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Abstract
Maternal and child malnutrition has long and short-term consequences on the health
status of the people and on the country’s economy. It is among the major public
health problems in Ethiopia. Worldwide, maternal and child malnutrition is an un-
derlying cause for more than 3.5 million deaths each year. About 35% of the global
disease burden is in under five children. Such a heavy burden requires an under-
standing of the nutritional status of the people, especially children under the age
of five years and associated factors. Therefore, this study attempted to use possible
statistical methods to estimate the effects of the risks related to the nutritional status
of children. It also tried to identify the socio-economic and demographic factors that
are associated with the BMI of under five children in Ethiopia. The study employed
the 2016 Ethiopian Demographic and Health Survey data. A nationally representa-
tive sample of children under the age of five years was used to get information on
weight and height measures of under five children.

The BMI of children under five years of age was used as a response variable to
fit weighted quantile regression. The covariates, age of a child, sex and other rele-
vant socio-economic and demographic factors were used in the study. Following the
quantile regression, the generalized linear models such as logistic regression model
was applied after categorizing the response variable, BMI of under five children, into
two categories namely normal and malnourished. Following binary logistic regres-
sion, an attempt to fit ordinal logistic regression was made. That means nutritional
status was considered as ordinal outcome with four categories namely underweight,
normal, overweight and obese. The findings and comparison of estimates using
these different statistical methods with and without complex survey design were
presented. The results revealed that methods that take into account the complex na-
ture of the design, perform better than those that do not take this into account. It has
also been found that age of a child, weight of child at birth, mother’s BMI, educa-
tional attainment of mother, region and wealth index were significantly associated
with under five children’s nutritional status. Furthermore, the results are discussed
and then a conclusion is made in the context of policy implication for Ethiopia.
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Chapter 1

Introduction

1.1 Country overview: Ethiopia

Ethiopia is located in the horn of Africa and it is the second most populous nation
(after Nigeria) in Africa with around 106.6 million inhabitants (Worldometers, 2018).
The total area of the country is estimated to be 1,104,300 km2 (426,400 square miles).
Ethiopia is bordered by Djibouti, Eritrea, Kenya, Somali, Sudan and South Sudan
(Figure 1.1). Currently, Ethiopia is divided into nine regional states: Afar, Amhara,
Benishangul-Gumuz, Gambella, Harari, Oromia, Somali, Southern Nation National-
ities and Peoples (SNNP) and Tigray. In addition, there are two administrative cities
namely Addis Abeba (the capital and the largest city) and Dire Dawa. Amharic
is the working language of the Federal government and there are over 80 differ-
ent languages, consisting of Semitic, Cushitic, Omotic, and Nilo Saharan languages
(MOI, 2004). The Ethiopian Highlands are the largest continuous mountain ranges
in Africa. The highest peak is Ras Dashin at 4550m. The Afar depression at 110 m be-
low sea level, is the hottest place in the country. Lake Tana in the north is the source
of the Blue Nile (Abbay). Ethiopia is rich in faunal, floral and microbial diversity. It
also has many species of endemic animals and plants. The sof Omar Caves contain
the largest cave on the continent. The country is home to nine UNESCO Heritage
sites. Anthropologists believe that East Africa’s Great Rift Valley is the site of hu-
mankind origins; the valley traverses Ethiopia from southwest to northeast (CSA,
2012).

Ethiopia was a founding member of the UN, the organization of African unity, and
the African base for many international organizations (CIA, 2018; CSA, 2012). The
country is home to more than 80 ethnic groups, which vary in population size from
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1.1. Country overview: Ethiopia

more than 26 million people to fewer than 100 (CSA, 2012). Ethiopia has a unique
alphabet, numerals and calendar that has existed for more than 3000 years. The offi-
cial Ethiopian calendar (Ge’ez calendar) has twelve months of exactly 30 days each
plus five or six epagomenal days. It is approximately seven years and three months
behind the Gregorian calendar. This resulted from an alternate calculation in deter-
mining the date of the Annunciation of Christ Jesus. The first day of the Ethiopian
year is 11 September. Time count is different in Ethiopia, one must add or subtract 6
hours to count as the western time (Molla, 2016; Tseday, 2008).

Ethiopia has suffered periodic droughts, poverty, political repression, and forced
government resettlement that led to a long civil conflict in the 20th century. The
current government is repeatedly reports that the country is on track to meet the
Millennium Development Goal (MDGs) to eradicate extreme hunger and poverty
and combat HIV/AIDS, malaria, tuberculosis (TB) and other diseases. However,
Ethiopia remains one of the world’s least developed countries with average per
capita income less than half of the current sub-Saharan Africa average (Lives & Na-
tions, 2015). Household food insecurity and undernutrition remain critical issues;
undernutrition status of women and children, are consistent problems in the coun-
try. Undernutrition is an underlying cause of 53% of infant and child deaths in the
country (USAID, 2014). The general measures of health and nutritional status are
assessed at the population level through the Demographic and Health survey in the
country (CSA, 2012).

Figure 1.1 – Maps showing location of Ethiopia in Africa

Source:https://www.google.co.za/maps/place/Ethiopia/
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1.2. Background

1.2 Background

The health status of the people is the treasure of any country and nutrition is one
of the most vital preconditions for good health. Child malnutrition is a very com-
mon public health problem in the world. Good nutrition is an essential determinant
for children’s well-being. The nutritional status of children under the age of five
is an important outcome measure of children’s health. For this reason, a national
nutrition strategy and program has been developed and implemented by the gov-
ernment of Ethiopia. One of the objectives of the 2009 Ethiopian National Nutrition
Strategy was to enhance good nutritional practices through health education, and
treatment of micronutrients to the most vulnerable groups of the society, particu-
larly under five children, pregnant and lactating mothers. The Health Sector Devel-
opment plan IV (2010/11-2014/15) mainly strives to improve the nutritional status
of mothers and children through the following programs: Enhanced Outreach Strat-
egy (EOS) with Targeted Supplementary Food (TSF) and Transitioning of EOS into
health extension programme (HEP), Health Facility Nutrition Services, Community
Based Nutrition (CBN), and Micronutrient Interventions and Essential Nutrition Ac-
tions/Integrated Infant and Young Feeding Counseling Services (CSA, 2012). How-
ever, the poor nutritional status of children and women has been a severe problem in
Ethiopia. In the 2016 Ethiopian Demographic and Health Survey (EDHS), children’s
nutritional status and health data were collected. In this nationally representative
sample survey, measurements of children’s weight and height were recorded. The
purpose of taking these anthropometric measurements was to determine if children
are growing ”normally”. A child’s weight or size at birth is an important indicator
of the child’s vulnerability to the risk of childhood illnesses and the child’s chances
of survival. Children whose birth weight is less than 2.5 kilograms, or children re-
ported to be ”very small” or smaller than average, have a higher than average risk of
early childhood death (CSA, 2016). Since most the births do not take place in health
facilities, children are less likely to be weighed at birth in non-institutional settings.
The mother’s estimate of the baby’s size at birth was used in the 2016 EDHS data.
Only 5 percent of children in Ethiopia are weighed at birth (CSA, 2016).

The 2016 EDHS data were collected to calculate three indices of anthropometric
indicators:- weight-for-age, height-for-age, and weight-for-height. The weight-for-
height index measures body mass index in relation to body height; it describes chil-
dren’s nutritional status.

3



1.3. Body mass index of under five children (BMI-for-age)

1.3 Body mass index of under five children (BMI-for-age)

Body mass index is defined as the ratio of weight (kg) to squared height (m2). It is
a measure of nutritional status (Keys et al., 1972). It provides a good indicator for
levels of body fat. However, BMI is not a direct measure of body fatness. Having
a BMI that is either too low or too high is associated with an increased risk of ill
health. BMI is the most frequently used measure for assessing whether adults or
children are underweight, a healthy weight, overweight, or obese. The BMI of adults
remains relatively constant, regardless of age, unless they gain or lose a lot of weight.
Assessing the BMI of children is more complicated than for adults because a child’s
BMI changes as they mature. Children’s body fatness changes over the years as
they grow. Also, girls and boys differ in their body fatness as they mature. This is
why BMI for children, also referred to as BMI-for-age, is gender and age specific.
If a person’s BMI is out of the healthy BMI range, the risks of illness or death may
increase significantly. A high amount of body fat in persons or children can lead to
weight related diseases and other health issues. Being underweight can also put one
at risk for health issues. Table 1.1 provides recommended BMI cutoffs for children
under five years, based on many research studies.

Table 1.1: BMI-for-age cut-offs

Percentile range Weights status
< (5th) percentile Underweight
(5th) to (85th) percentile Normal or healthy weight
(85th) to (95th) percentile Overweight
≥ (95th) percentile Obese

The expert committees’ recommendations are to classify BMI-for-age at or above the
(95th) percentile as obese, between the (85th) and (95th) percentile as at risk of over-
weight and between the (5th) and (85th) percentile as normal (health weight) (Himes
& Dietz, 1994). The cutoff for underweight of less than the (5th) percentile is based
on recommendations by the World Health Organization expert committee on phys-
ical status (World Health Organization, 1996).

According to the 2016 EDHS report, overall, male children are slightly more likely
to be wasted (11%) than female children (8%); 38% of children under age of 5 are
stunted or too short for their age, and 18% severely stunted. Ten percent are wasted
or too thin for their height, including 3% who are severely wasted. Twenty-four
percent of children under age of 5 are underweight or too thin for their age, with
7% severely underweight. The prevalence of overweight children remained low at
1%. Ten percent of children in rural areas are wasted, compared with 6% in urban
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1.3. Body mass index of under five children (BMI-for-age)

areas. Wasting is most common in the children of mothers with BMI of less than 18.5
(15%), in those residing in the Somali region (22%), and in children whose mothers
have no education (11%). Wasting, or low weight for height, is a strong predictor
of mortality among children under five years of age. It is usually the result of acute
significant food shortage and/or disease (CSA, 2016).

According to UNICEF-progress for children 2007 report, there were 24 developing
countries with wasting rates of 10% or more, indicating a serious problem urgently
requiring a response. The highest child malnutrition is found in the Sub-Saharan
Africa countries. Ethiopia is among those countries with the highest rate of stunt-
ing in Sub-Saharan Africa. The proportion of underweight children is highest in
the age range of 2 to 3 years (34%) and lowest among those under six months of
age (10%). In general, 29% of children under the age of five are underweight, and
9% are severely underweight in Ethiopia. An estimated 159 million children under
five years of age, or 23.8%, were stunting in 2016, 15.8% decrease from an estimated
255 million in 1990 worldwide (Achadi et al., 2016). Even though the occurrence of
stunting and underweight among children under five years of age worldwide has
decreased since 1990, overall improvement is unsatisfactory and millions of children
remain at risk (De Onis et al., 2012).

In Ethiopia, babies reported as very small or small at birth are much more likely
to be underweight later in life (39%) and (36%) respectively, than those reported as
average or large at birth (25%). Children born to mothers who are thin (BMI less
than 18.5) are more than three times as likely to be underweight (39%) as children
born to mothers who are overweight/obese (12%). The proportion of underweight
children is eight times higher for those born to uneducated mothers than for those
whose mothers have higher than secondary education (32%) compared with 4%. Ru-
ral children are more likely to be underweight (30%) than urban children (16%). The
proportion of underweight children varies by region. Amhara, Benishangul-Gumuz,
Affar, and Dire Dawa are most highly affected by child stunting (41− 46%), whereas
wasting imposes the heaviest burden in Somali, Affar, and Gambela, with rates of
23%, 18%, and 14%, respectively (CSA, 2016). The proportion of underweight chil-
dren decreases as the wealth quintile of mother increases. Children born to mothers
in the lowest wealth quintile are more than twice as likely to be underweight as chil-
dren born to mothers in the highest wealth quintile (36%) compared with 15% (CSA,
2016). Overweight or obesity among children increases with increasing BMI of the
mother, from 1% among children of mothers who are thin to 4% among children of
mothers who are overweight/obese (BMI ≥ 25). Variation by region is minimal ex-
cept for Addis Abeba, where 6% of children under five, the highest percentage in all

5



1.4. Objectives

regions, are overweight or obese. Globally, an estimated 43 million children under
five years of age, or 7 percent, were overweight in 2011, a 54 percent increase from an
estimated 28 million in 1990. Increasing trends in child overweight have been noted
in most of the world’s regions, not only in developed countries, where prevalence is
highest (15%) in 2011. In Africa, the estimated prevalence of under five overweight
increased from 4 percent in 1990 to 7 percent in 2011 (De Onis et al., 2012).

The nutritional status and/or weight status of under five children is a great con-
cern. This is because the early years of life are very important for future growth and
development. The children are the future citizens of the country; we have respon-
sibility as parents to formulate and shape their present conditions in the best viable
way. BMI is the most frequently used measure for assessing children’s nutritional
status and/or weight status. It is also related to health risks and can be a good indi-
cator of the health status of individuals. Therefore, identifying factors that affect the
BMI of under five children is very important for possible intervention activities. It
can also assist policy makers to know and understand the areas that need consider-
able attention to enhance the planning and evaluation of health policies to prevent a
child’s death and to determine a child’s health, diet and growth.

1.4 Objectives

The main objective of this study is to identify factors that affect under five children’s
nutrition status by fitting the most parsimonious statistical models, yet biologically
reasonable models to describe the relationship between under five children’s BMI
and a set of independent variables such as: age, sex of a child and other relevant
factors with reference to the 2016 Ethiopian DHS.

The specific objectives are:-

• To assess nutritional status and characteristics related to BMI in children under
five years of age in Ethiopia.

• To examine the effects of selected socio-economic and demographic factors on
BMI among children under five years of age in the country.

• To identify factors that contribute to the BMI in under five children using WQR
model in the modeling of BMI of under five children.

• Applying logistic regression and OLR model without and with complex sur-
vey design, to identify factors that affect under five children BMI outcome.
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1.5 Outline of the study

The thesis is divided into six chapters. This introduction section gave some back-
ground about BMI, objective of the study, advantages of studying BMI-for-age, and
some existing information on under five children’s BMI by reviewing research pa-
pers that have been done in this field. In Chapter 2, preliminary data analysis and
description of the study variables are presented. In Chapter 3, we study weighted
quantile regression where the response variable is under five children’s BMI, which
is a continuous variable. Statistical methods for binary outcome are used after cate-
gorizing the response variable under five children’s BMI into two categories namely
normal/malnutritioned in Chapter 4. The generalized linear models (GLMs) such
as logistic regression model, which can be used to fit binary response are applied.
Moreover, since EDHS is survey data, survey logistic regression is also applied in
Chapter 4. A study of ordinal logistic regression model is made in Chapter 5. Ordi-
nal logistic regression model considers any inherent ordering of the levels in the out-
come variable, thus making complete use of the ordinal information. The compari-
son of results obtained from each model without and with complex survey design is
also presented in Chapter 4 and in Chapter 5. Finally, in Chapter 6 the discussions
and conclusions as well as possibilities for future research are presented.

1.6 Literature review

According to the Ethiopian Ministry of Economic Development and Cooperation
(1999) study, 50 percent of the Ethiopian population are living below the food poverty
line and cannot meet their daily minimum nutritional requirement of 2200 calories.
Due to low dietary intakes, low agricultural production, inequitable distribution of
food within the household, improper food storage and preparation, falling gross na-
tional product per capita, dietary taboos, infectious diseases and care, women in the
reproductive age group and children in Ethiopia are the most vulnerable to improper
nutritional status and/or weight status. Drought, civil war and political instability
are also major contributing factors (Getahun et al., 2017). Investing in women’s and
children’s nutrition will have both short-term and long-term effects on the social and
economic wellbeing of not only the individual but the community and the nation at
large (Garcia & Mason, 1992).

A recent study in Oromia region showed that 35 percent of non-pregnant women
in this region had a BMI lower than 18.5, indicative of a high probability of get-
ting underweighted children (Getahun et al., 2017). Underweight is commonly used
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as an indicator for malnutrition. It is influenced by the height and weight of a
child/person and is thus a composite nature of stunting, and wasting makes in-
terpretation complex (Kalhan et al., 2009). Malnutrition includes a wide range of
nutrient-related deficiencies and disorders whether it is due to dietary deficiency,
called under-nutrition (underweight and stunting), or to excess diet, called over-
nutrition (overweight and obese) (Ratzan et al., 2000). The mean prevalence of
underweight in developing countries is 31%, ranging from 6.5% in South Amer-
ica to around 51% in South Asia. A review of the trends of the nutritional status
of Ethiopian children from 1983-1998 showed that the national rural prevalence of
stunting increased from 60% in 1983 to 64% in 1992. The prevalence of underweight
reported in the 1998 survey was 42%. This shows that the number of underweight
children in Ethiopia is still higher than the mean for developing countries. For the
country as a whole, the prevalence of underweight for under five children increased
from 37.3% in 1983 to 46.9% in 1992. The prevalence of underweight was 47.1% from
EDHS, 2000, showing that the situation is no different from the 1992-prevalence. In
the 1998 survey, the prevalence of underweight is 54.4% for Tigray and 52.2% for
Amhara region. From these observations, we can say that no progress was made in
reducing the prevalence of underweight children in the last 17 years (Getahun et al.,
2017).

Considering Ethiopia’s position in the rate of stunting in sub-Saharan Africa, Ethiopia
had the highest rate of stunting. Two countries, Nigeria and Ethiopia, accounted for
about half (52%) of the stunted children in sub-Saharan Africa in 1995 (Getahun
et al., 2017).

1.7 Review of the study variables

The socio-economic and demographic factors used in this study were supported by
several researchers as most likely referred to as intermediate variables for the deter-
minants of children’s nutritional status (Hien & Hoa, 2009). According to different
research studies, some of the common socio-economic and demographic factors that
affect under five childrens BMI are reviewed below:

Wealth index

It serves as an indicator of level of wealth that consists of expenditure and income
measures (Rutstein, 1999). The index is constructed using household assets data via
a principal component analysis. The wealth index of a household is an indicator
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of access to adequate food supplies, use of health services, availability of improved
water sources, and sanitation facilities, which are prime determinants of child and
maternal nutritional status (Unicef et al., 1990). Wealth of households is calculated
through household assets collected from DHS surveys -i.e., type of flooring; source
of water; availability of electricity; possession of durable consumer goods. These are
combined into a single wealth index (CSA, 2016).

WHO (2008) reported that low BMI (< 18.5) is common in women in low-income
countries. A study in the Southern Nations, Nationalities and Peoples Region (SNNPR)
of Ethiopia revealed that women belonging to low economic status households were
mostly affected by malnutrition (Teller & Yimer, 2000). The prevalence of malnutri-
tion and food insecurity increases as the household income decreases. The risk of
being underweight is greater among children from households with a low or very
low socio-economic status as compared to children from households with middle
or upper socio-economic status. Comparative studies on child nutrition for many
countries and results of some local studies in Ethiopia (Getaneh et al., 1998; Som-
merfelt & Stewart, 1994; Genebo et al., 2017; Yimer, 2000) reveals that the level of
child stunting is lower in households with a higher level of economic status.

Educational attainment of mother

Education is a key determinant of individual opportunities, attitudes, and economic
and social status. It has a strong effect on reproductive behavior, fertility, infant
and child mortality and morbidity, and attitudes and awareness related to family
health, use of family planning, and sanitation (CSA, 2016). Education is one of the
most important resource that enable women to provide appropriate care for their
children, which is an important determinant of children’s growth and development.
The higher the level of a woman’s education, the more awareness of how to utilize
available resources for the improvement of their own nutritional status and that of
their families (Engle et al., 1996).

Child’s weight at birth

A child’s weight/size at birth is an important indicator of the child’s vulnerabil-
ity to the risk of childhood illnesses and the child’s chance of survival. According
to the 2016 EDHS report, children whose birth weight is less than 2.5 kilograms, or
children reported to be ”very small” or ”smaller than average” have a higher than
average risk of early childhood death (CSA, 2016).
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Gender and age of a child

Age and gender are important variables that are a primary basis for demographic
classification in vital statistics censuses, and survey. They are also important vari-
ables for the study of mortality, nutrition status, fertility and marriage. For children,
BMI is age and gender specific (Hammer et al., 1991; Pietrobelli et al., 1998), because
BMI changes substantially as children age.

Mother’s BMI

The Chronic Energy Deficiency (CED) or underweight is associated with impaired
physical capacity, reduced economic productivity, increased mortality and poorer re-
productive outcome. Some evidence in developing countries indicates that women
with a body mass index below 18.5 show a progressive increase in mortality rate as
well as increased risk of illness (Rotimi et al., 1999). Increased perinatal and neona-
tal mortality, a higher risk of low birth weight babies, stillbirths, and miscarriage are
some of the consequence of malnutrition in women (Krasovec & Anderson, 1991).

Kulasekaran et al. (2012) showed a close correlation between mother’s BMI with the
incidence of anemia among the children. The women with Chronic Energy Deficit
(underweight) had given birth to 77.6% of anemic children. Underweight among
women contributed to more proportions of moderate and mild anemia among their
children. Maternal low BMI has adverse effects contributing to poor fetal physical
development, and low birth weight baby. The mortality rates are higher among low
birth weight children in neonatal period and these children have more chance of de-
veloping non-communicable diseases such as type 2 diabetes and heart conditions
in adulthood.

Place of residence

A study in the SNNPR of Ethiopia (Teller & Yimer, 2000) showed that compared
to the urban women the rural women are more likely to suffer from Chronic Energy
Deficiency. Several other local studies in Ethiopia also pointed out the higher rates
of rural malnutrition (Taddese et al., 2017; Ferro-Luzzi et al., 1990). Children in rural
areas are more likely to be stunted (46%) than those in urban areas (36%) (USAID,
2014).
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Chapter 2

Preliminary data analysis

2.1 Introduction

For this study, the 2016 Ethiopian Demographic and Health Survey was used. The
survey was carried out under the aegis of the Ministry of Health (MOH) and im-
plemented by the Central Statistical Agency of Ethiopia (CSA). A total of 16,650
households, 5,232 in urban and 11,418 in rural areas were covered in the survey. The
sample generated for women aged 15-49, 5,514 in urban and 11,149 in rural areas and
14,195 for men aged 15-59, with 4,472 in urban and 9,723 in rural areas. The EDHS
have been conducted at five-year intervals since 2000. The primary objective of the
2016 EDHS was to provide up-to-date information for planning, policy formulation,
monitoring, and evaluation of population and health programs in the country. For
each EDHS, the key indicators were fertility, family planning behavior, child mortal-
ity, children’s nutritional status, the utilization of maternal and child health services,
knowledge of HIV/AIDS and other sexually transmitted infections (STIs). The sam-
pling frame used for the 2016 EDHS is the Ethiopia Population and Housing Census
(PHC), which was conducted in 2007 by the Ethiopia Central Statistical Agency. The
2016 EDHS sample was selected using a stratified, two-stage cluster design, and
census enumeration area (EA) was the sampling units for the first stage. In the first
stage, a total of 645 EA (202 in urban areas and 443 in rural areas) were selected with
probability proportional to EA size (based on the 2007 PHC) and with independent
selection in each sampling stratum. In the second stage of selection, a fixed num-
ber of 28 households per cluster were selected with an equal probability systematic
selection from the newly created household listing (CSA, 2016).
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2.2 Study variable

2.2.1 Response variable

The response variable is BMI of under five children in Ethiopia, which is a con-
tinuous variable. The response variable then categorized into two categories (nor-
mal/malnourished). Based on this binary outcome logistic regression for binary
outcome was studied. Thereafter a four-category variable of nutrition status of un-
der five children was also created, named as ”ordinal nutritional status”. Table 2.1
presents the under five children’s BMI cutoffs, recommended percentile range, and
explicatory nutrition status with reference to the 2016 EDHS data. Based on recom-
mendations by the World Health Organization Expert Committee on Physical Status
based on children’s age and sex, children with BMI less than 5th percentile are con-
sidered as underweight, children with BMI that falls between 5th to 85th percentile
are considered as normal (healthy weight), children with BMI that falls between
85th to 95th percentile are considered as overweight and children with BMI that falls
above the 95th percentile are considered as obese.

Table 2.1: Summary of the response variable

Study result of BMI range percentile range nutrition status
< 12.5744 (5th) percentile underweight
12.5744− 17.0168 (5th) to (85th) percentile normal or healthy weight
17.0168− 18.4892 (85th) to (95th) percentile overweight
≥ 18.4892 (95th) percentile obese

2.2.2 Explanatory variables

The explanatory variables used in this study are the socio-economic, demographic
and geographic factors. These are current age of a child, sex of a child, weight
of a child at birth, mother’s age, mother’s BMI, educational attainment of mother,
mother’s work status, religion, region, wealth index, place of residence (rural/urban)
and marital status of mothers with reference to the 2016 Ethiopian DHS. Table 2.2
shows codes, labels and descriptions of the variables which are used in this study.

Table 2.3, Figure 2.1, and Figure 2.2 display socio-economic and demographic char-
acteristics of the study variables. A nationally representative sample of under five
children, for which the study observed their weight and height measures was stud-
ied. Table 2.3 show that 51.1% of the children were males and 48.9% of the children
were females. From Table 2.3, it can be seen that 29.9%, 42.1% and 28% of weight
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Table 2.2: Description of the study variables

Code Label Descriptions

B8 current age of child children under five years

B4 sex of child 1=male, 2=female

M18 weight of child at birth 1=large, 2=average, 3=small

V012 mother’s age age of the mother during the survey
(minimum=15 and maximum=49)

V439A mother’s BMI body mass index of mother
(mean=20.7225 and median=20.1252)

V149 educational attainment of
mother

0=no education, 1=primary school,
2=secondary school and 3=higher

V714 mother work status 0= no, 1=yes

V130 religion 1=Orthodox, 2=Catholic, 3=Protestant,
4=Muslim and 5=other

V101 region 1=Tigray, 2=Afar, 3=Amhara, 4=Oromia,
5=Somali, 6=Benishangul, 7=SNNPR,

8=Gambela, 9=Harari, 10=Addis Abeba,
11=Dire Dawa

V190 wealth index 1=poor, 2=middle and 3=rich

V102 place of residence 1=urban, 2=rural

V501 marital status of mother 0=not married and 1=married

BMICHILD under five children BMI mean=15.3983, median=15.2554

Binary-nutritionstatus Binary outcome 0=malnourished, 1=normal

Ordinal-nutritionstatus Ordinal outcome 1=underweight, 2=normal(healthy
weight), 3=overweight, 4=obese
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of children at birth were large, average and small respectively. With regard to the
educational attainment of mothers, 64% of mothers have no education (Figure 2.2).
Furthermore, the majority of the mothers had no job (72.4%). Table 2.3 also show
that the majority of the children were from Oromia (15.45%), followed by Somali
(12.51%), SNNP (14.2%), Tigray (10.48%) and Amhara (9.91%) regions (Figure 2.1).
Table 2.3 show that half of the mothers/households were either in poor economic
category (53.8%) or in middle economic category (14.4%). An overwhelming major-
ity of children’s mothers were residing in rural areas (81.9%). Moreover, the results
also show that the majority of the mothers were married (88.6%).

Table 2.3: Summary measures for the selected socio-economic and demographic character-
istic of children

Characteristics Frequency Percentage(%)
Current age of child
0 1948 21.71
1 1798 20.05
2 1738 19.37
3 1695 18.89
4 1792 19.98
Sex of a child
male 4586 51.1
female 4385 48.9
Weight of child at birth
large 2678 29.9
average 3781 42.1
small 2512 28
Religion
Orthodox 2702 30.12
Catholic 55 0.61
Protestant 1610 17.95
Muslim 4447 49.57
Other 157 1.75
Mother work status
No 6495 72.4
Yes 2476 27.6
Wealth index
poor 4826 53.8
middle 1289 14.4
Rich 2856 31.8
Place of residence
Urban 1623 18.1
Rural 7348 81.9
Current marital status
not married 572 6.4
married 8399 93.6
Total 8971 100

14



2.2. Study variable

Figure 2.1 – Sample distribution of children according to region

Figure 2.2 – Educational attainment of mother in Ethiopia
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2.3 Summary

Descriptive statistics were used to describe the data at hand. The assessment of
variables by measures of central tendency and measures of variability help us to un-
derstand different properties of the data being analyzed. The technique allows for
the analysis of the relationships between the socio-economic and demographic fac-
tors and the response variable. The results of the analysis can be seen analytically
and visually. Moreover, the results will be easier to interpret.

Overall, it has been observed that the number of under five children in different
age and the number of male and female children were almost equal (Table 2.3). Ma-
jority of the respondents (84.2%) were residing in rural areas. About 93.6% of the
respondents are married. More than half of the number of children (53.8%) were
from poor economic class families. Most of the respondents were from Oromia fol-
lowed by Somali, SNNP, Tigray and Amhara regions. Many of the respondents were
Orthodox Christian and Muslim.

The continuous response variable (under five children’s BMI) was recoded into a
categorical variable that has two levels (Binary outcome) and thereafter four levels
(Ordinal outcome). The recoding of the response variable into different levels directs
us to use different statistical models to study the relationship between the response
and a set of independent variables. The possible statistical methods to study for
continuous and categorical data are discussed in the next chapters.
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Chapter 3

Quantile regression

3.1 Introduction

The purpose of regression analysis is to analyze relationships between a response
variable and predictor variables. It answers the question of how much the response
variable changes with changes in the predictor variables and predicts the values of a
response variable based on the values of the predictor variables. Since the response
variable cannot be predicted exactly from the predictor variables in real applications,
we use measure of central tendency, typically the mean, median and mode, to sum-
marize the behaviour of the response for fixed values of the predictors. Regression
analysis estimates the conditional mean of the response variable given the predictor
variables. The idea of modelling and fitting the conditional mean function is the
essence part of a broad family of regression modelling approaches, including the fa-
miliar simple linear regression model and multiple linear regression model.

The analysis of the conditional mean linear regression focuses on the mean response.
The relationship between the response Y and k predictors x1, x2, ..., xk is described
by the conditional mean of the response for given values of predictors. That is,

Y |x1, x2, ..., xk = Xβ + ε (3.1)

where β = (β0, β1, ..., βk)
T is the unknown parameter vector.

The above equation specifies the change in the conditional mean of the response
variable associated with a change in the explanatory variables.

The popular assumptions of conditional mean models are: they can provide a com-
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plete connection between the explanatory variables and the response distribution.
Also, they lead to estimators like least-squares and maximum likelihood that are
easy to compute and interpret. However, the conditional mean regression has inher-
ent limitations. First, when summarizing the behavior of the response for given val-
ues of predictor variables, the conditional mean model cannot be readily extended
to non-central locations. Second, when dealing with heavy-tailed distributions, the
measure of central location under conditional mean models can be significantly af-
fected by outliers and become inappropriate and misleading. Third, it is not readily
direct for us to understand how the shape of underlying response distribution is af-
fected by the changes in predictor variables (Huang et al., 2015).

The conditional median modelling or simply median regression is an alternative
to conditional mean modelling. It addresses the issues of regression analysis regard-
ing the choice of a measure of central tendency. Median regression modelling has
the potential to be more useful when the distribution is highly skewed, where the
mean can be challenging to interpret while the median remains highly informative
(Hao & Naiman, 2007). Median regression is a special case of quantile regression
in which the conditional 0.5th quantile is modelled as a function of covariates. Note
that median regression will be the same as mean regression if the response variable is
from a symmetric distribution such as the normal distribution. More generally, other
quantiles can be used to describe non-central positions of a distribution. Quantile re-
gression provides a complete picture of the covariate effect when a set of percentiles
is modelled. Quantile regression models can be easily fit by minimizing a general-
ized measure of distance using algorithms based on linear programming. Therefore,
we are interested in estimating quantiles of the response distribution as a function
of potential predictor variables. When the conditional densities of the response are
heterogeneous, it is natural to consider whether weighted quantile regression might
lead to efficiency improvements (Koenker, 2005). Weighted quantile regression im-
proves the efficiency, if the design of the survey is taken into account.

Ordinary least squares regression models the relationship between one or more co-
variates X and the conditional mean of the response variable givenX = x orE(Y |X =

x). Quantile regression, which was first introduced by Koenker & Bassett Jr (1978),
extends the regression model to conditional quantile of the response variable, such
as 0.25 quantile or 25th percentile and so on. Specifically the 0.25 quantile estimates
the parameters that describe the 25th percentile (first quantile) of the conditional dis-
tribution. Quantile regression is desired if conditional quantiles are of interest. It is a
statistical technique intended to model and estimate conditional quantile functions.
It is also particularly useful when the rate of change in the conditional quantile,
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expressed by the regression coefficients, depends on the quantile. Quantile regres-
sion gives complete information about the covariate effect if we model a set of per-
centiles. Median regression is a special case of quantile regression. This method
helps to detect significant structures of the data that might be missed by models that
average over the conditional distribution. Quantile regression allows for effects of
the independent variables to differ over the quantiles. For example the effect of a
covariate might be different at the tail of the distribution compared to the median
effects and hence the interpretations are different. That is the effects of the indepen-
dent variables may vary over quantiles of the conditional distribution. This is also
an important advantage of quantile regression over mean regression (Chamberlain,
1994). One of the most important virtues of quantile regression is that it allows us to
make inference on the entire conditional distributions of the response by estimating
a number of different quantiles (Huang et al., 2015).

For a random variable Y with probability distribution function; F (Y ) = Pr(Y ≤ y)

the τ th quantile of Y is defined as the inverse function:

Qy(τ) = inf{Y : F (Y ) ≥ τ} = F−1(τ), 0 < τ < 1

The quantile regression model is described by the conditional τ th quantiles of the
response Y for given values of predictors x1, x2, ..., xk. It is a natural extension of the
traditional mean model in Equation (3.1):

Qy(τ |x1, x2, ..., xk) = βτ0 + βτ1x1 + ...+ βτkxk, 0 < τ < 1 (3.2)

where βτ = (βτ0 , β
τ
1 , ..., β

τ
k ) is the unknown parameter vector.

Equation (3.2) gives the changes in the conditional quantiles. Because any τ th quan-
tile can be used, any predetermined situation of the distribution can be modelled.
This is useful to obtain a more complete understanding about how the outcome
distribution can be affected by the predictors. Hence, the method lets us select situ-
ations on the outcome distribution for their detailed inquiries.

For a random sample {y1, ..., yn} of Y , it is well known that the sample median min-
imizes the sum of absolute deviations:

Median = argminξ∈R

n∑
i=1

ρτ |yi − ξ|
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where ρτ and ξ are explained below for any given quantile.

Likewise, the general τ th sample quantile ξ(τ), which is the analogue of Q(τ), is
formulated as the minimizer:

ξ(τ) = argminξ∈R

n∑
i=1

ρτ (yi − ξ)

where ρτ (Z) = Z(τ − I(Z < 0)), 0 < τ < 1, and where I(•) denotes the indicator
function. The loss function ρτ assigns a weight of τ to positive residuals yi− ξ and a
weight of 1− τ to negative residuals. Using this loss function, the linear conditional
quantile function extends the τ th sample quantile ξ(τ) to the regression setting in the
same way that the linear conditional mean function extends the sample mean.

OLS regression estimates the linear conditional mean function E(Y |X = x) = x′β

by solving:

β̂ = argminβ∈RP

n∑
i=1

(yi − x′iβ)2 (3.3)

The estimated parameter β̂ minimizes the sum of squared residuals in the same way
that the sample mean µ̂ minimizes the sum of squares:

µ̂ = argminβ∈R

n∑
i=1

(yi − µ)2

Quantile regression also estimates the linear conditional quantile function, Q(τ |X =

x) = x′β(τ), by solving:

β̂(τ) = argminβ∈RP

n∑
i=1

ρτ (yi − x′iβ) (3.4)

for any quantile τ ∈ (0, 1). The quantity β̂(τ) is called the τ th regression quan-
tile. The case τ = 0.5, which minimizes the sum of absolute residuals, corresponds
to median regression, which is also known as L1 regression. The set of regression
quantiles {β(τ) : τ ∈ (0, 1)} is referred to as the quantile process.

Quantile regression minimizes:∑
i

τ |εi|+
∑
i

(1− τ)|εi|,
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where
∑

i τ |εi| is a sum that gives the asymmetric penalties τ |εi| for under prediction
and (1− τ)|εi| for over prediction.

The SAS QUANTREG procedure computes the quantile function Q(τ |X = x) which
the analyst or modeler can use to conduct statistical inference on the estimated pa-
rameters β̂(τ).

The τ th quantile regression estimator β̂(τ) minimizes the objective function given
by

Q(βτ ) =
n∑

i:yi≥x′iβ

τ |yi − x′iβτ |+
n∑

i:yi<x′iβ

(1− τ)|yi − x′iβτ | (3.5)

where 0 < τ < 1, i : yi ≥ x′iβ for under prediction, i : yi < x′iβ for over prediction.
We have βτ instead of β, because different choices of τ estimates different values of
β.

3.1.1 Interpretation of quantile regression estimates

Since the τ th conditional quantile of Y given x is given by Qτ (yi|xi) = x′iβτ , its esti-
mate is given by Q̂τ (yi|xi) = x′iβ̂τ . As one increases τ continuously from 0 to 1, one
traces the entire conditional distribution of Y , conditional on x. As a note, various
quantile regression estimates are correlated. The parameter estimates in quantile re-
gression models have the same interpretation as those of any other linear model, as
rates of changes. Therefore, in a similar way to the OLS model, the βi(τ) coefficient
of the quantile regression model can be interpreted as the rate of change of the τ th

quantile of the dependent variable distribution per unit change in the value of the
ith regressor; consider the partial derivative of the conditional quantile of y with re-
spect to one of the regressors, say i, namely, ∂Qτ (Y |X)/∂Xi. This derivative is to be
interpreted as the marginal change in the τ th conditional quantile due to marginal
change in the ith element of x. If x contains k distinct variables, then this derivative
is given simply by βi(τ), the coefficient on the ith variable (Buchinsky, 1998).

Equivariance properties of quantile regression

One of the best advantages of quantile regression estimators is their behavior with
respect to monotone transformations of the response variable. This behavior, named
equivariance, refers to the ability to use the same interpretation rules when the data
or the model is subjected to a transformation. According to Buchinsky (1998), some
authors have proposed that the equivariance property can be exploited to speed up
the estimation process by reducing the number of simplex iterations.
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The quantile regression estimator has several important equivariance properties which
help facilitate the computation procedure. According to the chosen transformation,
the equivariance property can be distinguished into: scale equivariance, shift or re-
gression equivariance, equivariance to reparametrization of design and equivariance
to monotone transformations (Davino et al., 2013).

Practical implications of the equivariance properties of quantile regression

Let us consider the simplest quantile regression model with one explanatory variable
and for a given quantile τ :

Qτ (Y |x) = β0(τ) + β1(τ)x

The scale equivariance property implies that, if the dependent variable is multiplied
by a positive constant c, the coefficients of the new model can be easily obtained
multiplying by c the coefficients in equation (above):

Qτ (cY |x) = cβ0(τ) + cβ1(τ)x

The shift equivariance property is also referred to as the regression equivariance
because it denotes the effect of the dependent variable obtained as a linear combi-
nation, through the γ coefficients, of the explanatory variable. Such an effect holds
when Y is subjected to a location shift:

Y ∗ = Y + γY

The QR estimator of Y ∗ on x results in: Qτ (Y ∗|x) = β0 + [β1(τ) + γ]x

The equivariance to reparametrization of design is derived from the effect of a non-
singular matrix A (p× p) introduced in the model:

Qτ (Y |X,A) = A−1Xβτ

where X is the matrix of p explanatory variables.

Finally, the equivariance to monotone transformations implies that if a nondecreas-
ing function on R, h(•) is applied to the dependent variable, the quantiles of the
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transformed Y variable are the transformed quantiles of the original ones:

Qτ [h(y)|x] = h[β0(τ)] + h[β1(τ)]x

According to Davino et al. (2013), appropriate selection of the h(γ) monotone func-
tion is very important in real data applications because it is necessary to manage and
correct different kinds of skewness.

Details about quantile regression and its equivariance property can be found in dif-
ferent literatures (Davino et al., 2013; Koenker, 2005; Neter et al., 1996; Parzen et al.,
1994; Sen & Srivastava, 2012; Weisberg, 2005).

3.2 Weighted quantile regression

The model for general linear regression is:

Y = A′β + ε

where Y = (y1, ..., yn)′ is the (n×1) vector of response,A′ = (x1, ..., xn)′ is the (n×p)
regressor matrix, β = (β1, ..., βp)

′ is the (p × 1) vector of unknown parameters, and
ε = (ε1, ..., εn)′ is the (n× 1) vector of unknown errors.

L1 regression, also known as median regression, is a natural extension of the sample
median when the response is conditioned on the covariates. In L1 regression, the
least absolute residuals estimate β̂LAR, referred to as the L1-norm estimate, is ob-
tained as the solution of the minimization problem: minβ∈RP

∑n
i=1 |yi − x′iβ|. More

generally, for quantile regression Koenker & Bassett Jr (1978) defined the τ th regres-
sion quantile, 0 < τ < 1, as any solution to the minimization problem: Equation
(3.5). The solution is denoted as βτ , and the L1-norm estimate corresponds to β(1/2).
The τ th regression quantile is an extension of the τ th sample quantile ξ(τ), which can
be formulated as the solution of:

min
ξ∈R

 ∑
i∈{i:yi≥x′iξ}

τ |yi − x′iξ|+
∑

i∈{i:yi<x′iξ}

(1− τ)|yi − x′iξ|

 (3.6)
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3.2. Weighted quantile regression

If we specify weights wi, i = 1, ..., n, weighted quantile regression is carried out by
solving:

min
βw∈RP

 ∑
i∈{i:yi≥x′iβw}

wiτ |yi − x′iβw|+
∑

i∈{i:yi<x′iβw}

wi(1− τ)|yi − x′iβw|

 (3.7)

Weighted regression quantiles βw can be used for L-estimator (Koenker & Zhao,
1996).

Weighted quantile regression as an optimization problem

The traditional mean regression for conditional mean µY |X = E[Y |X] is a solution
of minµ∈R

∑n
i=1(yi − µY |X)2. Assuming µY |X = XTβ, the least-squares estimator β̂

is obtained from Equation (3.3). The classical quantile regression for the conditional
quantile τY |X = Qy(τ |x) is a solution of minq∈R

∑n
i=1 ρτ (yi−qY |X). Assuming qY |X =

XTβτ , the quantile regression estimator β̂τ is obtained by Equation (3.4). Therefore,
the weighted quantile regression problem can be formulated as a linear programing
problem:

min
(β,u,v)∈RP×R2n

{τwTu+ (1− τ)wTv|Xβτ + u− v = y}, (3.8)

where X denotes the n× p design matrix andw,u,v are n× 1 three vectors with el-
ements of wi, ui, vi, respectively. wi represent the weight where as ui, vi are 2n ’slack’
variables {ui, vi : i = 1, 2, ..., n} to represent the positive and negative parts of the
residual vector (see Huang et al., 2015).

The proposed weighted quantile regression for the conditional quantile qY |X = Qy(τ |x)

is a solution of minq∈R
∑n

i=1wiρτ (yi − qY |X). Assuming qy|x = xTβτ , the weighted
quantile regression estimator β̂w(τ) is obtained by:

β̂w(τ) = argminβ∈RP

n∑
i=1

wi(xi, τ)ρτ (yi − xTi β), (3.9)

where β̂w(τ) is an extension of the loss function introduced by Koenker (2005) for
the classical quantile regression; and wi(xi, τ) is defined as any uniformly bounded
positive weight function independent of yi, i = 1, ..., n and

ρτ (u) = u(τ − I(u < 0)) =

{
u(τ − 1), u < 0

uτ, u ≥ 0.
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3.3. Analysis of data using weighted quantile regression

Weighted quantile regression might lead to more efficient improvements than the
conventional quantile regression (Koenker & Bassett Jr, 1978).

3.3 Analysis of data using weighted quantile regression

The data employed in this study is the 2016 Ethiopian Demographic and Health
Survey data. The socio-economic, demographic and geographic factors presented
in section 2.2.2 are considered in the modeling process. The weighted quantile re-
gression model was applied in modeling the body mass index of under five children.

The parameter estimates at different quantile levels (Table 3.1) show how quantile
regression allows us to study the impact of predictors on different quantiles of the
response variable, and thus provides a complete picture of the relationship between
the dependent and explanatory variables by taking the weight into account. Quan-
tile regression analysis (Table 3.1) identified the significant predictor variables at dif-
ferent quantile levels. At 0.05 quantile: mother’s BMI, sex of child, weight of a child
at birth and region (Addis Abeba, Affar, SNNPR and Somali) were found to have
significant effect on BMI of under five children. At 0.5 quantile: current age of child,
mother’s age, mother’s BMI, sex of child, weight of child at birth and region (Affar,
Gambela, SNNPR and Somali) were found to have significant effect on BMI of under
five children. Similarly, at 0.85 quantile: current age of child, mother’s current age,
mother’s BMI, sex of child, weight of child at birth and region (Addis Abeba and
Somali) were found to significantly affect under five children’s BMI. The findings
using quantile regression at different quantile levels (0.25 quantile, 0.75 quantile and
0.95 quantile) were also presented (Table 3.1).

At 0.25 quantile, intercept = 13.7005, which is the predicted value of the 0.25 quantile
under five children BMI when all the explanatory variables are zero. β̂1(0.25quantile) =

−0.1793 indicates the rate of change of the 0.25 quantile (Q1) of the explanatory
variable per unit change of current age of child keeping all the other explanatory
variables constant. In other words, the Q1 regression coefficient indicates the 25th

percentile of the under five children BMI will decrease by 0.1793 for every one-unit
change in current age of a child, setting all the other explanatory variables constant.

At 0.5 quantile, intercept = 14.9289, which is the predicted value of the 0.5 quantile
under five children’s BMI when all the explanatory variables are zero. β̂3(0.5quantile) =

0.0730 indicates the rate of change of the 0.5 quantile (Q2) of the explanatory vari-
able per unit change of mother’s BMI keeping all the other explanatory variables
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3.3. Analysis of data using weighted quantile regression

constant. In other words, the Q2 regression coefficient indicates the 50th percentile
of the under five children’s BMI will increase by 0.073 for every one-unit increase in
mother’s BMI, setting all the other explanatory variables constant.

At 0.75 quantile, intercept = 16.2903, which is the predicted value of the 0.75 quantile
under five children’s BMI when all the explanatory variables are zero. β̂2(0.75quantile) =

−0.0181 indicates the rate of change of the 0.75 quantile (Q3) of the explanatory
variable per unit change of mother’s age keeping all the other explanatory variables
constant. In other words, the Q3 regression coefficient indicates the 75th percentile
of the under five children’s BMI will decrease by 0.0181 for every one-unit increase
in mother’s age, setting all the other explanatory variables constant.
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3.3. Analysis of data using weighted quantile regression

Table 3.1: Parameter estimates at different quantile levels

Parameter Estimate P-value Estimate P-value Estimate P-value Estimate P-value Estimate P-value Estimate P-value

Quantile level 0.05 0.25 0.5 0.75 0.85 0.95

Intercept 11.7144 <0.0001 13.7005 <0.0001 14.9289 <0.0001 16.2903 <0.0001 16.5627 <0.0001 16.9252 <0.0001

Current age of child 0.0541 0.0935 -0.1793 <0.0001 -0.2908 <0.0001 -0.4013 <0.0001 -0.4648 <0.0001 -0.6750 <0.0001

Mother’s age -0.0102 0.2604 -0.0104 0.0104 -0.0149 0.0005 -0.0181 <0.0001 -0.0188 0.0018 -0.0112 0.4144

Mother’s BMI 0.0604 <0.0001 0.0670 <0.0001 0.0730 <0.0001 0.0722 <0.0001 0.0875 <0.0001 0.1133 0.0011

Sex of child (ref. = male)

Female -0.3657 0.0006 -0.2722 <0.0001 -0.1699 0.0007 -0.2169 0.0004 -0.1899 0.0117 -0.1133 0.4826

Weight of child at birth (ref. = Small)

Large 0.6257 <0.0001 0.4220 <0.0001 0.5169 <0.0001 0.4659 <0.0001 0.5101 <0.0001 0.4941 0.0233

Average 0.3596 0.0110 0.2413 0.0014 0.2263 0.0008 0.2648 0.0002 0.3791 <0.0001 0.4561 0.0541

Work status (ref. = Yes)

No 0.1636 0.1400 0.0416 0.4779 0.0589 0.2715 0.0363 0.6589 0.0361 0.6956 0.0501 0.8058

Educational level (ref. = Sec. school)

No education -0.2849 0.3299 -0.2222 0.1429 -0.0252 0.8593 0.1337 0.3931 0.1749 0.3634 0.0809 0.8676

Primary school -0.1431 0.6222 -0.1572 0.2843 -0.0361 0.7913 0.0491 0.7601 0.0196 0.9157 -0.0104 0.9837

Higher -0.4693 0.3358 -0.1159 0.6162 0.1799 0.5129 -0.0570 0.8193 -0.0126 0.9583 -0.5030 0.5548

Marital status (ref. = Not married)

Married -0.0015 0.9946 0.0093 0.9403 0.0416 0.7664 0.2700 0.0291 0.2618 0.0662 0.3608 0.1500

Religion (ref. = Protestant)

Orthodox 0.0542 0.7819 0.0464 0.6401 -0.0413 0.6707 -0.1707 0.1610 -0.2609 0.0607 0.0950 0.7899

Catholic 0.1356 0.8622 0.2755 <0.0001 -0.3314 0.3023 -0.5027 0.2939 -0.4242 0.5724 -0.3066 0.9195

Muslim -0.1391 0.4574 0.0566 0.5438 -0.1484 0.1249 -0.1297 0.2913 -0.0986 0.5005 0.1518 0.7017

Other -1.4190 0.1099 0.2181 0.4835 0.5450 0.0695 0.6020 0.1996 1.6959 0.0191 3.0352 0.1634

Region (ref. = Tigray)

Addis Abeba 0.5076 0.0352 0.2490 0.0996 0.0533 0.7093 1.1381 0.4611 0.3122 0.1569 0.9173 0.0390

Affar 0.1048 <0.0001 -0.2568 0.0136 -0.2730 0.0034 -0.4732 0.0003 -0.4656 0.0034 -0.2932 0.3436

Amhara 0.2811 0.0854 0.0184 0.8477 -0.0096 0.9097 -0.1553 0.1071 -0.0749 0.4689 -0.3352 0.1592

Benishangul 0.2520 0.2309 0.0268 0.7772 -0.0851 0.3693 -0.2442 0.0390 -0.2967 0.0167 -0.0689 0.8186

Dire Dawa -0.3238 0.3697 -0.2679 0.0693 -0.1933 0.1264 -0.5401 <0.0001 -0.5773 0.0005 -0.2942 0.4650

Gambela -0.2240 0.3994 -0.2627 0.0367 -0.4479 0.0007 -0.5770 0.0003 -0.5453 0.0022 -0.2651 0.4330

Harari -0.1805 0.5032 -0.0795 0.6127 0.0701 0.6096 -0.1211 0.3684 -0.1638 0.3471 0.0489 0.8822

Oromia 0.0365 0.8421 0.0396 0.6879 0.0267 0.7628 0.0672 0.5324 0.0733 0.5533 0.3069 0.2651

SNNPR 0.5568 0.0084 0.4065 0.0002 0.2809 0.0063 0.2034 0.1357 0.2229 0.1212 0.6302 0.0804

Somali -0.4034 0.0323 -0.8043 <0.0001 -0.8032 <0.0001 -0.9451 <0.0001 -1.0115 <0.0001 -0.8831 0.0122

Place of residence (ref. = Urban)

Rural -0.0879 0.6539 0.0347 0.7682 -0.1274 0.2803 -0.2769 0.0366 -0.1580 0.2208 0.3011 0.3618

Wealth index (ref. = Rich)

Middle 0.0734 0.7108 -0.0973 0.1930 -0.0936 0.2264 -0.1824 0.0713 -0.1926 0.1221 -0.7798 0.0036

Poor -0.0415 0.7687 -0.1226 0.1075 -0.1063 0.1083 -0.1665 0.0396 -0.2529 0.0134 -0.6926 0.0060

Actual value of under five BMI 12.5744 14.1934 15.2554 16.3501 17.0168 18.4892

Predicted value at mean 12.7647 14.4287 15.4281 16.4646 16.9088 17.6191
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3.4. Summary

Standard errors (SEs) for QR (Appendix A) are calculated in various ways. SAS
PROC QUANTREG procedure provides three methods to compute SE and confi-
dence intervals (CIs) for the QR parameter: sparsity, rank, and resampling. The
resampling method, which uses the bootstrap technique, is more advantageous.
Koenker (1994) considered a more interesting resampling mechanism, resampling
directly from the full regression quantile process, which he called the Heqf boot-
strap. In contrast with these bootstrap methods, Parzen et al. (1994) observed the
τ th regression quantile is a pivotal quantity for the τ th QR parameter. The bootstrap
method by Parzen et al. (1994) is much simpler but time consuming for larger data
set (relatively n > 5000) and for high-dimensional data sets. The QUANTREG proce-
dure implements a new, general resampling method developed by He & Hu (2002),
which they referred to as, the Markov chain marginal bootstrap (MCMB). For QR,
the MCMB method has the advantage that it solves p one-dimensional equations
instead of p-dimensional equations. This improves the feasibility of the resampling
method in computing SEs and CIs for regression quantiles.

3.4 Summary

Relative to the OLS regression, QR estimates are more robust against outliers in the
response measurements by estimating various quantile functions at different parts of
the distribution of the response variable (Koenker, 2005). Because it does not assume
a particular distribution for the response, nor does it assume a constant variance for
the response, unlike OLS regression, QR offers considerable model robustness. It
also permits us to investigate the effect of explanatory variables on different quan-
tiles of the outcome distribution. QR is very flexible for the reason that the model
does not use a link function and distributional assumption that relates the variance
and the mean of the outcome variable (SAS, 2014). Despite its bright future and use-
fulness in many important application areas, such as medicine and survival anal-
ysis, financial and economic statistics and environmental modelling, QR has some
limitations. This is mainly because of the fact that the full implications of the esti-
mation procedure are not always realized (McMillen, 2012). If we are interested in
modelling the mean, the estimates of OLS should be preferred over the estimates of
QR when estimates of OLS is more efficient than estimates of QR, such as when the
error distribution is normal. QR methods are only applied to continuous-response
data and we can possibly utilize them in the context of count data. It is also needs
sufficient data; when n is small the usual linear regression is preferred. Unlike with
some other SAS PROCs procedure, QUANTREG procedure does not have an option
to change the reference level in the class statement yet (SAS, 2014).
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Chapter 4

Logistic regression

4.1 Introduction

The general linear model requires that the response variable follows the normal
distribution whilst the generalized linear model is an extension of the general lin-
ear model that allows the specification of models whose response variable follows
the exponential family of distribution. The generalized linear model includes: lo-
gistic regression for binary response variable, multiple regression for continuous
responses, poisson regression or negative binomial regression for count data, log-
linear models for categorical data analysis, gamma regression for variance models,
and exponential and gamma models for survival time models (Ayele et al., 2013).
Among these models, logistic regression is the most popular modeling procedure
used to analyze epidemiologic data when the outcome is dichotomous (Kleinbaum
et al., 2002). The methods employed in an analysis using logistic regression follow
the same general principles used in linear regression (Hosmer et al., 2000). However,
it is not appropriate to use linear regression for binary data or to model probabilities.
This is mainly because the response variables are not measured on the ratio scale and
the errors terms are not normally distributed. In addition, the linear regression can
generate predicted values that are any real values between negative infinity and pos-
itive infinity. On the other hand, probabilities have limited values between zero and
one.
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4.2 Generalized linear model (GLM)

The term general linear model usually refers to conventional linear regression model
for a continuous response variable given continuous and/or categorical predictors.
The form is yi ∼ N(XT

i β, σ
2), where Xi contains known covariates and β contains

the coefficients to be estimated. The parameters of these models are estimated by
least squares and weighted least squares using statistical software.

The generalized linear model (GLM) is defined in terms of a set of independent
random variables Y1, ..., YN each with a distribution from the exponential family of
distributions (Dobson & Barnett, 2008). It is a generalization of linear regression that
allows for response to have distribution other than normal distribution. The un-
known parameters of GLM are estimated by using maximum likelihood estimation
method.

4.2.1 Components of GLMs

All generalized linear models have three components. These are the random compo-
nent which identifies the response variable Y and assumes a probability distribution
for it. The systematic component specifies the explanatory variables (x1, x2, ..., xk)

used as predictors in the model and the linear combination of the explanatory vari-
ables is called linear predictor. The linear predictor is given by

β0 + β1x1 + β2x2 + · · ·+ βkxk =
∑k

j=0 βkxk.

The link function describes the functional relationship between the systematic com-
ponent and the expected value of the random component. It reflects how the ex-
pected value of the response relates to the linear predictor of explanatory variables;
θ = g(E(Yi)) = E(Yi) for linear regression or θ = logit(π) for logistic regression. For
a general link function g(•), we have g(E(Yi)) = g(µi) = β0+β1x1+β2x2+· · ·+βkxk.

GLMs have many advantages over OLS regression. For GLMs we do not need to
transform the response Y to approximate a normal distribution. The choice of the
link function is separate from the choice of random component thus we have more
flexibility in modeling; if the link produces additive effects, then we do not need
constant variance, and inference tools and model checking like Wald and likelihood
ratio tests, deviance, residuals, confidence intervals, and overdispersion can apply
for GLMs. However, the GLMs have some limitations. The limitation includes the
linearity assumption i.e., it can have only a linear predictor in the systematic com-

30



4.3. Odds and odds ratio

ponent and responses must be independent (Science, 2017).

4.3 Odds and odds ratio

Probability is defined as the chances that an event will occur. In terms of numeri-
cal expression ranging from 0 to 1, with 1 meaning that the event will surely occur,
and 0 meaning that the event will never occur hence referred to as the sure and null
events respectively.

The odds can be defined in two ways. Odds in favor of an event or odds against
an event. Odds in favor of an event is defined as the ratio of the probability of
the occurrence of an event to the probability of non-occurrence the event. In other
words, the odds in favor of an event is the ratio of the expected number of times
that an event will occur to the expected number of times it will not occur. Odds
against an event can be defined as the number of unfavorable outcomes divided by
the number of favorable outcomes. In our case, we concentrate on the odds in favor
of an event.

There is a simple relationship between probabilities and odds. Let P be the prob-
ability of an event and O be the odds of the event, then

O =
P

1− P
=

probablity of event

probablity of no event

or equivalently

P =
O

1 +O

The odds ratio (OR) is a ratio of two odds. It is widely used as a measure of the
relationship between the response and the predictor variables. The odds ratio for
a continuous variable in logistic regression represents how the odds change with a
1 unit increase in that continuous variable holding all other variables constant. For
categorical predictors with two or more categories, the odds ratio is interpreted as
the change in the odds of an event for each category compared to the odds of an
event for the reference category. The odds ratio interpretation is always with refer-
ence to this category. Odds ratios (and various functions of them) are less sensitive
to changes in the marginal frequencies than other measures of association. In this
sense, they are frequently regarded as fundamental descriptions of the relationship
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between the variables of interest.

OR =
Odds1
Odds2

=
P1

1−P1

P0
1−P0

Like probabilities, odds ratios are bounded below by 0 but unlike probabilities, there
is no upper bound on the odds ratios. That is, they can range from 0 to infinity. An
OR of 1 indicates that the predictor variable has no effect on the odds of event. That
is, the odds of an event is the same for the two categories of the predictor variable be-
ing compared. An OR less than 1 indicates that the odds of an event for the response
variable with the higher value of x used in the numerator are less than the odds of an
event for the response variable with the value of x used in the denominator. Thus,
odds ratios are a more sensible scale for multiplicative comparisons.

4.4 Logistic regression model

The logistic function was discovered by Pearl and Reed in a study of the population
growth in USA (1920) and developed by David Cox in 1958. The logistic regression
model is designed to describe the probability of an event, which is always some
number between zero and one (Melesse et al., 2016). Logistic regression is used to
model the probability of an event of interest given the values of the predictor vari-
ables. In the logit model, the log odds of the outcome is modeled as a linear combi-
nation of the predictor variables. A major problem with the linear probability model
is that probabilities are bounded by 0 and 1, but linear functions are inherently un-
bounded. The solution is to transform the probability so that it is no longer bounded
between 0 and 1. Transforming the probability to the odds scale removes the upper
bound. If we then take the logarithm of the odds, we also remove the lower bound,
setting the logit(π) to vary between minus infinity to plus infinity (Allison, 2012).

For k explanatory variables and i=1,...,n individuals, the logit model is

logit(πi) = log

(
πi

1− πi

)
= β0 + β1xi1 + β2xi2 + · · ·+ βkxik (4.1)

where πi is the probability that yi = 1, β0 is the intercept parameter, βi(i = 1, 2, ..., k)

are the slope parameters, and xi stand for explanatory variables. The expression on
the left-hand side is the logit or log-odds.

The equation for πi is
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πi = P (Yi = 1|Xi = xi) =
exp(β0 + β1xi1 + β2xi2 + · · ·+ βkxik)

1 + exp(β0 + β1xi1 + β2xi2 + · · ·+ βkxik)
(4.2)

Logistic regression is the appropriate regression model that can be used for binary
response variable. Like all regression analysis, the logistic regression is a predic-
tive model. It is used to describe data and to explain the relationship between one
dependent binary variable and one or more independent variables.

4.4.1 Logistic regression model estimation

The goal of logistic regression is to estimate the probability of an event given the
values of the predictor variables. To tie together the linear combination of variables
and in essence the Bernoulli distribution we need a function that links them together
or maps the linear combination of variables that could result in any value onto the
Bernoulli probability distribution with a domain from 0 to 1. The natural log of the
odds ratio, the logit, is that link function.

There are three available methods to estimate the coefficients in the logit model:
ordinary least squares, weighted least squares, and maximum likelihood. To esti-
mate a logit model by OLS, we would simply take the logit transformation of π,
which is log[π/(1 − π)], and regress that transformation on characteristics of the in-
dependent variables and on the average characteristics of the dependent variable. A
weighted least squares (WLS) analysis would be similar except that the data would
be weighted to adjust for hetroscedasticity. However, for logistic regression, least
squares estimation is not capable of producing minimum variance unbiased estima-
tors for the actual parameters. Instead, maximum likelihood estimation is used to
solve for the parameters that best fit the data (Czepiel, 2002). Maximum likelihood
(ML) is the third method for estimating the logit model for grouped data and the
only method in general use for individual-level data (Allison, 2012).

4.4.2 Maximum likelihood estimators

The maximum likelihood estimation, also known as the method of maximum like-
lihood, is a way of estimating the value of an unknown parameter. This method is
widely regarded as the best method of point estimation. This is for various reasons.
Some of those reasons are:- the method will gives us a feasible results, it can be used
when we have censored or truncated data, and its asymptotic properties (Gujarati,
2014).
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The reason for the popularity of maximum likelihood estimation is that it is often
straightforward to derive ML estimators when there are no other obvious possi-
bilities. One case that ML handles very nicely is data with categorical dependent
variables (Allison, 2012).

In ML estimation, there are two steps: constructing the likelihood function based on
the distributional assumptions of the data and maximization which requires an iter-
ative numerical method, which means that it involves successive approximations.

Different iterative methods such as Iterative reweighted least square (IRWLS), Fisher
scoring, Iterative weighted least square (IWLS), and Newton-Raphson are used to
maximize the log-likelihood. All iterative methods give the same solution, but they
differ in such factors as speed of convergence, sensitivity to starting values, and com-
putational difficulty at each iteration. The most widely used iterative methods are
the Newton-Raphson algorithm, and the Fisher scoring method. The Fisher scoring
method is equivalent to the iterative reweighted least square (IRWLS). The Newton-
Raphson method uses the standard least squares method to iteratively calculate the
maximum likelihood estimates. Detailed discussion of Fisher’s scoring and Newton-
Raphson can be found in many literatures (Agresti & Kateri, 2011; Kutner et al., 2005;
Allison, 1999; Efron & Hinkley, 1978; McCullagh & Nelder, 1989; Schabenberger &
Pierce, 2001). The most popular SAS procedure for fitting logistic regression is PROC
LOGISTIC. This procedure provides ML estimation of the logistic regression model,
which uses Fisher’s scoring method by default.

4.4.3 Assumptions of logistic regression

Logistic regression assumes that the dependent variable is a stochastic (randomly
determined) event, the outcome must be discrete, there should be no outliers in the
data and there should be no high intercorrelation (multicollinearity) among the pre-
dictors (Tabachnick & Fidell, 2007).

4.5 Binary logistic regression

4.5.1 Fitting the logistic regression model for binary response

The analysis in the subsequent section uses logistic regression, with the dichoto-
mous outcome of nutritional status of under five children in Ethiopia. In this study,

34



4.5. Binary logistic regression

the probability of malnourishment of under five children is modeled as a function of
pedictor variables which are stated in section 2.2.2. The categorized variable namely
malnourished/normal (Table 2.2) is used as the response variable.

The AIC of the full model (contains intercept and covariates) is smaller compared
to the AIC of the reduced model (contains intercept only); this indicates that the
fitted model better explains the data (Table 4.1).

Table 4.1: Model fit statistics for binary logistic regression

Criterion Intercept only Intercept and Covariates
AIC 8990.746 8589.688
SC 8997.848 8958.979
-2 Log L 8988.746 8485.688

The Likelihood Ratio test (LRT) tests the overall significance of the logistic regression
model. The value of likelihood ratio statistic is 503.0579 with P-value < 0.0001. The
value of the score test is 504.8851 (P-value < 0.0001) and the Wald test 461.6973
(P-value < 0.0001) also support the results obtained using the likelihood ratio test
(Table 4.2). For all three tests the P-value is less than 0.05. It means that the overall
fitted logistic model is significant. There is a significant contribution of independent
variables in predicting the probability of malnourishment of under five children.
In other words, at least one of the parameters is significantly different from zero.
The Hosmer and Lemeshow test for goodness of fit of this model is 13.9454 with
P-value=0.0832, which shows that the model is a good fit to the data.

Table 4.2: Model evaluation for binary logistic regression

Model evaluation parameters Chi-square D.F P-value
Overall significance
Likelihood Ratio 503.0579 51 < 0.0001
Score 504.8851 51 < 0.0001
Wald 461.6973 51 < 0.0001
Goodness of fit test
Hosmer and Lemeshow 13.9454 8 0.0832
Association of predicted probabilities and observed response
Percent Concordant 65.3 Somers’D 0.307
Percent Discordant 34.7 Gamma 0.307
Percent Tied 0.0 Tau-a 0.098
Pairs 12897054 c 0.653

Another important aspect of the fitted logistic regression that needs to be checked is
the validation of the model. The degree to which the predicted probabilities agree
with the actual outcomes was expressed using a classification table with a cut-off
point set at 0.5 (Melesse et al., 2016). For better prediction power, the c-statistics has
to be greater than 0.5. But it ranges from 0 (no association) to 1 (perfect associa-
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tion). The c-statistic is a measure of the predictive accuracy of a logistic regression
model. In this particular study, the c-statistic is 0.653 (Table 4.2). This result shows
that there is a moderate (65.3%) association between the predicted probabilities and
the observed responses (actual probabilities). In addition, Table 4.2 shows that the
concordance rate was 65.3%; this value tells us the agreement between the logistic
regression model and the observed outcomes. The Pairs indicates the number of
pairs for 1 and 0. The Somer’s D statistic is 0.307 suggesting that not all pairs are
concordant. The Gamma statistic has a value of 0.307 which indicates a small posi-
tive association between variables.

Type 3 Analysis of Effects, (Table 4.3) shows the hypothesis tests for each of the
variables in the binary logistic regression model individually using multiple de-
grees of freedom test for the overall effect of the categorical variables (for k cate-
gories we use k − 1 dummy variables). The Wald χ2 test statistics and associated
P-values are shown in Table 4.3. The results indicate that the continuous variables:
mother’s BMI and mother’s age were found to have statistically significant effect on
the response variable (P-value < 0.001). Similarly, the overall effect of categorical
variables: sex of child, weight of child at birth, mother’s work status, educational
attainment of mother, and region were found to have a statistically significant effect
on the probability of malnourishment of under five children. However, the overall
effect of current age of child, current marital status, religion, place of residence, and
wealth index were found to have no significant effect on the probability of the event
based on Ethiopian DHS, 2016 data. Moreover, four two-way interaction terms were
found significant. These two-way significant interaction terms were: the interaction
between current age of child and mother’s BMI; current age of child and region;
mother’s BMI and region; and mother’s BMI and weight of child at birth (Table 4.3).

Table 4.4 shows significant interaction effects between the socio-economic, demo-
graphic and geographic factors that have influence on the status of malnourishment
of under five children. Thus, the effect of current age of child and mother’s BMI
was found to be positively associated with malnutrition of under five children (P-
value=0.0002). The corresponding odds ratio was 0.9756. This implies that with a
unit increase in the age of a child and mother’s BMI, the odds of malnourishment
of under five children increases by (1 − 0.9756) × 100% = 2.44%. The interaction
between current age of child and Addis Abeba region was found to be positively
associated with malnutrition of under five children (P-value=0.0078). The corre-
sponding odds ratio was 1.312. The odds of malnourishment of a child from Addis
Abeba region is 1.312 times higher than the odds of malnourishment of a child of the
same age from Oromia region. Similarly, the odds of malnourishment of a child from

36



4.5. Binary logistic regression

Table 4.3: Type 3 analysis of effects for the binary logistic model

Main effect DF Wald χ2 P-value
Current age of child 1 3.4020 0.0651
Sex of child 1 11.1631 0.0008
Weight of child at birth 2 7.0563 0.0294
Mother’s current age 1 11.8260 0.0006
Mother’s BMI 1 14.0367 0.0002
Mother’s work status 1 4.4548 0.0348
Educational attainment of mother 3 14.8606 0.0019
Current marital status 1 0.0766 0.7820
Religion 4 5.8852 0.2079
Region 10 21.0452 0.0208
Place of residence (rural/urban) 1 0.0245 0.8756
Wealth index 2 2.5340 0.2817
Significant interaction effect
Current age of child and mother’s BMI 1 13.4686 0.0002
Current age of child and region 10 29.7230 0.0010
Mother’s BMI and region 10 25.1905 0.0050
Mother’s BMI and weight of child at birth 2 9.2080 0.0100

Amhara region increases by 1-0.862=0.138 as compared to the odds of malnourish-
ment of a child of the same age from Oromiya region. The odds of malnourishment
of a child to the effect of current age of a child and Gambela region is 1.262 times
higher than the odds of malnourishment of a child to the effect of current age of a
child and Oromia region.

The odds of malnourishment of a child to the effect of mother’s BMI and Addis
Abeba region increases by 1-0.922=0.078 as compared to the odds of malnourishment
of a child to the effect of mother’s BMI and Oromiya region. The odds of malnour-
ishment of a child from Dire Dawa region increases by 1-0.925=0.075 as compared to
the odds of malnourishment of a child from Oromia region who had mothers with
the same BMI. The odds of malnourishment of a child from Somali region increases
by 1-0.896=0.104 as compared to the odds of malnourishment of a child from Oromia
region who had mothers with the same BMI.

The other significant two-way interaction effect was found between mother’s BMI
and weight of child at birth. Thus, the effect of mother’s BMI and child who had
large weight at birth compared to small weight at birth was found to be positively
associated with malnourishment of under five children (P-value= 0.0016). The corre-
sponding odds ratio was 1.092. The odds of malnourishment of a child to the effect
of mother’s BMI and a child who had large weight at birth is 1.092 times higher than
the odds of malnourishment of a child to the effect of mother’s BMI and a child who
had small weight at birth.
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In addition to the significant interaction effects, Table 4.4 shows that children who
had large weight at birth, mother’s BMI, mother’s work status, educational level
(secondary school), region (Affar and Somali), and wealth index (rich) were found
to have a significant effect on malnourishment of under five children in Ethiopia.

Table 4.4: Socio-economic, demographic and geographic of effects on response variable for
main effects and significant two-way interaction effects.

Main effcts Estimate SE OR P-value

Intercept -3.1025 0.6849 <0.0001

Current age of child 0.1974 0.1465 1.218 0.1779

Mother’s current age -0.00778 0.00414 0.992 0.0601

Mother’s BMI 0.1126 0.0329 1.119 0.0006

Sex of child (ref. = Male)

Female -0.00628 0.0523 0.994 0.9044

Weight of child at birth (ref. = Small)

Average -0.3588 0.5212 0.698 0.4912

Large -1.3413 0.5788 0.262 0.0205

Mother work status (ref. = No)

Yes -0.1281 0.0607 0.880 0.0348

Educational level (ref. = No education)

Primary school -0.6055 0.3329 0.546 0.0689

Secondary school -1.1423 0.3713 0.319 0.0021

Higher -0.1525 0.2657 1.165 0.5660

Current marital status (ref. = Married)

Not married -0.0320 0.1156 0.969 0.7820

Religion (ref. = Orthodox)

Catholic -0.2845 0.3836 0.7524 0.4583

Muslim 0.1362 0.0949 1.1459 0.1511

Other 0.3032 0.2143 1.3542 0.1571

Protestant 0.2140 0.1102 1.2386 0.0521

Region (ref. = Oromia)

Addis Abeba 1.3826 0.9283 3.985 0.1364

Affar 1.6030 0.7888 4.968 0.0421

Amhara -0.0621 0.9079 0.939 0.9455

Benishangul -0.00947 1.0408 0.991 0.9927

Dire Dawa 1.2040 0.8324 3.333 0.1480

Gambela -0.0578 0.9412 0.944 0.9510

Harari 0.8848 0.7846 2.422 0.2594

SNNP -0.3989 0.7423 0.671 0.5910

Somali 2.1369 0.7091 8.473 0.0026

Tigray 0.8312 0.8834 2.296 0.3467

Place of residence (ref. = Rural)

Urban -0.0178 0.1134 0.982 0.8756

Wealth index (ref. = Poor)

Middle 0.1176 0.0909 1.125 0.1959

Rich 0.1803 0.0916 1.198 0.0490

Significant interaction effects

Current age of child and mother’s BMI -0.0247 0.00674 0.9756 0.0002

Current age of child and region (ref. = Oromia)

Age and Addis Abeba 0.2718 0.1022 1.312 0.0078

Age and Amhara -0.1482 0.0748 0.862 0.0474

Age and Gambela 0.2328 0.0886 1.262 0.0086

Mother’s BMI and region (ref. = Oromia)

Mother’s BMI and Addis Abeba -0.0808 0.0398 0.922 0.0425

Mother’s BMI and Dire Dawa -0.0782 0.0385 0.925 0.0423

Mother’s BMI and Somali -0.1104 0.033 0.896 0.0008

Mother’s BMI and weight of child at birth (ref. Small)

Mother’s BMI and Large 0.0881 0.028 1.092 0.0016
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The probability of malnourishment of a child as a function of the independent vari-
ables (Table 4.4) is estimated by

P̂ =
e−3.1025 +

∑k
i=1 β̂ixi

1 + e−3.1025 +
∑k

i=1 β̂ixi
(4.3)

where β̂′is are the estimated coefficients corresponding to x′is, variables that have
significant effect on the response variable.

Since we are modeling the probability of an event in logistic regression the interpre-
tation of parameter estimates is different from the way it is explained or interpreted
in multiple regression. The dependent variable in logistic regression is binary. We
are not modeling the actual change in the dependent variable. Instead, we are mod-
eling the probability of the event.

The +/- sign of β-Coefficients indicate their respective positive/negative relation-
ship with the probability of malnourishment of a child. Odds ratios can be com-
puted as an exponent to the power of the logistic regression coefficients. We can find
the predicted probability of the event from Equation (4.3). When the exponentiated
beta value is greater than one, then the probability of higher category increases, and
if the exponential beta is less than one, then the probability of higher category de-
creases.

Based on the result from Table 4.4 the odds ratio for variables, which have significant
effect in the probability of malnourishment of a child, are interpreted as follows: the
odds of malnourishment of a child who had large weight at birth is 0.262 times the
odds of malnourishment a child who had small weight at birth.

The odds ratio of 1.119 for mother’s BMI indicates that for a one unit increase in
mother’s BMI, the odds of malnourishment in under five children increases by 11.9%.
Furthermore, mother’s work status has a significant effect on the probability of mal-
nourished children (P-value=0.0348). The corresponding odds ratio was 0.880. In ad-
dition, mothers who had secondary school education level have a lower odds of hav-
ing a malnourished child compared to mothers who had no education (OR=0.319).
Children who live in Somali region (OR=8.473) were found to be at a higher odds
of malnourishment of under five children compared to Oromiya region followed by
Affar region (OR=4.968). Moreover, under five children from rich households had a
significant effect on the event.
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Plots for significant interaction effects

Figures 4.1-4.3 show the predicted probability of malnourishment of a child against
significant interaction effects. The interaction effect plot between mother’s BMI and
regions (these regions were Addis Abeba, Dire Dawa, and Somali) is presented in
Figure 4.1. From the figure, it is clearly seen that the predicted probability of mal-
nourishment of a child among under five children increases as mother’s BMI in-
creases in Addis Abeba, Dire Dawa and Somali region.

Figure 4.1 – Predicted probability of malnourishment of a child based on the effect of
mother’s BMI and region.

The relationship between current age of a child and mother’s weight status is pre-
sented in Figure 4.2. As the children’s age increases, the probability of malnourish-
ment of a child decreases across increasing mother’s weight status.

Figure 4.2 – Predicted probability of malnourishment of a child based on the effect of
mother’s BMI and current age of a child.

The relationship between age of a child and regions (these regions were Addis Abeba,
Amhara and Gambela) is presented in Figure 4.3. The figure shows that the prob-
ability of malnourishment of a child was almost the same over all ages in Gambela
region. As age increases, the probability of malnourishment of a child decreased
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monotonically in Amhara region followed by Addis Abeba region.

Figure 4.3 – Predicted probability of malnourishment of a child based on the effect of region
and age of a child.

Receiver Operating Characteristic Curve (ROC)

A Receiver Operating Characteristic Curve (ROC) is a standard technique for sum-
marizing classifier performance over a range of trade-offs between true positive (TP)
and false positive (FP) error rates (Swets, 1988). The true positive rate measures the
proportion of observations classified as the true outcome of interest (malnourish-
ment of a child) over all those classified as malnourished children. The false positive
rate measures the proportion of observations misclassified as the outcome of inter-
est (malnourishment of a child) over all those classified as malnourished children
(Melesse et al., 2016). ROC curve is a plot of sensitivity (the ability of the model to
predict an outcome of interest (malnourishment of a child in our case) correctly) ver-
sus 1-specificity (the ability of the model to predict an unwanted outcome of interest
correctly) for possible cut-off classification probability values π0 (Swets, 1988). In
general, ROC curves are used to check how much the predicted probability agrees
with an outcome of interest. The Area Under the Curve should be maximum (close
to 1 for a good predictive model).
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Figure 4.4 – ROC curve for binary logistic regression model.

The Area Under the Curve (AUC) is referred to as the accuracy index, or concor-
dance index, c, in SAS. The more it touches the Y -axis, a value of AUC close to 1,
the better prediction power the model has. For better prediction power c must be
greater than 0.5 (Hosmer et al., 2013).

In our case the Area Under the Curve=0.6534 (Figure 4.4), which is the same as the
c-statistics (Table 4.4) and indicates the moderate predictive power of the model.

4.6 Survey logistic regression

When any sampling method other than simple random sampling is used, survey
data analysis software has to be used. The survey analysis method is useful to in-
clude the design effect in the estimation of parameters and to adjust the standard
errors of the estimates. If the sampling design is not included in the analysis, the
standard errors will likely be underestimated, possibly leading to results that seem
to be statistically significant, when in fact, they may not be significant. Therefore,
this may lead us to biased estimates.

Binary responses can be modeled through binary models that can provide a rela-
tionship between the probability of a response and a set of covariates. However,
for data which does not come from simple random sampling, the standard logis-
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tic regression is not appropriate. According to Rao & Scott (1984), when the data
come from a complex survey design with stratification, clustering, and/or unequal
weighting, the usual estimates are not appropriate. In these cases, specialized tech-
niques must be applied to produce the appropriate estimates and standard errors.
The logistic regression model used to analyze data from complex sampling designs
is referred as survey logistic regression models. Survey logistic regression models
have the same theory as ordinary logistic regression models (Ayele et al., 2013). The
difference between the two is that survey logistic accounts for the complexity of the
sampling designs. Simple random sampling designs assume that all units in the
population have equal probability of being included in the sample. However, most
sample survey data are collected from a finite population with a probability based
complex sample design (Rao & Scott, 1981). The main idea here is that simple logis-
tic regression does not account for clustered correlated observations while survey
logistic regression does.

4.6.1 Parameter estimation in survey logistic regression

Binary logistic regression with complex survey design uses a modified maximum
likelihood estimation called the pseudo-maximum likelihood estimation (PMLE). It in-
corporates element weights in the estimating equation.

Likelihood function in survey logistic regression

Let U = {1, 2, ..., N} be a finite population divided into h = 1, 2, ...,H strata, each
stratum is further divided into j = 1, 2, ..., nh primary sampling units (PSU), which
is constituted by i = 1, 2, ..., nhj secondary sample units (SSU), comprising of nhji
elements. In this case, the first stage primary sampling unit (PSU), was the smallest
administrative unit in Ethiopia known as Kebele. In the second stage (SSU), house-
holds within a Kebele were sampled. The response of the ith children in the jth house-
hold and hth Kebele can be specified as Yhji. Assume, the observed data consists of
n′hj SSUs chosen from n′h PSUs in the hth stratum. Thus, the total number of the
observations is given by

N =

H∑
h=1

n′h∑
j=1

n′hj∑
i=1

nhji (4.4)

Suppose that πhji = P (Yhji = 1|Xhji), is the probability of having a malnourished
child in the jth household and hth Kebele, and the sampling weight in each sampling
unit is denoted by Whji, for unit hji. Thus, the survey logistic regression model is
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given by

logit(πhji) = log

{
πhji

1− πhji

}
= X ′hjiβ (4.5)

where Yhji, Xhji and β are the categorical response variable, the covariate matrix,
and the regression coefficients respectively.

The parameters β of the logistic regression model in the complex sampling design
are estimated by the Pseudo- maximum likelihood method called weighted maxi-
mum likelihood that incorporates the sampling design and the different sampling
weights in the estimation of β (Hosmer & Lemeshow, 2000; Lumley et al., 2004).

Pseudo-maximum likelihood estimation

The Pseudo-maximum likelihood function for the contribution of a single observa-
tion in complex sampling design is given by

π
WhjiYhji
hji (1− πhji)(1−WhjiYhji) (4.6)

Thus, the Pseudo-maximum likelihood function with weight Whji for a set of n ob-
servation is given by

L(β|Whji, Yhji) =

H∏
h=1

n′h∏
j=1

n′hj∏
i=1

π
WhjiYhji
hji (1− πhji)(1−WhjiYhji) (4.7)

= π
∑H
h=1

∑n′h
j=1

∑n′hj
i=1 WhjiYhji

hji (1− πhji)1−
∑H
h=1

∑n′h
j=1

∑n′hj
i=1 WhjiYhji (4.8)

The main idea of this method is to define a function which approximates the likeli-
hood function of the sampled finite population with a likelihood function formed by
the observed sample and the known sampling weights (Hosmer & Lemeshow, 2000;
Lumley et al., 2004). In this case, the Pseudo-log-likelihood function is given by

`(β|WhjiYhji) = log

[
π
∑H
h=1

∑n′h
j=1

∑n′hj
i=1 WhjiYhji

hji (1− πhji)1−
∑H
h=1

∑n′h
j=1

∑n′hj
i=1 WhjiYhji

]

= log

(
π
∑H
h=1

∑n′h
j=1

∑n′hj
i=1 WhjiYhji

hji

)
+ log

(
(1− πhji)1−

∑H
h=1

∑n′h
j=1

∑n′hj
i=1 WhjiYhji

)
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=
H∑
h=1

n′h∑
j=1

n′hj∑
i=1

WhjiYhjilog(πhji) +

1−
H∑
h=1

n′h∑
j=1

n′hj∑
i=1

WhjiYhji

 log(1− πhji)

=
H∑
h=1

n′h∑
j=1

n′hj∑
i=1

WhjiYhjilog(πhji) + log(1− πhji)−
H∑
h=1

n′h∑
j=1

n′hj∑
i=1

WhjiYhjilog(1− πhji)

=

H∑
h=1

n′h∑
j=1

n′hj∑
i=1

WhjiYhjilog

(
πhji

1− πhji

)
+ log(1− πhji) (4.9)

Substitute equation (4.5) into (4.9)

=
H∑
h=1

n′h∑
j=1

n′hj∑
i=1

WhjiYhjiX
′
hjiβ + log

(
1

1 + exp(X ′hjiβ)

)

=
H∑
h=1

n′h∑
j=1

n′hj∑
i=1

WhjiYhjiX
′
hjiβ − log

(
1 + exp(X ′hjiβ)

)
The Pseudo maximum likelihood estimator of β is obtained by taking the derivative
of the Pseudo-log-likelihood function with respect to beta and equating it to zero.

β =
∂`(β|WhjiYhji)

∂β
= 0

=
H∑
h=1

n′h∑
j=1

n′hj∑
i=1

WhjiYhjiX
′
hji −

(
1

1 + exp(X ′hjiβ)

)
× exp(X ′hjiβ)×X ′hji

β =
H∑
h=1

n′h∑
j=1

n′hj∑
i=1

WhjiYhjiX
′
hji −

(
X ′hji

(
exp(X ′hjiβ)

1 + exp(X ′hjiβ)

))
(4.10)

To solve the solutions for Equation (4.10), one can use numerical methods: Newton-
Raphson, Fisher scoring or IRLS. SAS PROC SURVEYLOGISTIC for the logistic re-
gression model in the complex sampling design reports three different “Model fit
statistics”in the output: Akaike Information Criterion (AIC) introduced by Akaike
(Akaike, 1974), Schwarz Criterion (SC) also known as Bayesian Information Crite-
rion (BIC)) introduced by Schwarz (Schwarz et al., 1978), and -2logL. Values of these
fit statistics are displayed for two different models: a model with an intercept only,
and a model that includes all the specified predictors (a model with an intercept and
covariates). The smallest value of AIC is considered the best, and also if the model
has the smallest value of SC it is most desirable.
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Akaike’s Information Criterion (AIC) is given by

AIC = −2logL+ 2K

where k is the number of parameters (including the intercept) in the model. AIC
is used for the comparison of models from different samples or non-nested models
and the model with the smallest AIC is considered the best (SAS, 2014).

The Schwarz Criterion (SC) also known as Bayesian Information Criterion (BIC) ad-
justs the -2logL statistics for the number of parameters and is given by

−2logL+Klog(n)

where n is the overall sample size and k is as explained above for AIC. Like AIC,
SC penalizes for the number of predictors in the model and the smallest SC is most
desirable.

The most fundamental of the fit statistics, −2logL, which is used to compare dif-
ferent models fit to the same data set (nested models), is the maximized value of the
logarithm of the likelihood function multiplied by −2. −2logL will always decrease
as new explanatory variables (interactions) enter into the model even if they are in-
significant. The smaller the deviance, which is distance measure of the log likelihood
for the main effect model with that of saturated model, the better the model. −2 log

likelihood is given by

−2log

(
likelihood for null model

likelihood for fitted model

)

4.6.2 Variance estimation in survey logistic regression

There is no direct form to calculate the variance estimators under complex sampling
designs. To obtain the variance estimators, a modified maximum pseudo-likelihood
is used by some form of replication method, such as Jackknife repeated replica-
tion, balanced repeated replication, bootstrap, and Taylor linearization (Hosmer &
Lemeshow, 2000; Lumley et al., 2004; Lee & Forthofer, 2006). Many statistical soft-
ware packages are available for performing the computations (Lepkowski & Bowles,
1996).

In SAS, PROC LOGISTIC does not compute the proper variance estimators for ana-
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lyzing complex survey data for the categorical outcome. PROC SURVEYLOGISTIC
procedure in SAS is designed to perform the necessary and correct computations.
PROC SURVEYLOGISTIC procedure fits the linear logistic regression model for a
discrete response variable from survey data. The regression parameters and odds
ratios are estimated by maximum likelihood method. Standard errors around the
estimates are calculated by Taylor expansion approximation (SAS, 2014).

Taylor linearization method for the estimated covariance matrix of β is given by

V̂ ar(β̂) = (X ′DX)−1S(X ′DX)−1,

where X is the design matrix, D = WV is the n × n diagonal matrix with elements
Whjiπhji(1 − πhji), and S is the pooled estimator within-stratum of the covariance
matrix. That is,

S =

H∑
j=1

(1− fh)
n′h

n′h − 1

n′h∑
j=1

(Xhj.. − X̄h...)(Xhj.. − X̄h...)
′,

where Xhji = Whjiπhji(1 − πhji), Xhj.. =
∑n′h

j=1Xhji , and specific mean in the

stratum as X̄h = 1
n′h

∑n′h
j=1Xhj... The finite population correction factor is given by

(1− fh), where fh =
n′h
nh

is the ratio of the number of PSU observed by the total num-
ber of the PSU in the stratum h.

The hypothesis test for the significance of the regression coefficients and the test for
the goodness of fit of a model also needs to be modified to incorporate the sampling
design and the different weights of observation. According to Hosmer & Lemeshow
(2000), and Lumley & Scott (2014), the evaluation of the contribution of the covari-
ates is made by the adjusted Wald test (W), with test statistics given by

F =

(
s− p+ 1

sp

)
W

W = β̂′[V̂ ar(β̂)]−1β̂

where s =
∑H

h=1 n
′
h − H is the total number of the selected PSU (sampled cluster)

minus the number of strata, and p is the number of covariates. The P-value can be
computed using the above F-distribution with p and (s− p+ 1) degrees of freedom,
that is P-value = P [F (p, s− p+ 1) ≥ F ].
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4.6.3 Model selection and model checking

Model selection

The option for variable selection procedure, that is forward, backward, and stepwise,
in SAS PROC SURVEYLOGISTIC (version 9.4) which is not yet available. Therefore,
one should manually select one variable at a time in the model and observe the
contribution of each variable effect, then exclude a variable with insignificant effect
(one at a time) and observe again the contribution of the remaining variables. This
process will continue until the model has only significant effects.

Model checking

Since SAS PROC SURVEYLOGISTIC does not produce plots and Hosmer-Lemeshow
statistics, we use the AIC and BIC to compare the models, the likelihood for mea-
suring the goodness of fit considering the complex sampling frame (Lumley & Scott,
2014, 2015). The smaller the AIC and BIC of the full model compared to the corre-
sponding AIC and BIC of the reduced model, the better the full model is. Details of
standard criteria for model selection such as AIC and BIC can be found in Akaike
(1974); Schwarz et al. (1978); and Lumley & Scott (2014).

4.6.4 Design effect

The sampling variance of a survey statistic is affected by the stratification, clustering,
and weighting of selected cases. Stratification may increase the precision of the vari-
ance estimate, but clustering and weighting decrease precision (Dowd et al., 2001).
Stratified sampling is a process that involves the division or stratification of a popu-
lation by partitioning population units in the sampling frame into non-overlapping
and relatively homogeneous groups called strata. When the strata have been de-
termined, a sample is drawn from each stratum, the drawings being made inde-
pendently in different strata. If a simple random sample is taken in each stratum,
the procedure is called stratified random sampling. One or more of the following
reasons are the purpose of stratified sampling:- to reduce sampling error compared
to simple random sampling, for administrative convenience, when different parts
of population need different sampling procedure, and when separate estimates are
required at domain or strata level. Many sampling frames preparation and many
selections are the disadvantages of stratified sampling. In cluster sampling the pop-
ulation is first divided into a heterogeneous subset of the population (cluster), then
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a simple random sampling of clusters is taken. However, its disadvantage is that
there is a loss of precision (standard error is high compared with other sampling de-
signs). Detailed discussion of sampling techinques can be found in many literatures
(Cochran, 2007; Sharon, 1999).

Because cluster sampling and the cumulative effect of the range of factors affect the
precision of a survey statistic and a smaller sample size, an adjustment called the de-
sign effect should be used to determine survey sample size. The design effect, deff,
is defined as the ratio of the sampling variance of the statistic under the actual sam-
pling design divided by the variance that would be expected for a simple random
sample of the same size (Dowd et al., 2001).

deff =
V ariance(complex design)

V ariance(SRS)

The design effect is used to determine how much larger the sample size or confi-
dence interval needs to be. Usually deff ranges from 1 to 3. It is not uncommon,
however, for the design effect to be much larger.

In most cases, the deft, which is
√
deff , is preferable to make the determination of

design effect, because deft is less variable than deff. The deft shows how much the
sample standard error, and consequently the confidence intervals, increase. Thus,
for example if the deft is 2, the confidence intervals have to be 2 times as large as
they would for a simple random sample. A deft=1 indicates no effect of sample de-
sign on standard error. The value of deft >1 indicates sample design that inflates
the standard error of the estimate. The value of deft <1 indicates sample design that
does not inflate the standard error of the estimate.

4.6.5 Application of the binary logistic regression model with complex
survey design

The analysis in the subsequent section uses survey logistic regression model, which
considers the complexity of the survey design. The probability of malnourishment
of under five children was modeled as a function of selected predictor variables de-
scribed in section 2.2.2.

The AIC, SC, and −2logL of the full model (contains intercept and covariates) is
smaller compared to the corresponding criterion of the reduced model (contains in-
tercept only); this indicates that the fitted full model better explains the data (Table
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4.5). The P-values corresponding to the likelihood ratio, Score test, and Wald tests

Table 4.5: Survey logistic regression model fit statistics for binary response.

Criterion Intercept only Intercept and Covariates
AIC 10094.987 9547.940
SC 10102.164 9921.138
-2 Log L 10092.987 9443.940

are less than 0.05. It means that the overall fitted survey logistic model is signifi-
cant. There is a significant contribution of independent variables in the prediction
of the event (in our case malnurishement of a child). In other words, at least one
of the parameters is significantly different from zero. There is a moderate (62.8%)

association between the predicted probabilities and the observed responses (actual
probabilities). In addition, Table 4.6 shows that the concordant rate was 62.5%.

Table 4.6: Survey logistic regression model evaluation for a binary response.

Model evaluation parameters F-Value Num DF Den DF P-value
Overall significance
Likelihood Ratio 11.02 41.1810 25326 <0.0001
Score 10.54 51 565 <0.0001
Wald 9.41 51 565 <0.0001
Association of predicted probabilities and observed response
Percent Concordant 62.5 Somers’D 0.255
Percent Discordant 37.0 Gamma 0.257
Percent Tied 0.6 Tau-a 0.082
Pairs 12897054 c 0.628

Type 3 Analysis of Effects, Table 4.7, shows that from four two-way interaction
terms, the interactions between mother’s BMI and region was found to have signifi-
cant interaction effect on the response variable (Table 4.7). Moreover, the hypothesis
tests for each of the variables in the survey logistic regression model for the binary
response individually using multiple degrees of freedom test for the overall effect
of the categorical variables. The P-values shown in Table 4.7 indicate that the con-
tinuous variables current age of child and mother’s current age were found to have
a significant effect on the response of interest. Similarly, the overall effect of cate-
gorical variables: mother’s work status and educational attainment of mother were
found to have a statistically significant effect on the probability of malnourishement
of under five children.

The output from SAS PROC SURVEYLOGISTIC (version 9.4) is presented in Table
4.8; it shows that the effect of mother’s BMI and the child from Addis Abeba region
was found to be negatively associated with malnutrition of under five children (P-
value=0.0456). The corresponding odds ratio was 0.917. This implies that the odds
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Table 4.7: Type 3 analysis of effects for the binary logistic regression with complex survey
design

Main effect F-Value Num DF Den DF P-value
Current age of child 4.80 1 615 0.0289
Sex of child 1.65 1 615 0.1989
Weight of child at birth 0.43 2 614 0.6516
Mother’s current age 7.00 1 615 0.0084
Mother’s BMI 3.43 1 615 0.0645
Mother’s work status 0.48 1 615 0.0491
Educational level 2.33 3 613 0.0132
Current marital status 3.49 1 615 0.0624
Religion 1.67 4 612 0.1555
Region 1.19 10 606 0.2933
Place of residence(rural/urban) 0.95 1 615 0.3299
Wealth index 0.91 2 614 0.4020
Significant interaction effect
Current age of child and mother’s BMI 0.20 1 615 0.6584
Current age of child and region 2.61 10 606 0.1972
Mother’s BMI and region 1.36 10 606 0.0041
Mother’s BMI and weight of child at birth 0.64 2 614 0.5281

of malnourishment of under five children from Addis Abeba region decrease by
(1-0.917=0.083) as compared to the odds of malnourishment of under five children
from Oromia region who had mothers with the same BMI. The effect of mother’s
BMI and the child from Somali region was found to be also negatively associated
with malnutrition of under five children (P-value=0.005). The corresponding odds
ratio was 0.889. This implies that the odds of malnourishment of under five children
from Somali region decrease by 0.111 as compared to the odds of malnourishment
of under five children from Oromia region who had mothers with the same BMI.

In addition to the interaction effects, the results from Table 4.8 shows that the proba-
bility of malnutrition of under five children has significant association with mother’s
current age, mother’s BMI, mother’s working status, educational level of mother
(primary school and secondary school) and Harari region when we considered the
logistic regression model with complex sampling design.

Based on the result from Table 4.8 the odds ratio for variables, which have significant
effect on the probability of malnourishement of under five children are interpreted
as follows: the odds of 0.986 for mother’s age indicates that for a one year increase
in mother’s age, the odds of having a malnourished child decrease by 0.014. Fur-
thermore, for one unit increase in mother’s BMI, the odds of having a malnourished
child will be multiplied by 1.104. The working status of mothers was found to be
negatively associated with malnourishment of under five children as compared to
mothers who were not working (P-value=0.031). The corresponding odds ratio was
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0.835. In addition, the significant effect of covariates in terms of adds ratios in the
logistic regression model with complex survey design can be interpreted in the same
way as those in the logistic regression model without complex survey design.

Table 4.8: Survey logistic regression model estimation on the binary response for main ef-
fects and significant interaction effects.

Main effcts Estimate SE OR P-value

Intercept -2.4657 0.7390 0.0009

Current age of child -0.00534 0.2375 0.995 0.9821

Mother’s current age -0.0139 0.00633 0.986 0.0283

Mother’s BMI 0.0991 0.0344 1.104 0.0041

Sex of child (ref. = Male)

Female -0.0354 0.0766 0.965 0.9044

Weight of child at birth (ref. = Small)

Average -0.6758 0.8043 0.509 0.4012

Large -1.0226 1.0041 0.359 0.3089

Mother’s work status (ref. = No)

Yes -0.1808 0.0836 0.835 0.0310

Educational level (ref. = No education)

Primary school -1.2956 0.4809 0.274 0.0073

Secondary school -1.3937 0.4892 0.248 0.0045

Higher 0.1519 0.3337 1.164 0.6491

Current marital status (ref. = Married)

Not married -0.3395 0.1819 0.7121 0.0624

Religion (ref. = Orthodox)

Catholic 0.0504 0.3360 1.052 0.8808

Muslim -0.1289 0.1227 0.879 0.2938

Other -0.0339 0.3305 0.967 0.9183

Protestant 0.0508 0.1127 1.052 0.6523

Region (ref. = Oromia)

Addis Abeba 1.4824 1.0436 4.403 0.1560

Affar -1.0380 1.4610 0.354 0.4777

Amhara 0.3899 1.0214 1.477 0.7028

Benishangul 0.3536 1.2129 1.424 0.7708

Dire Dawa -2.1058 1.5642 0.122 0.1788

Gambela -3.2258 3.2966 0.039 0.3282

Harari -4.1726 1.7892 0.015 0.0200

SNNP -0.3126 0.6985 0.732 0.6547

Somali 1.7657 0.9463 5.846 0.0626

Tigray -0.1939 1.0752 0.823 0.8569

Place of residence (ref. = Rural)

Urban -0.1564 0.2249 0.855 0.4871

Wealth index (ref. = Poor)

Middle 0.1782 0.1238 1.195 0.1506

Rich 0.2109 0.1256 1.235 0.0937

Significant interaction effects

Mother’s BMI and region (ref. = Oromia)

Mother’s BMI and Addis Abeba -0.0862 0.0430 0.917 0.0456

Mother’s BMI and Somali -0.1169 0.0415 0.889 0.005
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4.6.6 Comparison of results obtained from binary logistic regression with
simple random sampling and with complex survey design

Table 4.9 was constructed to compare standard error, and confidence interval ob-
tained from PROC SURVEYLOGISTIC procedure (Table 4.8) with the ones obtained
from PROC LOGISTIC procedure (Table 4.4) based on deff and deft.

Table 4.9 shows the deff and deft value for each significant effect in the study. Thus,
the effect of mother’s current age has the deff value of 2.3529 and deft value of 1.5339.
The deft value equal to 1.5339, indicates that the sample standard error, and conse-
quently the confidence interval are 1.5339 times bigger than they would be if the
survey were based on simple random sampling. The effect of mother’s BMI has
deff=1.0901 and deft=1.0441. The deff value equal to 1.0901 indicates that the sam-
ple standard error, and consequently the confidence interval are 1.0901 times bigger
than they would be if the survey were based on the same simple random sampling.
The effect of currently working mothers has deff=1.8971 and deft=1.3773. The stan-
dard errors and confidence interval are 1.3773 times bigger than they would be for
simple random sampling. The effect of mothers who had primary education level
has deff=15.1469 and deft=3.8919. The deft value equal to 3.8919 indicates that the
sample standard error, and consequently the confidence interval, are 3.8919 times
bigger than they would be if the survey were based on the same simple random
sampling. The effect of mothers who had secondary education level has deff=1.7359
and deft=1.3175. The deft value equal to 1.3175 indicates that the sample standard
error, and consequently the confidence interval, are 1.3175 times bigger than they
would be if the survey were based on the same simple random sampling. The effect
of a child from Harari region has deff=5.2002 and deft=2.2804. A value of deft equal
to 2.2804 indicates that the sample standard error, and consequently the confidence
interval, are 2.2804 times bigger than they would be if the survey were based on the
same simple random sampling. The effect of mother’s BMI depending on whether a
child is from Addis Abeba region has deff=1.1673 and deft=1.0804. The standard er-
ror and the confidence interval are 1.0804 times as bigger than they would be for the
same simple random sampling. The effect of mother’s BMI depending on whether a
child is from Somali region has deff=1.5812 and deft=1.2575. The deft of 1.2575 indi-
cates that the sample standard error, and consequently the confidence interval, are
1.2575 times bigger than they would be if the survey were based on simple random
sampling.

Furthermore, information on design effects should also be used when we are plan-
ning to determine the sample size of the study. Once we have an estimated design
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effect, it is straightforward to adjust the required sample size; we need only to multi-
ply the sample size needed under simple random sampling by the estimated design
effect. For instance, deff=2.3529 (Table 4.9) indicates that for logistic regression stud-
ies with complex survey design, the sample size for mother’s current age is 2.3529
times as large as would be needed under simple random sampling (logistic regres-
sion without complex survey design).

Table 4.9: Estimated design effects for binary response

Study result

Significant main effects Estimates (CSD) P-value Var(CSD) Var(SRS) deff deft

Intercept -2.4657 0.0009 0.546121 0.4691 1.1642 1.0789

Mother’s current age -0.0139 0.0283 0.00004 0.000017 2.3529 1.5339

Mother’s BMI 0.0991 0.0041 0.00118 0.00108241 1.0901 1.0441

Educational level (ref. = No education)

Primary school -1.2956 0.0073 1.67858 0.11082 15.1469 3.8919

Secondary school -1.3937 0.0045 0.23932 0.13786 1.7359 1.3175

Mother’s work status(ref.=No)

Yes -0.1808 0.0310 0.00699 0.0036845 1.8971 1.3773

Region (ref. = Oromiya)

Harari -4.1726 0.0200 3.20124 0.615597 5.2002 2.2804

Significant interaction effects

Mother’s BMI and region (ref. Oromiya)

Mother’s BMI and Addis Abeba -0.0862 0.0456 0.001849 0.00158404 1.1673 1.0804

Mother’s BMI and Somali -0.1169 0.005 0.001722 0.001089 1.5812 1.2575

CSD(complex survey design), SRS(simple random sampling)

From the above results, we observe that the design effects values are above one. This
confirms that there was an under-estimation of variance while using logistic regres-
sion, which assumes data was sampled using simple random sampling. Since lo-
gistic regression with complex survey design does not assume simple random sam-
pling, the parameter estimates for both models are not the same. However, in some
cases, they are closer to one another. One of the assumptions for logistic regression
is that the observations are independent, but for a logistic regression with complex
survey design this assumption is relaxed thus the model fitted based on logistic re-
gression with complex survey design is better since it accounts for the complexity of
the design.
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Chapter 5

Ordinal logistic regression

5.1 Introduction

An outcome with more than two categories is known as a polytomous outcome. Let
J denote the number of categories for such an outcome. Out of N observations,
Y1, Y2, ..., YJ are the frequencies in category 1, 2, ..., J with corresponding probabili-
ties, π1, π2, ..., πJ , respectively. The distribution is the multinomial distribution and
can be expressed as follows:

P (Y1, Y2, ..., YJ) =
N !∏J
j=1 yj

×
J∏
j=1

π
yj
j

The distribution leads to the multinomial (polytomous) logistic regression which is
an extension of binary logistic regression. The link function is the multinomial logit
model because the probability distribution for the outcome variable is assumed to be
a multinomial rather than a binomial distribution. For a polytomous response, it is
further important to note whether the response is nominal (consisting of unordered
categories) or ordinal (consisting of ordered categories). An outcome variable that
has two or more nominal categories can be modeled using multinomial logistic re-
gression. It estimates the odds of being at any category compared to being at the
baseline category ( comparison or reference category). The model can be treated as
a combination of a series of binary logistic regression models.

Suppose Y can take on values coded as 1, 2, ..., J . Next pick one of the outcome
levels, say J , as the reference level. If we assume we have p covariates, then the
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model is formulated as

log

[
π(Y = yj |x1, x2, ..., xJ)

π(Y = yJ |x1, x2, ..., xJ)

]
= βj0 + βj1x1 + βj2x2 + ...+ βjpxp,

where yj = 1, 2, ..., J − 1; yJ is the base category, which can be any category but is
generally the highest one; βj0 are the intercepts, and βj1, βj2, ..., βjp are the regres-
sion coefficients. Since the model includes J−1 comparisons, it estimates J−1 logit
functions for each predictor (Liu, 2014).

Multinomial logistic regression model uses maximum likelihood procedure to es-
timate regression coefficients, as it is the case with the binary logistic regression. For
nominal categories, one of the categories is designated as a reference or base cate-
gory and each of the rest of the categories is compared with the reference category
(Agresti, 2002a).

Ordinal logistic regression considers any inherent ordering of the levels in the out-
come variable and makes full use of the ordinal information (Kleinbaum & Klein,
2010). The incorporation of ordering can result in models that have simpler inter-
pretations. Although ordinal outcomes can be simple and meaningful their opti-
mal statistical treatment remains challenging to many applied researchers (Cliff &
Keats, 2003; Clogg & Shihadeh, 1994; Ishii-Kuntz, 1994). Moreover, these models
have greater power than the multinomial logit models (Allison, 2012). However, a
variable that can be ordered when considered for one purpose could be unordered
differently when used for another purpose. Miller & Volker (1985) shows how dif-
ferent assumptions about the ordering of occupations result in different conclusions.
Therefore, we need to think carefully before concluding that the outcome is ordinal.

5.2 Ordinal logistic regression model

In the study of the dependence of a response variable on a set of independent vari-
ables, the choice of a model is largely determined by the scale of measurement of
the response. Epidemiologists are often interested in estimating the risk of adverse
events originally measured on an interval scale, but they often choose to divide the
outcome into two or more categories in order to compute an estimate of effects (risk
or odds ratio). Similarly, response variables originally measured on an ordinal scale
(e.g. children’s nutritional status (based on weight): underweight, normal/healthy
weight, overweight, obese) are often categorized into several binary variables dur-
ing statistical analysis (Ananth & Kleinbaum, 1997). Although the categories for an
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ordinal variable can be ordered, the distances between the categories are unknown.
Multinomial logistic regression for ordinal responses is normally called ordinal lo-
gistic regression. An ordinal logistic regression model is a generalization of a binary
logistic regression model, when the outcome variable has more than two ordinal lev-
els. In Stata, the ordinal logistic regression model assumes that the outcome variable
is a latent variable, which is expressed in logit form as follows:

log

(
P (Y ≤ j|x)

1− (Y ≤ j|x)

)
= βj0 + (−βj1x1 − βj2x2 − ...− βjpxp), (5.1)

where P (Y ≤ yj |x1, x2, ..., xp) is the probability of being at or below category j,
given a set of predictors v = 1, 2, ..., p. βj0 are the cutoff points (thresholds), and
βj1, βj2, ..., βjp are logit coefficients (Liu, 2014).

Ordinal variables are often coded as consecutive integers from 1 to the number of
categories. Because of this coding, it is tempting to analyze ordinal outcomes with
the linear regression model. However, an ordinal response variable violates the as-
sumptions of linear regression model, which can lead to incorrect conclusions (McK-
elvey & Zavoina, 1975; Winship & Mare, 1984). With an ordinal response, it is much
better to use models that avoid the assumption that the distances between categories
are equal. Although many models have been designed for ordinal outcomes, logit
and probit models are commonly used as the link function in ordinal regression
models (Long & Freese, 2006). Most multinomial regression models for ordinal out-
come variables are based on the logit function. The difference between both func-
tions is typically only seen in small samples, because the probit link assumes the
normal distribution of the probability of event, whereas the logit link assumes the
logistic distribution.

The BMI-for-age is an attempt to quantify the amount of tissue mass (muscle, fat,
and bone) in children compared against the percentile for other children of the same
sex and age. Based on the amount of tissue mass value, BMI-for-age is then cate-
gorized as underweight, normal weight, overweight, or obese. Table 2.1 presents
the categorized level of under five children’s BMI. This means the creation of a four-
category ordinal variable from a continuous variable. This categorized level of BMI
is an example of an ordinal categorical variable (Agresti, 2010). We label these four
levels of under five children’s nutrition status as 1, 2, 3, and 4 where we compare
underweight, normal weight, overweight, and obese at the same time. Since this
leads to an ordinal variable for nutrition status, an ordinal logistic regression (OLR)
is an obvious choice for analysis.
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There are many ways of generalizing the logit model to handle ordered categories,
such as the partial proportional odds, continuation-ratio, adjacent-category logits,
cumulative logits, and stereotype logistic models. Despite this diversity and the
vast variety of studies on the subject their use in the public health area is still rare
(Ananth & Kleinbaum, 1997; Anderson, 1984; Bender & Benner, 2000; Brant, 1990).
This may be attributed not only to their complexity, but especially to the difficulty
encountered when it comes to validating their assumptions (Lall et al., 2002). When
the dependent variable has only two categories, the usual binary logistic model is
appropriate.

5.2.1 Cumulative logits

The cumulative logit model is the most commonly used model for the analysis of
ordinal categorical variables and it is widely implemented as the default for ordinal
regression analysis in many statistical software packages, such as SAS, SPSS, Stata,
S-Plus and R (Liu, 2015). It is used to estimate the cumulative probabilities of be-
ing at or below a particular category of the ordinal response variable, conditional
on a set of predictor variables. The effects of the independent variables can be in-
terpreted in several ways, including how they contribute to the cumulative odds
and their probabilities of being at or beyond a particular category. They can also
be interpreted as how these variables contribute to the odds of being at or below a
particular category, if the sign is reversed before the estimated logit coefficients and
corresponding cumulative odds are computed (Liu, 2009). This model can estimate
the cumulative probabilities of being at or beyond a particular value of the ordinal
response variable as well (the sign of the cut points needs to be reversed and their
magnitude remain unchanged) because below and beyond a particular category are
just two complementary directions (Liu, 2009).

Let pij be the probability that individual i falls into category j of the dependent
variable. We assume that the categories are ordered in the sequence j = 1, ..., J .
Cumulative probabilities are defined as πij =

∑j
k=1 pik, where πij is the probability

that individual i is in the jth category or lower.

According to Agresti (2002b), one way to use category ordering is to form logits
of cumulative probabilities,

P (Y ≤ j|x) =
exp(βj0 +X ′β)

1 + exp(βj0 +X ′β)
= π1(x) + π2(x) + ...+ πj(x), j = 1, 2, ..., J (5.2)
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Equivalently the cumulative logits (logits of cumulative probabilities) can be defined
as

logit[P (Y ≤ j|x)] = log

[
P (Y ≤ j|x)

P (Y > j|x)

]
= log

[
P1(x) + P2(x) + ...+ Pj(x)

Pj+1(x) + Pj+2(x) + ...+ PJ(x)

]
,

j = 1, 2, ..., J − 1. Each cumulative logit uses all J response categories.

In Stata, the logit form of the ordinal logistic regression model that simultaneously
uses all cumulative logits can be expressed as follows:

logit[P (Y ≤ j|x)] = βj0 + (−X′β), j = 1, 2, ..., J, (5.3)

where P (Y ≤ j|x) is the cumulative probability of the event (Y ≤ j|x), βj0 are the
unknown intercept parameters increasing in j, and β = (β1, β2, ..., βp)

′ is a vector of
unknown regression coefficients corresponding to x. Since P (Y ≤ j|x) increases in
j for fixed x, the logit is an increasing function of this probability.

The cumulative logit model (Equation 5.3) satisfies

logit[P (Y ≤ j|x1)]−logit[P (Y ≤ j|x2)] = log

(
P (Y ≤ j|x1)/P (Y > j|x1)
P (Y ≤ j|x2)/P (Y > j|x2)

)
= β′(x1−x2)

An odds ratio of cumulative probabilities is called a cumulative odds ratio. The odds
of the event Y ≤ j at x = x1 is exp[β′(x1 − x2)] times the odds of the same event
at x = x2. The log cumulative odds ratio is proportional to the distance between
x1 and x2. The same proportionality constant applies to each logit. Because of this
property, cumulative logit model is called the proportional odds model (McCullagh,
1980; Long, 1997; Agresti, 2002b).

Suppose we have J categories that are ordered in the sequence j = 1, 2, ..., J . In
this logit model we have J − 1 cumulative logits.

Let θj = log

(
P1 + P2 + ...+ Pj

Pj+1 + Pj+2 + ...+ PJ

)
, j = 1, 2, ..., J − 1 (cumulative logits)

where J is number of classes, thus θj have J − 1 cumulative logits. Given observed
data such that Pj =

xj
N , j = 1, 2, ..., J , then

θ̂j = log

[
P (Y ≤ j|x)

P (Y > j|x)

]
= log

(
P1 + P2 + ...+ Pj

Pj+1 + Pj+2 + ...+ PJ

)
, j = 1, 2, ..., J
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Consider a relatively simple case of a variable with 3 categories (J = 3). Thus we
have 3− 1 = 2 cumulative logits:

θ̂1 = log

[
P (Y ≤ 1)

P (Y > 1)

]
= log

(
P1

P2 + P3

)

θ̂2 = log

[
P (Y ≤ 2)

P (Y > 2)

]
= log

(
P1 + P2

P3

)

θ̂ =

(
θ̂1

θ̂2

)
=

log ( P1
P2+P3

)
log
(
P1+P2
P3

) =

(
log(P1)− log(P2 + P3)

log(P1 + P2)− log(P3)

)
=

(
g1(P )

g2(P )

)

To find var(θ̂j) we use the delta method for transformation of several variables. The
probabilities p = (p1, p2, p3)

′ has mean π = (π1, π2, π3)
′ and covariance matrix

∑
(π).

The Variance-Covariance matrix for the estimator θ̂ is∑
θ̂

= H ′
∑
(π)

H (Delta method)

∑
(π), general form for J = 3:

 var(P1) cov(P1, P2) cov(P1, P3)

cov(P2, P1) var(P2) cov(P2, P3)

cov(P3, P1) cov(P3, P2) var(P3)

 =
1

N

π1(1− π1) −π1π2 −π1π3
−π2π1 π2(1− π2) −π2π3
−π3π1 −π3π2 π3(1− π3)


H is the matrix of derivatives of g(P ) evaluated at (π1, π2, π3)

′, which is

H =


∂g1(P )
∂P1

∂g2(P )
∂P1

∂g1(P )
∂P2

∂g2(P )
∂P2

∂g1(P )
∂P3

∂g3(P )
∂P3

 =


∂(log(P1)−log(P2+P3))

∂P1

∂(log(P1+P2)−log(P3))
∂P1

∂(log(P1)−log(P2+P3))
∂P2

∂(log(P1+P2)−log(P3))
∂P2

∂(log(P1)−log(P2+P3))
∂P3

∂(log(P1+P2)−log(P3))
∂P3



=


1
P1

1
P1+P2

−1
P2+P3

1
P1+P2

−1
P2+P3

−1
P3


Therefore,

∑
θ̂ become

=
1

N

(
1
π1

−1
π2+π3

−1
π2+π3

1
π1+π2

1
π1+π2

−1
π3

)π1(1− π1) −π1π2 −π1π3
−π2π1 π2(1− π2) −π2π3
−π3π1 −π3π2 π3(1− π3)




1
π1

1
π1+π2

−1
π2+π3

1
π1+π2

−1
π2+π3

−1
π3
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=
1

N

(
1 −π2

π2+π3
−π3
π2+π3

π1
π1+π2

π2
π1+π2

−1

)
1
π1

1
π1+π2

−1
π2+π3

1
π1+π2

−1
π2+π3

−1
π3


=

1

N

(
1
π1

+ 1
π2+π3

1
(π1+π2)(π2+π3)

1
(π1+π2)(π2+π3)

1
π1+π2

+ 1
π3

)
, when J = 3, π1 + π2 + π3 = 1

Thus,

var(θ̂1) =
1

N

(
1

π1
+

1

π2 + π3

)
, =⇒ v̂ar(θ̂1) =

1

N

(
1

P1
+

1

P2 + P3

)
var(θ̂2) =

1

N

(
1

π1 + π2
+

1

π3

)
, =⇒ v̂ar(θ̂2) =

1

N

(
1

P1 + P2
+

1

P3

)
cov(θ̂1, θ̂2) =

1

N(π1 + π2)(π2 + π3)
, =⇒ ĉov(θ̂1, θ̂2) =

1

N(P1 + P2)(P2 + P3)

However, SAS uses ordinal logit model that is different from the one used by Stata.
For SAS PROC LOGISTIC (the ascending option), the ordinal logit model has the
following form:

logit [P (Y ≤ yj |x)] = log

[
P (Y ≤ yj |x)

P (Y > yj |x)

]
= βj0 +X′β;

Using SAS with the descending option, the ordinal logit model can be expressed as:

logit [P (Y ≥ yj |x)] = log

[
P (Y ≥ yj |x)

P (Y < yj |x)

]
= βj0 +X′β,

where in both equations βj0 are the intercepts, and β’s are logit coefficients.

The β-coefficients are the ordered log-odds or logit regression coefficients. Besides
its positive/negative relationship with the ordinal outcome, interpretation of the
ordered logit coefficient is that for a one unit increase in the predictor, the ordinal
outcome variable level is expected to change by its respective regression coefficient
in the ordered log-odds scale, controlling for all other independent variables in the
model. Interpretation of the ordered logit estimates is not dependent on the ancil-
lary (cut points) parameters; the ancillary/thresholds parameters are used to define
the changes among category levels of the ordinal response variable. When estimat-
ing the odds of being at or below an order response category j the J − 1 cut points
are used to differentiate the adjacent categories of an order response category. In
this particular study, the response variable has four ordered categories. β1 is the cut
point for the cumulative logit model for Y ≤ 1 that is level 1 versus levels 2-4; β2 is
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the cut point for the cumulative logit model for Y ≤ 2 that is levels 1 and 2 versus
levels 3 and 4; and the final β3 is used as the cut point for the logit model when
Y ≤ 3 that is levels 1-3 versus level 4.

Maximum likelihood estimation for the cumulative logit models

Maximum likelihood (ML) estimation method is used for cumulative logit. Cumu-
lative logit models assume independent multinomial observations. For subject i,
let yij = 1 when the event happens and let yij = 0 otherwise, i = 1, ..., n. Then
E(yij) = πj(xi) the probability that observation i with explanatory variable values
xi falls in category j. For multicategory indicator (yi1, yi2, ..., yiJ) of the response for
subject i, the cumulative logit model, logit[P (Y ≤ j|x)] = βj0 + X′β, constrains
the J − 1 response curves that have the same shape. Thus, its fit is not the same as
fitting separate logit models for each j. The multinomial likelihood function for the
cumulative logit model is based on the product of the multinomial mass functions
for the n subjects,

n∏
i=1

 J∏
j=1

πj(xi)
yij

 =
n∏
i=1

 J∏
j=1

(P (Y ≤ j|xi)− P (Y ≤ j − 1|xi))yij


=

n∏
i=1

 J∏
j=1

(
exp(βj0 + β′Xi)

1 + exp(βj0 + β′Xi)
− exp(βj−1,0 + β′Xi)

1 + exp(βj−1,0 + β′Xi)

)yij
is viewed as a function of (βj0, β), where P (Y ≤ 0) = 0. The Log-likelihood function
is

L(βj0,β) =

n∑
i=1

J∑
j=1

yijlog [G(βj0 +Xiβ −G(βj−1,0 +Xiβ))] ,

where G denote the inverse link function for the cumulative link model.

The likelihood equations can be solved using Iterative methods (Fisher scoring al-
gorithm or Newton-Raphson method) to obtain the ML estimates of the model pa-
rameters (see Agresti, 2010, section 5.1.2).

5.2.2 Continuation-ratio model

It is an alternative method to the proportional odds model for the analysis of cate-
gorical data with ordered responses (Fienberg, 1976). When the cumulative proba-
bilities, P (Y ≤ j|x), of being in one of the first j categories in the cumulative logit
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model is replaced by the probability of being in category j that is P (Y = j|x) con-
ditional on being in categories greater than j that is P (Y > j|x), this results in the
continuation-ratio model. Therefore the continuation-ratio model can be defined as

log

[
P (Y = j|x)

P (Y > j|x)

]
= βj0 −X′β, j = 1, 2, ..., J

Continuation-ratio logit models are useful when a sequential mechanism determines
the response outcome, in the sense that an observation must potentially occur in
lower category before it can occur in a higher category (Agresti, 2010; Hardin et al.,
2007; Long & Freese, 2006). As defined in the cumulative logit model above, for J
categories that are ordered in the sequence j = 1, 2, ..., J , there are J−1 continuation
ratio logits. With a three-category outcome, J = 3, there are 3− 1 = 2 continuation-
ratio logits.

let θ̂j = log

[
P (Y = j|x)

P (Y > j|x)

]
= log

(
Pj

Pj+1 + Pj+2 + ...+ PJ

)
, j = 1, 2, ..., J

with J = 3 categories, the two set of sequential continuation ratio logits become:

θ̂1 = log

[
P (y = 1)

P (y > 1)

]
= log

(
P1

P2 + P3

)

θ̂2 = log

[
P (y = 2)

P (y > 2)

]
= log

(
P2

P3

)

θ̂ =

(
θ̂1

θ̂2

)
=

log ( P1
P2+P3

)
log
(
P2
P3

)  =

(
log(P1)− log(P2 + P3)

log(P2)− log(P3)

)
=

(
g1(P )

g2(P )

)
∑
θ̂

= H ′
∑
(π)

H (Delta method)

Therefore,
∑

θ̂ become

=
1

N

(
1
π1

−1
π2+π3

−1
π2+π3

0 1
π2

−1
π3

)π1(1− π1) −π1π2 −π1π3
−π2π1 π2(1− π2) −π2π3
−π3π1 −π3π2 π3(1− π3)




1
π1

0
−1

π2+π3
1
π2

−1
π2+π3

−1
π3



=
1

N

(
1 −π2

π2+π3
−π3
π2+π3

0 1 −1

)
1
π1

0
−1

π2+π3
1
π2

−1
π2+π3

−1
π3


=

1

N

(
1
π1

+ 1
π2+π3

0

0 1
π2

+ 1
π3

)
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Thus,

var(θ̂1) =
1

N

(
1

π1
+

1

π2 + π3

)
, =⇒ v̂ar(θ̂1) =

1

N

(
1

P1
+

1

P2 + P3

)
var(θ̂2) =

1

N

(
1

π2
+

1

π3

)
, =⇒ v̂ar(θ̂2) =

1

N

(
1

P2
+

1

P3

)
cov(θ̂1, θ̂2) = 0

In general for continuation-ratio logit, ĉov(θ̂j , θ̂J) = 0.

According to Agresti (2010), an alternative set of continuation-ratio logits, appro-
priate if the sequential mechanism works in the reverse direction, is

θ̂j = log

[
P (Y = j + 1)

P (Y < j + 1)

]
= log

(
Pj+1

P1 + P2 + ...+ Pj

)
, j = 1, 2, ..., J − 1

Two sets of sequential continuation-ratio logits can be obtained for the above three-
category outcome example. These are as follows.

θ̂1 = log

[
P (y = 2)

P (y < 2)

]
= log

(
P2

P1

)

θ̂2 = log

[
P (y = 3)

P (y < 3)

]
= log

(
P3

P1 + P2

)
This indicates that the two forms of continuation-ratio logits are not equivalent.

5.2.3 Adjacent-category logits

The adjacent-category logit model involves modeling the ratio of the two probabil-
ities, P (Y = j|x) and P (Y = j + 1|x) that is, this model considers ratios of prob-
abilities for successive categories

(
π1
π2
, π2π3 , ...,

πJ−1

πJ

)
, where j = 1, 2, ..., J . Adjacent-

category logit models can be represented as

log

[
P (Y = j|x)

P (Y = j + 1|x)

]
= βj0 −X′β, j = 1, 2, ...J

For detailed discussions of logit models that are appropriate to handle ordered cate-
gories one can refer to Agresti (2010); O’Connell (2006); and Liu (2009, 2014).
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5.3 Ordinal logistic regression with complex survey design

The usual proportional odds model assumes that data are collected using simple
random sampling by which each sampling unit has an equal probability of being
selected from a population. When the data comes from a complex survey design
with the use of different strata, clustered sampling techniques, and unequal selec-
tion probabilities, it is inappropriate to conduct the proportional odds model analy-
sis for the ordinal response variable without taking the survey sampling design into
account. Ignoring these features in data analysis may lead to biased estimates of pa-
rameters, incorrect variance estimates and misleading results. The parameters and
their variance may be either overestimated or underestimated (Liu, 2015). In such
cases, a specialized technique to produce the appropriate estimates and standard er-
rors for ordinal outcome variable should be used. This method takes into account
the weight in the survey sampling design.

Features of complex surveys such as sampling weights, strata, and clusters, have
been illustrated in literature (Sharon, 1999; Liu, 2015). In Stata, svy prefix command
for survey data is used to fit the proportional odds model when taking all the ele-
ments of survey design features into account. It is necessary to specify strata, cluster
and weights before fitting the model. For more details on how to use this command
one can use the help svyset command in stata software.

5.3.1 Variance estimation in survey ordinal logistic regression

For unbiased variance estimation in complex sampling survey designs that include
designs with stratification, clustering, and unequal weighting, the procedure uses
the Taylor series (linearization) method or replication (resampling) methods (Binder,
1983; Lee & Forthofer, 2006; Levy & Lemeshow, 2013; Sharon, 1999). The replicated
methods estimate variance of a parameter by generating multiple replicates (also
called subsamples) from a full sample according to a specific resampling scheme and
examining the variability of the subsample estimates. Balanced repeated replication
(BRR), jackknife repeated replication (JRR), and bootstrap method are the most com-
monly used resampling schemes (Lee & Forthofer, 2006; Levy & Lemeshow, 2013).

The Taylor series (Linearization) approximation, also known as the delta method
(Kalton, 1983) is the most commonly used method to estimate the covariance-matrix
of the regression coefficients for complex survey data. In statistics, the Taylor series
linearization is used to obtain a linear approximation to the nonlinear function or
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statistic and then the variance of the function (Liu, 2015). It is the default variance
estimation method used in general purpose software packages, such as Stata, SAS.
The Taylor series expansion of the function, f(x) at a point ”a” is generally expressed
as:

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)(x− a)2

2!
+
f ′′′(a)(x− a)3

3!
+ ...

where f ′, f ′′ and f ′′′ are the first, second and third derivatives of the function and so
on.

The technical details of variance estimation can be found in many literatures (Binder,
1983; Heeringa et al., 2010; Lee & Forthofer, 2006; Levy & Lemeshow, 2013).

5.4 Application of ordinal logistic regression model

In the subsequent section, the proposed model, namely the proportional odds model,
was applied to the 2016 DHS data. The response variable used is the ordinal outcome
of nutritional status of under five children (see Table 2.1). The same set of explana-
tory variables used in the previous chapters was used. In addition to the response
and explanatory variables, we also assessed two-way interaction effects. The inter-
action effects were not found significant. Stata ologit command was used for model
fitting.

Table 5.1 shows the results for the proportional odds model under the simple ran-
dom sampling assumption. The log likelihood at each iteration shows that ordinal
logistic regression, like binary and multinomial logistic regression, uses maximum
likelihood estimation, which is an iterative procedure. Iteration 0 is the log like-
lihood of the ”null” or ”empty” model; that is, a model with no predictors. At
the next iteration, the predictors are included in the model. At each iteration, the
log likelihood increases because the goal is to maximize the log likelihood. When
the difference between successive iterations is very small, the model is said to have
”converged”, and the iteration stops (Long, 1997).

The likelihood ratio chi-square (LRχ2) tests that at least one of the predictors’ re-
gression coefficient is not equal to zero. The number in the parenthesis indicates
the degrees of freedom of the chi-square distribution used to test the the null hy-
pothesis using the LRχ2 statistic and is defined by the number of predictors in the
model. The LRχ2 statistic can be calculated by −2(L(null model)-L(fitted model))=
-2((-6362.3952)-(-6009.1723))= 708.45, where L(null model) is from the log likelihood
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of the model with no predictor variable (Iteration 0) and L(fitted model) is the log
likelihood from the final iteration (assuming the model converged) with all the pa-
rameters.

The P-value of the log likelihood ratio chi-square test with 28 degree of freedom,
LRχ2(28) = 708.45, Prob > χ2 = 0.000, which indicates that at least one of the
logit regression coefficient of the predictors was statistically different from 0, so the
full model with all predictors provided a better fit than the null model with no in-
dependent variables in predicting cumulative probabilities for under five children’s
nutrition status (Table 5.1).

Table 5.1 reports three cut-points; cut1, cut2, and cut3. cut1 is the estimated cut
point on the latent variable used to differentiate underweight status from normal,
overweight, and obese status when values of the predictor variables are evaluated
at zero. When the ordinal outcome category is 1 given significant predictor variables
(for categorical variables the reference variable evaluated at zero) and had zero value
for all other predictor variables, the latent variable falls at or below the first cut point,
−2.7741. cut2 is the estimated cut point on the latent variable used to differentiate
underweight and normal weight status from overweight and obese weight status
when values of the predictor variables are evaluated at zero. When the ordinal out-
come category is 2 given significant predictor variable and controlling for all other
predictor variables in the model, the latent variable falls between the first cut point,
−2.7741 and the second cut point, 2.2885. cut3 is the estimated cut point on the la-
tent variable used to differentiate underweight, normal, and overweight status from
obese status when values of the predictor variables are evaluated at zero. When the
ordinal outcome category is 3 given significant predictor variable (reference variable
evaluated at zero) and controlling for all other predictor variables in the model, the
latent variable falls between cut2, 2.2885 and cut3, 3.5703 and is classified as over-
weight. When the ordinal outcome category reaches 4, if the latent variable had a
value at or beyond the third cut point, 3.5703, controlling for all other predictor vari-
ables in the model would be classified as child with obese nutrition status.

Table 5.1 shows the effect of socio-economic, demographic and geographic factors
that have influence on under five children’s nutritional status. The cummulative
logit model used for the analysis. The estimated logit regression coefficients of
current age of child is β=-0.3233 (P-value=0.000). This is the ordered log-odds es-
timate for a one unit increase in age of a child on the expected nutritional status
level given the other variables are held constant in the model. The estimated co-
efficients of female child is (β=-0.2681, P-value=0.000). The estimated coefficients
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of weight of child at birth are: large (β=0.5547, P-value=0.000), average (β=0.3776,
P-value=0.000). For mother’s BMI, (β=0.0604, P-value=0.000), which is the ordered
log-odds estimate for one-unit increase in mother’s BMI keeping other variables con-
stant. The estimated coefficients for regions are: Affar, β=-0.3951 (P-value=0.001),
Dire Dawa, β=-0.6004(P-value=0.000), Gambela, β=-0.4453 (P-value=0.002), Harari,
β=-0.3353(P-value=0.016), SNNP, β=0.2134 (P-value=0.047), Somali, β=-0.8988 (P-
value=0.000) were found to be significant determinants of under five children’s nu-
tritional status.

Substituting the values of the estimated logit coefficients into the Equation (5.3) re-
sulted in logit[π(Y ≤ j|x)] = βj0 + (−βjpx). By exponentiating the negative logit
coefficients (e(−β)) the odds of being at or below a particular ordinal nutritional sta-
tus category that is underweight versus being above that category (normal, over-
weight, and obese) were obtained. Therefore, to estimate the cumulative odds of
being at or below a particular under five ordinal nutritional status variable (based
on weight) category j for the first predictor, current age of child, the logit form of
proportional odds model was used, logit[π(Y ≤ j|x1)] = βj0 − (−0.3233(age)). OR=
e(0.3233)=1.3817, indicating that the odds of being at or below a particular under five
ordinal nutritional status variable (based on weight) increased by 38.17% with a one
unit increase in the value of current age of a child, holding other variables constant.
The estimated cumulative odds of being at or below an ordinal nutritional status
(based on weight) category j, for a female child, we calculated logit[π(Y ≤ j|x1)] =

βj0 + (−0.2681(female)). OR= e(0.2681)=1.3075, suggesting that the odds of a female
child being at or below a particular under five ordinal nutritional status (based on
weight) increased by 30.75%. The estimated cumulative odds of being at or below
an ordinal nutritional status (based on weight) category j, for a child who had large
weight at birth, we calculated logit[π(Y ≤ j|x1)] = βj0 + (0.5547(large)). OR=
e(−0.5547)=0.5743, suggesting that for a child who had large weight at birth, the odds
of being at or below a particular under five ordinal nutritional status variable (based
on weight) decreased by (1− 0.5743)× 100% = 42.57% as compared to small weight
of child at birth, controlling for all other independent variables in the model. The
estimated cumulative odds of being at or below an ordinal nutritional status (based
on weight) category j, for a child who had average weight at birth, we calculated
logit[π(Y ≤ j|x1)] = βj0 + (0.3776(average)). OR= e(−0.3776)=0.6856, suggesting that
for a child who had average weight at birth, the odds of being at or below a par-
ticular under five ordinal nutritional status variable (based on weight) decreased by
(1 − 0.6856) × 100% = 31.44% as compared to small weight of child at birth, con-
trolling for all other independent variables in the model. The odds of being at or
below a particular under five ordinal nutritional status for the other significant ef-
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fects were computed in the same way as above. It was found that for a one-unit
increase in the value of mother’s BMI, holding other variables constant, the odds
of being at or below a particular under five ordinal nutritional status decreased by
(1 − 0.9414) × 100% = 5.86% (OR=0.9414). The odds of being at or below a par-
ticular under five ordinal nutritional status variable for children from Affar region
was 1.4845 (P-value= 0.001) times the odds of children from Oromia region. The
odds of being at or below a particular under five ordinal nutritional status vari-
able for children from Dire Dawa region was 1.8228 (P-value= 0.000) times the odds
of children from Oromia region. The odds of being at or below a particular ordi-
nal nutritional status category for children from Gambela, Harari and Somali re-
gions were respectively 1.5609 (P-value=0.002), 1.3984 (P-value=0.016), and 2.4567
(P-value=0.000) times the odds of children from Oromia region. However, the odds
of being at or below a particular ordinal nutritional status category for children from
SNNP was 0.8078 (P-value=0.047) times the odds for children from Oromia region
(see Table 5.1).

The odds of being beyond a particular category of ordinal nutritional status are the
inverse of those of being at or below a category (Liu & Koirala, 2013). Equation (5.3)
can be transformed to logit[π(Y > j|x)] = −βj0+βjpx. Odds ratios (Table 5.1) can be
used directly for the analysis. In terms of odds ratio (OR), it was found that the odds
of being beyond a particular category of ordinal nutritional status was decreased by
(1 − 0.7237) × 100% = 27.63% (P-value=0.000) with a one-year increase in current
age of child, holding other variables constant. Similarly, the odds of being beyond
a particular under five ordinal nutritional status for a female child was 0.7647 times
the odds of a male child. The odds of being beyond a particular category of ordinal
nutritional status for children who had large weight at birth was 1.7414 times the
odds of children who had small weight at birth. The odds of being at or beyond a
particular category of ordinal nutritional status for other significant effects can be
interpreted in the same way as above.
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Table 5.1: Parameter estimates using PO model assuming the observations are indepen-
dent.

Parameters Coeff.(β) St.error OR P-value

cut1 -2.7741 0.2377

cut2 2.2885 0.2351

cut3 3.5703 0.2387

Current age of child -0.3233 0.0199 0.7237 0.000

Mother’s age -0.0083 0.0045 0.9916 0.066

Mother’s BMI 0.0604 0.0082 1.0622 0.000

Sex of child (ref. = Male)

Female -0.2681 0.0537 0.7647 0.000

Weight of child at birth (ref. = Small)

Large 0.5547 0.0739 1.7414 0.000

Average 0.3776 0.0686 1.4588 0.000

Mother’s work status (ref. = No)

Yes 0.0415 0.0624 1.0424 0.506

Educational level (ref. = No education)

Primary school -0.0071 0.0694 0.9928 0.918

Secondary school 0.1200 0.1167 1.1275 0.304

Higher 0.2679 0.1492 1.3072 0.073

Marital status (ref. = Married)

Not married -0.1404 0.1120 0.8689 0.210

Religion (ref. = Orthodox)

Catholic -0.1449 0.3444 0.8651 0.674

Muslim 0.0377 0.1052 1.0384 0.720

Protestant 0.0083 0.0909 1.0084 0.926

Other 0.0359 0.2206 1.0366 0.870

Region (ref. = Oromia)

Addis Abeba 0.2281 0.1550 1.2562 0.141

Affar -0.3951 0.1221 0.6736 0.001

Amhara -0.1353 0.1235 0.8734 0.273

Benishangul -0.2240 0.1179 0.7992 0.057

Dire Dawa -0.6004 0.1507 0.5485 0.000

Gambela -0.4453 0.1428 0.6406 0.002

Harari -0.3353 0.1396 0.7150 0.016

SNNP 0.2134 0.1074 1.2379 0.047

Somali -0.8988 0.1121 0.4070 0.000

Tigray -0.2392 0.1280 0.7871 0.062

Place of residence (ref. = Rural)

Urban 0.0801 0.0982 1.0833 0.415

Wealth index (ref. = Poor)

Middle -0.0356 0.0833 0.9649 0.669

Rich 0.1277 0.0778 1.1362 0.101
Iteration 0:log likelihood=-6362.3952, LR χ2 (28)=708.45, Iteration 4:log likelihood=-6009.1723, Prob>χ2=0.0000
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5.5 Application of ordinal logistic regression model with com-
plex survey design

In the subsequent section, the same variables and two-way interaction effects from
the previous section are used for data analysis with reference to the Ethiopian DHS
data, 2016. Here we investigate the relationship (association) between the response
variable, and the explanatory variables by the method of proportional odds (PO)
model with complex survey design using the stata svy: ologit prefix command. Stata’s
survey data svy prefix command is used to fit the PO model when taking all the el-
ements of survey design features, such as strata, cluster, and weight variables into
account (Liu & Koirala, 2013).

The result of the svy: ologit is indicated in Table 5.2 below. The svy: ologit for PO
model that considered sampling design, reports the adjusted Wald test for all pa-
rameters rather than the log likelihood ratio chi-square test for the ordinal PO model
(Liu, 2015). F (28, 588) = 13.01, P rob > F = 0.0000, indicates that the full model
with all parameters was significant in fitting the PO model with complex survey de-
sign. The logit coefficients and odds ratios in the PO model with complex survey
design can be interpreted in the same way as those in the standard PO model.

The three cut off points, when estimating the odds of being at or below a particular
ordinal nutritional status category (based on weight), are used to differentiate the ad-
jacent categories of the response variable (ordinal nutritional status). α1 = −3.2418,
which is the first cut point for the cumulative logit model for Y ≤ 1 that is level
1 versus levels 2-4; α2 = 1.7371 is the cut point for the cumulative logit model for
Y ≤ 2 that is levels 1 and 2 versus 3 and 4; α3 = 2.9871 is used as the cut point for
the cumulative logit model when Y ≤ 3 that is levels 1-3 versus level 4.

The results (Table 5.2) revealed that the estimated logit coefficients of current age of
child, female children, large and average weight of a child at birth, mother’s current
age, mother’s BMI, mothers who are not married and Affar, Dire Dawa, Gambela,
Harari and Somali regions were significant. Therefore, for the predictor, current age
of child (β=-0.3186, OR=0.7271) indicates that the odds of being at or beyond a par-
ticular ordinal nutritional status category decreased by (1−0.7271)×100% = 27.29%

with a one year increase in current age of child, holding other variables constant; fe-
male child (β=-0.2417, OR=0.7852) suggesting that the odds of a female child being
at or beyond a particular under five ordinal nutritional status (based on weight) de-
creased by (1−0.7852)×100% = 21.48%. The odds of being at or beyond a particular
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ordinal nutritional status for weight of child at birth: large (β = 0.5481), and aver-
age (β = 0.3134) were 1.7301, and 1.3680 respectively times the odds of small weight
of a child at birth; for the predictor mother’s age (β=-0.0203, OR=0.9798) indicates
that the odds of being at or beyond a particular ordinal nutritional status category
decreased by (1 − 0.9798) × 100% = 2.02% with a one year increase in mother’s
age; for the predictor mother’s BMI (β=0.0479, OR=1.0491) indicates that a one-unit
increase mother’s BMI, holding other variable constant, the odds of being at or be-
yond a particular under five ordinal nutritional status increased by 4.91% . It was
found that the odds of being at or beyond a particular ordinal nutritional status for
children born to unmarried mother was 0.7101 (β=-0.3423) times the odds for chil-
dren born to married mother. The odds of being at or above a particular ordinal
nutritional status for children from Affar, Dire Dawa, Gambela, Harari and Somali
regions were respectively 0.6411 (β=-0.4445), 0.5554 (β=-0.5879), 0.5422 (β=-0.6120),
0.7243 (β=-0.3224) and 0.4007 (β=-0.9143) times the odds for children from Oromia
region (see Table 5.2).
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Table 5.2: Parameter estimates using PO model with complex survey design

Parameters Coeff.(β) St.error OR P-value [95%C.I for β]

cut1 -3.2418 0.3566 (-3.9423, -2.5414)

cut2 1.7371 0.3504 (1.0489, 2.4252)

cut3 2.9871 0.3628 (2.2745, 3.6998)

Current age of child -0.3186 0.0274 0.7271 0.004 (-0.3725, -0.2648)

Mother’s age -0.0203 0.0064 0.9798 0.002 (-0.0331, -0.0075)

Mother’s BMI 0.0479 0.0136 1.0491 0.000 (0.0212, 0.0747)

Sex of child (ref. = Male)

Female -0.2417 0.0834 0.7852 0.000 (-0.4056, -0.0779)

Weight of child at birth (ref. = Small)

Large 0.5481 0.1221 1.7301 0.000 (0.3082, 0.7880)

Average 0.3134 0.1004 1.3680 0.002 (0.1161, 0.5106)

Mother’s work status (ref. = No)

Yes -0.0331 0.0963 0.9673 0.731 (-0.2224, 0.1561)

Educational level (ref. = No education)

Primary school -0.0650 0.0966 0.9370 0.501 (-0.2549, 0.1248)

Secondary school 0.0919 0.1645 1.0963 0.577 (-0.2312, 0.4151)

Higher 0.0701 0.2332 1.0726 0.764 (-0.3879, 0.5282)

Marital status (ref. = Married)

Not married -0.3423 0.1519 0.7101 0.025 (-0.6406, -0.0440)

Religion (ref. = Orthodox)

Catholic -0.2474 0.3597 0.7808 0.492 (-0.9538, 0.4590)

Muslim 0.2161 0.1384 1.2412 0.119 (-0.0557, 0.4879)

Protestant 0.0635 0.1179 1.0655 0.591 (-0.1681, 0.2951)

Other 0.6863 0.6262 1.9864 0.274 (-0.5434, 1.9160)

Region (ref. = Oromia)

Addis Abeba 0.2395 0.2165 1.2706 0.269 (-0.1858, 0.6648)

Affar -0.4445 0.1481 0.6411 0.003 (-0.7355, -0.1535)

Amhara -0.0663 0.1339 0.9357 0.621 (-0.3295, 0.1967)

Benishangul -0.2702 0.1582 0.7632 0.088 (-0.5809, 0.0404)

Dire Dawa -0.5879 0.1522 0.5554 0.000 (-0.8868, -0.2889)

Gambela -0.6120 0.1845 0.5422 0.001 (-0.9745, -0.2496)

Harari -0.3224 0.1557 0.7243 0.039 (-0.6282, -0.0167)

SNNP 0.1665 0.1381 1.1811 0.228 (-0.1047, 0.4378)

Somali -0.9143 0.1651 0.4007 0.000 (-1.2387, -0.5899)

Tigray -0.1783 0.1445 0.8367 0.218 (-0.4622, 0.1056)

Place of residence (ref. = Rural)

Urban 0.2044 0.2022 1.2268 0.312 (-0.1927, 0.6016)

Wealth index (ref. = Poor)

Middle -0.0170 0.1101 0.9830 0.877 (-0.2332, 0.1991)

Rich 0.1908 0.1152 1.2102 0.098 (-0.0355, 0.4171)
F(28,588) = 13.01 , Prob > F = 0.0000
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5.6 Comparison of results

Table 5.3 provides the results of the two models, the fitted classical PO model and
thereafter PO model with complex sampling design. After complex sampling design
was applied to the PO model, the estimated logit coefficients and their standard er-
rors were different from those in the PO model under the simple random sampling
assumption. The logit coefficient of the predictors current age of child, female child,
Dire Dawa and Harari regions were increased and those of the other significant pre-
dictors (large and average weight of child at birth, mother’s age, mother’s BMI, not
married mothers and Affar, Gambela and Somali regions) were decreased.

Compared to the PO model with simple random sampling, the estimated logit co-
efficient for current age of child in the PO model with complex survey design in-
creased by 1.48%, and its standard error increased by 37.7%; the logit coefficient for
female child increased by 10.92%, and its standard error increased by 55.31%; the
logit coefficient for Dire Dawa and Harari regions were respectively increased by
2.12% and 4%, with their standard error increased by 0.99% and 11.53%; the logit
coefficient for large and average weight of child at birth were respectively decreased
by 1.2% and 20.48%, with their standard error increased by 65.2% and 46.35%; the
logit coefficient for mother’s age, mother’s BMI and not married mothers were re-
spectively decreased by 40.9%, 79.3% and 41.01%, with standard error increased by
42.2%, 65.8% and 35.6%; and the logit coefficient for Affar, Gambela and Somali re-
gions were respectively decreased by 11.1%, 27.2% and 1.7%, with their standard
error increased by 21.3%, 29.2% and 47.27%.

Further, the standard errors of the significant coefficients in the PO model with com-
plex sampling design were higher as compared to the corresponding standard errors
of the significant coefficients in the conventional PO model indicating that standard
errors were underestimated when we considered the conventional PO model (Liu &
Koirala, 2013; Habyarimana et al., 2014). This is an important distinguishing feature
between the models. Analyses ignoring the complex sampling design will lead to a
false increased precision and should be avoided.

Models with smaller values of an information criterion are used to considered prefer-
able. However, the number of parameters estimated (k) in the complex model is
higher than that of the conventional model. Since we considered the complex na-
ture of the design (weight, cluster and strata) in the PO model with complex survey
design, AIC and BIC of the complex model are higher.
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Table 5.3: Comparison of results obtained from PO models without and with complex sur-
vey design

PO without CSD PO with CSD

Parameters Coeff.(β) SE OR P-value Coeff.(β) SE OR P-value

cut1 -2.7741 0.2377 -3.2418 0.3566

cut2 2.2885 0.2351 1.7371 0.3504

cut3 3.5703 0.2387 2.9871 0.3628

Current age of child -0.3233 0.0199 0.7237 0.000 -0.3186 0.0274 0.7271 0.004

Mother’s age -0.0083 0.0045 0.9916 0.066 -0.0203 0.0064 0.9798 0.002

Mother’s BMI 0.0604 0.0082 1.0622 0.000 0.0479 0.0136 1.0491 0.000

Sex of child (ref. = Male)

Female -0.2681 0.0537 0.7647 0.000 -0.2417 0.0834 0.7852 0.000

Weight of child at birth (ref. = Small)

Large 0.5547 0.0739 1.7414 0.000 0.5481 0.1221 1.7301 0.000

Average 0.3776 0.0686 1.4588 0.000 0.3134 0.1004 1.3680 0.002

Mother’s work status (ref. = No)

Yes 0.0415 0.0624 1.0424 0.506 -0.0331 0.0963 0.9673 0.731

Educational level (ref. = No education)

Primary school -0.0071 0.0694 0.9928 0.918 -0.0650 0.0966 0.9370 0.501

Secondary school 0.1200 0.1167 1.1275 0.304 0.0919 0.1645 1.0963 0.577

Higher 0.2679 0.1492 1.3072 0.073 0.0701 0.2332 1.0726 0.764

Marital status (ref. = Married)

Not married -0.1404 0.1120 0.8689 0.210 -0.3423 0.1519 0.7101 0.025

Religion (ref. = Orthodox)

Catholic -0.1449 0.3444 0.8651 0.674 -0.2474 0.3597 0.7808 0.492

Muslim 0.0377 0.1052 1.0384 0.720 0.2161 0.1384 1.2412 0.119

Protestant 0.0083 0.0909 1.0084 0.926 0.0635 0.1179 1.0655 0.591

Other 0.0359 0.2206 1.0366 0.870 0.6863 0.6262 1.9864 0.274

Region (ref. = Oromia)

Addis Abeba 0.2281 0.1550 1.2562 0.141 0.2395 0.2165 1.2706 0.269

Affar -0.3951 0.1221 0.6736 0.001 -0.4445 0.1481 0.6411 0.003

Amhara -0.1353 0.1235 0.8734 0.273 -0.0663 0.1339 0.9357 0.621

Benishangul -0.2240 0.1179 0.7992 0.057 -0.2702 0.1582 0.7632 0.088

Dire Dawa -0.6004 0.1507 0.5485 0.000 -0.5879 0.1522 0.5554 0.000

Gambela -0.4453 0.1428 0.6406 0.002 -0.6120 0.1845 0.5422 0.001

Harari -0.3353 0.1396 0.7150 0.016 -0.3224 0.1557 0.7243 0.039

SNNP 0.2134 0.1074 1.2379 0.047 0.1665 0.1381 1.1811 0.228

Somali -0.8988 0.1121 0.4070 0.000 -0.9143 0.1651 0.4007 0.000

Tigray -0.2392 0.1280 0.7871 0.062 -0.1783 0.1445 0.8367 0.218

Place of residence (ref. = Rural)

Urban 0.0801 0.0982 1.0833 0.415 0.2044 0.2022 1.2268 0.312

Wealth index (ref. = Poor)

Middle -0.0356 0.0833 0.9649 0.669 -0.0170 0.1101 0.9830 0.877

Rich 0.1277 0.0778 1.1362 0.101 0.1908 0.1152 1.2102 0.098
PO =⇒ Proportional odds model, and CSD =⇒ complex survey design
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The AIC and the BIC are two popular measures for comparing maximum likelihood
models. AIC and BIC are defined as

AIC = −2× ln(likelihood) + 2×K

BIC = −2× ln(likelihood) + ln(n)×K

where k= number of parameters estimated and n= number of observations.

AIC and BIC can be viewed as measures that combine fit and complexity. The fit
is measured negatively by −2 × ln(likelihood). Complexity is measured positively,
either by 2×k(AIC) or ln(n)×k(BIC) (see Akaike (1974) and Schwarz et al. (1978)).

Because of the diversity of the models that are available, it is becoming inappro-
priate to apply just a single criterion such as AIC. There are models that estimate the
number of parameters; in some cases, the number of parameters exceeds the num-
ber of independent variables. Criteria such as generalized cross-validation (GCV)
are used to compare the model quality. However, in practical use, we sometimes
need to select models by understanding the character of the models from two points
of view. First, how much the model fits the observation. Secondly, how stable the
model can make the estimation (Asami, 2016). For standardizing the balance be-
tween these two points of view, Asami (2016) suggests a simple way for evaluating
the different types of regression models from two points of view: the ’data fitting’
and the ’model stability’. Therefore, methods that take into account the complex na-
ture of the design, perform better than those that do not take this into account.

A complete review of types of methods for comparing regression models are be-
yond the scope of this research, but many of these measures are reviewed in (Asami,
2016; Azen & Budescu, 2006).
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Chapter 6

Discussion and Conclusion

The BMI, malnutrition and nutritional status of under five children were studied us-
ing different statistical models with reference to the 2016 Ethiopian DHS. The 2016
EDHS sample was designed to provide estimates for the health and demographic
variables of interest for Ethiopia as a whole; urban and rural area of Ethiopia and
11 geographical areas. Central Statistical Agency of Ethiopia was the responsible
organization for the survey. The 2007 Population and Housing Census results were
used as the sampling frame. A nationally representative sample of under five chil-
dren was used to get information on weight and height measures of children under
the age of five years. Overall, for under five children, the number of male and fe-
male children were almost equal. The majority of the respondents were residing in
rural areas and they were married. More than half of the children were from poor
economic class families. Most of the respondents were from Oromia, Somali, SNNP,
Tigray and Amhara regions. Many of the respondents were Orthodox Christian and
Muslim.

The present work was conducted to determine factors associated with the BMI, mal-
nutrition and nutritional status of under five children in Ethiopia. At the beginning
models with two-way interaction effects were considered. The backward elimina-
tion technique was used to eliminate non-significant factors for each model consid-
ered. The main purpose of the study was to determine factors affecting nutritional
status of under five children. This may assist policy makers in their effort to make
decision. It will help to prevent children’s deaths and to improve children’s health,
diet and growth status.

In Chapter 3, weighted quantile regression model was fitted by using BMI as re-
sponse variable. The estimates across different quantile levels allow us to study the
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impact of predictors on different quantiles of the response variable. This process pro-
vides a complete picture of the relationship between the continuous response vari-
able and explanatory variables. Overall, the findings from this model show that age
of a child, mother’s age, mother’s BMI, sex of child, weight of child at birth, regions
(Affar, Gambela and Somali) were found to have significant effects on BMI of under
five children across different quantile levels. Somewhat surprisingly, mother’s work
status, educational level of mother, place of residence and wealth index appeared
slightly (although not significantly) affecting BMI of under five children when we
consider weighted quantile regression model. Research suggests that mother’s work
status and educational level of mothers may have a significant effect on the BMI of
under five children (Taddese et al., 2017; Teller & Yimer, 2000; Engle et al., 1996).

The binary logistic regression model without and with complex survey design were
presented in Chapter 4. These models were used to determine factors that affect
malnourishment of under five children. The socio-economic, geographic and demo-
graphic factors were used as explanatory variables. In addition two-way interac-
tion effects were included in the modeling process. Logistic regression also called
a logit model is used to model dichotomous outcome variables. The Hosmer and
Lemeshow test was used to test the goodness of fit of the binary logistic regression
model. The goodness of fit tests indicate that the logistic model fits the data well.
The parameter estimates obtained from both models were compared using design
effects. The findings from these models show that the design effect values are above
one. This confirmed that there was an underestimation of variance while using lo-
gistic regression, which assume data was sampled using simple random sampling.
Since survey logistic regression accounts for the complexity of the survey design, it
produced parameter estimates that are different from the estimates obtained when
simple random sampling was assumed. However, in some cases, they were closer to
one another. From the results, we observed that the effect of mother’s age, mother’s
BMI, educational level of mother, mother’s work status and region (Harari) were
found to have significant effect on the malnutrition of under five children in both
models. Malnutrition includes a wide range of nutrient-related deficiencies and dis-
orders, whether it is due to dietary deficiency called under-nutrition, or to excess
diet called over-nutrition (Ratzan et al., 2000). The risk of malnourishment of a child
decreases for an increase in mother’s age. The risk of malnourishment of a child in-
creases for an increase in mother’s BMI. The risk of malnourishment of a child born
to a mother who was working was lower compared to the risk of malnourishment
of a child born to a mother who was not working. The risk of malnourishment of a
child born to a mother who had some educational level was lower compared to the
risk of malnourishment of a child born to a mother who had no education. The risk
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of malnourishment of a child in Somali region appeared to be higher compared to
the risk of malnourishment of a child in Oromia region.

Based on weight-for-height anthropometric index (Z-score) child nutrition status
was categorized into four groups:- underweight, normal, overweight and obese.
Since this leads to an ordinal variable for nutritional status, an ordinal logistic re-
gression was presented in Chapter 5. An ordinal logistic regression model is a gener-
alization of a binary logistic regression model, when the outcome variable has more
than two ordinal levels. It considers any inherent ordering of the levels in the out-
come variable and makes full use of the ordinal information. The most popular way
generalizing the binary logit model is to use cumulative logit that handle ordered
categories. This model is also known as proportional odds model. The results of
the proportional odds model with simple random sampling (conventional propor-
tional odds model) and with complex survey design were presented to determine
factors that affect nutritional status of under five children. From the result, it was
observed that the current age of child, sex of child, weight of child at birth, mother’s
BMI and regions (Affar, Dire Dawa, Gambela, Harari and Somali) had significant
effects on the nutritional status of under five children in both models. Mother’s age,
unmarried mother’s and SNNP region had no significant effect on nutritional sta-
tus of children for the conventional proportional odds model. On the other hand,
mother’s age, unmarried mothers and SNNP region had significant effect on nutri-
tional status of children for proportional odds model with complex survey design.
Moreover, the estimated logit coefficients and their standard errors were different
for models that assume simple random sampling and models that consider complex
survey design. The logit coefficients of the significant predictors current age of child,
sex of child and regions (Dire Dawa and Harari) were increased while the logit co-
efficients of the other significant predictors’ weight of child at birth, mother’s age,
mother’s BMI, unmarried mothers and regions (Affar, Gambela and Somali) were
decreased in the proportional odds model with complex survey design as compared
to the corresponding logit coefficients of the significant predictors in the conven-
tional proportional odds model. Further, the standard errors of the coefficients in
the proportional odds model with complex survey design were higher as compared
to the corresponding standard errors of the coefficients in the conventional propor-
tional odds model. This confirms that standard errors were underestimated when
we considered the conventional proportional odds model. Therefore, the conclu-
sions in this study are based on the proportional odds model with complex survey
design. The odds of being at or beyond a specific nutritional status of a child (i.e.
the odds of being underweight, normal weight, overweight or obese) decreased for
a one unit increase in child’s age. The odds of being at or above a specific nutritional
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status of a female child was lower compared to a male child. The odds of being at
or above a specific nutritional status of a child who had large and average weight at
birth was higher as compared to a child who had small weight at birth. The odds
of being at or above a specific nutritional status of a child decreased for a one unit
increase in mother’s current age. The odds of being at or above a specific nutritional
status of a child increases for a one unit increase in mother’s BMI. The odds of be-
ing at or above a specific nutritional status of a child born to unmarried mother was
lower as compared to a child born to married mother. The odds of being at or above
a specific nutritional status of a child from Affar, Dire Dawa, Gambela, Harari and
Somali regions was lower as compared to Oromia region.

The findings from this study suggest that studying the determinants of BMI, mal-
nutrition and nutritional status of under five children in Ethiopia is still critical issue
that needs to be addressed. Overall, this study shows that mother’s current age,
mother’s BMI, mother’s work status, educational level of mother, weight of child at
birth and regions (Affar, Dire Dawa, Gambela, Harari and Somali) were found to be
dominant determinants of the BMI, malnutrition and nutritional status of under five
children in Ethiopia. This confirmed that the BMI, malnutrition and nutritional sta-
tus of the children were significantly influenced by education, socio-economic and
environmental factors. Therefore, policy makers need to focus on the influence of
these significant factors to develop strategies that enhance normal or healthy weight
status of under five children in Ethiopia. This study also suggests that improving
the nutritional status of mothers will consequently improve the nutritional status of
their children. Improving the work status of the mothers will enhance the mother’s
economic status and consequently improve the basic needs of their children. To
change weight-related disorders, changes related to children, environmental and so-
cial intervention is required to promote and support weight-related change in moth-
ers. The government of Ethiopia needs urgent implementation of programs targeted
to the those regions of Affar, Dire Dawa, Gambela, Harari and Somali, which were
highly affected by malnutrition of under five children.

It must be borne in mind that this study was conducted based on certain socio-
economic and environmental factors. Further research is hence needed to unravel
the specific socio-economic and environmental factors and determine whether they
serve as influential factors that affect the BMI, malnutrition and nutritional status of
under five children and enhance the findings in Chapters 3, 4 and 5. In further study,
we will extend this study by considering multilevel modeling, non-parametric and
semi-parametric approaches to ordinal logistic regression, Bayesian method, Spatial-
temporal analysis and other advanced statistical models. In addition, we will try to
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identify the trends of malnutrition or nutritional status of the under five children
using the available EDHS survey results. For our study, the percentage of missing
value was very small (less than 5%). Because of the small percentage, we did not
use any missing value techniques. But, for the future direction of this study, we will
use missing data analysis technique by exploring the effect of different missing data
mechanism such as missing not at random (MNAR), missing at random (MAR) and
missing completely at random (MCAR).
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Appendix A
Additional Results

Table 6.1: Parameter estimates at 0.25th quantile

Parameter Estimate St.error 95% C.I P-value

Intercept 13.7005 0.2651 (13.1807, 14.2202) <0.0001

Current age of child -0.1793 0.0167 (-0.2120, -0.1466 ) <0.0001

Mother’s age -0.0104 0.0040 (-0.0183, -0.0024) 0.0104

Mother’s BMI 0.0670 0.0091 (0.0492, 0.0849) <0.0001

Sex of child (ref. = male)

Female -0.2722 0.0594 (-0.3887, -0.1557) <0.0001

Weight of child at birth (ref. = Small)

Large 0.4220 0.0821 (0.2611, 0.5829) <0.0001

Average 0.2413 0.0757 (0.0929, 0.3897) 0.0014

Mother’s work status (ref. = Yes)

No 0.0416 0.0586 (-0.0733, 0.1566) 0.4779

Educational level (ref. = Sec. school)

No education -0.2222 0.1516 (-0.5194, 0.0751) 0.1429

Primary school -0.1572 0.1468 (-0.4449, 0.1305) 0.2843

Higher -0.1159 0.2313 (-0.5693, 0.3374) 0.6162

Marital status (ref. = Not married)

Married 0.0093 0.1237 (-0.2332, 0.2517) 0.9403

Religion (ref. = Protestant)

Orthodox 0.0464 0.0992 (-0.1481, 0.2408) 0.6401

Catholic -0.3914 0.3589 (-1.0949, 0.3121) 0.2755

Muslim 0.0566 0.0932 (-0.1260, 0.2392) 0.5438

Other 0.2181 0.3113 (-0.3921, 0.8283) 0.4835

Region (ref. = Tigray)

Addis Abeba 0.2490 0.1512 (-0.0474, 0.5454) 0.0996

Afar -0.2568 0.1040 (-0.4607, -0.0529) 0.0136

Amhara 0.0184 0.0960 (-0.1698, 0.2066) 0.8477

Benishangul 0.0268 0.0946 (-0.1586, 0.2121) 0.7772

Dire Dawa -0.2679 0.1475 (-0.5569, 0.0211) 0.0693

Gambela -0.2627 0.1257 (-0.5092, -0.0162) 0.0367

Harari -0.0795 0.1570 (-0.3871, 0.2282) 0.6127

Oromia 0.0396 0.0985 (-0.1536, 0.2327) 0.6879

SNNPR 0.4065 0.1084 (0.1941, 0.6190) 0.0002

Somali -0.8043 0.1036 (-1.0074, -0.6012) <0.0001

Place of residence (ref. = Urban)

Rural 0.0347 0.1176 (-0.1958, 0.2651) 0.7682

Wealth index (ref. = Rich)

Middle -0.0973 0.0747 (-0.2438, 0.0492) 0.1930

Poor -0.1226 0.0762 (-0.2719, 0.0267) 0.1075

91



Appendix A

Table 6.2: Parameter estimates at 0.5th quantile

Parameter Estimate St.error 95% C.I P-value

Intercept 14.9289 0.2984 (14.3440, 15.5137) <0.0001

Current age of child -0.2908 0.0217 (-0.3333, -0.2484) <0.0001

Mother’s age -0.0149 0.0043 (-0.0233, -0.0065) 0.0005

Mother’s BMI 0.0730 0.0100 (0.0533, 0.0926) <0.0001

Sex of child (ref. = male)

Female -0.1699 0.0499 (-0.2676, -0.0722) 0.0007

Weight of child at birth (ref. = Small)

Large 0.5169 0.0722 (0.3754, 0.6584) <0.0001

Average 0.2263 0.0678 (0.0934, 0.3593) 0.0008

Mother’s work status (ref. = Yes)

No 0.0589 0.0536 (-0.0461, 0.1640) 0.2715

Educational level (ref. = Sec. school)

No education -0.0252 0.1423 (-0.3042, 0.2538) 0.8593

Primary school -0.0361 0.1363 (-0.3033, 0.2311) 0.7913

Higher 0.1799 0.2749 (-0.3590, 0.7188) 0.5129

Marital status (ref. = Not married)

Married 0.0416 0.1401 (-0.2330, 0.3162) 0.7664

Religion (ref. = Protestant)

Orthodox -0.0413 0.0972 (-0.2318, 0.1492) 0.6707

Catholic -0.3314 0.3212 (-0.9611, 0.2983) 0.3023

Muslim -0.1484 0.0967 (-0.3380, 0.0412) 0.1249

Other 0.5450 0.3001 (-0.0434, 1.1333) 0.0695

Region (ref. = Tigray)

Addis Abeba 0.0533 0.1430 (-0.2270, 0.3336) 0.7093

Afar -0.2730 0.0931 (-0.4554, -0.0906) 0.0034

Amhara -0.0096 0.0848 (-0.1758, 0.1566) 0.9097

Benishangul -0.0851 0.0948 (-0.2710, 0.1007) 0.3693

Dire Dawa -0.1933 0.1264 (-0.4411, 0.0546) 0.1264

Gambela -0.4479 0.1316 (-0.7058, -0.1899) 0.0007

Harari 0.0701 0.1373 (-0.1991, 0.3393) 0.6096

Oromia 0.0267 0.0886 (-0.1470, 0.2004) 0.7628

SNNPR 0.2809 0.1028 (0.0793, 0.4824) 0.0063

Somali -0.8032 0.1066 (-1.0121, -0.5943) <0.0001

Place of residence (ref. = Urban)

Rural -0.1274 0.1180 (-0.3587, 0.1039) 0.2803

Wealth index (ref. = Rich)

Middle -0.0936 0.0773 (-0.2452, 0.0580) 0.2264

Poor -0.1063 0.0662 (-0.2361, 0.0234) 0.1083
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Table 6.3: Parameter estimates at 0.75th quantile

Parameter Estimate St.error 95% C.I P-value

Intercept 16.2903 0.3318 (15.6398, 16.9408) <0.0001

Current age of child -0.4013 0.0239 (-0.4482,-0.3544) <0.0001

Mother’s age -0.0181 0.0042 (-0.0264, -0.0098) <0.0001

Mother’s BMI 0.0722 0.0146 (0.0436, 0.1008) <0.0001

Sex of child (ref. = male)

Female -0.2169 0.0607 (-0.3359, -0.0979) 0.0004

Weight of child at birth (ref. = Small)

Large 0.4659 0.0776 (0.3138, 0.6181) <0.0001

Average 0.2648 0.0705 (0.1265, 0.4030) 0.0002

Mother’s work status (ref. = Yes)

No 0.0363 0.0822 (-0.1248, 0.1974) 0.6589

Educational level (ref. = Sec. school)

No education 0.1337 0.1565 (-0.1731,0.4404) 0.3931

Primary school 0.0491 0.1608 (-0.2662,0.3644) 0.7601

Higher -0.0570 0.2495 (-0.5461, 0.4321) 0.8193

Marital status (ref. = Not married)

Married 0.2700 0.1237 (0.0274, 0.5125) 0.0291

Religion (ref. = Protestant)

Orthodox -0.1707 0.1218 (-0.4095, 0.0680) 0.1610

Catholic -0.5027 0.4790 (-1.4416, 0.4362) 0.2939

Muslim -0.1297 0.1229 (-0.3707, 0.1112) 0.2913

Other 0.6020 0.4692 (-0.3178, 1.5218) 0.1996

Region (ref. = Tigray)

Addis Abeba 0.1381 0.1873 (-0.2291, 0.5052) 0.4611

Afar -0.4732 0.1300 (-0.7281, -0.2184) 0.0003

Amhara -0.1553 0.0964 (-0.3442, 0.0336) 0.1071

Benishangul -0.2442 0.1183 (-0.4760, -0.0123) 0.0390

Dire Dawa -0.5401 0.1272 (-0.7894, -0.2908) <0.0001

Gambela -0.5770 0.1584 (-0.8875, -0.2665) 0.0003

Harari -0.1211 0.1347 (-0.3851, 0.1428) 0.3684

Oromia 0.0672 0.1076 (-0.1437, 0.2781) 0.5324

SNNPR 0.2034 0.1363 (-0.0638, 0.4706) 0.1357

Somali -0.9451 0.1257 (-1.1915, -0.6988) <0.0001

Place of residence (ref. = Urban)

Rural -0.2769 0.1324 (-0.5364, -0.0173) 0.0366

Wealth index (ref. = Rich)

Middle -0.1824 0.1011 (-0.3806, 0.0159) 0.0713

Poor -0.1665 0.0809 (-0.3251, -0.0079) 0.0396
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B.1 Model Fitting using the PROC QUANTREG procedure

The following codes were used to fit the WQR model:
PROC IMPORT OUT= WORK.Ashu;
DATAFILE= ”C : \Users\yirga\Desktop\underfiveEDHSdata.sav”

DBMS=SPSS REPLACE;
ods graphics on;
Proc quantreg data=WORK.Ashu;
Class B4 M18 V714 V149 V501 V130 V101 V102 V190;
Model BMICHILD=B8 V012 V439A B4 V101 V102 V130 V190 V714 V149 V501 M18
/quantile=0.05,0.25,0.50,0.75,0.85,0.95;
weight V005A;
Run;
ods graphics off;

B.2 Model Fitting using the PROC LOGISTIC procedure

The following codes were used to fit the Binary logistic regression model without
and with CSD:
PROC IMPORT OUT= WORK.Ashu
DATAFILE= ”C : \Users\yirga\Desktop\project\underfiveEDHSdata.sav”

DBMS=SPSS REPLACE;
RUN;
ods graphics on;
Proc logistic data=WORK.Ashu plots=all;
Class B4(ref=”male”) V101(ref=”Oromia”) V102(ref=”rural”) V130(ref=”Orthodox”)
V190(ref=”poor”) V714(ref=”No”) V149(ref=”No education”) V501(ref=”married”)
M18(ref=”small”) / param=glm;
Model Binary weightstatus(event=”malnourished”)=B8 V012 V439A B4 V101 V102
V130 V190 V714 V149 V501 M18 B8*V439A B8*V101 V439A*V101 V439A*M18/ctable

94



Appendix B

cl lackfit selection=none include=12 scale=none aggregate=(B8 V012 V439A B4 V101
V102 V130 V190 V714 V149 V501 M18);
output out = outdata p = pred-prob;
Run;
ods graphics off;
ods graphics on;
Proc surveylogistic data=WORK.Ashu;
stratum V023/list;
cluster V021;
weight V005;
Class B4(ref=”male”) V101(ref=”Oromia”) V102(ref=”rural”) V130(ref=”Orthodox”)
V190(ref=”poor”) V714(ref=”No”) V149(ref=”No education”) V501(ref=”married”)
M18(ref=”small”) / param=glm;
Model Binary weightstatus(event=”malnourished”)=B8 V012 V439A B4 V101 V102
V130 V190 V714 V149 V501 M18 B8*V439A B8*V101 V439A*V101 V439A*M18;
Run;
ods graphics off;

B.3 Model Fitting using the Stata:ologit procedure

The following codes were used to fit the Ordinal logistic regression model without
and with CSD:
use ”C : \Users\yirga\Desktop\project\underfiveEDHSdata.dta”, clear

global ylist Ordinal nutritional status
global xlist B8 ib1.B4 ib3.M18 V012 V439A ib0.V714 ib0.V149 ib1.V501 ib1.V130 ib4.V101
ib2.V102 ib1.V190 ib1.B4#ib1.V501 ib2.V102#ib0.V149 ib1.V190#ib0.V149
ologit $ylist $xlist, or
svyset V021 [pweight=V005A], strata (V023)
svy:ologit $ylist $xlist
svy:ologit $ylist $xlist, or

where, BMICHILD=Body mass index of under five children, B8=current age of child,
B4=sex of child, M18=weight of child at birth, V012=mother’s current age, V439A=mother’s
BMI, V714=mother’s work status, V149=educational attainment of mother, V501=current
marital status, V130=religion, V101=region, V102=place of residence, V190=wealth
index, V005A=mother’s individual (weight), V021=primary sampling unit (cluster)
and V023=stratum (strata).
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EXPONENTIAL FAMILY OF DISTRIBUTION

Exponential family of distribution includes many distributions that are useful for
practical modeling such as: Poisson or negative Binomial for count response vari-
able; Binomial, Bernoulli and geometric for the study of discrete responses; Gamma,
Normal, Inverse Gaussian, Beta and exponential for the study of continuous re-
sponses. A distribution belongs to an exponential family of distributions if its prob-
ability density function or probability mass function can be written as:

f(Y ; θ, φ) = exp

{
1

a(φ)
[θY − b(θ)] + c(Y, φ)

}
where θ is the natural or canonical parameter, a(φ) is the scale parameter or disper-
sion and c(Yi, φ) is some function of Yi and φ. The mean, µ = E(Y ) = b′(θ), and the
variance, V ar(Y ) = φb′′(θ), can be obtained as follows:
∗ By definition =⇒

∫
f(y)dy = 1, E(y) =

∫
yf(y)dy,

V ar(y) =
∫

(y − E(y))2f(y)dy, and ∂
∂y (g(y)f(y)) = g′(y)f(y) + g(y)f ′(y)

∴
∫
exp

{
1

a(φ) [θY − b(θ)] + c(Y, φ)
}
dy = 1 · · · ∗ ∗

Derivate (∗∗) wrt θ both sides:
∂
∂θ

∫
exp

{
1

a(φ) [θY − b(θ)] + c(Y, φ)
}
dy = 0∫ y − b′(θ)

a(φ)︸ ︷︷ ︸
g(y)

× exp
{

1

a(φ)
[θY − b(θ)] + c(Y, φ)

}
︸ ︷︷ ︸

f(y)

dy = 0 · · · ∗ ∗∗

∫ y−b′(θ)
a(φ) × f(y)dy = 0 =⇒

∫
(y − b′(θ))× f(y)dy = 0∫

yf(y)dy︸ ︷︷ ︸
E(y)

−b′(θ)
∫
f(y)dy︸ ︷︷ ︸

(density=1)

= 0 =⇒ E(y) = b′(θ)

Derivate (∗ ∗ ∗) wrt θ
∂
∂θ

∫ y−b′(θ)
a(φ) × exp

{
1

a(φ) [θY − b(θ)] + c(Y, φ)
}
dy = 0∫ −b′′(θ)

a(φ) f(y)dy +
∫ (y−b′(θ)

a(φ)

)(
y−b′(θ)
a(φ)

)
f(y)dy = 0

−b′′(θ)
a(φ) + 1

(a(φ))2

∫
(y − b′(θ))2f(y)dy = 0
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−b′′(θ)
a(φ) + 1

(a(φ))2

∫
(y − E(y))2f(y)dy︸ ︷︷ ︸

var(y)

= 0

−b′′(θ)
a(φ) + var(y)

(a(φ))2
= 0 =⇒ −a(φ)b′′(θ) + var(y) = 0

V ar(y) = a(φ)b′′(θ)

Example:- In Chapter 4 our response variable is binary (children catagorized as nor-
mal nutrition status or malnourished) which can be assumed to follow the Bernoulli
distribution. Yi ∼ Bernoulli(πi), πi = p(yi = 1) = µi, 1− µi = p(yi = 0).

f(Yi) = πYii (1− πi)1−Yi , Yi = 0, 1

Implies that, µi = E(Yi) = (0× P (Yi = 0)) + (1× P (Yi = 1))

µi = πi

We can show that Bernoulli distribution belongs to an exponential family of distri-
bution as follows:

f(Yi) = πYii (1− πi)1−Yi = exp{Yilogπi + (1− Yi)log(1− πi)}

= exp{Yi[logπi − log(1− πi)] + log(1− πi)}

= exp

{
Yilog

(
πi

1− πi

)
− (−log(1− πi))

}
where θ = log

(
πi

1−πi

)
, implies that πi = eθi

1+eθi
, 1 − πi = 1

1+eθi
, a(φ) = 1, c(y, φ) = 0

and b(θi) = −log(1− πi) = −log
(

1
1+eθi

)
= −log(1 + eθi)−1 = log(1 + eθi)

Expressing f(yi) in terms of θi:

f(yi) = exp{yiθi − log(1 + eθi)}

f(yi) = exp{yiθi − b(θi)}

where E(yi) = b′(θi) = 1
1+eθi

× eθi = eθi

1+eθi
= πi,

V ar(yi) = φb′′(θi), b
′′(θi) = ∂

∂θi

(
eθi

1+eθi

)
= eθi

(1+eθi )2
= eθi

1+eθi
× 1

1+eθi
= πi(1 − πi)

N.B: Bernoulli distribution is a special case of the Binomial distribution where n=1
(one trial).

Example:-Suppose Y1, Y2, ..., Yn are independent binomial observations, Yi ∼ Binomial(ni, pi):

f(Yi) =

(
ni
Yi

)
pYii (1− pi)ni−Yi
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= exp

{
log

(
ni
Yi

)
+ Yilogpi + (ni − Yi)log(1− pi)

}
= exp

{
Yilogpi − Yilog(1− pi) + nilog(1− pi) + log

(
ni
Yi

)}
= exp

{
Yilog

(
pi

1− pi

)
− (−nilog(1− pi)) + log

(
ni
Yi

)}
where θi = log

(
pi

1−pi

)
, a(φ) = 1, c(y, φ) = log

(
ni
Yi

)
and b(θi) = −nilog(1 − pi) =

nilog(1 + eθi).
Expressing f(yi) in terms of θi:

f(yi) = exp

{
yiθi − nilog(1 + eθi) + log

(
ni
Yi

)}

where E(yi) = b′(θi) = ni
1+eθi

× eθi = nie
θi

1+eθi
= nipi,

V ar(yi) = φb′′(θi), b
′′(θi) = ∂

∂θi

(
nie

θi

1+eθi

)
= nie

θi

(1+eθi )2
= nie

θi

1+eθi
× 1

1+eθi
= nipiqi, qi =

(1− pi)
The above expression indicates that Binomial distribution is a family of exponential
family. The dependent variable in logistic regression follows the Bernoulli distribu-
tion having an unknown probability, P.

MAXIMUM-LIKLIHOOD ESTIMATION (MLE)

f(Yi) = πYii (1− πi)ni−Yi

Liklihood function
L(π) = L(Y1, Y2, ..., Yn|π) =

∏n
i=1 f(Yi)

=
∏n
i=1(π

Yi
i (1− πi)ni−Yi)

L(π) = π
∑
Yi(1− π)n−

∑
Yi =⇒ Liklihood function

Log-Liklihood function (the value of π that maximizes logL)
log(L(π)) = log[π

∑
Yi(1− π)n−

∑
Yi ]

= logπ
∑
Yi + log(1− π)n−

∑
Yi

=
∑
Yilogπ + (n−

∑
Yi)log(1− π) =⇒ Log − liklihood function

MLE of π (π̂)
Derivate logL with respect to π
∂log(L(π))

∂π =
∑
Yi
π + (n−

∑
Yi)

1−π (−1) = 0

=
∑
Yi
π − (n−

∑
Yi)

1−π = 0

=
∑
Yi(1−π)−π(n−

∑
Yi)

π(1−π) = 0

=
∑
Yi−π

∑
Yi−nπ+π

∑
Yi

π(1−π) = 0

=
∑
Yi − nπ = 0 =⇒ π̂ =

∑
Yi
n = Ȳ (MLE of π)
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Pseudo-likelihood function with weight Wi (extended, section 4.6.1, Equation 4.10)

=⇒ πWiYi
i (1− πi)(1−WiYi)

L = Pr(Y1)Pr(Y2)...P r(Yn)

=
∏(

πWiYi
i (1− πi)(1−WiYi)

)
= π

∑
WiYi

i (1− πi)1−
∑
WiYi

logL = log
[
π
∑
WiYi

i (1− πi)1−
∑
WiYi

]
= log

(
π
∑
WiYi

i

)
+ log(1− πi)1−

∑
WiYi

=
∑

WiYilogπi +
(

1−
∑

WiYi

)
log(1− πi)

=
∑

WiYilogπi + log(1− πi)−
∑

WiYilog(1− πi)

=
∑

WiYilog

(
πi

1− πi

)
+ log(1− πi)

↔
∑

WiYiX
′
iβ + log

(
1

1 + eX
′
iβ

)
=
∑

WiYiX
′
iβ + log(1)− log

(
1 + eX

′
iβ
)

∂

∂β

(∑
WiYiX

′
iβ + log(1)− log

(
1 + eX

′
iβ
))

=
∑

WiYiX
′
i −
(

1

1 + eX
′
iβ

)
× eX′iβ ×X ′i

=⇒ β =
∑

WiYiX
′
i −

((
eX
′
iβ

1 + eX
′
iβ

)
×X ′i

)
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