical hand poses

[9]. The k-Nearest Neighbour algorithm achieved a 72.78% accuracy, while the the

Support Vector Machine achieved an accuracy of 79.83%. Features used by both of

these classifiers consist of the pinch and grab strength, both of which are provided by

the Leap Motion API, and a set of derived features. These derived features include

the sum of distances all fingers have moved averaged across capture frames, the sum

of distance between fingers averaged across capture frames, the sum of triangular ar-

eas between fingers averaged across frames and the distance of each finger’s furthest

joint from the centre of the palm. Their k-Nearest Neighbour algorithm performed

consistently for values of k below 150. Various kernel functions in the Support Vec-

tor Machine were tested, and the Gaussian radial basis function was found to be an

26

effective kernel for classification. Training and testing was done using 4-fold cross

validation.

Two LMCs were used to detect the Arabic Sign Language’s twenty-eight alphabetical

signs using Linear Discriminant Analysis as the classifier [44]. The LMCs were placed

at right angles to one-another such that each is able to see the hand pose from a

different perspective. The features extracted from these cameras included data such

as fingertip positions, palm positions, hand orientation, and palm sphere radius, all of

which are directly provided by the Leap Motion API. By combining the data features

of the two cameras, an average recognition rate of 97.7% is achieved.

The LMC was also used to classify alphabetical and numeric American Sign Language

hand poses using a Multilayer Perceptron [36]. After finding optimal parameters for

the Multilayer Perceptron, an average recognition accuracy of 90% was achieved.

Extensive research has been done on recognition classifiers using cameras other than

the LMC. The Support Vector Machine algorithm was used to classify gesture data

captured by the Kinect [14]. An 83.5% recognition accuracy was achieved on static

number poses using an Artificial Neural Network with thirty hidden layers for classi-

fication [58]. The k-Nearest Neighbour, Naïve Bayes, Artificial Neural Network and

Support Vector Machine techniques were compared with regard to pose recognition

using the Kinect [59]. The k-Nearest Neighbour, Neural Network and Support Vector

Machine all achieved recognition rates of over 80%, while the Naïve Bayes method of

classification underperformed with an average rate of 46%.

27

28

Chapter 3

A Benchmark Pose Dataset for

Virtual Reality

This Chapter describes creation of the pose dataset, named the benchmark pose set,

as it provides researchers a common pose set to compare results. Section 3.1 describes

the pose set and its creation. Section 3.2 covers the data gathering process, where a

dataset is created from captured hand poses created by multiple participants.

3.1 A Static Pose Set for Virtual Reality

Choi et al.’s taxonomy [8] was used to construct a pose set by utilizing key elements

from their hand gesture taxonomy. Figure 3-1 illustrates the elements they identified

as being part of a 3D hand gesture.

29

Figure 3-1: Elements of 3D hand gestures, extracted from the work of Choi et al. [8]

The elements identified in this paper are too broad for the context of this research,

as we are only concerned with single hand poses placed in front of the viewer’s face

in VR. To this end, only the Hand Shape and Hand Orientation parameters will be

considered for this pose set. The other parameters will apply to each pose as follows:

• The Gesture type parameter will be fixed at One Hand, which should be inde-

pendent of left or right hand.

• The poses will be independent of Hand Location and Arm Shape.

• No Dynamic gesture data will be incorporated, as the pose set is made of static

poses only.

Figure 3-2 illustrates how the Hand Shape and Hand Orientation parameters are no-

tated.

30

Figure 3-2: Notations for Hand Orientation and Hand Shape, extracted from Choi et al. [8]

A single hand shape (HS) is represented by five finger poses, then four finger

inter-relations between the thumb and each of the fingers, then three inter-relations

between adjacent non-thumb fingers. The format is as follows:

𝐻𝑆 = 𝑓1𝑓2𝑓3𝑓4𝑓5; 𝑓12𝑓13𝑓14𝑓15 − 𝑓23𝑓34𝑓45

Where 𝑓𝑖 represents the finger pose of finger 𝑖, and 𝑓𝑖𝑗 represents the finger inter-

relation between fingers 𝑖 and 𝑗. Finger 1 is the thumb, and finger 5 is the pinky. For

example, a fist pose with the thumb pointing up would be represented by 16666;3222-

333.

Hand orientation (HO) is represented in the following format:

𝐻𝑂 = 𝑃𝑂;𝐹𝐹𝑂

Where PO and FFO are Palm Orientation and Fist-Face Orientation respectively. In

the case where the palm faces forward and the fists point up, the Hand Orientation

would be denoted as 5;1.

An ambiguity exists in the finger inter relation parameter of the hand shape.

31

Whenever a finger crosses in front of another, one could argue that if the hand orien-

tation were inverted from facing forwards to facing backwards, the same finger would

now instead be behind the other. This is disambiguated by defining the Cross (F𝑖 in

front of F𝑗) as finger 𝑖 crossing over finger 𝑗 on the palm side.

The left and right hands are mirror-images of one another, which would cause prob-

lems with the Hand orientation values of Left and Right. To illustrate this problem,

consider a thumbs-up pose using the right hand. In this case, the Palm orientation is

Left and the Fist face orientation is Forward. However, if we were to use these same

orientations with the left hand, the thumb would now point down. Instead of using

absolute values such as Left and Right, the problem can be resolved by renaming

them to Inwards and Outwards, where Inwards is left for the right hand and right for

the left hand, and Outwards is simply the opposite. Using this notation does mean

that pointing the index finger Inwards means we’re pointing left with the right hand,

or right with the left hand, which could cause issues if the pointing direction is im-

portant. Such problems could be resolved during the VR application’s execution, as

the purpose of this solution is to make this pose set left and right hand independent.

3.1.1 Outline of the Benchmark Pose Set

The pose set must contain all the poses common in LMC-based VR applications, as

identified in Section 2.2.4.1. These poses are the Open Hand, Point, Fist, Pinch, and

Thumbs-Up poses. Furthermore, the set will contain a wide variety of poses that

have significant differences to each other, as well as poses that are similar to one

another. This will make the set cover a broad spectrum of poses, yet also contain

enough poses that share similarities to test the separating power of the LMC. Thus,

various categories of poses will be proposed, each of which will contain poses with

minor differences. The full list of poses can be seen in the appendix in Chapter 8.

Note that some pose types will have the ASL- prefix, meaning that the pose described

is an alphabetical letter in American Sign Language.

32

Figure 3-3: A modified version of Choi et al.’s notation (Figure 3-2). The Left and Right
values are replaced by Inwards and Outwards respectively, and the ambiguity in the Cross
values has been resolved.

3.1.2 Fist Poses

These hand poses involve the non-thumb fingers being curled closed.

(a) ASL-A (b) Classic fist (c) Hidden thumb (d) ASL-M (e) ASL-N

Figure 3-4: Fist Poses.

33

3.1.3 Index Pointing Poses

These poses involve the index finger being extended while the other finger poses are

closed.

(a) Point (b) Index-Forward

Figure 3-5: Index Pointing Poses.

3.1.4 Open-Palm Poses

These poses involve most of the fingers being extended.

(a) Open Hand (b) Neutral Hand (c) ASL-B (d) Flat Hand (e) Thumb-
Middle Group

(f) Spok (g) Claw (h) ASL-C

Figure 3-6: Open-Palm Poses.

34

3.1.5 Finger Touches and Loops

A finger touch occurs whenever two fingers touch at the fingertips, while a loop is

whenever two fingers touch to form a circular shape.

(a) OK-Pose (b) Middle OK-
Pose (c) Pinch (d) Finger Purse (e) ASL-O

Figure 3-7: Finger Touches and Loops.

3.1.6 Finger Crosses

These poses involve one non-thumb finger crossing another non-thumb finger.

(a) ASl-R (b) Inverse ASL-R

Figure 3-8: Finger Crosses.

3.1.7 Thumbs-Up Poses

These poses involve the Thumbs-up hand shape in different orientations. Each pose

below has the hand shape [HS = 36666;2222-333] with varying orientations. As such,

only the orientation parameter is shown in the table.

35

(a) Thumbs-up (b) Thumbs-out (c) Thumbs-in (d) Thumbs-down (e) Thumbs-back

(f) Thumbs-up,
fist-in

(g) Thumbs-
down, fist-in

Figure 3-9: Thumbs-Up Poses.

3.1.8 Analysis of the Pose Set

The aim of the above pose set was to include all the common pose types found in

LMC-based VR applications, as well as contain multiple poses that are similar to one-

another to test separating power. It is clear that this pose set contains the common

poses found in VR applications due to the presence of the Open Hand, Point, Classic

Fist, Pinch, and Thumbs-Up poses in the set. To analyse how this pose set covers a

wide array of possible poses, each parameter in the Hand Shape (Subsections 3.1.8.1,

3.1.8.2, and 3.1.8.3) and Hand Orientation (Subsection 3.1.8.4) attributes will be

highlighted to describe how the use of that parameter has been covered by the above

pose set. Subsection 3.1.8.5 discusses similarities across certain poses.

3.1.8.1 Finger Poses

These poses are represented by the first five digits of the Hand Shape parameter.

Each value of the Finger Pose parameter will be listed, and notable hand poses that

36

use that value will be mentioned alongside the value.

1. Pointing (Up): Represented by multiple fingers in the Open Hand and Flat

Hand poses, and by a single finger in all the Index Pointing Poses as well as by

the thumb in the ASL-A pose.

2. Pointing (Forward): This value is represented by all the fingers in the Finger

purse pose, and by only the index finger in Index-Forward pose.

3. Pointing (Side): Only the thumb is able to point out to the side. The thumb

points out to the side notably in the Thumbs-up Poses, as well as the Open

Hand pose.

4. Neutral: The Neutral Hand pose has all fingers in the neutral pose. This value

is not extensively represented since VR applications are expected to generalize

this to a Pointing pose due to its similarity to such a pose.

5. Bend: The Claw, ASL-C, and ASL-O poses have multiple fingers bent, while

the OK-Pose illustrates the use of fingers being bent to form a loop.

6. Close: The Fist Poses all have multiple fingers curled all the way closed to

form a fist, and the Index Pointing Poses have the non-index fingers closed to

emphasize the pointing index finger, while the ASL-B pose has only the thumb

closed.

3.1.8.2 Finger-Thumb Inter-Relations

The inter-relation between the thumb and any other finger is represented by the 6th

through 9th digits of the Hand Shape parameter. Below, the possible values of these

parameters are listed, with examples from the pose set alongside them:

1. Neutral: This value occurs whenever the thumb is not touching a finger, but

is at the same time not far separated from it. As with the neutral finger poses,

37

VR applications are expected to generalize this to either Separate or Group. As

a result, this is only represented in the Neutral Hand pose.

2. Separate: Most poses involve the thumb separated from the other fingers, and

very few poses, such as the Finger Purse, has the thumb not separated from

other fingers.

3. Group: The ASL-A and Flat Hand poses both have the thumb grouped with

the index finger. Since no other finger besides the index finger is adjacent to the

thumb, it is difficult to group the thumb with any other finger without calling

it a Cross. The Thumb-Middle Group pose depicts an attempt at grouping the

thumb with the middle finger.

4. Cross (F𝑖 in front of F𝑗): The ASL-M and Hidden Thumb poses have the

thumb crossing over three fingers. Other examples include the ASL-N and

Thumb-Middle Group poses.

5. Cross (F𝑗 in front of F𝑖): It is difficult to get the thumb to cross behind

upright fingers, however, when fingers are bent, this is an easier task. The

Classic Fist and ASL-R poses are examples of this.

6. Touch: The Finger Purse pose involves all fingers touching the tip of the

thumb, while the Pinch pose involves only the index finger performing a Touch

with the thumb.

7. Loop: The ASL-O pose has two fingers forming a loop with the thumb, while

the other two fingers form a loop without touching the thumb. The OK-Pose

involves only the index finger looping with the thumb, while the Middle OK-

Pose has the middle finger looping with the thumb.

3.1.8.3 Finger-Finger Inter-Relations

These three inter-relations exist between adjacent non-thumb fingers, and are repre-

sented by the final three digits of the Hand Shape parameter. The possible values for

38

these parameters are the same as the Finger-Thumb Inter-Relations, and are listed

below:

1. Neutral: The Neutral Hand pose is a prime example of all fingers being neutral

with other adjacent fingers. Furthermore, any pose where adjacent fingers are

separated from one-another by the thumb were labelled has have a neutral

inter-relation, such as in the ASL-M and ASL-N poses.

2. Separate: The Open Hand pose has all fingers fully separated from one-

another. All of the Index Pointing Poses have the index finger separated from

the middle finger in order to form a pointing pose.

3. Group: The Flat Hand and ASL-B poses have adjacent fingers grouped to-

gether. Most of the Fist Poses involve fingers curled and grouped to form a fist.

The Spok pose has two pairs of fingers grouped, with the middle pair of fingers

separated.

4. Cross (F𝑖 in front of F𝑗): This value is represented by the ASL-R pose,

where the index finger crossed in front of the middle finger.

5. Cross (F𝑗 in front of F𝑖): The Inverse ASL-R pose represents this value by

having the index finger cross behind the middle finger.

6. Touch: A Touch occurs whenever two fingertips touch. It is impossible to do

this using two non-thumb fingers.

7. Loop: As with the Touch, it is impossible to form a circle using adjacent fingers.

3.1.8.4 Hand Orientation

The above pose set covers multiple orientations in the Thumbs-up Poses, where the

same hand shape in different orientations has different meanings. This is primarily

seen in the difference between the Thumbs-up and Thumbs-down poses, where two

semantically opposite poses share the same hand shape at different orientations. The

39

Palm Orientation parameter has all six of its values covered in this category of poses,

however only three of the Fist-Face Orientation’s six values are covered. This is due

to the unnatural bending of the arm required to make the fist face either outward,

down, or backwards.

The Thumbs-up pose was chosen here as it is one of the few poses that has its

meaning changed according to the orientation of the hand. More specifically, it is

generally accepted that the Thumbs-up and Thumbs-down poses are opposite to one

another, despite being the same hand shape. This makes the Thumbs-Up pose a good

candidate for testing hand orientation classification, as it is a pose that is likely to

have its orientation matter in virtual reality scenarios.

3.1.8.5 Pose Similarities

The pose set has been constructed in such a manner that each category contains

poses that are similar to one-another. This was done to increase the difficulty of

classification and thus highlight problem areas for camera-based pose recognition. For

example, the ASL-A and Classic fist poses both belong to the Fist Poses category,

because in both poses all four non-thumb fingers are curled up into a fist, and they

only differ in the pose of the thumb.

Some cross-category similarities do exist, such as between the Fist Poses and Thumbs-

Up Poses, where the poses differ by the placement of the thumb. Thus, additional

noise exists in the dataset when any Thumbs-Up Poses are being classified.

3.2 Construction of the Dataset

A total of 25 participants took part in the construction of the dataset, where 102 data

captures over 29 hand poses were made for each participant. Each participant entry

contains data about the participant as well as the raw data captured by the LMC

pertaining to every pose they made. This section describes the setup used to capture

the data, followed by a description of the data capturing process.

Participants were seated at a table and given VR peripherals to use. The VR periph-

40

erals consisted of the Oculus Rift DK2 with the Leap Motion Controller mounted to

the front of it. The Rift’s head-tracking camera was mounted on a monitor facing

the participant. These peripherals are plugged into a computer with the following

specification:

• CPU: Intel i5 7600K (4 cores at 3.8GHz)

• RAM: 16GB DDR4

• GPU: AMD HD 7970 GHz Edition

• OS: Windows 10 64bit

The researcher was seated in front of a monitor that displayed what the participant

currently sees through the Oculus Rift. The researcher controlled the VR applica-

tion that captured the participant’s hand poses. A VR environment created using

the Unity game engine was used to capture the poses. The environment rendered

the Leap Motion Controller’s output as virtual hands, mimicking the participant’s

physical hands. Each participant was first given an explanation as to the purpose of

the experiment and what they were expected to do. They were all requested to use

their dominant hand to create the poses. In the event of the virtual hands displaying

a significantly different output to the pose they’re attempting, the participants were

instructed to remove then re-introduce their hands to the scene in the same pose.

Should there still be an erroneous output, the data is captured regardless. Upon

entering the environment, participants were given a few minutes to familiarize them-

selves with the VR environment before getting started.

Once they were ready, they were asked to make the hand pose displayed in front of

them at any orientation of their choosing. Once the experimenter was satisfied that

they were making the correct pose, the data is captured and stored into memory.

They were then asked to do the same pose, but in a different orientation of their

choosing again. This is followed by capturing the same pose twice in the orientation

displayed to them, known as the requested orientation. This results in two poses

being made at any orientation, followed by two poses in the requested orientation.

41

Figure 3-10: A participant interacting with the experimental setup.

The requested orientation is the orientation of a particular pose that attempts to

minimize the number of occluded fingers such that the LMC can detect finger posi-

tions accurately. This process was repeated for the Fist Poses, Index Pointing Poses,

Open-Palm Poses, Finger Touches and Loops, and Finger Crosses poses. These poses

will be referred to as the Normal Poses.

For the Thumbs-Up Poses, hand orientation plays an important role, thus participants

were not asked to choose a random orientation. For these poses, two data captures

were made at the requested orientation. The requested orientation is not necessarily

optimized for the LMC, but rather illustrates to the participant which thumbs-up

hand orientation was required.

Table 3.1 summarizes the number of poses captured for each participant.

42

Table 3.1: The number of data captures done for each participant according to pose.

Captures at

arbitrary

orientation

(per pose)

Captures at

requested

orientation

(per pose)

Number

of

Poses

Total

Captures

Normal Poses 2 2 22 88

Thumbs-up Poses 0 2 7 14

Sum Total 29 102

43

44

Chapter 4

Pose Recognition

This chapter describes the pose recognition experiments performed to evaluate the

performance of the LMC. Section 4.1 describes the features extracted and used by

most of the machine learning classifiers in the experiments. Section 4.2 describes

the three experiments performed to explore the effectiveness of pose classification

algorithms using the dataset. Section 4.3 explains the process of parameter tuning

for each of the classifiers.

4.1 Feature Engineering

A set of features used in similar research was extracted from the LMC’s data and fed

as training data to the classifiers. Both Hand Shape and Hand Orientation features

were used to fully describe a pose. The choice of these features are based on the

modified version of Choi et al.’s hand pose notation as seen in Figure 3-3. As such, a

short discussion on how these features are able to separate the different values of the

notation’s pose attributes from one another is included.

4.1.0.1 Hand Shape Features

The sets of features to be extracted to describe hand shape are listed below. Each set

of features will be accompanied by a description of the extracted features as well as a

motivation as to why it was chosen. It is important that these features are orientation

45

independent, allowing these features to avoid any conflict with the Hand Orientation

Features in Subsection 4.1.0.2.

1. Normalized tip-to-palm distances

• Description: A set of five length measurements representing a normalized

distance from each of the fingertips to the centre of the palm. Each dis-

tance is normalized by dividing the tip-to-palm distance of a finger by the

maximum extended length of that finger. The normalized tip-to-palm dis-

tance (𝑑𝑛𝑖) of finger i in hand pose n is calculated as follows:

𝑑𝑛𝑖 =
1

𝑒𝑖
‖𝑝𝑛 − 𝑓𝑛𝑖‖

where:

𝑑𝑛𝑖 is the normalized tip-to-palm distance of finger i in pose n.

𝑒𝑖 is the maximum extended length of finger i.

𝑝𝑛 is the 3D co-ordinate of the centre of the palm in pose n.

𝑓𝑛𝑖 is the 3D co-ordinate of the fingertip of finger i in pose n.

The vectors 𝑝𝑛 and 𝑓𝑛𝑖 are calculated and provided by the Leap Motion

software. 𝑒𝑖 is calculated to be the maximum tip-to-palm distance for fin-

ger i across all 𝑁 poses made by a particular user. It is calculated as

follows:

𝑒𝑖 = max (‖𝑝𝑛 − 𝑓𝑛𝑖‖ ∀𝑛 ∈ Z where 1 ≤ 𝑛 ≤ 𝑁)

• Motivation: This feature vector provides an efficient means of representing

how curled each finger is. The more curled a finger, the closer it gets to

the centre of the palm, resulting in a smaller tip-to-palm distance. By

normalizing this length, we achieve a hand-size independent vector. Ad-

46

ditionally, this vector will not experience a change in values if the hand

is oriented differently or moved to a different location in space. A similar

feature vector was used in [38], however tip-to-palm distances were nor-

malized by dividing by the length of the middle finger. This feature vector

was utilized in our previous research [10].

2. Finger Tri-Areas

• Description: A set of four area measurements, each representing the area

of the triangular space between adjacent fingers. Each triangle between

any two adjacent fingers is defined as having vertices at each of the two fin-

gertips, and one vertex between the metacarpophalangeal joints (knuckles)

of the two fingers. This point between adjacent knuckles will be referred

to as the MCP-midpoint. Figure 4-1 depicts one of these four Tri-Areas.

Figure 4-1: The Tri-Area defined between the middle and ring fingers. One vertex is posi-
tioned at each fingertip, and the third vertex is at the MCP-midpoint.

Each Tri-Area for a particular hand pose is calculated as follows:

47

𝐴𝑖,𝑖+1 =
1

2
‖(𝑓𝑖 − ⃗𝑚𝑖,𝑖+1)× (⃗𝑓𝑖+1 − ⃗𝑚𝑖,𝑖+1)‖

where:

𝐴𝑖,𝑖+1 is the Tri-Area between fingers i and i+1.

𝑓𝑖 is the 3D co-ordinate of the fingertip of finger i.

⃗𝑚𝑖,𝑖+1 is the 3D co-ordinate of the MCP-midpoint of fingers i and i+1.

While fingertip positions are provided by the Leap Motion software, the

MCP-midpoint is not. The software does however provide the positions of

the knuckles. Thus, the MCP-midpoint between fingers i and i+1 can be

simply calculated as follows:

⃗𝑚𝑖,𝑖+1 =
1

2
(�⃗�𝑖 + ⃗𝑚𝑖,𝑖+1)

where 𝑚𝑖 is the 3D co-ordinate of the metacarpophalangeal joint (knuckle)

of finger i. This data is provided by the Leap Motion software.

• Motivation: Since the tip-to-palm distances may not be able to effec-

tively track lateral displacements of the fingers, the Finger Tri-Areas vector

should be able to cover such a gap. As with the tip-to-palm distances, this

feature vector is hand orientation and position independent. Finger Tri-

Areas as a feature was applied to Sign Language recognition by Chuan

et al. [9], however not directly. They instead summed up the four Tri-

Areas and averaged the sums across multiple frames to obtain a single

measurement. However, using four separate values will allow for the data

pertaining to individual finger spaces to be preserved.

4.1.0.2 Hand Orientation Features

The sets of features to be extracted to describe hand orientation are listed below. As

with the hand shape features, descriptions and motivations for the chosen features

are listed as well.

48

1. Palm Normal Vector

• Description: A three dimensional normalized vector depicting the nor-

mal direction of the palm in Cartesian coordinates. This feature can be

extracted directly from the Leap Motion API.

• Motivation: This feature vector is able to fully describe the Palm Orien-

tation attribute of the taxonomy.

2. Palm Direction Vector

• Description: A three dimensional normalized vector depicting the direction

from the palm to the base of the fingers in Cartesian coordinates. This

feature can be extracted directly from the Leap Motion API.

• Motivation: This feature vector is able to fully describe the Fist Face

Orientation attribute of the taxonomy.

4.1.0.3 Separation of Notation Attribute Values

This subsection will describe how the chosen features are able to separate the various

values of the Hand Pose notation by Choi et al. Each feature will have the values it

can separate out described alongside it below.

The six different values of the Finger Pose attribute are primarily separated by the

Normalized Tip-to-Palm Distance; the Pointing, Neutral, Bend, and Close values can

all be separated from one another by measuring the distance from the tip to the palm.

The Pointing (Up), Pointing (Forward), and Pointing (Side) may only have minor

differences in their Tip-to-Palm Distances, however they will be further separated by

differences in Tri-Areas between their neighbouring fingers.

In terms of Finger Inter-Relations, the Neutral, Separate, and Group values are easily

separable via the Finger Tri-Area feature. The two Cross values may have minor

differences in Tri-Areas, but will be further separated by their respective distances

to the palm. A similar issue arises between the Touch and Loop values, but is also

49

separated by the Tip-to-Palm distance.

The Hand Orientation attribute is fully described by the Palm Normal and Direction

Vectors as both correlate directly to the attribute they respectively describe. Specif-

ically, the Palm Normal Vector describes the normal direction of the palm, which in

turn will separate the six directional values of the Palm Orientation attribute, and

the Palm Direction Vector performs the same role with the Fist Face Orientation

attribute.

4.2 Machine Learning for Pose Recognition

In Chapter 2, the Support Vector Machine, k-Nearest Neighbour algorithm, and Ar-

tificial Neural Network were identified as machine learning classifiers used for pose

recognition. The performance of these three classifiers were compared by training

and testing on the dataset. They were built, trained, and tested using the machine

learning software Weka [66]

In this section, the metrics used to determine the effectiveness of a classifier are listed

in Section 4.2.1. Following this, the descriptions of the three pose recognition exper-

iments are given in Section 4.2.2.

4.2.1 Evaluation Metrics

In order to determine the efficacy of a classifier, a set of metrics were defined. The

most common metric used in pose recognition is recognition accuracy, which measures

how often the classifier is able to correctly classify a pose.

When evaluating the LMC’s performance in VR, an additional performance metric,

the recognition latency, was measured. This is the time it takes for a hand pose to

be recognized. Recognition latency is an important factor for real-time 3D gestural

interaction [29]. A high recognition latency might slow the VR application, causing

drops in the application’s frame rate, and resulting in a higher motion-to-photon la-

tency. This motion-to-photon latency is an important factor for head-mounted VR

50

displays, and it measures the time it takes for any user motion to be correctly re-

flected on the display [3]. A high motion-to-photon latency increases the risk of the

VR system inducing a feeling of cybersickness, or motion sickness [30].

Finally, a minor metric to consider is the training time of a classifier. Excessively

long training times (such as several hours) make it difficult to near-impossible for a

hand pose recognition system to have new poses added or old ones removed.

The three metrics used are summarized as follows:

• Average Recognition Accuracy: The percentage of times a single hand pose

is classified correctly.

• Average Recognition Latency: The average time in milliseconds it takes for

a single pose to classified.

• Training Time: The time it takes to train a classifier.

4.2.2 Experiment Descriptions

Each classifier was trained and tested over three experiments, utilizing the parameters

chosen in Section 4.3. Each experiment differs from the other according to training

and testing data sets. Each of the classifiers will be tested within the same experiment

to obtain comparable results. Results will be obtained through stratified k-fold cross

validation, with 𝑘 = 25. The following list describes each experiment:

1. Orientation-Independent Experiment

• Purpose: To determine the effectiveness of a classifier in classifying hand

poses regardless of orientation.

• Data used: All captured data, except that all Thumbs-Up Poses are

grouped into the Thumbs-Up pose.

2. Requested Orientation Experiment

51

• Purpose: To determine the effectiveness of a classifier in classifying hand

poses at the requested orientation. The dataset used should have a re-

duced amount of incorrect data captured by the LMC, as the hand poses

in a requested orientation attempt to minimize the number of occluded fin-

gers. The results of this experiment will be compared to the Orientation-

Independent Experiment to determine the effect of using a requested ori-

entation.

• Data used: Only requested orientation data, excluding most Thumbs-

Up Poses. The Thumbs-up, fist-in pose was the only pose amongst the

Thumbs-Up Poses to be used as it puts all the fingers in the LMC’s view.

3. Thumbs-Orientation Experiment

• Purpose: To determine the effectiveness of a classifier in classifying pose

shape and orientation simultaneously. The Thumbs-Up Poses group differ

from other pose groups by hand shape, and from one another by hand

orientation. By classifying the poses in this group, a classifier would have

its hand shape and orientation-determining capabilities tested to achieve a

correct classification. The results of this will be compared to the Thumbs-

Up Pose accuracy in the Orientation-Independent Experiment to deter-

mine how many Thumbs-Up Poses had correct hand shape classifications,

yet incorrect orientation classifications. This provides insight into the

orientation-distinguishing capabilities of a classifier.

• Data used: All poses form part of the training set, however only the

Thumbs-Up Poses group are tested.

4.3 Parameter Tuning

In this section, the process by which parameters for the various classifiers were chosen

is described. Using the feature set in Section 4.1, tests were performed under different

parameter sets for each classifier. This is to find a strong set of parameters for each of

52

the classifiers. Each parameter set was tested using k-fold cross validation, with the

value of 𝑘 varying according to the training time of the model, so as to not impede

rapid testing. Each tested parameter set for a classifier used the same value of 𝑘 for

cross-validation so that results could be directly compared to other parameter sets

for the same classifier.

For each of these experiments, poses were classified in an orientation-independent

manner to ascertain the recognition accuracy using certain parameter sets. Average

recognition latency will be determined by picking a random pose in the set, record-

ing the system time, classifying that pose, then recording the system time again to

determine the time that has passed (latency). The latency process is repeated 50,000

times and averaged.

4.3.1 k-Nearest Neighbour

This classifier has only one parameter, 𝑘, and varying values of it were tested to find

the best value. Before any tests, it was found that the classifier executes quickly

enough on the benchmark set, thus a value of twenty-five folds was chosen for the

cross validation. Note that due to its nature, the k-Nearest Neighbour algorithm does

not require any training time. The training time recordings have thus been omitted

as they are always zero. Table 4.1 contains these results, which are further illustrated

in graph form in Figure 4-2.

Table 4.1: Initial results for k-Nearest Neighbour classifier across different values of k.

Value of k Recognition Accuracy Average Latency
1 64.3333% 0.6655ms
2 56.2222% 0.7990ms
3 54.7407% 0.8545ms
5 54.2593% 0.8978ms
10 55.6296% 0.9604ms
15 55.0370% 1.0083ms
25 54.3704% 1.1100ms
100 50.8519% 1.5646ms

53

4.3.1.1 Using Raw Data as Input

It is possible that the feature vector described in Section 4.1 does not provide a signifi-

cant advantage in accuracy over using all the raw data from the LMC. To disprove this

statement, another test was set up where the classifier uses raw data instead of the

extracted features. The input vector will contain the following data extracted from

the LMC: Hand Direction Vector, Palm Normal Vector, Palm Position Vector, Wrist

Position Vector, Grab Angle, Grab Strength, Palm Width, Pinch Distance, Pinch

Strength, Fingertip Position Vector of each Finger, Distal Interphalangeal Joint Po-

sition Vector of each Finger, Proximal Interphalangeal Joint Position Vector of each

Finger, Metacarpophalangeal Joint Position Vector of each Finger, and whether or

not each Finger was detected as being "extended" by the LMC. This is a feature vec-

tor consisting of eighty-two real number entries. Table 4.2 displays the results of the

experiment, and they are shown in Figure 4-2. It is clear from Figure 4-2 that using

Table 4.2: Initial results for k-Nearest Neighbour classifier with raw data input.

Value of k Recognition Accuracy Average Latency
1 60.1852% 2.0668ms
2 49.4074% 3.1277ms
3 44.6667% 3.2682ms
5 44.5556% 3.8256ms
10 44.5185% 4.8571ms
15 43.1111% 5.1325ms
25 43.4074% 6.0038ms
100 40.5556% 9.3170ms

the extracted features has a higher accuracy and lower latency than the raw features.

Setting the value of k to 1 has a significantly positive effect on performance compared

to larger values of k. As such, a value of k = 1 was chosen as the optimal value of k,

with the extracted features as an input vector.

54

0 20 40 60 80 100

40

45

50

55

60

65

k

R
ec

og
n
it

io
n

A
cc

u
ra

cy
(%

) Extracted Features
Raw Data

0 20 40 60 80 100
0

2

4

6

8

10

12

k

A
ve

ra
ge

L
at

en
cy

(m
s)

Extracted Features
Raw Data

Figure 4-2: Accuracy and latency dependence on k for the k-Nearest Neighbour algorithm.

4.3.2 Artificial Neural Network

The chosen implementation for a Neural Network is the Multilayer Perceptron, as

used in [36], where a single hidden layer was used to classify sign language poses.

Recognition accuracy is measured through five-fold cross validation. The training

time for each model is measured by training a network five separate times on the same

data, and averaging the collected times. The following parameter tuning experiments

were performed:

• Determining the optimal number of nodes within the single hidden layer of the

perceptron.

• Determining whether having multiple hidden layers of nodes provide a signifi-

cant accuracy improvement.

• Determining the optimal learn rate for the perceptron.

The multilayer perceptron was structured as follows:

Input nodes: One node per element in the input feature vector.

Hidden nodes: Variable number of hidden nodes, each with a sigmoid activation

function.

Output nodes: One node per pose class. The output node with the highest value

55

implies that its corresponding pose class has been chosen.

4.3.2.1 Optimizing the Node Count in the Single Hidden Layer

In this subsection, the number of hidden nodes in a single hidden layer will be varied,

while the following parameters automatically chosen by Weka were fixed:

Learning Rate: 0.3

Momentum: 0.2

Number of epochs: 1000

Input Features: Tip-to-palm distances and finger tri-areas.

Output class adjustments: All thumbs poses grouped together as Thumbs Up

pose to maintain orientation independence.

Number of hidden nodes Recognition Accuracy Average Latency Average Training Time
1 21.8148% 0.0280ms 3.844s
2 32.4815% 0.0329ms 4.424s
3 44.1481% 0.0367ms 5.142s
5 51.5926% 0.0400ms 6.613s
7 54.3333% 0.0443ms 7.962s
10 55.7037% 0.0510ms 10.014s
15 56.7778% 0.0596ms 13.528s
30 56.6667% 0.0912ms 23.855s
60 56.8148% 0.1469ms 43.384s
100 57.6296% 0.2242ms 75.361s
500 57.037% 1.1489ms 328.879s
1000 56.037% 2.39122ms 719.835s

Table 4.3: Initial results for the multilayer perceptron with a single hidden layer.

From Table 4.3, it is evident that any number of nodes above 5 in the hidden layer

provides roughly similar accuracies. The maximum acceptable latency is 100ms [6],

and the accuracy started decreasing after a hundred hidden nodes. The maximum

accuracy of 57.6% is below the 64.3% accuracy achieved in the k-Nearest Neighbour

experiment (Table 4.1).

56

100 101 102 103
20

30

40

50

60

Number of hidden nodes

R
ec

og
n
it

io
n

A
cc

u
ra

cy
(%

)

Accuracy

0 200 400 600 800 1,000

0

0.5

1

1.5

2

2.5

Number of hidden nodes

A
ve

ra
ge

L
at

en
cy

(m
s)

Latency

Figure 4-3: Accuracy and latency dependence on the number of hidden nodes in a single
hidden layer for the Artificial Neural Network.

4.3.2.2 Testing Multiple Hidden Layers

Here, the effect of having more than one hidden layer in the perceptron was measured.

In this experiment, seven nodes were used in a single layer, with each subsequent

experiment increasing the number of hidden layers. Table 4.4, containing these results,

Number of Hidden Layers
(7 nodes each) Recognition Accuracy Average Latency Average Training Time

2 51.5185% 0.0627ms 19.283s
3 50.7037% 0.0646ms 23.903s
4 47.6667% 0.0739ms 27.352s
5 12.963 % 0.0714ms 31.453s

Table 4.4: Initial results for the multilayer perceptron with varying numbers of hidden layers.

implies that accuracies and performance both start to degrade as more layers are

added. However, it was worth further exploring the effect of having two hidden

layers to determine if accuracies would increase. In the following experiment, every

two-hidden-layer combination of 5, 10, 20, 30, and 60 nodes were tested. The

accuracies measured using these two layer set-ups are depicted in Table 4.5. Using

two layers failed to make a significant difference in accuracy compared to a single

hidden layer. One can conclude from these experiments that using a single hidden

layer is as effective as multiple hidden layers.

57

Number of nodes in:
Hidden Layer 1 (Rows)

Hidden Layer 2 (Columns)
5 10 20 30 60

5 46.6667% 53% 53.148% 52.3333% 53.5556%
10 47.5926% 53.5556% 54.5926% 54.7407% 53.8519%
20 48.9259% 54% 55.5556% 55.8519% 54.2222%
30 52.037% 53.8889% 54.6667% 55.6296% 57.3333%
60 53.963% 53.7778% 55.7037% 55.7037% 56.7778%

Table 4.5: Initial accuracies for the multilayer perceptron with varying node counts across
two hidden layers.

20
40

60
20

40

60
50

55

Nodes in layer 1 Nodes in layer 2

A
cc

u
ra

cy
(%

)

Figure 4-4: Accuracy dependence of the Artificial Neural Network on varying node counts
in two hidden layers.

4.3.2.3 Optimizing the Learning Rate

In this subsection, the number of hidden nodes remained constant at ten in a single

layer. The learning rate of the perceptron was modified to ascertain its effect on

the performance metrics of the classifier. Table 4.6 depicts the effect of different

learning rates on the perceptron. While the learning rates of neural networks are

usually kept between zero and one, the increasing performance with a higher learning

rate warranted exploration of greater-than-one learning rates. However, even after

increasing the rate to 1000.0 a significant accuracy improvement was not observed.

A spike in latency was seen with the learning rate set to 1.0. This spike is only 16%

higher than the lowest recorded latency, and does not warrant further investigation.

58

Table 4.6: Initial results for the multilayer perceptron with varying learning rates.

Learning Rate Recognition Accuracy Average Latency Average Training Time
0.001 16.2593% 0.0505ms 9.315s
0.01 52.2593% 0.0531ms 9.097s
0.05 54.4444% 0.0541ms 9.074s
0.1 55.2222% 0.0544ms 9.038s
0.5 54.2593% 0.0567ms 9.288s
1.0 54.8148% 0.0589ms 9.355s
2.0 55.4074% 0.0554ms 9.601s
5.0 54.4074% 0.0512ms 9.207s
10.0 54.9259% 0.0520ms 9.190s
100.0 55% 0.0505ms 9.505s
1000.0 55.4444% 0.0510ms 9.235s

10−3 10−2 10−1 100 101 102 103

20

30

40

50

Learn Rate

R
ec

og
n
it

io
n

A
cc

u
ra

cy
(%

)

Accuracy

10−3 10−2 10−1 100 101 102 103
5

5.2

5.4

5.6

5.8

·10−2

Learn Rate

A
ve

ra
ge

L
at

en
cy

(m
s)
Latency

Figure 4-5: Accuracy and latency dependence on the learn rate of the Artificial Neural
Network with ten hidden nodes in a single layer.

4.3.2.4 Using Raw Data as Input

After tuning multiple parameters for the multilayer perceptron, it is evident that

these parameters may not be to blame for its poor performance. Another avenue

for exploration would be to change the input vector for the perceptron from the ex-

tracted features (Tri-Areas and Tip-to-Palm Distances) to the raw input mentioned

in Section 4.3.1.1. Neural Networks are generally able to handle raw data well, and

thus changing the input to a raw format may cause improvements in accuracies.

The neural network using this data has the following parameters:

Learning Rate: 0.3

59

Momentum: 0.2

Number of epochs: 1000

Input Features: Raw Data.

Output class adjustments: All thumbs poses grouped together as Thumbs Up

pose to maintain orientation independence.

Hidden Node Structure: Ten hidden nodes in a single hidden layer.

With these parameters, the multilayer perceptron achieved the following results:

Recognition Accuracy: 55%

Average Latency: 0.0841ms

Average Training Time: 20.376s

These results still do not show a significant improvement in accuracy. However,

it is likely that an increase in the number of input features will require an increase

in the number of hidden nodes. For the next experiment, the parameters from the

previous experiment are kept the same, however the number of hidden nodes was be

varied.

The results displayed in Table 4.7 and Figure 4-6 show a significant increase in

Table 4.7: Initial results for the multilayer perceptron with raw data input.

Number of hidden nodes Recognition Accuracy Average Latency Average Training Time
15 55.6296% 0.1270ms 24.670s
20 56.3333% 0.1533ms 36.287s
50 58.8148% 0.3117ms 83.618s
100 61.5185% 0.5421ms 166.544s
200 61.5556% 0.9850ms 299.828s

performance when raw input data is used. One hundred or more nodes in a single

hidden layer provided good results. As such, the chosen parameters for the neural

network are as follows:

Input features: Raw input data

Hidden layer structure: One layer, 100 nodes

Learn Rate: 0.3

60

0 50 100 150 200

56

58

60

62

Number of hidden nodes

R
ec

og
n
it

io
n

A
cc

u
ra

cy
(%

)

Accuracy

0 50 100 150 200

0.2

0.4

0.6

0.8

1

Number of hidden nodes

A
ve

ra
ge

L
at

en
cy

(m
s)

Latency

Figure 4-6: Accuracy and latency dependence on the number of hidden nodes in the Artificial
Neural Network with raw data input.

Momentum: 0.2

4.3.3 Support Vector Machine

The Support Vector Machine was implemented through Weka’s SMO (Sequential Min-

imal Optimization) algorithm based on [48]. As with the neural networks, accuracies

were measured through five-fold cross-validation, and training times are measured

as the average over five separate training periods. The following parameter tuning

experiments were performed:

• Determining the most effective Kernel function of the available Weka kernels.

• Determining the optimal complexity constant for the Support Vector Machine.

• Determining the optimal parameters for the chosen kernel.

4.3.3.1 Optimizing the Kernel Function

The Normalized Polynomial, Polynomial, PUK (Pearson VII function), and RBF

(Radial Basis Function) kernels were compared experimentally in Weka, and the com-

plexity constant was set to 1.0. Since the use of raw input features made a significant

impact on performance during the neural network experiments, the kernels will be

tested with the raw data input in addition to the extracted feature data. Table 4.8

61

Table 4.8: Initial accuracies for the Support Vector Machine across various kernel functions.

Kernel Accuracy with
Extracted Feature Data

Accuracy With
Raw Input Data

Normalized Polynomial 50.2222% 45.2222%
Linear Polynomial 53.7778% 53%

PUK 56.2963% 56.1111%
RBF 31.7037% 37.6296%

shows that the PUK kernel was the most accurate kernel here, however there is no

significant performance gain with this kernel when raw data is used. An analysis of

the average latencies for each of the kernels have revealed that the PUK kernel has

an average latency of 18.3ms and 142ms on the processed and raw data respectively,

while the linear polynomial kernel has latencies of 0.09ms and 0.4ms respectively.

This is a significant decrease in latency for an accuracy of trade-off of less than 3%.

As such, both the PUK and linear polynomial kernels will be further tested in the

next subsection.

4.3.3.2 Optimizing the Complexity Constant

The following experiment will illustrate the effect of changing the complexity constant

for the SVM using both the PUK and linear kernels. Since Table 4.8 showed no sig-

nificant difference in accuracy between raw and processed input data, only processed

data will be used to lower the average recognition latencies. For these experiments,

the latency average will be obtained over 500 individual tests instead of 50000, as the

significantly higher latencies with the PUK kernel would slow experimentation time

considerably. Tables 4.9 and 4.10 and Figure 4-7 show that the PUK kernel provides

significantly higher accuracies at the cost of a higher recognition latency. The accu-

racies from the PUK kernel and the latencies from the linear kernel are comparable

to the neural network’s metrics in Table 4.7.

Good parameters were found at a complexity constant of 100.0 for both the PUK and

linear polynomial kernels. It is a difficult decision to choose one kernel over the other.

As such, both kernels will be used for further testing in the following subsections.

62

Table 4.9: Initial results for the Support Vector Machine with varied complexity constants
using a PUK kernel.

Complexity Constant Recognition Accuracy Average Latency Average Training Time
0.001 12.963% 58.5680ms 3.038s
0.01 12.963% 59.0500ms 2.972s
0.1 52.1852% 36.3220ms 1.750s
1.0 56.7407% 20.2843ms 1.275s
10.0 59.1111% 15.9212ms 1.517s
100.0 60.3704% 15.8198ms 2.521s
1000.0 60.7778% 14.6372ms 6.323s
10000.0 60.8889% 14.8397ms 19.242s

Table 4.10: Initial results for the Support Vector Machine with varied complexity constants
using a linear polynomial kernel.

Complexity Constant Recognition Accuracy Average Latency Average Training Time
0.001 12.963% 0.0703ms 0.503s
0.01 22.3333% 0.0705ms 0.293s
0.1 42.963% 0.0751ms 0.262s
1.0 54.7407% 0.0788ms 0.283s
10.0 56.0741% 0.0721ms 0.380s
100.0 56.1852% 0.0826ms 1.062s
1000.0 55.8889% 0.0806ms 6.689s
10000.0 55.8148% 0.0808ms 70.359s

4.3.3.3 Optimizing the PUK and polynomial kernel parameters

The PUK kernel has two parameters available for modification: the sigma and omega

values, which both default to 1.0. Five different values were given to each of the

two parameters, creating twenty-five parameter combinations. For each of the two

following experiments, the complexity constant is kept at 100.0. Table 4.11 shows

the effects of different Puk kernel parameter combinations on the accuracy of the

SVM. The values of 5.0 and 0.1 for sigma and omega respectively yield the highest

accuracy of 65.18% with an average latency of 32.18ms. The highest average latency

recorded was 72.77ms when sigma and omega were both at 0.1, and the lowest latency

was 6.21ms when sigma and omega were both 2.0.

One parameter, the exponent, is exposed by Weka for the polynomial kernel. By

default, its value is 1.0, making it linear. Table 4.12 and Figure 4-9 illustrate the

63

10−310−210−1 100 101 102 103 104
10

20

30

40

50

60

Complexity Constant

R
ec

og
n
it

io
n

A
cc

u
ra

cy
(%

) PUK Accuracy
Lin-Poly Accuracy

10−310−210−1 100 101 102 103 104

10−1

100

101

102

Complexity Constant

A
ve

ra
ge

L
at

en
cy

(m
s)

PUK Latency
Lin-Poly Latency

Figure 4-7: Accuracy and latency dependence on the Support Vector Machine complexity
constant for two different kernels.

effect of making the kernel non-linear by changing the exponent. Raising the exponent

to ten and above results in training times of close to an hour each, and have thus been

omitted. An exponent of 1.5 leads to a small accuracy increase over 1.0, however the

average latency increases by a couple of orders of magnitude. This makes the latency

comparable to that of the PUK kernel, where accuracies are much better than 58%.

Thus, an exponent of 1.0 (linear) is considered the best for this kernel, as it maintains

its advantage over the PUK kernel in terms of average latency.

4.3.4 Improving the Initial Results

Multiple groups of hand poses in the dataset have been designed to be very similar to

one another. One could thus make the assumption that it is unlikely that all similar

poses would be used in a single VR application, and rather a single pose would be

64

Table 4.11: Initial accuracies for the Support Vector Machine with varied PUK kernel pa-
rameters.

Sigma (Rows)
Omega (Columns) 0.1 0.5 1.0 2.0 5.0

0.1 63.1111% 64.8519% 63.5556% 56.4815% 46.1481%
0.5 63.7778% 64% 62.1111% 61.4444% 60.7407%
1.0 64.8889% 62% 61.0741% 58.2593% 58.8519%
2.0 65.1111% 58.8889% 58.3704% 58.2222% 57.4444%
5.0 65.1852% 57.5926% 56.7407% 57.4444% 56.7407%

10−1

100

10−1

100
50

60

Sigma Omega

A
cc

u
ra

cy
(%

)

Figure 4-8: Accuracy dependence of the Support Vector Machine on various PUK kernel
parameters.

chosen out of the set. For example, the Fist Poses are all similar enough to one

another that a VR application would pick just one of these poses should they need a

Fist Pose. Based on this assumption, one could re-run some of the parameter tuning

experiments with certain poses grouped to form a single pose class. The grouping of

these poses are as follows:

• All Fist Poses are grouped under Classic Fist.

• ASL-R and Inverse ASL-R have been grouped under ASL-R.

• All Thumbs-Up Poses are grouped under Thumbs-Up. This was already done

for previous experiments.

65

Table 4.12: Initial results for the Support Vector Machine with varied polynomial kernel
parameters.

Exponent Recognition Accuracy Average Latency Average Training Time
0.1 53.9259% 12.477ms 1.214s
0.5 53.2222% 9.0000ms 1.228s
1.0 56% 0.0939ms 1.129s
1.5 58.1481% 11.0654ms 2.614s
2.0 56.2963% 2.9500ms 4.026s
3.0 57% 11.0441ms 14.074s
5.0 54.7037% 11.9457ms 123.429s

0 1 2 3 4 5

53

54

55

56

57

58

Exponent

R
ec

og
n
it

io
n

A
cc

u
ra

cy
(%

)

Accuracy

0 1 2 3 4 5

0

5

10

Number of hidden nodes

A
ve

ra
ge

L
at

en
cy

(m
s)

Latency

Figure 4-9: Accuracy and latency dependence on the exponent factor of the Support Vector
Machine.

4.3.4.1 k-Nearest Neighbour

With a value of k = 1, the following metrics with grouped poses were measured:

Recognition Accuracy: 73.2963%

Average Latency: 0.7351ms

4.3.4.2 Artificial Neural Network

Raw data was used as the input vector for the network, with one hundred nodes in

a single hidden layer, with a learning rate of 0.3. All other parameters were kept

the same as in the previous experiments. The following metrics were calculated after

grouping poses:

66

Recognition Accuracy: 73.5185%

Average Latency: 0.4983ms

Average Training Time: 176.527s

4.3.4.3 Support Vector Machine (PUK)

Using the PUK kernel with Sigma = 5.0 and Omega = 0.1, a complexity constant

of 100.0 and with processed input features, the following metrics were obtained after

grouping poses:

Recognition Accuracy: 75.2222%

Average Latency: 16.591ms

Average Training Time: 2.385s

4.3.4.4 Support Vector Machine (Linear Polynomial)

Using the Linear Polynomial kernel with a complexity constant of 100.0 and with

processed input features, the following metrics were obtained after grouping poses:

Recognition Accuracy: 70.3704%

Average Latency: 0.0550ms

Average Training Time: 1.169s

It is clear that there is another significant improvement in accuracies after pose

grouping. However, accuracies between 70% and 76% are still not remarkable. This

could be due to the fact that there still exist several poses that are similar to one

another, and any slight error in the input data from the LMC will cause classification

errors.

67

68

Chapter 5

Results and Analysis

This chapter presents the results of the pose recognition experiments described in

Chapter 4. The results show that the techniques are not able to classify the poses

with a high enough accuracy, primarily due to occlusion issues affecting the input

data. Therefore, a smaller reliable set was empirically derived using a novel algorithm,

which utilized a confusion matrix from the machine learning experiments as well as

a table of Hamming Distances between pose types. This improved the recognition

accuracy above 99%, making this set more suitable for real-world use.

5.1 Experimental Results and Analysis

This section presents the results of the three experiments described in the previous

chapter. Three classifiers were tested over the three experiments. These classifiers

are the k-nearest neighbour, neural network, and support vector machine algorithms.

Two different kernels of the support vector machine were tested, namely the PUK

kernel and linear kernel.

5.1.1 Orientation-Independent Experiment

Each classifier was tested on a dataset modified such that hand orientation does not

matter. Table 5.1 displays the results of this experiment.

69

Table 5.1: Results for the Orientation-Independent Experiment.

Classifier Average Accuracy Average Latency Average Training Time
k-Nearest Neighbour 66.6667% 0.7835ms 0s

Artificial Neural Network 63.0980% 0.5874ms 145.691s
Support Vector Machine (PUK) 70.3922% 31.5743ms 2.525s
Support Vector Machine (Linear) 59.098% 0.0727ms 2.605s

Tables 5.2 through 5.5 are the confusion matrices for each of the four classifiers

tested, where higher classification counts are shown in deeper shades of red.

Table 5.2: k-Nearest Neighbour confusion matrix for the Orientation-Independent Experi-
ment.

Ground Truth (Rows)
Classified As (Cols) A B C D E F G H I J K L M N O P Q R S T U V W

ASL-A = A 51 9 6 7 7 0 5 0 0 2 1 0 0 0 0 0 0 1 1 4 1 0 5
Classic Fist = B 10 42 16 9 7 0 1 0 0 0 1 0 0 0 1 0 0 4 1 5 0 1 2

Hidden Thumb = C 4 12 52 18 8 0 2 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0
ASL-M = D 5 5 19 44 15 0 3 0 0 0 0 0 0 0 2 0 0 0 1 4 0 0 2
ASL-N = E 5 6 11 13 50 0 0 0 0 2 0 1 0 0 1 0 0 3 2 3 0 0 3

Point = F 0 0 0 0 0 77 8 0 0 4 0 0 0 0 2 0 0 0 1 0 4 4 0
Index Forward = G 3 2 3 4 2 10 52 0 0 0 0 0 0 2 1 0 1 5 2 4 4 3 2

Open Hand = H 0 0 0 0 0 0 0 69 7 1 1 3 17 1 0 0 0 0 0 0 0 0 1
Neutral Hand = I 0 0 0 0 0 0 0 8 57 0 0 6 5 16 2 2 0 0 3 0 1 0 0

ASL-B = J 0 0 1 0 2 0 2 2 0 57 14 8 1 2 4 1 0 0 0 0 3 3 0
Flat Hand = K 1 0 0 0 0 0 2 1 1 6 71 7 3 1 2 1 0 0 2 0 1 1 0

Thumb-Middle Group = L 0 0 0 0 0 0 2 1 8 8 10 58 1 1 2 0 0 0 6 0 1 2 0
Spok = M 0 0 0 0 0 0 1 11 9 1 1 1 66 6 0 0 1 0 1 0 0 1 1
Claw = N 0 0 0 0 0 1 0 2 14 0 1 3 4 65 4 2 0 0 2 0 1 1 0

ASL-C = O 0 0 0 1 0 1 0 1 5 1 0 1 1 7 68 0 1 1 8 1 1 1 1
OK-Pose = P 1 0 0 0 0 0 0 0 0 0 1 1 0 2 0 86 3 1 1 2 2 0 0

Middle OK-Pose = Q 0 0 0 0 0 3 0 0 2 0 0 1 0 1 1 2 86 1 3 0 0 0 0
Pinch = R 2 2 1 2 3 1 6 0 0 0 0 0 0 1 0 0 1 67 5 7 1 0 1

Finger Purse = S 3 0 1 1 2 0 2 0 1 0 2 2 0 0 5 2 0 2 69 5 1 0 2
ASL-O = T 2 6 3 5 5 0 2 0 1 0 0 0 0 0 4 1 0 3 5 62 1 0 0
ASL-R = U 1 1 1 0 0 5 4 0 1 2 1 2 0 0 1 0 3 0 0 0 55 22 1

Inverse ASL-R = V 0 2 0 0 0 8 3 1 0 1 1 3 0 1 0 0 2 0 2 0 19 56 1
Thumbs-Up = W 1 3 2 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 340

In all the confusion matrices, the Thumbs-Up Poses were often misclassified as

one another. The Thumbs-Up Poses were also frequently misclassified as the ASL-O

and Thumbs-Up poses. The Point pose had one of the highest accuracies, where most

errors involved it being misclassified as the Index Forward pose. A very high number

of misclassifications occurred between the Spok and Open Hand poses. The OK-Pose

had a very high classification accuracy compared to other poses, with the highest

average accuracy of 96% belonging to the Thumbs-Up pose. The ASL-R and Inverse

ASL-R poses were often confused with one another.

70

Table 5.3: Artificial Neural Network confusion matrix for the Orientation-Independent Ex-
periment.

Ground Truth (Rows)
Classified As (Cols) A B C D E F G H I J K L M N O P Q R S T U V W

ASL-A = A 38 9 16 6 7 0 4 1 1 0 1 0 0 0 1 0 0 7 1 2 0 0 6
Classic Fist = B 9 33 14 11 15 0 5 0 1 2 0 0 0 0 0 0 0 1 0 6 0 0 3

Hidden Thumb = C 7 16 34 16 9 0 2 1 0 0 0 0 0 0 0 0 0 3 3 4 1 0 4
ASL-M = D 4 8 16 47 11 0 0 0 0 0 0 0 0 0 1 1 0 3 1 6 0 0 2
ASL-N = E 4 9 10 20 41 2 2 1 1 0 1 0 0 0 0 0 0 2 2 4 0 0 1

Point = F 0 0 2 0 0 74 8 0 0 1 0 1 1 0 0 0 2 0 0 1 1 8 1
Index Forward = G 1 1 0 6 4 11 60 1 0 2 0 0 0 0 0 0 0 6 3 3 0 1 1

Open Hand = H 0 0 0 0 0 0 0 65 0 0 4 1 28 1 0 0 0 0 0 0 0 1 0
Neutral Hand = I 1 0 0 0 0 1 0 3 57 4 4 3 6 13 3 2 1 0 0 0 0 0 2

ASL-B = J 2 1 1 1 0 0 0 3 4 54 11 13 0 0 0 1 1 0 1 0 4 1 2
Flat Hand = K 1 0 0 0 0 0 0 3 4 4 71 7 6 0 1 0 0 0 1 0 0 0 2

Thumb-Middle Group = L 0 0 0 0 0 2 0 2 5 21 14 37 3 0 1 3 1 0 6 1 4 0 0
Spok = M 0 0 0 0 0 1 0 20 0 2 6 1 65 2 1 0 1 0 1 0 0 0 0
Claw = N 0 0 0 0 0 1 0 0 9 2 0 1 0 70 14 0 0 0 0 0 0 0 3

ASL-C = O 2 0 1 1 0 0 0 0 4 0 0 1 1 20 62 0 0 0 3 1 0 0 4
OK-Pose = P 0 0 1 0 0 0 0 0 1 1 1 2 0 0 0 85 4 0 2 0 2 0 1

Middle OK-Pose = Q 0 0 0 0 0 3 0 2 1 1 0 1 0 1 1 3 83 0 2 0 0 2 0
Pinch = R 3 3 2 6 3 1 2 0 0 0 0 0 0 0 0 0 0 67 6 6 0 1 0

Finger Purse = S 3 1 1 2 1 0 3 2 3 1 1 0 2 0 0 3 1 4 63 4 1 3 1
ASL-O = T 4 5 4 2 2 0 2 0 1 0 0 0 0 0 1 0 0 5 7 62 0 0 5
ASL-R = U 0 1 0 1 0 8 4 0 1 2 0 1 0 0 0 1 2 1 3 2 51 22 0

Inverse ASL-R = V 1 0 0 1 1 10 1 0 1 1 0 4 0 1 0 1 2 0 0 1 21 53 1
Thumbs-Up = W 3 1 3 1 0 1 0 2 0 0 0 0 0 0 0 0 0 1 0 1 0 0 337

Table 5.4: Support Vector Machine (Pearson VII function kernel) confusion matrix for the
Orientation-Independent Experiment.

Ground Truth (Rows)
Classified As (Cols) A B C D E F G H I J K L M N O P Q R S T U V W

ASL-A = A 56 12 4 6 4 0 2 0 0 0 1 0 0 0 0 1 0 1 1 4 0 0 8
Classic Fist = B 8 40 19 6 10 0 1 0 0 1 0 1 0 0 1 0 0 4 0 7 0 0 2

Hidden Thumb = C 4 16 51 16 5 0 1 0 0 0 0 0 0 0 0 0 0 1 2 4 0 0 0
ASL-M = D 5 7 16 52 10 0 2 0 0 0 0 0 0 0 1 0 0 0 2 1 0 0 4
ASL-N = E 6 8 8 14 51 0 1 0 0 1 0 1 0 0 1 0 0 3 2 2 0 0 2

Point = F 0 0 0 0 0 84 6 0 0 1 0 0 1 0 0 0 0 0 0 1 3 4 0
Index Forward = G 5 3 4 1 1 10 59 0 0 2 0 1 1 0 4 0 0 2 3 1 0 2 1

Open Hand = H 0 0 0 0 0 0 0 79 6 1 1 2 10 0 0 0 1 0 0 0 0 0 0
Neutral Hand = I 0 0 0 0 0 1 0 8 63 1 4 3 2 10 3 2 0 0 2 0 1 0 0

ASL-B = J 1 0 1 0 2 1 1 0 0 65 10 7 1 1 1 1 0 0 2 0 3 2 1
Flat Hand = K 1 0 0 0 0 0 0 0 3 5 78 8 2 1 0 0 0 0 1 0 0 0 1

Thumb-Middle Group = L 0 0 0 0 0 1 0 2 2 9 10 61 1 2 0 0 0 0 9 0 3 0 0
Spok = M 0 0 0 0 0 0 0 12 7 0 6 0 67 3 1 0 2 0 0 0 1 0 1
Claw = N 0 0 0 0 0 1 0 2 16 0 0 2 1 69 4 1 1 0 2 0 0 1 0

ASL-C = O 0 0 0 0 0 1 1 0 5 2 0 1 4 3 74 0 0 0 4 5 0 0 0
OK-Pose = P 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 94 2 0 1 0 0 0 0

Middle OK-Pose = Q 0 0 0 0 0 0 0 2 1 0 0 0 0 1 0 3 87 1 2 0 1 2 0
Pinch = R 4 2 0 1 1 1 4 0 0 0 0 0 0 1 0 0 0 71 5 9 1 0 0

Finger Purse = S 2 0 1 1 2 0 4 0 1 1 1 2 2 0 5 2 0 1 68 5 1 0 1
ASL-O = T 4 7 2 4 4 0 4 0 0 0 0 0 0 0 3 1 0 2 3 64 0 0 2
ASL-R = U 0 1 0 0 1 9 3 0 0 1 1 1 0 1 0 1 1 0 0 0 58 22 0

Inverse ASL-R = V 0 0 0 0 0 13 1 1 0 1 1 2 0 1 0 0 0 0 1 0 17 61 1
Thumbs-Up = W 0 2 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 343

71

Table 5.5: Support Vector Machine (linear kernel) confusion matrix for the Orientation-
Independent Experiment.

Ground Truth (Rows)
Classified As (Cols) A B C D E F G H I J K L M N O P Q R S T U V W

ASL-A = A 31 10 15 10 6 0 2 0 0 0 0 0 1 0 0 1 0 6 3 6 0 0 9
Classic Fist = B 14 22 13 15 10 0 2 0 0 0 0 1 0 0 0 0 0 4 1 14 1 0 3

Hidden Thumb = C 10 12 29 25 10 0 1 0 0 0 0 1 0 0 0 0 0 0 0 7 1 0 4
ASL-M = D 3 9 28 38 8 0 1 0 0 0 0 0 0 0 1 0 0 0 1 8 0 0 3
ASL-N = E 11 9 21 23 18 1 4 0 0 0 0 0 0 0 1 0 0 1 1 5 0 1 4

Point = F 1 0 0 1 0 85 7 0 0 0 0 1 1 0 0 0 0 0 0 0 0 4 0
Index Forward = G 3 0 3 4 2 20 44 0 3 1 1 1 0 0 1 0 0 1 6 4 2 2 2

Open Hand = H 0 0 0 0 0 0 0 82 4 1 0 1 10 0 0 0 1 0 0 0 0 0 1
Neutral Hand = I 0 0 0 0 0 1 2 10 50 4 4 3 3 14 3 2 0 0 1 1 1 1 0

ASL-B = J 2 0 0 1 1 1 2 0 2 65 14 3 1 1 0 1 0 0 2 0 3 0 1
Flat Hand = K 1 0 0 0 0 0 0 0 4 8 77 4 2 1 0 1 0 0 1 0 0 0 1

Thumb-Middle Group = L 0 0 0 0 0 1 2 0 6 21 16 36 1 2 1 0 0 0 8 0 4 2 0
Spok = M 0 0 0 0 0 0 0 9 8 1 3 0 71 4 1 0 2 0 0 0 0 0 1
Claw = N 0 0 0 0 0 1 0 4 24 0 0 1 3 53 8 1 1 0 2 0 1 1 0

ASL-C = O 1 0 0 0 0 0 3 0 4 3 0 0 3 5 72 0 0 0 5 2 0 0 2
OK-Pose = P 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 89 4 1 1 1 0 0 0

Middle OK-Pose = Q 0 0 0 0 0 2 0 1 2 1 0 0 0 5 0 4 80 2 0 0 2 1 0
Pinch = R 5 8 1 1 0 3 5 0 0 0 0 0 0 1 0 0 0 67 5 4 0 0 0

Finger Purse = S 2 1 3 0 2 0 9 0 2 1 0 3 2 1 2 2 0 0 63 5 0 2 0
ASL-O = T 5 7 9 10 3 0 4 0 0 2 0 0 0 0 2 0 0 6 6 45 0 0 1
ASL-R = U 0 2 0 1 1 8 3 0 0 3 1 1 0 2 0 0 1 0 1 0 30 46 0

Inverse ASL-R = V 0 0 0 0 0 14 1 1 1 1 1 0 0 0 0 0 0 1 1 0 47 32 0
Thumbs-Up = W 5 0 1 3 1 1 1 4 1 0 0 0 0 1 2 0 0 0 0 2 0 0 328

72

5.1.2 Requested Orientation Experiment

As listed in Section 4.2.2, each classifier was tested on a dataset modified such that

hand orientation does not matter. Table 5.6 displays the results of this experiment.

Table 5.6: Results for the Requested Orientation Experiment.

Classifier Average Accuracy Average Latency Average Training Time
k-Nearest Neighbour 76.6087% 0.4037ms 0s

Artificial Neural Network 88.1739% 0.5845ms 76.77s
Support Vector Machine (PUK) 81.3913% 17.2373ms 0.725s
Support Vector Machine (Linear) 78.6087% 0.0721ms 0.609s

Table 5.7: k-Nearest Neighbour confusion matrix for the Requested Orientation Experiment.

Ground Truth (Rows)
Classified As (Cols) A B C D E F G H I J K L M N O P Q R S T U V W

ASL-A = A 17 2 10 3 10 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
Classic Fist = B 0 39 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 5 0 0 0

Hidden Thumb = C 12 1 12 4 19 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
ASL-M = D 1 5 4 35 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0
ASL-N = E 10 0 18 5 15 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Point = F 0 0 0 0 0 49 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
Index Forward = G 2 0 2 0 5 3 23 0 3 0 1 0 0 1 0 0 0 2 6 0 2 0 0

Open Hand = H 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Neutral Hand = I 0 0 0 0 0 0 2 2 24 0 1 1 0 13 3 0 1 0 3 0 0 0 0

ASL-B = J 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Flat Hand = K 0 0 0 0 0 0 1 0 3 2 38 3 0 0 0 0 0 0 3 0 0 0 0

Thumb-Middle Group = L 0 0 0 0 0 0 0 0 1 1 1 43 0 1 0 0 0 0 2 1 0 0 0
Spok = M 0 0 0 0 0 0 0 1 0 0 0 0 48 1 0 0 0 0 0 0 0 0 0
Claw = N 0 0 0 0 0 0 0 0 1 0 0 0 0 49 0 0 0 0 0 0 0 0 0

ASL-C = O 0 0 0 0 0 0 2 0 3 0 0 0 1 6 33 0 0 0 5 0 0 0 0
OK-Pose = P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0

Middle OK-Pose = Q 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 45 0 0 0 1 0 0
Pinch = R 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 47 0 0 0 0 0

Finger Purse = S 0 1 2 0 0 0 6 0 5 0 3 2 0 0 6 0 0 1 23 0 1 0 0
ASL-O = T 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 0 0
ASL-R = U 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 46 2 0

Inverse ASL-R = V 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49 0
Thumbs-Up = W 2 0 48

In these confusion matrices, similar patterns can be seen across the kNN, SVM-

PUK and SVM-Lin classifiers, while the ANN has a completely different pattern.

Furthermore, the ANN has a significantly higher accuracy than the other classifiers

at 88%.

73

Table 5.8: Artificial Neural Network confusion matrix for the Requested Orientation Exper-
iment.

Ground Truth (Rows)
Classified As (Cols) A B C D E F G H I J K L M N O P Q R S T U V W

ASL-A = A 41 3 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1
Classic Fist = B 5 27 5 6 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0

Hidden Thumb = C 1 2 37 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
ASL-M = D 1 1 5 37 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0
ASL-N = E 0 2 0 2 46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Point = F 0 0 0 0 0 48 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
Index Forward = G 0 1 0 0 0 1 47 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Open Hand = H 0 0 0 0 0 0 0 48 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
Neutral Hand = I 0 0 0 0 0 0 0 1 46 0 0 1 1 1 0 0 0 0 0 0 0 0 0

ASL-B = J 0 0 0 0 0 0 0 0 0 44 2 4 0 0 0 0 0 0 0 0 0 0 0
Flat Hand = K 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0

Thumb-Middle Group = L 0 0 0 0 0 0 0 0 1 7 4 29 1 0 0 3 1 0 3 0 0 1 0
Spok = M 0 0 0 0 0 0 0 2 2 0 3 0 43 0 0 0 0 0 0 0 0 0 0
Claw = N 0 0 0 0 0 0 0 0 2 0 0 0 1 47 0 0 0 0 0 0 0 0 0

ASL-C = O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0
OK-Pose = P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0

Middle OK-Pose = Q 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 47 0 0 0 0 0 0
Pinch = R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0

Finger Purse = S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 46 2 0 0 0
ASL-O = T 0 1 0 1 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 44 0 0 1
ASL-R = U 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41 8 0

Inverse ASL-R = V 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 46 0
Thumbs-Up, Fist-In = W 0 50

Table 5.9: Support Vector Machine (Pearson VII function kernel) confusion matrix for the
Requested Orientation Experiment.

Ground Truth (Rows)
Classified As (Cols) A B C D E F G H I J K L M N O P Q R S T U V W

ASL-A = A 23 1 11 0 11 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
Classic Fist = B 0 40 0 5 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 3 0 0 0

Hidden Thumb = C 9 1 13 3 20 0 3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
ASL-M = D 1 7 3 36 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
ASL-N = E 15 0 16 3 14 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Point = F 0 1 0 0 0 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Index Forward = G 5 0 1 0 3 3 23 0 2 0 1 0 0 0 3 0 0 1 6 0 2 0 0

Open Hand = H 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Neutral Hand = I 0 0 0 0 0 0 0 2 31 0 2 2 1 6 5 0 0 0 1 0 0 0 0

ASL-B = J 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Flat Hand = K 0 0 0 0 0 0 0 0 0 1 48 1 0 0 0 0 0 0 0 0 0 0 0

Thumb-Middle Group = L 0 0 0 0 0 0 0 0 0 1 0 47 0 0 0 0 0 0 2 0 0 0 0
Spok = M 0 0 0 0 0 0 0 0 1 0 0 0 48 1 0 0 0 0 0 0 0 0 0
Claw = N 0 0 0 0 0 0 0 0 1 0 0 0 0 49 0 0 0 0 0 0 0 0 0

ASL-C = O 0 0 0 0 0 0 2 0 4 0 0 0 0 2 39 0 0 0 3 0 0 0 0
OK-Pose = P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0

Middle OK-Pose = Q 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 46 0 1 0 1 0 0
Pinch = R 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 47 0 0 0 0 0

Finger Purse = S 0 1 0 0 0 0 6 0 3 0 1 1 0 0 0 0 0 1 36 0 1 0 0
ASL-O = T 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49 0 0 0
ASL-R = U 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49 0 0

Inverse ASL-R = V 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49 0
Thumbs-Up = W 0 50

74

Table 5.10: Support Vector Machine (linear kernel) confusion matrix for the Requested
Orientation Experiment.

Ground Truth (Rows)
Classified As (Cols) A B C D E F G H I J K L M N O P Q R S T U V W

ASL-A = A 28 1 12 0 4 0 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
Classic Fist = B 0 31 1 7 1 0 0 0 0 0 0 1 0 0 0 0 0 2 0 7 0 0 0

Hidden Thumb = C 6 0 19 4 17 0 3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
ASL-M = D 0 6 3 36 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
ASL-N = E 7 0 16 3 21 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Point = F 0 1 0 0 0 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
Index Forward = G 5 1 2 0 4 4 23 0 3 0 0 0 0 0 1 0 0 0 4 0 3 0 0

Open Hand = H 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Neutral Hand = I 0 0 0 0 0 0 0 2 33 0 2 1 1 7 3 0 0 0 1 0 0 0 0

ASL-B = J 0 0 0 0 0 0 0 0 0 49 1 0 0 0 0 0 0 0 0 0 0 0 0
Flat Hand = K 0 0 0 0 0 0 0 0 1 4 43 2 0 0 0 0 0 0 0 0 0 0 0

Thumb-Middle Group = L 0 0 0 0 0 0 1 0 0 4 3 40 0 1 0 0 0 0 1 0 0 0 0
Spok = M 0 0 0 0 0 0 0 0 2 0 0 0 48 0 0 0 0 0 0 0 0 0 0
Claw = N 0 0 0 0 0 0 0 0 5 0 0 1 0 43 0 0 0 0 1 0 0 0 0

ASL-C = O 0 1 0 0 0 0 1 0 6 0 0 0 0 1 41 0 0 0 0 0 0 0 0
OK-Pose = P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0

Middle OK-Pose = Q 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 45 0 1 0 1 0 0
Pinch = R 0 3 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 42 0 2 0 0 0

Finger Purse = S 0 0 0 0 0 0 5 0 5 0 1 3 0 1 0 0 0 1 33 1 0 0 0
ASL-O = T 0 6 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 40 0 0 0
ASL-R = U 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 45 2 0

Inverse ASL-R = V 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 47 0
Thumbs-Up = W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 49

75

5.1.3 Thumbs-Orientation Experiment

As listed in Section 4.2.2, each classifier was trained on all available data, and only

the Thumbs-Up poses were tested. Table 5.11 displays the results of this experiment.

Table 5.11: Results for the Thumbs-Orientation Experiment.

Classifier Average Accuracy Average Latency Average Training Time
k-Nearest Neighbour 96.5714% 0.6547ms 0s

Artificial Neural Network 92.8571% 0.5314ms 141.305s
Support Vector Machine (PUK) 96.0% 44.8328ms 2.475s
Support Vector Machine (Linear) 92.8571% 0.1419ms 2.177s

Table 5.12: k-Nearest Neighbour confusion matrix for the Thumbs-Orientation Experiment.

Ground Truth (Rows)
Classified As (Cols) A B C D E F G H I J K L M N O P Q R S T U V W1 W2 W3 W4 W5 W6 W7

ASL-A = A 0
Classic Fist = B 0

Hidden Thumb = C 0
ASL-M = D 0
ASL-N = E 0

Point = F 0
Index Forward = G 0

Open Hand = H 0
Neutral Hand = I 0

ASL-B = J 0
Flat Hand = K 0

Thumb-Middle Group = L 0
Spok = M 0
Claw = N 0

ASL-C = O 0
OK-Pose = P 0

Middle OK-Pose = Q 0
Pinch = R 0

Finger Purse = S 0
ASL-O = T 0
ASL-R = U 0

Inverse ASL-R = V 0
Thumbs-Up = W1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 0 0 2 0 0 0

Thumbs-Out = W2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 48 1 0 0 0 0
Thumbs-In = W3 0 1 0 49 0 0 0 0

Thumbs-Down = W4 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 47 0 0 0
Thumbs-Back = W5 0 1 0 0 0 1 0 48 0 0

Thumbs-Up, Fist-In = W6 0 50 0
Thumbs-Down, Fist-In = W7 0 50

In all the classifiers, high accuracies of over 90% were recorded. Roughly half

of misclassifications involved a Thumbs-Up pose being recognized as a differently

oriented Thumbs-Up pose. Most of the other misclassifications were caused by a

Thumbs-Up pose being recognized as a Fist Pose.

76

Table 5.13: Artificial Neural Network confusion matrix for the Thumbs-Orientation Exper-
iment.

Ground Truth (Rows)
Classified As (Cols) A B C D E F G H I J K L M N O P Q R S T U V W1 W2 W3 W4 W5 W6 W7

ASL-A = A 0
Classic Fist = B 0

Hidden Thumb = C 0
ASL-M = D 0
ASL-N = E 0

Point = F 0
Index Forward = G 0

Open Hand = H 0
Neutral Hand = I 0

ASL-B = J 0
Flat Hand = K 0

Thumb-Middle Group = L 0
Spok = M 0
Claw = N 0

ASL-C = O 0
OK-Pose = P 0

Middle OK-Pose = Q 0
Pinch = R 0

Finger Purse = S 0
ASL-O = T 0
ASL-R = U 0

Inverse ASL-R = V 0
Thumbs-Up = W1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 47 1 0 0 0 0 0

Thumbs-Out = W2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 48 1 0 0 0 0
Thumbs-In = W3 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 46 0 0 0 0

Thumbs-Down = W4 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 44 0 0 1
Thumbs-Back = W5 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 45 1 0

Thumbs-Up, Fist-In = W6 0 1 1 0 0 0 48 0
Thumbs-Down, Fist-In = W7 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 47

Table 5.14: Support Vector Machine (Pearson VII function kernel) confusion matrix for the
Thumbs-Orientation Experiment.

Ground Truth (Rows)
Classified As (Cols) A B C D E F G H I J K L M N O P Q R S T U V W1 W2 W3 W4 W5 W6 W7

ASL-A = A 0
Classic Fist = B 0

Hidden Thumb = C 0
ASL-M = D 0
ASL-N = E 0

Point = F 0
Index Forward = G 0

Open Hand = H 0
Neutral Hand = I 0

ASL-B = J 0
Flat Hand = K 0

Thumb-Middle Group = L 0
Spok = M 0
Claw = N 0

ASL-C = O 0
OK-Pose = P 0

Middle OK-Pose = Q 0
Pinch = R 0

Finger Purse = S 0
ASL-O = T 0
ASL-R = U 0

Inverse ASL-R = V 0
Thumbs-Up = W1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 0 0 2 0 0 0

Thumbs-Out = W2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 48 1 0 0 0 0
Thumbs-In = W3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 48 0 0 0 0

Thumbs-Down = W4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 47 0 0 0
Thumbs-Back = W5 0 2 0 0 0 1 0 47 0 0

Thumbs-Up, Fist-In = W6 0 50 0
Thumbs-Down, Fist-In = W7 0 50

77

Table 5.15: Support Vector Machine (linear kernel) confusion matrix for the Thumbs-
Orientation Experiment.

Ground Truth (Rows)
Classified As (Cols) A B C D E F G H I J K L M N O P Q R S T U V W1 W2 W3 W4 W5 W6 W7

ASL-A = A 0
Classic Fist = B 0

Hidden Thumb = C 0
ASL-M = D 0
ASL-N = E 0

Point = F 0
Index Forward = G 0

Open Hand = H 0
Neutral Hand = I 0

ASL-B = J 0
Flat Hand = K 0

Thumb-Middle Group = L 0
Spok = M 0
Claw = N 0

ASL-C = O 0
OK-Pose = P 0

Middle OK-Pose = Q 0
Pinch = R 0

Finger Purse = S 0
ASL-O = T 0
ASL-R = U 0

Inverse ASL-R = V 0
Thumbs-Up = W1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 1 0 1 0 0 0

Thumbs-Out = W2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 47 1 0 0 0 0
Thumbs-In = W3 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 47 0 0 0 0

Thumbs-Down = W4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 43 0 0 2
Thumbs-Back = W5 3 0 0 1 1 1 0 44 0 0

Thumbs-Up, Fist-In = W6 0 50 0
Thumbs-Down, Fist-In = W7 0 2 0 0 48

78

5.2 Pose Similarity and Simplification

In Section 4.3.4, potentially problematic hand poses were grouped together to illus-

trate the positive effect this would have on recognition rates. However, the poses that

were grouped were not chosen through a clear and systematic means, and thus a more

thorough process of pose selection is required. In order to simplify the pose set, a

grouping approach could be taken where similar poses are grouped together under a

single pose name, as in Section 4.3.4. Another approach would be to select a certain

number of poses that are well separated from one another, and discard the rest. A

particular problem with the grouping approach can be best described by an example.

Suppose that the pose set contains poses A, B, and C, and that pose A is similar to

B, and B similar to C. By taking a grouping approach, there is no clear means of

creating two separate groups. By grouping A and B together, half of the group will

be similar to pose C. If a selection approach is taken instead, B could be eliminated

from the dataset, creating a dataset of two clearly separated poses: A and C. Thus,

in simplifying this set, the selection approach shall be used, and problematic poses

shall be discarded.

This subsection first illustrates the similarity between poses by classifying them and

displaying the results through a confusion matrix. Then, similarity is measured more

formally by comparing the notation strings given by Choi et al.’s taxonomy [8] of each

of the poses in the dataset. Finally, using these similarity measures, certain poses

will be selected to form a reliable pose set for further testing.

5.2.1 Measuring Similarity via Confusion Matrix

A simple way to illustrate which poses are often classified as one another is through

a confusion matrix. Table 5.16 is such a matrix, with high classification occurrences

highlighted in red. This matrix is equivalent to the one found in Table 5.4, where the

SVM-PUK classifier was tested in the orientation-independent experiment.

From this table, it becomes evident that the Fist Poses (Poses A through E) are

79

Table 5.16: SVM-PUK confusion matrix of orientation-independent data in the benchmark
pose set.

Ground Truth (Rows)
Classified As (Cols) A B C D E F G H I J K L M N O P Q R S T U V W

ASL-A = A 56 12 4 6 4 0 2 0 0 0 1 0 0 0 0 1 0 1 1 4 0 0 8
Classic Fist = B 8 40 19 6 10 0 1 0 0 1 0 1 0 0 1 0 0 4 0 7 0 0 2

Hidden Thumb = C 4 16 51 16 5 0 1 0 0 0 0 0 0 0 0 0 0 1 2 4 0 0 0
ASL-M = D 5 7 16 52 10 0 2 0 0 0 0 0 0 0 1 0 0 0 2 1 0 0 4
ASL-N = E 6 8 8 14 51 0 1 0 0 1 0 1 0 0 1 0 0 3 2 2 0 0 2

Point = F 0 0 0 0 0 84 6 0 0 1 0 0 1 0 0 0 0 0 0 1 3 4 0
Index Forward = G 5 3 4 1 1 10 59 0 0 2 0 1 1 0 4 0 0 2 3 1 0 2 1

Open Hand = H 0 0 0 0 0 0 0 79 6 1 1 2 10 0 0 0 1 0 0 0 0 0 0
Neutral Hand = I 0 0 0 0 0 1 0 8 63 1 4 3 2 10 3 2 0 0 2 0 1 0 0

ASL-B = J 1 0 1 0 2 1 1 0 0 65 10 7 1 1 1 1 0 0 2 0 3 2 1
Flat Hand = K 1 0 0 0 0 0 0 0 3 5 78 8 2 1 0 0 0 0 1 0 0 0 1

Thumb-Middle Group = L 0 0 0 0 0 1 0 2 2 9 10 61 1 2 0 0 0 0 9 0 3 0 0
Spok = M 0 0 0 0 0 0 0 12 7 0 6 0 67 3 1 0 2 0 0 0 1 0 1
Claw = N 0 0 0 0 0 1 0 2 16 0 0 2 1 69 4 1 1 0 2 0 0 1 0

ASL-C = O 0 0 0 0 0 1 1 0 5 2 0 1 4 3 74 0 0 0 4 5 0 0 0
OK-Pose = P 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 94 2 0 1 0 0 0 0

Middle OK-Pose = Q 0 0 0 0 0 0 0 2 1 0 0 0 0 1 0 3 87 1 2 0 1 2 0
Pinch = R 4 2 0 1 1 1 4 0 0 0 0 0 0 1 0 0 0 71 5 9 1 0 0

Finger Purse = S 2 0 1 1 2 0 4 0 1 1 1 2 2 0 5 2 0 1 68 5 1 0 1
ASL-O = T 4 7 2 4 4 0 4 0 0 0 0 0 0 0 3 1 0 2 3 64 0 0 2
ASL-R = U 0 1 0 0 1 9 3 0 0 1 1 1 0 1 0 1 1 0 0 0 58 22 0

Inverse ASL-R = V 0 0 0 0 0 13 1 1 0 1 1 2 0 1 0 0 0 0 1 0 17 61 1
Thumbs-Up = W 0 2 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 343

all often misclassified as one another. Additionally, the ASL-O and Index Forward

poses are often confused with the Fist Poses and vice versa.

The Point pose has a high classification accuracy, however when the index finger is

dipped forward to form the Index Forward pose, accuracy drops significantly.

In the Open-Palm poses (poses H through O), significant misclassification occurred,

but was not as widespread as the Fist Poses. The Open Hand pose had the best

accuracy, and was sometimes confused with the Spok and Neutral Hand poses. The

Neutral Hand pose exists as an intermediate step in poses between the Open Hand

and Claw poses, and is thus misclassified as each often. The ASL-B, Flat Hand, and

Thumb-Middle Group poses are often classified correctly, albeit with some misclassi-

fications as one another. The Flat Hand pose was classified correctly the second most

often in the Open-Palm pose group. The Thumb-Middle Group pose had the lowest

accuracy with only 61% correct classifications, where it was sometimes even classified

as the Finger Purse and ASL-R poses. The Spok pose had a high accuracy, but was

sometimes confused with the Open Hand, Flat Hand and Neutral Hand poses. The

Claw pose was often confused with the Neutral Hand pose, and vice versa. ASL-C

had a high accuracy of 74%, but was sometimes classified as a Neutral Hand.

80

Amongst the Finger Loop poses (poses P through T), the OK-Pose had the highest

accuracy of 94%, and was only confused with the Middle OK-Pose twice. These two

poses, although being quite similar to one another, were well separated. The Pinch,

Finger Purse, and ASL-O poses were all sometimes misclassified as a Fist Poses and

the Index Forward pose. Additionally, these three poses are often misclassified as one

another, leading to a low recognition accuracy for all of them.

The ASL-R and Inverse ASL-R poses (poses U and V) both have a low recognition

accuracy rate. Both were misclassified as one another very often, and were regularly

misclassified as the Point pose.

The Thumbs-Up Poses had a high recognition accuracy of 343 out of 350 (98%) with

most errors occurring when they were incorrectly recognized as Fist Poses.

5.2.2 Measuring Similarity via String Distance

Since the notation strings are all of the same length, a simple means by which sim-

ilarity could be measured is through Hamming Distance. Hamming Distance is the

number of occurrences of differences between two strings of equal lengths, and was

introduced in [19]. For example, the ASL-R and Inverse ASL-R poses have the nota-

tion strings 61166;2252-423 and 61166;2252-523 respectively, giving them a Hamming

Distance of 1. The ASL-R and Open Hand poses have notation strings 61166;2252-

423 and 31111;2222-222, giving them a distance of 6. From this example, one could

predict that the Hamming Distance between two poses is low if the poses appear

to be visually similar to one-another, and high if they’re visually different. In order

to verify this prediction, Table 5.17 illustrates the Hamming Distances between all

poses.

When comparing the distances seen in this table to the misclassification errors in

Table 5.16, some observations can be made about several groups of poses.

The Fist Poses (Poses A through E) maintain their similarity with one another, with

distances ranging from 3 to 6. If one were to compare the ASL-M pose with the

ASL-A pose, one could argue that a distance of 6 is too large for poses that are

81

Table 5.17: Heatmap of Hamming distances between poses.

Ground Truth (Rows)
Classified As (Cols) A B C D E F G H I J K L M N O P Q R S T U V W

ASL-A = A 0 3 4 6 5 5 5 9 9 6 4 7 7 9 6 9 10 3 9 7 7 7 2
Classic Fist = B 3 0 3 6 5 3 3 10 10 6 7 8 8 10 7 10 10 4 9 7 7 7 3

Hidden Thumb = C 4 3 0 3 3 5 4 11 11 7 8 8 9 11 8 11 11 5 9 8 7 7 4
ASL-M = D 6 6 3 0 4 8 7 12 11 10 10 10 11 11 9 10 10 7 10 9 10 10 6
ASL-N = E 5 5 3 4 0 7 6 11 10 9 9 9 9 10 8 9 9 6 10 8 7 7 5

Point = F 5 3 5 8 7 0 2 7 10 5 7 7 7 8 7 10 8 5 10 8 5 5 4
Index Forward = G 5 3 4 7 6 2 0 9 10 7 8 7 9 9 8 10 10 4 9 8 7 7 5

Open Hand = H 9 10 11 12 11 7 9 0 9 4 5 6 2 5 8 6 6 9 12 10 6 6 7
Neutral Hand = I 9 10 11 11 10 10 10 9 0 9 9 9 9 9 9 6 7 9 12 10 10 10 9

ASL-B = J 6 6 7 10 9 5 7 4 9 0 2 4 2 8 5 6 6 6 9 7 5 5 5
Flat Hand = K 4 7 8 10 9 7 8 5 9 2 0 3 3 9 6 6 7 6 9 7 7 7 6

Thumb-Middle Group = L 7 8 8 10 9 7 7 6 9 4 3 0 5 10 8 6 6 8 10 8 8 8 8
Spok = M 7 8 9 11 9 7 9 2 9 2 3 5 0 7 6 6 6 7 10 8 5 5 5
Claw = N 9 10 11 11 10 8 9 5 9 8 9 10 7 0 3 7 7 9 12 5 8 8 8

ASL-C = O 6 7 8 9 8 7 8 8 9 5 6 8 6 3 0 7 7 6 9 2 8 8 5
OK-Pose = P 9 10 11 10 9 10 10 6 6 6 6 6 6 7 7 0 4 9 12 7 9 9 9

Middle OK-Pose = Q 10 10 11 10 9 8 10 6 7 6 7 6 6 7 7 4 0 10 12 7 9 9 9
Pinch = R 3 4 5 7 6 5 4 9 9 6 6 8 7 9 6 9 10 0 6 7 7 7 3

Finger Purse = S 9 9 9 10 10 10 9 12 12 9 9 10 10 12 9 12 12 6 0 9 11 11 9
ASL-O = T 7 7 8 9 8 8 8 10 10 7 7 8 8 5 2 7 7 7 9 0 10 10 7
ASL-R = U 7 7 7 10 7 5 7 6 10 5 7 8 5 8 8 9 9 7 11 10 0 1 6

Inverse ASL-R = V 7 7 7 10 7 5 7 6 10 5 7 8 5 8 8 9 9 7 11 10 1 0 6
Thumbs-Up = W 2 3 4 6 5 4 5 7 9 5 6 8 5 8 5 9 9 3 9 7 6 6 0

visually not that different. This argument is further reinforced by the fact that the

distance calculated between the Point and ASL-A poses is less than the distance of

6, implying that a Point is considered to be more similar to the ASL-A pose than

ASL-M. This could be resolved by scaling the distances between poses if there is a

significant change in the silhouette of a pose. For example, the difference between

a fully curled and fully extended finger should be much larger than that of a fully

curled and partially curled finger. Another example of this issue exists between the

ASL-A and Flat Hand poses, where an unintuitive distance of 4 is calculated.

The theme of poses with large silhouette differences yet small Hamming Distances is

evident throughout the table. The Flat Hand and ASL-A pose have a distance of 4,

Point and Classic Fist have a distance of 3, and Index Forward have a distance of 3.

Cases of the inverse being true also exist, where a high distance between similar poses

is calculated. The Claw and Finger Purse poses have the highest possible distance of

12, and the distances between the Fist Poses and Finger Purse pose vary from 9 to

10.

The examples listed above can be compared to the results in the confusion matrix in

Table 5.16. Flat Hand and ASL-A were never misclassified as one-another, yet have a

low distance of 4. Conversely, Claw and Finger Purse have a single misclassification

82

between them, which should never happen between two poses at maximum distance

from one another with twenty-two other poses to be chosen from.

A possible solution to this problem is to create a weighted Hamming Distance that

would take silhouette changes into account. Where previously any change between

notation string elements increases Hamming Distance by one, weighted Hamming

Distance would increase the distance according to how much the visual silhouette of

the pose is changed. The change in visual silhouette is not objectively measured, but

is rather used as a tool to estimate the weights to be assigned. These weightings are

depicted in Tables 5.18 and 5.19.

Table 5.18: Finger Pose Distance Weightings.

Finger Pose Notator 1 2 3 4 5 6
Point (Up): 1 0.0

Point (Forward): 2 1.0 0.0
Point (Side): 3 1.0 1.0 0.0

Neutral: 4 0.3 0.5 0.5 0.0
Bend: 5 1.0 0.5 1.0 0.2 0.0
Close: 6 2.0 1.5 1.5 1.5 0.7 0.0

Table 5.19: Finger Inter-Relation Distance Weightings.

Finger Inter-Relation Notator 1 2 3 4 5 6 7
Neutral: 1 0.0

Separate: 2 0.2 0.0
Group: 3 0.6 1.0 0.0

Cross (i on palm-side of j): 4 0.6 1.0 0.2 0.0
Cross (j on palm-side of i): 5 0.6 1.0 0.2 0.1 0.0

Touch: 6 0.6 1.0 0.3 0.3 0.3 0.0
Loop: 7 2.0 2.0 1.5 0.9 0.9 0.5 0.0

Table 5.20 depicts the Hamming Distances between the poses after the distances

were weighted. Weighting the differences between notation strings did solve the afore-

mentioned problems to some degree. The Pointing Poses are no longer as similar to

the Fist Poses as they were before, and the Flat Hand and ASL-A poses have been

further separated. The Claw and Finger Purse poses were originally calculated to be

at maximum distance from one another, after weightings they now have a distance

of 9.5. These problems were solved while maintaining the similarities between poses

83

Table 5.20: Heatmap of weighted Hamming Distances between poses.

Ground Truth (Rows)
Classified As (Cols) A B C D E F G H I J K L M N O P Q R S T U V W

ASL-A = A 0.0 3.2 4.2 4.8 3.8 7.0 5.7 13.0 8.7 11.0 8.0 9.8 11.0 7.8 4.8 11.0 12.5 2.8 10.3 7.3 9.2 9.2 2.0
Classic Fist = B 3.2 0.0 1.2 3.5 2.5 4.0 2.6 14.5 10.9 10.0 11.2 10.9 12.5 8.5 5.5 11.1 11.1 4.3 10.1 5.3 8.2 8.2 3.5

Hidden Thumb = C 4.2 1.2 0.0 2.3 1.4 5.1 3.6 15.5 11.9 11.0 12.2 11.8 13.5 9.5 6.5 12.1 12.1 5.3 9.4 6.3 7.3 7.3 4.5
ASL-M = D 4.8 3.5 2.3 0.0 2.3 7.4 5.9 15.2 11.0 13.3 12.8 12.4 14.6 9.0 7.4 11.8 11.8 5.9 8.3 7.2 9.6 9.6 5.6
ASL-N = E 3.8 2.5 1.4 2.3 0.0 6.4 4.9 14.2 10.0 12.3 11.8 11.4 12.2 8.0 6.4 10.8 10.8 4.9 9.0 6.2 7.1 7.1 4.6

Point = F 7.0 4.0 5.1 7.4 6.4 0.0 2.0 10.5 8.9 8.0 11.0 9.4 10.5 6.8 5.8 12.1 7.7 5.5 11.3 7.7 6.0 6.0 5.5
Index Forward = G 5.7 2.6 3.6 5.9 4.9 2.0 0.0 12.5 9.5 10.0 11.2 9.4 12.5 7.3 6.3 10.5 9.7 3.8 9.6 6.1 8.0 8.0 6.0

Open Hand = H 13.0 14.5 15.5 15.2 14.2 10.5 12.5 0.0 2.5 4.5 5.0 5.2 2.0 5.0 8.0 4.6 4.6 12.0 12.0 12.0 8.5 8.5 11.0
Neutral Hand = I 8.7 10.9 11.9 11.0 10.0 8.9 9.5 2.5 0.0 4.7 3.9 4.3 3.3 1.8 3.0 3.3 3.5 7.9 7.9 6.8 7.7 7.7 8.5

ASL-B = J 11.0 10.0 11.0 13.3 12.3 8.0 10.0 4.5 4.7 0.0 3.0 4.6 2.5 7.7 4.7 5.5 5.5 9.5 9.5 8.7 6.2 6.2 9.5
Flat Hand = K 8.0 11.2 12.2 12.8 11.8 11.0 11.2 5.0 3.9 3.0 0.0 1.8 3.0 9.0 6.0 5.3 6.8 8.3 8.3 8.5 9.2 9.2 10.0

Thumb-Middle Group = L 9.8 10.9 11.8 12.4 11.4 9.4 9.4 5.2 4.3 4.6 1.8 0.0 4.6 9.2 7.6 5.1 5.7 9.9 8.2 8.0 10.6 10.6 11.6
Spok = M 11.0 12.5 13.5 14.6 12.2 10.5 12.5 2.0 3.3 2.5 3.0 4.6 0.0 7.0 6.0 5.4 5.4 10.0 10.0 10.0 6.7 6.7 9.0
Claw = N 7.8 8.5 9.5 9.0 8.0 6.8 7.3 5.0 1.8 7.7 9.0 9.2 7.0 0.0 3.0 5.6 5.6 7.1 9.5 7.0 7.1 7.1 6.8

ASL-C = O 4.8 5.5 6.5 7.4 6.4 5.8 6.3 8.0 3.0 4.7 6.0 7.6 6.0 3.0 0.0 6.8 6.8 4.1 6.5 4.0 6.3 6.3 3.8
OK-Pose = P 11.0 11.1 12.1 11.8 10.8 12.1 10.5 4.6 3.3 5.5 5.3 5.1 5.4 5.6 6.8 0.0 6.0 9.3 9.3 6.8 10.1 10.1 11.5

Middle OK-Pose = Q 12.5 11.1 12.1 11.8 10.8 7.7 9.7 4.6 3.5 5.5 6.8 5.7 5.4 5.6 6.8 6.0 0.0 11.0 9.3 6.8 10.1 10.1 11.5
Pinch = R 2.8 4.3 5.3 5.9 4.9 5.5 3.8 12.0 7.9 9.5 8.3 9.9 10.0 7.1 4.1 9.3 11.0 0.0 7.5 5.6 7.7 7.7 3.5

Finger Purse = S 10.3 10.1 9.4 8.3 9.0 11.3 9.6 12.0 7.9 9.5 8.3 8.2 10.0 9.5 6.5 9.3 9.3 7.5 0.0 5.5 11.0 11.0 11.0
ASL-O = T 7.3 5.3 6.3 7.2 6.2 7.7 6.1 12.0 6.8 8.7 8.5 8.0 10.0 7.0 4.0 6.8 6.8 5.6 5.5 0.0 10.3 10.3 7.8
ASL-R = U 9.2 8.2 7.3 9.6 7.1 6.0 8.0 8.5 7.7 6.2 9.2 10.6 6.7 7.1 6.3 10.1 10.1 7.7 11.0 10.3 0.0 0.1 7.7

Inverse ASL-R = V 9.2 8.2 7.3 9.6 7.1 6.0 8.0 8.5 7.7 6.2 9.2 10.6 6.7 7.1 6.3 10.1 10.1 7.7 11.0 10.3 0.1 0.0 7.7
Thumbs-Up = W 2.0 3.5 4.5 5.6 4.6 5.5 6.0 11.0 8.5 9.5 10.0 11.6 9.0 6.8 3.8 11.5 11.5 3.5 11.0 7.8 7.7 7.7 0.0

within the same group seen in the unweighted table (Table 5.16). For example, the

Fist Poses group is still visible as a block of very similar poses. The Open-Palm

Poses are also able to maintain similarity within the group, with the exception of the

Claw and ASL-C pose. These two poses involve all five fingers bending down in some

manner, causing a relatively large distance between themselves and the rest of the

Open-Palm Poses. The Finger Touches and Loops Poses (Poses P through T) do not

show as strong a similarity to one another as expected. A pose with a loop between

two fingers has a high distance between itself and a pose with a loop between two

other fingers. This can be seen in the distance of 6 between the OK and Middle OK

poses. The silhouette of the hand does not change much, however the string distance

between these poses is large. This is due to the fact that Hamming Distance does not

take adjacent string elements into account, such as the index and middle finger loops

in this case. Furthermore, adding additional loops in a pose should not increase the

distance by as much as adding in the first loop.

Using a weighted Hamming Distance does not provide a perfect solution to measuring

pose similarities, but it does provide a rough picture of which poses are very different

from one another and which are not.

84

5.2.3 Final Pose Selection

In order for a camera to provide an immersive and reliable pose recognition experience

in VR, a target of 99% recognition accuracy is desirable. By aggressively discarding

problematic poses until the target is reached, a reliable pose set was created to pro-

vide researchers and developers a practical set of poses to work with. This set shall

be hereon referred to as the reliable pose set. To create this set, the average weighted

Hamming distances of each pose is measured. Ideally, the poses with the lowest

average distances are systematically removed until the target accuracy is reached.

However, the weighted Hamming distance measurement is not a perfect way of mea-

suring pose similarity. As such, some exceptions have to be made.

Firstly, certain key poses in the set should have preference over others and should

be kept in the set. For example, if Classic Fist and ASL-M show that Classic Fist

has a lower average distance to other poses, an exception would be made and Classic

Fist should not be discarded. This is because the pose is commonly used in VR

applications and the real world, much more so than other similar poses. The other

key poses are the Point, OK-Pose, and Thumbs-up poses. Either the Open Hand or

Neutral Hand is also a key pose, but not both. This exception will be referred to as

exception one.

The second exception occurs where a pose has a high average distance to other poses,

yet is misclassified often according to the SVM-PUK confusion matrix (Table 5.16).

Any poses that have these characteristics need to be removed early, otherwise they

will be problematic later on. Detecting the occurrence of this exception will be by cal-

culating the product of its scaled average Hamming distance and its scaled confusion

matrix inaccuracy. The scaled average Hamming distance is a number between zero

and one, where one represents the highest Hamming distance amongst other poses

in the reliable set, and zero being the lowest. Similarly, the scaled confusion matrix

inaccuracy lies between zero and one, where zero represents the pose with the highest

accuracy, and one represents the pose with the lowest accuracy. If this factor is above

a certain threshold, the pose is removed. This factor will be high whenever there is

85

a mismatch in what the confusion matrix and the weighted Hamming distance imply

about a pose, specifically when the confusion matrix highlights it as problematic while

the weighted Hamming shows it to be unproblematic. This exception will be referred

to as exception two.

More formally, let the benchmark pose set be Set A and the reliable set be Set B.

The creation of the reliable pose set follows the algorithm outlined in Algorithm 1.

Following the algorithm, the reliable pose set consists of three poses. These poses are

the Open Hand, OK-Pose, and Thumbs-Up poses. The dataset consisting of these

three poses at arbitrary orientations achieved an accuracy of 99.45% with the SVM-

PUK classifier.

This algorithm could be used to produce other reliable pose sets. For example, the

key poses to be kept or the target accuracy could be changed if desired. By changing

the factorThreshold, one could alter the frequency at which the poses with a high

factor are removed. Other parameters that could be changed are the input set and

classification algorithm.

86

Input: Set A

Output: Set B

𝑓𝑎𝑐𝑡𝑜𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑← 0.6

𝑠𝑒𝑡𝐵 ← 𝑐𝑙𝑜𝑛𝑒(𝑠𝑒𝑡𝐴)

while SVM-PUK accuracy on Set B < 99% do

generate new confusion matrix

generate new Hamming Distance matrix

if only key poses remain in Set B then

ignore exception one

end

foreach pose P in set B do

foreach pose Q in set B where Q != P do

𝑃.𝑡𝑜𝑡𝑎𝑙𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒← 𝑃.𝑡𝑜𝑡𝑎𝑙𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒+ 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐻𝑎𝑚𝑚𝑖𝑛𝑔(𝑃,𝑄)

𝑃.𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒← 𝑃.𝑡𝑜𝑡𝑎𝑙𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒÷ (𝑝𝑜𝑠𝑒𝐶𝑜𝑢𝑛𝑡(𝑠𝑒𝑡𝐵)− 1)

end

end

𝑚𝑐𝑀𝑖𝑛← smallest misclassification % in confusion matrix

𝑚𝑐𝑀𝑎𝑥← largest misclassification % in confusion matrix

ℎ𝑎𝑚𝑀𝑖𝑛← smallest weighted Hamming distance

ℎ𝑎𝑚𝑀𝑎𝑥← largest weighted Hamming distance ◁ Used in below normalization step.

foreach pose P in set B do

𝑚𝑐← misclassification% of pose P in confusion matrix

𝑠𝑐𝑎𝑙𝑒𝑑𝑀𝑐← (𝑚𝑐−𝑚𝑐𝑀𝑖𝑛)÷ (𝑚𝑐𝑀𝑎𝑥−𝑚𝑐𝑀𝑖𝑛) ◁ Outputs [0,1]

ℎ𝑎𝑚← 𝑃.𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑠𝑐𝑎𝑙𝑒𝑑𝐻𝑎𝑚← (ℎ𝑎𝑚− ℎ𝑎𝑚𝑀𝑖𝑛)÷ (ℎ𝑎𝑚𝑀𝑎𝑥− ℎ𝑎𝑚𝑀𝑖𝑛) ◁ Outputs [0,1]

𝑃.𝑓𝑎𝑐𝑡𝑜𝑟 ← 𝑠𝑐𝑎𝑙𝑒𝑑𝑀𝑐× 𝑠𝑐𝑎𝑙𝑒𝑑𝐻𝑎𝑚

end

𝑃𝑜𝑠𝑒𝑅← pose in set B with the highest factor ◁ Check for valid exception two.

while R is a key pose do

𝑅← pose with the next highest factor ◁ Ensure validity of exception two pose.

end

if R.factor >= factorThreshold then

remove R from set B

continue to next loop

end

𝑃𝑜𝑠𝑒𝑅← pose with lowest averageDistance in set B ◁ Check for exception one.

while R is a key pose do

𝑅← pose with next lowest averageDistance

end

remove R from set B

reset all totalDistances

end

return Set B
Algorithm 1: The process followed to create the reliable pose set.

87

88

Chapter 6

Discussion

6.1 Introduction

This research aimed to explore the effectiveness of using cameras, specifically the

LMC, instead of hand-held controllers to provide control through pose recognition in

VR applications.

Four objectives were listed as part of the research. First, a taxonomy was required

to create the benchmark pose set. The taxonomy by Choi et al. [8] was chosen for

this purpose. The second objective was to use the chosen taxonomy along with poses

from VR applications to form a benchmark pose set. Five key poses from LMC-based

VR applications along with the taxonomy were used to form the benchmark pose

set. This pose set allows for researchers to use a common pose set when comparing

machine learning algorithms for pose recognition in VR. These poses were performed

by twenty-five participants to form the benchmark pose dataset, which was then used

for the machine learning experiments.

Evaluating the performance of machine learning classifiers on the benchmark pose

dataset was the third objective of the research. No classifier was found to be objec-

tively the best. The SVM-PUK classifier had the highest average accuracy across

experiments, yet had the highest average latency of the classifiers. Conversely, the

SVM-Lin classifier had the lowest average accuracy, but the lowest average latency.

Findings from these experiments include the fact that a 16.4% increase in average

89

accuracy was observed when poses at the requested orientation were used, and that

the LMC is able to distinguish hand orientations better than hand shapes.

The final objective was to form a reliable pose set from the benchmark set. To do

this, a novel algorithm was developed that used a Hamming Distance matrix and a

confusion matrix to systematically remove poses from the benchmark set until an ac-

curacy of over 99% was achieved. As a result, the reliable pose set was formed out of

three poses only, and had an accuracy of 99.45% with the SVM-PUK classifier. This

set is useful for creating reliable pose recognition for VR applications. Furthermore,

the algorithm can be used to produce other reliable sets by tweaking the parameters

and inputs.

This chapter is structured as follows: In Section 6.2, the creation, evaluation, and

motivation behind the benchmark pose set are discussed. This is followed by Section

6.3, where the results of the three machine learning experiments on the benchmark

dataset are described, and interesting findings are discussed. Finally, in Section 6.4

the motivation, creation, and implications of the reliable pose set are discussed.

6.2 Formation of the Benchmark Pose Set

The first two objectives of the research were to select and use a taxonomy along with

the poses used in LMC-based VR applications to form a benchmark set. This section

justifies the choice of creating the benchmark pose set, and outlines the process of

creating it.

A review of previous literature showed that very few established pose sets exist, and

the ones that do exist did not take VR scenarios into account. Furthermore, most

researchers in the field use their own defined pose set without providing much justi-

fication, as the research is not focused on the poses used. In other research, the pose

set used is the letters of a Sign Language alphabet. Certain poses are commonly used

in VR applications for the LMC, such as the Fist, Point, Open Hand, Pinch, and

Thumbs-Up poses.

90

Gesture taxonomies provide an effective means to form the benchmark set. By

analysing the means by which gestures are broken down into their constituent parts,

one could ensure that all the relevant parts are represented in the set. Most tax-

onomies reviewed were too broad and did not contain sufficient detail to effectively

derive a pose set. However, the taxonomy of Choi et al. [8] provided an effective

means of dissecting all possible gestures into intuitive and detailed categories. This

taxonomy was chosen over others largely due to the detailed categorization of the

Hand Shape dimension of a gesture, which suited the purpose of this research. Not

all categories of their taxonomy were relevant for the purposes of this research, thus

only the Hand Shape and Hand Orientation categories were used. Furthermore, am-

biguities in the Cross finger inter-relation had to be resolved, and certain values that

were dependent on the left or right hand were made hand independent. Figure 3-3

depicts the adjusted notation. In their research, Choi et al. provided a method to

notate hand shape and orientation. Each pose that an individual finger could make

was denoted by one of six values, and seven possible values denoted the relationship

between fingers. Similar notations were used for the hand orientation.

This notation method provided a straightforward means to form the benchmark pose

set. Ideally, one could take every combination of values to form an exhaustive pose

set. This is not a feasible solution as capturing such a large amount of data from

multiple participants is too time-consuming. Instead, the benchmark set was formed

analytically by ensuring that all values of the categories were represented at least

once in the set, and that the common poses from LMC-based VR applications were

all represented. Many of these poses were also taken from common poses used in

literature, such as sign language poses. Other poses were created to represent certain

values in the notation that were not yet represented. Once all values were repre-

sented, additional poses that were similar to the existing poses were included to test

the separating power of the LMC and the machine learning classifiers. Collectively,

these poses formed the benchmark set.

Previous literature does not describe the process taken to form their pose sets. Fur-

thermore, no VR pose pose set exists in existing literature. The benchmark pose set

91

on the other hand was created for VR poses specifically, and used existing taxonomies

and poses in the field.

6.3 Pose Recognition Experiments

Three pose recognition experiments, namely the orientation independent, requested

orientation, and thumbs-orientation experiments were performed on the benchmark

dataset. These experiments were designed to determine the effectiveness of each

classifier on the set, where effectiveness was measured by classification accuracy, la-

tency, and training times. These experiments provide insight into which classifier is

best suited for hand pose recognition, how hand orientation could affect results, and

which poses are problematic among others.

It could be argued that an evaluation of a depth camera should have its performance

compared to the current popular mode of input for VR, namely hand-held remotes.

However, it is logical to assume that these remotes will have 100% accuracy, as they

mostly rely on button presses to perform actions. They also detect hand movement,

and it is possible to have inaccuracies in that regard, but this research is more inter-

ested in recognizing entire poses including individual finger data, rather than just the

position of the hand.

Three machine learning algorithms, namely the k-Nearest Neighbour (kNN), Arti-

ficial Neural Network (ANN), and Support Vector Machine (SVM) classifiers, were

evaluated for pose classification on the benchmark pose dataset. Two variants of the

SVM classifier with different kernels were used in the experiments, namely the Linear

(SVM-Lin) and Pearson VII function kernels (SVM-PUK).

While determining suitable parameters for each of these classifiers, some interesting

points were noted. Firstly, the ANN classifier had significantly worse accuracies than

the other classifiers in these exploratory tests. Only once the raw data captured by

the LMC was used instead of extracted features did its accuracy begin to match the

other classifiers. When using this raw data on the other classifiers, decreases in accu-

racy were noted, thus any classification tests with the ANN used raw data, while the

92

other classifiers always used extracted feature data. Secondly, when the ANN started

using raw data over feature data, which is a large increase in input data, the number

of hidden-layer nodes had to be increased to accommodate this change. Thirdly, the

kNN classifier had a much higher accuracy when the value of 𝑘 = 1 was used. Any

higher values caused drops in accuracy, with the largest drop being between 𝑘 = 1

and 𝑘 = 2 with an 8% decrease.

When it comes to comparing the results of the experiments to existing literature, some

points need to be noted: First, the experiments in this research were performed with

participants in a VR environment, where the LMC was mounted onto the headset, as

opposed to being stationary in the other literature. This additional noise may have

a negative impact on the input data sent to the Leap software. Second, the poses

created by the participants in this experiment included poses where they could put

their hands at arbitrary orientations, which will cause finger occlusion issues, further

reducing accuracies.

6.3.1 Orientation-Independent Experiment

The orientation-independent experiment tested a classifier’s ability to distinguish dif-

ferent hand shapes, regardless of orientation. All Thumbs-Up Poses were grouped

into a single pose as they are all the same shape with different orientations. In this

experiment, the SVM-PUK classifier had the highest accuracy of 70.3922%, with the

SVM-Lin classifier achieving the lowest accuracy of 59.098%. The second highest ac-

curacy of 66.6667% belonged to the kNN classifier, and the ANN had the third highest

accuracy of 63.098%. The SVM-PUK classifier had an average latency of 31.57ms,

while the second highest latency was 0.78ms by the kNN classifier. The SVM-PUK

classifier is not necessarily the best classifier tested, as the choice in classifier might

also depend on recognition latency. The kNN classifier provides roughly forty times

faster recognition latencies at the cost of a 4% accuracy drop. The lowest latency

of 0.0727ms was observed in the SVM-Lin classifier. An interesting note from this

experiment is that all four classifier options had their own strengths and weaknesses,

93

and no classifier was objectively the best. The kNN classifier has no training period,

and had the second highest accuracy and a low latency. The ANN had a slightly

lower latency than the kNN, but more than a 3% decrease in accuracy and the high-

est training times by a significant margin. The SVM-PUK classifier had the best

accuracy by 4%, but it also takes about forty times as long to classify a pose when

compared to kNN. Finally, the SVM-Lin classifier had the worst accuracy, more than

11% below SVM-PUK, but was close to ten times faster than the ANN recognition

latency.

6.3.2 Requested-Orientation Experiment

The requested orientation experiment used only poses that were oriented to reduce

finger occlusion. Similar to the orientation-independent experiment, only hand shapes

were classified and the Thumbs-Up Poses were grouped. A significant increase in ac-

curacies were seen when compared to the orientation independent experiment, with

the largest increase being 25% in the ANN. The average accuracy across the clas-

sifiers in this experiment is 81.2%, compared to the average accuracy of 64.8% in

the orientation-independent experiment. This increase of 16.4% in average accuracy

occurred with a subset of the data used in the previous experiment, where only the

poses made in a particular orientation were used. This shows that certain hand ori-

entations that reduce finger occlusion will have a positive effect on recognition rates.

Thus, a reduction in finger occlusion may lead to an increase in accuracy.

In terms of latencies, similar trends to the previous experiment are seen in this ex-

periment: The SVM-Lin classifier had the lowest latency by a significant margin,

while the SVM-PUK classifier had the highest. In the previous experiment, the kNN

latency was higher than that of the ANN, while in this one, the kNN is in fact lower.

This is likely due to the smaller dataset size. The latency of an ANN does not scale

with the size of the dataset, and thus remained constant across the two experiments.

The ANN training time did decrease with the decrease in dataset size however.

In all the classifiers, but the ANN, a consistent inaccuracy pattern can be seen in

94

the Fist Poses in the confusion matrices. All three of these classifiers used the same

extracted features, as opposed to the raw data of the ANN. Thus, a preliminary

exploration into modifying this set was made to determine possible causes. When

removing the orientation features only, accuracies changed from 76.6%, 81.4%, and

78.6% to 88.2%, 88.3%, and 65.7% in the kNN, SVM-PUK, and SVM-Lin classifiers

respectively. Large increases that put their accuracies above that of the ANN can

be seen in the kNN and SVM-PUK classifiers, while the SVM-Lin classifier had its

accuracy decrease. This shows how sensitive these classifiers can be with input data,

while the data fed into the ANN can be left as raw data with no modification.

6.3.3 Thumbs-Orientation Experiment

In the thumbs-orientation experiment, both hand shape and orientation were classi-

fied. All classifiers were trained on all poses, and the Thumbs-Up Poses formed the

training set. Thus, for a correct classification, both the Thumbs-Up hand shape and

correct orientation had to be determined. All classifiers achieved accuracies of over

90%, with the kNN algorithm having the highest accuracy of 96.57%, while the ANN,

SVM-PUK, and SVM-Lin classifiers had accuracies of 92.86%, 96%, and 92.86% re-

spectively. These accuracies are much higher than the previous two experiments due

to the fact that only one easily-recognizable hand shape was tested, along with its

orientation. In terms of latencies, a similar trend to the previous two experiments is

observed: The SVM-PUK has the highest latency of 44.8ms, while the SVM-Lin has

the lowest of 0.1ms. Due to the larger dataset, the kNN latency is once again higher

than that of the ANN.

In the orientation-independent experiment, the kNN classifier classified 340 out of

350 (97%) Thumbs-Up poses correctly, where all the different orientations of the pose

were grouped under this pose. In this experiment, an accuracy of 96.57% is achieved.

This implies that classifying a a Thumbs-Up pose’s shape and orientation only results

in a drop of a half a percent when compared to classifying only its shape. A similar

pattern can be seen with the other three classifiers. This illustrates the strength of

95

the hand orientation resolving capabilities of the LMC.

6.3.4 The Classifiers

Across all three experiments, some interesting findings are noted. As mentioned ear-

lier, there is no classifier that is objectively the most effective for pose classification,

as each classifier has its own strengths and weaknesses.

The kNN classifier had an average accuracy of 79.9% across the three experiments,

the second lowest out of the four. However, the classifier has no training phase, and

all of its average latencies were sub-millisecond, despite having to iterate through a

set of 2550 pose data vectors in the first experiment. Overall, this classifier provides

accuracies that are not significantly lower than the highest average (only 2.7% less

that the best) and will give very good latencies provided that the dataset is not huge.

If one were to assume that the latency scales linearly with the number of entries in

the dataset, then only once the dataset reaches 325000 pose entries will the latency

reach 100ms, which is the maximum latency for unnoticeable delay [6].

The ANN had the second highest average accuracy of 81.4% through the three ex-

periments, with a sub-millisecond latency that remained consistent throughout the

experiments. This classifier had by far the highest training time, exceeding a hundred

seconds in the experiments that included all the data of the benchmark set, namely

the orientation-independent and thumbs-orientation experiments. Many interesting

findings about this classifier were made in the initial experiments: Firstly, an increase

in the number of hidden layers brought about a decrease in the overall recognition

accuracy of the ANN. Secondly, the ANN performed significantly better when the raw

captured data from the LMC was used as input over the processed extracted features.

However, when this was done, the number of hidden nodes in the single layer had

to be increased to accommodate the larger input vector. Overall, the ANN provided

very good accuracies in the main experiments with very good latency, at a trade-off

of long training times. Furthermore, the classifier works well with large amounts of

raw pose data, and thus very few decisions need to be made about what data should

96

be fed in as input.

The SVM-PUK classifier had the highest average accuracy of all classifiers, with 82.6%

across the three experiments. This comes at a cost of having the highest latency by

a significant margin. However, the latency never exceeded 100ms, and the average

training time of the classifier was always below three seconds. Overall, this classifier

provides the best accuracies provided that the much higher latency is not an issue.

Finally, the SVM-Lin classifier had the lowest average accuracy of 76.9%, 3% lower

than the kNN classifier. With this low accuracy comes the lowest latency out of all

the classifiers, with latencies below 0.1ms in the first two experiments, and similar

training times to the SVM-PUK classifier. If such low latencies were required with

a slight accuracy trade-off, then the SVM-Lin classifier is well-suited to such a task.

However, such a scenario is unlikely, and having slightly worse latency for a boost in

accuracy is often times a reasonable choice.

6.3.5 The Benchmark Pose Set

After these experiments, remarks about certain poses and pose groups need to be

made. In general, all poses within the same group, such as the Fist Poses or Finger

Crosses, were consistently misclassified as one another. However, some exceptions

exist where some poses in a group were well separated from each other. This can

be primarily seen with the Open-Palm Poses and Finger Touches and Loops groups.

Within the groups, most poses were well-separated from each other. Some exceptions

do occur: the Claw and Neutral Hand poses, the Open Hand and Spok poses, were

often confused with one another, while the Finger Purse pose was often misclassified

too. This suggests that poses with multiple extended and well-separated fingers, that

thus create a strong silhouette, can be easily differentiated by the LMC. Some sepa-

rating power is lost when two poses in the group have the same fingers extended, as

in the case of the Claw and Neutral Hand.

In the creation of the benchmark set, a number of Open Palm poses were added that

appeared appropriate. However, following the above findings, additional Open Palm

97

poses could be tested for inclusion into the set in future work. For example, the Peace

(index and middle fingers outstretched, others curled down) and L (index and thumb

outstretched, others curled down) poses could be tested.

The Thumbs-Up poses had very high recognition accuracies in the first two experi-

ments when grouped up, and even when split up in the third experiment they still had

strong accuracies. This pose group has many similarities to the Fist Poses, and as

such it is expected that the Thumbs-Up poses would often get confused with the Fist

Poses. However, upon analysing the results across in the orientation-independent

experiment, 67 Fist Poses were misclassified as a Thumbs-Up pose, while only 29

Thumbs-Up poses were misclassified as a Fist Pose. This suggests that the LMC soft-

ware may be predicting occluded fingers to be in a particular well-known posed based

on what the non-occluded fingers show. For example, the thumb may be occluded

to some degree, but four curled fingers are in the view of the LMC. The software

then makes the assumption that a Thumbs-Up pose is being made, thus providing

potentially false information on the position of the thumb.

6.3.6 Comparison to Literature

Limited research exists to compare accuracy results. Most VR gestural research did

not report performance measurements, and research that did, did not take the mea-

surements in VR. Therefore, the results of these experiments will be compared to

other depth-based recognition systems evaluated outside of VR, which mostly com-

prises Sign Language recognition research. An exception to this is our previous re-

search [10], where an accuracy of 82.5% was achieved on a small set of four distinct

poses. Significant pose recognition research using the LMC in the field of Sign Lan-

guage Recognition has been performed by other researchers. Accuracies of 79.8% and

72.8% using the SVM and kNN classifiers respectively on the American Sign Lan-

guage alphabet was achieved [9]. The highest accuracy achieved in this research for

poses made at any orientation was 70.4% using the SVM-PUK classifier. This is lower

than the accuracy in [9]. However, the ANN achieved an accuracy of 88.2% on the

98

requested orientation poses. This illustrates the impact poor input data could have

on accuracies.

As with recognition accuracy, very little VR research exists to compare latencies.

Studies have shown that having a motion-to-photon latency under 20ms will mini-

mize unwanted effects [3], and a high recognition latency could increase this motion-

to-photon latency beyond acceptable bounds. Documentation on best practices for

VR recommend that the frame rate displayed to the Oculus Rift DK2 should be kept

above 75 frames per second [12, 46]. However, if the recognition system were run in

parallel to the rendering of the VR application, it should have no noticeable impact

on the rendering frame rate. A more important latency metric would be the response

time of the recognition system when a pose is made in front of the camera. Studies

have shown that users won’t notice a delay in user interfaces when the response time

of the interface is below 100 milliseconds (ms) [6]. As such, any classifier with a

recognition latency below this threshold is considered acceptable in terms of latency.

6.4 Formation of the Reliable Pose Set

The experiments on the benchmark pose set had accuracies that were well below what

might be expected in the VR industry. To combat this problem, specific poses were

picked out of the set to form the reliable VR pose set. This set had the goal of achiev-

ing an average of 99% accuracy to deem it useful and reliable for VR applications

involving the LMC. By eliminating poses to form the reliable set, a trade-off is made

where the broader coverage of poses in the benchmark set is lost in favour of very

high accuracies in the reliable set.

The reliable set was formed using the confusion matrix generated by the SVM-PUK

classifier in the orientation-independent experiment (Table 5.16), as well as a table

of the weighted Hamming Distances between poses (Table 5.20). By following Algo-

rithm 1, the reliable pose set was formed.

The reliable pose set contains the Open Hand, OK-Pose, and Thumbs-Up poses, where

an accuracy of 99.45% was reached. In creating this set, a point was reached where

99

the only remaining poses were the key poses. Of the key poses, the Classic Fist,

and Point poses were removed in order to achieve this accuracy. While the reliable

set contains very few pose types, it is important to note that all these poses were

made at arbitrary rotations. If the same algorithm were followed with the requested

orientation poses, it is likely that more poses would have been added.

The reliable pose set provides a distinct set of poses should anyone wish to create

a scenario with reliable camera-based pose recognition. Furthermore, the algorithm

that was created to form the reliable set would be useful to researchers or others in

industry. Parameters in the algorithm such as the key poses or target accuracy could

be tweaked to form an entirely different reliable pose set.

6.5 Final Remarks

Finger occlusion has been a persistent issue throughout this research. Often, poses

that have their features hidden from the camera were not detected correctly. During

the data gathering process, it was often noted that the participant’s virtual hands did

not correctly mimic their real hands. This usually occurred whenever the pose being

made included some form of finger occlusion, either due to the shape of the hand

itself or the orientation of the hand. The fact that the user’s virtual hands were not

in the correct pose strongly indicates that the script controlling the virtual hands’

poses is receiving incorrect input data. This implies that finger occlusion significantly

impacts recognition performance, possibly more so than the choice in machine learn-

ing classifier.

Finger occlusion can be caused by the hand orientation, the hand shape being made,

or both. Some research has attempted to solve this problem, such as [44], where two

LMCs were placed at right angles to gain different perspectives on the same hand. A

solution such as this may not be suitable for VR as it limits users’ hand movements.

They will be required to keep their hands in a stationary space for tracking, whereas a

single camera can be mobile by attaching it to the front of the head-mounted display.

100

A solution needs to be found where a second camera could be used without restricting

user movement.

The primary advantage of using cameras over hand-held controllers is the freedom of

being able to make any arbitrary hand pose and having the environment react accord-

ingly. In this research, the advantages and disadvantages of camera-based approaches

were discussed, specifically with the LMC. In creating a VR application with hand

pose controls, it is up to the creator to decide whether the freedom and convenience

of a camera-based approach is preferable to the reliability of remote-based controls.

When making such a decision, the creator could restrict the set of available hand

poses of the camera-based approach to have its reliability match up to the remote-

based approach.

101

102

Chapter 7

Conclusion

This work evaluated the performance of the Leap Motion Controller to capture hand

pose input in a virtual reality environment. A set of poses to evaluate the camera

was derived from the taxonomy of Choi et al. [8]. These poses were performed by

twenty-five participants in virtual reality, and the data was classified into poses us-

ing four popular machine learning techniques. The four techniques were applied in

three different experiments to compare their performances with different subsets of

the data.

A contribution of this research is the exploration of depth cameras effectiveness for

pose input for virtual reality. Currently, hand-held controllers are used for VR appli-

cation input. The findings of this research have shown that cameras suffer from input

inaccuracies too often to replace controllers. However, cameras allow for a wider array

of poses, provide more freedom, and are less cumbersome than hand-held controllers.

Further contributions and findings have been made in this research. First, a bench-

mark pose set was derived, and can be used by other researchers to compare machine

learning classifiers for VR pose recognition. Secondly, of the different machine learn-

ing classifiers, the SVM-PUK classifier had the highest average accuracy and latencies,

while the SVM-Lin classifier had the lowest average accuracy and latencies. Thirdly,

the poor input data is generally caused by finger occlusion. By using specific hand

poses with minimal occlusion and keeping the hand in an orientation that minimizes

occlusion, recognition accuracy can be significantly improved. Finally, a reliable pose

103

set was created using a novel algorithm. This reliable pose set could be used if high

accuracies are desired, and the algorithm could be used for others to create their own

reliable VR pose sets.

This research only worked with hand poses and not complete dynamic gestures in

virtual reality. Further experimentation could be done with full dynamic gestures to

evaluate the Leap Motion Controller’s performance when it comes to hand motions.

A major hindrance to accuracy in this research was finger occlusion, which could be

significantly reduced by using multiple cameras, as seen in [44] and [38]. However,

the use of multiple cameras might inhibit the freedom of the user in virtual reality.

While the first camera can be made mobile by mounting it onto the user’s display,

the second camera would have to be placed at a separate location and angle, which is

most likely in a stationary position. This would force the user to remain stationary

so as to keep his or her hands in range of the second camera. Future research could

tackle this problem by designing a means of making the second camera mobile, or

alternatively use an array of cameras mounted in a room to always keep the hands

visible from multiple angles.

Future research could also explore the capabilities of different cameras, however ac-

commodations may need to be made to make the camera convenient for VR use. For

example, a large camera cannot be mounted onto the VR display, thus forcing the

user to keep their hands in the stationary camera’s field of view. Furthermore, multi-

ple image recognition techniques could be compared to determine their strengths and

weaknesses under various levels of finger occlusion.

104

Chapter 8

Appendix

8.1 Benchmark Pose Set

In the following tables, whenever orientation is not specified, the pose can be made

at any orientation. Note that some pose types will have the ASL- prefix, meaning

that the pose described is an alphabetical letter in American Sign Language.

8.1.1 Fist Poses

These hand poses involve the non-thumb fingers being curled closed.

Table 8.1: Fist Poses of the Benchmark Set.

Pose Name Notation Description

(a) ASL-A [HS = 16666;3222-333] Fist with upward facing thumb.

(b) Classic fist [HS = 66666;5522-333] Fist with thumb crossing index and middle fingers.

(c) Hidden thumb [HS = 66666;4442-333] Fist with thumb tucked behind the index, middle and ring fingers.

(d) ASL-M [HS = 56666;4445-331]
Fist with thumb tucked behind the index, middle and ring fingers,

but poking out between the ring and pinky fingers.

(e) ASL-N [HS = 56666;4452-313]
Fist with thumb tucked behind the index and middle fingers,

but poking out between the middle and ring fingers.

105

(a) (b) (c) (d) (e)

Figure 8-1: Fist Poses. Each letter corresponds to a pose in Table 8.1.

8.1.2 Index Pointing Poses

These poses involve the index finger being extended while the other finger poses are

closed.

Table 8.2: Index Pointing Poses of the Benchmark Set.

Pose Name Notation Description

(a) Point [HS = 61666;2522-233] Index finger extended out, thumb crossing over middle finger.

(b) Index-Forward [HS = 62666;4522-233]
Index finger pointing forward by resting it on the thumb, such that the

thumb crosses under the index finger and over the middle finger.

(a) (b)

Figure 8-2: Index Pointing Poses. Each letter corresponds to a pose in Table 8.2.

8.1.3 Open-Palm Poses

These poses involve most of the fingers being extended.

106

Table 8.3: Open-Palm Poses of the Benchmark Set.

Pose Name Notation Description

(a) Open Hand [HS = 31111;2222-222] All fingers extended, no fingers bending.

(b) Neutral Hand [HS = 44444;1222-111] All fingers extended, but slightly bent.

(c) ASL-B [HS = 61111;2222-333] All non-thumb fingers extended up and grouped, thumb curled down.

(d) Flat Hand [HS = 11111;3222-333] All fingers extended, all fingers grouped together.

(e) Thumb-

Middle Group
[HS = 11111;4322-133]

Similar to Flat Hand, however the thumb crosses in front of the

index finger and goes between the index and middle fingers.

(f) Spok [HS = 31111;2222-323]
All fingers extended and separated, but with grouping between

the index and middle fingers, as well as the pinky and ring fingers.

(g) Claw [HS = 55555;2222-222] All fingers separated and bent, but not fully closed.

(h) ASL-C [HS = 55555;2222-333] All fingers bent, but non-thumb fingers are together to form a C-shape.

(a) (b) (c) (d) (e)

(f) (g) (h)

Figure 8-3: Open-Palm Poses. Each letter corresponds to a pose in Table 8.3.

8.1.4 Finger Touches and Loops

A finger touch occurs whenever two fingers touch at the fingertips, while a loop is

whenever two fingers touch to form a circular shape.

107

Table 8.4: Finger Touches and Loops of the Benchmark Set.

Pose Name Notation Description

(a) OK-Pose [HS = 55111;7222-111] Index finger and thumb make a loop, other fingers upright.

(b) Middle OK-Pose [HS = 51511;2722-111] Middle finger and thumb make a loop, other fingers upright.

(c) Pinch [HS = 22666;6222-333]
Index finger and thumb point forward and touch their

fingertips. Other fingers are closed.

(d) Finger Purse [HS = 22222;6666-333] All fingers touch the tip of the thumb.

(e) ASL-O [HS = 55555;7722-333]
All fingers are bent to make a loop, but the thumb only

makes contact with the index and middle fingers.

(a) (b) (c) (d) (e)

Figure 8-4: Finger Touches and Loops. Each letter corresponds to a pose in Table 8.4.

8.1.5 Finger Crosses

These poses involve one non-thumb finger crossing another non-thumb finger.

Table 8.5: Finger Crosses of the Benchmark Set.

Pose Name Notation Description

(a) ASL-R [HS = 61166;2252-423]

Ring and pinky fingers closed, with the thumb holding the ring finger down.

Index and middle fingers are upright, with the index finger crossing in

front of the middle finger.

(b) Inverse ASL-R [HS = 61166;2252-523] Similar to ASL-R, except the index finger crosses behind the middle finger.

108

(a) (b)

Figure 8-5: Finger Crosses. Each letter corresponds to a pose in Table 8.5.

8.1.6 Thumbs-Up Poses

These poses involve the Thumbs-up hand shape in different orientations. Each pose

below has the hand shape [HS = 36666;2222-333] with varying orientations. As such,

only the orientation parameter is shown in the table.

Table 8.6: Thumbs-Up Poses of the Benchmark Set.

Pose Name Notation Description

(a) Thumbs-up [HO = 4;5]
Fist with the thumb pointing away from fingers,

oriented in such a way that the thumb points up.

(b) Thumbs-out [HO = 1;5] Thumb points outwards and the palm points up.

(c) Thumbs-in [HO = 2;5] Thumb points inwards and the palm points down.

(d) Thumbs-down [HO = 3;5] Thumb points down and the palm points outward.

(e) Thumbs-back [HO = 4;1] Thumb points back towards the gesturer.

(f) Thumbs-up,

fist-in
[HO = 6;4]

Thumbs-up with the fist pointing inwards

instead of forwards.

(g) Thumbs-down,

fist-in
[HO = 5;4]

Thumbs-down with the fist pointing inwards

instead of forwards.

109

(a) (b) (c) (d) (e)

(f) (g)

Figure 8-6: Thumbs-Up Poses. Each letter corresponds to a pose in Table 8.6.

110

Bibliography

[1] M. Alimanova, S. Borambayeva, D. Kozhamzharova, N. Kurmangaiyeva,
D. Ospanova, G. Tyulepberdinova, G. Gaziz, and A. Kassenkhan. Gamifica-
tion of Hand Rehabilitation Process Using Virtual Reality Tools: Using Leap
Motion for Hand Rehabilitation. In 2017 First IEEE International Conference
on Robotic Computing (IRC), pages 336–339, April 2017.

[2] S. Aliyu, M. Mohandes, M. Deriche, and S. Badran. Arabic sign language recog-
nition using the Microsoft Kinect. In 2016 13th International Multi-Conference
on Systems, Signals Devices (SSD), pages 301–306, March 2016.

[3] C. Anthes, R. J. García-Hernández, M. Wiedemann, and D. Kranzlmüller. State
of the art of virtual reality technology. In 2016 IEEE Aerospace Conference,
pages 1–19, March 2016.

[4] Nathan Beattie, Ben Horan, and Sophie McKenzie. Taking the LEAP with the
Oculus HMD and CAD - Plucking at thin Air? Procedia Technology, 20:149–154,
January 2015.

[5] J. Blaha and M. Gupta. Diplopia: A virtual reality game designed to help
amblyopics. In Virtual Reality (VR), 2014 iEEE, pages 163–164, March 2014.

[6] Stuart K. Card, Allen Newell, and Thomas P. Moran. The Psychology of Human-
Computer Interaction. L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 1983.

[7] Lingchen Chen, Feng Wang, Hui Deng, and Kaifan Ji. A Survey on Hand Ges-
ture Recognition. In 2013 International Conference on Computer Sciences and
Applications (CSA), pages 313–316, December 2013.

[8] Eunjung Choi, Heejin Kim, and Min K. Chung. A taxonomy and notation
method for three-dimensional hand gestures. International Journal of Industrial
Ergonomics, 44(1):171–188, January 2014.

[9] Ching-Hua Chuan, E. Regina, and C. Guardino. American Sign Language Recog-
nition Using Leap Motion Sensor. In 2014 13th International Conference on
Machine Learning and Applications (ICMLA), pages 541–544, December 2014.

111

[10] Andrew Clark and Deshendran Moodley. A System for a Hand Gesture-
Manipulated Virtual Reality Environment. In Proceedings of the Annual Con-
ference of the South African Institute of Computer Scientists and Information
Technologists, SAICSIT ’16, pages 10:1–10:10, New York, NY, USA, 2016. ACM.

[11] A.S. Elons, M. Ahmed, H. Shedid, and M.F. Tolba. Arabic sign language recogni-
tion using leap motion sensor. In 2014 9th International Conference on Computer
Engineering Systems (ICCES), pages 368–373, December 2014.

[12] Epic Games. Virtual Reality Best Practices. Accessed online at https:
//docs.unrealengine.com/latest/INT/Platforms/VR/ContentSetup/
index.html#vrandsimulationsickness on 2017-09-28.

[13] Julien Epps, Serge Lichman, and Mike Wu. A Study of Hand Shape Use in
Tabletop Gesture Interaction. In CHI ’06 Extended Abstracts on Human Factors
in Computing Systems, CHI EA ’06, pages 748–753, New York, NY, USA, 2006.
ACM.

[14] Haoqi Fan and Siyuan Yao. Fingertips-based Gesture Recognition for Interac-
tion. In Proceedings of the 11th ACM SIGGRAPH International Conference on
Virtual-Reality Continuum and Its Applications in Industry, VRCAI ’12, pages
347–347, New York, NY, USA, 2012. ACM.

[15] Bruno Fanini. A 3d Interface to Explore and Manipulate multi-scale Virtual
Scenes using the Leap Motion Controller. In ACHI 2014 : The Seventh Inter-
national Conference on Advances in Computer-Human Interactions, 2014.

[16] Jože Guna, Grega Jakus, Matevž Pogačnik, Sašo Tomažič, and Jaka Sodnik.
An Analysis of the Precision and Reliability of the Leap Motion Sensor and Its
Suitability for Static and Dynamic Tracking. Sensors, 14(2):3702–3720, February
2014.

[17] Saurabh Gupta, Ross Girshick, Pablo Arbeláez, and Jitendra Malik. Learning
Rich Features from RGB-D Images for Object Detection and Segmentation. In
David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors, Com-
puter Vision – ECCV 2014, Lecture Notes in Computer Science, pages 345–360.
Springer International Publishing, 2014.

[18] Isabelle Guyon, Vassilis Athitsos, Pat Jangyodsuk, and Hugo Jair Escalante. The
ChaLearn Gesture Dataset (CGD 2011). Mach. Vision Appl., 25(8):1929–1951,
November 2014.

[19] R. W. Hamming. Error detecting and error correcting codes. The Bell System
Technical Journal, 29(2):147–160, April 1950.

[20] Mike Harris. Virtual Strangers by mike harris. Accessed online at https://
harris.itch.io/virtual-strangers on 2016-08-02.

112

https://docs.unrealengine.com/latest/INT/Platforms/VR/ContentSetup/index.html#vrandsimulationsickness
https://docs.unrealengine.com/latest/INT/Platforms/VR/ContentSetup/index.html#vrandsimulationsickness
https://docs.unrealengine.com/latest/INT/Platforms/VR/ContentSetup/index.html#vrandsimulationsickness
https://harris.itch.io/virtual-strangers
https://harris.itch.io/virtual-strangers

[21] D. E. Holmes, D. K. Charles, P. J. Morrow, S. McClean, and S. M. McDonough.
Using Fitt’s Law to Model Arm Motion Tracked in 3d by a Leap Motion Con-
troller for Virtual Reality Upper Arm Stroke Rehabilitation. In 2016 IEEE 29th
International Symposium on Computer-Based Medical Systems (CBMS), pages
335–336, June 2016.

[22] Dirk Holz, Stefan Holzer, Radu Bogdan Rusu, and Sven Behnke. Real-Time
Plane Segmentation Using RGB-D Cameras. In Thomas Rofer, N. Michael
Mayer, Jesus Savage, and Uluc Saranl, editors, RoboCup 2011: Robot Soccer
World Cup XV, Lecture Notes in Computer Science, pages 306–317. Springer
Berlin Heidelberg, 2012.

[23] Alvin Jude, G. Michael Poor, and Darren Guinness. Grasp, Grab or Pinch?
Identifying User Preference for In-Air Gestural Manipulation. In Proceedings of
the 2016 Symposium on Spatial User Interaction, SUI ’16, pages 219–219, New
York, NY, USA, 2016. ACM.

[24] Maria Karam and M. C. Schraefel. A Taxonomy of Gestures in Human Computer
Interactions. Master’s thesis, North Dakota State University, 2005.

[25] Stoyan Kerefeyn and Stoyan Maleshkov. Manipulation of virtual objects through
a LeapMotion optical sensor. ResearchGate, 12(5):52–57, October 2015.

[26] S. Khattak, B. Cowan, I. Chepurna, and A. Hogue. A real-time reconstructed
3d environment augmented with virtual objects rendered with correct occlusion.
In 2014 IEEE Games Media Entertainment (GEM), pages 1–8, October 2014.

[27] C. Khundam. First person movement control with palm normal and hand gesture
interaction in virtual reality. In 2015 12th International Joint Conference on
Computer Science and Software Engineering (JCSSE), pages 325–330, July 2015.

[28] Jong-Oh Kim, Mihye Kim, and Kwan-Hee Yoo. Real-Time Hand Gesture-Based
Interaction with Objects in 3d Virtual Environments. International Journal of
Multimedia and Ubiquitous Engineering, 8(6):339–348, November 2013.

[29] Joseph J. LaViola. 3d Gestural Interaction: The State of the Field. ISRN
Artificial Intelligence, 2013:1–18, 2013.

[30] Joseph J. LaViola, Jr. A Discussion of Cybersickness in Virtual Environments.
SIGCHI Bull., 32(1):47–56, January 2000.

[31] Leap Motion. Blocks | Leap Motion Developers. Accessed online at https:
//developer.leapmotion.com/gallery/blocks on 2016-08-01.

[32] Leap Motion. How Does the Leap Motion Controller Work? Accessed
Online at http://blog.leapmotion.com/hardware-to-software-how-does-
the-leap-motion-controller-work/ on 2016-06-24.

113

https://developer.leapmotion.com/gallery/blocks
https://developer.leapmotion.com/gallery/blocks
http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-controller-work/
http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-controller-work/

[33] Leap Motion. Leap Motion Store. Accessed Online at http://store-us.
leapmotion.com/ on 2016-07-12.

[34] Hoo Yong Leng, Noris Mohd Norowi, and Azrul Hazri Jantan. A User-Defined
Gesture Set for Music Interaction in Immersive Virtual Environment. In Pro-
ceedings of the 3rd International Conference on Human-Computer Interaction
and User Experience in Indonesia, CHIuXiD ’17, pages 44–51, New York, NY,
USA, 2017. ACM.

[35] W. Lu, Z. Tong, and J. Chu. Dynamic Hand Gesture Recognition With Leap
Motion Controller. IEEE Signal Processing Letters, 23(9):1188–1192, September
2016.

[36] Rajesh B. Mapari and Govind Kharat. American Static Signs Recognition Using
Leap Motion Sensor. In Proceedings of the Second International Conference on
Information and Communication Technology for Competitive Strategies, ICTCS
’16, pages 67:1–67:5, New York, NY, USA, 2016. ACM.

[37] Tomas Mariancik and Karel Hulec. World of Comenius. Accessed online at
https://frooxius.itch.io/world-of-comenius on 2016-07-27.

[38] G. Marin, F. Dominio, and P. Zanuttigh. Hand gesture recognition with leap
motion and kinect devices. In 2014 IEEE International Conference on Image
Processing (ICIP), pages 1565–1569, October 2014.

[39] A. Messaci, N. Zenati, A. Bellarbi, and M. Belhocine. 3d interaction techniques
using gestures recognition in virtual environment. In 2015 4th International
Conference on Electrical Engineering (ICEE), pages 1–5, December 2015.

[40] Microsoft. Buy Kinect for Xbox One. Accessed Online at https:
//www.microsoftstore.com/store/msusa/en_US/pdp/Kinect-for-Windows-
Developer-Bundle/productID.314513600 on 2016-07-12.

[41] Microsoft. Kinect API Overview. Accessed Online at https://msdn.microsoft.
com/en-za/library/dn782033.aspx on 2016-06-28.

[42] Microsoft. Kinect for Windows Sensor Components and Specifications. Accessed
Online at https://msdn.microsoft.com/en-us/library/jj131033.aspx on
2016-06-28.

[43] Zhenyao Mo. Gesture interface engine. Dissertation, University of Southern
California, November 2007.

[44] M. Mohandes, S. Aliyu, and M. Deriche. Prototype Arabic Sign language recog-
nition using multi-sensor data fusion of two leap motion controllers. In 2015 12th
International Multi-Conference on Systems, Signals Devices (SSD), pages 1–6,
March 2015.

114

http://store-us.leapmotion.com/
http://store-us.leapmotion.com/
https://frooxius.itch.io/world-of-comenius
https://www.microsoftstore.com/store/msusa/en_US/pdp/Kinect-for-Windows-Developer-Bundle/productID.314513600
https://www.microsoftstore.com/store/msusa/en_US/pdp/Kinect-for-Windows-Developer-Bundle/productID.314513600
https://www.microsoftstore.com/store/msusa/en_US/pdp/Kinect-for-Windows-Developer-Bundle/productID.314513600
https://msdn.microsoft.com/en-za/library/dn782033.aspx
https://msdn.microsoft.com/en-za/library/dn782033.aspx
https://msdn.microsoft.com/en-us/library/jj131033.aspx

[45] Javier Molina, José A. Pajuelo, Marcos Escudero-Viñolo, Jesús Bescós, and
José M. Martínez. A natural and synthetic corpus for benchmarking of hand
gesture recognition systems. Machine Vision and Applications, 25(4):943–954,
May 2014.

[46] Oculus Rift. Introduction to Best Practices. Accessed online at https://
developer.oculus.com/design/latest/concepts/bp_intro/ on 2017-09-28.

[47] Thai Phan. Using Kinect + OpenNI to Embody an Avatar in Second
Life. Accessed online at http://projects.ict.usc.edu/mxr/play/using-
kinect-openni-to-embody-an-avatar-in-second-life-gesture-emotion-
transference/ on 2016-07-26.

[48] John Platt. Fast Training of Support Vector Machines Using Sequential Minimal
Optimization. Advances in Kernel Methods: Support Vector Learning, pages 185–
208, February 1999.

[49] Leigh Ellen Potter, Jake Araullo, and Lewis Carter. The Leap Motion Controller:
A View on Sign Language. In Proceedings of the 25th Australian Computer-
Human Interaction Conference: Augmentation, Application, Innovation, Col-
laboration, OzCHI ’13, pages 175–178, New York, NY, USA, 2013. ACM.

[50] Jaime Ruiz, Yang Li, and Edward Lank. User-defined Motion Gestures for Mobile
Interaction. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’11, pages 197–206, New York, NY, USA, 2011. ACM.

[51] K. Sabir, C. Stolte, B. Tabor, and S.I. O’Donoghue. The Molecular Control
Toolkit: Controlling 3d molecular graphics via gesture and voice. In 2013 IEEE
Symposium on Biological Data Visualization (BioVis), pages 49–56, October
2013.

[52] Martin Schubert. Geometric | Leap Motion Developers. Accessed online at
https://developer.leapmotion.com/gallery/geometric on 2016-08-01.

[53] D. Shukla, Ö Erkent, and J. Piater. A multi-view hand gesture RGB-D dataset
for human-robot interaction scenarios. In 2016 25th IEEE International Sympo-
sium on Robot and Human Interactive Communication (RO-MAN), pages 1084–
1091, August 2016.

[54] Gurminder Singh, Steven K. Feiner, and Daniel Thalmann. Virtual Reality Soft-
ware & Technology: Proceedings of the VRST ’94 Conference, 23-26 August
1994, Singapore. World Scientific, 1994. Google-Books-ID: ywTGrWPf518C.

[55] M. Sourial, A. Elnaggar, and D. Reichardt. Development of a virtual coach
scenario for hand therapy using LEAP motion. In 2016 Future Technologies
Conference (FTC), pages 1071–1078, December 2016.

115

https://developer.oculus.com/design/latest/concepts/bp_intro/
https://developer.oculus.com/design/latest/concepts/bp_intro/
http://projects.ict.usc.edu/mxr/play/using-kinect-openni-to-embody-an-avatar-in-second-life-gesture-emotion-transference/
http://projects.ict.usc.edu/mxr/play/using-kinect-openni-to-embody-an-avatar-in-second-life-gesture-emotion-transference/
http://projects.ict.usc.edu/mxr/play/using-kinect-openni-to-embody-an-avatar-in-second-life-gesture-emotion-transference/
https://developer.leapmotion.com/gallery/geometric

[56] Jeremy Sutton. Air Painting with Corel Painter Freestyle and the Leap Mo-
tion Controller: A Revolutionary New Way to Paint! In ACM SIGGRAPH
2013 Studio Talks, SIGGRAPH ’13, pages 21:1–21:1, New York, NY, USA, 2013.
ACM.

[57] Michail Theofanidis, Saif Iftekar Sayed, Alexandros Lioulemes, and Fillia Make-
don. VARM: Using Virtual Reality to Program Robotic Manipulators. In Pro-
ceedings of the 10th International Conference on PErvasive Technologies Related
to Assistive Environments, PETRA ’17, pages 215–221, New York, NY, USA,
2017. ACM.

[58] V. Tiwari, V. Anand, A. G. Keskar, and V. R. Satpute. Sign language recogni-
tion through kinect based depth images and neural network. In 2015 Interna-
tional Conference on Advances in Computing, Communications and Informatics
(ICACCI), pages 194–198, August 2015.

[59] P. Trigueiros, F. Ribeiro, and L.P. Reis. A comparison of machine learning
algorithms applied to hand gesture recognition. In 2012 7th Iberian Conference
on Information Systems and Technologies (CISTI), pages 1–6, June 2012.

[60] Fereydoon Vafaei. Taxonomy of Gestures in Human Computer Interaction. Mas-
ter’s thesis, North Dakota State University, August 2013.

[61] Radu-Daniel Vatavu and Ionut-Alexandru Zaiti. Leap Gestures for TV: Insights
from an Elicitation Study. In Proceedings of the ACM International Conference
on Interactive Experiences for TV and Online Video, TVX ’14, pages 131–138,
New York, NY, USA, 2014. ACM.

[62] Jun Wan, Yibing Zhao, Shuai Zhou, Isabelle Guyon, Sergio Escalera, and Stan Z.
Li. ChaLearn Looking at People RGB-D Isolated and Continuous Datasets for
Gesture Recognition. pages 56–64, 2016.

[63] Q. Wang, Y. Wang, F. Liu, and W. Zeng. Hand gesture recognition of Arabic
numbers using leap motion via deterministic learning. In 2017 36th Chinese
Control Conference (CCC), pages 10823–10828, July 2017.

[64] Frank Weichert, Daniel Bachmann, Bartholomäus Rudak, and Denis Fisseler.
Analysis of the Accuracy and Robustness of the Leap Motion Controller. Sensors,
13(5):6380–6393, May 2013.

[65] J. Weissmann and R. Salomon. Gesture recognition for virtual reality applica-
tions using data gloves and neural networks. In International Joint Conference
on Neural Networks, 1999. IJCNN ’99, volume 3, pages 2043–2046 vol.3, 1999.

[66] Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal. The WEKA
Workbench. Online Appendix for "Data Mining: Practical Machine Learning
Tools and Techniques". Morgan Kaufmann, Amsterdam, fourth edition, Decem-
ber 2016.

116

[67] Jacob O. Wobbrock, Meredith Ringel Morris, and Andrew D. Wilson. User-
defined Gestures for Surface Computing. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, CHI ’09, pages 1083–1092, New
York, NY, USA, 2009. ACM.

[68] Deyou Xu. A Neural Network Approach for Hand Gesture Recognition in Virtual
Reality Driving Training System of SPG. In 18th International Conference on
Pattern Recognition, 2006. ICPR 2006, volume 3, pages 519–522, 2006.

117

	Preface
	Declaration
	Introduction
	Background
	Devices

	Problem Statement, Aim and Objectives
	Aim
	Objectives

	Contributions
	Thesis Breakdown

	Literature Review
	Pose Recognition with the Kinect and LMC
	Hand Poses for VR
	User Elicitation Studies
	VR Hand Poses in Literature
	Non-VR Hand Poses in Literature
	VR Hand Poses in Games and Simulations

	Gesture Taxonomies
	Machine Learning Classifiers for Hand Pose Recognition

	A Benchmark Pose Dataset for Virtual Reality
	A Static Pose Set for Virtual Reality
	Outline of the Benchmark Pose Set
	Fist Poses
	Index Pointing Poses
	Open-Palm Poses
	Finger Touches and Loops
	Finger Crosses
	Thumbs-Up Poses
	Analysis of the Pose Set

	Construction of the Dataset

	Pose Recognition
	Feature Engineering
	Machine Learning for Pose Recognition
	Evaluation Metrics
	Experiment Descriptions

	Parameter Tuning
	k-Nearest Neighbour
	Artificial Neural Network
	Support Vector Machine
	Improving the Initial Results

	Results and Analysis
	Experimental Results and Analysis
	Orientation-Independent Experiment
	Requested Orientation Experiment
	Thumbs-Orientation Experiment

	Pose Similarity and Simplification
	Measuring Similarity via Confusion Matrix
	Measuring Similarity via String Distance
	Final Pose Selection

	Discussion
	Introduction
	Formation of the Benchmark Pose Set
	Pose Recognition Experiments
	Orientation-Independent Experiment
	Requested-Orientation Experiment
	Thumbs-Orientation Experiment
	The Classifiers
	The Benchmark Pose Set
	Comparison to Literature

	Formation of the Reliable Pose Set
	Final Remarks

	Conclusion
	Appendix
	Benchmark Pose Set
	Fist Poses
	Index Pointing Poses
	Open-Palm Poses
	Finger Touches and Loops
	Finger Crosses
	Thumbs-Up Poses

