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Abstract

Infectious diseases, including bacterial infections, continue to be a significant cause of morbidity
and mortality globally, antimicrobial resistance has further made them fatal. Limitations of
conventional dosage forms have been found to be one of the contributing factors to antimicrobial
resistance. Novel nano delivery systems are showing potential to combat antimicrobial resistance.
The search for novel materials for efficient delivery of antibiotics is an active research area. The
aim of the study was to design and synthesize advanced materials and explore nano-based strategies
for preparations of novel drug delivery systems to treat SA and MRSA infections. In this study two
novel materials; a linear polymer dendrimer hybrid star polymer (3-mPEA) comprising of a
generation one poly (ester-amine) dendrimer (G1-PEA) and copolymer of methoxy poly (ethylene
glycol)-b-poly(e-caprolactone) (MPEG-b-PCL) and oleic acid based quaternary lipid (QL) were
synthesized and characterized and Poloxamer 188 (P188) material available in the market were
employed to formulate three nano drug delivery systems for efficient and targeted delivery of
antibiotics. The synthesized materials and the drug delivery system were found to be biosafe after
exhibiting cell viability above 75% in all the cell lines tested on using MTT assay. The formulated
nano based systems were evaluated for sizes, polydispersity indices (PDI), zeta potential (ZP),
surface morphology, drug release, in vitro and in vivo antibacterial activity. Nanovesicles were
formulated from 3-mPEA and they had sizes, PDI, ZP and entrapment efficiency of 52.48 + 2.6
nm, 0.103 + 0.047, -7.3 = 1.3 mV and 76.49 + 2.4%. respectively. QL lipid was employed to
formulate vancomycin (VCM) loaded liposomes with Oleic acid based ‘On’ and ‘Off”” pH
responsive switches for infection site and intracellular bacteria targeting. They were found to have
the size of 98.88 £ 01.92 at pH 7.4. and exhibited surface charge switching from negative at pH 7.4
to positive charge accompanied by faster drug release at pH 6.0. Fusidic acid nanosuspension (FA-
NS) with size, PDI and ZP of 265 £ 2.25 nm, 0.158 + 0.026 and -16.9 £ 0.794 mV respectively was
formulated from P188. The drug release profile from both the nanovesicles and liposomes was
found to have sustained release. In vitro antibacterial activity for the nanovesicles, FA-NS and
liposomes showed 8, 6 and 4-fold better activity at pH 7.4, while the liposome being a pH
responsive antibacterial system at pH 6 showed 8- and 16- fold better activity against both
Methicillin susceptible (MSSA) and resistant Staphylococcus aureus (MRSA) respectively when
compared with the bare drugs. An in vivo BALB/c mice, skin infection model revealed that
treatment with VCM-loaded nanovesicles, liposomes and FA-Ns significantly reduced the MRSA
burden compared to bare drugs and untreated groups. There was a 20, 6.33 and 76-fold reduction
in the MRSA load in mice skin treated with nanovesicles, liposomes and FA-NS respectively
compared to those treated with bare VCM and fusidic acid. In summary, synthesized material
showed to be biosafe and potential for the development of nano-based drug delivery systems of
antibiotics against bacterial infections. The data from this study has resulted in one book chapter
and 3 first authored and 3 co-authored research publications.
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CHAPTER 1
INTRODUCTION

CHAPTER 1, INTRODUCTION
1.1 Introduction

This chapter includes a brief background to the study, indicating the status of infectious
diseases and the various challenges with antibiotic therapy. It further provides details on
strategic solutions to improve antibiotic therapy, the resulting aims and objectives of the study,

as well as novelty of the study and the structure of the following chapters.
1.2 Background

The discovery of penicillin in 1928, its resulting production and introduction as the main option
for treating infectious diseases resulted in the antibiotic boom and control of bacterial related
infections. In 1962, Sir McFarland Burnett stated ‘By the end of the Second World War it was
possible to say that almost all of the major practical problems of dealing with infectious
diseases had been solved” [1]. At that time, his statement was logical, as control and prevention
measures had decreased the incidence of many infectious diseases, and with the ability to
continue to identify new antibiotics came the opportunity to address new problems. However,
over time, emerging, and re-emerging infectious diseases constituted to be major public-health
problem globally. According to the World Health Organisation (WHO), diarrhoeal diseases are
the second leading cause of death in children under five years old, and are responsible for
approximately 525 000 deaths every year [2]. Although infectious diseases, especially from
bacteria, are major contributors of causes of mortality, they also have been associated with the
occurrence of non-communicable diseases, such as cancers, cardiovascular disease, asthma and
gastrointestinal problems [3, 4]. Overall, infectious diseases have shown to impact negatively
on the quality of life and economic burden of the global population [5, 6]. Thus, there is a call

for ‘reinventing the wheel” and finding new methods to treat and control infectious diseases.

In his Nobel prize acceptance speech, Alexander Fleming warned about and predicted the
emergence of resistance strains due to misuse of antibiotics [7]. True to his prediction,
resistance began to emerge within 10 years of the wide-scale introduction of penicillin [8].
Globally, the ability to treat common infectious diseases is still threatened by antimicrobial
resistance (AMR). As of 2013, according to the Centre for Disease Control (CDC) annual

statistics in the USA, more than two million people acquire infections that are resistant to



antibiotics, and at least 23,000 people die as a result. The same report shows that the cost
implications due to AMR translates to US$20 billion in excess direct health care costs, with
additional costs to society for lost productivity as high as US$35 billion a year [9]. A review
of Antimicrobial Resistance chaired by Jim O’Neill paints a grim picture regarding AMR [10].
The review indicates that by the year 2050, mortality due to AMR will be 10 million annually,
which will surpass other major causes of death, such as cancer, diabetes and road accidents
globally, with a cost of US$100 trillion impact on the world GDP, 80% of which will occur in
low income countries in Africa and Asia (Figure 1.1). The WHO has echoed the earlier
Alexander Fleming concerns and warns of the return to pre-antibiotic era if a proper response

to the current trend in antibiotic resistance is not provided [11].
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Figure 1. Death attributable to AMR compared to major causes of death [10]

One of the serious resistant strain of bacteria that has risen to be of global concern is
methicillin-resistant Staphylococcus aureus (MRSA). Since its discovery in a London hospital
in 1960, it has become a superbug of global concern [12]. Recent research findings estimate
the incidence of MRSA to be 2.4% in Europe, 4.8% in North America, 5.4% in South America,
2.5% in Asia and 3.1% in Africa[13]. MRSA causes serious morbidity and mortality globally,
for example, in Australia, Cameron et al. reported that annually, this amounted to 147,000 bed-
days, including 1600 bed-days in intensive care due to MRSA infections. They also reported
MRSA comorbidity as a serious problem with a cost of $3.5b, and the cost to the health care
system being $1.9b annually [14].The debilitating effects of MRSA have further been

aggravated by community based infections that are increasing its distribution. MRSA is



reported to be resistant to various drugs, including vancomycin, which is considered to be one
of the last resort for treating bacteria, with the emergence of strains that are vancomycin
resistant [11-13], it’s the bacteria being listed by the WHO as a superbug, needing high priority
for research to develop new treatment alternatives [15]. The bacterial resistance to currently
used antibiotic, and the chances of developing resistance to new antimicrobial drugs, suggest

that there is an urgent need to develop novel approaches for treating microbial infections.

Antibiotics have been delivered via conventional dosage forms since their market introduction
in 1945. The limitations of conventional dosage forms are well documented, and include,
inadequate concentrations of the antibiotics at the infection site, exposure of healthy cells to
antibiotics, fast degradation and quick elimination in the bloodstream, enhanced frequency of
administration and poor patient compliance due side effects [16, 17]. These limitations are
recognised as a major contributing factor to the development of resistance and have led to the
short window period between the introduction of antibiotics and development of resistance,
which has resulted in the antibiotic pipeline drying up as the replacement of obsolete
formulations is slower than new ones being introduced. Moreover, due to low return on
investments, short product life circle and complicated regulatory approval procedures,
pharmaceutical companies are abandoning research and development into new antibiotics [18-
21]. As a result, only 30 antibiotics and two [3-lactam/p-lactamase inhibitor combinations have
been launched since 2000, and seven new antibiotics and two new P-lactam/p-lactamase
inhibitor combinations have been introduced since 2013 [22-27]. From the list, very few

antibiotics with new modes of action have been introduced, as shown in Figure 2 [28].
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Figure 2. New antibiotics approvals 2000-2015 with highlights of new classes [29].

Nanotechnology involves the fine tuning of materials on an atomic, molecular and
supramolecular scale, the goal being to create materials, devices and systems with essentially
new properties and functions [30]. In the past three decades, the growth of nanotechnology has
been considerable, and promises to bring another leap in medical and medical devices
application. Nanotechnology is proving to be an effective strategy in enhancing activity,
protecting the antibiotics in the market and addressing the problems of bacterial resistance,
with some nano drug delivery systems already in the market [31-34]. These various
nanoantibiotics offer several advantages, such as i) targeting the site of infection, ii) preventing
exposure of the drug to healthy cells, iii) enhanced solubility, iv) sustainable and well
controlled drug release, v) uniform distribution in the target tissue, vi) better patient-
compliance, vi) improved cellular internalization, and vii) less side effects [35]. However, the
application of nanotechnology for antibiotic therapy is still in its infancy compared to other
medical conditions, such as cardiovascular disease and cancer. Therefore, in order to address
the limitations associated with conventional dosage forms of antibiotics and the growing

bacterial resistance to antibiotics, novel nanoantibiotic approaches are warranted.



In order to formulate nanodrug delivery systems that have desirable properties, such as disease
targeting and long circulation, there is a need for the design and synthesis of advanced materials
to prepare superior novel nano drug delivery systems with enhanced antibacterial activity. Of
the various nanoparticulate drug delivery systems reported to effectively deliver antibiotics, we
explored three novel approaches in this study, namely: i) nanovesicles devised from linear
polymers-dendrimer hybrids (LPDH) (V-3-mPEA), ii) pH responsive Liposome (OA-QL lipo)
with On and Off pH responsive switches and iii) Fusidic acid nanosuspension (FA-NS) to
effectively target and treat methicillin susceptible and resistant Staphylococcus aureus
infections. LPDH’s are known to self-assemble to form core-shell aggregates, such as
unimolecular and conventional micelles, vesicles and polymeric nanoparticles [36-40].
Hybrids of linear polymers and dendrimers embody some positive traits from both the
dendrimers and the attached linear polymers for efficient drug delivery [41, 42]. Moreover, the
ability to functionalize their end groups fine-tunes dendrimers for targeted delivery, long
circulation [43], biodegradability [44], and covalent attachment of the drugs for sustained
release [45]. There are several reports on LPDHs to deliver drugs [46, 47], although most
involved the PEGylation of the dendrimers to make LPDH [46, 47], and the only reports for
antibiotics have been through PEGylation of PAMAM dendrimers [48, 49]. This highlights the

feasibility and importance of developing LPDH for delivery of antibiotics.

Nano-systems are being designed to respond to specific site of a disease condition for the
targeted delivery of drugs. Liposomes are such drug delivery systems due to the versatility in
their formulation of stimuli responsive biomaterials, which can be incorporated for site specific
delivery of drugs [50]. Studies report that they have been engineered to possess distinctive
properties, such as: long systemic circulation to target specific cells and receptors, respond to
various stimuli, such as redox environment, and a change in temperature and pH, with most of
the reports being for cancer delivery [51, 52]. Current pH responsive liposomal systems for
antibiotics delivery includes: gentamycin [53], which employed phospholipid-cholesterol
hemisuccinate as pH responsive material, and for vancomycin, where intramolecular
protonation and deprotonation of Zwitterionic lipids was responsible for pH response, as
reported by our and other research groups [54]. The treatment of S. aureus infections is often
problematic, due to the slow response to therapy and the high frequency of infection recurrence.
This is as a result of the ability of the bacteria to localize the endosomes and phagolysosomes
of the cells that are acidic, thereby making them their reservoirs [55] to form small colony

variants in persistent infections (SCVs). These SCVs are shielded from the drugs, as they find



it difficult to penetrate inside the cells [56]. Due to their membrane fusogenic ability, liposomes
can effectively be employed in the intracellular delivery of antibiotics, and with the addition of
pH responsive properties, they can also target the acidic phagolysosomes, which acts as
reservoir of intracellular MRSA [57]. Therefore, designing liposomal systems that are pH

responsive and have cell wall penetration could prove to be useful in eliminating the SCVs.

Nanosuspensions are solid dispersions of drugs in the sub-micron scale that are suspended in
liquid vehicles, with the particles being stabilized with surfactants, polymers or both [58].
Nano-suspensions offer increased dissolution rates, enhanced bioavailability and activity, and
complete entrapment of insoluble drugs by forming stable solid dispersions in their amorphous
state [59]. More than 40% of NCEs (new chemical entities) developed in the pharmaceutical
industry are practically insoluble in water, this being a major challenge for formulation
scientists [59]. As described by the Noyes-Whitney, and Kelvin and Ostwald-Freundlich
equations, particle size reduction can lead to increased dissolution rate and absorption due to
greater surface area, amplified dissolution pressure and increased adhesiveness to surfaces/cell
membranes [60-62]. Nanosuspensions have been successfully used to improve the activity of
a wide range of anti-infectives, such as triclosan, ciprofloxacin, itraconazole and miconazole
[63-65]. Despite fusidic acid (FA) being an effective agent against gram positive bacteria, there
has been only one report for enhancing its solubility and activity using nano-micelles,
moreover, it involved the use of a newly synthesized material i.e. polyester dendrimers [66]. A
Nano-precipitation antisolvent technique used to formulate nanosuspensions has shown to have
advantages, such as little energy input, readily available machinery and easy scale-up. It also
allows for the preparation of nano-suspensions without the use of additional specialized
materials, such as the reported study. Thus, delivery via nanosuspensions could be an

alternative method for delivering drugs with water solubility and enhanced activity.

An improved delivery of antibiotics can be achieved via the proposed novel drug delivery
systems, especially for vancomycin (VCM) and FA. Vancomycin is a glycopeptide antibiotic
that acts by inhibiting the biosynthesis of peptidoglycan and the assembly of N-acetyl muramic
acid — N-acetyl glucosamine (NAM-NAG)-polypeptide, resulting in a less rigid and more
permeable peptidoglycan layer in the bacteria [67]. It is currently used in the treatment and
prophylaxis of serious and fatal infections caused by Gram-positive bacteria, such as S. aureus
and other Staphylococcus species that remain unresponsive to other antibiotics therapy [68].

The increasing occurrence of MRSA, with a simultaneous decrease in the susceptibility of S.



aureus to vancomycin, increases the chances of develop VCM resistant S. aureus (VRSA),
which is just as life-threatening as MRSA, but harder to treat [69, 70]. FA is a fusidane
antibiotic that is derived from Fusidium coccineum and is a tetracyclic triterpenoid, active
against a wide range of bacteria, has low toxicity and a unique mechanism of action that lacks
significant cross resistance to other antibacterial classes [71, 72]. An increase in the rate of
global antimicrobial resistance has promogulated research interest in FA, even in markets
where it lacked registration, for example, the USA, and it is in clinical trials for approval as a
potentially valuable therapeutic option [73, 74]. Therefore, the purpose of this study was to
improve the antibacterial performance of VCM and FA using LPDHSs derived nanovesicles,
advanced liposomes with “On and Off” pH responsive switches, and nano-suspension systems
against S. aureus and MRSA. Therefore, Chapters 3, 4 and 5 represents the first efforts
undertaken on the development of new nanosystem to efficiently deliver antibiotics against

methicillin susceptible and resistant S. aureus.

1.3 Problem statement

Infectious diseases, including bacterial infections, continue to be a significant cause of
morbidity and mortality globally. Conventional dosage forms have several limitations,
including inadequate drug concentration at infection/target sites, exposure to normal flora, fast
degradation and quick elimination in the bloodstream, high frequency of administration, severe
side effects and poor patient compliance. These factors contribute to suboptimal therapeutic
outcomes and the current global antimicrobial resistance crisis. Nano-drug delivery systems
are showing significant potential for overcoming the limitations associated with conventional
dosage forms. The identification of novel nano-based strategies to enhance antibacterial
activity and therapy, and to target infection sites, can therefore contribute to enhancing patient
therapy and disease treatments. The design and synthesis of advanced materials and nanobased
strategies for developing nanoformulations is necessary to improve antibacterial activity of

currently available antibiotics.
1.4 Aims and objectives of this study

The broad aim of this study was to design advanced materials and explore nano-based strategies
for preparations of nano drug delivery systems to treat S. aureus and MRSA infections. The
specific research aims of the three novel nano-formulations developed in this study for

enhancing antibacterial activity are highlighted with their respective Objectives.



Aim 1

This study aimed was to synthesize a novel linear block copolymer dendrimer hybrid star
polymer by modifying the generation one poly ester amine dendrimer (G1-PEA) with a diblock
copolymer of methoxy poly (ethylene glycol)-b-poly(e-caprolactone) (MPEG-b-PCL) to yield

(3-mPEA) and explore its potential for delivering antimicrobials via nanovesicles

In order to achieve this aim, the objectives of the study were to:

1. Use afive-step synthetic scheme to synthesize linear block copolymer dendrimer hybrid
3 arm star polymer (3-mPEA).

2. Characterise 3-mPEA using structural elucidation techniques such as FT-IR, *H NMR
and °C NMR, gel permeation chromatography and MALDI-TOF.

3. Determine the in vitro toxicity of the synthesized 3-mPEA safety to confirm its use in
biological systems.

4. Formulate VCM loaded nanovesicles from 3-mPEA and evaluate the formulated
nanovesicles in terms of size, PDI, zeta potential, morphology, entrapment efficiency,
in vitro drug release, flow cytometry in vitro and in vivo antibacterial activity.

5. Perform molecular dynamics simulation to understand the mechanism of the vesicle’s
formation.

6. Determine the binding affinity of 3-mPEA and nanovesicles to human serum albumin
(HSA) to indicate its potential for long circulation.

Aim 2
This study aimed to synthesize a novel Oleic acid based quaternary lipid (QL) and employ it
in formulating liposomes having “On and Off” pH responsive switches for infection site-

specific delivery of antibiotics.

In order to achieve this aim, the objectives of the study were to:
1. Synthesize the quaternary lipid (QL) and characterise it using structural elucidation
techniques such as FT-IR, *H NMR and C* NMR.
2. Determine the in vitro toxicity of the synthesized QL lipid safety to confirm its use in
biological systems.
3. Formulate VCM loaded liposomes with On and Off pH responsive switches and
evaluate them in terms of size, PDI, zeta potential, morphology, entrapment efficiency,

in vitro drug release, in vitro and in vivo antibacterial activity.



4. Perform molecular dynamics simulation to understand the mechanism of “On and Off”
pH responsive switches of the liposome.
5. Determine the efficacy of the liposome in clearing intracellular MRSA in macrophages
and HEK 293 cells.
6. Perform molecular dynamics simulation of the QL lipid with a model bacterial
membrane to determine the binding affinity of the lipids towards gram positive bacteria.
Aim 3
This study aimed to prepare a nanosuspension (FA-NS) of FA to simultaneously enhance its

aqueous solubility and antibacterial activity against S. aureus and MRSA.

In order to achieve this aim, the objectives of the study were to:

1. Screen different surfactants available in the market to identify a potential surfactant to
provide a stable nanosuspension.

2. Optimise formulating parameters for preparing a stable fusidic acid nanosuspension
(FA-NS) and characterise it in terms of particle size, polydispersity index, zeta
potential, surface morphology, differential scanning calorimetry (DSC), X-ray
diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, flow cytometry,
in vitro and in vivo antimicrobial activity, aqueous solubility and stability.

3. Perform molecular dynamics simulations to identify the possible interactions of the
surfactant with drug and the energy components that contribute to the stability of the
nanosuspension.

1.5 Novelty of the study

The novelty of the work is presented in the three experimental studies.
Aim 1
The research work performed in this study is novel for the following reasons:

There are several reports of drug delivery using linear dendrimer hybrid star polymers, with
most reports having been via PEGylation of PAMAM dendrimers. This research was the first
report of drug delivery of any class of drug using linear copolymer dendrimer hybrid star
polymer comprising of generation one Poly ester amine dendrimer (G1-PEA) with a diblock

copolymer of methoxy poly (ethylene glycol)-b-poly(e-caprolactone) (mPEG-b-PCL)



Although there are several reports on the synthesis of linear polymers and dendrimers, a 3-
MPEA linear dendrimer hybrid star polymer is a novel material and has not been reported in

the literature for any medical application.

The use of linear dendrimers hybrids is widely reported in the literature for cancer drugs and
gene delivery. This research was the first report of the delivery of an antibiotic using a linear
dendrimer hybrid star polymer.

There are several methods in the literature for evaluating the binding affinity of materials to
human serum albumin. Microscale Thermophoresis is a state of the art technique that is very
sensitive and precise and is being used in the pharmaceutical and biomedical industry to assess
interactions and binding affinities. This research is the first report to evaluate the binding

affinity of materials to human serum albumin using Microscale Thermophoresis.
Aim 2
The research work performed in this study is novel for the following reasons:

This paper reports the synthesis of a novel oleic acid quaternary lipid QL lipid that has not been

reported in the literature for application in delivering any class of drug.

For delivery of drugs using liposomes with pH responsive lipids, all reports have involved
intramolecular protonation and deprotonation of the lipids due to changes in pH. There are no
reports of employing a supramolecular electrostatic complex that forms acid sensitive switches
that results in a pH responsive liposome for targeted delivery of antibiotics. This research is
the first report of drug delivery of any class of drug via liposomes with “On and Off” pH

response switches for the targeted delivery of antibiotics.

Intracellular bacterial infections are troublesome to treat, as bare drugs have low penetration
inside the cells. Intracellular bacteria use acidic phagolysosomes and endosomes as reservoirs.
There have been several reports to address this problem with liposomes, as they are fusiogenic
and have good membrane penetrability. This paper reports for the first time the targeting of
intracellular bacterial infections using a pH responsive liposome with “On and Off” switches,
which has never been reported before. The acidic pH of phagolysosomes and endosomes will
switch-On the pH depended release of the drug of the liposomes, resulting in a clearance of

intracellular bacteria.
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Aim 3
The research work conducted in this study is novel for the following reasons:

Despite FA being an effective antibiotic, there is only one report for enhancing its solubility
using the sythensis of polyester dendrimers. This is the first report using surfactants available
in the market (Poloxamer 188) to enhance aqueous solubility of FA.

Although various nanosuspensions have been reported for antibiotic drugs of BCS class Il
drugs for enhancing aqueous solubility, this study reports for the first time a novel nano-
suspention of FA stabilized by Poloxamer 188 (P188) for simultaneously enhancing aqueous

solubility and antibacterial activity.

1.6 Rationale of the study

The nano drug delivery approaches developed in this study are novel and can contribute to
overcoming the problems of bacterial resistance to antibiotics and limitations associated with
their conventional dosage forms. The significance of this study is highlighted below:

New pharmaceutical products: The proposed 3-mPEA, VCM-OA-QL lipo and FA-NS are
new pharmaceutical products not yet reported that can stimulate the local pharmaceutical
industries to manufacture cost-effective superior medicines.

Improved patient therapy and disease treatment: Both the proposed formulations can
improve patient therapy and treatment of various diseases associated with bacterial
infections by enhancing antibacterial performance, minimizing doses, lowering side
effects and improving patient compliance. It can therefore contribute to enhancing the
quality of lives of patients and saving lives.

Creation of new knowledge to the scientific community: The studies proposed can lead to
new knowledge being generated in pharmaceutical sciences. It can include the following:

e Synthesis schemes for new materials, preparation procedures for the novel drug
delivery systems and their properties in vitro, in silico and in vivo can contribute to
creation of new scientific knowledge.

e The extensive in vivo testing of these novel systems can provide knowledge for in
vitro in vivo correlations.

Stimulation of new research: The proposed V-3-mPEA, FA-NS and OA-QL-lipo systems
holds great promise as nano-delivery systems and therefore can generate new potential

research areas including the following:
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e The newly proposed 3-mPEA can be utilized for delivery of other classes of drugs
for treatment of various disease conditions such as cardiovascular diseases,
HIV/AIDS, pain treatments (central nervous system related conditions), gene
therapy related diseases, metabolic diseases etc.

e The newly designed FA-NS could stimulate research in the development of
nanosuspensions for other BCS class Il drugs as more than 40% of NCEs developed
in the pharmaceutical industry are practically insoluble in water making it a major
challenge for developing dosage forms.

e The elimination of intracellular MRSA with novel OA-QL liposome will stimulate
research in elimination of other bacteria that hide intracellularly acting as reservoirs
and source of chronic infections and resistance strains.

1.7 Overview of dissertation

The research work performed is presented in this thesis in the publication format, according to
University of Kwa-Zulu Natal, College of Health Sciences guidelines. It specifies the inclusion
of a brief introductory chapter, published papers and a final chapter on the conclusions. A PhD
study requires at least three first authored papers, two of which must be experimental.
CHAPTER 2. BOOK CHAPTER: This chapter is a first authored book chapter titled
“Amphiphilic Dendrimers for Drug Delivery” in ‘Handbook of Materials for
Nanomedicine’ 2nd Edition, that has been accepted and is in press, to be published by
the internationally acclaimed publisher Pan Stanford Publishing Pte, Singapore 2018,
with Professor Vladmir Torchillin as the book editor. This book chapter focuses on
the medical applications of amphiphilic dendrimers, such as drug delivery in various
diseases, including infectious diseases. The modification of dendrimers to acquire
amphiphilicity that results in improved the toxicity profile, enhanced efficiency and
solubility of the loaded drugs was also discussed. The book chapter also included the
design of smart drug delivery systems, and translational potential of the resulting drug
delivery systems which is part of the main objective this study which involves
synthesis of amphiphilic dendrimer-based system, synthesis of advanced smart
materials and enhancement of efficiency and solubility antibiotics using nanobased
strategies.
CHAPTER 3. EXPERIMENTAL PAPER 1: This chapter addresses Aim 1, Objectives 1- 6
and is a first authored experimental article published in an ISI international journal:

Journal of Controlled Release (Impact Factor = 7.877). This article highlights the
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synthesis of a novel block copolymer dendrimer star polymer hybrid, the in vitro
toxicity evaluation, formulation of the ultra-small vesicles (V-3-mPEA) to deliver
VCM, molecular dynamics simulation of the self-assembly of a novel block
copolymer dendrimer star polymer hybrid, and characterization of its physical and
antibacterial properties both in vitro and in vivo.

CHAPTER 4. EXPERIMENTAL PAPER 3: This chapter addresses Aim 3, Objectives 1 —
6 and is a first authored experimental article communicated to Advanced Healthcare
Materials (Impact Factor 5.76.) an ISl international journal (manuscript ID
advhealthmat-S-18-01827). This article highlights the synthesis of a novel fatty acid
quaternary lipid, the in vitro toxicity evaluation, formulation of a liposome with “On
and Off” pH switches (OA-QL liposome) for targeted delivery of VCM, molecular
dynamics simulation of the “On and Off” mechanism of the switches and binding
affinity of the lipid on a model bacterial membrane, and characterization of its
physical and antibacterial properties both in vitro and in vivo of the drug loaded

liposome.

CHAPTER 5. EXPERIMENTAL PAPER 2: This chapter addresses Aim .2, Objectives 1 -
3 and is a first authored experimental article published in the ISI international journal
ACS Molecular Pharmaceutics (Impact Factor = 4.556). This article highlights the
formulation development of a novel FA-NS, and the characterization of its physical
properties, aqueous solubility enhancement, enhanced antibacterial activity against
methicillin sensitive and resistant S. aureus both in vitro and in vivo, and MD

simulations on the formation of a stable nanosuspension.

CHAPTER 6. CO-AUTHORED PAPERS: In addition to the first authored experimental
papers in Chapters, 3, 4 and 5 focusing on the aims 1, 2 and 3 I have also been involved
in other research projects within our group as a team member. As these projects also
focused on the broad aim of novel nanobased strategies to effectively treat bacterial
infections, these papers have been included in the thesis. This chapter therefore
includes two co-authored experimental papers and one review article published in 1SI
international journals: International Journal of Pharmaceutics (Impact Factor = 3.902),
Journal of Biomolecular Structure & Dynamics (Impact Factor = 3.107) and Journal

of Drug Delivery Science and Technology (Impact Factor = 2.297).
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CHAPTER 7. CONCLUSION: This chapter includes the overall conclusions from research
findings in the study, provides information on potential significance of the findings
and makes recommendations for future research work in the field of strategic solutions
to combat bacterial resistance to antibiotics.
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CHAPTER 2, BOOK CHAPTER

2.1 Introduction

This chapter is a first authored book chapter titled “Amphiphilic Dendrimers for Drug
Delivery” in ‘Handbook of Materials for Nanomedicine’ 2" Edition, that has been accepted
(appendix 1) and is in press, to be published by the internationally acclaimed publisher Pan
Stanford Publishing Pte, Singapore 2018, with Professor VVladmir Torchillin as the book editor.
This book chapter focuses on the medical applications of amphiphilic dendrimers, such as drug
delivery in various diseases, including infectious diseases. The modification of dendrimers to
acquire amphiphilicity that results improved the toxicity profile, enhanced efficiency and
solubility of the loaded drugs was also discussed. The book chapter includes the design of smart
drug delivery systems, and translational potential of the resulting drug delivery systems which
is part of the main objective this study that involves synthesis of amphiphilic dendrimer-based
system, synthesis of advanced smart materials and enhancement of efficiency and solubility

antibiotics using nanobased strategies.
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2.1 INTRODUCTION
The development of performance efficient and safe drug carriers for various purposes, such as

reduced toxicity, controlled release and targeted delivery, is an active area of research among
pharmaceutical and biomedical scientific communities. In this context, scientists have shown the
potential of dendrimers, tree-like monodisperse polymers, as promising drug delivery vehicles.
For instance, polyamidoamine (PAMAM) dendrimers have proven to be versatile vehicle
candidates for nano drug delivery systems, especially in the field of diagnostics and cancer
treatment (Marquez-Miranda et al., 2016). The main reasons that justify the use of dendrimers in
drug delivery can be summarized as their multivalency, uniform size, water solubility, internal
cavities and modifiable surface functionalities (Lin, Jiang and Tong, 2010). It is also possible that
the nanometric size of dendrimers may induce enhanced permeation and retention effect
(Caminade and Turrin, 2014). PAMAM dendrimers, were the first family of dendrimers brought
into existence by Tomalia et al. in 1985. This class of materials have been widely studied as
symmetrical conventional dendrimers for their applications in drug and gene delivery (Kesharwani
et al., 2015; Kaur et al., 2016).

Despite well-defined properties, such as high-density terminal groups and globular architecture,
symmetrical conventional dendrimers have several limitations, such as toxicity, rapid systemic
clearance, poor drug loading and difficulty in achieving controlled drug release (Dhiraj R. Sikwal
et al., 2017). Surface modification techniques have been used by several researchers to minimize
toxicity and improve performance of conventional dendrimers for application in drug delivery and
biomedical sciences. One example of such surface modification is PEGylation of the peripheral
amine groups of PAMAM. Limitations of PAMAM dendrimers, such as immunogenicity,
systemic cytotoxicity, haemolytic toxicity and drug leakage, could be addressed by PEGylation.
In addition, PEGylated PAMAM dendrimers have shown the potential to enhance the solubility of
hydrophobic drugs and facilitate the potential for DNA transfection, tumour targeting and siRNA
delivery (Luong et al., 2016). However, the process of surface functionalization at times leads to
batch-to-batch inconsistencies in the number of attached groups at the dendrimers' surface,
resulting in varying biological activities (Caminade and Turrin, 2014; D.R. Sikwal, Kalhapure and
Govender, 2017).
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With an increasing interest in nanomedicine for controlled and targeted drug delivery applications,
much attention has been paid to synthesizing polymeric materials that can be utilized in
formulation of smart nano delivery systems. The most commonly used polymeric materials are
amphiphilic block copolymers due to their ability to self-assemble in different media (Park et al.,
2013; Rao, Hottinger and Khan, 2014; Avila-Salas et al., 2017). Recognizing the advantages of
dendrimers over conventional block-copolymers, there has been considerable research on the
synthesis and utilization of amphiphilic dendrimers in drug delivery during last the 15 years.
Amphiphilic dendrimers reported so far are structural modifications of conventional dendrimers,
or completely novel dendrimers synthesized using hydrophobic and hydrophilic chemical
structures. These amphiphilic dendrimers have been reported to self-assemble into nano structures,
such as micelles, unimolecular micelles, spherical aggregates, nanospheres and supramolecular
aggregates, which can encapsulate a drug molecule. Advancements in the design, synthesis and
applications of novel amphiphilic dendrimers in drug delivery sciences have also led to the
introduction of novel Janus amphiphilic dendrimers that form different self-assembling structures
such as dendrimersomes, and micelles. Flexibility their design has also resulted in the Janus
dendrimers that are stimuli-responsive. This chapter discusses the synthesis and application of
these amphiphilic dendrimers for drug and nucleic acid delivery. Emphasis has also been given on
studies that will facilitate translating amphiphilic dendrimers into clinically used novel drug

delivery systems.
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2.2 CLASSIFICATION OF AMPHIPHILIC DENDRIMERS
Depending on the structural arrangement of hydrophilic and hydrophobic segments, amphiphilic

dendrimers can be classified into: i) amphiphilic layered, ii) amphiphilic di-block or Janus, and iii)

facially amphiphilic dendrimers (Fig. 1) (Wang and Scott M. Grayson, 2012).
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Fig.1. Classification of amphiphilic dendrimers depending on the structural arrangement of the

hydrophilic and hydrophobic segments.
2.2.1 Amphiphilic layered dendrimers

Amphiphilic layered dendrimers are also known as dendritic core-shell and can be prepared by
incorporating a contrasting block between different layers i.e. with hydrophobic core and
hydrophilic corona or vice versa. These types of dendrimers were first synthesized by Newkome
and co-workers in 1985 using a divergent technique through the functionalizing of the polar poly-
ol corona on non-polar arborol core (Newkome et al., 1985). As a result of the layered structural
arrangement, these amphiphilic dendrimers were able to self-assemble to form unimolecular
micelles that could encapsulate hydrophobic guest molecules and maintain their carrier function
under high dilution. With the introduction of these dendrimers, unimolecular self-assembly
attracted attention, as single molecule can perform micelles-like properties without aggregating
with other molecules. These types of unimolecular self-assemblies can be stable to various in vivo
environmental changes, such as concentration variation, interaction with lipids and proteins, and
flow stress, which could lead to disaggregation and early drug release (Hawker, Wooley and

Frechet, 1993; Wang and Scott M Grayson, 2012). Frechet and co-workers also reported the

24



convergent synthesis of amphiphilic layered dendrimers with a 3,5- dihydroxybenzyl core and
carboxylate end group at the periphery. These amphiphilic dendrimers were synthesized by the
convergent method, where two polyether dendrons were grown convergently by using methyl p-
bromomethyl benzoate as a starting material, which became a peripheral functional group with
protected methyl esters. In the interior 3,5-dihydroxybenzyl alcohol as monomeric units were
coupled to the methyl p-bromomethyl benzoate. This was followed by a twostep generation growth
process that involved activation by bromination and propagation by alkylation. Furthermore, 2 two
protected polyether dendrons were coupled together with the bifunctional core, 4,4-
dihydroxybiphenyl, in the presence of K2CO3, after which the methyl ester groups were
deprotected by alkaline hydrolysis to obtain hydrophilic carboxylate end groups (Hawker, Wooley
and Frechet, 1993). Several other research groups later synthesized amphiphilic layered
dendrimers, studied their self-assembly into unimolecular micelles and evaluated their capacity for
encapsulating hydrophobic guest molecules (Hawker, Wooley and Frechet, 1993; Pan et al., 2005;
Morgan et al., 2006).

2.2.2 Amphiphilic diblock or Janus dendrimers

Amphiphilic diblock dendrimers can be prepared by covalently bonding two different types of
dendrons (hydrophobic and hydrophilic) in a single molecule. This functional arrangement
provides hydrophilic and hydrophobic groups on the extreme end of the dendritic structure, that
results in a broken symmetry with differing solubilities of the two contrasting regions. This offers
new properties to form complexes of self-assembled structures, such as bilayer spherical
assemblies that are known as dendrimersomes (Percec, Daniela A Wilson, et al., 2010). Janus
dendrimers were first synthesized by Wooley and Frechet as unsymmetrically functionalized
dendrimers, with the non-polar benzyl and polar benzoate functional groups possessing large
dipole moments (Wooley, Hawker and Frechet, 1993). The Janus amphiphilic dendrimers could
not form unimolecular micelles but acted as surfactants at oil-water interface and self-assembled
into micellar aggregates. They can be synthesized by three synthetic methods: i) Chemoselective
coupling, ii) heterogeneous double exponential growth method, and iii) mixed modular approach,
details of which can be found elsewhere (Dhiraj R. Sikwal et al., 2017). It is envisaged that Janus
dendrimers could revolutionize the drug delivery field, as their diverse applications are due to their
unique characteristic features (Dhiraj R. Sikwal et al., 2017).
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2.2.3 Facially amphiphilic dendrimers

Facially amphiphilic dendrimers are comprised of repeating amphiphilic monomeric units that
create uniform amphiphilicity over the dendritic surface, thus polar and non-polar functionalities
are distributed throughout the dendritic structure and are also referred to as amphiphilic dendritic
homopolymers (Wang and Scott M. Grayson, 2012). These amphiphilic dendrimers were first
described by Thayumanvan and coworkers in 2004, where they synthesized AB2 functionalized
facially amphiphilic dendrimers via a biaryl monomer composed of a carboxyl group as polar
moiety, and dodecyl chain as the non-polar moiety. Fig. 2 represents the structure of facially
amphiphilic dendrimer reported by Thayumanavan et al. (Vutukuri, Basu and Thayumanavan,
2004).

Fig 2. Facially amphiphilic dendrimer prepared by Thayumanavan and co-workers consisting of
amphiphilic benzylic monomer with hydrophilic carboxylic group and hydrophobic dodecyl

chains (Wang and Scott M Grayson, 2012). Reproduced with permission from Elsevier.

2.3.0 APPLICATIONS IN DRUG DELIVERY
With the advances in synthetic methodologies for dendrimers, and an increasing need by

pharmaceutical scientists for controlled and targeted drug delivery, both stimuli and non-stimuli
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responsive amphiphilic dendrimers have been reported in the literature for drug delivery
applications. This section is divided into two major sections: non-stimuli responsive self-
assembling dendrimers and stimuli-responsive self-assembling dendrimers. These major sections
are both further divided into three sub-sections: i) amphiphilic layered, ii) Janus and iii) facially
amphiphilic dendrimer-based drug delivery systems, depending on their classification. Finally, the
section summarizes the application of low molecular weight dendritic amphiphiles in drug

delivery.
2.3.1 Non-stimuli-responsive (NSR) self-assembling dendrimers

Polymeric materials based nano delivery systems provide several advantages over conventional
dosage forms. For example, they protect encapsulated drugs from degradation due to acids or
enzymes and minimize the required dose and side effects by providing targeted delivery (Wang
and Scott M. Grayson, 2012). Self-assembly of the amphiphilic dendrimers have gained significant
attention due to the formation of a wide array of morphologies, starting from simple micelles and
vesicles to more complex hierarchical architectures, such as dendrimersomes, fibers, helices and
tubes (Wang and Scott M Grayson, 2012). This section addresses the self-assembled architectures
formed by non-stimuli responsive amphiphilic dendrimers and their utilization in drug delivery for
the three classes of dendrimers discussed in this chapter. A summary of non-stimuli responsive
amphiphilic dendrimers, the resulting self-assembling structures, drugs encapsulated, important

findings of the studies and conclusion are given in Table 1.
2.3.1.1 Amphiphilic layered dendrimers based NSR delivery systems

The structure of amphiphilic layered dendrimers utilizes layer-wise segregation of hydrophobic
core and hydrophilic corona, thus creating specialized self-assembling structures known as
unimolecular dendritic micelles (Hawker, Wooley and Frechet, 1993). These unimolecular
micelles are considered to be effective micellar delivery vehicles due to their single molecular self-
assembly pattern (Fan, Li and Loh, 2016).

Using the Fréchet and company design of a layer-wise segregation of hydrophobic and hydrophilic
hydrophobic regions, Morgan and coworkers constructed an amphiphilic layered dendrimer from
biocompatible polyester amphiphilic layered G3 and G4 poly(glycerol-succinic acid) (PGLSA)
dendrimers from natural components, such as glycerol and succinic acid (Fig. 3). PGLSA-OH and
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PGLSA-COONa (G3 & G4) dendrimers were synthesized divergently by propagating through
esterification with 2-(cis-1,3-O-benzylideneglycerol) succinic acid and deprotecting with H2/Pd/C
(hydrogenolysis). To obtain PGLSA-COONa dendrimers, in the final synthesis step, hydroxyl
terminals of PGLSA-OH were converted to carboxylate terminals by reaction with succinic
anhydride in pyrene and the molecular weights for G4-PGLSA-OH and G4-PGLSA-COONa were
found to be 10715 and 18500 Daltons respectively.

An aggregation study performed on G4-PGLSA-OH and G4-PGLSA-COONa by using quasi-
elastic light scattering method showed the formation of unimolecular micelles. The hydrodynamic
diameter of the PGLSA-OH (G4) dendrimer was found to be 7 nm, which was further reduced to
4 nm after encapsulation of Richard’s dye, this decrease of the unimolecular micelles being
attributed to the collapse of aliphatic the amphiphilic dendrimer around the hydrophobic dye. The
G3 PGLSA amphiphilic dendrimers encapsulated approximately one dye molecule, while the G4
dendrimer showed encapsulation of two molecules of the dye, increasing the solubility of
Richard’s dye 2000-fold compared to water. These observations showed that an increase in
glomerular structure of the amphiphilic dendrimer enhances the encapsulation efficiency.

Drug encapsulation studies were performed using 10-hydroxycamptothecin (10HCPT) as a model
hydrophobic guest molecule. Encapsulation of 10HCPT was performed using G4-PGLSA-
COONa, as solubilization with G4-PGLSA-OH amphiphilic dendrimers resulted in the formation
of precipitate on storage. Results of the in-vitro anticancer activity against human breast cancer
cell (MCF-7) demonstrated that dendrimers alone were inactive, whereas anticancer activity of
10HCPT was retained after encapsulation within the dendrimers (Cytotoxicity results as indicated
in Fig. 4). The study concluded that the unimolecular micelles formed by these amphiphilic
dendrimers were suitable as delivery vehicle for encapsulating hydrophobic anticancer drugs
(Morgan et al., 2003).

28



[G4]-PGLSA-OH (1): R=H
[G4]-PGLSA-COONa (2): R = COCH,CH,COONa

10-hydroxycamptothecin (4)

Reichardt's Dye (3)

Fig. 3. Structure of G4-PGLSA dendrimers and hydrophobic guest molecules (Morgan et al.,

2003). Reproduced with license from American Chemical Society.
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Fig. 4. Cytotoxicity assay with human breast cancer, MCF-7, cells (5000 cells/well; n') 8) (Morgan

et al., 2003). Reproduced with license from American Chemical Society.

In another study, the same research group expanded the potential use of these PGLSA dendrimers
to deliver poorly water soluble 7-butyl-10-aminocamptothecin (BACPT) along with 10HCPT
(Morgan et al., 2006). Encapsulation studies were carried out using a solvent evaporation method,
where G4-PGLSA-COONa amphiphilic dendrimers and camptothecins were used at a 1:1 ratio.
The results of the encapsulation study indicated a 10 -fold solubility enhancement for 10HCPT
and BACPT in amphiphilic dendrimer solution compared to water. The drug release profile of the
encapsulated 10HCPT/G4-PGLSA-COONa vehicle was monitored by dialysis method using
phosphate buffer solution (pH 7.4), with the drug release being complete within 6 h with linearity
over the period of 2 h (release results are shown in Fig. 5. Encapsulation into the dendrimers
enhanced the cytotoxic potency of both 10HCPT and BACPT towards human cancer cell lines
[human breast adenocarcinoma (MCF-7), colorectal adenocarcinoma (HT-29), non-small cell
lung carcinoma (NCI-H460), and glioblastoma (SF-268) (Morgan et al., 2006). The two studies
reported by Morgan and co-workers provided information on the solubility and activity
enhancement of the hydrophobic anticancer drug molecules by their encapsulation into self-
assembled amphiphilic dendrimers, with the morphology of the formed self-assemblies not being
investigated. Morphological investigations using scanning electron microscopy (SEM) and/or

transmission electron microscopy (TEM) would have been helpful to understand the effect of size
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and shape on encapsulation efficiency, as there were differences in the number of molecules
encapsulated in the G3 and G4 PGLSA.
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Fig. 5. Release profile of [G4.5]-PGLSA-COONa encapsulated 10HCPT. Points, mean; bars,
range (n = 2) (Morgan et al., 2006). Reproduced with permission from American Association for

Cancer Research.

Alternatively, amphiphilic layered dendrimers can also be constructed by coupling hydrophobic
moieties to hydrophilic polyamidoamine (PAMAM) dendrimers to form different self-assembling
nano structures. This approach was employed by Hung et al., who coupled a hydrophilic PAMAM
dendron shell to the poly(L-lactide) (PLLA) core, which self-assembled to unimolecular micelles
(Hung et al., 2013). Cao and Zhu applied a very similar strategy, where a hydrophilic segment of
the amphiphilic PAMAM, G2 to G5 core, was attached to a hydrophobic shell of the aniline
pentamer, whose self-assembled spherical aggregates formed bilayer vesicular structures (Cao and
Zhu, 2011b).

Linking the block linear polymers to dendrimers has also resulted in amphiphilic layered
dendrimers. Such a method was employed by Wang et al who designed a dendritic micellar system
with a G2 PAMAM core, and a linear block copolymer from a poly(g-caprolactone) (PCL) and
poly(ethylene glycol) (PEG) shell. These PAMAM-PCL-PEG hybrids self-assembled to micelles

that were able to encapsulate etoposide with 22% loading capacity. Furthermore, the cytotoxicity
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assay of the hybrid against porcine kidney epithelial cells (LLC-PK) demonstrated that the
PAMAM-PCL-PEG amphiphilic molecule was nontoxic, and that the entrapped drug produced
significantly better anticancer effect than the free drug (Wang et al., 2005). These types of core
shell assemblies could be employed to non-covalently entrap the drug within the dendrimer
structure. The advantage of these systems is that the release process is not chemical dependent, but
purely dependent on ‘soft-bonds’, such as the ionic pairing, hydrogen and halogen bonds, which
requires lower energy interactions and more subtle conditions, such as shifts in local equilibria, to
release the drug (Jain and Asthana, 2007).

2.3.1.2 Janus dendrimers based NSR delivery systems

The second sub-section will address NSR drug delivery from amphiphilic Janus dendrimers. Janus
or amphiphilic segmented dendrimers consists of two dendritic blocks with different polarity,
thereby providing asymmetry to the dendritic structure. This asymmetry offers the property of self-
assembly into different kind of aggregates, such as micelles, supramolecular hydrogels and
dendrimersomes (Dhiraj R. Sikwal, Kalhapure and Govender, 2017). In this section, aggregates

with non-responsiveness will be highlighted.

Janus dendrimers that have the ability to self-assemble into micelles have been studied by Movellla
et al. These Janus dendrimers based micellar drug delivery systems were employed as carriers for
antimalarial drugs [chloroguine (CQ) and primaquine (PQ)]. They were developed by the self-
assembly of two amphiphilic segmented dendrimers and two hybrids dendritic-linear-dendritic
block co-polymer. Fig. 6 shows the structures of these amphiphilic dendrimers (A and B) and
amphiphilic dendritic block copolymers (C and D), both being derived from 2,2-
bis(hydroxymethyl) propionic acid (bis-MPA) monomers. The synthesis of these amphiphiles was
accomplished by using the chemo selective coupling method through click chemistry, by coupling
the hydrophilic glycine containing dendron with the azido end group and alkyne terminated
hydrophobic stearic acid functionalized dendron. Hemolysis and in-vitro cytotoxicity studies
performed on human umbilical vein endothelial cells (HUVEC) showed a very low value of IC50
(1.2 to 3.5 mg/ml) for B and D. Copolymer C did not reach the IC50 value even at high
concentrations (14.2 mg/ml). At 2 mg/ml of the concentration, none of the amphiphiles showed
hemolytic activity, indicating the biocompatibility of these structures. Micelles were prepared

using these four amphiphilic dendritic derivatives by oil/water emulsification method and

32



encapsulated the antimalarial drugs (CQ and PQ) and fluorescent dye, Rodamine B (rho B). High
entrapment efficiency (%EE) was achieved (ca. 50 to 100) for both drugs at a drug/dendritic
derivatives ratio of 5:1, with drugs %EE being highest in the Janus dendrimers A and B, whereas
the %EE of rhoB was highest in dendritic polymer C and D (Movellan et al., 2014).
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Fig 6. Structural representation of two Janus dendrimers (A, B) and two hybrid dendritic-linear-
dendritic block copolymers (C and D) (Movellan et al., 2014). Scanning electron microscopy
(SEM) studies showed ovoid or spherical morphologies for CQ and PQ encapsulated micelles with
a mean long axes/diameters rangie of ca. 170 to 500 nm (Fig. 7). Reproduced with copyright

permission from Elsevier

All the rhoB encapsulated nano-carriers were significantly smaller (100 to 300 nm) and more
spherical compared to the antimalarial drugs encapsulated micelles. The in vitro activity against
P. falciparum revealed intrinsic activity for all dendritic derivatives, and the cell targeting studies
by fluorescence microscopy displayed selective targeting of these micelles to plasmodium infected
RBCs compared to non-infected RBCs. These results can be accredited to the chemical interplay
between the dendritic derivatives, the drug and elongated shape of the micelle (Movellan et al.,
2014).
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It has been reported that amphiphilic Janus dendrimers can self-assemble into fiber-like
aggregates, which further arrange themselves into a supramolecular structure, as displayed in Fig.
8, and can trap water molecules to form hydrogels with outstanding mechanical properties. One
such example is Janus dendrimers, which consists of G3 Bis-MPA hydrophilic dendron and alky!l
gallate ether with varioius branching pattern [(3,4); (3, 5) and (3,4,5)] joined together via triazole
linker (Fig. 9) (Nummelin et al., 2015).

Fig. 7. Scanning electron microscopy analysis of the dendritic derivatives encapsulating
chloroquine, primaquine, and rhodamine B (Movellan et al., 2014). Reproduced with copyright

permission from Elsevier.
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Fig. 8. SEM images of vitrified cold dried 1.0% amphiphilic dendritic hydrogel, prepared from a)
(3,4), b) (3,5), and c) (3,4,5). Scale bars 1 mm (Nummelin et al., 2015). Copyright (2015) John
Wiley and Sons.
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Fig. 9. a) Synthesis of amphiphilic Janus dendrimers through click chemistry, b) Schematic
representation of hydrogel formation (Nummelin et al., 2015). Copyright (2015) John Wiley and

Sons

The ethanolic injection of these Janus dendrimers into water caused self-assembly of the
nanofibers with a thickness of 5-7 nm, which then bundled up and crosslinked with each other to
form a three dimensional network (steps shown in Fig. 11b.), and further trap water molecules to
form hydrogel. The authors further showed that these hydrogels were able to encapsulate a drug
(nadalol), a dipeptide (gondoreline) and an active enzyme (horseradish peroxidase). Studies
performed on these hydrogels showed that release of these cargo was by first order release kinetics,

which was indicative of sustained release profile.
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One important observation about self-assembly behavior of the Janus amphiphilic dendrimers is
they can form uniform bilayered vesicular structure called dendrimersomes. Due to their unique
properties, such as uniform size, tailored structure, higher vesicular stability, improved mechanical
strength and easy functionalization, dendrimersomes are proposed to be more advantageous and
stable nanostructures than liposomes and polymersomes (Percec et al., 2004). Percec et. al. studied
the efficiency of these dendrimersomes to encapsulate drug molecules using the DOX as a model
drug, and were formulated by a simple injection method, where the Janus dendrimer solution in
ethanol was injected into water. The DOX was encapsulated in these structures with a film
hydration technique, its release being found to be pH dependent due to the cleavage of the aromatic
ester functional group present in the Janus dendrimers, which suggested their application for
intracellular targeted delivery. Incorporating a pore forming protein (melittin) was also studied,
with the results indicating that pore forming proteins could be successfully embedded in their
bilayered structures, thus, confirming that the formed dendrimersomes mimicked the natural lipid

bilayer cell membrane (Percec, Daniela A. Wilson, et al., 2010).

In another study, Zhang et al. reported the synthesis of isomeric amide containing ’Single-Single’
Janus dendrimers (SS-JD), with a single hydrophilic and a single hydrophobic group compared
with twin dendrons in conventional Percec type Janus dendrimers (Percec et al., 2004; S. Zhang et
al., 2014). The simple direct or reverse injection of a SS-JD solution into organic solvents, such as
tetrahydrofuran, acetone, acetonitrile and 1, 4-dioxane to Milli-Q water or phosphate and HEPES
buffer, produces onion-like dendrimersomes. By controlling the final concentration of SS-JD in
the solution, the size and numbers of the onion-like dendrimersomes can be tailored. These onion-
like dendrimersomes can encapsulate different hydrophilic and hydrophobic cargoes within
multiple layers. Time dependent release pattern can be achieved by encapsulating them in different
layers of these onion-like dendrimersomes and can thus be regarded as “peeling of one onion-layer
at a time” (S. Zhang et al, 2014). Although the authors stated that “these onion-like
dendrimersomes can be used to encapsulate both hydrophilic and hydrophobic cargoes”, there was
no such cargo encapsulation study reported in the paper. Studies are needed regarding
encapsulating drugs or drug-like molecules and evaluating their time dependent release pattern to
pave the way for the introduction of onion-like dendrimersomes as smart carriers of both

hydrophilic and lipophilic actives.
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Table-1. Non-stimuli responsive self-assembling amphiphilic dendrimers as drug carriers.

Dendrimer Structures formed Drug/Payload Key Findings and/or Conclusions | Reference
Amphiphilic layered dendrimers

3, 5-dihydroxybenzyl Unimolecular micelles Pyrene ¢ Enhanced solubility of pyrene, anthracene, 1,4- (Hawker, Wooley
alcohol based amphiphilic Anthracene diaminoanthraquinon, 2,3,6,7-tetranitrofluorenone by 120, 58, and Frechet, 1993)
layered dendrimer with 1,4 diaminoan- 56 and 258 -fold respectively compared to their water

hydrophobic 3, 5- benzylic thraquinon solubility.

polyether core and 2,3,6,7- o High solubilization was attributed to stabilizing ©-

hydrophilic carboxylate end
groups

tetranitrofluorenone

interactions between dendrimers and hydrophobic guest
molecules.

G3 & G4 poly(glycerol-
succinic acid) based
polyester amphiphilic
layered dendrimers
(PGLSA) with carboxylate
end groups as hydrophilic
corona

Unimolecular micelles

Richard’s dye
Camptothecins

PGLSA dendrimers formed unimolecular micelles with average
size of 7. nm.

The hydrodynamic diameter decreased to 4 nm after
encapsulating Richard’s dye.

Solubility of Richard’s dye and camptothecins was enhanced
by 2000 and 10 -folds respectively compared to their solubility
in water.

(Morgan et al.,
2003, 2006)

Folate functionalized
amphiphilic dendrimer-like
star polymer (DLSP) from
polyester dendrons

Unimolecular micelles

None

Unimolecular micelles with mean particle size of about 18 nm
formed

Increased cellular uptake of the folate- DLSP hybrid through
overexpressed folate-receptor on KB cells

Folate-DLSP hybrid showed potential as a carrier for targeted

drug delivery.

(Cao et al., 2010)

Amphiphilic dendrimer-like
star polymers (DLSPs)

Unimolecular micelles

Doxorubicin (DOX)

e Dendrimers had solubility of 10-25 mg/ml in water.

Unimolecular micelles of 14-28 nm size and larger sized (205-
344 nm) aggregates were formed.

e DOX loading was found to be 11.5 wt%

DLSPs showed potential as candidates for controlled delivery
of hydrophobic drugs.

(Cao and Zhu,
2011a)

Folate functionalized | Micelles DOX e Unimolecular micelles with mean particle size of .15 nm (Caoetal., 2011)
amphiphilic dendrimer-like formed.
polymer e DOX was released in a controlled sustained manner from the

micelles.

o Unimolecular micelles could be promising nanosize

anticancer drug carrier with excellent targeting property.
Janus dendrimers
11 distinct libraries of Janus | Various complex | DOX o Bilayer dendrimersomes with varying size range of 33 to 732 | (Percec, Daniela A
dendrimers from six architectures  such  as nm were formed by ethanolic injection of Janus dendrimers Wilson, et al., 2010)
hydrophilic segments vesicles, cubosomes, in water.
derived from oligoethylene dendrimersomes, tubular .

oxide, dimethylolpropionic
acid, glycerol, thioglycerol,

vesicles, disks and helical
ribbons

Bilayer structure thickness of 5 to 8 nm that could be
imbedded in pore-forming proteins.
System had high stability for 244 days.
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tert butylcarbamate, and
quaternary ammonium salts
and with hydrophobic
segments such as aliphatic
and mixed aliphatic aromatic

DOX was encapsulated in dendrimersomes using film
hydration method.

System had high stability, mechanical strength, uniformity of
size of particles formed, and easy chemical functionalization
of the structures.

Amphiphilic Janus Bilayered None ¢ Glycodendrimersomes with average size of 114 to 126 nm (Percec et al., 2013)
Glycodendrimers with D- glycodendrimersomes uniformly assembled.
mannose and D-galactose o System offers possibility of lysine-mediated delivery of drugs,
hydrophilic groups and n- genes and imaging agents.
alkyl hydrophobic chains
Single—single” amphiphilic Onion like | None o Formation of multi layered onion-like dendrimersomes with (Shaodong Zhang et
Janus dendrimers with dendrimersomes size of 99 to 169 nm, and narrow size distribution achieved. al., 2014)
polyethylene glycol and o Transformation in number of layers was realized by changing
aliphatic hydrophobic chains concentration of Janus dendrimers.

e Structures could offer time dependent multi layered delivery

systems with multiple cargo loading

Janus dendrimers with alkyl | Supramolecular hydrogels | Nadolol o Supramolecular ribbon-like hydrogel with outstanding (Nummelin et al.,
gallate Gonadorelin mechanical strength formulated. 2015)
ether dendron as Horseradish peroxidase  Various drugs, active enzymes and peptide encapsulated in the
hydrophobic part and hydrogel.
hydroxyl terminated « Hydrogel offers the potential for a sustained drug release drug
bis-MPA as  hydrophilic delivery system.
dendron.
Bis-MPA  based  Janus | Nanomicelles Chloroquine o Spherical shaped nanomicelles with high entrapment (Movellan et al.,
dendrimer with amine groups Primaquine efficiency for both chloroquine and primaquine were 2014)

as hydrophilic part and
aliphatic hydrocarbon chains

formulated.

Nanmicelles were non-toxic towards mammalian cells.

in vitro Studies showed intrinsic activity against P.
falciparum.

Dendrimeric mediated transport of payloads was selectively
achieved in plasmodium infected but not non-infected RBCs.

Facially amphiphilic dendrimers

Amphiphilic dendrimers
with repeating orthogonally
placed biaryl units with
hydrophilic (carboxylic acid)
and hydrophobic (decyl
chain) substituents and 3, 5-
dihydroxy benzylic group as
a backbone

Micelles in polar solvents
and inverted micelles in
non-polar solvents

Reichardt’s dye
(pyridinium-N-
phenoxide betaine) as
hydrophobic guest,
Proflavin dye as
hydrophilic guest

Formed micelles and inverted micelles depending on nature of
solvent used: unimolecular micelles with average size of 2-4
nm in non-polar solvents; micellar aggregates with average
size of 20-40 nm in polar solvents.

Dendrimers ability to sequester guests was generation
dependent.

Formed structures were capable of encapsulating hydrophobic
or hydrophilic guest molecules.

(Vutukuri, Basu and
Thayumanavan,
2004)
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2.3.1.3 Facially amphiphilic dendrimer based NSR delivery systems

The third sub-section is on will emphasize on facially amphiphilic dendrimer based NSR delivery
systems. Facially amphiphilic dendrimers, which are uniformly asymmetric over the entire
globular surface. Therefore, unlike other amphiphilic dendrimers, these molecules can show
solvent dependent conformational self-assembly. Bharathi P. and coworkers described the design
and synthesis of such facially amphiphilic dendrimers and their solvent dependent self-assembly
to form convex or concave interior structures (Bharathi, Zhao and Thayumanavan, 2001). The
design of the facially amphiphilic dendrimers was based upon the orthogonally placed AB2
functionalized biphenyl monomeric units containing triethylene glycerol monomethyl ether and n-
butyl group as hydrophilic and hydrophobic parts, were place placed oppositely to each other. (Fig.
10).
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Fig. 10. Structure of biphenyl monomer (1) and orthogonal placement of the monomers in the
dendrimers (Bharathi, Zhao and Thayumanavan, 2001). Reproduced with permission from

American Chemical Society (2001)
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Two phenolic and one hydroxymethyl group in the biphenyl monomeric unit (Fig. 10) provides an
AB2 branching motif similar to that of the Frechet type of the classical 3,5-dihydroxybenzyl
alcohol monomeric units (Bharathi, Zhao and Thayumanavan, 2001). These amphiphilic
dendrimers were synthesized following the synthetic steps depicted in Scheme 3. The biaryl
monomeric unit was synthesized from the protected bis(O-t-butyldimethylsilyl) boronic acid (2)
and bromoarene (3) by a palladium catalyzed coupling reaction. Furthermore, the dendron was
constructed convergently using biaryl monomer 1, with monomer 4 being used for the periphery
(Scheme 1).
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Scheme 1. Synthesis of facially amphiphilic dendrimers (Bharathi, Zhao and Thayumanavan,
2001). Redrawn with permission from with permission from American Chemical Society. (a) TBS-
Cl, imidazole, DMF, 81%; (b) SOCI2, catalytic Me3NaHCI; (c) catalytic AIBN, 2-
mercaptopyridine-N-oxide sodium salt, CBrCI3, 62%; (d) (i) t-BuL.i, (ii) B(OMe)3, (iii) agueous
NHA4CI; (e) catalytic H2SO4, EtOH, 95%; (f) K2CO3, 18-crown-6, acetone, Bu-1 (0.8 equiv), 46%;
(g) K2CO3, 18-crown-6, acetone, TEG-OTs, 92%; (h) catalytic Pd(PPh3)4, K3PO4, DME, reflux,
45%; (i) LiBH4, THF, 88%: (j) TBAF, THF, 91%; (k) K2CO3 1, 18-crown-6, THF; (I) Ph3P,
CBr4 (5 72% from 4; 6 61% from 5; 7 21% from 6; 8 39% from 7).
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These custom designed dendrimers can have either hydrophilic or hydrophobic functional groups
that are selectively directed towards the concave interiors of the dendrimers, depending on the
polarity of the solvent used. This relative placement of the functionality was a result of the
solvophobic interactions, as seen in the case of amphiphilic globular proteins. These facially
amphiphilic dendrimers can provide recognition sites at their concave surface, as seen in active
binding sites in enzymes. In polar solvents, unimolecular micelles can be formed, while in
nonpolar solvents, inverted micelles can be formed. These new amphiphilic scaffolds will provide
such recognition and can mimic globular proteins and can also act as carries for various biological
molecules. Furthermore, from the same group, extended application of these amphiphilic
dendrimers for encapsulation of hydrophilic and hydrophobic guest molecules were investigated
(Vutukuri, Basu and Thayumanavan, 2004). Biaryl dendrimeric structures were prepared with
potassium carboxylate as the hydrophilic moiety and the same dodecyl chain as hydrophobic
moiety. Due to the presence of carboxylate ions, these dendrimers were more soluble in water
compared to the triethylene glycerol monomethyl ether structure. In the presence of polar solvents,
such as water, these amphiphilic dendrimers formed unimolecular micelles and were able to harbor
hydrophobic Reichardt’s dye (pyridinium-N-phenoxide betaine), whereas in nonpolar solvents,
such as toluene, they formed inverted micelles and were able to encapsulate the hydrophilic dye,
proflavine (Fig. 11). The results of this study showed the potential of facially amphiphilic
dendrimers to form either hydrophobic or hydrophilic unimolecular nanocontainers, depending
upon polarity of the solvent used. The authors concluded that these amphiphilic multifunctional
macromolecules could be considered as a first step toward structurally complex biomimetic
assemblies (Vutukuri, Basu and Thayumanavan, 2004). However, more meaningful and useful
information could have been obtained by performing morphological and biocompatibility studies

to support the authors’ claim of biomimetic assemblies.
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Fig. 11. Pictorial representation of self-assembly of facially amphiphilic dendrimers forming
unimolecular micelles and inverted micelles in polar and nonpolar solvents respectively (Vutukuri,

Basu and Thayumanavan, 2004). Reproduced with license from American Chemical Society

2.3.2 Stimuli-responsive (SR) self-assembling dendrimers
In this the second main section, stimuli-responsive (SR) self-assembling dendrimers and their

application in drug delivery will be addressed. The targeted delivery of drug molecules to the
diseased site for enhanced efficacy and to overcome resistance has become a focus research area
for not only drug delivery scientists but also biomedical and material scientists. For triggered drug
delivery, there are numerous reports in the literature on the synthesis of SR polymers and/or
materials. By taking the advantages of their structure, scientists have focused on introducing SR
functionalities into these dendrimers to achieve targeted and site-specific drug delivery. Various
stimuli, which have been considered so far for synthesizing SR amphiphilic dendrimers, are pH,
enzyme, UV and temperature. Various building blocks with different properties and functions have
been effectively introduced to realize a programmable drug delivery system (Cheetham et al.,
2013). SR systems are designed to take advantage of changes in different biological environments,
such as the on and off switches for drug release (Mura, Nicolas and Couvreur, 2013). Depending
upon the nature of the stimuli, the response to the SR self-assembling dendrimers can be classified
as follows: i) physical stimuli, e.g. light, temperature, solvent, ionic strength, electric field and
magnetic field strength, and ii) chemical stimuli, e.g. pH, redox microenvironment, enzyme over
expression, host-guest recognition, antigen-antibody interactions and salts. Some of the stimuli

responsive systems have been summarized in Table 2
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2.3.2.1 Amphiphilic layered dendrimer based SR delivery systems

This sub section will deal with amphiphilic layered dendrimer based SR delivery system.
Amphiphilic layered dendrimers can be transformed to SR by incorporating SR blocks between
the layers. For example, Cho and Allcock introduced ion sensitive amphiphilic SR composed of
phosphazene groups on the surface of a hydrophobic diaminobutane poly(propyleneimine) (PPI)
dendrimer core, and then entrapped a hydrophobic payload (pyrene) in the functionalized
dendrimer. While the pyrene release profile from the phosphazene modified dendrimer was similar
to the parent, upon introduction of sodium chloride, the system triggered a faster release of pyrene
than the parent dendrimer. It was concluded that the consequent increase in charge density due to
the presence of salts caused an expansion of the ethyleneoxy coils in the polyphosphazene chains,
causing swelling and increased wetting of the dendrimer, and resulting in solubilization of the
hydrophobic payload and release (Cho and Allcock, 2007). Unlike the Cho and Allcock study,
Paleos et al. also employed similar diaminobutane poly(propyleneimine) (PPI) salt responsive
dendrimers to target the extracellular fluids that are usually composed of salts, such as NaCl and
KCI. The betamethasone valerate was encapsulated in the dendrimer system, and iln the presence
of NaCl, the drug was released faster from the dendtritic system (Paleos et al., 2004). This type of
system could be of importance in bringing to life smart dendritic drug delivery systems that will
selectively release the drugs in disease conditions that affect physiological ionic concentrations.
However, further in vivo and in silico studies are required to establish the applicability of these

salt responsive systems.

pH is also being widely employed as a trigger mechanism for the targeted release of drugs.
Different ligands that are pH responsive are being attached to dendrimers to successfully deliver
drugs without disrupting the healthy cells. The mechanism of these SR amphiphilic layered
dendrimers includes protonation and deprotonation, which results in conformational changes and
the subsequently release of drugs (Sideratou et al., 2000). As summarized in Table 2, another
mechanism of pH response involves cleavage of acid labile bonds in acidic environment, resulting

in drug release.

Advances in supramolecular chemistry have resulted in the design of systems that responds to
more than one stimulus, which could result in highly specialized delivery systems that target more

than one biomarker at the disease site. Such as system has been reported by Shaogin Gong and
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colleagues and has the ability to respond to pH and folate tumor receptor targeting. The synthesized
SR amphiphilic layered dendrimer system self-assembled to a unimolecular micelle, its core
comprising of a hyperbranched aliphatic polyester, Boltorn H40. The inner hydrophobic layer
consisted of random copolymers of poly(e-caprolactone) and poly(malic acid) (PMA-co-PCL)
segments, while the outer hydrophilic shell was composed of poly(ethylene glycol) (PEG)
segments. Folate, an active tumor-targeting ligands, were selectively conjugated to the distal ends
of the PEG segments, while an anticancer drug, i.e., doxorubicin (DOX) molecules, was
conjugated onto the poly(malic acid) (PMA) segments with pH-sensitive drug binding linkers for
pH-triggered drug release (Fig. 12). The cellular uptake and distribution of micelles determined
by means of flow cytometry and confocal laser scanning microscopy indicated that the folate-
conjugated micelles had enhanced cellular uptake and cytotoxicity via folate-receptor-mediated
endocytosis. At physiological pH, the DOX that had conjugated onto the unimolecular micelles
exhibited excellent stability; however, once the micelles were internalized by the cancer cells, the
pH-sensitive hydrazone linkages were cleaved by intracellular acidic environment, which caused
a rapid release of DOX (Yuan, Yeudall and Yang, 2010). The versatility of amphiphilic layered
dendrimers provides an opportunity to incorporate different stimuli molecules that can provide
flexible drug delivery systems with a high efficiency and selectivity, and a low toxicity. While this
provides a platform to design efficient drug delivery systems, more studies are needed to prove
their applicability and upscaling potential for introducing them into the market as main-stream

treatment options.
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Fig 12. Multi stimuli responsive amphiphilic layered dendrimer (Yuan, Yeudall and Yang, 2010).

Reproduced with permission from American Chemical Society.
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2.3.2.2 Janus dendrimer based SR delivery systems

This subsection will discuss the applications of SR Janus based dendrimer. Janus dendrimers can
be fine-tuned into smart materials by incorporating SR moieties in either the hydrophilic segments
or hydrophobic parts. This incorporation has resulted in Janus dendrimer-based SR delivery
systems that are responsive to an array of stimuli, such as light. As illustrated in Table 2, Janus
dendrimer-based SR systems have been designed to self-assemble in aqueous media and
disassemble when irradiated with certain light wavelength, such as near infrared and ultraviolet,
to release drugs. Such systems are showing the potential for the on-demand targeted delivery of
medicines (Sun et al., 2012).

Apart from light, enzyme response is also a stimulus of interest in designing drug delivery systems
for disease site targeting. Zhongwei Gu et. al. designed such a smart polymeric vehicle for the
hydrophobic drug paclitaxel (PTX), which was linked to the PEGylated Janus peptide dendrimer
via enzyme sensitive tetrapeptide peptide linker glycylphenylalanylleucylglycine by efficient click
reaction, resulting in a Janus dendritic prodrug with 20.9% PTX content (Fig. 13). The prodrug
self-assembled into nanoscale particles with appropriate nanosizes, compact morphology and
negative surface charge. The prepared amphiphilic Janus dendrimer-based SR delivery system
allowed for the maximum steady-state circulation and enzyme triggered fast-intracellular PTX
release in tumors. In the presence of cathepsin B enzyme, changes in size and morphology were
observed, demonstrating the enzyme-sensitive property and enzyme-induced collapse of particles,
thereby contributing to rapid drug release (Li et al., 2017). This similar principle of using enzymes’
responsiveness as a mechanism to stimulate the release of payloads has also been reported, using
Nile red dye as encapsulated payload in amphiphilic Janus dendritic systems, with Penicillin G
amidase, esterase and amidase enzymes as triggers for the disassembly of the amphiphilic Janus
dendritic micelles. (Harnoy et al., 2014, Harnoy et al., 2017, Rosenbaum et al., 2017). These
studies are evidence that dendritic systems that respond to enzyme response could be a future

prospective for efficacious targeted drug delivery.
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Fig. 13. Schematic representation of enzyme triggered disassembly of nano micelles releasing

payloads (Harnoy et al., 2014) and reproduced with permission from American Chemical Society.

Self-assembly of SR Janus dendrimer provides a perfect platform for drug delivery, as payloads
can be encapsulated in the dendritic free spaces, and in the presence of a stimuli, the system
collapses, and the drug is released. As shown in Table 2, DOX is one of the most explored model
drug encapsulations in these SR Janus dendrimer systems. pH as a stimulus has also been
extensively reported in the literature as a trigger mechanism for breaking down the Janus
dendrimer self-assembled systems, resulting in the localized release of drugs (Table 2). Qiao et al.
also reported a series of Janus dendrimers consisting of hydrophilic polyamidoamine (PAMAM)
and various ratios of hydrophobic poly(d,l-lactic acid) portions. The synthesized amphiphilic
dendrimers were able to form micelles, with particle sizes in the range of 39 to 87 nm. In the
resulting micellar systems, docetaxel, an antitumor drug, was successfully encapsulated, with an
encapsulation efficiency of 29 to 80.4%. Furthermore, it was noted that as the hydrophobic
segment increased, so did the size and encapsulation efficiencies. The prepared micelles were
evaluated for pH-responsive drug release at pH 7.4, 6.8 and 5.5 in release media containing 0.1%

polysorbate 80.

The results demonstrated pH-induced charge conversion and dimension changes, which were
confirmed by TEM and AFM studies respectively. The in vitro drug release suggested
susceptibility of docetaxel-loaded micelles to an acidic microenvironment, and the system was
biocompatible. Furthermore, pharmacokinetic studies performed using Sprague-Dawley (SD) rat
in vivo models showed that micelles enhanced the area under the curve (AUC) of docetaxel and
prolonged drug clearance in comparison to conventional docetaxel injection. (Qiao et al., 2013).
The stimuli responsive Janus dendritic systems clearly showed the potential for targeted delivery

drug molecules; however, most applications have been for anticancer drugs. More studies are
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needed for other diseases associated with pH changes, such as bacterial infections and diabetes, as
well as an in-depth evaluation of the in vivo efficacy of these systems for future introduction into

clinical practice.
2.3.2.3 Facially amphiphilic dendrimer based SR delivery systems

Application of Discussions involving facially amphiphilic dendrimer based SR delivery systems
will be discussed in this subsection. Overexpression of proteins and enzymes has been frequently
implicated in the diseased state of cells. Disruption of hydrophilic-lipophilic balance, using an
external stimulus, could lead to disassembly of the aggregates, which can be utilized to cause an
actuation event, such as guest molecule release (Raghupathi et al., 2014). Azagarsamy et. al.
demonstrated enzyme-induced disassembly of amphiphilic nanocontainers based on dendrimers,
with the system consisting of biaryl dendrimers composed of a hexyl ester as the lipophilic unit
and PEG as a hydrophilic unit. The enzyme-induced disassembly tested using porcine liver
esterase revealed that there was a systematic decrease with time in the size of the self-assembled

nanoparticles (Azagarsamy et al., 2009).

In another study, enzyme responsive facially amphiphilic dendritic systems consisting of (i) a
polyglycerol dendrimer core, (ii) a dipeptide Phe—Lys attached self-immolative enzyme responsive
para amino benzyloxy carbonyl group, and (iii) the tetrapeptide Ala—Phe—Lys—Lys, to which either
doxorubicin and methotrexate were attached. Size-exclusion chromatograms, after incubation with
the cathepsin B enzyme, showed the individual mass of the conjugated drugs, indicating an
effective release of the drugs after cleavage by the enzyme. The dendritic drug conjugates appeared
to be biosafe after being evaluated on human tumor cell lines MDA-MB-231 and AsPCI (Calderén
etal., 2009). In the above studies, the efficacy and safety of these enzyme responsive systems were
mostly performed using in vitro study models. However, studies on enzyme triggered release and
pharmacokinetic evaluation in animal models will add value and open the door for further
exploitation of this system, due to their ability to address difficulties in managing disease

conditions and offer more efficient ways to deliver drugs.

Advancements in synthetic chemistry, and the development of technology for analysis and
chemical characterization, have led to the design of elaborate dendritic systems that can respond
to various disease biomarkers, including reactive oxygen species (ROS), which are often elevated

in cancer cells. Using this biomarker in the pathogenesis of cancer cells, Fernandes, and Malkoch
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synthesized a family of dendrimers with internally queued disulfide bridges that selectively rupture
into a set of monomeric mercaptans in the presence of ROS. Their composition was dictated by
three dendritic regions: (i) the symmetrical trithiol of the core (C3), (ii) the interior-asymmetric
trithiols (CD2), and (iii) the periphery-asymmetric monothiols (DB2) (Fig. 14). In the dendritic
system, sulfide bridges were specifically selected as they can undergo selective redox cleavage in
a single step, and are involved in biological functions, such as the thioredoxin or glutaredoxin
redox systems. To prove their concept of disassembly, the synthesized multi-stimuli responsive
amphiphilic layered dendrimers-were evaluated in human lung carcinoma A549 cells to establish
the effect of the ROS. Analysis by MALDI-TOF-MS showed that the mass fragmented dendrimers
building blocks were isolated after incubation, and that there was a significant increase of ROS
inside the cancer cells exposed to the dendrimers (Andrén et al., 2017). These dendrimer scaffolds

can be considered as next generation precision polymers in the field of nanomedicines.
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Fig 14. Synthetic strategy of rupturing amphiphilic dendrimers from (Andrén et al., 2017) and with

permission from American Chemical Society.
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Table 2 Stimuli-responsive self-assembling dendrimers for drug delivery.

Dendrimer | Stimuli | Drug/model molecule | Main findings | Reference
Amphiphilic layered dendrimers
Poly (propyleneimine) (PPI) | pH Rose Bengal e Box-like dendrimer stearic entrapment of hydrophobic guest (Jansen, Meijer and
dendrimers with 64 amino molecule witnessed. de Brabander-van
ends protected with t- o t-butoxycarbonyl (t- BOC)-protected phenylalanine attached den Berg, 1995)
butoxycarbonyl (t BOC)- den_drimers formed sterically closed shell, while acid hydrolysis of
protected phenylalanine ?grmiecear::?dgroups regenerated open-shell form after exposure to
grpups to afford a dendrimer o Sterically mediated release mechanism provided unique method
with a “sterically closed” shell for stimuli responsive and controlled drug delivery.
Hyperbranched poly(ethylene | pH Congo red o Higher capacities for polar dyes and drugs to be encapsulated and (Xu, Krdmer and
imine) cores and different extracted from dendrimer observed. Haag, 2006)
shells which contain aliphatic ¢ pH labile shells were cleaved in 5-6 pH environments.
chains and poly(ethylene
glycol) chains
Amphiphilic layered Salts (Sodium Pyrene e Dendrimers formed unimolecular micelles and sequestered (Cho and Allcock,
dendrimers (DAB-PN) with chloride) hydrophobic pyrene molecules within nonpolar interiors. 2007)
hydrophobic diaminobutane o Increase in pyrene solubility was observed as generations of DAB-
poly(propyleneimine) core PN increased. o o
and with hydrophilic . Catlonlzatlo_n of eth_yleneoxy n_10|et|es by Na+ ions |_ncreased' )

charge density causing expansion of ethyleneoxy coils, resulting in
polyphosphazene outer release of entrapped cargo.
segments e Enhanced solubility and stimuli-dependent controlled release of

hydrophobic molecules observed.
Janus dendrimers
Polyester dendrimer pH DOX ¢ Hydrolysis of acetal function at acidic pH resulted in release of (Gillies and Fréchet,
functionalized with acetal entrapped DOX. 2005)
shells (JDs) o Hydrolysis at acidic pH caused disruption of the micelles and

larger aggregates due to rearrangement.

o Localization of DOX in intracellular organelles achieved.
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Janus dendrimers prepared by | Light [ultra DOX DOX loaded micelle with average size of 59 to 70 nm and loading | (Sun et al., 2012)
coupling of G3 violet light (UV) capacity of 8.3 to 15.6 wt% formed.
PAMAM dendron containing | and near infra- Wolff rearrangement of hydrophobic DNQ ends to hydrophilic 3-
diazonaphthoguinone (DNQ) red light (NIR)] indenc_a_rbm_(ylic acic_j due to NIR and UV light resulted in
destabilization of micellar structure and faster drug release.
end groups and PAMAM o .
dendron decorated with Faste_r DO_X release was observed after |r(ad|at|on of micelles for
30 min with an 808 nm laser or 365 nm high pressure mercury
lactose groups. lamp.
On-demand spatiotemporal delivery achieved for anticancer drug.
Janus dendrimers consisting pH DOX Ultra-small micelles with average size of 10 nm with narrow PDI (Wei et al., 2015)
of G2 hydrophilic PAMAM and DOX loading up to 42% formulated.
dendron and two hydrophobic High drug loading was attributed to large void spaces within inner
C18 alkyl chains bridged cores of the micellar structure.
together via click chemistry. pH dependent DOX release observed.
MPEG-b-PAMAM-DOX pH 10-hydroxycamptothecin Janus amphiphilic dendrimers with mPEG and PAMAM dendritic | (Zhang et al., 2013)
Amphiphilic Janus dendrimer (HCPT) and DOX polymer attached to DOX through pH liable hydrazone linkages
consisting of synthesized. -
methoxypoly(ethylene glycol) zglgfészr:rk])(ljysg) Iggrréendmnano-aggregates with size range of
(MPEG)-b poly(amidoamine) Encapsulation of HCPT was 19.2 to 21.6% and of DOX was 22.0
(PAMAM)-DOX prodrug t0 41.2%.
Degradation of hydrazone linkage occurred within acidic rage (pH
4.5 10 5.5), releasing both drugs concurrently.
Co-delivery systems with pH responsive controlled release and
enhanced anticancer activity drug delivery system was reported.
Janus type amphiphilic linear | pH Docetaxel (DTX) pH faster release of DTX loaded micelles in acidic (Qiao et al., 2013)
dendritic block copolymer, microenvironment was observed.
semi polyamidoamine-b !n vivo studied in Sprague-Dawley (SD) rats model showed
poly(d, I-lactic acid) (PALA) mcrease_d AUC and prolonged clearance of DTX compared to
conventional DTX
Polyester dendrimers UV light Nile red and polyester dendrimers self-assembled to form dendrimersomes (Nazemi and Gillies,
Fluorescein UV light triggered release of both hydrophilic and hydrophobic 2014)
payloads from the system.
PAMAM-co oligo(ethylene Temperature Methotrexate Unimolecular and multimolecular aggregates with particle sizes of | (Guo et al., 2014)

glycol) (PAG)

8 and 200 nm were achieved.
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PAG exhibited only 10% release after 8 h at 370C, while at 480C
faster release of 55% 1h observed.

Amphiphilic peptide Enzyme DOX DOX conjugated mPEGylated dendron with (Lietal, 2014)
dendrimer (Papain) glycylphenylalanylleucylglycine tetra-peptide (GFLG) as enzyme

sensitive linker was synthesized.

mPEGylated-GFLG-DOX dendritic conjugate self-assembled into

nanoparticles with average size of 80 nm.

Incubation with papain triggered 50% release of DOX after 6h.

System showed effective killing of cancer cells in vitro when

compared to conventional DOX.

No significant side effects to normal organs that amphiphilic

dendrimer was exposed to.
Facially amphiphilic dendrimers
Facially amphiphilic biaryl Enzyme Pyrene Dendrimer-based amphiphilic assemblies with 100 nm size that (Azagarsamy,
dendrimers with hexyl ester as | [porcine liver could noncovalently sequester hydrophobic guest molecules were Sokkalingam and
hydrophobic moiety and esterase (PLE)] formulated. S ) ) Thayumanavan,
pentaethylene glycol as Hydrolysis of ester moieties in hydrophobic part in presence of 2000)
hydrophilic group. PLE lead to destabilization and subsequent cargo release.
Amphiphilic pentaethylene Enzyme 1,1’-dioctadecyl-3,3,3°3°- PLE enzyme triggered the release of the lipophilic fluorophore (Raghupathi,
glycol unit and coumarin (PLE) tetramethylindo from the dendritic backbone. Azagarsamy and
derivative based dendrimer carbocyanine perchlorate Thayumanavan,

2011)
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2.3.3. Low molecular weight dendritic amphiphiles in drug delivery
Low molecular weight dendritic amphiphiles are receiving considerable attention due to their

simple structure and ease of self-assembly into well-defined and persistent micellar aggregates
(Thota, Urner and Haag, 2016). The structure of these dendritic amphiphiles lie in between
classical surfactants and amphiphilic polymers and consist of a hydrophilic multifunctional
dendritic head group and a hydrophobic hydrocarbon tail. There unique traits make them better
building blocks for micellar systems than linear amphiphilic polymers. Table 3 Summarizes the

applications of these low molecular weight dendritic amphiphiles as drug delivery systems.

These dendritic amphiphiles have been used as solubility enhancers (Richter et al., 2010; Dhiraj
R. Sikwal et al., 2017), as micellar carriers (Trappmann et al., 2010), as non-viral gene delivery
vectors (Malhotra et al., 2012), stearic stabilizers for colloidal drug delivery systems (D.R. Sikwal
et al., 2017) and photo responsive delivery vehicles (Kordel, Popeney and Haag, 2011). Since the
discovery of dendrimers, these architectures have been successfully employed as non-viral gene
delivery vehicles, with polycationic dendritic structures, such as dendritic polylysine and
polyglycerol amines, having demonstrated their potential in this field. However, despite
preliminary successful attempts, these structures have not been used widely due their toxicity
profiles. This problem can be addressed by using dendritic amphiphiles, which self-assemble to
form pseudodendrimer like structures, and are capable of condensing genetic materials and
delivering them into the cells. Malhotra and coworkers reported the application of these dendritic
amphiphiles in siRNA delivery (Malhotra et al., 2012). The hydrophilic segment of the dendritic
amphiphiles were G1 and G2 glycine functionalized oligoglycerol with 1, 2, 4 and 8 amino groups
and a C18 hydrophabic tail (Fig. 15).
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Fig. 15. Structure of dendritic amphiphiles for siRNA delivery obtained from (Malhotra et al.,

2012) with permission from American Chemical Society.

The dendritic head group was grown divergently on azide focal point and then condensed to the
hydrophobic chain by click chemistry. Thereafter, N-boc glycine was condensed to the hydroxyl
terminal by using  4-(dimethylamino)pyridine  and  l-ethyl-3-[3-(dimethylamino)
propyl]carbodiimide hydrochloride (EDCI), and ionized with the help of trifluro acetic acid (TFA)
(Scheme. 2).
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Scheme. 2. Synthesis of G2 octamine dendritic amphiphile redrawn from (Malhotra et al., 2012)

with permission from American Chemical Society.
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Physicochemical characterization of all these dendritic amphiphiles by determination of the CMC
showed that all four amphiphiles aggregated in a low concentration range of 10 to 60 uM (Fig.
16). CMC values increased from G1 monoamine to G1 tetraamine due to an increase in positive
charge that induced more repulsion in the head group of the amphiphiles. All these amphiphiles
aggregated in the micelles, with the size range of 7 to 9 nm and a zeta potential values of 40-58
mV. The cationic glycine functional end groups complexed with the DNA and acted as an efficient
gene delivery vehicle. Furthermore, the complexation ability of these amphiphiles with DNA was
due to the combined effect of the hydrophobic alkyl chain and hydrophilic glycine molecules. This
complexation results in the self-assembly of amphiphiles-DNA polyplexes of average size range
of 69 to 306 nm. Cytotoxicity and siRNA transfection results confirmed the application of these
dendritic amphiphiles as efficient vectors for sSiRNA transfection and cytotoxicity (Malhotra et al.,
2012).
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Fig. 16. Determination of CMC of glycine amphiphiles in 0.5 uM DPH (aqueous HEPES saline
(pH 7.2, 9.4 mM NaCl) obtained from (Malhotra et al., 2012) with permission from American

Chemical Society
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Sikwal et al. also reported the synthesis of dendritic amphiphiles based glycerol monostearate
(GMS-G2-0OH, GMS-G3-0H) and glycerol monooleate derivatives (GMOA-G2-OH, GMOA-G3-
OH). These amphiphiles were studied for their applications as both solubility enhancer and stearic
stabilizers for nanoparticles (D.R. Sikwal et al., 2017). Biocompatible polyester dendritic
amphiphiles were prepared using the OH terminated G2 and G3 Bis-MPA dendrons dendritic head
group, and stearic acid or oleic acid as the hydrophobic tail. The synthesis of these dendritic
amphiphiles involved simple protection and deprotection steps, where the hydrophilic dendrons
were grown divergently with acetonide protected Bis-MPA on a focal point of glycerol
monostearate or monooleate. Deprotection of the acetonide group was carried out by using acidic

Dowex® H+ resin to produce a focal point for the next generation.

Cytotoxicity studies against MCF 7, Hep G2 and A549 human carcinoma cells using MTT assay
indicated a biocompatibility (70% cell viability) for all derivatives and further studies showed that
the amphiphiles had HLB values that were greater than 15. This confirmed that the synthesized
dendritic amphiphiles could be good solubilizers, as shown by the higher solubilization of the
hydrophobic fusidic acid when compared to water and Pluronic F-68. Aggregation behavior
showed the formation of ultra-small micelles, with an average size range of 6.48-12.38 nm and
narrow polydispersity indices. The reason for higher solubilization was attributed to the spatial
arrangement of these dendritic amphiphiles, and chain kink confirmation of unsaturated bond in
oleic acid. In-vitro antibacterial activity proved that the GMOA-G2-OH micellar carrier also
enhanced the antibacterial potency of fusidic acid.

To prove the stearic stabilizing property of these dendritic amphiphiles, solid lipid nanoparticles
(SLNs) were formulated using Compritol 888 ATO as solid lipids, and amphiphiles as surfactants.
The results from the formulation studies proved that dendritic amphiphiles were capable of
providing sufficient stability to the SLNs, as confirmed by an optimum particle size in the range
of 133 to 291 nm, narrow polydispersity index values (0.296 to 0.485) and higher zeta potential
values (-22.33 to -34.10). Overall results of this study indicated that these dendritic amphiphiles
could be promising excipients for pharmaceutical application (Dhiraj R. Sikwal et al., 2017).
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Table 3. Summary of low molecular weight dendritic amphiphiles based drug delivery systems.

Purpose Structural components of Payload Important finding Reference
dendritic amphiphile
Micellar delivery Non-ionic lower molecular weight | Nile red Dendritic head group influenced supramolecular self-assembly and aggregation | (Trappmannetal.,
dendritic amphiphiles with | Pyrene number while biaryl spacer influenced transport capacity 2010)
hydrophilic  polyglycerol dendrons G1 amphiphile formed ring-like or worm-like micelles, G2 and G3 amphiphiles
(G1-G3) and hydrophobic C11 or C16 formed spherical micelles with average size of 8 nm.
alkyl chains joined together by mono High entrapment of hydrophobic molecules was attributed to and 74% of empty
or biaryl spacer space in the micelles composed of 15 amphiphilic molecules.
Lower critical micellar concentration (CMC) was recorded.
Solubilizing agents Glycerol (G2) based amphiphiles with | Sagopilone All amphiphiles formed ultra-small micellar structures with size range 7 to 10 nm | (Trappmann et
different hydrophobic moieties (C18 and polydispersity index of 0.04 t00.2.
chain, C18 chain with naphthyl and All amphiphilic structure did not show any cytotoxicity up to concentration of al., 2010)
biaryl end groups) with single or 0.01g/ml after 24 h.
double aromatic linkers. The amphiphiles showed 2 to 3 -fold higher solubilization of sagopilone and greater
stabilization of micellar structures than Cremophor® ELP and polysorbate-80.
G2 amphiphile with diaromatic spacer and C18 chain showed highest solubilization
capacity.
Gene delivery Oligoglycerol based dendritic SiRNA/NDA Amphiphiles formed micellar aggregates in size range of 7-9 nm and zeta potential | (Malhotra et al.,
amphiphiles with glycine terminals as of 40-58 mV.
hydrophilic part and stearic acid as Amphiphiles were efficient vectors for siRNA transfection and cytotoxicity. 2012)
hydrophobic chain. First time in vitro sSiRNA transfection was achieved using dendritic amphiphiles.
Pharmaceutical Polyester dendritic amphiphiles with | Fusidic acid Biocompatible amphiphilic dendrimers with low CMC values that self-assembled | (Dhiraj R.
excipients G2 and G3 Bis-MPA based dendritic | VVancomycin into ultra-small micellar aggregates. .
head group and stearic acid and oleic Micellization of fusidic acid through these amphiphiles enhanced solubility of Sikwal et al.,
acid as hydrophobic tail. fusidic acid. 2017)
Amphiphiles also acted as good stearic stabilizers for solid lipid nanoparticles
(SLNs) formulations.
Photoresponsive Photoswichable non-ionic dendritic | Nile Red All dendritic amphiphiles formed spherical micelles with size range of 7.2-10.2 nm. | (K&rdel,
delivery amphiphiles with G2, G3 glycerol Amphiphiles undergo trans-cis photoisomerization under UV/Visible leading to
based dendrons and C11, C16 tail disassembly of micelles. Popeney  and
connected together with CMC of these amphiphiles changed effectively under influence of light, rendering | Haag, 2011)

dibenzodiazepine connector.

structures photoresponsive.
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2.4 CONCLUSION AND FUTURE PERSPECTIVE
The studies in this chapter demonstrated promising preliminary results for amphiphilic

dendrimers as drug delivery carriers. With advancements in synthetic chemistry, tailor made
amphiphilic dendrimers, which can self-assemble into different structures such as vesicles,
dendrimersomes and onion-like structures, are possible. Moreover, these formed structures can
mimic biological architectures, and the different moieties that respond to various disease
biomarkers can be incorporated into the nano systems for efficient and targeted drug delivery
and biomedical applications. However, the field is in its infancy, and there is still a long way
to go before any product becomes commercially available in the market for medical
applications. Almost 30 years after the introduction of PAMAM dendrimers, no product has
been introduced in the market. Further investigations that involve an in vivo evaluation of their
performance, biosafety, long-term stability, and that explore their cost-effective and large-scale
production, are required. Industry-academia collaborations hold the key to achieving a scale of
synthesis that will provide economies of scale in production, as well as the preclinical and
clinical trials to make these materials viable for market. While SR amphiphilic dendrimers are
promising candidates, there is a need to explore and design dual or multi-stimuli
responsiveness, such as a combination of pH and enzyme, or pH and temperature, as these
studies will advance the field. Most of the studies undertaken for pH-responsive have been in
oncology, while there is dearth of literature on other diseases, such as diabetes and bacterial
infections, in this regard, stimuli-responsive systems from amphiphilic dendrimers could
advance the field. It is also important to address the obstacles that emerge from technological,
experimental and personnel limitations/errors at the initial stages of developing these materials,
including stringent regulatory requirements to obtain amphiphilic dendrimers for future

medical applications.
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CHAPTER 3, EXPERIMENTAL PAPER 1
3.1 Introduction

This chapter addresses Aim 1, Objectives 1- 6 and is a first authored experimental article. This
chapter highlights the synthesis of a novel block copolymer dendrimer star polymer hybrid, the
in vitro toxicity evaluation, formulation of the ultra-small vesicles (V-3-mPEA) to deliver
vancomycin, molecular dynamics simulation of the self-assembly of a novel block copolymer
dendrimer star polymer hybrid, and characterization of its physical and antibacterial properties
both in vitro and in vivo. Research outputs from the chapter includes; published in an ISI
international journal: Journal of Controlled Release (Impact Factor = 7.877) and data from this
chapter has also been presented in two international conferences:

e Calvin A. Omolo, Rahul S. Kalhapure, Sanjeev Rambharose, Chunderika Mocktar,
Thirumala Govender, A novel six-armed PEG-b-PCL copolymer (6m-PEPEA) based
on G1-PETIM dendrimer for nano delivery of vancomycin. The AAPS Annual Meeting
and Exposition October 2, 2017, San Diego, USA. (poster presentation). (appendix IV)

e Calvin A. Omolo, Rahul S. Kalhapure, Mahantesh Jadhav, Sanjeev Rambharose,
Chunderika Mocktar, Thirumala Govender, A novel six-armed PEG-b-PCL copolymer
based on G1 PETIM dendrimer for nano delivery of vancomycin. International
Conference on Nanomedicine and Nanobiotechnology, September 25, 2017 Barcelona,
Spain (poster presentation). (appendix V)

e Calvin A. Omolo, Rahul S. Kalhapure, Mahantesh Jadhav, Sanjeev Rambharose,
Chunderika Mocktar, Thirumala Govender, A novel six-armed PEG-b-PCL copolymer
based on G1 PETIM dendrimer for nano delivery of vancomycin. College of Health
Sciences Annual Research Symposium, University of KwaZulu Natal, 05-06
October2017, Durban, South Africa. (Oral presentation).
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3.5 Abstract

The development of novel materials is essential for the efficient delivery of drugs. Therefore,
the aim of the study was to synthesize a linear polymer dendrimer hybrid star polymer (3-
mPEA) comprising of a generation one poly (ester-amine) dendrimer (G1-PEA) and a diblock
copolymer of methoxy poly (ethylene glycol)-b-poly(e-caprolactone) (mPEG-b-PCL) for
formulation of nanovesicles for efficient drug delivery. The synthesized star polymer was
characterized by FTIR, *H and *C NMR, HRMS, GPC and its biosafety was confirmed by
MTT assays. Thereafter it was evaluated as a nanovesicle forming polymer. Vancomycin
loaded nanovesicles were characterized using in vitro, molecular dynamics (MD) simulations
and in vivo techniques. MTT assays confirmed the nontoxic nature of the synthesized polymer,
the cell viability was 77.23 to 118.6 %. The nanovesicles were prepared with size,
polydispersity index and zeta potential of 52.48 + 2.6 nm, 0.103 £ 0.047, -7.3 £ 1.3 mV
respectively, with the encapsulation efficiency being 76.49 + 2.4%. MD simulations showed
spontaneous self-aggregation of the dendritic star polymer and the interaction energy between
the two monomers was -146.07 + 4.92, Van der Waals interactions playing major role for the
aggregate’s stability. Human serum albumin (HSA) binding studies with Microscale
Thermophoresis (MST) showed that the 3-mPEA did not have any binding affinity to the HSA,
which showed potential for long systemic circulation. The vancomycin (VCM) release from
the drug loaded nanovesicles was found to be slower than bare VCM, with an 65.8% release
over a period of 48 h. The in vitro antibacterial test revealed that the drug loaded nanovesicles
had 8- and 16-fold lower minimum inhibitory concentration (MIC) against methicillin sensitive
Staphylococcus aureus and methicillin-resistant S. aureus strains (MRSA) compared to free
drug. The flow cytometry study showed 3.9-fold more dead cells of MRSA in the population
when samples were treated with the drug loaded nanovesicles than the bare VCM at
concentration 0.488 pg/mL. An in vivo skin infection mice model showed a 20-fold reduction
in the MRSA load in the drug loaded nanovesicles treated groups compared to bare VCM.
These findings confirmed the potential of 3-mPEA as a promising biocompatible effective

nanocarrier for antibiotic delivery.

Keywords: Resistance; MRSA,; linear polymer dendrimer star polymer; biosafe, vancomycin;

nanovesicles; antibacterial.
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3.6 Introduction

Since the discovery of penicillin by Sir Alexander Fleming in 1928, many lives have been
saved by antibiotics[1]. However, in the last decade, the world has witnessed a dramatic
upsurge in the number of bacterial pathogens that are resistant to multiple antibacterial agents
[2, 3], coupled with the drying up of the antibiotic pipeline [4-6], with major pharmaceutical
companies leaving the antibiotic development field [2]. One of the bacteria that causes
significant health care challenges is Staphylococcus aureus (SA) and its resistant strain, known
as methicillin-resistant Staphylococcus aureus (MRSA), which is insensitive to a wide range
of antibiotics[7]. Recent findings indicate that of the 385 MRSA isolates, 36 (9.35%) are
resistant to the routinely used antibiotics [8]. The World Health Organization recognizes that
the dearth of new and novel antibiotics, particularly those with new modes of action, as well
as the need to identify innovative strategies to enhance, protect and potentiate those available
in the market to avert returning to a pre-antibiotic era [9-12].

Antimicrobial resistance is a complex and a multifaceted problem. Some of the contributors to
antibiotic resistance are sub-lethal concentrations of the antibiotics at the infection site, low
patients’ compliance due to high frequency of administration and side or adverse effects; some
of which are dose dependent which leads to development of resistant strains in the population
[13]. In addition to antibiotic stewardship and discovery of new potent drugs, novel drug
delivery systems, are demonstrating the potential to solve some of the patient and dosage form
factors related to the development of resistance by extending the circulation time, targeting
infectious sites, protecting and enhancing antibacterial activity of pristine drugs with prominent
examples such as Lipoquin®, Pulmaquin® and MAT?2501, an enchocleated formulation of
amikacin [14-17].

Core-shell aggregates of linear polymers have both a hydrophobic (core) and hydrophilic
(shell) parts that self-assembles in agueous milieu to form micelles, which have the ability to
encapsulate hydrophobic drugs in the core [18, 19]. However, premature dissociation of the
self-assembled unimers during circulation in the bloodstream can cause a burst release,
resulting in high concentration of drugs in the bloodstream [20, 21]. Dendrimers as drug
delivery materials have widely been reported due to their attractive properties such as high
degree of branching, multivalency, globular architecture and well-defined molecular weight.
Their unique properties make them suitable materials for drug delivery [22]. They are being
employed as alternative to linear block polymers [23]. However, there are some concerns about

toxicity and biocompatibility of the dendritic nanostructures regarding their applications in
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drug delivery such as damage to cell membrane integrity, chromosomes and mitochondria,
oxidative stress, genotoxicity, and stimulates immune response [24].

To address the problem associated with dendrimer nanostructures and linear polymers, such as
toxicity, biocompatibility and premature disassociation, several research groups have resorted
to modifying the end groups of the dendrimers using linear polymers star results to
hyperbranched polymers with dendrimer cores. This strategy embodies some positive traits
from both dendrimers and the attached linear polymers for efficient drug delivery [25, 26].
Moreover, the ability to functionalize their end groups, fine-tunes dendrimers for targeted
delivery, long circulation [27], biodegradability [28], and covalent attachment of the drugs for
sustained release [29]. Most reports for this strategy have been for the delivery of anti-cancer
drugs [30, 31], there is a dearth of literature on the evaluation of hybrids of linear polymer
shells with dendrimer cores as carriers for enhancing antibiotic delivery despite their numerous
advantages. There is therefore a need to develop and employ this strategy for antibacterial
delivery as this could offer biosafe and effective drug delivery system for antibiotics.
Typically, linear polymer-dendrimer hybrids (LPDH) self-assemble to become core-shell
aggregates, such as classical micelles [32] and unimolecular micelles [33] However, there is
limited literature on vesicular self-assembly, and most of the reported vesicles have shown to
be large in size with a poor polydispersity index (PI) [34-36]. Hence, there is a need for a
synthesis of novel LPDHs that assemble into ultra-small nanovesicles with lower P1 to advance
the field by offering reproducible and predictable biodistribution and activity, and have wider
applications, such as drug delivery, diagnostics and imaging.

The experimental, characterization and information for vesicles from polymers, such as their
size, geometric structure, polydispersity is well understood [37]. However, there is a need to
understand the self-assembly process and molecular dynamics (MD) simulations are being
employed to explain self-assembly process of the polymers [38]. Thus, providing a detailed
molecular insight at atomic level on how self-assembly occurs and the forces that play
important roles for the stability of the formation of the structures are of paramount importance
in drug delivery.

In this study, we therefore propose the use of generation one poly ester amine dendrimer (PEA)
and methoxypoly(ethylene glycol)-b-poly(e-caprolactone) (mPEG-b-PCL) linear block
polymer to synthesize a novel LPDHs with ability to self-assemble into nanovesicles. PEA
dendrimers have shown to have better characteristics, such as bio-compatibility, nontoxicity,
biodegradability, a higher drug loading and drug encapsulation[39, 40], flexibility and

sustained release properties than other dendritic polymer counterparts[41-43]. mPEG-b-PCL
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linear has proven to have biocompatibility, non-toxicity and biodegradable excellent solvating
properties [44], we envisage the resulting LPDHs to be efficient and safe biomaterial for drug
delivery.

There are several reports on antimicrobial drug delivery using PEGylated PAMAM dendrimers
to form LPDHSs [45, 46]. This highlights the feasibility and importance of using this strategy to
deliver antimicrobials. The aim of this study was therefore to explore the potential of delivering
antimicrobials via nanovesicles formulated from the modification of generation one PEA
dendrimer with mPEG-b-PCL block polymer to yield a 3-arm star polymer (3-mPEA) with a
dendrimer core and block copolymer shell. Most of dendrimer modification with the linear
polymers has been through PEGIlyation, however, we envisaged that the use of mPEG-b-PCL
block polymer will offer a better drug delivery system as the hydrophobic PCL portion attached
to the dendrimer core will offer stability, mechanical strength of the vesicle membrane and
improved loading capacity while the mPEG shell will offer long circulation. This paper is the
first report of a LPDHs from PEA dendrimer with mPEG-b-PCL block copolymer for delivery
of any class of drug. The synthesis, in vitro, MD simulations and in vivo findings through end
groups functionalization of PEA dendrimer with a linear block polymer mPEG-b-PCL, and

formulation of VCM encapsulated nanovesicles are reported in this paper.
3.7 Materials, instrumentation and methods

3.7.1 Materials

Acetylchloride (AcCl), tert-butyl acrylate, 3-amino-1-propanol, p-dimethylaminopyridine
(DMAP), N,N'-Dicyclohexylcarbodiimide (DCC), 1,3,5-benzenetricarbonyl trichloride
(Trimesoyl chloride), stannous octoate (Sn(Oct).), tertiary butyl acrylate, e-caprolactone,
tetrahydrofuran (THF), toluene, monomethoxy polyethylene glycol (mPEG) (MW 5,000),
phosphatidyl choline, Human serum albumin (HSA) and silica gel were procured from Sigma-
Aldrich (USA).Vancomycin (VCM) was obtained from Sinobright Import and Export Co., Ltd.
(China), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was bought
from Merck Chemicals (Germany). Nutrient Broth, Mueller-Hinton Broth (MHB) and Mueller-
Hinton Agar (MHA) were acquired from Biolab (South Africa). Propidium iodide and Syto9
dyes cell viability kits were purchased from Thermofisher (USA). Monolith protein labelling
kit RED-NHS, MST buffer supplement with 0.05 % Tween 20, Monolith NT.115 Standard
Treated Capillaries were supplied by NanoTemper Technologies (Germany). The bacterial
cultures used were Staphylococcus aureus ATCC 25923 and methicillin-resistant S. aureus
(MRSA) (S. aureus Rosenbach ATCC BAA 1683).
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3.7.2. Instrumentation

Fourier-transform infrared spectroscopy (FT-IR) spectra of all the compounds were recorded
on a Bruker Alpha-p spectrometer with a diamond ATR (Germany). Proton and Carbon nuclear
magnetic resonance (*H NMR and 3C NMR) measurements were performed on a Bruker 400
and 600 Ultra shield™ (United Kingdom) NMR spectrometer. High Resolution Mass
Spectrometry (HRMS) was performed on a Waters Micromass LCT Premier TOF-MS (United
Kingdom). The matrix-assisted laser desorption ionization time-of-flight mass spectrometry
(MALDI TOF) mass analysis was performed on a Bruker SmartBeam Autoflex Il (Bruker
Daltonics, Bremen, Germany). Gel permeation chromatography (GPC) was performed on a
THF solvent system consisting of a Waters 1515 isocratic high-performance liquid
chromatography (HPLC) pump, a Waters 717 plus auto-sampler, Waters 600E system
controller (run by Breeze Version 3.30 SPA) with a Waters refractive index detector and mass
was relative to a linear polystyrene calibration standard. Optical density (OD) was measured
using a spectrophotometer (spectrostarnano, Germany)

3.7.3 Methods

3.7.3.1 Synthesis and characterization of the hybrid dendrimer
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Scheme 1. a). methanol, stirring at room temperature 12 h, b). toluene, DMAP, 110 °C reflux, 6 h c).
AcCl, H,0, DCM, room temperature, 8 h, d). Sn(Oct), toluene, 110 °C reflux6é h, e). DCC,DMAP,
DMF room temperature, 5 days.

3.7.3.1.1 Synthesis of di-tert-butyl 3,3'-((3-hydroxypropyl)azanediyl)dipropionate
(compound I, Scheme 1a)

Compound | was synthesized following a reported procedure[40]. In brief, a solution of 3-
Aminopropanol (1 g; 13.4 mmol) was dissolved in methanol (40 ml) then added slowly to
tertiary butyl acrylate (14.0 g; 106.4 mmol), the mixture was left stirring overnight at 25 °C.
Excess tertiary butyl acrylate and methanol were evaporated, and the product was dissolved in
DCM and washed with brine solution. The organic layer was collected and dried over
anhydrous sodium sulfate then concentrated to collect the product (7.4 g; yield 95%). FT-
IR:3432,2933, 1722, 1151 cm™. 'H NMR (400 MHz, CDCl3): § 1.37 (s, 18H),1.62 — 1.64(m,
2H),2.33 — 2.36(t, 2H), 2.56 — 2.57 (t, 4H), 2.58 — 2.69 (t, 4H), 3.67 — 3.68 (t, 2H).3C NMR
(400 MHz, CDCls): 6 28.06, 30.89, 33.09, 49.28, 52.91, 62.90, 80.71,171.61; HRMS (ES-
TOF): [M + H] " calculated for C17H33NOs: 331.24, found 331.24 (Appendix VI and VII).
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3.7.3.1.2 Synthesis of tris(3-(bis(3-(tert-butoxy)-3-oxopropyl)amino)propyl) benzene-
1,3,5-tricarboxylate (compound 11, scheme 1b)

Compound Il was synthesized following the reported procedure [40]. In summary, compound
| (6 g; 18 mmol) and DMAP (6.6 g; 54 mmol) were dissolved in toluene (100 ml) and refluxed
for 4 h and then cooled to room temperature. To the above reaction mixture, Trimesoyl chloride
(1.2 g; 4.6 mmol) was added and refluxing continued for further 8 h. After reaction completion,
toluene was removed by rotavap vacuum evaporation and the purification was done via column
chromatography (hexane: ethyl acetate, 6 : 4) to obtain a yellowish thick oil ((4.4 g; yield 60%)
compound 2 [47]. FT-IR: 2927, 2856, 1722, 1453, 1147cm™. 'H NMR (400 MHz, CDCls): &
1.42 (s, 54), 1.95 (s, 6H), 2.37 (s, 12H), 2.58 (s, 6H), 2.75 (s, 12H), 4.4 (m, 6H), 8.82 (s, 3H).
13C NMR (400 MHz, CDCls): § 28.08, 33.47, 49.34, 50.14, 63.98, 80.41, 131.42, 134.42,
164.95, 171.80; HRMS (ES-TOF): [M + H] * calculated for CeoHgoN3O1s: 1149.69, found
1149.63 (Appendix VI and VII).

3.7.3.1.3 Synthesis of 3,3',3",3"",3""",3""""-((((benzene-1,3,5-tricarbonyl) tris (oxy)) tris
(propane-3,1-diyl))tris(azanetriyl)) hexapropionic acid (compound I11 scheme 1c)

To a solution of compound Il (2.12 g; 1.84 mmol) in DCM (60 ml), acetyl chloride ( 7.26 g;
92 mmol) and water (1.46 mL; 82 mmol) were reacted at ambient temperature, as reported in
the literature [47]. The resulting reaction mass was stirred at 25 °C for 8 h and upon completion
of the reaction solvents were then evaporated, and impurities from the product washed off with
a mixture of DCM and hexane to obtain an off white foamy sticky compound 111 (G1-PEA)
(1.12 g; yield 75%). FT-IR:2958, 2610, 1710, 1403, 1334, 1178cm™. 'H NMR (400 MHz,
D20): 8 2.25-2.23 (m, 6H), 2.84 —2.87 (t, 12), 3.37 — 3.47 (m, 18H), 4.43 — 4.46 (t, 6H), 8.65
(s, 3). *C NMR (400 MHz, D20): & 28.08, 33.47, 49.34, 50.14, 63.98, 80.41, 131.42, 134.42,
164.95, 171.80; HRMS (ES-TOF): [M + H] " calculated for C3sHs1N30O1s: 814.32, found 814.33
(Appendix VI and VII).

3.7.3.1.4 Synthesis of methoxy poly (ethylene glycol)-b-poly(e-caprolactone) (MPEG-b-
PCL) (compound IV, scheme 1d)

Diblock mPEG-b-PCL copolymer (compound 1V) was synthesized following a reported ring-
opening polymerization procedure of e-caprolactone using mPEG as a macroinitiator and
Stannous Octoate (Sn(Oct)>) as a catalyst[48]. mPEG (5 g; 1 mmol) (Average molecular weight
:5000Da) was dissolved in anhydrous toluene (100 ml) and azeotropically distilled for 6 h to
remove any traces of water. To the above reaction mass, e-caprolactone (5.7 g; 50 mmol) and
of Sn(Oct)2 (0.04 g; 0.1mmol) were injected, after which the reaction mass was refluxed under

nitrogen for 12h. The cooled reaction mass was added to excess cold diethyl ether to obtain a
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white precipitate, which was filtered off. The filtration residue was washed several times with
diethyl ether and then cold methanol and was kept for drying under vacuum for 48 h and a
white solid was obtained with the yield of 85%.

The samples were detected on a Bruker SmartBeam Autoflex 111 (Bruker Daltonics, Bremen,
Germany) MALDI TOF system. The samples were prepared in DCM (5mg/ml) spotted on a
ground steel target with a-cyano-hydroxycinnamic acid (CHCA) matrix (1:1 ratio). The laser
was set at 85%, with a detector voltage of 1850 V and sample digitizer rate of 2.00 GS/s in a
mass range of 4000-8000 m/z. FT-IR :2942, 2868, 1723, 1347-1365, 1100cm™. *H NMR (400
MHz, D;0): § 1.25 (m), 1.52 — 1.55(m), 2.19(t), 3.53 (s), 3.95(t). 3C NMR (400 MHz, D,0):
5 24.57,25.52,28.34, 34.11, 64.13, 70.56, 173.51(Appendix VI).
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Figure 2. Mass peaks distribution as determined by MALDI TOF
Degree of polymerization was calculated using HNMR integration of the caprolactone

repeating units against ethylene glycol repeating units[49] by the formula below
ax

PCL % = ﬁ X 100%
mx my

Where ax is sum of caprolactone (CL) integrals, mx number of protons of repeating monomer
unit of CL, ay sum of ethylene glycol (EG) integrals and my number of protons of repeating

monomer unit of EG
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3.7.3.1.5 Synthesis of G1 poly ester amine dendrimer core with 3 arm mPEG-b-PCL shell
(3-mPEA) (compound V, Scheme 1e)

The telo-dendrimer (Compound V) was synthesized, as per a reported procedure [50]. In brief,
compound 111 (0.2 g; 0.25mmol) was added to a mixture of mMPEG-b-PCL copolymer (9.7 g; 4
mmol), DMAP (0.06 g; 2 mmol) and DCC (0.115 g; 2.2 mmol) were dissolved in DMF (10
ml), and the reaction mixture stirred at room temperature for five days. After completion of
the reaction, the reaction mixture was filtered to remove dicyclohexylurea and the filtrate was
diluted with water then loaded into a dialysis bag with a pore size of 14 to 18kDa. The reaction
mass loaded bag was subsequently put in a receiver compartment filled with 20% methanolic
water and dialyzed for 96 h. The receiver compartment phase was changed periodically to
maintain the high concentration gradient in the donor compartment. After dialysis, the final
pure product of PEA dendrimer core with 3 surface carboxylic groups have been attached with
a linear block polymer mPEG-b-PCL (3-mPEA) compound V was isolated by freeze-drying
the bag component (1.83 g; yield 40%). GPC was performed on a THF solvent system
consisting of a Waters 1515 isocratic HPLC pump, a Waters 717 plus auto-sampler, Waters
600E system controller (run by Breeze Version 3.30 SPA) with a Waters refractive index
detector, and mass was relative to a linear polystyrene calibration standard. FT-IR :2927, 2856,
1725, 1453,1105cm™. *H NMR (600 MHz, CDCls): 8 1.31 — 1.32 (m), 1.58 (m), 1.84 (s,), 2.23
— 2.24 (m), 3.4 — 3.42 (m), 3.98 — 3.99(m), 4.1 — 4.15(m), 8.12 (s). 3C NMR (600 MHz,
CDCls): & 24.56, 25.52, 28.34, 34.11, 55.74, 59.01, 63.43 — 64.12, 69.11, 106.54, 173.51 —
173.72.8. GPC mass calculated for Cgs7H16233N30376: 18335.80, average molecular weight
found 19115, Polydispersity:1.42 (Appendix VI and VII).

3.8.3.2 In vitro cytotoxicity

The in vitro cell viability of the synthesized material was assessed using a previously reported
MTT assay method [51, 52] on human breast adenocarcinoma (MCF 7), adenocarcinomic
alveolar basal epithelial cells (A 549), liver hepatocellular carcinoma (HepG 2) cell-lines and
human embryonic kidney cells 293 (HEK 293). Each of the four cell lines containing 2.5 x 103
cells were seeded into 96-well plates and incubated for 24 h with different dilutions of 3-mPEA
(20, 40, 60, 80 and 100 pg/mL). Wells with culture medium only and culture medium
containing cells were considered as the negative and positive controls respectively. After 48 h
of incubation, the culture medium and test materials were discarded and replaced with 100 uL.
of fresh culture medium and 100 pL of MTT solution (5 mg/mL in PBS) in each well. Cell
viability was evaluated by measuring the mitochondrial-dependent conversion of the
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3.8.3.2 In vitro cytotoxicity
The in vitro cell viability of the synthesized material was assessed using a previously reported

MTT assay method [51, 52] on human breast adenocarcinoma (MCF 7), adenocarcinomic
alveolar basal epithelial cells (A 549), liver hepatocellular carcinoma (HepG 2) cell-lines and
human embryonic kidney cells 293 (HEK 293). Each of the four cell lines containing 2.5 x 103
cells were seeded into 96-well plates and incubated for 24 h with different dilutions of 3-mPEA
(20, 40, 60, 80 and 100 pg/mL). Wells with culture medium only and culture medium
containing cells were considered as the negative and positive controls respectively. After 48 h
of incubation, the culture medium and test materials were discarded and replaced with 100 uL.
of fresh culture medium and 100 pL of MTT solution (5 mg/mL in PBS) in each well. Cell
viability was evaluated by measuring the mitochondrial-dependent conversion of the

tetrazolium salt MTT to formazan crystals. After 4 h of incubation with MTT, the media was
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removed from the wells, and solubilization of formazan was achieved by adding 100 puL of
dimethyl sulfoxide. The optical density (proportional to the number of live cells) was assessed
with a microplate spectrophotometer (spectrostar nano, Germany) at an absorbance wavelength
of 540 nm. The percentage cell viability was calculated as follows;

A540 nm treated cells
A540 nm untreated cells

% Cell viability = ( )X 100%

3.8.4 Formulating VCM loaded 3-mPEA nanovesicles

The nanovesicles were prepared using a solvent evaporation method [53]. A solution of 10, 30,
40 and 50 mg of 3-mPEA each dissolved in 5 mL organic solvent (THF) was added drop-wise
to 20 mL of the aqueous solution containing 10 mg of VCM under stirring (400 rpm). The
resulting emulsions was left to stir overnight at room temperature to ensure the complete
evaporation of the organic solvent. The non-drug loaded nanovesicles were prepared using the

same procedure.

3.8.5 Characterisation of the nanoparticles
3.8.5.1 Size, Polydispersity Index (PI), Zeta Potential (ZP) and morphology.

The size, PI, and ZP of 3-mPEA nanovesicles were determined using dynamic light scattering
technique on a Zetasizer Nano ZS90 (Malvern Instruments Ltd., UK), with all measurements
being performed in triplicate. The Morphology was examined using transmission electron
microscopy on a Jeol, JEM-1010 (Japan) transmission electron microscopy (TEM) with uranyl
acetate (UA) negative staining [54]. The nanovesicles were diluted appropriately then mounted
onto the surface of a copper grid, and the excess sample was removed by blotting off with filter
paper, then dried at ambient temperature and stained using 2% uranyl acetate (UA) solution

before measurement. The images were captured at an accelerating voltage of 100 kV.
3.8.5.2 Entrapment efficiency (% EE) and drug loading capacity (LC).

The EE and DL of V-3-mPEA were determined by an ultrafiltration method. Briefly, 2 mL of
nanovesicles containing 500 pg/mL, 1.5 mg/mL, 2 mg/mL, 2.5mg/mL of 3-mPEA loaded with
500 pg/mL of VCM were placed in Amicon® Ultra-4 centrifugal filter tubes (Millipore Corp.,
USA) of 10 kDa pore size and centrifuged at 3000 rpm at 25 °C for 30 min. The filtrate was
collected and the unentrapped VCM in the filtrate was quantified using a high-pressure liquid
chromatography (HPLC) (Shimadzu, Japan) method, with UV detection at a wavelength of 280
nm [55]. The mobile phase consisted of a mixture of water with 0.1 % TFA and acetonitrile
(85/15 viv), which was pumped through a Nucleosil 100-5 C18 column (150 mm X 4.6 mm
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internal diameter) at a flow rate of 1 mL/min, with an injection volume of 100 pL. The EE (%)

and DL (%) were calculated using the following equations:

UEE = (Weight of VCM in nanoparticleS) X 100%
R Weight of VCM added 0
Weight of VCM in nanoparticles
%LC = ( , , )X 100%
Total weight of nanoparticles

3.8.5.3 Differential scanning calorimetry (DSC)

The VCM, 3-mPEA, physical mixture (drug and the polymer) and lyophilized formulation
thermal profiles were determined by DSC (Shimadzu DSC-60, Japan). Briefly, samples (2 mg)
were placed in an aluminum pan and sealed, which was then heated to 300 °C at a constant rate
of 10 °C/min under a constant nitrogen flow of 20 mL/min using an empty pan as a reference
[52].

3.8.5.4 All-atom MD simulations of 3-mPEA self-assembly

3.8.5.4 .1 Methods

3-mPEA dendritic star polymer structure containing 3 arms of the block polymer comprising
of 2 and 4 repeating monomer units of caprolactone and mPEG was constructed using
ChemDraw[56]. The 3-mPEA dendritic star polymer was equilibrated for 2 ns before
performing the self-assembly simulation. GROMACS insert-molecules tool was used for
random insertion of 8 molecules of 3-mPEA and the polymers were solvated using TIP3P water
model [57] and CHARMM General Force Field (CGenFF) [58]. The system containing a total
of 29494 water molecules and 8 moles of 3-mPEA was first energy minimized using the
steepest descent [59] method and self-assembly simulation was then performed using isobaric-
isothermic ensemble (NPT) for 80 nanoseconds (ns). The velocity-rescale thermostat was used
for temperature coupling and the Parrinello-Rahman method was used for pressure coupling
[60]. The simulation was performed at 298.15 K temperature and 1 atm pressure using the
coupling time of 0.1 ps and 2.0 ps, respectively. The Particle Mesh Ewald (PME) method [61]
was used for long-range electrostatic interactions and VdW and short-range coulombic
interactions were calculated using 10A cut-off. MD simulations were performed using
GROMACS 5.1.2 [62].

3.8.5.4.2 Data Analysis

Numbers of aggregates and the Com of Mass (COM) distances between two monomers were

calculated using the g_aggregate tool [63] and in-house Tcl script respectively. The interaction
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and binding energies between two monomers were computed using the g_mmpbsa tool [64],
which employs the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA)
method and has been in the previous studies to calculated interaction and binding energies [65,

66]. The binding energy of two monomer complex in water environment was expressed as:

AGbinding: AGcomplex(dimer) - (AGmonomerl + AGmonomerz)

Where AGceomplex is total energy of dimer complex and AGmonomer 1, AGmonomer2 are total energy
of both monomers individually. The energy of AGmonomer1, ahd AGmonomer2 Were estimated

using:
AGmonomert = AEmonomeriumy + AGmonomeri(sotvation)
AGmonomerz = AEmonomer2cum) + AGmonomer2(sotvation)
Where AEmm is potential energy in the vacuum and estimated using:

AEMM = AEbonded + AEnonbonded

AEyym = AEponea + (AEyaqw + AEgec)
The AGsonation IS Solvation free energy and estimated using:
AC"Solvation = AGpolar + AGnopolar

AGpolar Was calculated using the Poisson-Boltzmann (PB) equation and AGnonpolar Was

estimated using:

AGnonpotar = YSASA + b

Where SASA is the solvent accessible surface area, A radius of the probe boundary while y

is a coefficient related to the surface tension of the solvent and b is a fitting parameter
Y = 0.0226778 ki/Mol/A?and b = 3.84928 kJ/Mol

For binding energy calculation frames were extracted bewteen 25 ns to 32 ns at interval of 500

ps. A bootstrap analysis was performed to calculate the standard error
3.8.6 Determination of the binding affinity of 3-mPEA nanovesicles on human serum

albumin (HSA).
3.8.6.1 Microscale thermophoresis (MST) binding affinity studies.
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The binding between 3-mPEA and HSA was measured using microscale thermophoresis
(MST) on Monolith NT.115 (Germany) [67]. Human serum albumen (HSA) was labelled using
the Monolith protein labelling kit RED-NHS according to the manufacturer’s instructions. The
labelled HSA was adjusted to 80 nM using an MST buffer supplemented with 0.05 % Tween
20. A 16-step serial dilution of 20 pL solutions containing 25 UM of mPEG 5000 (positive
control), Phosphatidyl choline (negative control) and 3-mPEA with MST buffer was
performed, with 10 pL of the labelled HSA being added to each of the dilutions to form a ligand
protein complex containing 40 nM HSA and ligand concentrations ranging from 12.5 pM to
0.00038147 pM. The ligand HSA complex was incubated for 15 min, then loaded into
Monolith NT.115 Standard Treated Capillaries and the binding affinity measured on an MST
instrument. Data of three independently pipetted measurements were analysed (MO-Affinity
Analysis software version 2.1.3, NanoTemper Technologies). The strength of binding was
evaluated by the dissociation constant Kq calculated by the equation:
_ ([AIX[T])
“7 [AT]
where [A] is the concentration of free fluorescent molecules, [T] is the concentration of titrant

and [AT] is the concentration of complex formed by [A] and [T]. The smaller the Kqy the
stronger the binding force.

3.8.6.2 HSA protein adsorption studies

Human serum albumin adsorption studies were performed following a literature reported
protocol [68, 69]. Nanoparticles were incubated in a solution of 400 pg/ mL of HSA and stirred
vigorously with a magnetic stirrer for 2 h at 37 °C. The nanoparticles were then centrifuged
(14000 rpm, 4 °C for 20 min) to remove any unabsorbed proteins, after which the samples were

diluted, and size and the surface charge was analysed by the Zeta Sizer.
3.8.7 In vitro drug release

Drug release of VCM was performed using the diffusion dialysis bag method, as per previously
reported procedures [70, 71]. Dialysis bags (pore size: 8000-14,400 Da) were loaded with 2
mL of the drug loaded nanovesicles and non-drug loaded vesicles then placed in a 40 mL
receiver compartment of PBS (pH 7.4) at 37 °C. This was then placed in shaking incubator
(100 rpm) and at specific time intervals 3 mL of samples were drawn from the receiver solution
and an equal amount of fresh PBS was replaced to keep a constant volume. Determination of

the amount of the drug released was performed as per section 2.5.2 via a reported HPLC method
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[55]. The experiments were performed in triplicate, with the release fraction of VCM from V-

3-mPEA nanovesicles being calculated using the following equation:

Mt
Cumulative release % = (—) X 100%
Moo

Where Mt is the amount of VCM released from the V-3-mPEA nanovesicles at time t, and Moo
the amount of VCM pre-loaded in V-3-mPEA nanovesicles.

In addition, 60% cumulative in vitro drug release data was modeled and analyzed with
DDSolver to determine the mechanism of release of VCM from the nanovesicles[51, 72, 73].
Zero order, first order, Higuchi, Weibull, Hixson-Crowell, and Korsmeyer—Peppas models
were analyzed. Model with highest correlation coefficient (R%) and lowest root mean square
error (RMSE) was considered to be the best fit model. The ‘n’ exponent obtained after
modeling the release data using the Korsmeyer-Peppas model and mean dissolution time
(MDT) were parameters applied to deduce the kinetics and mechanism of drug release of the
drug from the nanovesicles[74].

3.8.8 Stability studies

Short term stability studies of the V-3-mPEA nanovesicles were evaluated for 90 days at 4 °C

and at room temperature by assessing, particle size, Pl, and ZP parameters.

3.8.9 Antibacterial activity

3.8.9.1 Determination of the MIC
An in vitro antibacterial study was conducted using the broth microdilution method against SA

and MRSA [75]. Both the bacterial cultures were grown in Mueller-Hinton Broth, with (MHB)
appropriate dilutions being made to achieve 5 x 10° colony forming units per mL (CFU/mL)
[76] of bacteria. V-3-mPEA nanovesicles and bare VCM were serially diluted in MHB broth
and then incubated with bacterial cultures containing 5 x 10° colony forming units per mL
(CFU/mL) for 18 h in a shaking incubator at 37 °C and 100 rpm. 10 pL of the serial dilutions
were spotted on Mueller—Hinton Agar (MHA) plates and incubated for a further 18 h. The
minimum concentration at which no visible bacterial growth was observed was considered as
the MIC.

3.8.9.2 Bacterial membrane disruption

Suspensions of MRSA 1.5 X 108 CFU/mL in phosphate saline buffer (PBS) were incubated
with VV-3-mPEA containing 250 pg/mL of VCM in a 50:50 ratio for 4 h in an Eppendorf tube.
The mixture of nanovesicles was diluted appropriately and mounted onto the surface of a
copper grid. The excess sample was removed by blotting off with filter paper and was then

dried at ambient temperature before measurement. The images were examined using High
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Resolution Transmission Electron Microscope (brightfield, darkfield, STEM diffraction) -
JEOL HRTEM 2100 [77].

3.8.9.3 Reduction of MRSA biofilm by V-3-mPEA

Inhibition of MRSA biofilms by V-3-mPEA was determined by fluorescence microscopy [78].
Microscope cover slips were placed at the bottom of 6 well plates. Then 2 mL of MRSA 1.5 X
108 CFU/mL suspensions in MHB were added to the wells and incubated for 3 days at 37 °C
to form a fully mature biofilm. Prior to treatment, the media was sucked out of the wells with
a Pasteur pipette and the wells were washed 3 times to remove non-adhered bacteria. 1 mL of
bare VCM solution and nanovesicles formulation containing 125 pg/mL of VCM were added
to the wells and incubated for 12 hours at 37 °C. The wells were then washed with Phosphate
Buffer pH 7.4 to remove the treatments and non-adhered MRSA cells. While still in the wells
the coverslips were stained with solution of Syto9 and propidium iodide (PI) containing 30 pL
in 1 mL of distilled water for 30 mins in darkness. The wells were washed again to remove
excess dye, then inverted on a microscope glass slide and the coverslips were carefully glued
on the edges on the glass slides. The inhibition of biofilm formation by V-3-mPEA was viewed
on a Fluorescence microscope (Nikon Eclipse 80i FM Japan). Syto9 and P1 were sequentially
excited at 488 nm and 543 nm, respectively, and their fluorescence emissions were collected
between 500 and 600 nm for Syto9 and between 640 and 750 nm for Pl. Microscopic

observations were performed at least three times
in independent experiment.

3.8.9.4 Flow cytometry bacterial cell viability
Viable MRSA cells in the population after treatment with VCM and V-3-mPEA for 18 h was

determined using flowcytometry method [79]. 15 pL containing 5 x 10° colony forming units
(CFU)/mL of the bacterial suspension was added to a 96 well plate each containing 135 pL of
bare VCM (positive control), and V-3-mPEA at the MIC concentration (15.65 pg/mL and 0.988
ug/mL respectively), which was further incubated at 37 °C in a shaking incubator (100 rpm).
50 uL of each VCM and V-3-mPEA mixture were added to the flow cytometry tubes each
containing 350 pL of the sheath fluid and vortexed for 5 min. The mixture was incubated for
30 min with 5 uL of non-cell wall permeant propidium iodide (PI) and Syto9 cell permeant
dye. PI fluorescence was excited by a 455-nm laser and collected through a 636 nm bandpass
filter (red wavelength), while Syto9 excitation laser was at 485 nm laser and collected through

a 498 nm band pass filter (green wave length). Untreated pure MRSA cells were used as a
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negative control. The BD FACSCANTO Il (Becton Dickinson, CA, USA) equipment was used
for flow cytometry. Instrumentation settings included sheath fluid flow rate of 16 mL/min, a
sample flow rate of 0.1 mL/min. Data with fixed cells were collected using a flow cytometer
software (BD FACSDIVA V8.0.1 software [USA]). The voltage settings used for fluorescence-
activated cell sorting (FACS) analysis were: 731 (forward scatter [FSC]), 538 (side scatter
[SSC]), 451 (Syto9) and 444 for PI. The bacteria were initially gated using forward scatter, and
cells of the appropriate size were then gated and at least 10,000 cells collected for each sample
in triplicate, and their position as ‘live’ and ‘dead’ determined. To avoid any background
signals from particles smaller than the bacteria, the detection threshold was set at 1,000 in SSC
analyses [80].

3.8.9.5 Bacterial killing kinetics

An overnight culture of MRSA in MHB was diluted with phosphate buffer to a concentration
of 5 x 10° CFU/mI. VM and VM loaded 3-mPEA were added at concentrations equivalent to
5x MIC. Sterile water was added in the bacterial broth with the test samples to serve as a
negative control. Bacterial cell viability was monitored up to 24 h. Samples were removed at
specific intervals, serially diluted in PBS, and plated in triplicate on MHA plates. After -
incubation of the plates for 24 h at 37°C, the CFU were counted and converted to logio values
and plotted in a graph [81].

3.8.9.6 In vivo antibacterial activity

A BALB/c mouse skin infection model was used for in vivo antibacterial activity following a
study protocol approved by the University of KwaZulu-Natal’s Animal Research Ethics
Committee (Approval number: AREC/104/015PD) [82, 83]. Humane care and use of the
animals were in accordance with the guidelines of the AREC of UKZN and South African
National Standard SANS 10386:2008. 18 — 20 g male BALB/c mice were obtained from the
Biomedical Research Unit, University of KwaZulu-Natal. Mice back hairs were shaved
carefully without bruising the skin then disinfected with 70% ethanol. After 24 h, 50 pL of
MRSA saline (1.5 x 108 CFU/mL) suspension was injected intradermally and the mice (n = 4)
were divided into three treatment groups (positive control, negative control and V-3-mPEA
groups). 30 minutes post infection with MRSA, 50 uL of the different (V-3-mPEA formulation,
free VCM and saline) treatments was administered to all the groups at the same site of infection.
The mice were kept under observation for 48 h under the following conditions; a normal 12 h
light and dark, temperature 19-23 °C, relative humidity 55 + 10% and adequate ventilation.
After 48 h the mice were euthanized with halothane and the infected area of the skin was
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collected and homogenized in PBS of pH 7.4 (5 mL). Tissue homogenates were serially diluted
in pH 7.4 phosphate buffer then 20 pL were spotted on MHA plates, which were incubated at
37 °C for 24 h and the number of colonies forming units (CFU) were counted. The CFU/mL
was calculated using the equation:

number of colonies x dilution factor
CFU/mL =

volume of culture plate

The infected skins were also collected and processed as per reported procudure [51] for further
histological investigations. The Processed skin sections were collected on slides and stained
with hematoxylin and eosin (H&E). Examinations and image capturing of the slide was
performed on a Leica Microscope DM 500, fitted with a Leica ICC50 HD camera (Leica
Biosystems, Germany).

3.8.10 Statistical analysis

One-way analysis of variance (ANOVA), followed by Bonferroni's multiple comparison test,
was used for the statistical analysis. Individual groups were compared to each other using a
paired t-test, with p values of <0.05 being considered statistically significant, and the values
are represented as mean * SD.

3.9.0 Results and discussion

3.9.1 Synthesis and characterization

The surface end groups modified dendrimer was synthesized in four steps (supplementary
materials). The first step involved bis-aza-Michael addition reaction, as depicted in scheme
1a, to synthesize a dendron (compound 1), after which the 1% generation dendrimer (compound
I1) was synthesized by coupling the dendron with the 1,3,5-benzenetricarbonyl chloride as a
central aromatic core using DMAP as a catalyst. The tertiary butyl ester protecting groups on
compound Il were hydrolyzed to give a poly (ester-amine) dendrimer with an aromatic core
(compound 111). mPEG-b-PCL (compound 1V) was synthesized, as illustrated in scheme 1d via
ring-opening polymerization chemistry [48]. The degree of polymerization of the block
polymer was calculated by integrating the mPEG peaks at 3.53 ppm against the 1.52 — 2.199
poly caprolactone repeating units peak in the *H NMR spectrum [84] and the degree of
polymerization was found to be 21.1% which was correlating with the mass analysis by
MALDI TOF (supplementary material).

The dendrimer was further coupled to the diblock copolymer to afford the final compound V
(3-mPEA). In the final Steglich esterification reaction, only 3 among the six carboxylic acid

groups of the dendrimer were esterified or occupied with the mPEG-PCL. This limited
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esterification was confirmed by observed practical mass by GPC analysis, with an average
molecular weight 19115 Da and polydispersity index of 1.42. The partial esterification may be
due to the high molecular weight of mPEG-b-PCL that caused stearic hindrance [85], and more
intra molecular hydrogen bonding in the dendrimer (carboxylic aid group) could have restricted
the esterification reaction [86].

The diblock copolymer mPEG-b-PCL was chosen to functionalize the dendrimer as it has been
shown to be safe with excellent solvating properties [44, 87]. Apart from being efficient nano
materials, dendrimers are associated with toxicities that hinder their biomedical applications
[43, 88]. However, the litreature shows that PEA dendrimers are safe, biodegrable [89, 90],
flexible, and provide sustained release properties when compared to other dendritic polymer
counterparts [41-43]. This makes them a good candidate for drug delivery. Thus a hydbrid of
mMPEG-b-PCL and PEA dendrimers would result in a material with inherent good properties

from the parent blocks.

3.9.2 In vitro cytotoxicity

The in vitro cell viability of 3-mPEA was assessed by quantifying the viable mammalian cells
after exposure of the synthesized material. Four cell lines MCF 7, A549, Hep G2 and HEK 293
were employed to determine the bio-safety of 3-mPEA in an in vitro cell culture system. The
results showed that cell viability ranging from 77.23 to 118.6 % across all the concentrations
in all cell lines that were tested. The percentage cell viability range obtained for the individual
cell lines ranged from 77.41 to 83.57%, 77.29 to 82.68 %, 78.29 to 87.01 % and 87.3 to 118.6
% for MF7, A549, Hep G2 and HEK 293 respectively (Figure 2) with no dose-dependent
toxicity within the concentrations of the polymer studied. This percentage viability displayed
by 3-mPEA was above the requirements for biocompatibility and toxicity regulatory
requirements for synthesized biomaterial [91-93]. Therefore, results from these findings shows
3-mPEA to be safe and nontoxic for biomedical applications.

84



=
=
(=]

-
n
=]

EE A 549
E=1 MCF 7
BE3 Hep G2
I HEK 293

% Cell viability
@ @ 3
b 2 2

'
o

n
o

Control 20 40 60 8
Concentration of 3-mPEA (pug/ml)

0

Figure 2. Cytotoxicity evaluation of various concentrations of 3-mPEA against on A 549, MCF
7 Hep G2 and HEK 293 cells

3.9.3 Preparation and characterisation of 3-mPEA nanovesicles

Self-assembled 3-mPEA nanovesicles were formulated by a solvent evaporation method.
Solutions containing different concentrations of 3-mPEA in THF were added dropwise to the
aqueous VCM solution under continuous stirring to optimize the concentrations of dendritic
star polymer that will have the highest entrapment, size and P1 (Table 1). As the organic solvent
evaporated, the 3-mPEA molecules formed stable self-assembled nanovesicles while
entrapping the VCM (Figure 3). The amphiphiles self-assembly might have been due to non-
covalent interactions, such as hydrogen bond formation, m— interactions, van der Waals
interactions, electrostatic interactions, and the hydrophobic effects that lead to enhanced
thermodynamic and kinetic stability of the vesicles [42, 94, 95].

There was no significant (P> 0.5) difference in the resulting sizes across all the concentrations.
Although, there was an increase in PI with increasing concentration of the polymer however
the increase was not significant (P> 0.5) (Table 1). It was observed that by increasing the
polymer concentration above the ratio 3:1 the EE started to decrease. The polymer: drug ratio
of 3:1 (w/w) was found to be the optimal concentration giving highest VCM encapsulation
with nanovesicles of size, Pl and, ZP of 52.48+2.6 nm, 0.103 +0.047 and, -7.3£1.3 mV

respectively.
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Table 1. Different ratio of drug polymer with their respective EE (n =3).

Polymer: drug Size Pl EE

1:1 54.07+£0.291 0.199+0.014 35.97+55%
3:1 5248+ 2.6 0.103+0.047 76.49+2.4%
5:1 53.89+257 0.165+0.028 60.74+5.2%
8:1 59.12+ 0.54 0.23+0.002 55.37+0.8%

The results were comparable to other nanovesicles from Janus dendrimers by Luis M. Bimbo
and coworkers, who reported size ranges of 56-249 nm [96]. Percentage EE and LC for vesicles
formed using 3:1 polymer to drug ratio were found to be 76.49 + 2.4% and 19.1 + 0.95 % “/w
respectively. These results are better than other drug delivery systems from poly (e-
caprolactone) and poly (ethylene oxide) based vesicles where EE and LC were in the range of
45.510 69.33 % and 12 to 16 % respectively for clavulanic acid and methotrexate [87, 97, 98]..
TEM images showed thin walled ring-shaped spherical structures (Figure 41), with the
population being discrete and in sizes that were comparable to the ones determined by DLS.
The drug loaded vesicles were found to be physically stable in terms of size, Pl and ZP both at

room temperature and 4 °C for a period of 90 days.
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Figure 3. Schematic of drug encapsulation into nanovesicles.

3.9.3.2 Differential scanning calorimetry (DSC)

To determine the melting and crystallization behavior of VCM, 2m-PEA, lyophilized V-3-
mMPEA and the physical mixture, DSC studies were performed (Figure 4111). There was a broad
endothermic peak at 105.93 °C for the bare VCM that presented the thermal decomposition of

86



the glycopeptide antibiotic, while for 3-mPEA , the peak was observed at 55.44 °C (Figure
4111 A) [99]. The physical mixture showed the respective thermal peaks of VCM and 3-mPEA
at temperature near to their individual peaks with a slight upward shift, while the thermogram
of the lyophilized VV-3-mPEA vesicles did not display any thermal peaks for neither VCM nor
3-mPEA. This disappearance suggested that VCM was encapsulated by vesicles in the non-

crystalline form [100].
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Figure 4. 1) TEM of V-3-mPEA nanovesicles; 1) size distribution of nanovesicles
determined by DLS. 1l1) thermogram of (A) 3-mPEA; (B) VCM; (C) physical mixture of
VCM and 3-mPEA and (D) freeze dried V-3-mPEA

3.9.4 All-atom MD simulations of 3-mPEA self-assembly.

All-atom MD simulation was employed to understand the self-assembly of 3-mPEA star
polymer. At time zero monomers were randomly apart, however a dimer was formed at time
~6.02 and ~10.14 ns respectively from aggregation of each of two molecules of the star polymer
(Figure 5E). At times ~12.31, ~14.9 and ~51.93 aggregation of 3, 4 and 5 moles of the star
polymer aggregated to form trimers, tetramers and pentamer respectively (Figure 5A and B).
At time ~71.85 ns there was a rearrangement to form two tetramers for the short period of time
and at ~79.11 ns all molecules aggregated to form an octamer (Figure: 5D and E). The

arrangement included the hydrophilic portions (mMPEG) of the linear block polymer facing on
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the either side of the aggregates and in contact with water molecules, while the hydrophobic

segment sandwiched in the middle (Figure: 5C and D). This aggregation could have been the

possible arrangement that resulted in formation of the vesicle. Literature shows this

arrangement is typical intermediate arrangement prior to the formation of a vesicle [35, 38,

101]. The general structure of 3-mPEA dendritic star polymer is a solvent-(philic-phobic-

philic) (PHP) type sequence that contains hydrophobic connection between two hydrophilic

ends that restricts the chain stretching in solvent-phobic core. The PHP structures have shown

the ability to form complex structures such as vesicles, toroidal micelles, “Y” junctions,

cylindrical micelles and disk-like membranes [102-104].These structures have been

successfully employed in drug delivery. Overall, results of this study supported the fact that 3-

mMPEA could self-assemble to stable aggregates.
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of octamer; G) shows the dimer in licorice representation, with monomers in blue, and red
colours; H) shows the time evolution of distance between two monomers; I) shows the time

evolution of interaction energy and its components

To understand the spontaneous interaction between 3-mPEA molecules, the type of
interactions (VdW or electrostatics) that played a key role in their aggregation, binding energy
and time evolution of COM distance we focused on one of the dimer (Figure 4G). It was
observed that two monomers aggregated at ~8.32 ns and remained stably bound until the end
of the simulation. Average interaction energy between both the monomers from ~8.32 ns to 80
ns was -159.58 kJ/mol (Figure 41, green line) and decomposition of interaction energy in its
components revealed that VdW interaction plays a curical role in the interaction between
polymers. The average VAW and electrostatics interaction energies between polymers from
~8.32 to 80 ns were -145.85 kJ/mol and -13.74 kJ/mol respectively. Binding energy (Table
2) was calculated between the monomers from 25 ns to 32 ns when they were closest to each
other. Binding energy components showed that polar solvation energy was highly unfavorable,
however, favorable VAW energy, nonpolar energy, and electrostatic energies lead to the overall

highly favorable binding energy.

Table 2. Average Binding Energy and its components obtained from the MM-PBSA

Calculation for 3-mPEA dimer.

Contribution Energy (kJ/mol)
AEvdw -241.49+ 7.18
AEelec -26.78 + 2.58
AGpolar 160.04 + 8.49
AGnonpolar -37.82 + 0.83
AGotal -146.07 + 4.92

3.9.5 Human serum protein binding affinity.

To determine the binding affinity of 3-mPEA, mPEG 5000 polymer (positive control) and
phosphatidyl choline (negative control) to HSA was performed using a Microscale
Thermophoresis (MST) study. MST studies employ the motion of molecules due to changes
in microscale temperature gradients [105]. The laser is usually focused onto the sample, which
allows a temperature rise that induces thermophoresis of the molecules, which allows the MST
signal to detect the binding by quantifying the change in the normalized fluorescence. The
change in concentration between the initial and steady states is measured and can be plotted
against the concentration of the added binding partner. From these data, the equilibrium
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dissociation constant (Kg) is obtained [105-108]. In the study, a constant concentration HSA
was labelled with NT-647 dye then incubated with increasing concentrations of the test samples
(3-mPEA, mPEG 5000 and PC). Thermophoresis was then induced and detected due to a
created temperature gradient (2—6 °C) by an infrared (IR) laser. The binding study on the mPEG
5000 did not display any binding affinity, which was similar to other results obtained using a
different method [109]. However, binding studies for PC showed binding affinity to the HSA
with a Kq of 39.997 + 0.1157 uM (Fig 4B). The 3-mPEA did not display any affinity to the
HSA (Figure 6) [107] and there was no strong interaction of 3-mPEA with HSA to conclude
any binding, and the data could not generate the dissociation constant.

The MST results were further confirmed by a zeta sizer study, where the nanovesicles were
incubated with HSA, and its impact on the size, PDI and ZP were investigated [69]. There was
no significant impact (P>0.05) of HSA on the nanovesicles before and after incubation (Table
3). This could be attributed to the 3-mPEA nanovesicles shell being composed of mPEG 5000,
which is considered not to bind with HAS [110], which could suggest long circulating and offer
stealth abilities to the nanovesicles [111, 112]. These studies indicated that the 3-mPEA
nanovesicles could be utilized to formulate a long circulating drug delivery system.
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C) the change in the normalized fluorescence of 3-mPEA and mPEG 5000 respectively
showing response to low to conclude binding.

Table 3. The effect of HSA on 3-mPEA nanovesicles after incubation.

Sample Size PDI ZP

Before test 56.53+ 2.822 0.190 + 0.008 -805+16

After test 54.25+1.73 0.228 + 0.038 -6.23+1.71
n=3

3.9.6 In vitro drug release

In vitro drug release pattern of the bare drug and the nanovesicles formulation are represented
in Figure 7. Release pattern after 1, 4 and 8 hours bare VCM had cumulative release of 10.63%,
42.2 % and 99.19% when compared to V-3-mPEA which was, 1.9 %, 22.2%, and 37.8%
respectively After 24 and 48 hours cumulative drug release from the vesicles was 58.5 and 65.8
% respectively. The initial faster release could have been governed by diffusion, while later
slower release phase after 8 hours might have been due to polymer erosion. The VCM release
from the V-3-mPEA nanovesicles showed a slower drug release profile from the formulation
when compared to the bare drug. This slower release of the drug from the V-3-mPEA

nanovesicles could be beneficial as it could prolong exposure of bacteria to the lethal dose of
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the drug and sustained antibacterial activity also could improve patients’ compliance which
could translate to reduced frequency of administration.

The release kinetics of VCM from the 3-mPEA nanovesicles was performed using different
models (Table 4). Weibull model having shown a correlation coefficient of 0.9947 and mean
square error of 2.14 was considered as the best fitting model for the release of VCM from
nanovesicles. Korsmeyer-Peppas drug release n’ exponent was 0.494 (Table 4), this indicated
that non-Fickian diffusion was the responsible mechanism for the release of the drug from the
nanovesicles. Basing on the n’ exponent value more than one mechanism might have been
involved [113, 114] in the release of the drug from the nanovesicles. Apart from diffusion,
erosion and degradation might have played a role, as the 3-mPEA dendritic star polymer arms
were coined from mPEG-b-PCL, which is a biodegradable synthetic polymer [115].

The mean dissolution time (MDT90 %) for the release of VCM from the drug solution and V-
3-mPEA nanovesicles was calculated [116] and found to be 4.31 h and 11.29 h respectively
from the nanovesicles and bare VCM respectively. These values further indicated that the rate
at which the drug was released from the 3-mPEA nanovesicle was at a slower rate when
compared to bare VCM. This value indicates that the release of the drug from the nanovesicles
was sustained over an extended period of time and could translate into desired patient outcomes

and improved patient compliance.
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Figure 7. In vitro drug release profile of V-3-mPEA nanovesicles and bare VCM (n=3)
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Table 4. Release kinetics data from different models

Model R? RMSE Release exponent (n)
Zero Order 0.5864 16.00 .

First Order 0.8563 9.4 _

Higuchi 0.9193 7.07 -

Korsmeyer-Peppas 0.9194 7.63 0.494

Hixson-crowell 0.7821 11.62 -

Weibull 0.9947 2.14 -

R? =linear regression coefficient, RMISE = Root mean square error

3..97 Antibacterial activity
3.9.7.1 Determination of the MIC

The broth dilution method was employed to determine the MIC values of the bare VCM and
V-3-mPEA against S. aureus and MRSA. After 24 h of the study the MIC for VCM against S.
aureus and MRSA was 3.9 pg/mL and 15.65 pg/mL respectively, whereas for V-3-mPEA
nanovesicles against the same set of bacteria it was found to be 0.488 and 0.988 pg/mL
respectively (Table 5). This was a 7- and 16-fold decrease in MIC against SA and MRSA after
delivery of VCM via 3-mPEA nanovesicles (Table 3). Interestingly the activity continued up
to 120 h, while the VCM was inactive after 24 h. The thicker cell walls of the MRSA could
have been the reason for reduced activity towards MRSA than SA as more VCM molecules
are needed to saturate the increased peptidoglycan layers before reaching the target site [117].
General enhanced activity of the 3-mPEA nanovesicles when compared to the bare VCM can
be attributed to the small size of the nanovesicles, as litreature shows that smaller particles
sizes have a high surface area to volume ratio, which allows better distribution and adsorption
to the bacterial surface [118, 119]. Furthermore, the slow release of the drug concentration for
a relatively long time could also have been a contributing factor [120]. The lower MICs and
prolonged activity attributed to the VV-3-mPEA nanovesicles could result in a decrease in the
effective the dose of treatment and less frequency of administration of VCM. This could go a
long way in reducing dose-dependent nephrotoxicity [121], side effects and improved patients’
compliance associated with vancomycin therapy without compromising their therapeutic
outcomes. These findings highlight 3-mPEA star polymer as an efficient biomaterial for the
delivery of VCM against SA and MRSA infections.
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Table 5. MICs of bare VCM, blank and VCM loaded 3-mPEA, against S. aureus and MRSA

Time (hours) 24 48 72 96 120 24 48 72 96 120

S. aureus (MIC pg/mL) MRSA (MIC pg/mL)

Bare VCM 3.9 NA NA NA NA 1565 NA NA NA NA
V-3-mPEA 0488 0488 0488 0488 0488 098 098 098 098 0.98
Blank NA NA NA NA NA NA NA NA NA NA

NA = No activity. The values are expressed as mean +SD, n=3.

3.9.7.2 Bacterial membrane disruption

The effect of V-3-mPEA membrane disruption on MRSA was determined by incubating the
bacteria with V-3-mPEA for 4 hours. At initial stages of incubation, intact cocci can be seen
(Figure 8A). After 1 hour, perforations on the bacteria membrane can be witnessed (Figure
8B and C). Following 4 hours of treatment, it can be seen that bacteria had lost all the
membrane and intact vesicles can be see entering and surrounding the bacteria (Figure 8E and
F). Association of V-3-mPEA with the bacteria seems to be facilitated by the smaller sizes of
the nanovesicles to cause maximum effective damage. This result supported the MIC data
which showed effective killing of bacteria by V-3-mPEA and highlighted the plausible

mechanism of action of V-3-mPEA.

Loss of membrane

Perforations on the membrane /

Intact nanovesicles

Figure 8. HRTEM images of MRSA after incubation with V-3-mPEA. A. At initial treatment;
B. After 1 hour incubation, C. Single bacteria after 1 hour, D. Formation of pores on the
bacterial membrane after treatment, E and F. Loss of the membrane of the MRSA after 4 hours

with nanovesicles still intact.
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3.9.7.3 Inhibition of MRSA biofilm
The ability of V-3-mPEA to eradicate biofilms was investigated. A 4 day fully mature biofilm

of MRSA inhibition by V-3-mPEA and VCM was determined by fluorescence microscopy.
The biofilms were grown on the cover slips and were stained with Syto9 and propidium iodide
(P1) solution containing 30 pL in 1 mL of distilled water for 30 mins in darkness, after which
the dyes were washed off and cover slips were inverted on the glass slides (Figure 9A).
Untreated biofilms showed high intensity of Syto9 fluorescence emanating from the whole of
the cover slip. As Syto is a cell permeant dye, the high intensity is clearly due to the intact
membrane of the high number of cells on the cover slip [122, 123]. When untreated cells were
stained with the non-permeating dye PI, there was no intensity of the dye fluorescence as Pl
couldn’t penetrate alive cells with an intact cell membrane (Figure 9B). Treatment of the
biofilm with bare VCM and stained with Syto9 and PI, showed a slight decrease in the biofilm
when compared to the untreated (Figure 9C) with some PI emission fluorescence emanating
from the slide indicating some penetration of VCM in the biofilm and bacterial killing (Figure
9D). Unlike the previous treatments, when the biofilms were treated with V-3-mPEA
nanovesicles there was a greater reduction of the biofilms. This was indicated by the reduction
in the fluorescence intensity of Syto9 when compared to bare VCM treated and untreated
biofilms, indicting fewer number of cells alive on the glass slide (Figure 9E). Interestingly
there was very high intensity of Pl emission fluorescence emanating from the slides of biofilms
treated with the drug loaded nanovesicles. Despite Pl being a non-cell permeant dye [122, 123],
the high emission observed indicates that treatment with VV-3-mPEA resulted in destruction of
the biofilm and cell membrane of MRSA leading to high penetration of the PI which bound to
DNA. Higher intensity therefore confirmed high killing percentage of V-3-mPEA compared to
bare VCM that had a minimum effect on the biofilms. These results indicate that V-3-mPEA
could be employed to also eliminate biofilms which cause detrimental health effects associated
with surgical implants, chronic infections, urogenital infections, cystic fibrosis and dental

infections.
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Figure 9. Fluorescence microscopy micrographs of the untreated, VCM treated and V-3-mPEA
treated MRSA biofilms. A, and B untreated biofilm stained with Syto9 and P1 respectively, B,
C, D, E, F. VCM and V-3-mPEA treated biofilm stained with Syto9 and PI respectively (scale
bar = 100 pm).



3.9.7.4 Flow cytometry bacterial cell viability

The rapid cell viability of the MRSA cells was determined using a flow cytometry method [79].
MRSA bacterial cells were incubated with bare VCM and V-3-mPEA mediums for 24 hours.
The process of incubating bacteria in the presence of antibiotics induces changes in the bacteria
morphology and cells cycle, which can be measured using special dyes [124]. The PI
fluorescent dye, which is not cell wall permeating, is generally used to detect dead cells in the
population, while Syto9 a non-selective cell wall permeant dye was used for alive cells [122,
123]. Data captured from flow cytometry were analyzed using Kaluza-1.5.20 (Beckman
Coulter USA) flow cytometer software (Figure 101). Two gates were created representing
viable cells (green) and dead cells (red) in the population. VCM’s mode of action compromises
the integrity of the cell wall, which enhances the Pl permeability and uptake and leads to
intercalation with the DNA that results in a shift in PI fluorescence, this being an indication of
bacterial cell death. After treating the MRSA cells with both bare VCM and V-3-mPEA, there
was a shift in P1 fluorescence (Figure 101 B, C and D). The bare VCM (Figure 101C) and V-
3-mPEA (Figure 101 D) at concentration of 0.488 and 3.9 pg/mL respectively had 98.5 £
1.49% and 99.59 + 0.55 % dead MRSA cells in the population. However, by treating the MRSA
cells with bare VCM at the same concentration as the concentration of VCM in the drug-loaded
nanovesicles (0.488 pg/mL), there were only 25.5 + 2.6 % dead cells in the population
(P<0.0001). From these results it can be deduced that the activity of VCM encapsulated 3-
mMPEA was the same as that of bare VCM but at a 16-fold lower concentration. These results
could translate to lowering the amount of the dose required for treatment with V-3-mPEA
without compromising the therapeutic outcomes. Furthermore, such a dose reduction could
also go a long way to reducing dose-dependent vancomycin toxicity, such as nephrotoxicity
[125], these results confirming the superiority of VV-3-mPEA as a nano antibiotic.

3.9.7.5 Bacterial killing Kinetics.

Figure 1011 presents the rates of microbial killing by VCM, and VCM loaded 3-mPEA
nanovesicles when exposed to MRSA at 5 times MIC of each treatment over a 24 h incubation
period at 37°C. VM loaded 3-mPEA nanovesicles exhibited a rapid bactericidal effect, with a
3-log reduction (99.9% clearance) within 10 h in comparison to VCM which achieved its
bactericidal effect within 24 h. The kill kinetics of vancomycin is similar to reports in the
literature [81]. Noteworthy at 16 times lower concentration of VCM in the nanovesicles, they

achieved faster killing rate (10 h) when compared to the bare drug. This could translate to quick
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elimination of the bacteria in the body thus reducing the duration of treatment and the doses

required to achieve successful therapy.
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Figure 10 (I). cell counts vs PI uptake histogram where A, represents untreated MRSA (live
cells); B, C and D represents percentage of dead cells in the population after incubation with
VCM at its MIC (3.9 ug/mL) and V- 3-mPEA at its MIC (0.488 pg/mL) respectively; (1) the
killing kinetics of MRSA exposed to 5x MIC of 3-mPEA nanovesicles, VCM and sterile water
(control); (1) evaluation of MRSA burden post 48 h treatment. Data represented as
mean £ SD (n=3). **denotes significant difference for V-3-mPEA versus bare VCM.
***denotes significant difference between untreated verses bare VCM and ****denotes

significant difference between bare VCM free base and V-3-mPEA,;

3.9.7.7 In vivo antibacterial activity

As a proof of concept, the antimicrobial activity and therapeutic efficacy of V-3-mPEA
nanovesicles against MRSA infections were further assessed in a mouse skin infection model.
The CFUs, from each treatment group were recovered and converted to logio CFU/mL as
shown in Figure 10111. One-way ANOVA test showed a statistically significant (P< 0.0001)
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reduction in the bacterial load of recovered bacteria in both V-3-mPEA and bare VCM
treatment groups when compared to the untreated. The negative control (untreated), bare VCM
and V-3-mPEA nanovesicles groups had the bacterial load (logio CFU/mL) of 5.18 + 0.01
(151733.33 CFU/mL), 4.48 + 0.05 (30000 CFU/ml) and 3.16 + 0.07 (1466.7 CFU/mL)
respectively. These findings established that the bare VCM and V-3-mPEA nanovesicles
groups had a 20.5 (P=0.0002) and 103.5-fold(P<0.0001) reduction of bacterial load when
compared to untreated group. Furthermore, comparison between V-3-mPEA and bare VCM
groups showed a 5.06-fold reduction of CFUs in nanovesicles group (P = 0.0045). These
findings demonstrated V-3-mPEA nanovesicles as an effective drug delivery system for
vancomycin.

Visual observations of the skin during harvesting revealed the formation of pus at the infection
site of the untreated groups, while the treatment groups did not show pus formation (Figure 11
A and B). Miscroscopic morphological evaluations on the excised skin from the untreated,
bare VCM and V-3-mPEA nanovesicles groups on the H&E stained slides revealed that the
untreated skin samples displayed evidence of tissue inflammation and abscess formation
(Figure 11 C). Although the bare VCM treatement group (Figure 11 D) displayed less degree
of signs of swelling and abscess formation than the untreated group. However, comparatively,
the V-3-mPEA group (Figure 11 E) displayed no signs of abscess formation, with minimal
signs of tissue inflammation. Large quantities of white blood cells (WBCs) at the infection site
was observed in the untreated and bare VCM groups indicating a greater immune response due
to the high amount of isolated CFUs (Figure 10 I11). The quantity of WBCs was minimal in
the V-3-mPEA nanovesicles group (Figure 11 E). These histomorphological findings
correlated with the recovered CFU/ml (Figure 10 I11), which showed the skin samples
(untreated and VCM treated groups) with the most number bacteria triggered higher degree of
immune response that was manisfested with the highest degree of inflammation, abscess
formation and presence of white blood cells present at the infection site. Due to the lowest
number of isolated bacteria in the V-3-mPEA nanovesicles group (Figure 10 I11), minimal
signs of inflammation and no abscess formation was observed. The histomorphological studies

therefore confirm the antimicrobial advantage of the V-3-mPEA nanovesicles.
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Figure 11. Histo-morphological evaluation post 48 h treatment- A) V-3-mPEA nanovesicles
treatment, B) untreated group showing exudating pus, Light Microscopy (LM) micrographs of
the control and the treated skin samples stained with H&E; (X40) (C) Untreated (MRSA and
Saline); (D) Bare VCM; (E) V-3-mPEA nanovesicles (scale bar = 500 pum).

3.10 Conclusions

Generation one poly(ester-amine) dendrimer end groups were modified with mPEG-b-PCL
linear polymer and evaluated for sustained delivery and enhanced activity of VCM. The
hydrodynamic diameter of the nanovesicles was 52.48+2.6 nm, as measured by the DLS and
confirmed by the TEM. The nanovesicles exhibited a sustain release behavior of vancomycin
over a period of 72 h. Studies performed with the MST and HSA binding showed that V-3-
mPEA did not have any adsorption and binding affinity to the HSA, which indicated their
potential for long systemic circulation. The in vitro antibacterial activity against the susceptible
and resistance SA showed that VV-3-mPEA had 8- and 16-fold greater activity when compared
to the bare VCM. Further antibacterial studies using the flow cytometry method revealed that
nanovesicles at MIC concentrations killed 99.5% of MRSA cells. Even at an 8-fold, lower
concentrations of VCM in the nanovesicles compared to the bare VCM the nanovesicles were
effective without compromising the efficacy of VCM. This was proof that the nanovesicles
enhanced the activity of vancomycin. In vivo antibacterial test showed that V-3-mPEA had a
103 and 20-fold reduction in the MRSA load compared to the untreated and VCM treated mice
respectively. These results indicated high efficacy of V-3-mPEA when compared to the bare
drug. Findings of the study suggests promising development and translational potential of 3-
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mMPEA and V-3-mPEA for use as a drug delivery vehicle and nanoantibiotic against bacterial
infections respectively.
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CHAPTER 4, EXPERIMENTAL PAPER 2
4.1 Introduction

This chapter addresses Aim 3, Objectives 1 — 6 and is a first authored experimental article
communicated to European Journal of Pharmaceutical Sciences (Impact Factor 3.466.) an ISI
international journal (Manuscript ID EJPS-S-18-02306). This article highlights the synthesis
of a novel fatty acid quaternary lipid, the in vitro toxicity evaluation, formulation of a liposome
with On and Off pH switches (OA-QL liposome) for targeted delivery and intracellular delivery
of vancomycin, molecular dynamics simulation of the On and Off mechanism of the switches
and binding affinity of the lipid on a model bacterial membrane, and characterization of its

physical and antibacterial properties both in vitro and in vivo of the drug loaded liposome.
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4.2 Graphical abstract
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4.4Abstract

Vancomycin (VCM) loaded liposomes with Oleic acid based ‘On’ and ‘Off”” pH responsive
switches for infection site and intracellular bacteria targeting were formulated using thin layer
rehydration technic and found to have size, of 98.88+01.92 at pH 7.4. They showed surface
charge switching from negative at pH 7.4 to positive charge at acidic pH accompanied by faster
drug release at pH 6.0. Molecular dynamic studies of lipids forming the switches showed of
spontaneous opening and closing of the gates at protonated and deprotonated states. Liposomes
had 4-fold lower minimum inhibitory concentration (MIC) at pH 7.4 and 8- and 16-fold lower
MICs at pH 6.0 compared to bare VCM against both Methicillin susceptible (MSSA) and
resistant Staphylococcus aureus (MRSA) respectively. When tested for the intracellular
infection in TPH-1 macrophage and HEK?293 cells the liposome had a 1266.67- and 704.33-
fold reduction in the intracellular MRSA respectively. In vivo studies showed a 189.67 and
6.33-fold lower MRSA burden from mice treated with formulations than the untreated and bare

VCM treated groups respectively.

These studies demonstrated that the ‘On” and ‘Off” pH responsive liposomes enhanced the

activity and targeted delivery of the loaded drug.

Keywords: Oleic acid, liposomes, pH response, vancomycin, intracellular infection.
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4.5 Introduction

The success of antibiotics since the middle of the 20" century to manage infectious diseases
has been immense, however bacterial infections continue to cause significant challenges
worldwide . Since the discovery of antibiotics, resistant bacterial strains have emerged
against almost all the introduced newly antibiotics within a short period of time. > 31, This is
further compounded by the drying up of the antibiotic pipeline [ and a short half-life between
the introduction of new antibiotics and the development of resistant strains 1. There is
therefore a need for approaches to safeguard and enhance antibacterial activity of the existing
antibiotics to greatly extend the period between the introduction of antibiotics and the

development of resistance.

Since their introduction, antibiotics have been delivered via conventional dosage forms.
Limitations of conventional dosage forms, such as sub-lethal concentrations at the infection
site, lack of targeting that results in exposure to uninfected sites, elimination of the normal flora
and the inability to extend the half-life of drugs, have been well documented 91, Although
antimicrobial resistance is a multifaced problem, the limitations of conventional dosage forms
have been one of the underlining contributors to antimicrobial resistance. Recently, researchers
have focused on the development of novel strategies, such as nano based drug delivery systems,
which are showing potential in overcoming the limitations of conventional dosage forms while
protecting the current antibiotics in the market by enhancing their activity and overcoming the

resistance mechanisms of bacteria [1% 111,

Liposomes are one of the most widely used nano drug delivery systems, particularly for the
delivery of antibiotics, due to their attractive attributes, such as membrane fusogenic ability [*%
141 “intracellular delivery and lowering toxicity of antibiotics [*>*]. They are usually composed
of phospholipids, which assemble to form lipid bilayers vesicles with an aqueous core [28l,

Drugs with different lipophilicities can be encapsulated into liposomes, which i.e. lipophilic

111



drugs can be entrapped in the lipid bilayer, while hydrophilic drugs can be encapsulated in the
aqueous core. However, depending on the log P of the drug, it can partition between the lipid
and aqueous phases '°1.  Due to the versatility in the formulation of liposomes, stimuli-
responsive biomaterials can be incorporated in them for the site-specific delivery of drugs.
Liposomes have been engineered to possess distinctive properties, such as long systemic
circulation, to target specific cells and receptors, and to respond to various stimuli, such as

environmental pH and redox, and changes in temperature 2021,

pH is one of the common biomarkers for a number of diseases, such as Huntington's Disease
(221 cancer 2%, diabetes [l and bacterial infections ?%1. Nano drug delivery systems have been
devised to achieve the programmable release of drugs due to pH changes at a target disease site
with great success 2% 271 via micelles % 21 polymersomest®® 33, dendrimer based systems[
331 peptides * 1 and liposomes 136371, A survey of the literature shows that most of the reports
of pH responsive liposomes have been in the field of cancer. However, there are limited reports
regarding pH responsive liposomes to deliver antibiotics. The reported pH responsive
liposomal systems for antibiotics delivery have been for gentamycin, 8 which employed
phospholipid-cholesterol hemisuccinate as a pH responsive material, and for vancomycin,
where intramolecular protonation and deprotonation of zwitterionic lipids were responsible for
pH response, as reported by our group and other researchers 1. With the current global crisis
of antibiotic resistance, delivering antibiotics with pH responsive liposomes could prove to be
a valuable tool. There is therefore a need for more studies to evaluate pH responsive systems

for the targeted delivery of antibiotics.

Treatment of Staphylococcus aureus infections is often problematic due to the slow response
to therapy and the high frequency of infection recurrence [“°l. The intracellular persistence of
staphylococci has been recognized as the reason for chronic and recurrence infections.

Moreover, it is associated with a reduced expression of virulence factors that are important for
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acute infection, which leads to the persistent and long-term survival of pathogens within their
hosts. This intracellular reservoir is linked with treatment difficulties, such as a slow response
to antibiotic treatment, an extended duration of antimicrobial therapy and treatment failure 3.
The presence of intracellular bacteria could offer a slow response or an inability of the
antibiotics to clear this reservoir, as the bacteria might be shielded from the effects of antibiotics
that have low intracellular penetration (1. Moreover, bacteria have shown to localize the
endosomes and phagolysosomes of the cells that are acidic and making them their reservoirs
[31 which forms small colony variants in persistent infections (SCVs). Therefore, designing
systems with pH stimuli responsive and having cell wall penetration could prove to be useful

in eliminating the SCVs.

Compared to those reported in the literature so far, we herein report a liposome with a different
mechanism of pH responsiveness by inserting ‘On’ and ‘Off” switches within the bilayer
membrane. The liposomes will be incorporated with a newly designed oleic acid derived
quaternary lipid (QL) and parent Oleic acid (OA) as pH responsive components for site specific
antibiotic delivery. We envisage that the novel QL can form a supra-molecular complex with
OA in the lipid bilayer membrane of the liposome. Depending on the pH environment, the
formed complex will form an “On and Off” switch to release the drug from the liposome. Under
basic pH, the oleic acid will deprotonate and acquire a negative charge, thus forming a
supramolecular complex with the quaternary nitrogen in the novel QL molecules (Off position
of the liposome), and the negative charge will dominate, while in an acidic environment, oleic
acid will be protonated, losing its charge, which will result in a slight repulsion between the
positively charged QL and rearrangements (On position of the liposome) and the net charge of
the liposomes will be positive. Thus, surface charge switching and increased drug release will

be expected in an acidic pH, which will increase targeted drug release at the infection site,
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while the positive charge will also potentiate the binding of the liposome to the negatively

charged bacterial membrane.

To the best of our knowledge, this is the first report on delivery of antibiotics using liposomes
having a pH triggered dependent “On and Off” switches. This kind of trigger mechanism can
be of a better response and more sensitive in the acidic environment due to the noncovalent
bond between the QL lipid and OA. This paper also reports, for the first time, on the delivery
of any class of drug with the synthesized QL lipid, and the delivery of antibiotics with acid
sensitive smart switches liposomes. This work could assist in helping to solve the current global
antimicrobial crisis and SCVs, as the synthesized material will widen the pool of available
material for drug delivery. The results and succinct discussions obtained from the synthesis of
the QL lipid, in vitro, in silico and in vivo findings from the formulated liposome are herein

reported in this paper.

4.6. Materials and Methods
4.6.1 Materials

Vancomycin hydrochloride (VCM) was purchased from Sino-bright Import and Export Co.,
Ltd. (China). Phosphatidylcholine from soybean (PC) donated by Lipoid (USA). Cholesterol
(Chol), p-dimethylamino pyridine (DMAP) and oleic acid (OA) were purchased from Sigma-
Aldrich Co., Ltd. (USA). Ethanolamine and N, N'-dicyclohexylcarbodiimide (DCC) were
purchased from Merck Co. Ltd. (Germany), and tert-butyl acrylate from Alfa Aesar (Germany).
Dimethyl sulate (DMS) and 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide
(MTT) were purchased from Merck Co. Ltd. (Germany). Mueller Hinton Agar (MHA) and
Nutrient Broth were obtained from Biolab Inc. (South Africa), and Mueller-Hinton broth

(MHB) from Oxoid Ltd. (England), and the bacterial cultures S. aureus (ATCC 25922) and S.
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aureus Rosenbach (ATCC®BAA-1683TM) (MRSA) cultures were used for antibacterial

studies. All other reagents and solvents were of analytical grade.
4.6.2 Methods

4.6.2.1 Synthesis and characterization of QL
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Scheme 1: QL synthesis scheme

46.2.1.1 Synthesis of 4-(tert-butoxy)-N-(3-(tert-butoxy)-3-oxopropyl)-N-(2-

hydroxyethyl)-3-oxobutan-1-aminium (compound 3)

Solutions of tertiary-butyl acrylate2 (26.26 g; 0.205 mol) and 2-aminoethanol 1(100 mL), (6.11
g; 0.10 mol) in methanol were mixed at room temperature with stirring for 24 hours. Methanol
and excess tertiary-butyl acrylate were removed by evaporation in vacuo, and the crude product
was further purified by column chromatography (hexane and ethyl acetate 3:1) to form a thick
oil (compound 3) (yield 25.40 g; 80%). FTIR: 3487.09, 2977.13, 2933.06, 2826.27, 1722.76,
1456.78,1392.00,1366.55, 1247.77, 1151.59, 1027.13, 986.30, 950.40, 845.83, 755.11, 736.07,

591.66, 461.00, 434.60 cm.*H NMR (CDCls) & (ppm): 1.38 (s; 18H), 2.30 (t; 4H), 2.32-2.33

115



(m; 2H;), 2.53-2.54 (t; 4H), 3.51-3.52(m; 2H). 3C NMR (CDCls) § (ppm): 27.9, 35.56, 53.35,

58.96, 80.38, 171.78. ESI-TOF MS m/z: [M + H]" - calculated 318.2280 found 318.2286.

4.6.2.1.2 Synthesis of 4-(tert-butoxy)-N-(3-(tert-butoxy)-3-oxopropyl)-N-(2-

(oleoyloxy)ethyl)-3-oxobutan-1-aminium (compound 4)

Compound 4 was synthesized by reacting Oleic acid (2.34 g; 8.27 mmol) and compound 3
(2.5g; 7.88 mmol), with DCC (1.71 g; 8.27 mmol), and DMAP (0.062 g; 0.5 mmol) as catalysts
in dry DCM (30 mL) under a nitrogen atmosphere at room temperature (RT) with stirring for
24 hours. The reaction mixture was filtered to remove dicyclohexylurea then filtrate was
evaporated, and the residue was purified via column chromatography (ethyl acetate: hexane
20:80). The yield was 380 g (83%) FTIR: 2923.57,2853.60, 1727.95,
1458.10,1391.72,1367.26, 1244.84, 1154.22, 1092.26, 983.89, 951.57, 845.86, 722.44, 587.75,
457.74, cm™.2H NMR (CDCls) & (ppm): 0.808 (t; 3H), 1.195-1.229 (m; 21H), 1.37 (s; 18H),
1.536 (q; 2H), 1.93-1.967 (m; 4H), 2.218 (t; 2H), 2.631 (m; 4H), 2.71(m; 2H),4.039-4.054 (m;
4H), 5.267 (t; 2H) 3C NMR (CDCl3) & (ppm): 14.06, 22.63, 24.86, 27.13,27.16,28.05,31.86,
34.02,52.11, 62.43,80.24, 129.69-129.92, 171.70-171.65: ESI-TOF MS m/z: [M]* - calculated

581.88, found 581.4656

4.6.2.1.3 Synthesis of 4-(tert-butoxy)-N-(3-(tert-butoxy)-3-oxopropyl)-N-methyl-N-(2-

(oleoayloxy)ethyl)-3-oxobutan-1-aminium (QL lipid(compound 5))

Compound 4 (2.0 g; 3.44 mmol) was dissolved in 15 mL acetone while stirring at 0 °C,
dimethyl sulfate (0.653 mL; 6.88 mmol) was then added dropwise, and the reaction was
allowed to slowly warm to room temperature, while it continued to stir for 24 h at room
temperature. The solvent was removed by evaporation in vacuo, the crude oil was dispersed in

100 mL DCM washed with water (2 x 20 mL) and brine (25 mL) and dried over Na,SO4. The
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crude product was purified by column chromatography using a 0-25% methanol in hexane
gradient to yield QL, 1.50 g, (73%). FTIR: 2922.93, 2853.55, 1709.29, 1457.52,1392.22,
1245.30, 1148.64, 1035.47, 845.53, 722.73, 576.16, 470.76, 439.44, cm™.*H NMR (CDCls) &
(ppm): 0.866 (m; 3H), 1.25-1.283 (m; 21-), 1.44 (m; 18H), 1.546 -1.599 (m; 3H), 1.987-
2.00(m; 4H), 2.300-2.333 (t; 2H), 2.764 (m; 2H), 2.851 -2.886 (t; 2H),3.185-3.22 (t; 2H),,
3.443-3.440 (m; 4H), 3.676(m; 6H),4.520 (t; 2H), 5.325 (t; 2H) 3C NMR (CDCl3) 5 (ppm):
14.06, 22.64, 24.55, 27.16,27.93-27.96,28.71,29.09-29.73,31.87, 33.82,49.07,52.47, 57.55,
58.45, 61.76, 82.66, 129.65-129.99, 168.58, 172.79: ESI-TOF MS m/z: [M]* - calculated

596.4890, found 596.4882.

4.6.3. In vitro cytotoxicity

An MTT assay was employed to assess the biological safety of the synthesized QL, as per a
previously reported method ©* 41 on three cell lines. Adenocarcinoma human alveolar basal
epithelial cells (A549), human embryonic kidney cells 293 (HEK 293) and human liver
hepatocellular carcinoma (Hep G 2). Cell lines were grown and seeded on Dulbecco's Modified
Eagle's Medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS), (100U)
20pg/ml penicillin, and 100 pg/ml streptomycin as per previously procedure [“61 At the end of
the seeding time, cells were incubated with different concentrations of QL [+ 451, After the 48
hours incubation, the test materials laden medium was removed and replaced with fresh
DMEM media containing 5 mg/mL of MTT in each well for 4 hours, MTT was solubilized by
adding 100 pL of dimethyl sulfoxide and absorbance was recorded at 540 nm using the
microplate spectrophotometer (spectrometer nano, Germany). Results were analyzed and

presented as percentage of the control values.

4.6.4 Preparation and characterization of liposomes

4.6.4.1 Preparation of liposomes
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The liposomes were prepared by a previously reported method ™71, Briefly a mixture of
different ratios of phospholipid, cholesterol, oleic acid and quaternary lipid making up a total
weight of 100 mg, were dissolved in organic solvent (chloroform). Then the solvent was
evaporated at reduced pressure forming a film on the flask. The film was hydrated at room
temperature for 3 hours using 10 mL of pH 7.4 PBS buffer for blank liposomes and 10 mL of
(2 mg/mL) VCM in pH 7.4 PBS buffer solution for drug-loaded liposomes, after which the
formed liposomes dispersions were vortexed for seven minutes and sonicated for seven minutes

using a probe sonicator at 30% amplitude.

4.6.4.2 Characterization of liposomes

4.6.4.2.1 Particle size (PS), polydispersity index (PDI) and zeta potential (ZP) of
liposomes

The mean particle size (PS), polydispersity index (PDI) and zeta potential (ZP) of liposomes
(n=3) were determined by dynamic light scattering technique using a Zetasizer Nano Series
(Malvern Instruments Ltd., UK). Liposome dispersions (0.2 mL) were diluted with different

phosphate buffer solution (1 mL) at different pHs then measured for PS, PDI and ZP.

4.6.4.2.2 Entrapment Efficiency (%EE) and Drug Loading (DL)

To determine the percentage of VCM encapsulated in the liposomes, an ultrafiltration method,
using Amicon®Ultra-4, centrifugal filter tubes of 10 kDa molecular weight cut-off (Millipore
Corp., USA), was used . Liposomal suspension (2 mL) (n = 3) was placed into the upper
chamber of the ultrafiltration centrifugal tube and centrifuged at 3000 rpm at 25°C for 30 min.
The concentration of free VCM in the ultrafiltrate was detected by a UV spectrophotometer
method (Schimadzu UV 1800, Japan) at 280.4 nm using a regression equation of y = 0.00454
x -0.0014 and R? coefficient of 0.99997 after appropriate dilution and appropriate blanks. The
percentage entrapment efficiency and drug loading capacity were calculated using the

following equation:

118



Wop — W,
%EE = —2 2+« 100

WTD

Where Wrp is total drug in the liposomal formulation and Wrp is total free drug in the filtrate

obtained after ultrafiltration.

WE D

%DL = x 100

T

Where Wep is the weight of drug entrapped and Wr is the total amount of lipids.

4.6.4.3 Transmission Electron Microscopy (TEM)

The surface morphology of prepared liposomes was examined using transmission electron
microscopy 181, A drop of liposome dispersion (0.2 mL diluted to 1 mL) was placed on 3 mM
forman (0.5% plastic powder in amyl acetate) coated copper grid (300 mesh). The excess
aqueous solution was removed by blotting with filter paper, stained with 2% uranyl acetate (as
a negative stain) for the 90s, then left to dry and visualized using a TEM (JEOL, JEM-1010,

Japan) at an accelerating voltage of 100 kV.
4.6.4.4 Effect of storage

The effect of storage on the physical stability of the liposomes formulations was evaluated at
room temperature (RT) and at 4°C over a period of three months. Physical appearance, PS,
PDI, and ZP were monitored at zero time, and at the end of one, two and three months to assess

the physical stability of the VCM loaded liposomes.

4.6.4.5 Differential Scanning Calorimetry (DSC)
Thermal profiles of VCM, Chol, PC, OA, QL, physical mixture and lyophilized liposome were

determined via DCS on a Schimadzu-DSC-60 (Shimadzu, Corporation, Kyoto, Japan) as per

previously reported method 151,

4.6.5. MD simulations of QL with deprotonated (OAD) and protonated (OAP) oleic acid.
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MD simulations are commonly used in drug delivery to evaluate proteins drug interaction, drug
interaction with membranes, polymers interaction with drug and interactions between small
molecules under various conditions [*°l, The spontaneous binding of QL-OAD and QL-OAP
was studied using MD simulations to understand the interactions that play a crucial role in the

binding and interaction of the studied molecules.
4.6.5.1 MD simulations of QL with OAD and OAP

To understand the interactions between QL and OA at basic media (deprotonated state) and
acid media (protonated state), MD simulations were done. The structure of OAD, OAP and QL
was constructed using ChemDraw % and CHARMM General Force Field (CGenFF) 1 was
used for all three molecules. The TIP3P water model was used for water molecules in the
system 2 The molecular dynamics (MD) simulation system of OAD-QL contained one
molecule of OAD, one of QL and 6040 water molecules. The MD simulation system of OAP-
QL containing one molecule of each OAP and QL, 4106 water molecules, and one CL"ion was
added to neutralize the overall charge on the system. Both systems of OAD-QL and OAP-QL
were energy minimized using the steepest descent algorithm 31, Thereafter, two sequential
equilibration simulations were performed using canonical ensemble (NVT), followed by an
isobaric-isothermic ensemble (NPT) for 10 ps each, with further production simulations being
performed using NPT ensemble for 100 ns for the QL-OAD system and 100 ns for QL-OAP
system. The simulations were performed at room temperature using the velocity-rescale
method B4 using a temperature with 0.1 ps coupling time. Pressure coupling was achieved via
the Parrinello-Rahman method % using 2.0 ps as coupling time, with 1 atm pressure being
used as a reference pressure. The Particle Mesh Ewald (PME) method ¢! was employed for
long-range electrostatic interactions, and the short-range electrostatic and vdw interactions
were calculated using a 10 A cut-off. The Leap-frog integrator 71 was used for the Newtown’s

equation of motion, using an integration step of 2 fs.
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4.6.6 In vitro drug release

In vitro drug release from the liposomes was performed using dialysis methods 8. Briefly,
prior to adding the formulations, the dialysis tube (Membra-CEL® MD10 14x 100 CLR, USA)
was rinsed with flowing water overnight. After the pre-treatment, an aliquot of 2 mL of VCM
loaded liposomal suspension, blank liposomes and a free drug solution were added into the
dialysis bags. The tubes were then suspended in 40 mL PBS of each pH 7.4 and pH 6.0 and
incubated in a shaking incubator (100 rpm) at 37 + 0.5°C. Drug release was analyzed by
extracting 3 mL aliquots of the immersion medium at intervals of 30 min, 1, 2, 3,4,5,6,7, 8
and 24 hours. To keep the volume of the solution constant, the supernatant was replaced with
fresh PBS pre-equilibrated at 37 °C at each time point. The amount of drug released at each
time point was determined by a UV-visible spectrophotometer method (Schimadzu UV 1800,
Japan) at 280.4 nm. The regression equation and linearity (r?) were y = 0.00454 x -0.0014 and
0.9999 respectively. Drug release mechanism was determined by fitting 60% of the release

data on various drug release models using DDsolver.[44 5%-61,

4.6.7 Antibacterial Activity
4.6.7.1 In vitro Antibacterial Activity

Minimum inhibitory concentrations (MICs) for OA-QL liposomes and bare VCM was
determined using micro broth dilution method, where test samples were serially diluted against
5 x 10° colony forming units per mL (CFU/mL) 2 of MSSA and MRSA as per our previously
reported procedure 6 81 The concentration where there was no visible bacterial growth was

regarded as the MIC.

4.6.7.2 Fluorescence Assisted Cell Sorting (FACS)bacterial cell viability
Viable cells in the MRSA population after incubation with OA-QL liposomes and bare VCM
solution were determined by a previously reported fluorescence assisted cell sorting technique

[46. 4% Briefly bare VCM solution (positive control) and OA-QL liposomes at their respective
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MIC concentrations (15.65ug/mL and 1.95pg/mL respectively) were incubated with 5 x 10° of
the bacteria at 37 °C for 6 hours then analyzed following previously reported flow cytometry
assay method [“6: %%l Cells of the appropriate size were then gated, and at least 10,000 cells
collected for each sample in triplicate, with the position of the ‘live’ and ‘dead’ cells gates
determined. To avoid a background signal from particles smaller than bacteria, the detection

threshold was put to 1,000 in SSC analyses [641,
4.6.7.3 Assessment of intracellular activity OA-QL liposomes.

Experiments were performed on THP-1 a human myelomonocytic cell line displaying
macrophage like activity and HEK 293 cells. THP-1 cells were cultured as a loose suspension
in RPMI medium and were supplemented with 10% decomplemented fetal calf serum and 2
mM glutamine in an atmosphere of 95% air-5% CO. The cells of 5 x 10°cells/mL
concentration were infected by 2.5 x10° CFU/mL of fresh MRSA inoculum, then incubated for
2 h at 37°C and washed four times successively by configuration at 1,500 rpm for seven
minutes to remove any non-phagocytosed bacteria, followed by a gentle resuspension of the
THP-1 cells sediment in a prewarmed RPMI 1640 medium. The cells were thereafter incubated
in fresh medium with VCM loaded OA-QL liposomes (concentration of VCM 9.75 pg/mL),
bare VCM (39 pg/mL) and cells that were untreated as negative control for 18 h 5671 To
ensure the absence of extracellular bacteria, the culture medium that contained cells with
phagocytosed MRSA, and that had not been exposed to antibiotics after the washing procedure
described here, were incubated at 37°C for 48 hours and plated on nutrient agar plates, and no
bacterial growth was detected. 24 hours post infection and treatment, the cells were collected
by centrifugation, washed with ice-cold sterile phosphate buffered saline, and lysed with 0.1 %

triton X in distilled water (671,
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The evaluation of the intracellular activity of the OA-QL liposomes on the MRSA infected
HEK 293 was carried out through a previously described method 8. Briefly, HEK 293 cells
were seeded in 96-well plates at a density of 5 x 10* cells/mL per well for 24 h in DMEM
medium containing 10% DMEM without any antibiotics. Overnight culture of MRSA was
washed with centrifugation at a 3000 rpm at 4 °C three times, resuspended and diluted with
DMEM medium at a cell density of 102 bacteria/mL and added to the wells with the adhered
cells. After 2 h of incubation, the infected cells were washed seven times with a DMEM
medium containing 10% FBS without any antibiotic to remove the extracellular bacteria. The
last medium for washing was plated on nutrient agar plates to ensure that all the extracellular
cells had been removed and no growth was observed. Fresh media was added to the infected
cells in the wells, thereafter VCM loaded OA-QL liposomes, bare VCM at a of concentration
of 9.75 pg/mL, and 39 pg/mL with respect to VCM (5 x MIC) and the negative control
(untreated cells) were incubated for 22 h, after which the cells were lysed with 0.1 % triton X
in distilled water 5%, The lysates for both cells were then plated on nutrient agar plates at
appropriate dilutions for 24 h to determine the number of viable bacteria by counting the colony

finding units (CFU) 7). was determined as following:

nxf

Where: n =number of colonies, f = dilution factor and v = volume of the culture plate

4.6.7.4 In vivo antibacterial activity
Staphylococcus aureus have the ability to evade the immune system and resist conventional

treatment by hiding intracellularly in skin tissues which has often resulted in resistant skin
infections [, BALB/c skin infection model was employed to determine the ability of the OA-
QL liposomes to eliminate MRSA skin infections ['* 7 using a study protocol (ethical

clearance number AREC/104/015PD) that was performed as per by the guidelines of
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University of KwaZulu-Natal’s Animal Research Ethics Committee > ™. Briefly male
BALB/c mice weighing between 18 — 20 g were obtained and the hairs on their back was
carefully shaved leaving the skin intact and then disinfected. 24 hours after shaving day, 50 puL
of MRSA containing 1.5 x 108 CFU/mL were administered via intradermal route then animals
were clustered into 3 groups of four animals (treatment, positive control and negative control
groups). 30 minutes after infection, 50 pL of OA-QL liposomes formulation, free VCM and
saline were injected at the same site of infection according to the respective groups. The
animals were provided with normal 12 hours of light and dark condition at a temperature of
19-23°C and relative humidity of 55 + 10% with adequate ventilation. 48 hours post infection,
the mice were put down humanely with halothane and the area of infection was excised and
homogenized in 5 mL pH 7.4 phosphate saline buffer. The homogenized tissues were serially
diluted in pH 7.4 phosphate saline buffer, after which 20 puL were spotted on nutrient agar
plates, incubated for 24 hours at 37 °C, and the CFU were counted. The CFU/mL was

determined as mentioned earlier (section 2.7.3)

For histological investigation, the skin samples from all the groups were fixed in formalin then
dehydrated using ethanol followed by embedding in paraffin wax. Slides of the skin sections
were then prepared and stained with hematoxylin and eosin (H&E). The slides were then
examined on a Nikon 80i, (Japan) light microscope and bright field images were digitally

captured by NIS Elements D software and a Nikon U2camera (Japan).
4.6.8 MD simulations of QL with POPC bilayer

QL lipid having both oleate moiety and positive charge MD simulations were performed on a
POPC model membrane to understand the impact of the hydrophobicity and the positive charge

on the bacterial membrane. POPC membranes are widely used to represent the gram-positive
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bacterial membrane 5771, A 180 ns pre-equilibrated POPC bilayer was obtained from online
repository [® ™1 and the QL molecule initially placed more than 20 A from POPC bilayer
(COM distance between QL and POPC upper leaflet PO4 atoms in Z-axis). For the POPC
bilayer, charmm36 ff (& was used, and for QL charmm general ff 5 was used. The QL-POPC
system contains 6990 water molecules, with the TIP3P water model being used for solvation.
In order to neutralize the charge on the system, one CL"ion was added. The QL-POPC system
was energy minimized using the steepest descent algorithm B3, The simulated annealing
simulation was performed for 500ps under the isobaric-isothermic (NPT) to equilibrate the
water molecules around the POPC bilayer head group atoms. The QL-POPC system was
equilibrated for 100 ps with a canonical (NVT) ensemble, followed by 1000ps with an NPT
ensemble, with the QL molecule being restrained during the equilibration simulations. The
Particle mesh Ewald (PME) method ¢! was employed to calculate the long-range electrostatic
interactions, while the van der Waals (vdW) and electrostatic interactions were calculated using
a cut-off of 12 A. The Nose-Hoover method [ was employed, and the temperature coupling
and the Parrinello -Rahman methods ™ were used for pressure coupling. For temperature
coupling, 0.5 ps time constant and a 298.15 references temperature were used. For pressure
semiisotropic, pressure coupling type, 2ps time constant and 1 bar reference pressure were
used. The leap-frog integrator 571 was used to integrate the Newtown’s law of motion using 2
fs integration time. The production run was performed for 20 ns without any restrains using
an NPT ensemble. Periodic boundary conditions were applied in xyz dimensions, and the

simulations were performed using the GROMACS package [¢21.
4.6.9 Statistical analysis

One-way analysis of variance (ANOVA), followed by Bonferroni's Multiple Comparison Test,

was used for the statistical analysis. Individual groups were compared to each other using a
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paired t-test, with p values of <0.05 being considered statistically significant, the values being

represented as mean + SD.

4.7. Results and Discussion

4.7.1 Synthesis of Quaternary lipid

The oleic acid derived quaternary lipid was synthesized by a three-step synthesis scheme
(Scheme-1). The first step involved di-Michael addition reaction between an amino alcohol
and tert-butyl acrylate, followed by a Steglich esterification reaction using oleic acid in the
second step. The tertiary amine derivative (compound 4) was quarternarized by using dimethyl
sulfate. Purification of the quaternary lipid and the intermediate products was achieved by

column chromatography.

4.7.2 In vitro cytotoxicity assay

In vitro cytotoxicity assay was performed to confirm the bio-safety of the synthesized QL lipid
by evaluating the viability of the cells after exposure to the test material. Quantification of
viable cells was performed using MTT (tetrazolium) cytotoxicity assay, whereby exposure of
the test material to mammalian viable cells leads to the reduction of tetrazolium to insoluble
crystalline formazan. The quantity of formazan crystals formed in the cells is usually
proportional to the number of viable cells. A549, HEK 293 and Hep G2 cell lines were seeded
with different concentrations of QL lipid and the results showed cell viability ranging from
76.63 to 80.4% across all the concentrations in all cell lines tested (Figure 1). There was no
dose-dependent toxicity towards all cell lines within the concentration range studied of the
lipid. This percentage cell viability (76.63 to 80.4%) of the QL lipid met the biocompatibility
and cytotoxicity requirements for the synthesized biomaterial 8381, These findings therefore
revealed that the QL lipid is a bio-safe material for biomedical applications, considering that

many quaternary lipids show toxicity or dose dependent toxicity.
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Figure 1. Cell viability of A 549, MCF 7 and Hep G2 cells against various concentrations of
QL lipid

4.7.3 Preparation and characterization of liposomes

The thin-film hydration method was used to formulate liposomes from phosphatidylcholine
(PC), cholesterol, OA and QL lipids, with the of ratios 60:30:5:5 % w/w respectively.
Preliminary studies were done to achieve a ratio that gives the surface charge switch and the
best encapsulation efficiency. A DLS study was used to determine the vesicle size, distribution
and surface charge, the effect of different pH’, encapsulation efficiency (EE) and loading
capacity (LC). The size, PDI and ZP of the drug-loaded liposomes at pH 7.4 were 98.88 + 1.92,
0.204 = 0.030 and -17.33 + 2.95 respectively. The sizes were comparable to those obtained
from the TEM images (Fig 3B), and the EE and LC were found to be 43.06 + 5.86 and 4.31%

+ 0.89% respectively, the results were comparable to the other reported VCM loaded liposomes

[39, 86, 87]
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< pH 6.0 OA protonates QL-OA gate opens

pH 7.4

pH 7.4 OA deprotonates QL-OA gate closed

Figure 2. Opening and closing the gates in the liposome at pH 7.4 and acidic pH

The effect of pH on the liposomes was investigated by determining the change in size and
surface charge in different pH media. There was a significant increase in size (p< 0.00001),
from 98.88 £+ 01.927.4 to 314.67 + 44.06, when the OA-QL liposomes were placed at pH 7.4
and pH 5.5 respectively (Figure3). The ZP was negative at the biological pH and shifted
towards a positive in acidic pH (Figure 3C). The increase in size and the switch in surface
charge at acidic pH could be due to protonation of OA in the acid medium, resulting in a break
in the link between the OA and QL lipids, with the quaternary nitrogen positive charge
dominating, and the overall zeta potential of the liposome becoming positive (Figure 2). The
increase in the size of the liposome in the acidic media (Figure 3D) was attributed to the slight
repulsion between the positive charge of the QL lipid and the neutral charged protonated OA.
These results are in agreement with the previous study of pH-sensitive liposome formulations

that were based on the incorporation of a fatty alcohol, oleyl alcohol [81.
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Figure 3. A) Increase in the size of liposomes with a decrease in pH, B) TEM images of the
liposomes, C) Switch of surface charge from negative to positive, D) Difference in particle
sizes distribution at pH 7.4 and pH 5.5

4.7.4 Differential Scanning Calorimetry (DSC)

The thermograms of the excipients used to formulate the OA-QL liposomes are presented in
Figure 4, with the DSC thermogram of the bare VCM showing an endothermic peak at
111.86°C (Figure 4A).The phosphatidylcholine (PC) exhibited three endothermic peaks at
163.2°C, 183.3°C, and 247.6°C, whereas the cholesterol did not show any noticeable
endothermic peak over the studied temperature range, and the OA showed a broad endothermic
peak at 244.5 °C 8%, Two endothermic peaks were observed in the thermogram of the QL, one
was at 131.5°C and the other around 216.4°C (Fig. 5E). The physical mixtures demonstrated 4
sharp endothermic peaks at 133.5°C, 180.2°C, 212.87°C and 159.35 °C (Figure 4F). The DSC
curves of the lyophilized formulations showed the disappearance of the endothermic peaks of
the drug and lipid components (Figure 4G), which was an indication of VCM entrapment and

its conversion from crystalline to amorphous form.
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distribution at pH 7.4 and pH 5.5
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Figure 4. DSC thermograms of (A) vancomycin HCI; (B) phosphatidylcholine; (C)
cholesterol; (D) oleic acid; (E) quaternary lipid; (F) physical mixture and (G) lyophilized

liposomal formulations.

4.7.5 In vitro Drug Release

An in vitro drug release was performed to determine the release profile of the bare VCM and
the OA-QL liposomes, with Figure 5 illustrating the drug release profiles of free VCM
solution, VCM loaded QL liposomes, and PC liposomes at pH 6.0 and pH 7.4. More than 90%
of the drug was released from the free VCM solution at both pHs media after 24 h, with the
responsive and non-responsive liposomes showing slower drug release profiles (Figure 5) than
the VCM solution. The cumulative release of the VCM released from the OA-QL liposome
formulation at the end of 24 h was 74.3 + 3.2% at pH 6.0 and 50.0 + 3.1% at pH 7.4. The
release of VCM from the OA-QL liposomes was a significantly faster at pH 6.0. (P=0.0048).
The faster release of the drug at pH 6.0 could be due to the protonation of the OA, which results
in a break in the complex between the OA and QL lipid, leading to a destabilization of the
liposome and resulting in a faster drug release. The faster release from the OA-QL liposomes

at pH 6.0 than pH 7.4 could be used to effectively provide a localized release of the antibiotic
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at the infection sites, which tend to be in acidic pH. This could be critical in effectively Killing
and eliminating the bacteria, which will reduce the development of resistant mutant species
due to their sublethal exposure to antibiotics, a reduction of the side effects due to a narrowed
volume distribution of the drug, and a lowered treatment dosage being required that can lead

to improved patient compliance.
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Figure 5. In vitro VCM release from Bare VCM solution, liposomal formulations and PC liposomes at

pH 6 and pH 7.4. Error bar indicates SD (n=3).

Drug release mechanism was determined by modelling release data against various models.
Korsmeyer-Peppas model was found to be the best fit model for VCM release from OA-QL
liposomes at pH 6.0 with R? coefficient of 0.9740 and low RMSE of 4.519, while at pH 7.4
VCM release was found to fit the Weibull model with R? = 0.9455 and RMSE = 7.003 values
compared to all other models (Table 1).The Korsmeyer-Peppas model ‘n’ exponent, which
characterizes the drug release mechanisms was obtained and the value for release at pH 6.0

was found to be 0.626, while at pH 7.4 it was found to be 0.243. The release at pH 6.0 indicates
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non-Fickian diffusion (Anomalous transport) suggesting that more than one release mechanism
might have been involved % %1, Apart from diffusion at acidic pH, the protonation OA could
have led to a break in the ionic paring between the QL lipid and OA, which might have resulted
in the leakage and destabilization of the liposome, leading to the release of the drug at pH 6.0
[921 The release of drug from the OA-OL liposomes at pH 7.4 followed the Fickian release,
with a diffusion-mediated release of the drug [°®l, the difference in release mechanism further
indicated the pH responsive ability of OA-QL liposomes. The slower release of drug over an
extended period of time for the OA-QL liposomes could lead to better therapy outcomes, as it
would result in a lower frequency of administration, decreased side effects and improved

patient compliance.

Table 1. Curve fitting of the in vitro VCM release data from the liposome formulation at pH6

and pH 7.4
PH 6 pH 7.4
Model R? RMSE exponent (n) R? RMSE exponent (n)
Zero Order 0.8735 6.506 - 0.550 28.190 i
First Order 0.9054 5.627 - 0451 18.781 i
Higuchi 0.9330 4,735 - 0.7648 15.629 -
Korsmeyer-Peppas  0.9740 4519  0.626 0.8738  9.868 0.243
Hixson-crowell 0.8989 5816 - 0.7920  20.804 -
Weibull 0.9704 5100 - 0.9455  7.003 -

R? =linear regression coefficient, RMSE = Root mean square error

4.7.6 MD simulations of QL with deprotonated AO (AOD) and protonated OA (OAP)

To understand the interaction that might cause the closing and opening of the gates on the
liposome at the physiological pH (7.4) and acidic pH (< 6), MD simulations of QL-OAD (100
ns) and QL-OAP (100 ns) were performed in water. Time evolution Center of mass (COM)

distance, time evolution of interaction energies and binding energies between QL-OAD and
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QL-OAP were calculated, with Figure 6 showing the interaction between them at different time
points. The time evolution of the COM distance between QL-OAD (Figure 6 A-D) and QL-
OAP (Figure 6 E-H) revealed that OAD and OAP interacted with QL at six different time
periods (Table 2). The average COM distances between QL-OAD and QL-OAP at the different
time points showed that OAD was closer to QL during binding compared to OAP. The shorter
distance between OAD and QL was may be due to the attraction between the opposite charge
of the two lipids i.e. negative charge of OAD and positive charge of QL, while in the protonated

state, OA loses the charge, which may

Table2. Average distance between QL-OAD and QL-OAP during interaction time

Time of interactions Average COM distance | Time of interactionsAverage COM distance
(ns)QL-OAD between QL-OAD (A) | (ns) QL-OAP between QL-OAP (A)
~3.6t0~14.1 10.71 +4.36 ~5.91t0~19.2 10.23+2.70

~18 to ~27 9.07 +3.09 ~27.310~30.3 10.85+2.91

~39.6 to ~45.3 9.55+4.46 ~34 to ~38.6 11.02+ 3.19

~49.9 10 56.9 8.75+2.33 ~39.7 to ~62.6 10.63+ 3.45

~61 to ~88.1 9.04 £3.91 ~65.7 10 ~75.8 10.44 + 3.06

~92.3 10 100 8.69 £ 2.43 ~80.1t0 ~90.2 12.14 £ 4,76

The interaction energy components showed that spontaneous binding between QL and OAD
was mainly governed by the electrostatic interactions (Figure 7 B, red line), and that the
spontaneous binding between QL lipid and OAP was largely governed by the van der Waals
(VdW) interactions (Figure 7 D, black line). The contribution to the binding energy (AGtotal)
from the VAW and electrostatic interactions was represented by AEvsw and A Eelec. The
contribution from polar and nonpolar solvation energy to AGtotal Was represented by AGpolar and
AGnonpolar respectively. The results for the QL-OAD showed that AEeiec, AEvaw, and AGnonpolar

were favorable, but AGpolar Was unfavorable, while a gain in the AEeiec and AEvaw energies led
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to the overall favorable AGuta (Table 3). The binding energy results for QL and OAP
interactions showed that AEvdw , AEeiec, and AGnonpolar Were favorable, but that AGpolar Was
unfavorable. However, a gain in intermolecular AEvaw compensated for an increase in the polar
solvation energy, which leads to the overall favorable AGtotal (Table 3). Overall, the binding
energy results suggest that the interaction between QL and OAD was stronger than between
QL and OAP. This could be significant, as OAD was able to form both electrostatic and VdW
interactions, while OAP mainly formed VdW interactions with QL. The energy interactions
between QL, OAD and OAP could be the reason for the different behaviors exhibited by the
liposomes in varying pH environments. At physiological pH, the supramolecular bonds
between QL and OAD were stronger and the liposome released the drug slower. However, at
acidic pH, OA is in the protonated state and losses its charge, which leads to weaker
supramolecular interactions between OA and QL which could be the reason for the faster
release of the drug from the liposome. Interestingly, throughout the MD simulation, the QL
and OAD arrangement showed the polar head of all the lipids faced the same direction (Figure
6A to D), while at the end of the QL and OAD, MD simulation, the polar heads were in opposite
directions. This rearrangement may be responsible for opening and closing the gates in the
liposome that resulted in the increase in their sizes, release of the drug and the change in their
surface charge (Figure 6 E to G). The MD simulations assisted in identifying the mechanistic
behaviour of the OA-QL liposome in response to the pH and explaining the effect on drug

release.lead to slight repulsion or weaker interactions with the always positively charged QL.
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Figure 6. (A to D) Four representative images of QL interaction with deprotonated OA at four
different time points A) t=0 ns. B) t=18.6 ns. C) t=62 ns. D) t=93.3 ns. From (E to H) are 4

representative images of QL interaction with protonated OA at 4 time points E) t=0 ns. F) t=15

ns. G) t=50 ns. H) t=70 ns.
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evolution of COM distance between QL-OAP. D) Time evolution of interaction energy

between QL-OAP and its components (AEelec and AEvaw).

Table 3 Average Binding Energy and its Components Obtained from the MM-PBSA
Calculation for the QL-OAD and QL-OAP complexes.

Components Energy (kJ/mol) Energy (kJ/mol)
QL-OAD (70-85 ns) QL-OAP (45-60 ns)

AEvdw -40.01 + 0.40 -43.61 + 0.35

AEelec -65.25 + 0.83 -1.51+0.13

AGpolar 22.81 + 0.91 11.05+0.29

AGnonpolar -7.39 +0.06 -8.06 £ 0.05

AGtotal -89.90 + 0.54 -42.12 + 0.31

4.7.7 Antibacterial Activity

4.7.7.1 Invitro Antibacterial Activity
The MIC values of bare VCM against SA and MRSA at pH 7.4 were 3.9 ug/mL and 7.8 pg/mL

after 24 h respectively, while for the non-responsive liposomes and OA-QL liposomes they
were 1.95 pg/mL and 0.98 pg/mL, 3.9 and 1.95ug/mL respectively after 24 h (Table 4). It was
observed that the OA-QL liposomes had a 4- and 2-fold increase in activity compared to the
bare drug and non-responsive liposomes at pH 7.4 respectively, (Table 5) and was 8 and 16
times better than the bare VCM against SA and MRSA respectively. From the MIC data, the
OA-QL liposomes displayed better anti-microbial activity in contrast to the bare VCM and
non-responsive liposome, this enhanced antimicrobial activity possibly due to the fusion
between the OA-QL liposomes and the membrane of the bacteria by fusing into the bacterial
membranes, the OA-QL liposomes can induce a lethal dose of the drug, thereby killing the
bacteria before they develop any possible resistance mechanisms. OA also has an inherent
antimicrobial activity that could be a contributing factor [ *4. The enhanced activity at acid

pH of the OA-QL liposomes can be ascribed to the switch of the surface charge of the liposome
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to positive after protonation of OA. The positively charged OA-QL liposomes could have
enhanced the fusion with the anionic bacterial cell wall, released higher VCM concentrations
at the acidic infection site and reduced the total number of recovered bacteria [* %, In addition
to the charge and the presence of OA in the liposomes, studies have shown that the smaller
sized liposomes tend to have better antimicrobial activity due to improved distribution on the
bacteria and enhanced delivery of the drug, thus offering a better killing effect 7). Therefore,
targeting acidic bacterial site via pH-responsive liposomes represents an exciting platform to
develop drug delivery systems that can enhance the drug localization at infections site and
augment the antibacterial activity of antibiotics, which will go a long way towards reducing

the emergence of bacterial resistance and improving treatment outcomes.

Table 4. MIC of QL lipids and controls at pH 7.4

Time (hours) 24 48 72 24 48 72
S. aureus (MIC pg/mL) MRSA (MIC pg/mL)
Bare VCM 3.9 3.9 3.9 7.8 156 15.6
PC liposomes 1.95 7.8 250 3.9 3.9 15.6
VCM-OA-QL liposomes 0.98 098 0.98 1.95 195 195
Blank liposomes NA NA NA NA NA NA

NA = No activity. The values are expressed as mean £SD, n=3.

Table 5. MIC of QL lipids and controls at pH6.0

Time (hours) 24 48 72 24 48 72
S. aureus (MIC pg/mL) MRSA (MIC pg/mL)

Bare VCM 3.9 39 39 7.8 31.2 31.2

PC liposomes 1.95 78 7.8 3.9 3.9 15.6

VCM-OA-QL liposomes 0.488 195 3.9 0.488 1.95 3.9

Blank liposomes NA NA NA NA NA NA

NA = No activity. The values are expressed as mean +SD, n=3.
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4.7.7.2 Fluorescence Assisted Cell Sorting (FACS) bacterial cell viability

To determine cell viability of MRSA a flow cytometry method was used (46 %1, Bare VCM and
OA-QL liposomes were incubated for 6 hours with MRSA. PI fluorescent dye was used to
detected bacterial membrane integrity and its permeation symbolized bacterial cell death, while
Syto9 was employed to separate alive from dead cells ** 1%, FACS Data was analyzed using
Kaluza-1.5.20 (Beckman Coulter USA) fluorescence activated cell sorting software and were
plotted as histograms of PI fluorescence versus the number of cells that internalized (Figure
8). Gating was done to separate dead cells (red) from alive cells (grey) in the MRSA population.
VCM mechanism of action, results in loss of membrane integrity leading to permeability,
uptake of and intercalation of Pl with the DNA causing a shift in fluorescence. MRSA cells
treatment with both bare VCM and OA-QL liposomes resulted a shift of PI fluorescence
(Figure 8 B, C and D). The bare drug (Figure 8C) and OA-QL (Figure 8D) at their respective
MIC concentration (7.8 pg/mL and 1.95 pg/mL respectively) had 58.17 + 5.79% and 66.71 +
2.85 % dead MRSA cells in the population respectively. MRSA cells treated with bare VCM
at a concentration of 1.95 pg/mL (OA-QL lipo MIC), there was only 16.86 * 2.6 % Killing
indicating the enhancement of VCM activity after encapsulation in OA-QL liposomes. These
results can translate to a reduction in the amount of dose needed for the treatment with OA-QL
liposomes without affecting the treatment outcomes and a reduction in the dose-dependent
VCM side effects, such as nephrotoxicity and red man’s syndrome 11, These results confirmed

the enhanced activity of VCM after entrapping in OA-QL liposomes.

138



Count

e ——
16.86 % 58.17 % 66.71 %
i o

- 8 & 8 B B

10 10 10 10 10 10 10 10 10 0 10 0

Propidium iodide fluorescence
v
I m

i
*kkk
I Kk ko e
6 8 | |
S— T 37933333 CFUmL

1266667 CFUML 0000 crumL

o

&

MRSA log; ,CFU/mL

MRSA log (CFU/mL

~N
MRSA log; (CFU/ml

~

Figure 8. I. A) live cells (Untreated MRSA); B, and C, represents the percentage dead of
MRSA cells after incubation with VCM solution at concentration 1.95 pg/mL and 7.8 pg/mL
respectively, while D represents OA-QL lipo loaded 1.95pug/mL of VCM.II denotes
intracecullar MRSA CFU/mL recovered after treatment of infected TPH-1 cells . ***indicates
the staistical difference for OA-QL liposome versus untreated and VCM solution.
Illrepresents**statistical difference of untreated versus bare VCM solution , **** is the
statistical difference when OA-QL liposomes treated infected HEK 293 cells in comparison to
the untreated and bare VCM.1V represent disease burden 48 hours after treatment of the mice.
**represents statistical difference for OA-QL liposome versus bare VCM solution.
***represents statistical difference between untreated versus bare VCM solution
****representsstatisticaldifference between bare VCMsolition and OA-QL liposome. In all the

datan=3.

4.7.7.3 Intracellular antibacterial activity
Evaluating the ability of the QL liposomes to eliminate intracellular bacterial infections was

carried out on MRSA infected TPH-1 macrophage and HEK 293 cell lines. After the infection
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and treatment process, the cells were lysed, the lysates plated on nutrient agar plates, and the
CFU counted and quantified for each treatment group, being represented as logio (Figure
811).The one-way ANOVA analysis among all the treatment groups revealed that there was a
statistically significant (P = 0.0003 and P< 0.0001) reduction in bacterial load in both the TPH-
1 macrophage and HEK 293 cells respectively. VCM had a 2.24-and 9-fold reduction of
bacteria in the TPH-1 macrophage and HEK 293 cells (P> 0.05 and P = 0.019) respectively in
comparison to the untreated. The OA-QL liposomes treated cells had a 1266.67- and 704.33-
fold reduction in the infection (P = 0.0003 and P< 0.0001) for TPH-1 macrophage and HEK
293 cells respectively (Figure 8 111) compared to the untreated cells. Additionally, there was
a 566.67 and59.54-fold greater reduction in bacterial load after treatment with OA-QL
liposomes compared with bare VCM (P = 0.0005 and P< 0.0001) respectively. Interestingly,
the QL liposomes had better elimination of the intracellular MRSA, despite having a 4-fold
lower concentration than the bare VCM. The better activity of the OA-QL liposomes in
comparison to the bare drug may be ascribed to the capability of the liposome to penetrate the
cell membrane and deliver the drug intracellularlyt®.In addition, the acidic pH of the
endosomes and phagolysosomes could have resulted in a breakdown of the OA and QL lipid
ion pair, causing an increased drug release, as shown in Figure 9, which could prove effective
in eliminating small colony variants in persistent infections (SCVs). The SCVs have been
associated with chronic MRSA infections and long duration of treatments failure, and as a
source of resistant bacteria strains [*°. Localization of bacteria inside the host cells provides
protection, and despite multiple antibacterial options being available to treat intracellular
bacterial infections, more than two-thirds are ineffective against intracellular pathogens 041,
These results demonstrated that OA-QL liposomes could be an effective drug delivery system

for eliminating such intracellular infections.
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Figure 9. Proposed mechanism of intracellular delivery of VCM and enhancement of
antibacterial activity by the pH responsive liposome OA-QL.

4.7.7.4 In vivo antibacterial activity

Staphylococcus aureus have been shown to readily internalize cells, thereby causing resistant
intracellular infections of the skin, providing a source for chronic infections and the systemic
dissemination of the pathogen . A mouse skin infection model was used to evaluate if OA-
QL liposomes can eliminate MRSA infections in an animal system. MRSA was administered
intradermally and the CFUs quantified and represented as logio (Figure 8 1V). One-way
ANOVA analysis among all the treatment groups revealed that there was a statistical
significance (P< 0.0001) in the reduction of bacterial load in the skin samples (Figure 6 1V).
The mean load of the bacteria (logio CFU) from the untreated and bare VCM groups was 7.58+
0.01 (37933333.33 CFU/mL) and 6.1 £ 0.05 (1266666.667 CFU/mL) respectively. The results
demonstrated that bare VCM had a 29.95-fold reduction in bacterial load versus the untreated
group (P=0.0005). In the OA-QL liposomes treated group, the bacterial load was 5.26 + 0.24
logio CFU/mL (200000 CFU/mL), translated t0189.67-times lower CFUs recovered in

comparison to the untreated group (P<0.0001). Furthermore,6.33-fold reduction in bacterial
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load was observed when OA-QL liposomes was compared to bare VCM (P = 0.0041). These
findings demonstrated that OA-QL liposomes had better ability to treat MRSA skin infections

than bare VCM.

Figure 10. A) OA-QL VCM loaded liposomes treated mice, B) pus exudates from untreated
mice; C) Skin of untreated mice showing infection, H&E stained micrographs photographs of
the skin samples for the controls and different treatment groups (X40); D) negative control
(saline and MRSA injected sample, E) Bare VCM treated, F) OA-QL VCM loaded liposomes
treated.

Pus was observed in the untreated groups skin samples (Figure 10A,B and C) during skin
exicsion upon physical examination. After H&E staining of the slides from the excised skin
samples of untreated and bare VCM treatment group there was evidence of tissue inflammation
and abscess formation (Figure 10D and E). However, the bare drug had lesser extend of tissue
inflammation and abscess formationin comparison with to the untreated group. In the OA-QL
group (Figure 10E) there was lack of abscess formation, but with minimal signs of tissue
inflammation (Figure 10F). These observations were in line with the CFUs recovered from

homegenised skin tissues (Figure 81V), this is because immune response is directly proportinal
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to the number of the bacteria present at the infection site as untreated and VCM treated groups
displayed higher values of CFU/mL recovered. This histomorphological studies confirmed the

antimicrobial advantage of the OA-QL liposomes.

4.7.8. MD simulation of QL with POPC bilayer

To understand the binding affinity of the QL lipid on gram positive bacteria, a 20 ns atomistic
MD simulation was performed between the lipid and the POPC bilayer membrane. Atomistic
modeling and molecular dynamics (MD) simulations have proven to be effective approaches
for providing insight into experimental procedures and their results. The POPC bilayer
membrane has been reported to study the surface interactions of bacteria and biomolecules 1%,
Due to the QL lipid having both a hydrophobic tail and a positive charge, the effect of the
positive charge and the hydrophobicity of the lipid were evaluated. Spontaneous binding,
interaction and binding energy components involved in the binding between QL with POPC
bilayer were also determined. Figure 11 A and B show two representative images from the
QL-POPC bilayer simulation. QL formed the first interaction with POPC bilayer from ~6.3 to
~7.4 ns, while the second interaction between QL and POPC formed ~15ns and remained until
the end of the simulations. However, during the second interaction, QLs close association to
the POPC bilayer was observed from ~15 ns to ~17.5 ns, after which a slight increase in the

COM distance between the QL and POPC upper leaflet PO4 atoms was observed (Figure 11C).

143



t=20 ns

50/ _
t [— QL-Upperleatict POI| E
- 40+ ~
g >
§30 g‘
-
2 -—0 5 )
a | -
N 10 g }
} c | i
0 ; e e L L
. Time (ns) ) Time (ns)
0 D)

Figure 11. A) QL with POPC bilayer at t=0 ns. B) QL with POPC bilayer at =20 ns. The QL
molecule and POPC bilayer have been shown in VdW representation. C) Time evolution of
COM distance of QL and upper leaflet PO4 atoms in the Z-axis. D) Time evolution of

interaction energy and its components.

The time evolution of the interaction energy and its components revealed that during the first
interaction, AEvaw energy was favorable and AEeiec highly unfavorable, with AEtwtatherefore
being unfavorable. During the second interaction, especially between ~16.5 ns to ~17.5 ns, it
was observed that both AEvaw and AEeec Were favorable, which led to an overall favorable

AEotal, after which, fluctuations in AEeiec Were observed (Figure 11D, red line). Binding energy
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analysis was performed for the ~16.5 ns to ~17.5 ns and showed that AEvdw, AEelec and the
highly favorable AGnonpola energies lead to an overall favorable AGtotal (Table 6). The AEvaw
and AEelec Were the most favorable binding force of the lipid to the membrane. This could have
been the reason for the enhanced antibacterial activity of the QL liposomes, as the
hydrophobicity of the liposome lipids enhanced their fusogenicity to the bacterial
membrane,[*2 1% 1971 \while the positive charge of the liposome at pH 6 might have led to
electrostatic binding with the negatively charged bacterial membrane, resulting in increased
release of the drug on the bacteria at lethal doses that lead to the annihilation of the bacteria
[ These results indicated that the hydrophobicity and the positive charge of the QL lipid might
have been the reason for the increased bacterial targeting and enhanced activity of OA-QL

liposome.

Table 6. Average Binding Energy and its Components Obtained from the MM-PBSA
Calculation for the QL and POPC bilayer.

Components Energy (kJ/mol) QL-POPC
(16.5-17.5 ns)

AEvdw -27.33+£0.91

AEelec -9.80 £ 2.33

AGpolar 0.72 +8.36

AGnonpolar -26.10 + 0.42

AGtotal -62.48 + 8.53

4.7.9 Effect of Storage
Stability studies were performed by storing samples at 4°C and RT for three months, during

which their physical appearance, particle size, PDI, and ZP were evaluated (Table 3). The
physical appearance of the liposome did not show any signs of color change, aggregation and
phase separation throughout the storage period at specified storage conditions and time periods.

There was a slight increase in size for the liposomes stored at room temperature from 109 nm
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to 165nm. However, 4°C degree storage conditions were deemed to be more stable, as the size
only increased from 109 nm to 124nm from time zero to 90 days of storage. This data confirmed
the short-term physical stability potential of the VCM loaded OA-QL liposomes as a drug

delivery system.

Table 7. Effect of storage on liposomal formulation over three months at 4°C and RT. All the

samples were studied in triplicate and the data presented as mean £ SD (n=3).

RT 4°C
Time Size PDI ZP(mV) Size PDI ZP(mV)
(days)
0 109.5+£5.93 0.25210.01 -17.83+1.05 109.5+5.93 0.252 +0.01 -17.83+1.05

30 114.8+1.01 0.256+0.045 -16.33+2.91 113.76+1.39 0.259+0.012 -17.90*2.13
60 133.8+10.88 0.311+0.04 -16.20+3.78 125.5+12.03 0.376x0.010 -16.58+5.71
90 164.7+ 43.8 0.366+0.072 -15.14 +£1.96 124.7 +7.97 0.309+0.09 -16.33+2.95

4.8 Conclusion

Fast-emerging resistant bacteria threaten the extraordinary health benefits that have been
achieved with antibiotics and highlight the need for innovative strategies to combat the
problem. Thus, a new oleic acid based novel quaternary lipid, as a pH stimulant component of
a liposomal system for infection site-specific delivery of vancomycin (VCM), was synthesized
and incorporated into a liposome to render it pH responsive. The in vitro MTT assay showed
the QL lipid to be biosafe. In vitro pH differentials (6.0 and 7.4) of the drug release were
obtained, and the system showed the ability to eliminate intracellular antibacterial in both HEK
293 and THP-1 microphage cells. The in vitro antibacterial activity showed that the pH
responsive liposomes had superior activity both at pH 7.4 and pH 6.0 compared to vancomycin.
The in vivo studies showed that the amount of MRSA recovered from mice treated with
formulations was approximately 189.67 and 6.33-fold lower than the untreated groups and bare
VCM treated mice respectively. MD simulation of the QL lipid and POPC membrane showed

the lipid spontaneously binding to the bilayer membrane, with both electrostatic and Vander
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Waals interactions playing a major role. These studies demonstrated that the inclusion of the
‘On’ and ‘Off” pH responsive switches in the liposomes enhanced the activity and targeted
delivery of the loaded drug as well as enhanced the elimination of the intracellular MRSA
infections.
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CHAPTER 5, EXPERIMENTAL PAPER 3

5.1 Introduction

This chapter addresses Aim .2, Objectives 1 - 3 and it highlights the formulation development
of a novel FA-NS, and the characterization of its physical properties, aqueous solubility
enhancement, enhanced antibacterial activity against sensitive and resistant S. aureus both in
vitro and in vivo, and MD simulations on the formation of a stable nanosuspension. Data from
this study has resulted to a first authored experimental article published in the ISI international
journal ACS Molecular Pharmaceutics (Impact Factor = 4.556) and two conference
presentations:
e Omolo, C. A, Kalhapure, R. S., Agrawal, N., Rambharose, S., Mocktar, C., &
Govender, T. (2018). Formulation and Molecular Dynamics Simulations of a Fusidic
Acid Nanosuspension for Simultaneously Enhancing Solubility and Antibacterial
activity. Applied Nanotechnology and Nanoscience International conference. October
22-24 Berlin Germany. (Oral presentation).
e Omolo, C. A, Kalhapure, R. S., Agrawal, N., Rambharose, S., Mocktar, C., &
Govender, T. (2018). Formulation and Molecular Dynamics Simulations of a Fusidic
Acid Nanosuspension for Simultaneously Enhancing Solubility and Antibacterial
activity. 38th Annual Conference of the Academy of Pharmaceutical Sciences,06-08

July 2017, Johannesburg, South Africa (appendix viii)

152



5.2 Graphical abstract
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5.4 Abstract

The aim of the present study was to formulate a nanosuspension (FA-NS) of fusidic acid (FA)
to enhance its aqueous solubility and antibacterial activity. The nanosuspension was
characterized using various in vitro, in silico and in vivo techniques. Size, Pl and ZP of the
optimized FA-NS were 265 + 2.25 nm, 0.158 £ 0.026 and -16.9 = 0.794 mV respectively.
Molecular dynamics simulation of FA and Poloxamer-188 showed an interaction and binding
energy of -74.42 kJ/mol and -49.764+1.298 kJ/mol, respectively with Van der Waals
interactions playing a major role in the spontaneous binding. There was an 8-fold increase in
solubility of FA in nanosuspension compared to the bare drug. MTT assays showed cell
viability of 75%-100 % confirming the nontoxic nature of FA-NS. In vitro antibacterial activity
revealed a 16- and 18-fold enhanced activity against Staphylococcus aureus (SA) and
methicillin-resistant SA (MRSA) respectively when compared to bare FA. Flowcytometry
showed MRSA cells treated with FA-NS had almost twice the percentage of dead bacteria in
the population, despite having an 8-fold lower MIC in comparison to bare drug. In vivo skin
infected mice showed a 76-fold reduction in the MRSA load for FA-NS treated group
compared to bare FA. These results show that nanosuspension of antibiotics can enhance their

solubility and antibacterial activity simultaneously.

Keywords: Nanosuspension, improved solubility, enhanced antibacterial activity, molecular

dynamics, MRSA
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5.5 Introduction
Despite the global spread of antimicrobial resistance, development and regulatory approval of

new antibiotics has declined by 90% over the past 30 years due to the excessive cost of
antibiotic research 3. Scientists are therefore focusing on enhancing the efficacy of old
antibiotics through structural modifications # and reformulating them into nano systems?. It is
widely reported in the literature that nanonization of antibiotics enhances their activity 5
through sustained release "8, thereby lowering the minimum inhibitory concentration (MIC) °
and targeting the infection sites °. Thus, revisiting older antibiotics, such as fusidic acid (FA),
is of importance to expanding and protecting the shrinking armamentarium available to
clinicians to treat illnesses caused by resistant bacteria.
FA is a fusidane antibiotic that is derived from Fusidium coccineum and is a tetracyclic
triterpenoid that is structurally related to cephalosporin P1 (Figure 1) %, active against a wide
range of bacteria 2, has low toxicity and a unique mechanism of action that lacks significant
cross resistance to other antibacterial classes 3. An Increase in the rate of global antimicrobial
resistance has promogulated research interest in FA, even in markets where it lacked

registration, for example the United States of America (USA), and is in clinical trials for

approval as a potentially valuable therapeutic option 314,

Figure 1. Chemical structure of FA. IUPAC name: (E)-2-((3R,4S,5S,8S,9S,10S,11R,13R,14S,16S)-
16acetoxy-3,11-dihydroxy-4,8,10,14-tetramethylhexadecahydro-17H-cyclopenta[a]phenanthren-17-

ylidene)-6-methylhept-5-enoic acid.
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High hydrophobicity of biopharmaceutical classification system class (BCS) Il drugs, such as
fusidic acid hemihydrate, partitions well through biological membranes, which can translate to
high bioavailability*>2°, However, their bio-absorption process is rate-limited by their low rate
of dissolution, which results in low absorption for oral dosage and difficulty in formulating
parenteral dosage forms % with poor aqueous solubility often resulting in poor
bioavailability. A previously prepared FA suspension displayed only 22.5% bioavailability in
pediatric patients following a 20 mg/kg dose 2L, There is therefore a need for innovative
strategies to improve solubility and bioavailability of FA.

To solve the problem of poor aqueous solubility of drugs, several techniques, such as
micronization > 22, solubilization?® and salt formation, have been explored 24, although they
have a number of limitations. The micronization technique results in very fine powders that
affects the flow and wettability properties of the drug due to enhanced electrostatic forces 2°.
Solubilization techniques require the formulation to be in liquid form, which has stability
problems %, and salt formation is a complicated process, not being feasible for neutral
compounds 2’. As much as it enhances solubility, sodium salts, like sodium fusidate, undergoes
precipitation in acid media, and their solubility also tends to vary with change in pH, which
changes along the gastrointestinal tract 28,

Nanotechnology has been used to successfully deliver and improve the activity of a wide range
of antibiotics & % 2°-30, However, nanocarriers require the use of matrix material to encapsulate
the compound, thereby reducing the maximum possible drug loading 3. Recent advancements
in technologies for reducing particles sizes to nanoparticulate level have stimulated the
formulation of nanosuspensions, these being solid dispersions of the drug in the sub-micron
scale that are stabilized with surfactants, polymers or both *2. Nanosuspensions offer increased

dissolution rates, enhanced bioavailability and activity, and complete entrapment of insoluble
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drugs by forming stable solid dispersions in their amorphous state 3. As described by the
Noyes—Whitney, and Kelvin and Ostwald-Freundlich equations, particle size reduction can
lead to increased dissolution rate and absorption due to greater surface area, amplified
dissolution pressure and increased adhesiveness to surfaces/cell membranes 343
Nanosuspensions have been successfully used to improve the activity of a wide range of anti-
infectives, such as triclosan 3!, ciprofloxacin®, itraconazole *® and miconazole *. To the best
of our knowledge, there are no reports on FA nanosuspension as a drug delivery system.
Despite FA being an effective agent against gram positive bacteria, there has been only one
report for enhancing its solubility and activity using nanomicelles, which further involved the
use of a newly synthesized material i.e. polyester dendrimers*®.Nano precipitation antisolvent
technique, used to formulate nanosuspensions, has shown to have advantages, such as little
energy input, readily available machinery and easy scale-up. It also allows for the preparation
of nanosuspensions without the use of additional specialized materials like the study reported
by Sikwal et al %°.

Development of pharmaceutical dosage forms requires an understanding of the in vitro and in
vivo performance of the dosage forms. In vitro studies have been shown to be convenient as
they: (a) reduce costs, (b) provides an opportunity to more directly assess product performance,
and (c) offer benefits in terms of ethical considerations #!. As useful as in vitro assays are, they
could fail to replicate the results in living conditions of an organism *? as some studies have
shown in vivo results were better than in vitro outcomes. There have been also reports where
studies have been effective in vitro but when introduced into living organism they cause a
cascade of events that have turned out to be toxic and incompatible with the animal .
Therefore, to increase confidence in the effectiveness of pharmaceuticals, in vivo studies are

usually recommended as the field is moving from formulation based to disease focus research.
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In addition to their physicochemical properties and in vitro and in vivo performance,
understanding the underlying behavior and mechanism of formation of drug delivery systems
is essential for formulation optimization, and requires an examination under spatial and
sequential resolutions. Molecular dynamics (MD) simulations are being employed in drug
delivery studies as they can track the systems behavior changes across considerable spatial-
sequential domain lengths with atomic precision and high resolutions ** Thus, providing a
detailed molecular insight into the formation of nanosuspensions for drug delivery applications
is of paramount importance. The MD simulations in this paper has not been reported

previously.

Thus, the aim of this study was to formulate a stable FA nanosuspension (FA-NS) by
employing a bottom-up antisolvent precipitation technique and characterizing it with various
in vitro, MD simulations and in vivo studies. We envisaged that the formulated nanosuspension

would enhance aqueous solubility and antibacterial activity of FA against S. aureus and MRSA.

5.6. Materials and methods
5.6.1 Materials

Fusidic acid (FA), Polyvinylpyrrolidone (PVVP), Poloxamer 188 (P188), sodium dodecyl sulfate
(SDS), Cremophore (RH40), Solutol® (HS15), Tween 80 and Cremophor® EL (EL) were
purchased from Sigma—Aldrich Co. Ltd (USA). Propidium iodide and Syto9 dyes cell viability
kits were purchased from Thermofisher (USA),3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) was bought from Merck Chemicals (Germany), Fetal
bovine serum (FBS) was obtained from Life Technologies (USA) and penicillin streptomycin
(pen/strep) was purchased from Lonza (USA). An Elix 10 water purification system (Millipore
Corp.,USA) was used to obtain milli-Q water. Mueller Hinton Agar (MHA) (Biolab, South

Africa), Nutrient Broth (Biolab, South Africa), Nutrient Agar (Biolab, South Africa) and
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Mueller Hinton Broth 2 (MHB) (Sigma-Aldrich, USA) were used in the antibacterial testing
studies and tested against Staphylococcus aureus (ATCC 25922) and Staphylococcus aureus
Rosenbach (ATCC BAA-1683™) (MRSA).

5.6.2 Screening and preparation of FA-NS

A bottom-up antisolvent ultrasonication-precipitation technique was employed to prepare FA-
NS. A solution of FA in organic solvent was prepared and added dropwise to a surfactant
solution in milli-Q water under vigorous stirring. The resulting mixture was further sonicated
for a determined time period under ice . Initially a surfactant solution (0.1% wi/v) was
prepared and 1mL of FA solution (10 mg/mL) in water miscible organic solvent was added
dropwise under vigorous stirring, sonicated at 30% amplitude for 5 min. Thereafter, the
suspension was stirred overnight at room temperature to completely evaporate the organic
solvent. Various parameters, such as surfactant type, surfactant concentration, drug
concentration, solvents (methanol, ethanol and acetone), sonication time and amplitude, were
evaluated to obtain a stable FA-NS nanosuspension. Potential surfactants were screened to
provide a stable system: Polyvinylpyrrolidone (PVP), Poloxamer 188 (P188), sodium dodecyl
sulfate (SDS), Macrogol (RH40), Solutol® HS 15 (HS15), Tween 80 and Cremophor® EL
(EL). Following the evaporation of organic solvent, the FA-NS was immediately lyophilized
using 3% mannitol as a cryoprotectant 46,

5.6.3 Characterization of Fusidic acid nanosuspension

5.6.3.1 In silico studies

MD simulations is a widely applied technique in the field of drug delivery to accomplish tasks
such as understanding the drug interaction with proteins*”*¢ membranes *°° and polymers 52,
The spontaneous binding of P188 with FA was studied using MD simulations to allow us to
understand: 1) the FA spontaneously binding with P188, 2) interactions that play a crucial role

in FA interaction with P1188 (whether VdW or electrostatics), and 3) if the binding free energy
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of the complex is favorable. The structure of FA (Figure 2A) was taken from PDB id: 2VUF
53 and 10 monomer units of each P188 blocks were constructed using ChemDraw >* (Figure 2
B) (Figure: 1A). CHARMM General Force Field (CGenFF) % parameters were used for both
of the molecules, and the TIP3P model % was used for water. The molecular dynamics
simulation system contains one Fusidic acid molecule, a polymer of P188 and 30235 water
molecules. The system was first energy minimized using the 5000 steps of steepest descent
method ', after which equilibration simulations were performed using canonical ensemble
(NVT), followed by an isobaric-isothermic ensemble (NPT) for 10 ps each, with the production
run being performed using an NPT ensemble for 30 ns. The simulation was performed at 300K
temperature using the velocity-rescale method and at 1 atm pressure using the Parrinello-
Rahman method °8, with the coupling time for the temperature being 0.1 and for pressure 2.0
ps. The Particle Mesh Ewald (PME) method °° was used for long-range electrostatic
interactions, with 10A cut-off being used to calculate the VdW and short-range coulombic
interactions. The Com of Mass (COM) distances between P188 and FA were calculated using
in-house Tcl script. The interaction and binding energy between P188 and FA was calculated
using the g_mmpbsa tool, which uses the molecular mechanics poisson—boltzmann surface area
(MM-PBSA) method ¢, while the Simulation was performed using GROMACS 5.1.2 5. The

binding free energy of P188-FA complex in solvent was expressed as:

AGbinding= AGcomple;vc(19188+FA) —(AGP188 + AGFA)
Where AGeomplex IS free energy of pl88 and FA complex and AGpiss AGra are total energy of

PI1188 and FA individually. Free energy of AGcompiex, AGp1ss and AGra Were estimated using:
AGp1gg = AEp1ggumy + AGpigs(sowation)

AGpy = AEpaqumy + AGracsowation)
Where AEwm is potential energy in vacumn and estimated using:

AEMM = AEbonded + AEnonbonded
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AEyy = AEponea + (AEyaw + AEgec)
The AGsonation IS Solvation free energy and estimated using:
AGsowation = AGpotar + AGnopoiar
AGpolar Was calculated using the Poisson-Boltzmann (PB) equation and AGnonpolar Was
estimated using:
AGronpotar = YSASA + b
here vy is a coefficient related to surface tension of the solvent and b is fitting parameter
Y = 0.0226778 kd/Mol/A? and b = 3.84928 kJ/Mol

A bootstrap analysis was performed to calculate the stadard error.

A) B)

Figure 2. Structure of A) monomer units of P188, B) FA (PDB:2VUF).

5.6.3.2 Size, polydispersity index (Pl), zeta potential (ZP) and morphology

The size, Pl and ZP of FA-NS were analyzed by dynamic light scattering (DLS) using a

Zetasizer Nano ZS90 (Malvern Instruments Ltd., UK). The FA-NS were diluted with milli-Q

water in such a way that the scattering intensity was within the instrument’s sensitivity range,

after which is was analyzed. All measurements were performed in triplicate on three different

batches that were prepared separately. The morphological investigations were performed using

Jeol, JEM-1010 (Japan) transmission electron microscopy (TEM). The FA-NS suspension was

diluted appropriately and mounted onto the surface of a copper grid, with the excess sample
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being removed by blotting off with filter paper, after which it was dried at ambient temperature
and stained using 2% uranyl acetate solution before measurement %2, The images were captured
at an accelerating voltage of 100 kV

5.6.3.3. Differential scanning calorimetry (DSC)

The thermal profiles of the FA, P188 physical mixture and lyophilized FA-NS were determined
by DSC (Shimadzu DSC-60, Japan). Briefly, samples (2 mg) were placed in an aluminum pan
and sealed using a crimper, then heated to 300 °C at a constant rate of 10 °C/min under a
constant nitrogen flow of 20 mL/min using an empty pan as a reference.

5.6.3.4 X-ray diffraction (XRD) analysis

The XRD patterns were obtained using Bruker D8 advance diffractometer (Bruker, Karlsruhe,
Baden-Wirttemberg, Germany) equipped with a graphite monochromator operated at 40 kV
and 40 mA. CuKa radiation was used as the X-ray source with A=1.5406 A.

5.6.3.5 Fourier transform-infrared (FT-IR)

A Bruker Alfa spectrophotometer (Germany) was used for the FT-IR analysis of FA,
Poloxamer 188 (P188) and lyophilized FA-NS in order to determine any chemical changes that
occurred during formulation.

5.6.4 Rheology of the suspension

The rheological properties of the FA-NS suspension were measured by the MCR 302
Rheometer® (Anton Parr, Graz, Austria) using a 49.96 mm plate (0.995 °, shear rate from 0.01
to 100/s) at room temperature, with the experiments being performed in triplicate.

5.6.5 Physical stability study

Stability studies of both the wet and lyophilized nanosuspensions were performed at 4 °C and
room temperature over s 3-month period. The parameters evaluated for confirming the stability

were particle size, PI, ZP, settling behavior and physical appearance.
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5.6.6 Solubility studies

A shake-flask method was used to determine the solubility of FA-NS and FA in water. Excess
quantities of FA and lyophilized FA-NS were added to the milli-Q water (10 mL) and placed
in a shaking incubator at a temperature of 25 °C for 24 hours. The undissolved FA was removed
by filtering through syringe filters (cellulose acetate membrane, 0.2 um, GVS filter technology,
USA)* 83 with the FA content being determine by HPLC (Shimadzu, Japan) using a reported
method . The mobile phase was composed of acetonitrile and water (70:30, v/v) that was
adjusted to pH 3.5 with acetic acid. The flow rate and detection wavelength were 1.0 mL min°
1 and 210 nm respectively. The injection volume was 20 puL and was pumped through a
Nucleosil 100-5 C18 column (150 mm X 4.6 mm internal diameter). The regression equation
for the calibration curve was y = 186436x — 10635, and the linearity correlation coefficient r?
was 0.9994.

5.6.7 In vitro cytotoxicity

The biosafety of FA-NS suspension was assessed using a MTT assay method ©°.
Adenocarcinoma human alveolar epithelial cell line (A549) and Human embryonic kidney cells
(HEK 293) were plated in T-25 cell culture flasks at a density of 104 cells/mL and cultured in
DMEM media supplemented with 10% FBS (v/v) and 1% Pen-Strep (v/v). The cells were
grown at 37 °C in a humidified incubator with 5% CO2. The medium was exchanged every
two days. Each of the two cell lines containing 3000 cells were seeded into 96-well plates and
were further incubated for 24 h and the media was discarded and replaced with 100 puL of fresh
media. Thereafter, different dilutions of FA-NS containing 20, 40, 60, 80 and 100 pg of P188
were added to the 96-well plates (n=6 per concentration). After 48 h of incubation, sample-
laden medium was then removed from each well, discarded and replaced with 100 pL of fresh

culture medium and 20 pL. of MTT solution (5 mg/mL in PBS) in each well. Cell viability was
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assessed on a microplate spectrophotometer (Spectrostar Nano, Germany) at an absorbance
wavelength of 540 nm. The percentage cell viability was calculated as follows.

A540 nm treated cells
A540 nm untreated cells

% Cell viability = ( >X 100%

5.6.8 Antibacterial activity

5.6.8.1 In vitro antibacterial activity

The broth microdilution method was used to determine the minimum inhibitory concentration
(MIC) values. S. aureus and MRSA were grown overnight in Nutrient Broth at 37 °C in a
shaking incubator at 100 rpm and diluted with sterile deionized water to achieve a
concentration equivalent to 0.5 McFarland standard using a DEN-1B McFarland densitometer
(Latvia). Ina 96 well plate 135 pL of MHB was added followed by addition of 135 pL of bare
FA (1.5 mg/mL) (positive control) and FA-NS (1 mg/mL) in the first well then it was then
serially diluted. Both the bacterial cultures grown in Mueller—Hinton Broth (MHB) were
further diluted to 5 x 10° colony forming units per mL (CFU/mL) % and 15 pL was added to
the sample and MHB laden 96 well plate and incubated at 37 °C in a shaking incubator (100
rpm). After 24 h, 10 pL of the incubated broth was spotted on Mueller-Hinton (MHA) plates
and incubated for 24 h at 37 °C to determine the MIC values. The studies were performed in
triplicate using 1 % v/v DMSO solution as a negative control 3% ¢7,

5.6.8.2 Flow cytometry bacterial cell viability

Cell viability studies on the MRSA cells were performed following a flow cytometry assay
method. A volume of 15 pL of the bacterial suspension containing 5 x 10° colony forming units
(CFU)/mL was added to each well containing 135 pL of bare FA (positive control), and FA-
NS at their respective MICs, were incubated at 37 °C in a shaking incubator (100 rpm).
Percentage cell viability after 24 hours was determined using the flow cytometry method on a
BD FACSCANTO II (Becton Dickinson, CA, USA) fluorescence activated cell sorter 8%, 50

uL of each FA and FA-NS treated with bacterial cultures in each well were added to the flow
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cytometry tubes, each containing 350 pL of the sheath fluid, and vortexed for 5 min. The
mixture was incubated for 30 min with 5 puL of propidium iodide (PI), which is a non-cell wall
permeant dye, as well as the Syto9 cell permeant dye. PI fluorescence was excited by a 455 nm
laser and collected through a 636 nm bandpass filter, while Syto9 excitation was at 485 nm
laser and collection was through a 498 nm band pass filter %72, Untreated pure MRSA cells
were used as a negative control. Instrumentation settings included a sheath fluid flow rate of
16 mL/min, and a sample flow rate of 0.1 mL/min. Data with fixed cells were collected using
flow cytometer software (BD FACSDIVA V8.0.1 software [USA]). The voltage settings used
for the fluorescence-activated cell sorting (FACS) analysis were: 731 (forward scatter [FSC]),
538 (side scatter [SSC]), 451 (Syto9) and 444 for PI. Bacteria were initially gated using forward
scatter, with the cells of the appropriate size being gated and at least 10,000 cells collected for
each sample in triplicate, and their position as ‘live’ and ‘dead’ cells being determined. To avoid
any background signal from particles smaller than bacteria, the detection threshold was set at
1,000 events in SSC analyses 2.

5.6.8.3 In vivo antibacterial activity

A mouse skin infection model was used for in vivo antibacterial activity following a study
protocol approved by University of KwaZulu-Natal’s (UKZN) Animal Research Ethics
Committee (AREC) (Approval number: AREC/104/015PD). Humane care and use of animals
were in accordance with the guidelines of the AREC of UKZN and the South African National
Standard SANS 10386:2008. BALB/c male mice weighing 18 — 20 g were used in the study.
The back hair of mice was removed 24 h prior to the experiment, and the intact exposed skin
disinfected using 70% ethanol. 50 pL of MRSA saline suspension containing 1.5 x 108
CFU/mL was injected intradermally the following day. The mice were then divided into three
groups; treatment, positive and negative control (n = 4). After 30 minutes of infection, 50 pL

(0.05 mg of FA) of FA-NS (treatment), bare FA (0.25 mg) in 1% DMSO (positive control),
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and saline (negative control) were injected at the same site of infection for each treatment group
respectively 1030 7475,

The mice were kept under observation for 48 h with a normal 12 h of light and darkness
conditions at 19-23 °C and 55 * 10% relative humidity with adequate ventilation, after which
they were euthanized with halothane and the infected area of the skin harvested and
homogenized in 5 mL PBS (pH 7.4). Tissue homogenates were serially diluted in PBS (pH 7.4)
and 20 pL of the diluted homogenates were spotted on nutrient agar plates followed by
incubation at 37 °C for 24 h, after which the number of colonies were counted. The CFU/mL
was calculated using the equation:

number of colonies x dilution factor
CFU/mL =

volume of culture plate

Histomorphological assessments were performed on the freshly harvested excised skin from
the injection site. The skin samples were transferred directly after harvesting and the excisions
from the normal saline skin samples were fixed into 10% buffered formalin at 25°C for seven
days, dehydrated using ethanol and implanted in paraffin wax. The tissue wax blocks were
sectioned using a microtome (Leica RM2235, Leica Biosystems, Germany), the sections being
collected on slides, then dried and stained with hematoxylin and eosin (H&E). The sections
were examined and captured with a Leica Microscope DM 500 that was fitted with a Leica
ICC50 HD camera (Leica Biosystems, Germany).

5.6.9 Statistical analysis

One-way analysis of variance (ANOVA), followed by Bonferroni's multiple comparison test,
was used for statistical analysis. Individual groups were compared against each other using
paired t-test, with p values of <0.05 being considered statistically significant. Values are
represented as mean = SD. GraphPad Prism® software (Graph Pad Software Inc., Version 6,

San Diego, CA) was used for statistical analysis.
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5.7. Results

5.7.1 Formulation of the nanosuspension

The FA-NS nanosuspension was prepared by bottom up antisolvent precipitation, with the FA
being dissolved in a water miscible organic solvent to form a solution, then added to the
aqueous (antisolvent) phase containing a suitable stabilizer (surfactant) under vigorous stirring,
and sonication under ice. As the drug solution was added to the antisolvent, precipitation of
the drug molecules occurred, forming a new solid phase of drug nuclei, as per Kelvin’s Law
76, The formed nuclei have the tendency to condense into larger particles, which is energetically
favored due to Ostwald ripening, as shown in TEM images (Figure 3), resulting in various

formulation parameters being optimized before achieving a stable nanosuspension.

Figure 3. TEM image of smaller particles showing coalescence to form larger
thermodynamically stable larger particles before optimum FA-NS suspension was achieved.
5.7.2 Evaluation of the formulation variables to obtain optimized FA-NS

5.7.2.1 Effect of surfactants

A potential surfactant to provide a stable nanosuspension was identified from screening several
surfactants, the results being displayed in Table 1. FA drug concentration of 10 mg/mL, organic
solvent (methanol), sonication of 30% amplitude and sonication time of 5 min were fixed,
while different types of surfactants were varied. The effect of surfactant type on size, Pl and
ZP was investigated, with the particle sizes ranging from 200 nm to 1400 nm, and the P1 from
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0.1t0 0.6. The SDS produced FA-NS with the lowest particle sizes, followed by PVP and P188.
However, nanoprecipitation in the presence of P188 consistently generated nanosuspensions
with significantly lower Pl when compared to PVP (p = 0.0113) and SDS (p = 0.0288), with
P188 being chosen as the surfactant of choice.

Table 1. Effect of surfactant type on stabilizing the nanosuspension (n=3)

Surfactant Average size Pl ZP

PVP 563.5+6.18 0.354 £ 0.031 -10.6£0.24
P188 590.0 £ 7.92 0.254 £ 0.017 -13.1+£2.70
SDS 388.6 + 58.00 0.592 +£0.124 -62.5+6.34
RH 40 1159 + 21.36 0.330 + 0.045 -10.0+0.16
HS15 1289 + 28.00 0.412 £ 0.230 -7.21 +1.67
Tween 80 7724 +4.71 0.375 £ 0.049 -11.1 £ 0.07
EL 1403 + 18.69 0.462 + 0.004 -08.57 +1.16

Having chosen P188 as surfactant of choice, nanosuspensions with various concentrations of
P188(0.1,0.2,0.4,0.8, 1.6 and 2 % w/v) were prepared in order to determine the concentration
of the surfactant that offered FA-NS with the lowest possible size, Pl and a ZP in an acceptable
range.

As the concentration of surfactant increased from 0.1 % wi/v to 0.8 % w/v, the particle size
decreased from 590 nm to 518.4 nm respectively (Figure 4). However, above the 1 % wi/v the

size started to increase.
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Figure 4. Effect of surfactant concentration on particle size (n = 3).

5.7.2.2 Effect of organic solvent

Having determined the concentration of P188 suitable to formulate the nanosuspension,
solvents were evaluated for their effect on the size of the formed FA-NS. the FA concentration
of 10 mg/mL, sonication time (5 min) and 30 % amplitude were fixed. Methanol was
considered to be a suitable solvent as it produced FA-NA with lowest particle size (Table 2)
compared to ethanol (p = 0.0001) and acetone (p = 0001). It was also observed that FA-NS
formulated using methanol had a better PI than acetone and ethanol.

Table 2. Effect of organic solvents on nanosuspension formation (n=3)

Solvent Average size Pl ZP

Ethanol 950.0 £ 21.13 0.307 £ 0.036 -146+1.08
Acetone 896.0 £ 17.37 0.384 +0.058 -12.8 +0.85
Methanol 590.0 £ 07.92 0.254 + 0.017 -13.1+£2.70

5.7.2.3 Effect of drug concentration
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To achieve an optimum size and distribution of the FA nanocrystals, the effect of the drug
concentration was evaluated. The concentration of the drug was varied from 10 mg/mL to 30
mg/mL, while keeping the concentration of P188 at 1 mg/mL, methanol as the solvent, a fixed
sonication amplitude of 30 % and time a of 5 min. As the drug concentration increased from
10 mg/mL to 30 mg/mL, the particles sizes increased from 552 + 13.3 nm to 1336 £ 89.4 nm

and the Pl increased from 0.198 £ 0.017 to 0.498 + 0.042 (Figure 5)
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Figure 5. The effect of increasing drug concentration on particle sizes and homogeneity of the formed
particles.

5.7.2.4 Effect of sonication time and amplitude

By fixing the concentration of the surfactant (P188 = 1 % wi/v), drug concentration (FA = 10
mg/mL) and methanol as the solvent, the effect of ultrasonication was studied by changing the
sonication time and amplitude. Fixing the sonication amplitude at 30%, ultrasonication times
of 5, 7, 10, 15 and 20 min were employed to determine their effect. The particle sizes showed
the tendencies to decrease with increasing time. However, after 15 min, increasing the
sonication time did not show any significant (p>0.05) change in the particle size. Consequently,

the effect of ultrasonication amplitude (5 %, 10 %, 20 %, 30 %, 40 %) was also investigated

171



by fixing the time at 15 min. The trend similar to sonication time was witnessed, where initially
increasing ultrasonication amplitude led to reduced particle sizes, while above an amplitude of
30% there was no significant decrease in particle sizes

5.7.3 Characterization of FA-NS

The above screening studies identified the following: the surfactant (P188 = 1 % w/v), drug
concentration (FA = 10 mg/mL), methanol as an organic solvent, ultrasonication time and
amplitude of 15 min and 30 % respectively as the optimal conditions for preparing FA-NS that
resulted in monodisperse nanosuspension. The formulation was then subjected to detailed
characterization, as reflected below.

5.7.3.1 In silico studies

MD simulation of 30 nanosecond (ns) of FA and P188 (10 units per polymer block) molecule
in the presence of water molecules was performed to investigate the spontaneous binding,
interaction energy and free energy binding between P188 and FA. Figure 6 shows the
interaction between p188 and FA at different time points. The time evolution of the COM
distance between the P188 and FA revealed that there was spontaneous interaction between
both molecules starting from ~9 ns (Figure 6A). After interacting, the two molecules remained
in a stable complex until ~16.9 ns. From ~17 ns to ~17.3 ns of MD simulation for 300 ps, a
momentary break in the interaction between both the molecules was observed. However, at
~17.4 ns, the interaction was re-established between both the molecules and remained stable
until the end of the simulation. The average COM distance between the P188 and FA was
~14.37 A, and the average interaction energy between the P188 and FA was ~ -74.42 kJ/mol
from 9 ns to 30 ns (Figure 7B, black line). The interaction energy components showed that the
spontaneous binding between the P188 and FA was largely governed by VdW interactions
(Figure 7B, green line). The representative images from the trajectory revealed (Figure 6) that

after the binding of the FA, the P188 rearranged its conformations to establish stable
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interactions. The contribution to the AGiotal from the van der Waals (VdW) and electrostatic
interactions was represented by AEvaw and AEeec. The polar and nonpolar solvation energy
contributions to AGiotal were represented by AGpolar and AGnonpolar respectively. the P188-FA
binding was largely governed by hydrophobic interactions, with AEvaw being the most
favourable contributor. AGpolar was unfavourable for the binding, while favourable AGnonpolar
and a gain in intermolecular VdW compensated for an increase in the polar solvation energy,
and which lead to an overall favourable binding energy. The binding energy (AGtota) Of P188
with FA (Table: 3) was calculated using the MM-PBSA method from 9 ns to 30 ns, and the

binding energy was found to be -49.764 + 1.298.

t=0ns

Figure 6. Structures of FA and P188 at four different time points of simulations. A) at t=0 ns.
B) at t=10 ns. C) at t=13.5 ns. D) at t= 30ns. P1188 has been represented in CPK model and

FA is represented in the VdW model.
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Figure 7. A) time evolution of COM distance between P188 and FA; B) Time evolution of
interaction energy between the molecules and its non-bonded components.

Table: 3 Average Binding Energy and its Components Obtained from the MM-PBSA

Calculation for the P188-FA complex.

Contribution Energy (kJ/mol)
AEvdw -70.664 £ 1.680
AEcelec -3.810 £ 0.314
AGpolar 36.075+1.151
AGnonpolar -11.416 £ 0.233
AGtotal -49.764 + 1.298

5.7.3.2 Size, Polydispersity Index (P1), Zeta Potential (ZP) and Morphology of the optimal
formulation

The optimal formulation, using the above variables, generated monodisperse FA-NS with size,
Pl and ZP of 265 + 2.25 nm 0.158 + 0.026 and -16.9 * 0.794 respectively. The lyophilized and
water re-dispersed samples did not have significant changes in size, Pl and ZP (262.9 + 2.59
nm, 0.179 + 0.030 and -17.0 £ 1.01mV respectively). The TEM images showed discrete

spherical particles (Figure 8), with most of the population sizes being in the ranges that were

comparable to the sizes observed in the DLS study.
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Figure 8. Morphology of the optimized FA-NS particles

5.7.3.2 DSC, XRD and FTIR analyses

A DSC investigation was performed to establish the melting and crystallization behavior of
FA-NS and the formulation excipients. Endothermic peaks of P188 and bare FA were detected
at 54.48 °C and 118.68 °C respectively (Figure. 9(Il) A and B), while the Lyophilized FA-NS
only showed a sharp endothermic peak at 42.46 °C (Figure 9(11) D). The XRD diffractograms
pattern of P188 and FA showed 2 and 1 sharp peaks respectively (Figure 9lIl). The
diffractogram pattern of the FA-NS nanosuspension showed no peaks for FA, however, it
contained two sharp peaks in similar ranges to those of P188. The physical mixture was
analyzed and the peaks for all the respective excipients and FA were observed (Figure 9(I1) C).
An FT-IR was also conducted to evaluate if there were chemical changes in the drug during
formulation. The peaks for C=0 stretch for both lyophilized FA-NS and bare FA were observed
in the region of 1713 and 1645 cm™* respectively, although the peak in the FA-NS was
attenuated (Figure 91). Carboxylic OH stretching groups were also present at the region of 3435
and 3395, both for the lyophilized and bare FA. The ester peak was missing in the FA-NS but
was present in the bare drug at 1253.46 cm*. The disappearance might have been due to
hydrogen bonding between P188 and FA during formulation of the FA-NS, as these kinds of
interactions play a vital role in solubilizing the drug "®. Finger print region spectra of the FA-
NS was almost similar to FA alone, with the broad sharp peaks at 1079 and 1101 cm* for FA-
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NS and P188 that were lacking in the bare FA possibly being due to a C-O stretch of the ether

bonds present in P188.
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Figure 9. 1) FT-IR of bare FA, FA-NS and P188, Il) DSC thermogram of (A) P188; (B) FA (C) physical
mixture and (D) lyophilized FA-NS, 111) Diffractogram for (1) FA, (2) FA-NS and (3) P188.

5.7.4 Stability studies

5.7.4.1 Rheology

Rheology of the optimized FA-NS demonstrated a Newtonian flow with a relative viscosity of
1.335 + 0.049 mPa-s. After seven days the nanosuspension had a viscosity of 1.371 + 0.079,
which was 1.492 + 0.095 mPa-s after one month, indicating no significant change in the
viscosity of FA-NS (p > 0.05) during the storage period.

5.7.4.2 Physical stability study

The optimized formulation was further assessed for stability as both wet and lyophilized
formulations for three months at room temperature(rt) and 4 °C. The FA-NS was found to be

stable in both the lyophilized and wet states stored at 4 °C for the whole 3-month period of
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evaluation, with particle sizes below 300 nm. Furthermore, the nanosuspension did not show
any signs of coalescing and caking (Table 4). Room temperature studies revealed that the
lyophilized formulations were more stable than the wet ones, with particle sizes below 300 nm
after 60 days, increasing up to 500 nm after 90 days. The wet formulation was stable for two
months and at the end of the 90 days, the particles sizes were found to be above the nano ranges.

Table 4. Stability studies of FA-NS

Formulation Average size Pl ZP
Time 0
Wet 251.1+11.9 0.126 + 0.044 -15.2+1.73
Lyophilized rt 262.9 + 2.59 0.179 £ 0.030 -17.0+£1.01
30 days
Wet rt 386 £5.4 0.094 + 0.015 -21.2+16
Wet 4 °C 274 +3.33 0.179 £ 0.042 -154+23
Lyophilized rt 296.4 + 6.29 0.327 £ 0.072 -216+1.1
Lyophilized 4°C 276.4 +5.7 0.087 + 0.007 -20.8 + 2.96
60 days
Wet rt 426.8 + 13.53 0.263 + 0.164 -19.7+1.24
Wet 4 °C 267.6 + 52.94 0.176 £ 0.07 -15.6+ 1.02
Lyophilized rt 280.5 + 38.79 0.286 + 0.04 -16.5+1.74
Lyophilized 4 °C 298.3 + 43.96 0.321 £ 0.04 -15.04+4.08
90 days
Wet rt 1437.4 +681.2 0.908 +0.11 -16.42 +4.2
Wet 4 °C 221.3+7.9 0.307 £ 0.045 -16.42 £4.2
Lyophilized rt 481.53+ 70.70 0.50 £ 0.039 -15.7£12.9
Lyophilized 4 °C 292.4 +50.8 0.361+0.04 -10.35+0.43

5.7.4 Solubility studies

Solubility studies were conducted to determine the effect of formulating the FA into a

nanosuspension on aqueous solubility. The solubility of the FA and FA-NS was found to be

17.81 £5.30 pg/mL and 127.23 + 5.30 pg/mL respectively (Figure 10).
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Figure 10. Solubility of FA-NS and FA in water (n = 3)

5.7.5 In vitro cytotoxicity
Biosafety of FA-NS was assessed by quantifying viable mammalian cells after exposure of the
synthesized material. Two cell lines A549 and HEK 293 were employed to determine the bio-
safety of FA-NS in an in vitro cell culture system. The results showed cell viability ranging
from 75.71 to 100.89% across all concentrations in all cell lines tested (Figure 11) with no
dose-dependent toxicity within the concentrations studied.
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Figure 11. Cytotoxicity evaluation of FA-NS against various concentrations of P188 on A
549 and HEK 293 cells (n=6).

5.7.6 Antibacterial activity
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5.7.6.1 In vitro antibacterial activity

To evaluate the efficacy of the FA-NS, the MIC values of the bare FA and FA-NS MIC values
were determined against S. aureus and MRSA, with the results presented in Table 5. The MICs
for FA and FA-NS were 62.5 pg/mL and 3.9 pg/mL respectively against S. aureus, whereas
for MRSA, the values were 250 and 31.25 pg/mL respectively (Table 4).

Table 5. MIC of FA, FA-NS

SA (ug/mL) MRSA (pg/mL)
FA 62.5 250
FA-NS 3.9 31.25
1% vivDMSO NA NA

NA = No activity. The values are expressed as mean +SD, n=3

5.6.6.2 Flow cytometry bacterial cell viability

To quantify the number of bacterial cells killed at the MIC concentration of bare the FA and
FA-NS, a flow cytometry method was employed. MRSA was incubated in an FA and FA-NS
containing medium for 24 hours. PI1 fluorescent dye, which does not penetrate the cell wall,
and Syto9 cell wall permeant dye was used to differentiate the live from dead cells in the
population. The histograms showing the count of cells that internalized Pl after 24 h of
incubation are presented in (Supplementary information). The dead cells were sorted from the
population using a gate created beyond the fluorescence of viable cells (Figure 12) 7", When
the cells were incubated with the bare FA and FA-NS at their respective MIC, the average dead
cells in the bacteria population were 38.8 % + 2.35 and 73.14 + 1.35 % respectively, indicating
a significant difference (p<0.0001). Furthermore, when the MRSA cells were treated with FA
at the concentration similar to the MIC of FA-NS, the mean dead cells in the population were
found to be only 4.66 = 0.52 %. The FA and FA-NS dot plots of Pl verses syto9 fluorescence

69.71 showed similar results.
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Figure 12. A) represents viable cells (negative events), Red colour represents dead cells
percentage of dead cells in the population. B), C) and D) represents percentage dead cells after
treatment with 31.25 pug/mL of bare, bare FA and FA-NS at their respective MIC.
5.6.6.3 In vivo antibacterial activity
The efficacy of FA-NS was further evaluated in vivo using a mouse skin infection model.
Intradermal injections of MRSA were administered with to causing short-term localization of
the bacteria within the dermis skin layer without systemic infection. The number of colony-
forming units (CFUs) was quantified for each treatment group and converted to logio CFU/mL,
as represented in Figure 10. The mean bacterial load for untreated, FA and FA-NS groups were
6.58 + 0.01 (3,790,000 CFU/mL), 6.30 £ 0.062 (2,016,667 CFU/mL), and 4.35 + 3.12 log1o

CFU/mL (26,667 CFU/mL) respectively.
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Figure 13. MRSA burden after 48 hours of treatment. *denotes significant difference for FA versus the
untreated group. **denotes significant difference between bare FA verses FA-NS and ***denotes
significant difference between bare FA-NS verses the untreated (n=4).

During tissue harvesting, fluid filled abscesses at the injection site were visually observed in
skin samples from the MRSA injected control and the FA treated groups only, while none were
seen for the FA-NS treated groups (Figure 13). Histological analysis was also performed to
further assess the skin integrity and histomorphological changes after the MRSA intradermal
infection. The H&E images from the MRSA injected control group confirmed inflammation
and the formation of an abscess at the injection site (Figure 14B). The MRSA injected control
tissue image also displayed evidence of inflammation, as represented by the excessive swelling
of the dermal layer in the control image and the presence of white blood cells. The FA-NS
treated tissue did not display any definite abscess formation, although there was evidence of
minimal inflammation in the dermal layer (Figure 14D). In the MRSA injected control group,
there were signs that a high number of cells were infiltrated by the bacteria, as evidenced by
the large area of the abscess.
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Figure 14. A) Abscesses from untreated mice, Photomicrographs of the control and the treated
skin selections for light microscopy (LM) stained with H&E; (X40) (Scale bar = 500 pum) B)

Control (MRSA injected, untreated (Saline) C) Treated (FA), E) Treated (FA-NS).

5.7. Discussion

This study explored formulating a FA antibiotic (BCS class Il drug) into a nanosuspension
(FA-NS), and its ability to enhance aqueous solubility and antibiotic activity due to the small
sized particles. MD simulations were done to understand, at atomic level, the interaction
between FA and P188. FA-NS nanosuspension was prepared using bottom up antisolvent
precipitation technique. To achieve a stable nanosuspension, surfactants available in the
market, various organic solvents and other formulation parameters, such as sonication time and
amplitude, were screened. PVP, SDS and p188 were surfactants that provided nanosuspensions
with small particle sizes, with P188 being found to be the surfactant of choice, as it consistently
generated nanosuspensions with significantly low PI than PVP (p = 0.0113) and SDS (p =

0.0288). This may be due to the high hydrophilic—lipophilic balance (HLB value = 29) of the
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amphiphilic block copolymer that may have led to better interactions with hydrophobic FA
during the nanosuspension formation 8,

Having chosen P188 as the surfactant of choice, various surfactant concentrations were
screened to determine a suitable concentration that offers a stable nanosuspension. However,
it witnessed that when the surfactant concentration was > 1 % w/v, the particles sizes and the
Pl of the system increased. Studies have shown that increasing the surfactant above certain
concentrations favors micelles formation due to the self-assembly of the surfactant, rather than
providing stability to the nanosuspension, leading to the Ostwald ripening of the nanocrystals
in the antisolvent. "8, The formation of micelles at higher concentration of the surfactant
resulted in a decreased amount of the surfactant available at the aqueous/ FA crystals interface
to coat the surface of the formed solid phase, thus leading to Ostwald’s ripening of the crystals.
Various organic solvents were also screened to identify the one that provides the better
antisolvent effect for precipitating the FA once the organic solvent FA solutions comes in
contact with water. Of the screened solvents, methanol was found to be the suitable as it
generated a nanosuspension with better particle sizes, Pl and ZP, although we could not
conclusively state why it gave better particles sizes. These results could be ascribed to a higher
rate of mixing of the solvent/antisolvent per unit time and easy crystal drawing out, which
results in shorter time of nucleation and crystal growth, subsequently resulting in smaller
crystals 82

Drug concentration is also a critical variable in the formulation of the nanosuspensions, as
increasing the drug concentration could result in an increased number of primary particles per
unit volume and shorter interparticle distance 8. Consequently, this may lead to a chance of
forming an aggregate mass of loosely adhered particles by electrostatic charges, which can give
rise to increased sizes and lack of uniformity amongst the particles formed 8. This was also

witnessed in the formulation of FA-NS, as the drug concentration increased from 10 mg/mL to
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30 mg/mL, particles sizes increased from 552 + 13.3 nm to 1336 £+ 89.4 nm, and the PI
increased from 0.198 + 0.017 to 0.498 £ 0.042. This phenomenon has also been previously
reported for norfloxacin, griseofulvin, ampicillin, amoxicillin, and tetracycline
nanosuspensions 5% where above certain concentration of the drug particles coalesced to
larger particles.

To further reduce the particles sizes, sonication time and amplitude were evaluated. Increase
in sonication time and amplitude further reduced the particles sizes. However, above 15 min
and an amplitude 30% of sonication there was no significant decrease in the particle size. The
findings were in agreement with the work reported by Dengning et al in formulating a
nifedipine nanosuspension 8. After screening to optimize all the parameters, a stable
formulation was achieved. During formulation stirring provided a shear force that kept the
particles in constant Brownian motion %, sonication that broke down the aggregating solid
phase, while the surfactant coated the particles, resulting in electrostatic repulsion of
neighboring like-charged particles 8 and packing of the crystals into amorphous state that
resulted in a stable colloidal system that had particle size, Pl and ZP of 265 + 2.25 nm 0.158 +
0.026 and -16.9 £ 0.794 respectively.

MD simulations of 30 nanosecond (ns) between P188 (10 units per polymer block) and FA
were performed. The negative free Gibbs energy change ((AGtotal -49.764 £ 1.298) indicated
the degree of spontaneity of the binding process, and a higher negative value reflected a more
energetically favorable adsorption %. The favorable higher value of binding energy was also
an indication of a strong binding between the molecules, which would require a higher
repulsive energy to break the binding between the two molecules °*. Furthermore, the energy
components of the complex showed that the P188-FA binding was mainly governed by the
hydrophobic interactions, with van der Waals (VdW) energy AEvqw as the major contributor to

binding energy (Table 3). Previous studies on ABA triblock polymer, such as P188, have
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shown that, via its hydrophobic central block, the polymer forms strong interactions with the
hydrophobic drug at the core, resulting in non-solvent assessable regions, while the hydrophilic
blocks shell consequently forms water accessible regions. This arrangement leads to a stable
complex and increased water solubility of the hydrophobic drug °2. Figure 6 and a video
available in supplementary materials showed similar arrangements, thus the stabilization of the
nanosuspension and the increased solubility of the FA in water could have occurred via this
phenomenon of (ABA\) triblock polymer solubilization %3, These results were in agreement with
experimental studies that showed an increased solubility of the drug in water at the
simultaneously formation of a stable nanosuspension between P188 and FA.

DSC, XRD and F-TIR analyses were performed to investigate the melting and crystallization
behavior of FA-NS and its formulation excipients. The DSC results showed the absence of a
FA peak in the thermogram of the FA-NS, with a peak similar to the pure P188 being witnessed.
This was an indication that the P188 was coating the surface of the FA, which was transformed
into an amorphous state during the formulation process. The XRD diffractograms showed
similar results to DSC, with the absence of FA peaks in the formulation diffractograms. The
FT-IR analysis showed that both the formulation and physical mixture had the characteristic
peaks of P188 and FA, and that the resultant FT-IR patterns were in line with the previous
literature for nanosuspensions %%, The transformation of FA into FA-NS could have been due
to the rapid drawing out of the drug particles from the organic solvent, as the aqueous solution
with P188 as stabilizer coated the nascent drug particles nuclei, resulting in fast nucleation
termination, leading to amorphous nanoparticles °’. The patterns of the DCS thermograms,
XRD diffractograms and FT-IR wave numbers of P188 and FA in the formulation and the
crystalline pure P188 and bare drug was an indication that no new chemical compound was

formed 8.
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The possibility of interactions between like and unlike particles in the system define the
stability of a suspension *°. Ree and Eyring theory stated that viscosity is the sum of the
contribution of an indefinite number of unspecified units of flow 1% 101 Therefore, Ostwald
ripening, which might occur during the storage of a suspension, could result in viscosity
changes that can be used to determine the stability of a suspension. The FA-NS viscosity was
evaluated for a period of one month and showed that the nanosuspension had no significant
(p>0.05) change of its viscosity. This might have been due to constant Brownian motion as a
result of the small particle sizes that kept the system in a suspended state, the stabilizing effect
of the surfactant and the high similar zeta potential values within the particles that causes
repulsion, thus preventing Ostwald’s ripening 1°2. A further assessment of stability for wet and
lyophilized formulations were performed for three months at room temperature and 4 °C. FA-
NS was found to be stable in both lyophilized and wet state stored at 4 °C for the whole 3-
month, however, room temperature studies revealed that lyophilized formulations were more
stable than wet ones. These findings confirmed that the optimal storage conditions for the FA-
NS suspension was at 4 °C for both wet and lyophilized formulations.

The applicability of the optimized formulation was evaluated for solubility enhancement and
antimicrobial activity. Using a shake-flask method, the solubility was determined, there was a
7-fold increase in solubility of FA when formulated as FA-NS when compared to the bare drug.
This phenomenon could be explained using various theories, such as that of Ostwald—
Freundlich, in which the solubility of particles is inversely proportional to their radius 193-1;
Mihranyan and Stremme, who proposes increased solubility of nanoparticles due to surface
fractal dimension; % and Letellier et al, who postulated that the improved solubility of
nanoparticles is attributed to thermodynamic descriptions involving the internal energy of the
particles 1°7. An increase in the aqueous solubility of the BCS Class Il drugs, such as FA, is

significant for their efficiency. Due to their hydrophobicity, they partition well through
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biological membranes, although this does not translate to high bioavailability, as their partition
from the dosage form is limited due to their low water solubility. Therefore, formulating FA as
a nanosuspension could enhance the activity of the drug.

With the increase in application of nanoparticles there is a need for determination of their safety
before application. The biosafety of FA-NS nanosuspension was determined using an in vitro
MTT assay that quantifies viable cells upon exposure of the test materials to the two cell lines.
Since cell viability upon exposure to FA-NS was above 75%, this indicated that the formulation
met the requirements for biocompatibility and toxicity regulatory requirements for biomaterials
108 These results were in line with the findings in the literature where P188 has been reported
to be biosafe and has been for 50 years approved by FDA as a surfactant and therapeutically
used to reduce viscosity of blood before transfusion 1. Therefore, these findings show FA-NS
to be a biosafe and nontoxic nanosuspension.

The impact on antibacterial activity of formulating FA in a nanosuspension was evaluated using
the broth microdilution method. MIC values for the bare drug and FA-NS against S. aureus and
MRSA showed that FA-NS had a 16- and 8-fold lower activity against S. aureus and MRSA
respectively when compared to bare FA.

Generally, there was better activity against S. aureus than MRSA, which can be attributed to
its thicker cell walls. This thickened cell wall is due to multiple peptidoglycan layers that limit
the drug molecules from crossing the membrane. Enhanced activity of the antibacterial agents
after formulation as a nanosuspension have been reported elsewhere %12 This enhanced
activity by the FA-NS can be attributed to the nanoparticulate sizes of the nanosuspension that
lead to an increase in the surface area, which resulted in an increased solubility for better
penetration and higher uptake by the cells 123, In addition, drug adsorption efficiency is directly
proportional to the specific surface area of the adsorbent and inversely proportional to the

particle size %1% Smaller FA-NS nanoparticles may therefore have been effectively
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distributed and adsorbed on the bacteria surface than bare FA, thus enhancing activity.
Enhanced FA activity via the FA-NS underlines the use of nanosuspensions as a strategy to
formulate BCS class Il antibiotics as prospective drug delivery systems.

The viability of the surviving MRSA cells was determined using a flowcytometry method after
incubating the bacteria with bare FA and FA-NS. Cells treated with FA-NS had almost twice
the percentage population of dead bacterial cells, despite having an 8-fold lower MIC compared
to bare FA. Furthermore, when the MRSA cells were treated with FA at the concentration
similar to the MIC of FA-NS, the dead cells in the population were found to be 4.66 = 0.52 %,
which confirmed its efficacy. The minimal effect of the bare FA on MRSA at low concentration
was due to it having a bacteria static effect °,

This result could translate to lowering amount the dosage amount required for treatment, with
fewer dose dependent side effects that are related to FA, such as hepatic and hematological
toxicities 117, thus showing FA-NS nanosuspension’s superiority over FA.

Further evaluation of the efficacy of FA-NS was performed following a BALB/c mouse MRSA
in vivo skin infection model. After infection and treatment periods, the mice were euthanized,
their skin harvested and the number of CFUs quantified for each treatment group. A statistically
significant (p < 0.0001) reduction in bacterial load was recovered from the treatment groups
treated with FA-NS and FA when compared to the untreated group (Figure 14). Bacterial load
recovered from the groups treated with bare FA compared to the untreated groups showed that
the former had a significantly lowered (p = 0.0133) load of MRSA. The FA-NS treated samples
had a 142.12-fold decrease in bacterial burden compared to the untreated groups (p = 0.0002).
In comparing the bare FA and FA-NS, a 76-fold greater reduction of MRSA load in the groups
treated with FA-NS (p= 0.0081) was observed compared to the bare FA. These results
confirmed the ability of FA to enhance antibacterial activity when it is formulated as a

nanosuspension, which can prove critical in treating infections of MRSA origin.
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Histomorphological changes were also investigated as a suggestive means of identifying the
extent of tissue destruction in the dermal layers that were infected with MRSA during the 48 h
study. As all bacteria are recognized as foreign to the body, there is an innate immune response

after their introduction into the intradermal layers 8

, Which causes inflammation upon entry
of the bacteria into the tissue, the degree of the response being proportional to the bacterial
load. The histomorphological evaluations directly correlated with the findings of the bacterial
load from each group of the in vivo antibacterial study, as the FA-NS treated tissue displayed
a low isolated bacterial load and showed the least histomorphological signs of tissue
inflammation. However, the MRSA injected negative control group and the FA treated group
displayed a statistically significantly larger number of isolated bacteria, more
histomorphological signs, and evidence of tissue inflammation and abscess formation. These

histomorphological evaluations further confirmed the antimicrobial superiority of the novel

FA-NS.

5.8 Conclusion

Nanotechnology derived novel formulations are showing significant potential for improving
the efficacy of existing antibiotics. More than 40% of NCEs (new chemical entities) developed
in the pharmaceutical industry are practically insoluble in water, this being a major challenge
for formulation scientists. In this study, a new FA-NS formulation was successfully formulated
using a bottom-up antisolvent precipitation with the goal of simultaneously enhancing
solubility and antibacterial activity. After screening of various surfactants, solvents and
formulation parameters an optimized nanosuspension, FA-NS with a particle size in the range
of 200 nm was obtained. MD simulations revealed that there was spontaneous binding between
FA and P188 in the aqueous milieu, with the average interaction energy and distance between
the molecules being ~ -74.42 ki/mol and ~14.37 A. Further investigation on contributions of

various energy components of the complex showed that Vander Waals interactions was the
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major contributor, and that the binding energy between FA and P188 was -49.764 + 1.298
kJ/mol. This further supported the experimental work of the formation of a stable
nanosuspension between FA and P188. The formulation of FA as a FA-NS improved its
solubility by 8-fold. The assessment of the in vitro antibacterial activity proved the superiority
of the FA-NS over the bare FA to control the growth of susceptible and resistant S. aureus. In
vivo antibacterial activity against MRSA using mice a skin infection model showed that FA-
NS was more efficient in killing MRSA compared to bare FA. With these promising results,
the formulated novel FA-NS nanosuspension can therefore be further exploited as a
nanoantibiotic to fight against other bacteria, and this method possibly being employed to
enhance the efficacy of other BCS class Il drugs for various disease conditions.
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CHAPTER 6, CO-AUTHORED PAPERS

6.1 Introduction

In addition to the first authored experimental papers in Chapters, 3, 4 and 5 focusing on the
aims 1, 2 and 3. | have also been involved in other research projects within our group as a team
member. These projects also focused on the broad aim of novel nanobased strategies to
effectively treat bacterial infections, these papers have been included in the thesis. This chapter
therefore includes two co-authored experimental papers and one review article published in ISI
international journals: International Journal of Pharmaceutics (Impact Factor = 3.902), Journal
of Biomolecular Structure & Dynamics (Impact Factor = 3.107) and Journal of Drug Delivery

Science and Technology (Impact Factor = 2.297).
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6.2 Published co-authored paper 1

Synthesis of an oleic acid-based pH-responsive lipid and its application in nanodelivery of

vancomycin

Mhule D., Kalhapure, R. S., Jadhav, M., Omolo, C. A., Rambharose, S., Waddad, A. Y., Mocktar,
C., & Govender, T. (2018). International Journal of Pharmaceutics, 550(1-2), 149-159. (appendix
X)

6.2.1 Abstract

Stimuli-responsive nano-drug delivery systems can optimize antibiotic delivery to infection sites.
Identifying novel lipids for pH responsive delivery to acidic conditions of infection sites will
enhance the performance of nano-drug delivery systems. The aim of the present investigation was
to synthesize and characterize a biosafe novel pH-responsive lipid for vancomycin delivery to
acidic conditions of infection sites. A pH-responsive solid lipid, N-(2-morpholinoethyl) oleamide
(NMEOQO) was synthesized and used to prepare vancomycin (VCM)-loaded solid lipid nanoparticles
(VCM_NMEO SLNs). The particle size (PS), polydispersity index (PDI), zeta potential (ZP) and
entrapment efficiency (EE) of the formulation were 302.8+0.12nm, 0.23+0.03,
—6.27+£0.017mV and 81.18 £0.57% respectively. The study revealed that drug release and
antibacterial activity were significantly greater at pH 6.0 than at pH 7.4, while the in silico studies
exposed the molecular mechanisms for improved stability and drug release. Moreover, the
reduction of MRSA load was 4.14 times greater (p <0.05) in the skin of VCM_NMEO SLNs
treated mice than that of bare VCM treated specimens. Thus, this study confirmed that NMEO can
successfully be used to formulate pH-responsive SLNs with potential to enhance the treatment of

bacterial infections.
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6.3 Published co-authored paper 2

Antimicrobial cell penetrating peptides with bacterial cell specificity: pharmacophore

modelling, quantitative structure activity relationship and molecular dynamics simulation

Mbuso F., Kalhapure, R. S., Agrawal, N., Dhumal D., Omolo C.A., Akamanchi K.G., and
Govender T. (2018), Journal of Biomolecular Structure & Dynamics,1-31 (Just accepted),
DOI:10.1080/07391102.2018.1484814 (Impact factor 3.107). (appendix XI)

6.3.1 Abstract

Current research has shown cell-penetrating peptides and antimicrobial peptides (AMPS) as
probable vectors for use in drug delivery and as novel antibiotics. It has been reported that the
higher the therapeutic index (TI) the higher would be the bacterial cell penetrating ability. To the
best of our knowledge, no in-silico study has been performed to determine bacterial cell specificity
of the antimicrobial cell penetrating peptides (aCPP’s) based on their TI. The aim of this study
was to develop a quantitative structure activity relationship (QSAR) model, which can estimate
antimicrobial potential and cell-penetrating ability of aCPPs against S. aureus, to confirm the
relationship between the T1 and aCPPs and to identify specific descriptors responsible for aCPPs
penetrating ability. Molecular dynamics (MD) simulation was also performed to confirm the
membrane insertion of the most active aCPPs obtained from the QSAR study. The most
appropriate pharmacophore was identified to predict the aCPP’s activity. The statistical results
confirmed the validity of the model. The QSAR model was successful in identifying the optimal
aCPP with high activity prediction and provided insights into the structural requirements to
correlate their T1 to cell penetrating ability. MD simulation of the best aCPP with 1-palmitoyl-2-
oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer confirmed its interaction with the membrane
and the C-terminal residues of the aCPP played a key role in membrane penetration. The strategy
of combining QSAR and molecular dynamics, allowed for optimal estimation of ligand-target

interaction and confirmed the importance of Trp and Lys in interacting with the POPC bilayer.
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6.4 Published co-authored paper 3

Conjugates and nano-delivery of antimicrobial peptides for enhancing therapeutic activity.

Faya, M., Kalhapure, R. S., Kumalo, H. M., Waddad, A. Y., Omolo, C., & Govender, T. (2017).
Journal of Drug Delivery Science and Technology, 44, 153-171. (Impact factor 2.297 (appendix
XI1lI)

6.4.1Abstract

The current global crisis of antibiotic drug resistance is driving the search for novel treatment
approaches. Antimicrobial peptides (AMPs) are small molecular weight proteins with varying
number of amino acids found in both eukaryotes and prokaryotes. They have recently been targeted
as novel antimicrobial agents with the potential to treat multiple-drug resistant infections. Their
conjugation with various classes of materials such as antibiotics, polymers, DNA, salts, phenolic
derivatives and their delivery via nano carrier systems are strategies being used to enhance their
therapeutic efficacy. An update and understanding of their applicability as conjugates and nano
delivery are essential to optimise their development and activity. This review focuses on
computational studies depicting their permeation through model membranes and identification of
physicochemical descriptors for activity. It also highlights the potential of AMPs and their
conjugates and encapsulation into nano delivery systems for improving activity. Further, research
to realise their potential as conjugates and delivery via nano carrier systems are also identified. To
our knowledge, this current review presents the first account that comprehensively highlights
AMPs targeting various microorganisms, and their conjugation to different compounds to
showcase the potential for nano delivery alone or in their respective conjugates for enhanced

activity.
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CHAPTER 7, CONCLUSION
7.1 General conclusions

Nanotechnology derived formulation development approaches are showing great potential to
improve the efficacy of existing antibiotics. The current global crisis of bacterial resistance
demands new materials to develop novel drug delivery systems that alter the physical chemical
properties of drugs that can counteract antibacterial resistance and improve efficiency of drugs.
The broad aim of this study was to design and synthesize advanced materials, formulate nano-
based strategies and explore their potential for enhancing antibacterial activity and targeting
infection sites. The specific research aims of this study were therefore: (1) explore the potential of
delivering antimicrobials via nanovesicles formulated from the modification of generation one
Poly ester amine dendrimer (G1-PEA) with a diblock copolymer of methoxy poly (ethylene
glycol)-b-poly(e-caprolactone) (mPEG-b-PCL) to yield linear block copolymer dendrimer hybrid
3 arm star polymer (3-mPEA), (2) to synthesize novel fatty acid quaternary lipid and employ it in
formulation of liposomes with “On and Off” pH responsive switches for infection site-specific
delivery of antibiotics, and (3) to prepare a nanosuspension (FA-NS) of FA to simultaneously

enhance its aqueous solubility and antibacterial activity against S. aureus and MRSA.

The main conclusions generated from the research data are summarised below:

Aim 1:

e A novel linear polymer dendrimer hybrid star polymer (3-mPEA) was successfully
synthesized, and FT-IR, *H NMR and 3C NMR, HRMS, gel permeation chromatography
and MALDI-TOF analyses confirmed the successful synthesis and structure of 3-mPEA.

e Cytotoxicity studies were performed using an MTT assay on four mammalian cell lines i.e.
human breast adenocarcinoma (MCF 7), adenocarcinoma alveolar basal epithelial cells (A
549), liver hepatocellular carcinoma (HepG 2) cell-lines and human embryonic kidney
cells 293 (HEK 293), which revealed the linear polymer dendrimer hybrid star polymer to
be non-cytotoxic.

e 3-mPEA was employed to formulate vancomycin loaded nanovesicles., which exhibited
size Pl and ZP of 52.48 + 2.6 nm, 0.103 + 0.047, -7.3 £ 1.3 mV respectively, with the
encapsulation efficiency being 76.49 + 2.4%. The VCM release from the drug loaded

nanovesicles was found to be sustained, with a 65.8 % release over a period of 48 h.
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Aim 2:

The in vitro antibacterial test revealed that the drug loaded nanovesicles had 8- and 16-fold
lower minimum effective concentration (MIC) against S. aureus strains and MRSA
compared to the free drug. The flow cytometry study showed 3.9-fold more dead cells of
MRSA in the population when samples were treated with the drug loaded nanovesicles
than the bare VCM at a concentration of 0.488 pg/mL of the drug. An in vivo skin infection
mouse model showed a 20-fold reduction in the MRSA load in the drug loaded
nanovesicles treated groups as compared to bare VCM.

The MD simulations showed spontaneous self-aggregation of 3-mPEA, with interaction
energy between the two monomers being -146.07 + 4.92 kJ/mol, and Van der Waals
interactions playing a major role for the aggregates’ stability. The in silico experiments
explained the stability of the nanovesicles and the arrangement of 3-mPEA that led to the
formation of unique ultra-small vesicles.

Human serum albumin (HSA) binding studies with Microscale Thermophoresis (MST)
showed that the 3-mPEA did not have any binding affinity to the HSA when compared to

the control, which showed its potential for long systemic circulation properties.

A novel quaternary fatty acid-based lipid (QL) was synthesized and FT-IR, *HNMR
JLBCNMR and HRMS analyses, confirmed the successful synthesis and structure of the
lipid.

Cytotoxicity studies performed using an MTT assay on three mammalian cell lines HELA,
A549 and HEK-293 revealed that QL was a biosafe lipid.

QL lipid was employed in the formulation of liposome with pH responsive “On and Off”
switches. The formulated VCM loaded liposomes were found to have size, PDI and ZP of
98.88 £ 01.92, 0.204 + 0.030 and -17.33 £ 2.95 at pH 7.4 respectively. The QL-liposomes
had a negative ZP at pH 7.4 that shifted to positive charge accompanied by breakdown of
the system at acidic pH. The encapsulation efficiency was found to be 43.06 + 5.86 %. The
in vitro VCM release of the liposome was faster at acidic pH than at the physiological pH.
The in vitro antibacterial studies against Methicillin susceptible Staphylococcus aureus
(MSSA) and MRSA showed lower MICs and extended activity over 72 h for all the
formulations compared to the bare VCM, which showed no activity after 24 hrs. The
liposome had 4-fold lower MIC at pH 7.4 and 8- and 16-fold at pH 6.0 against both MSSA
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and MRSA when compared to the bare drug. Flow cytometry studies indicated that the
QL-liposomes had similar killing percentage of MRSA cells compared to the bare VCM,
despite them having a 4-fold lower MIC in comparison to the bare drug. In vivo studies
showed that the amount of MRSA recovered from mice treated with formulations was
approximately 189.67 and 6.33-fold lower than the untreated and bare VCM treated mice
respectively.

MD simulation of QL lipid and the POPC membrane showed that the lipid spontaneously
bonded to the bilayer membrane, with both electrostatic and Van der Waals interactions
playing a major role for the binding.

The efficacy of the OA-QL liposome in clearing the intracellular MRSA was determined
by infecting the macrophages (TPH-1) and Human embryonic kidney cells (HEK-293).
The OA-QL liposomes showed 567 and 60- fold reduction of intracellular bacteria when

compared to bare VCM respectively.

Fusidic acid nanosuspension (FA-NS) with particle size, Pl and ZP of 265 £+ 2.25 nm, 0.158
+ 0.026 and -16.9 + 0.794 respectively was successfully formulated from Poloxamer
188(P188) after screening different surfactant available in the market.

Further characterisation of FA-NS by DSC, XRD and FT-IR showed that during
formulation, no new chemical compound was formed and that the FA was converted into
amorphous form in the suspension.

FA-NS successfully increased the water solubility of FA by a 7-fold when compared to the
bare drug.

In vitro antibacterial activity revealed there was a 16- and 18-fold enhancement in activity
of the FA-NS against S. aureus and MRSA respectively compared to the bare FA. A flow
cytometry study showed that the MRSA cells treated with FA-NS had almost twice the
percentage population of dead bacteria, despite having an 8-fold lower MIC compared to
bare FA. The in vivo skin infected mice showed a 142- and a 76-fold reduction in the
MRSA load in skin treated with FA-NS when compared to that of the untreated and bare
FA respectively.

Molecular dynamics (MD) simulation showed spontaneous binding between FA and P188,

with the free binding and interaction energy between them being -74.42 kJ/mol and -49.764
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+ 1.298 kJ/mol, respectively, with the Van der Waal’s interactions playing a major role in

the spontaneous binding.
The findings of this study therefore confirmed that the newly synthesized material as biosafe for
biomedical application and their potential to develop novel drug delivery systems, which enhanced
the activity of the antibiotics against the MSSA and MRSA. Furthermore, the studies also
converted FA into a novel nanosuspension. The nanobased systems reported in this study include:
V-3-mPEA, OA-OA-QL lipo and FA-NS as approaches to treat susceptible and resistant S. aureus
infections. The studies presented in Chapter 6 as a co-author on other publications by the group
also confirmed the potential of pH responsive solid lipid nanoparticles loaded for efficient
treatment of bacterial infections and designing antimicrobial cell penetrating peptides for bacterial

membrane specificity.
7.2 Significance of the findings in the study

The newly synthesized material and designed Nano formulations VV-3-mPEA, vancomycin loaded
OA-OA-QL lipo and FA-NS were successfully employed to address the limitations associated with
conventional dosage forms of antibiotics and antibacterial resistance. The significance of the
findings in this study include the following:

New pharmaceutical products: The novel materials 3-mPEA and QL lipid were synthesized.
This will widen the pool of available pharmaceutical excipient for preparing new medicines.
This study also introduced three pharmaceutical products V-3-mPEA, OA-OA-QL lipo, and
FA-NS. This can stimulate local pharmaceutical industries to manufacture cost-effective
superior medicines.

Improved patient therapy and disease treatment: The newly designed V-3-mPEA, OA-OA-QL
lipo and FA-NS, nano systems were formulated successfully with improved antibacterial
potential against S. aureus and MRSA. The novel systems lowered the MIC of the loaded
drugs significantly. This could lead to lowering the treatment doses and dosages without
affecting therapeutic outcomes. These findings therefore prove the potential of these systems
in improving patient therapy and treatment of bacterial infections, and thereby ultimately
improving the quality of life as well as saving lives.

Creation of new knowledge to the scientific community: The various studies and their findings
have contributed to the pharmaceutical sciences knowledge database in several ways. These

include the following:
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e New knowledge in the synthesis, characterisation and determination of the toxicity
profile of the hybrid star polymer and QL lipid was generated. The properties of the
drug loaded 3-mPEA nanovesicles, drug delivery systems were generated using
various in vitro, in silico and in vivo techniques.

e Atomistic mechanism of interaction, and the process of spontaneous binding between
the fusidic acid and the surfactant P188, was successfully identified. The effect of pH
on the switches inserted in the liposome, the binding of the OA-QL liposome on the
model bacterial membrane, and the self-assembly of 3-mPEA in water was also
identified via MD simulations.

e Formulation parameters and processes of 3-mPEA nanovesicles, OA-QL liposome and
FANS were identified using various experimental techniques.

e The in-depth antimicrobial testing from MIC determination, flow cytometry and in
vivo antibacterial infection models successfully showed the in vitro and in vivo
correlation of the 3-mPEA nanovesicles, OA-QL liposome and the FA-NS nano drug
delivery systems.

Stimulation of new research: The research findings of the various studies and the successful
development of V-3-mPEA, OA-QL lipo and FA-NS can stimulate new research areas,
including the following:

e The newly synthesized 3-mPEA and QL can be utilized for delivering other classes of
drugs to treat various disease conditions, such as cardiovascular diseases, HIV/AIDS,
pain treatments (central nervous system related conditions), gene therapy related
diseases, metabolic diseases etc.

e The successful formulation and in vitro and in vivo characterisation of the reported
nano-drug delivery systems in this study could stimulate research into the formulation
of other nano-drug delivery system for other classes of drugs to treat other diseases.

e The newly designed FA-NS, due to its ability to enhance the solubility of FA, could
lead to the application of this strategy to stimulate research to develop nanosuspensions
in other BCS class Il drugs.

e The successful elimination of intracellular MRSA with the novel OA-QL lipo
demonstrated the potential of applying pH responsive liposomes to eliminate

intracellular bacteria and can stimulate research in the synthesis of other classes of pH
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responsive lipids and novel drug delivery systems to treat bacteria that hide inside the

cells, thereby acting as reservoirs and a source of resistance strains.

7.3 Recommendations for future studies

Although these approaches have demonstrated the potential of V-3-mPEA, FA-NS and OA-QL
lipo as novel nano-drug delivery systems to eradicate the problem of bacterial resistance,

additional studies are necessary to improve their formulations to ensure eventual regulatory

approval for patient use.

The following studies are proposed:

In the case of V-3-mPEA, there is a need for coarse grain MD simulations to build a system
that can completely self-assemble into drug loaded nano-vesicles and to simulate the

release of drug from the system.

The qualitative analysis of the bacterial cell protein degradation performed using SDS-
PAGE technique to understand the mechanism of antibacterial action of V-3-mPEA and
OA-OA-QL lipo can be upgraded with a quantitative determination of a specific protein
using techniques, such as western blot or dot blot analysis.

The successfully developed nano-vesicles system for vancomycin delivery can be loaded
with different classes of antibiotics and tested against various bacteria to evaluate its
advantages over different antibiotics.

In the case of the FA-Ns study, the next phase would be to formulate other BCS class 11
drugs using this simple technique, as well as surfactants in the market to further enhance

their activity and water solubility.

Long-term stability studies using ICH conditions to assess the physical and chemical

stability of optimised formulations must be undertaken to confirm their shelf life.

In vivo IV infection model, bioavailability and pharmacokinetic studies followed by
clinical trials on both the developed nano-systems could be performed in order to achieve

approval for market introduction.

In vivo acute, intermediate and long-term toxicity studies models can be performed to
determine the full toxicological profile of the material and the formulations reported in this

study.
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e A method for the bulk production of the nano-systems presented in this study could be

developed in order to enable their applications for pharmaceutical industries.

7.4 Conclusion

The findings of this study therefore confirm the potential of the various newly developed nano-
based approaches studied for improving the treatment of susceptible and resistant bacterial
infections. This study has made a significant contribution to the field of drug delivery in addressing
problems associated with current antibiotic therapy. The ultimate realisation of nano-technology
to address the current global antibiotic drug therapy crisis will be dependent on future intensive
and multidisciplinary research. This strategic approach will play a pivotal role towards improving
globally the treatment of diseases associated with bacterial infections, thereby saving lives and

improving the quality of lives of communities.
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ARTICLE INFO ABSTRACT

The development of novel materials is essential for the efficient delivery of drugs. Therefore, the aim of the study
was to synthesize a linear polymer dendrimer hybrid star polymer (3-mPEA) comprising of a generation one poly
MRSA (ester-amine) dendrimer (G1-PEA) and a diblock copolymer of methoxy poly (ethylene glycol)-b-poly(e-capro-
Linear polymer dendrimer star polymer lactone) (mPEG-b-PCL) for formulation of nanovesicles for efficient drug delivery. The synthesized star polymer

Keywords:
Resistance

5‘;::;; cin was characterized by FTIR, 'H and '3C NMR, HRMS, GPC and its biosafety was confirmed by MTT assays.
Nanoves}i,cles Thereafter it was evaluated as a nanovesicle forming polymer. Vancomycin loaded nanovesicles were char-
Antibacterial acterized using in vitro, molecular dynamics (MD) simulations and in vivo techniques. MTT assays confirmed the

nontoxic nature of the synthesized polymer, the cell viability was 77.23 to 118.6%. The nanovesicles were
prepared with size, polydispersity index and zeta potential of 52.48 = 2.6nm, 0.103 * 0.047,
—7.3 £ 1.3mV respectively, with the encapsulation efficiency being 76.49 + 2.4%. MD simulations showed
spontaneous self-aggregation of the dendritic star polymer and the interaction energy between the two mono-
mers was —146.07 * 4.92, Van der Waals interactions playing major role for the aggregates stability. Human
serum albumin (HSA) binding studies with Microscale Thermophoresis (MST) showed that the 3-mPEA did not
have any binding affinity to the HSA, which showed potential for long systemic circulation. The vancomycin
(VCM) release from the drug loaded nanovesicles was found to be slower than bare VCM, with an 65.8% release
over a period of 48 h. The in vitro antibacterial test revealed that the drug loaded nanovesicles had 8- and 16-fold
lower minimum inhibitory concentration (MIC) against methicillin sensitive Staphylococcus aureus and methi-
cillin-resistant S. aureus strains (MRSA) compared to free drug. The flow cytometry study showed 3.9-fold more
dead cells of MRSA in the population when samples were treated with the drug loaded nanovesicles than the
bare VCM at concentration 0.488 pg/mL. An in vivo skin infection mice model showed a 20-fold reduction in the
MRSA load in the drug loaded nanovesicles treated groups compared to bare VCM. These findings confirmed the
potential of 3-mPEA as a promising biocompatible effective nanocarrier for antibiotic delivery.

1. Introduction

Since the discovery of penicillin by Sir Alexander Fleming in 1928,
many lives have been saved by antibiotics [1]. However, in the last
decade, the world has witnessed a dramatic upsurge in the number of
bacterial pathogens that are resistant to multiple antibacterial agents
[2,3], coupled with the drying up of the antibiotic pipeline [4-6], with
major pharmaceutical companies leaving the antibiotic development
field [2]. One of the bacteria that causes significant health care chal-
lenges is Staphylococcus aureus (SA) and its resistant strain, known as
methicillin-resistant Staphylococcus aureus (MRSA), which is insensitive

* Corresponding author.

to a wide range of antibiotics [7]. Recent findings indicate that of the
385 MRSA isolates, 36 (9.35%) are resistant to the routinely used an-
tibiotics [8]. The World Health Organization recognizes that the dearth
of new and novel antibiotics, particularly those with new modes of
action, as well as the need to identify innovative strategies to enhance,
protect and potentiate those available in the market to avert returning
to a pre-antibiotic era [9-12].

Antimicrobial resistance is a complex and a multifaceted problem.
Some of the contributors to antibiotic resistance are sub-lethal con-
centrations of the antibiotics at the infection site, low patients' com-
pliance due to high frequency of administration and side or adverse
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effects; some of which are dose dependent which leads to development
of resistant strains in the population [13]. In addition to antibiotic
stewardship and discovery of new potent drugs, novel drug delivery
systems, are demonstrating the potential to solve some of the patient
and dosage form factors related to the development of resistance by
extending the circulation time, targeting infectious sites, protecting and
enhancing antibacterial activity of pristine drugs with prominent ex-
amples such as Lipoquin®, Pulmaquin® and MAT2501, an enchocleated
formulation of amikacin [14-17].

Core-shell aggregates of linear polymers have both a hydrophobic
(core) and hydrophilic (shell) parts that self-assembles in aqueous
milieu to form micelles, which have the ability to encapsulate hydro-
phobic drugs in the core [18,19]. However, premature dissociation of
the self-assembled unimers during circulation in the bloodstream can
cause a burst release, resulting in high concentration of drugs in the
bloodstream [20,21]. Dendrimers as drug delivery materials have
widely been reported due to their attractive properties such as high
degree of branching, multivalency, globular architecture and well-de-
fined molecular weight. Their unique properties make them suitable
materials for drug delivery [22]. They are being employed as alter-
native to linear block polymers [23]. However, there are some concerns
about toxicity and biocompatibility of the dendritic nanostructures re-
garding their applications in drug delivery such as damage to cell
membrane integrity, chromosomes and mitochondria, oxidative stress,
genotoxicity, and stimulates immune response [24].

To address the problem associated with dendrimer nanostructures
and linear polymers, such as toxicity, biocompatibility and premature
disassociation, several research groups have resorted to modifying the
end groups of the dendrimers using linear polymers star results to hy-
perbranched polymers with dendrimer cores. This strategy embodies
some positive traits from both dendrimers and the attached linear
polymers for efficient drug delivery [25,26]. Moreover, the ability to
functionalize their end groups, fine-tunes dendrimers for targeted de-
livery, long circulation [27], biodegradability [28], and covalent at-
tachment of the drugs for sustained release [29]. Most reports for this
strategy have been for the delivery of anti-cancer drugs [30,31], there is
a dearth of literature on the evaluation of hybrids of linear polymer
shells with dendrimer cores as carriers for enhancing antibiotic delivery
despite their numerous advantages. There is therefore a need to develop
and employ this strategy for antibacterial delivery as this could offer
biosafe and effective drug delivery system for antibiotics.

Typically, linear polymer-dendrimer hybrids (LPDH) self-assemble
to become core-shell aggregates, such as classical micelles [32] and
unimolecular micelles [33] However, there is limited literature on ve-
sicular self-assembly, and most of the reported vesicles have shown to
be large in size with a poor polydispersity index (PI) [34-36]. Hence,
there is a need for a synthesis of novel LPDHs that assemble into ultra-
small nanovesicles with lower PI to advance the field by offering re-
producible and predictable biodistribution and activity, and have wider
applications, such as drug delivery, diagnostics and imaging.

The experimental, characterization and information for vesicles
from polymers, such as their size, geometric structure, polydispersity is
well understood [37]. However, there is a need to understand the self-
assembly process and molecular dynamics (MD) simulations are being
employed to explain self-assembly process of the polymers [38]. Thus,
providing a detailed molecular insight at atomic level on how self-as-
sembly occurs and the forces that play important roles for the stability
of the formation of the structures are of paramount importance in drug
delivery.

In this study, we therefore propose the use of generation one poly
ester amine dendrimer (PEA) and methoxypoly(ethylene glycol)-b-poly
(e-caprolactone) (mPEG-b-PCL) linear block polymer to synthesize a
novel LPDHs with ability to self-assemble into nanovesicles. PEA den-
drimers have shown to have better characteristics, such as bio-com-
patibility, nontoxicity, biodegradability, a higher drug loading and drug
encapsulation [39,40], flexibility and sustained release properties than
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other dendritic polymer counterparts [41-43]. mPEG-b-PCL linear has
proven to have biocompatibility, non-toxicity and biodegradable ex-
cellent solvating properties [44], we envisage the resulting LPDHs to be
efficient and safe biomaterial for drug delivery.

There are several reports on antimicrobial drug delivery using
PEGylated PAMAM dendrimers to form LPDHs [45,46]. This highlights
the feasibility and importance of using this strategy to deliver anti-
microbials. The aim of this study was therefore to explore the potential
of delivering antimicrobials via nanovesicles formulated from the
modification of generation one PEA dendrimer with mPEG-b-PCL block
polymer to yield a 3-arm star polymer (3-mPEA) with a dendrimer core
and block copolymer shell. Most of dendrimer modification with the
linear polymers has been through PEGlyation, however, we envisaged
that the use of mPEG-b-PCL block polymer will offer a better drug de-
livery system as the hydrophobic PCL portion attached to the dendrimer
core will offer stability, mechanical strength of the vesicle membrane
and improved loading capacity while the mPEG shell will offer long
circulation. This paper is the first report of a LPDHs from PEA den-
drimer with mPEG-b-PCL block copolymer for delivery of any class of
drug. The synthesis, in vitro, MD simulations and in vivo findings
through end groups functionalization of PEA dendrimer with a linear
block polymer mPEG-b-PCL, and formulation of VCM encapsulated
nanovesicles are reported in this paper.

2. Materials, instrumentation and methods
2.1. Materials

Acetylchloride (AcCl), tert-butyl acrylate, 3-amino-1-propanol, p-
dimethylaminopyridine =~ (DMAP),  N,N’-Dicyclohexylcarbodiimide
(DCC), 1,3,5-benzenetricarbonyl trichloride (Trimesoyl chloride),
stannous octoate (Sn(Oct),), tertiary butyl acrylate, e-caprolactone,
tetrahydrofuran (THF), toluene, monomethoxy polyethylene glycol
(mPEG) (MW 5000), phosphatidyl choline, Human serum albumin
(HSA) and silica gel were procured from Sigma-Aldrich
(USA).Vancomycin (VCM) was obtained from Sinobright Import and
Export Co., Ltd. (China), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-
trazolium bromide (MTT) was bought from Merck Chemicals
(Germany). Nutrient Broth, Mueller-Hinton Broth (MHB) and Mueller-
Hinton Agar (MHA) were acquired from Biolab (South Africa).
Propidium iodide and Syto9 dyes cell viability kits were purchased from
Thermofisher (USA). Monolith protein labelling kit RED-NHS, MST
buffer supplement with 0.05% Tween 20, Monolith NT.115 Standard
Treated Capillaries were supplied by NanoTemper Technologies
(Germany). The bacterial cultures used were Staphylococcus aureus
ATCC 25923 and methicillin-resistant S. aureus (MRSA) (S. aureus
Rosenbach ATCC BAA 1683).

2.2. Instrumentation

Fourier-transform infrared spectroscopy (FT-IR) spectra of all the
compounds were recorded on a Bruker Alpha-p spectrometer with a
diamond ATR (Germany). Proton and Carbon nuclear magnetic re-
sonance (*H NMR and '3C NMR) measurements were performed on a
Bruker 400 and 600 Ultra shield™ (United Kingdom) NMR spectro-
meter. High Resolution Mass Spectrometry (HRMS) was performed on a
Waters Micromass LCT Premier TOF-MS (United Kingdom). The matrix-
assisted laser desorption ionization time-of-flight mass spectrometry
(MALDI TOF) mass analysis was performed on a Bruker SmartBeam
Autoflex III (Bruker Daltonics, Bremen, Germany). Gel permeation
chromatography (GPC) was performed on a THF solvent system con-
sisting of a Waters 1515 isocratic high-performance liquid chromato-
graphy (HPLC) pump, a Waters 717 plus auto-sampler, Waters 600E
system controller (run by Breeze Version 3.30 SPA) with a Waters re-
fractive index detector and mass was relative to a linear polystyrene
calibration standard. Optical density (OD) was measured using a



C.A. Omolo et al. Journal of Controlled Release 290 (2018) 112-128

a

Ho/\/\NHz + /\[]/07<
(o]

Lo m "

o1 v
2
0
o
0.0
- ©
m + v > LH
O OH
o] o]
N
Al o o
0 O~N~o~~~0 0 Oko}wo\
o o 3 o a
O”OH v
00
o]
HO’\/NJ/

Scheme 1. Synthesis of 3-mPEA. a). methanol, stirring at room temperature 12 h; b). toluene, DMAP, 110 °C, 6 h; c). AcCl, H,O, DCM, room temperature, 8 h; d). Sn
(Oct),, toluene, 110 °C, 6 h; e). DCC, DMAP, DMF, room temperature, 5 days.
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spectrophotometer (spectrostarnano, Germany).
2.3. Methods

2.3.1. Synthesis and characterization of the hybrid dendrimer
The dendritic star polymer was synthesized using Scheme 1. Details
of synthesis can be found in the supplementary material.

2.3.2. In vitro cytotoxicity

The in vitro cell viability of the synthesized material was assessed
using a previously reported MTT assay method [47,48] on human
breast adenocarcinoma (MCF 7), adenocarcinomic alveolar basal epi-
thelial cells (A 549), liver hepatocellular carcinoma (HepG 2) cell-lines
and human embryonic kidney cells 293 (HEK 293). Each of the four cell
lines containing 2.5 x 10® cells were seeded into 96-well plates and
incubated for 24 h with different dilutions of 3-mPEA (20, 40, 60, 80
and 100 pg/mL). Wells with culture medium only and culture medium
containing cells were considered as the negative and positive controls
respectively. After 48h of incubation, the culture medium and test
materials were discarded and replaced with 100 pL of fresh culture
medium and 100 puL of MTT solution (5 mg/mL in PBS) in each well.
Cell viability was evaluated by measuring the mitochondrial-dependent
conversion of the tetrazolium salt MTT to formazan crystals. After 4 h of
incubation with MTT, the media was removed from the wells, and so-
lubilization of formazan was achieved by adding 100 pL of dimethyl
sulfoxide. The optical density (proportional to the number of live cells)
was assessed with a microplate spectrophotometer (spectrostar nano,
Germany) at an absorbance wavelength of 540 nm. The percentage cell
viability was calculated as follows;

A540 nm treated cells
A540 nm untreated cells

%Cell viability = ( )X 100%

2.4. Formulating VCM loaded 3-mPEA nanovesicles

The nanovesicles were prepared using a solvent evaporation method
[49]. A solution of 10, 30, 40 and 50 mg of 3-mPEA each dissolved in
5 mL organic solvent (THF) was added drop-wise to 20 mL of the aqu-
eous solution containing 10 mg of VCM under stirring (400 rpm). The
resulting emulsions was left to stir overnight at room temperature to
ensure the complete evaporation of the organic solvent. The non-drug
loaded nanovesicles were prepared using the same procedure.

2.5. Characterization of the nanoparticles

2.5.1. Size, Polydispersity Index (PI), Zeta Potential (ZP) and morphology

The size, PI, and ZP of 3-mPEA nanovesicles were determined using
dynamic light scattering technique on a Zetasizer Nano ZS90 (Malvern
Instruments Ltd., UK), with all measurements being performed in tri-
plicate. The Morphology was examined using transmission electron
microscopy on a Jeol, JEM-1010 (Japan) transmission electron micro-
scopy (TEM) with uranyl acetate (UA) negative staining [50]. The na-
novesicles were diluted appropriately then mounted onto the surface of
a copper grid, and the excess sample was removed by blotting off with
filter paper, then dried at ambient temperature and stained using 2%
uranyl acetate (UA) solution before measurement. The images were
captured at an accelerating voltage of 100 kV.

2.5.2. Entrapment efficiency (% EE) and drug loading capacity (LC)

The EE and DL of V-3-mPEA were determined by an ultrafiltration
method. Briefly, 2mL of nanovesicles containing 500 pg/mL, 1.5 mg/
mL, 2mg/mL, 2.5mg/mL of 3-mPEA loaded with 500 ug/mL of VCM
were placed in Amicon® Ultra-4 centrifugal filter tubes (Millipore Corp.,
USA) of 10kDa pore size and centrifuged at 3000 rpm at 25°C for
30 min. The filtrate was collected and the unentrapped VCM in the
filtrate was quantified using a high-pressure liquid chromatography
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(HPLC) (Shimadzu, Japan) method, with UV detection at a wavelength
of 280 nm [51]. The mobile phase consisted of a mixture of water with
0.1% TFA and acetonitrile (85/15v/v), which was pumped through a
Nucleosil 100-5 C18 column (150 mm X 4.6 mm internal diameter) at
a flow rate of 1 mL/min, with an injection volume of 100 pL. The EE (%)
and DL (%) were calculated using the following equations:

%EE = Weight o.f VCM in nanoparticles X 100%
Weight of VCM added
GLC = Weight of -VCM in nanopa-rtlcles X 100%
Total weight of nanoparticles

2.5.3. Differential scanning calorimetry (DSC)

The VCM, 3-mPEA, physical mixture (drug and the polymer) and
lyophilized formulation thermal profiles were determined by DSC
(Shimadzu DSC-60, Japan). Briefly, samples (2 mg) were placed in an
aluminum pan and sealed, which was then heated to 300 °C at a con-
stant rate of 10 °C/min under a constant nitrogen flow of 20 mL/min
using an empty pan as a reference [48].

2.5.4. All-atom MD simulations of 3-mPEA self-assembly

2.5.4.1. Methods. 3-mPEA dendritic star polymer structure containing
3 arms of the block polymer comprising of 2 and 4 repeating monomer
units of caprolactone and mPEG was constructed using ChemDraw
[52]. The 3-mPEA dendritic star polymer was equilibrated for 2ns
before performing the self-assembly simulation. GROMACS insert-
molecules tool was used for random insertion of 8 molecules of 3-
mPEA and the polymers were solvated using TIP3P water model [53]
and CHARMM General Force Field (CGenFF) [54]. The system
containing a total of 29,494 water molecules and 8 mol of 3-mPEA
was first energy minimized using the steepest descent [55] method and
self-assembly simulation was then performed using isobaric-isothermic
ensemble (NPT) for 80 ns (ns). The velocity-rescale thermostat was used
for temperature coupling and the Parrinello-Rahman method was used
for pressure coupling [56]. The simulation was performed at 298.15K
temperature and 1 atm pressure using the coupling time of 0.1 ps and
2.0 ps, respectively. The Particle Mesh Ewald (PME) method [57] was
used for long-range electrostatic interactions and VAW and short-range
coulombic interactions were calculated using 10A cut-off. MD
simulations were performed using GROMACS 5.1.2 [58].

2.5.4.2. Data analysis. Numbers of aggregates and the Com of Mass
(COM) distances between two monomers were calculated using the
g aggregate tool [59] and in-house Tcl script respectively. The
interaction and binding energies between two monomers were
computed using the g mmpbsa tool [60], which employs the
molecular mechanics Poisson-Boltzmann surface area (MM-PBSA)
method and has been in the previous studies to calculated interaction
and binding energies [61,62]. The binding energy of two monomer
complex in water environment was expressed as:

AGbimiing:AC"r:omplex(dimer) —(AGmoanerl + AGmonomerZ)

Where AGcomplex is total energy of dimer complex and AGmonomer 1,
AGmonomerz are total energy of both monomers individually. The energy
of AGmonomer1, a0d AGmonomer2 Were estimated using:

AGmonomerl = AEmorzomerl(MM) + AGmonomerl(Solvation)
AGmonomcrz = AEmom)mch(MM) + AGmom)mch(Solvation)
Where AEyy is potential energy in the vacuum and estimated using:
AEvy = AEponded + AE nonbonded
AEy = AEponed + (AEygw + AEesec)

The AGgolvation iS solvation free energy and estimated using:
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AGSolva[ion = AGpolar + AGnopolar

AGp1ar Was calculated using the Poisson-Boltzmann (PB) equation
and AGponpolar Was estimated using:

AGponpolar = YSASA + b

Where SASA is the solvent accessible surface area, A radius of the
probe boundary while v is a coefficient related to the surface tension of
the solvent and b is a fitting parameter.

Y = 0.0226778 kJ/Mol/A* and b = 3.84928 kJ/Mol

For binding energy calculation frames were extracted bewteen 25 ns
to 32ns at interval of 500 ps. A bootstrap analysis was performed to
calculate the standard error.

2.6. Determination of the binding affinity of 3-mPEA nanovesicles on
human serum albumin (HSA)

2.6.1. Microscale thermophoresis (MST) binding affinity studies

The binding between 3-mPEA and HSA was measured using mi-
croscale thermophoresis (MST) on Monolith NT.115 (Germany) [63].
Human serum albumen (HSA) was labelled using the Monolith protein
labelling kit RED-NHS according to the manufacturer's instructions. The
labelled HSA was adjusted to 80 nM using an MST buffer supplemented
with 0.05% Tween 20. A 16-step serial dilution of 20 pL solutions
containing 25 M of mPEG 5000 (positive control), Phosphatidyl cho-
line (negative control) and 3-mPEA with MST buffer was performed,
with 10 pL of the labelled HSA being added to each of the dilutions to
form a ligand protein complex containing 40 nM HSA and ligand con-
centrations ranging from 12.5puM to 0.00038147 uM. The ligand HSA
complex was incubated for 15 min, then loaded into Monolith NT.115
Standard Treated Capillaries and the binding affinity measured on an
MST instrument. Data of three independently pipetted measurements
were analyzed (MO-Affinity Analysis software version 2.1.3, Nano-
Temper Technologies). The strength of binding was evaluated by the
dissociation constant K4 calculated by the equation:

_ (AIX[T])

Ka= AT

where [A] is the concentration of free fluorescent molecules, [T] is the
concentration of titrant.

and [AT] is the concentration of complex formed by [A] and [T].
The smaller the K4 the stronger the binding force.

2.6.2. HSA protein adsorption studies

Human serum albumin adsorption studies were performed fol-
lowing a literature reported protocol [64,65]. Nanoparticles were in-
cubated in a solution of 400 pug/ mL of HSA and stirred vigorously with
a magnetic stirrer for 2h at 37 °C. The nanoparticles were then cen-
trifuged (14,000 rpm, 4 °C for 20 min) to remove any unabsorbed pro-
teins, after which the samples were diluted, and size and the surface
charge was analyzed by the Zeta Sizer.

2.7. Invitro drug release

Drug release of VCM was performed using the diffusion dialysis bag
method, as per previously reported procedures [66,67]. Dialysis bags
(pore size: 8000-14,400 Da) were loaded with 2 mL of the drug loaded
nanovesicles and non-drug loaded vesicles then placed in a 40 mL re-
ceiver compartment of PBS (pH 7.4) at 37 °C. This was then placed in
shaking incubator (100rpm) and at specific time intervals 3mL of
samples were drawn from the receiver solution and an equal amount of
fresh PBS was replaced to keep a constant volume. Determination of the
amount of the drug released was performed as per section 3.5.2 via a
reported HPLC method [51]. The experiments were performed in tri-
plicate, with the release fraction of VCM from V-3-mPEA nanovesicles
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being calculated using the following equation:
. Mt
Cumulative release% = (—)X 100%
Moo

Where Mt. is the amount of VCM released from the V-3-mPEA na-
novesicles at time t, and M the amount of VCM pre-loaded in V-3-
mPEA nanovesicles.

In addition, 60% cumulative in vitro drug release data was modeled
and analyzed with DDSolver to determine the mechanism of release of
VCM from the nanovesicles [47,68,69]. Zero order, first order, Higuchi,
Weibull, Hixson-Crowell, and Korsmeyer-Peppas models were ana-
lyzed. Model with highest correlation coefficient (R®) and lowest root
mean square error (RMSE) was considered to be the best fit model. The
‘n' exponent obtained after modeling the release data using the Kors-
meyer-Peppas model and mean dissolution time (MDT) were para-
meters applied to deduce the kinetics and mechanism of drug release of
the drug from the nanovesicles [70].

2.8. Stability studies

Short term stability studies of the V-3-mPEA nanovesicles were
evaluated for 90 days at 4°C and at room temperature by assessing,
particle size, PI, and ZP parameters.

2.9. Antibacterial activity

2.9.1. Determination of the MIC

An in vitro antibacterial study was conducted using the broth mi-
crodilution method against SA and MRSA [71]. Both the bacterial
cultures were grown in Mueller-Hinton Broth, with (MHB) appropriate
dilutions being made to achieve 5 x 10° colony forming units per mL
(CFU/mL) [72] of bacteria. V-3-mPEA nanovesicles and bare VCM were
serially diluted in MHB broth and then incubated with bacterial cul-
tures containing 5 X 10° colony forming units per mL (CFU/mL) for
18h in a shaking incubator at 37 °C and 100 rpm. 10 uL of the serial
dilutions were spotted on Mueller-Hinton Agar (MHA) plates and in-
cubated for a further 18 h. The minimum concentration at which no
visible bacterial growth was observed was considered as the MIC.

2.9.2. Bacterial membrane disruption

Suspensions of MRSA 1.5 x 108 CFU/mL in phosphate saline buffer
(PBS) were incubated with V-3-mPEA containing 250 pg/mL of VCM in
a 50:50 ratio for 4 h in an Eppendorf tube. The mixture of nanovesicles
was diluted appropriately and mounted onto the surface of a copper
grid. The excess sample was removed by blotting off with filter paper
and was then dried at ambient temperature before measurement. The
images were examined using High Resolution Transmission Electron
Microscope (brightfield, darkfield, STEM diffraction) - JEOL HRTEM
2100 [73].

2.9.3. Reduction of MRSA biofilm by V-3-mPEA

Inhibition of MRSA biofilms by V-3-mPEA was determined by
fluorescence microscopy [74]. Microscope cover slips were placed at
the bottom of 6 well plates. Then 2mL of MRSA 1.5 x 10® CFU/mL
suspensions in MHB were added to the wells and incubated for 3 days at
37 °C to form a fully mature biofilm. Prior to treatment, the media was
sucked out of the wells with a Pasteur pipette and the wells were wa-
shed 3 times to remove non-adhered bacteria. 1 mL of bare VCM solu-
tion and nanovesicles formulation containing 125 ug/mL of VCM were
added to the wells and incubated for 12 h at 37 °C. The wells were then
washed with Phosphate Buffer pH7.4 to remove the treatments and
non-adhered MRSA cells. While still in the wells the coverslips were
stained with solution of Syto9 and propidium iodide (PI) containing
30 uL in 1 mL of distilled water for 30 mins in darkness. The wells were
washed again to remove excess dye, then inverted on a microscope glass
slide and the coverslips were carefully glued on the edges on the glass
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slides. The inhibition of biofilm formation by V-3-mPEA was viewed on
a Fluorescence microscope (Nikon Eclipse 80i FM Japan). Syto9 and PI
were sequentially excited at 488 nm and 543 nm, respectively, and their
fluorescence emissions were collected between 500 and 600 nm for
Syto9 and between 640 and 750 nm for PI. Microscopic observations
were performed at least three times in independent experiment.

2.9.4. Flow cytometry bacterial cell viability

Viable MRSA cells in the population after treatment with VCM and
V-3-mPEA for 18 h was determined using flowcytometry method [75].
15 uL containing 5 X 10° colony forming units (CFU)/mL of the bac-
terial suspension was added to a 96 well plate each containing 135 pL of
bare VCM (positive control), and V-3-mPEA at the MIC concentration
(15.65 ug/mL and 0.988 ug/mL respectively), which was further in-
cubated at 37 °C in a shaking incubator (100 rpm). 50 pL of each VCM
and V-3-mPEA mixture were added to the flow cytometry tubes each
containing 350 uL. of the sheath fluid and vortexed for 5min. The
mixture was incubated for 30 min with 5 pL of non-cell wall permeant
propidium iodide (PI) and Syto9 cell permeant dye. PI fluorescence was
excited by a 455-nm laser and collected through a 636 nm bandpass
filter (red wavelength), while Syto9 excitation laser was at 485 nm laser
and collected through a 498 nm band pass filter (green wave length).
Untreated pure MRSA cells were used as a negative control. The BD
FACSCANTO II (Becton Dickinson, CA, USA) equipment was used for
flow cytometry. Instrumentation settings included sheath fluid flow rate
of 16 mL/min, a sample flow rate of 0.1 mL/min. Data with fixed cells
were collected using a flow cytometer software (BD FACSDIVA V8.0.1
software [USA]). The voltage settings used for fluorescence-activated
cell sorting (FACS) analysis were: 731 (forward scatter [FSC]), 538
(side scatter [SSC]), 451 (Syto9) and 444 for PI. The bacteria were
initially gated using forward scatter, and cells of the appropriate size
were then gated and at least 10,000 cells collected for each sample in
triplicate, and their position as ‘live’ and ‘dead’ determined. To avoid
any background signals from particles smaller than the bacteria, the
detection threshold was set at 1000 in SSC analyses [76].

2.9.5. Bacterial killing kinetics

An overnight culture of MRSA in MHB was diluted with phosphate
buffer to a concentration of 5 x 10° CFU/mL. VM and VM loaded 3-
mPEA were added at concentrations equivalent to 5x MIC. Sterile
water was added in the bacterial broth with the test samples to serve as
a negative control. Bacterial cell viability was monitored up to 24 h.
Samples were removed at specific intervals, serially diluted in PBS, and
plated in triplicate on MHA plates. After -incubation of the plates for
24 h at 37 °C, the CFU were counted and converted to log;, values and
plotted in a graph [77].

2.9.6. In vivo antibacterial activity

A BALB/c mouse skin infection model was used for in vivo anti-
bacterial activity following a study protocol approved by the University
of KwaZulu-Natal's Animal Research Ethics Committee (Approval
number: AREC/104/015PD) [78,79]. Humane care and use of the an-
imals were in accordance with the guidelines of the AREC of UKZN and
South African National Standard SANS 10386:2008. 18-20g male
BALB/c mice were obtained from the Biomedical Research Unit, Uni-
versity of KwaZulu-Natal. Mice back hairs were shaved carefully
without bruising the skin then disinfected with 70% ethanol. After 24 h,
50 uL of MRSA saline (1.5 x 108 CFU/mL) suspension was injected in-
tradermally and the mice (n = 4) were divided into three treatment
groups (positive control, negative control and V-3-mPEA groups).
30 min post infection with MRSA, 50 uL of the different (V-3-mPEA
formulation, free VCM and saline) treatments was administered to all
the groups at the same site of infection. The mice were kept under
observation for 48 h under the following conditions; a normal 12 h light
and dark, temperature 19-23°C, relative humidity 55 * 10% and
adequate ventilation. After 48h the mice were euthanized with
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halothane and the infected area of the skin was collected and homo-
genized in PBS of pH7.4 (5mL). Tissue homogenates were serially di-
luted in pH7.4 phosphate buffer then 20 uL were spotted on MHA
plates, which were incubated at 37 °C for 24 h and the number of co-
lonies forming units (CFU) were counted. The CFU/mL was calculated
using the equation:

number of colonies x dilution factor

CFU/mL =
volume of culture plate

The infected skins were also collected and processed as per reported
procudure [47] for further histological investigations. The Processed
skin sections were collected on slides and stained with hematoxylin and
eosin (H&E). Examinations and image capturing of the slide was per-
formed on a Leica Microscope DM 500, fitted with a Leica ICC50 HD
camera (Leica Biosystems, Germany).

2.10. Statistical analysis

One-way analysis of variance (ANOVA), followed by Bonferroni's
multiple comparison test, was used for the statistical analysis.
Individual groups were compared to each other using a paired t-test,
with p values of < 0.05 being considered statistically significant, and
the values are represented as mean = SD.

3. Results and discussion
3.1. Synthesis and characterization

The surface end groups modified dendrimer was synthesized in four
steps (supplementary materials). The first step involved bis-aza-Michael
addition reaction, as depicted in Scheme 1la, to synthesize a dendron
(compound I), after which the 1st generation dendrimer (compound II)
was synthesized by coupling the dendron with the 1,3,5-benzene-
tricarbonyl chloride as a central aromatic core using DMAP as a cata-
lyst. The tertiary butyl ester protecting groups on compound II were
hydrolyzed to give a poly (ester-amine) dendrimer with an aromatic
core (compound III). mPEG-b-PCL (compound IV) was synthesized, as
illustrated in Scheme 1d via ring-opening polymerization chemistry
[80]. The degree of polymerization of the block polymer was calculated
by integrating the mPEG peaks at 3.53 ppm against the 1.52-2.199 poly
caprolactone repeating units peak in the 'H NMR spectrum [81] and the
degree of polymerization was found to be 21.1% which was correlating
with the mass analysis by MALDI TOF (supplementary material).

The dendrimer was further coupled to the diblock copolymer to
afford the final compound V (3-mPEA). In the final Steglich esterifica-
tion reaction, only 3 among the six carboxylic acid groups of the den-
drimer were esterified or occupied with the mPEG-PCL. This limited
esterification was confirmed by observed practical mass by GPC ana-
lysis, with an average molecular weight 19,115 Da and polydispersity
index of 1.42. The partial esterification may be due to the high mole-
cular weight of mPEG-b-PCL that caused stearic hindrance [82], and
more intra molecular hydrogen bonding in the dendrimer (carboxylic
aid group) could have restricted the esterification reaction [83].

The diblock copolymer mPEG-b-PCL was chosen to functionalize the
dendrimer as it has been shown to be safe with excellent solvating
properties [44,84]. Apart from being efficient nano materials, den-
drimers are associated with toxicities that hinder their biomedical ap-
plications [43,85]. However, the litreature shows that PEA dendrimers
are safe, biodegrable [86,87], flexible, and provide sustained release
properties when compared to other dendritic polymer counterparts
[41-43]. This makes them a good candidate for drug delivery. Thus a
hydbrid of mPEG-b-PCL and PEA dendrimers would result in a material
with inherent good properties from the parent blocks.
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Fig. 1. Cytotoxicity evaluation of various concentrations of 3-mPEA against on A 549, MCF 7 Hep G2 and HEK 293 cells.

3.2. In vitro cytotoxicity

The in vitro cell viability of 3-mPEA was assessed by quantifying the
viable mammalian cells after exposure of the synthesized material. Four
cell lines MCF 7, A549, Hep G2 and HEK 293 were employed to de-
termine the bio-safety of 3-mPEA in an in vitro cell culture system. The
results showed that cell viability ranging from 77.23 to 118.6% across
all the concentrations in all cell lines that were tested. The percentage
cell viability range obtained for the individual cell lines ranged from
77.41 to 83.57%, 77.29 to 82.68%, 78.29 to 87.01% and 87.3 to
118.6% for MF7, A549, Hep G2 and HEK 293 respectively (Fig. 1) with
no dose-dependent toxicity within the concentrations of the polymer
studied. This percentage viability displayed by 3-mPEA was above the
requirements for biocompatibility and toxicity regulatory requirements
for synthesized biomaterial [88-90]. Therefore, results from these
findings shows 3-mPEA to be safe and nontoxic for biomedical appli-
cations.

3.3. Preparation and characterization of 3-mPEA nanovesicles

Self-assembled 3-mPEA nanovesicles were formulated by a solvent
evaporation method. Solutions containing different concentrations of 3-
mPEA in THF were added dropwise to the aqueous VCM solution under
continuous stirring to optimize the concentrations of dendritic star
polymer that will have the highest entrapment, size and PI (Table 1). As
the organic solvent evaporated, the 3-mPEA molecules formed stable
self-assembled nanovesicles while entrapping the VCM (Fig. 2). The
amphiphiles self-assembly might have been due to non-covalent inter-
actions, such as hydrogen bond formation, - interactions, van der
Waals interactions, electrostatic interactions, and the hydrophobic ef-
fects that lead to enhanced thermodynamic and kinetic stability of the
vesicles [42,91,92].

There was no significant (P > .5) difference in the resulting sizes

Table 1

Different ratio of drug polymer with their respective EE (n = 3).
Polymer: drug Size PI EE
1:1 54.07 = 0.291 0.199 = 0.014 35.97 + 5.5%
3:1 52.48 + 2.6 0.103 = 0.047 76.49 = 2.4%
5:1 53.89 + 2.57 0.165 + 0.028 60.74 + 5.2%
8:1 59.12 + 0.54 0.23 = 0.002 55.37 = 0.8%
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across all the concentrations. Although, there was an increase in PI with
increasing concentration of the polymer however the increase was not
significant (P > .5) (Table 1). It was observed that by increasing the
polymer concentration above the ratio 3:1 the EE started to decrease.
The polymer: drug ratio of 3:1 (w/w) was found to be the optimal
concentration giving highest VCM encapsulation with nanovesicles of
size, PI and, ZP of 5248 = 2.6nm, 0.103 = 0.047 and,
—7.3 + 1.3mV respectively.

The results were comparable to other nanovesicles from Janus
dendrimers by Luis M. Bimbo and coworkers, who reported size ranges
of 56-249 nm [93]. Percentage EE and LC for vesicles formed using 3:1
polymer to drug ratio were found to be 76.49 + 2.4% and
19.1 + 0.95% “/,, respectively. These results are better than other
drug delivery systems from poly (e-caprolactone) and poly (ethylene
oxide) based vesicles where EE and LC were in the range of 45.5 to
69.33% and 12 to 16% respectively for clavulanic acid and metho-
trexate [84,94,95].

TEM images showed thin walled ring-shaped spherical structures
(Fig. 3I), with the population being discrete and in sizes that were
comparable to the ones determined by DLS. The drug loaded vesicles
were found to be physically stable in terms of size, PI and ZP both at
room temperature and 4 °C for a period of 90 days.

3.3.1. Differential scanning calorimetry (DSC)

To determine the melting and crystallization behavior of VCM, 2 m-
PEA, lyophilized V-3-mPEA and the physical mixture, DSC studies were
performed (Fig. 3III). There was a broad endothermic peak at 105.93 °C
for the bare VCM that presented the thermal decomposition of the
glycopeptide antibiotic, while for 3-mPEA, the peak was observed at
55.44 °C (Fig. 3III A) [96]. The physical mixture showed the respective
thermal peaks of VCM and 3-mPEA at temperature near to their in-
dividual peaks with a slight upward shift, while the thermogram of the
lyophilized V-3-mPEA vesicles did not display any thermal peaks for
neither VCM nor 3-mPEA. This disappearance suggested that VCM was
encapsulated by vesicles in the non-crystalline form [97].

3.4. All-atom MD simulations of 3-mPEA self-assembly

All-atom MD simulation was employed to understand the self-as-
sembly of 3-mPEA dendritic star polymer. At time zero monomers were
randomly apart, however a dimer was formed at time ~6.02 and
~10.14 ns respectively from aggregation of each of two molecules of
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the star polymer (Fig. 4E). At times ~12.31, ~14.9 and ~51.93 ag-
gregation of 3, 4 and 5mol of the star polymer aggregated to form
trimers, tetramers and pentamer respectively (Fig. 4 A and B). At time
~71.85ns there was a rearrangement to form two tetramers for the
short period of time and at ~79.11 ns all molecules aggregated to form
an octamer (Fig. 4 D and E). The arrangement included the hydrophilic
portions (mPEG) of the linear block polymer facing on the either side of
the aggregates and in contact with water molecules, while the hydro-
phobic segment sandwiched in the middle (Fig. 4C and D). This ag-
gregation could have been the possible arrangement that resulted in
formation of the vesicle. Literature shows this arrangement is typical
intermediate arrangement prior to the formation of a vesicle
[35,38,98]. The general structure of 3-mPEA dendritic star polymer is a
solvent-(philic-phobic-philic) (PHP) type sequence that contains hy-
drophobic connection between two hydrophilic ends that restricts the
chain stretching in solvent-phobic core. The PHP structures have shown
the ability to form complex structures such as vesicles, toroidal mi-
celles, “Y” junctions, cylindrical micelles and disk-like membranes
[99-101].These structures have been successfully employed in drug
delivery. Overall, results of this study supported the fact that 3-mPEA
could self-assemble to stable aggregates.

To understand the spontaneous interaction between 3-mPEA mole-
cules, the type of interactions (VAW or electrostatics) that played a key
role in their aggregation, binding energy and time evolution of COM
distance we focused on one of the dimer (Fig. 4G). It was observed that
two monomers aggregated at ~8.32 ns and remained stably bound until

120

Table 2
Average Binding Energy and its components obtained
from the MM-PBSA Calculation for 3-mPEA dimer.

Contribution Energy (kJ/mol)
AEyqw —241.49 * 7.18
AEegjec —26.78 + 2.58
AGypolar 160.04 + 8.49

AGhonpolar —37.82 + 0.83
AGiotal —146.07 * 4.92

the end of the simulation. Average interaction energy between both the
monomers from ~8.32 ns to 80 ns was —159.58 kJ/mol (Fig. 41, green
line) and decomposition of interaction energy in its components re-
vealed that VAW interaction plays a curical role in the interaction be-
tween polymers. The average VAW and electrostatics interaction en-
ergies between polymers from ~8.32 to 80 ns were — 145.85 kJ/mol
and — 13.74 kJ/mol respectively. Binding energy (Table 2) was calcu-
lated between the monomers from 25ns to 32 ns when they were clo-
sest to each other. Binding energy components showed that polar sol-
vation energy was highly unfavorable, however, favorable VdW energy,
nonpolar energy, and electrostatic energies lead to the overall highly
favorable binding energy.

3.5. Human serum protein binding affinity

To determine the binding affinity of 3-mPEA, mPEG 5000 polymer
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Table 3
The effect of HSA on 3-mPEA nanovesicles after incubation.

Table 4
Release kinetics data from different models.

Sample Size PDI ZpP Model R? RMSE Release exponent (n)
Before test 56.53 + 2.822 0.190 + 0.008 -8.05 + 1.6 Zero Order 0.5864 16.00 -
After test 54.25 = 1.73 0.228 * 0.038 -6.23 + 1.71 First Order 0.8563 9.4 -
n=3 Higuchi 0.9193 7.07 -
Korsmeyer-Peppas 0.9194 7.63 0.494
Hixson-crowell 0.7821 11.62 -
120.0 Weibull 0.9947 2.14 -
» 1000
ﬁ (positive control) and phosphatidyl choline (negative control) to HSA
£ 800 was performed using a Microscale Thermophoresis (MST) study. MST
éﬂ B studies employ the motion of molecules due to changes in microscale
g 60.0 temperature gradients [102]. The laser is usually focused onto the
§ 00 sample, which allows a temperature rise that induces thermophoresis of
2 =o=\-3-mPEA —e—Bare VCM the molecules, which allows the MST signal to detect the binding by
2 500 quantifying the change in the normalized fluorescence. The change in
8 concentration between the initial and steady states is measured and can
0.0 be plotted against the concentration of the added binding partner. From
0 10 20 30 40 50 60 these data, the equilibrium dissociation constant (Ky) is obtained
Time (hours) [102-105]. In the study, a constant concentration HSA was labelled

Fig. 6. In vitro drug release profile of V-3-mPEA nanovesicles and bare VCM
(n=23).

with NT-647 dye then incubated with increasing concentrations of the
test samples (3-mPEA, mPEG 5000 and PC). Thermophoresis was then
induced and detected due to a created temperature gradient (2-6 °C) by
an infrared (IR) laser. The binding study on the mPEG 5000 did not
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Table 5
MICs of bare VCM, blank and VCM loaded 3-mPEA, against S. aureus and MRSA.
Time (hours) 24 48 72 96 120 24 48 72 96 120
S. aureus (MIC pug/mL) MRSA (MIC pg/mL)
Bare VCM 3.9 NA NA NA NA 15.65 NA NA NA NA
V-3-mPEA 0.488 0.488 0.488 0.488 0.488 0.98 0.98 0.98 0.98 0.98
Blank NA NA NA NA NA NA NA NA NA NA

NA = No activity. The values are expressed as mean + SD, n = 3.

Perforations on the membrane

Loss of membrane

Intact nanovesicles

Fig. 7. HRTEM images of MRSA after incubation with V-3-mPEA. A. At initial treatment; B. After 1 h incubation, C. Single bacteria after 1 h, D. Formation of pores on
the bacterial membrane after treatment, E and F. Loss of the membrane of the MRSA after 4 h with nanovesicles still intact.

display any binding affinity, which was similar to other results obtained
using a different method [106]. However, binding studies for PC
showed binding affinity to the HSA with a K4 of 39.997 += 0.1157 uM
(Fig. 4B). The 3-mPEA did not display any affinity to the HSA (Fig. 5)
[104] and there was no strong interaction of 3-mPEA with HSA to
conclude any binding, and the data could not generate the dissociation
constant.

The MST results were further confirmed by a zeta sizer study, where
the nanovesicles were incubated with HSA, and its impact on the size,
PDI and ZP were investigated [65]. There was no significant impact
(P > .05) of HSA on the nanovesicles before and after incubation
(Table 3). This could be attributed to the 3-mPEA nanovesicles shell
being composed of mPEG 5000, which is considered not to bind with
HAS [107], which could suggest long circulating and offer stealth
abilities to the nanovesicles [108,109]. These studies indicated that the
3-mPEA nanovesicles could be utilized to formulate a long circulating
drug delivery system.

3.6. In vitro drug release

In vitro drug release pattern of the bare drug and the nanovesicles
formulation are represented in Fig. 6. Release pattern after 1, 4 and 8 h
bare VCM had cumulative release of 10.63%, 42.2% and 99.19% when
compared to V-3-mPEA which was, 1.9%, 22.2%, and 37.8% respec-
tively After 24 and 48 h cumulative drug release from the vesicles was
58.5 and 65.8% respectively. The initial faster release could have been
governed by diffusion, while later slower release phase after 8 h might
have been due to polymer erosion. The VCM release from the V-3-mPEA
nanovesicles showed a slower drug release profile from the formulation
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when compared to the bare drug. This slower release of the drug from
the V-3-mPEA nanovesicles could be beneficial as it could prolong ex-
posure of bacteria to the lethal dose of the drug and sustained anti-
bacterial activity also could improve patients' compliance which could
translate to reduced frequency of administration.

The release kinetics of VCM from the 3-mPEA nanovesicles was
performed using different models (Table 4). Weibull model having
shown a correlation coefficient of 0.9947 and mean square error of 2.14
was considered as the best fitting model for the release of VCM from
nanovesicles. Korsmeyer-Peppas drug release n' exponent was 0.494
(Table 4), this indicated that non-Fickian diffusion was the responsible
mechanism for the release of the drug from the nanovesicles. Basing on
the n' exponent value more than one mechanism might have been in-
volved [110,111] in the release of the drug from the nanovesicles.
Apart from diffusion, erosion and degradation might have played a role,
as the 3-mPEA dendritic star polymer arms were coined from mPEG-b-
PCL, which is a biodegradable synthetic polymer [112].

The mean dissolution time (MDT90%) for the release of VCM from
the drug solution and V-3-mPEA nanovesicles was calculated [113] and
found to be 4.31 h and 11.29 h respectively from the nanovesicles and
bare VCM respectively. These values further indicated that the rate at
which the drug was released from the 3-mPEA nanovesicle was at a
slower rate when compared to bare VCM. This value indicates that the
release of the drug from the nanovesicles was sustained over an ex-
tended period of time and could translate into desired patient outcomes
and improved patient compliance.
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Untreated
VCM
treated
D
E- -
V-3-mPEA-
treated

Fig. 8. Fluorescence microscopy micrographs of the untreated, VCM treated
and V-3-mPEA treated MRSA biofilms. A, and B untreated biofilm stained with
Syto9 and PI respectively, B, C, D, E, F. VCM and V-3-mPEA treated biofilm
stained with Syto9 and PI respectively (scale bar = 100 um).

3.7. Antibacterial activity

3.7.1. Determination of the MIC

The broth dilution method was employed to determine the MIC
values of the bare VCM and V-3-mPEA against S. aureus and MRSA.
After 24 h of the study the MIC for VCM against S. aureus and MRSA was
3.9ug/mL and 15.65 pug/mL respectively, whereas for V-3-mPEA na-
novesicles against the same set of bacteria it was found to be 0.488 and
0.988 pg/mL respectively (Table 5). This was a 7- and 16-fold decrease
in MIC against SA and MRSA after delivery of VCM via 3-mPEA nano-
vesicles (Table 3). Interestingly the activity continued up to 120h,
while the VCM was inactive after 24 h. The thicker cell walls of the
MRSA could have been the reason for reduced activity towards MRSA
than SA as more VCM molecules are needed to saturate the increased
peptidoglycan layers before reaching the target site [114]. General
enhanced activity of the 3-mPEA nanovesicles when compared to the
bare VCM can be attributed to the small size of the nanovesicles, as
litreature shows that smaller particles sizes have a high surface area to
volume ratio, which allows better distribution and adsorption to the
bacterial surface [115,116]. Furthermore, the slow release of the drug
concentration for a relatively long time could also have been a
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contributing factor [117]. The lower MICs and prolonged activity at-
tributed to the V-3-mPEA nanovesicles could result in a decrease in the
effective the dose of treatment and less frequency of administration of
VCM. This could go a long way in reducing dose-dependent ne-
phrotoxicity [118], side effects and improved patients' compliance as-
sociated with vancomycin therapy without compromising their ther-
apeutic outcomes. These findings highlight 3-mPEA star polymer as an
efficient biomaterial for the delivery of VCM against SA and MRSA
infections.

3.7.2. Bacterial membrane disruption

The effect of V-3-mPEA membrane disruption on MRSA was de-
termined by incubating the bacteria with V-3-mPEA for 4 h. At initial
stages of incubation, intact cocci can be seen (Fig. 7A). After 1 h, per-
forations on the bacteria membrane can be witnessed (Fig. 7B and C).
Following 4 h of treatment, it can be seen that bacteria had lost all the
membrane and intact vesicles can be see entering and surrounding the
bacteria (Fig. 7E and F). Association of V-3-mPEA with the bacteria
seems to be facilitated by the smaller sizes of the nanovesicles to cause
maximum effective damage. This result supported the MIC data which
showed effective killing of bacteria by V-3-mPEA and highlighted the
plausible mechanism of action of V-3-mPEA.

3.7.3. Inhibition of MRSA biofilm

The ability of V-3-mPEA to eradicate biofilms was investigated. A
4 day fully mature biofilm of MRSA inhibition by V-3-mPEA and VCM
was determined by fluorescence microscopy. The biofilms were grown
on the cover slips and were stained with Syto9 and propidium iodide
(PI) solution containing 30 pL in 1 mL of distilled water for 30 mins in
darkness, after which the dyes were washed off and cover slips were
inverted on the glass slides (Fig. 8A). Untreated biofilms showed high
intensity of Syto9 fluorescence emanating from the whole of the cover
slip. As Syto is a cell permeant dye, the high intensity is clearly due to
the intact membrane of the high number of cells on the cover slip
[119,120]. When untreated cells were stained with the non-permeating
dye PI, there was no intensity of the dye fluorescence as PI couldn't
penetrate alive cells with an intact cell membrane (Fig. 8B). Treatment
of the biofilm with bare VCM and stained with Syto9 and PI, showed a
slight decrease in the biofilm when compared to the untreated (Fig. 8C)
with some PI emission fluorescence emanating from the slide indicating
some penetration of VCM in the biofilm and bacterial killing (Fig. 8D).
Unlike the previous treatments, when the biofilms were treated with V-
3-mPEA nanovesicles there was a greater reduction of the biofilms. This
was indicated by the reduction in the fluorescence intensity of Syto9
when compared to bare VCM treated and untreated biofilms, indicting
fewer number of cells alive on the glass slide (Fig. 8E). Interestingly
there was very high intensity of PI emission fluorescence emanating
from the slides of biofilms treated with the drug loaded nanovesicles.
Despite PI being a non-cell permeant dye [119,120], the high emission
observed indicates that treatment with V-3-mPEA resulted in destruc-
tion of the biofilm and cell membrane of MRSA leading to high pene-
tration of the PI which bound to DNA. Higher intensity therefore con-
firmed high killing percentage of V-3-mPEA compared to bare VCM that
had a minimum effect on the biofilms. These results indicate that V-3-
mPEA could be employed to also eliminate biofilms which cause det-
rimental health effects associated with surgical implants, chronic in-
fections, urogenital infections, cystic fibrosis and dental infections.

3.7.4. Flow cytometry bacterial cell viability

The rapid cell viability of the MRSA cells was determined using a
flow cytometry method [75]. MRSA bacterial cells were incubated with
bare VCM and V-3-mPEA mediums for 24 h. The process of incubating
bacteria in the presence of antibiotics induces changes in the bacteria
morphology and cells cycle, which can be measured using special dyes
[121]. The PI fluorescent dye, which is not cell wall permeating, is
generally used to detect dead cells in the population, while Syto9 a non-
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Fig. 9. (D). cell counts vs PI uptake histogram where A, represents untreated MRSA (live cells); B, C and D represents percentage of dead cells in the population after
incubation with VCM at its MIC (3.9 ug/mL) and V- 3-mPEA at its MIC (0.488 ug/mL) respectively; (II) the killing kinetics of MRSA exposed to 5x MIC of 3-mPEA
nanovesicles, VCM and sterile water (control); (III) evaluation of MRSA burden post 48 h treatment. Data represented as mean * SD (n = 3). **denotes significant
difference for V-3-mPEA versus bare VCM. ***denotes significant difference between untreated verses bare VCM and ****denotes significant difference between bare

VCM free base and V-3-mPEA;

Fig. 10. Histo-morphological evaluation post 48 h treatment- A) V-3-mPEA nanovesicles treatment, B) untreated group showing exudating pus, Light Microscopy
(LM) micrographs of the control and the treated skin samples stained with H&E; (X40) (C) Untreated (MRSA and Saline); (D) Bare VCM; (E) V-3-mPEA nanovesicles

(scale bar = 500 um).

selective cell wall permeant dye was used for alive cells [119,120]. Data
captured from flow cytometry were analyzed using Kaluza-1.5.20
(Beckman Coulter USA) flow cytometer software (Fig. 9I). Two gates
were created representing viable cells (green) and dead cells (red) in
the population. VCM's mode of action compromises the integrity of the
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cell wall, which enhances the PI permeability and uptake and leads to
intercalation with the DNA that results in a shift in PI fluorescence, this
being an indication of bacterial cell death. After treating the MRSA cells
with both bare VCM and V-3-mPEA, there was a shift in PI fluorescence
(Fig. 91 B, C and D). The bare VCM (Fig. 9IC) and V-3-mPEA (Fig. 91 D)



C.A. Omolo et al.

at concentration of 0.488 and 3.9ug/mL respectively had
98.5 *+ 1.49% and 99.59 *+ 0.55% dead MRSA cells in the population.
However, by treating the MRSA cells with bare VCM at the same con-
centration as the concentration of VCM in the drug-loaded nanovesicles
(0.488 ug/mL), there were only 25.5 = 2.6% dead cells in the popu-
lation (P < .0001). From these results it can be deduced that the ac-
tivity of VCM encapsulated 3-mPEA was the same as that of bare VCM
but at a 16-fold lower concentration. These results could translate to
lowering the amount of the dose required for treatment with V-3-mPEA
without compromising the therapeutic outcomes. Furthermore, such a
dose reduction could also go a long way to reducing dose-dependent
vancomycin toxicity, such as nephrotoxicity [122], these results con-
firming the superiority of V-3-mPEA as a nano antibiotic.

3.7.5. Bacterial killing kinetics

Fig. 9II presents the rates of microbial killing by VCM, and VCM
loaded 3-mPEA nanovesicles when exposed to MRSA at 5 times MIC of
each treatment over a 24 h incubation period at 37 °C. VM loaded 3-
mPEA nanovesicles exhibited a rapid bactericidal effect, with a 3-log
reduction (99.9% clearance) within 10 h in comparison to VCM which
achieved its bactericidal effect within 24 h. The kill kinetics of vanco-
mycin is similar to reports in the literature [77]. Noteworthy at 16
times lower concentration of VCM in the nanovesicles, they achieved
faster killing rate (10h) when compared to the bare drug. This could
translate to quick elimination of the bacteria in the body thus reducing
the duration of treatment and the doses required to achieve successful
therapy.

3.7.6. In vivo antibacterial activity

As a proof of concept, the antimicrobial activity and therapeutic
efficacy of V-3-mPEA nanovesicles against MRSA infections were fur-
ther assessed in a mouse skin infection model. The CFUs, from each
treatment group were recovered and converted to log;o CFU/mL as
shown in Fig. 9III. One-way ANOVA test showed a statistically sig-
nificant (P < .0001) reduction in the bacterial load of recovered bac-
teria in both V-3-mPEA and bare VCM treatment groups when com-
pared to the untreated. The negative control (untreated), bare VCM and
V-3-mPEA nanovesicles groups had the bacterial load (log;o CFU/mL)
of 5.18 + 0.01 (151,733.33 CFU/mL), 4.48 + 0.05 (30,000 CFU/mL)
and 3.16 * 0.07 (1466.7 CFU/mL) respectively. These findings estab-
lished that the bare VCM and V-3-mPEA nanovesicles groups had a 20.5
(P =.0002) and 103.5-fold(P < .0001) reduction of bacterial load
when compared to untreated group. Furthermore, comparison between
V-3-mPEA and bare VCM groups showed a 5.06-fold reduction of CFUs
in nanovesicles group (P = .0045). These findings demonstrated V-3-
mPEA nanovesicles as an effective drug delivery system for vanco-
mycin.

Visual observations of the skin during harvesting revealed the for-
mation of pus at the infection site of the untreated groups, while the
treatment groups did not show pus formation (Fig. 10 A and B). Mis-
croscopic morphological evaluations on the excised skin from the un-
treated, bare VCM and V-3-mPEA nanovesicles groups on the H&E
stained slides revealed that the untreated skin samples displayed evi-
dence of tissue inflammation and abscess formation (Fig. 10 C). Al-
though the bare VCM treatement group (Fig. 10 D) displayed less de-
gree of signs of swelling and abscess formation than the untreated
group. However, comparatively, the V-3-mPEA group (Fig. 10 E) dis-
played no signs of abscess formation, with minimal signs of tissue in-
flammation. Large quantities of white blood cells (WBCs) at the infec-
tion site was observed in the untreated and bare VCM groups indicating
a greater immune response due to the high amount of isolated CFUs
(Fig. 9 III). The quantity of WBCs was minimal in the V-3-mPEA na-
novesicles group (Fig. 10 E). These histomorphological findings corre-
lated with the recovered CFU/mL (Fig. 9 III), which showed the skin
samples (untreated and VCM treated groups) with the most number
bacteria triggered higher degree of immune response that was
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manisfested with the highest degree of inflammation, abscess formation
and presence of white blood cells present at the infection site. Due to
the lowest number of isolated bacteria in the V-3-mPEA nanovesicles
group (Fig. 9 III), minimal signs of inflammation and no abscess for-
mation was observed. The histomorphological studies therefore confirm
the antimicrobial advantage of the V-3-mPEA nanovesicles.

4. Conclusions

Generation one poly(ester-amine) dendrimer end groups were
modified with mPEG-b-PCL linear polymer and evaluated for sustained
delivery and enhanced activity of VCM. The hydrodynamic diameter of
the nanovesicles was 52.48 + 2.6 nm, as measured by the DLS and
confirmed by the TEM. The nanovesicles exhibited a sustain release
behavior of vancomycin over a period of 72 h. Studies performed with
the MST and HSA binding showed that V-3-mPEA did not have any
adsorption and binding affinity to the HSA, which indicated their po-
tential for long systemic circulation. The in vitro antibacterial activity
against the susceptible and resistance SA showed that V-3-mPEA had 8-
and 16-fold greater activity when compared to the bare VCM. Further
antibacterial studies using the flow cytometry method revealed that
nanovesicles at MIC concentrations killed 99.5% of MRSA cells. Even at
an 8-fold, lower concentrations of VCM in the nanovesicles compared to
the bare VCM the nanovesicles were effective without compromising
the efficacy of VCM. This was proof that the nanovesicles enhanced the
activity of vancomycin. In vivo antibacterial test showed that V-3-mPEA
had a 103 and 20-fold reduction in the MRSA load compared to the
untreated and VCM treated mice respectively. These results indicated
high efficacy of V-3-mPEA when compared to the bare drug. Findings of
the study suggests promising development and translational potential
of 3-mPEA and V-3-mPEA for use as a drug delivery vehicle and na-
noantibiotic against bacterial infections respectively.
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ABSTRACT: The aim of the present study was to formulate a

g

nanosuspension (FA-NS) of fusidic acid (FA) to enhance its aqueous AR
solubility and antibacterial activity. The nanosuspension was characterized ik i
using various in vitro, in silico, and in vivo techniques. The size, p— | L

polydispersity index, and zeta potential of the optimized FA-NS were 265
+ 2.25 nm, 0.158 + 0.026, and —16.9 + 0.794 mV, respectively. The
molecular dynamics simulation of FA and Poloxamer-188 showed an
interaction and binding energy of —74.42 kJ/mol and —49.764 + 1.298 kJ/
mol, respectively, with van der Waals interactions playing a major role in
the spontaneous binding. There was an 8-fold increase in the solubility of ]

FA in a nanosuspension compared to the bare drug. The MTT assays [rusiicacid(Fa) Foloxamer 128
showed a cell viability of 75—100% confirming the nontoxic nature of FA-
NS. In vitro antibacterial activity revealed a 16- and 18-fold enhanced
activity against Staphylococcus aureus (SA) and methicillin-resistant SA (MRSA), respectively, when compared to bare FA.
Flowcytometry showed that MRSA cells treated with FA-NS had almost twice the percentage of dead bacteria in the population,
despite having an 8-fold lower MIC in comparison to the bare drug. The in vivo skin-infected mice showed a 76-fold reduction
in the MRSA load for the FA-NS treated group compared to that of the bare FA. These results show that the nanosuspension of
antibiotics can enhance their solubility and antibacterial activity simultaneously.

KEYWORDS: nanosuspension, improved solubility, enhanced antibacterial activity, molecular dynamics, MRSA

B INTRODUCTION

Despite the global spread of antimicrobial resistance, develop-
ment and regulatory approval of new antibiotics has declined
by 90% over the past 30 years due to the excessive cost of
antibiotic research.' ™ Scientists are therefore focusing on
enhancing the efficacy of old antibiotics through structural
modifications” and reformulating them into nano systems.” It
is widely reported in the literature that the nanonization of

IHO“'

Figure 1. Chemical structure of FA. IUPAC name: (E)-2-

antibio;igcs enhances their activity”® through sustained ((3R/45,58,85,98,10S,11R,13R,14S,16S)-16acetoxy-3,11-dihydroxy-
release,” thereby 1owering the minimum inhibitory concen- 4,8,10,14—tetramethylhexadecahydro-17H-cyclopenta[a]phenanthren—
tration (MIC)’ and targeting the infection sites."” Thus, 17-ylidene)-6-methylhept-S-enoic acid.
revisiting older antibiotics, such as fusidic acid (FA), is of
importance to expand and protect the shrinking armamenta- of action that lacks significant cross resistance to other
rium available to clinicians to treat illnesses caused by resistant antibacterial classes.'” An increase in the rate of global
bacteria.

FA is a fusidane antibiotic that is derived from Fusidium Received: May 14, 2018
coccineum and is a tetracyclic triterpenoid that is structurally Revised:  June 26, 2018
related to cephalosporin P1 (Figure 1),'" active against a wide Accepted: June 28, 2018
range of bacteria,'” has low toxicity, and a unique mechanism Published: June 28, 2018

ACS PublicatiOﬂS © 2018 American Chemical Society 3512 DOI: 10.1021/acs.molpharmaceut.8b00505
3 Mol. Pharmaceutics 2018, 15, 3512—3526
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antimicrobial resistance has promogulated research interest in
FA, even in markets where it lacked registration, for example
the USA, and is in clinical trials for approval as a potentially
valuable therapeutic option.'"

The high hydrophobicity of biopharmaceutical classification
system class (BCS) II drugs, such as fusidic acid hemihydrate,
partitions well through biological membranes, which can
translate to high bioavailability.”"™>° However, their bio-
absorption process is rate-limited by their low rate of
dissolution, which results in the low absorption for the oral
dosage and the difficulty in formulating parenteral dosage
forms,'>™*° with poor aqueous solubility often resulting in
poor bioavailability. A previously prepared FA suspension
displayed only 22.5% bioavailability in pediatric patients
following a 20 mg/kg dose.'"”*' There is therefore a need for
innovative strategies to improve solubility and bioavailability of
FA.

To solve the problem of poor aqueous solubility of drugs,
several techniques, such as micronization,' > solubilization,”’
and salt formation, have been explored,** although they have a
number of limitations. The micronization technique results in
very fine powders that affects the flow and wettability
properties of the drug due to enhanced electrostatic forces.”
Solubilization techniques require the formulation to be in
liquid form, which has stability problems,”® and salt formation
is a complicated process, not being feasible for neutral
compounds.”” As much as they enhance solubility, sodium
salts, like sodium fusidate, undergo precipitation in acid media,
and their solubility also tends to vary with change in pH, which
changes along the gastrointestinal tract.”®

Nanotechnology has been used to successfully deliver and
improve the activity of a wide range of antibiotics.”'****
However, nanocarriers require the use of matrix material to
encapsulate the compound, thereby reducing the maximum
possible drug loading.”" Recent advancements in technologies
for reducing particles sizes to nanoparticulate level have
stimulated the formulation of nanosuspensions, these being
solid dispersions of the drug in the submicron scale that are
stabilized with surfactants, polymers, or both.’” Nano-
suspensions offer increased dissolution rates, enhanced
bioavailability, and activity, and complete entrapment of
insoluble drugs by forming stable solid dispersions in their
amorphous state.”” As described by the Noyes—Whitney, and
Kelvin and Ostwald—Freundlich equations, particle size
reduction can lead to an increased dissolution rate and
absorption due to greater surface area, amplified dissolution
pressure, and increased adhesiveness to surfaces/cell mem-
branes.”*"*° Nanosuspensions have been successfully used to
improve the activity of a wide range of anti-infectives, such as
triclosan,>* ciprofloxacin,”” itraconazole,”® and miconazole.*”
To the best of our knowledge, there are no reports on FA
nanosuspension as a drug delivery system. Despite FA being an
effective agent against Gram-positive bacteria, there has been
only one report for enhancing its solubility and activity using
nanomicelles, which further involved the use of a newly
synthesized material, i, polyester dendrimers.*’ A nano
precipitation antisolvent technique, which was used to
formulate nanosuspensions, has been shown to have
advantages, such as little energy input, readily available
machinery, and easy scale-up. It also allows for the preparation
of nanosuspensions without the use of additional specialized
materials, like the study reported by Sikwal et al.*’
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Development of pharmaceutical dosage forms requires an
understanding of the in vitro and in vivo performance of the
dosage forms. In vitro studies have been shown to be
convenient as they (a) reduce costs, (b) provide an
opportunity to more directly assess product performance,
and (c) offer benefits in terms of ethical considerations.*' As
useful as in vitro assays are, they could fail to replicate the
results in living conditions of an organism;42 as some studies
have shown, in vivo results were better than in vitro outcomes.
There have been also reports where studies have been effective
in vitro, but when introduced into a living organism, they cause
a cascade of events that have turned out to be toxic and
incompatible with the animal.*® Therefore, to increase the
confidence in the effectiveness of pharmaceuticals, in vivo
studies are usually recommended as the field is moving from
the formulation-based to disease-focused research.

In addition to their physicochemical properties and in vitro
and in vivo performance, understanding the underlying
behavior and mechanism of the formation of drug delivery
systems is essential for formulation optimization, and it
requires an examination under spatial and sequential
resolutions. Molecular dynamics (MD) simulations are being
employed in drug delivery studies, as they can track the
systems behavior changes across considerable spatial-sequen-
tial domain lengths with atomic precision and high
resolutions**. Thus, providing a detailed molecular insight
into the formation of nanosuspensions for drug delivery
applications is of paramount importance. The MD simulations
in this article have not been reported previously.

Thus, the aim of this study was to formulate a stable FA
nanosuspension (FA-NS) by employing a bottom-up anti-
solvent precipitation technique and characterizing it with
various in vitro, MD simulations, and in vivo studies. We
envisaged that the formulated nanosuspension would enhance
aqueous solubility and antibacterial activity of FA against S.
aureus and MRSA.

B MATERIALS AND METHODS

Materials. FA, polyvinylpyrrolidone (PVP), Poloxamer-188
(P188), sodium dodecyl sulfate (SDS), Cremophore (RH40),
Solutol (HS1S5), Tween-80, and Cremophor EL (EL) were
purchased from Sigma-Aldrich Co. Ltd. (USA). Propidium
iodide and Syto9 dye cell viability kits were purchased from
Thermofisher (USA). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT) was bought from Merck
Chemicals (Germany). Fetal bovine serum (FBS) was
obtained from Life Technologies (USA), and penicillin
streptomycin (pen/strep) was purchased from Lonza (USA).
An Elix 10 water purification system (Millipore Corp.,USA)
was used to obtain Milli-Q water. Mueller Hinton Agar
(MHA) (Biolab, South Africa), nutrient broth (Biolab, South
Africa), nutrient agar (Biolab, South Africa), and Mueller
Hinton broth 2 (MHB) (Sigma-Aldrich, USA) were used in
the antibacterial testing studies and tested against Staph-
ylococcus aureus (ATCC 25922) and Staphylococcus aureus
Rosenbach (ATCC BAA-1683) (MRSA).

Screening and Preparation of FA-NS. A bottom-up
antisolvent ultrasonication-precipitation technique was em-
ployed to prepare FA-NS. A solution of FA in organic solvent
was prepared and added dropwise to a surfactant solution in
Milli-Q_water under vigorous stirring. The resulting mixture
was further sonicated for a determined time period under ice."
Initially, a surfactant solution (0.1% w/v) was prepared and 1
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mL of FA solution (10 mg/mL) in water miscible organic
solvent was added dropwise under vigorous stirring, sonicated
at 30% amplitude for 5 min. Thereafter, the suspension was
stirred overnight at room temperature to completely evaporate
the organic solvent. Various parameters, such as surfactant
type, surfactant concentration, drug concentration, solvents
(methanol, ethanol and acetone), sonication time, and
amplitude, were evaluated to obtain a stable FA-NS nano-
suspension. Potential surfactants were screened to provide a
stable system: PVP, P188, SDS, Macrogol (RH40), HSI1S,
Tween-80, and EL. Following the evaporation of the organic
solvent, the FA-NS was immediately lyophilized using 3%
mannitol as a cryoprotectant.46

Characterization of Fusidic Acid Nanosuspension. In
Silico Studies. MD simulations are a widely applied technique
in the field of drug delivery to accomplish tasks such as
understanding the drug interaction with proteins,*”* mem-
branes,*”*" and polymers.”** The spontaneous binding of
P188 with FA was studied using MD simulations to allow us to
understand (1) the FA spontaneously binding with P188, (2)
interactions that play a crucial role in the FA interaction with
P1188 (whether VAW or electrostatics), and (3) if the binding
energy of the complex is favorable. The structure of FA (Figure
2A) was taken from PDB id 2VUF,” and 10 monomer units of

A)

B)

Figure 2. Structure of (A) monomer units of P188 and (B) FA (PDB:
2VUE).

each P188 block were constructed using ChemDraw”* (Figure
2 B and 1A). The CHARMM general force field (CGenFF)™>
parameters were used for both of the molecules, and the
TIP3P model*® was used for water. The MD simulation system
contains one FA molecule, a polymer of P188, and 30235
water molecules. The system was first energy minimized using
the 5000 steps of the steepest descent method,”” after which
the equilibration simulations were performed using a canonical
ensemble (NVT), followed by an isobaric-isothermic ensemble
(NPT) for 10 ps each, with the production run being
performed using an NPT ensemble for 30 ns. The simulation
was performed at 300 K temperature using the velocity-rescale
method and at 1 atm pressure using the Parrinello—Rahman
method,”® with the coupling time for the temperature being 0.1
and for Jpressure 2.0 ps. The particle mesh Ewald (PME)
method®” was used for long-range electrostatic interactions,
with a 10 A cutoff being used to calculate the VAW and short-
range Coulombic interactions. The Com of mass (COM)
distances between P188 and FA were calculated using an in-
house Tcl script. The interaction and binding energy between
P188 and FA were calculated using the g mmpbsa tool, which
uses the molecular mechanics Poisson—Boltzmann surface area
(MM-PBSA) method,”® while the simulation was performed
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using GROMACS 5.1.2.°! The binding energy of the P188—
FA complex in solvent was expressed as

AGp = AGcomplex(Plss+FA) - (AGPISS + AGFA)
where AG npex is the binding energy of the PI88—FA
complex, and AGyp g, and AGg, are the total energies of

P188 and FA individually. The total energy of AG omplew
AGp,gg, and AGg, were estimated using

AGP188 = AEPISS(MM) + AG1>188(Solvation)
AGg, = AEFA(MM) + AGFA(Solvation)

where AE,;, is the potential energy in vacuum, and it was
estimated using

AEMM = AEbonded + AE

nonbonded

AEMM = A}:‘—:bcu'u:led + (AEvdw + AEelec)

AGgjation 15 the solvation free energy, and it was estimated
using
AGSolvation = AGpolar + AGnonpolar

AG,,,, was calculated using the Poisson—Boltzmann (PB)
equation, and AG,gnpol, Was estimated using

AG = ySASA + b

nonpolar

where y is a coefficient related to the surface tension of the
solvent, and b is the fitting parameter

7 = 0.0226778 kJ/Mol/A2 and b = 3.84928 kJ/Mol

A bootstrap analysis was performed to calculate the standard
error.

Size, Polydispersity Index (Pl), Zeta Potential (ZP), and
Morphology. The size, PI, and ZP of FA-NS were analyzed by
dynamic light scattering (DLS) using a Zetasizer Nano ZS90
(Malvern Instruments Ltd., UK). The FA-NS were diluted
with Milli-Q water in such a way that the scattering intensity
was within the instrument’s sensitivity range, after which it was
analyzed. All of the measurements were performed in triplicate
on three different batches that were prepared separately. The
morphological investigations were performed using Jeol, JEM-
1010 (Japan) transmission electron microscopy (TEM). The
FA-NS suspension was diluted appropriately and mounted
onto the surface of a copper grid, with the excess sample being
removed by blotting off with filter paper, after which it was
dried at ambient temperature and stained using 2% uranyl
acetate solution before measurement.”” The images were
captured at an accelerating voltage of 100 kV.

Differential Scanning Calorimetry (DSC). The thermal
profiles of the FA—P188 physical mixture and lyophilized FA-
NS were determined by DSC (Shimadzu DSC-60, Japan).
Briefly, samples (2 mg) were placed in an aluminum pan and
sealed using a crimper; then, they were heated to 300 °C at a
constant rate of 10 °C/min under a constant nitrogen flow of
20 mL/min using an empty pan as a reference.

X-ray Diffraction (XRD) Analysis. The XRD patterns were
obtained using a Bruker D8 advance diffractometer (Bruker,
Karlsruhe, Baden-Wiirttemberg, Germany) equipped with a
graphite monochromator operated at 40 kV and 40 mA. Cu
Ka radiation was used as the X-ray source with & = 1.5406 A.

Fourier Transform-Infrared (FT-IR). A Bruker Alfa spec-
trophotometer (Germany) was used for the FT-IR analysis of
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FA, P188, and lyophilized FA-NS in order to determine any
chemical changes that occurred during formulation.

Rheology of the Suspension. The rheological properties
of the FA-NS suspension were measured by the MCR 302
rheometer (Anton Parr, Graz, Austria) using a 49.96 mm plate
(0.995°, shear rate from 0.01 to 100/s) at room temperature,
with the experiments being performed in triplicate.

Physical Stability Study. Stability studies of both the wet
and lyophilized nanosuspensions were performed at 4 °C and
room temperature over a 3-month period. The parameters
evaluated for confirming the stability were particle size, PI, ZP,
settling behavior, and physical appearance.

Solubility Studies. A shake-flask method was used to
determine the solubility of FA-NS and FA in water. Excess
quantities of FA and lyophilized FA-NS were added to the
Milli-Q water (10 mL) and placed in a shaking incubator at a
temperature of 25 °C for 24 h. The undissolved FA was
removed by filtering through syringe filters (cellulose acetate
membrane, 0.2 ym, GVS Filter Technology, USA),40’63 with
the FA content being determine by HPLC (Shimadzu, Japan)
using a reported method.®* The mobile phase was composed
of acetonitrile and water (70:30, v/v) that was adjusted to pH
3.5 with acetic acid. The flow rate and detection wavelength
were 1.0 mL min~’, and 210 nm, respectively. The injection
volume was 20 yL and was pumped through a Nucleosil 100-5
C18 column (150 mm X 4.6 mm internal diameter). The
regression equation for the calibration curve was y = 186436x
— 10635, and the linearity correlation coefficient * was 0.9994.

In Vitro Cytotoxicity. The biosafety of the FA-NS
suspension was assessed using a MTT assay method.” The
adenocarcinoma human alveolar epithelial cell line (A549) and
human embryonic kidney cells (HEK 293) were plated in T-25
cell culture flasks at a density of 104 cells/mL and cultured in
DMEM media supplemented with 10% FBS (v/v) and 1%
Pen-Strep (v/v). The cells were grown at 37 °C in a
humidified incubator with 5% CO,. The medium was
exchanged every 2 days. Each of the two cell lines containing
3000 cells were seeded into 96-well plates and were further
incubated for 24 h, and the media was discarded and replaced
with 100 pL of fresh media. Thereafter, different dilutions of
FA-NS containing 20, 40, 60, 80, and 100 ug of P188 were
added to the 96-well plates (n = 6 per concentration). After 48
h of incubation, sample-laden medium was then removed from
each well, discarded, and replaced with 100 uL of fresh culture
medium and 20 L of MTT solution (S mg/mL in PBS) in
each well. Cell viability was assessed on a microplate
spectrophotometer (Spectrostar Nano, Germany) at an
absorbance wavelength of 540 nm. The percentage cell
viability was calculated as follows

AS540 nm treated cells
AS540 nm untreated cells

Cell viability = ( ) X 100%
Antibacterial Activity. In Vitro Antibacterial Activity.
The broth microdilution method was used to determine the
MIC values. S. aureus and MRSA were grown overnight in
nutrient broth at 37 °C in a shaking incubator at 100 rpm and
diluted with sterile deionized water to achieve a concentration
equivalent to 0.5 McFarland standard using a DEN-1B
McFarland densitometer (Latvia). In a 96-well plate 135 uL
of MHB was added followed by the addition of 135 uL of bare
FA (1.5 mg/mL) (positive control) and FA-NS (1 mg/mL) in
the first well; then, it was serially diluted. Both of the bacterial
cultures grown in MHB were further diluted to 5 X 10° colony
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forming units per mL (CFU/mL),*® and 15 uL was added to
the sample and the MHB-laden 96-well plate and incubated at
37 °C in a shaking incubator (100 rpm). After 24 h, 10 uL of
the incubated broth was spotted on MHA plates and incubated
for 24 h at 37 °C to determine the MIC values. The studies
were performed in trié)licate using the 1% v/v DMSO solution
as a negative control. 067

Flow Cytometry Bacterial Cell Viability. Cell viability
studies on the MRSA cells were performed following a flow
cytometry assay method. A volume of 15 uL of the bacterial
suspension containing 5 X 10° CFU/mL was added to each
well containing 135 L of bare FA (positive control), and FA-
NS at their respective MICs were incubated at 37 °C in a
shaking incubator (100 rpm). The percentage cell viability
after 24 h was determined using the flow cytometry method on
a BD FACSCANTO II (Becton Dickinson, CA, USA)
fluorescence activated cell sorter.”**” Both FA and FA-NS
treated with bacterial cultures (50 L) in each well were added
to the flow cytometry tubes, each containing 350 uL of the
sheath fluid, and vortexed for 5 min. The mixture was
incubated for 30 min with S uL of propidium iodide (Prl),
which is a noncell wall permeant dye, as well as the Syto9 cell
permeant dye. Prl fluorescence was excited by a 455 nm laser
and collected through a 636 nm bandpass filter, while Syto9
excitation was at a 485 nm laser and collected through a 498
nm band-pass filter.”°~"> Untreated pure MRSA cells were
used as a negative control. Instrumentation settings included a
sheath fluid flow rate of 16 mL/min and a sample flow rate of
0.1 mL/min. Data with fixed cells were collected using flow
cytometer software (BD FACSDIVA V8.0.1 software, USA).
The voltage settings used for the fluorescence-activated cell
sorting (FACS) analysis were 731 (forward scatter [FSC]),
538 (side scatter [SSC]), 451 (Syto9). and 444 for Prl.
Bacteria were initially gated using forward scatter, with the cells
of the appropriate size being gated. At least 10 000 cells were
collected for each sample in triplicate, and their position as
“live” and “dead” cells were determined. To avoid any
background signal from particles smaller than bacteria, the
detection threshold was set at 1000 events in SSC analyses.”

In Vivo Antibacterial Activity. A mouse skin infection
model was used for in vivo antibacterial activity following a
study protocol approved by the University of KwaZulu-Natal’s
(UKZN) Animal Research Ethics Committee (AREC)
(Approval number: AREC/104/015PD). Humane care and
use of animals were in accordance with the guidelines of the
AREC of UKZN and the South African National Standard
SANS 10386:2008. BALB/c male mice weighing 18—20 g were
used in the study. The back hair of mice was removed 24 h
prior to the experiment, and the intact exposed skin was
disinfected using 70% ethanol. MRSA saline suspension
containing 1.5 X 10° CFU/mL (50 uL) was injected
intradermally the following day. The mice were then divided
into three groups: treatment, positive, and negative control (n
= 4). After 30 min of infection, S0 uL (0.05 mg FA) of FA-NS
(treatment), bare FA (025 mg) in 1% DMSO (positive
control), and saline (negative control) were injected at the
same site of infection for each treatment group, respec-
tively, 10307475

The mice were kept under observation for 48 h with a
normal 12 h of light and darkness condition at 19—23 °C and
55 + 10% relative humidity with adequate ventilation, after
which they were euthanized with halothane, and the infected
area of the skin was harvested and homogenized in 5 mL of
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PBS (pH 7.4). Tissue homogenates were serially diluted in
PBS (pH 7.4), and 20 puL of the diluted homogenates were
spotted on nutrient agar plates followed by incubation at 37 °C
for 24 h, after which the number of colonies were counted. The
CFU/mL was calculated using the following equation:

CEU/mL = number of colonies X dilution factor

volume of culture plate

Histomorphological assessments were performed on the
freshly harvested excised skin from the injection site. The skin
samples were transferred directly after harvesting, and the
excisions from the normal saline skin samples were fixed into a
10% buffered formalin at 25 °C for 7 days; they were
dehydrated using ethanol and were implanted in paraffin wax.
The tissue wax blocks were sectioned using a microtome
(Leica RM2235, Leica Biosystems, Germany); the sections
were collected on slides, dried, and then stained with
hematoxylin and eosin (H&E). The sections were examined
and captured with a a Leica Microscope DM 500 that was
fitted with a Leica ICCS0 HD camera (Leica Biosystems,
Germany).

Statistical Analysis. One-way analysis of variance
(ANOVA), followed by Bonferroni’s multiple comparison
test, was used for statistical analysis. Individual groups were
compared against each other using a paired ¢ test, with p values
< 0.05 being considered statistically significant. Values are
represented as mean + SD. GraphPad Prism software (Graph
Pad Software Inc.,, Version 6, San Diego, CA) was used for
statistical analysis.

B RESULTS

Formulation of the Nanosuspension. The FA-NS
nanosuspension was prepared by bottom up antisolvent
precipitation, with the FA being dissolved in a water miscible
organic solvent to form a solution, then added to the aqueous
(antisolvent) phase containing a suitable stabilizer (surfactant)
under vigorous stirring, and sonicated under ice. As the drug
solution was added to the antisolvent, precipitation of the drug
molecules occurred, forming a new solid phase of drug nuclei,
as per Kelvin’s Law.”® The formed nuclei have the tendency to
condense into larger particles, which is energetically favored
due to Ostwald ripening, as shown in the TEM images (Figure
3), resulting in various formulation parameters being
optimized before achieving a stable nanosuspension.

Evaluation of the Formulation Variables To Obtain
Optimized FA-NS. Effect of Surfactants. A potential
surfactant to provide a stable nanosuspension was identified
from screening several surfactants, the results being displayed
in Table 1. The FA drug concentration of 10 mg/mL, organic
solvent (methanol), sonication of 30% amplitude, and
sonication time of S min were fixed, while different types of
surfactants were varied. The effect of the surfactant type on the
size, PI, and ZP was investigated, with the particle sizes ranging
from 200 to 1400 nm, and the PI from 0.1 to 0.6. The SDS
produced FA-NS with the lowest particle sizes, followed by
PVP and P188. However, nanoprecipitation in the presence of
P188 consistently generated nanosuspensions with significantly
lower PI when compared to that of PVP (p = 0.0113) and SDS
(p = 0.0288), with P188 being chosen as the surfactant of
choice.

Having chosen P188 as the surfactant of choice, nano-
suspensions with various concentrations of P188 (0.1, 0.2, 0.4,

3516

Figure 3. TEM image of smaller particles showing coalescence to
form larger thermodynamically stable larger particles before optimum
FA-NS suspension was achieved.

Table 1. Effect of Surfactant Type on Stabilizing the
Nanosuspension (n = 3)

surfactant average size PI 7P

PVP 563.5 + 6.18 0.354 + 0.031 -10.6 + 0.24
P188 590.0 + 7.92 0.254 + 0.017 —-13.1 +2.70
SDS 388.6 + 58.00 0.592 + 0.124 —62.5 + 6.34
RH40 1159 + 21.36 0.330 + 0.045 —10.0 + 0.16
HS1S 1289 + 28.00 0.412 + 0.230 =721 + 1.67
Tween-80 7724 + 4.71 0.375 + 0.049 —11.1 + 0.07
EL 1403 + 18.69 0.462 + 0.004 —08.57 + 1.16

0.8, 1.6, and 2% w/v) were prepared in order to determine the
concentration of the surfactant that offered FA-NS with the
lowest possible size, PI, and a ZP in an acceptable range.

As the concentration of the surfactant increased from 0.1%
w/v to 0.8% w/v, the particle size decreased from 590 to 518.4
nm, respectively (Supporting Information). However, above
the 1% w/v, the size started to increase.

Effect of Organic Solvent. Having determined the
concentration of P188 suitable to formulate the nano-
suspension, solvents were evaluated for their effect on the
size of the formed FA-NS. The FA concentration of 10 mg/
mL, sonication time (S min), and 30% amplitude were fixed.
Methanol was considered to be a suitable solvent, as it
produced FA-NS with the lowest particle size (Table 2)
compared to that of ethanol (p = 0.0001) and acetone (p =
0001). It was also observed that FA-NS formulated using
methanol had a better PI than that of acetone and ethanol.

Table 2. Effect of Organic Solvents on Nanosuspension
Formation (n = 3)

solvent average size PI 7P
ethanol 950.0 + 21.13 0.307 + 0.036 - 14.6 + 1.08
acetone 896.0 + 17.37 0.384 + 0.058 —12.8 + 0.85
methanol 590.0 + 07.92 0.254 + 0.017 —13.1 +2.70

Effect of Drug Concentration. To achieve an optimum size
and distribution of the FA nanocrystals, the effect of the drug
concentration was evaluated. The concentration of the drug
was varied from 10 to 30 mg/mL, while keeping the
concentration of P188 at 1 % w/v, methanol as the solvent,
a fixed sonication amplitude of 30%, and a time of 5 min. As
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the drug concentration increased from 10 to 30 mg/mlL, the
particles sizes increased from 552 + 13.3 to 1336 + 89.4 nm,
and the PI increased from 0.198 + 0.017 to 0.498 + 0.042
(Supporting Information).

Effect of Sonication Time and Amplitude. By fixing the
concentration of the surfactant (P188 1% w/v), drug
concentration (FA = 10 mg/mL), and methanol as the solvent,
the effect of ultrasonication was studied by changing the
sonication time and amplitude. Fixing the sonication amplitude
at 30%, ultrasonication times of 5, 7, 10, 15, and 20 min were
employed to determine their effect. The particle sizes showed
the tendency to decrease with increasing time. However, after
1S min, increasing the sonication time did not show any
significant (p > 0.05) change in the particle size. Consequently,
the effect of ultrasonication amplitude (5%, 10%, 20%, 30%,
40%) was also investigated by fixing the time at 15 min. A
trend similar to the sonication time was witnessed, where
initially increasing the ultrasonication amplitude led to reduced
particle sizes, while above an amplitude of 30%, there was no
significant decrease in particle sizes

Characterization of FA-NS. The above screening studies
identified the following as the optimal conditions for preparing
FA-NS that resulted in monodisperse nanosuspension: the
surfactant (P188 = 1% w/v), drug concentration (FA = 10 mg/
mL), methanol as an organic solvent, and ultrasonication time
and amplitude of 15 min and 30%, respectively. The
formulation was then subjected to detailed characterization,
as reflected below.

In Silico Studies. An MD simulation of 30 ns of the FA and
P188 (10 units per polymer block) molecules in the presence
of water molecules was performed to investigate the
spontaneous binding, interaction energy, and binding energy
between P188 and FA. Figure 4 shows the interaction between

t=10ns

t=0ns e

Figure 4. Structures of FA and P188 at four different time points of
simulations: (A) at £ = 0 ns; (B) at £ = 10 ns; (C) at ¢ = 13.5 ns; and
(D) at t = 30 ns. P1188 has been represented in a CPK model, and FA
is represented in the VAW model.

P188 and FA at different time points. The time evolution of
the COM distance between the P188 and FA revealed that
there was spontaneous interaction between both molecules
starting from ~9 ns (Figure 7A). After interacting, the two
molecules remained in a stable complex until ~16.9 ns. From
~17 to ~17.3 ns of MD simulation for 300 ps, a momentary
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break in the interaction between both of the molecules was
observed. However, at ~17.4 ns, the interaction was re-
established between both of the molecules and remained stable
until the end of the simulation. The average COM distance
between the P188 and FA was ~14.37 A, and the average
interaction energy between the P188 and FA was ~ —74.42 kJ/
mol from 9 to 30 ns (Figure SB, black line). The interaction
energy components showed that the spontaneous binding
between the P188 and FA was largely governed by van der
Waals (VAW) interactions (Figure SB, green line). The
representative images from the trajectory revealed (Figure 4)
that after the binding of the FA, the P188 rearranged its
conformations to establish stable interactions. The contribu-
tion to the AG,,, from the VAW and electrostatic interactions
was represented by AE 3, and AE.. The polar and nonpolar
solvation energy contributions to AG,,, were represented by
AG,qp and AG, gyl respectively. The P188-FA binding was
largely governed by hydrophobic interactions, with AE
being the most favorable contributor. AG,,, was unfavorable
for the binding, while favorable AG,,po; and a gain in
intermolecular VAW compensated for an increase in the polar
solvation energy, which lead to an overall favorable binding
energy. The binding energy (AG,) of P188 with FA (Table
3) was calculated using the MM-PBSA method from 9 to 30
ns, and the binding energy was found to be —49.764 + 1.298.

Size, Pl, ZP, and Morphology of the Optimal Formulation.
The optimal formulation, which used the above variables,
generated monodisperse FA-NS with the size, PI, and ZP of
265 + 225 nm, 0.158 + 0.026 and —16.9 =+ 0.794,
respectively. The lyophilized and water redispersed samples
did not have significant changes in the size, PI, and ZP (262.9
+ 2.59 nm, 0.179 =+ 0.030, and —17.0 + 1.01 mV,
respectively). The TEM images show discrete spherical
particles (Figure 6), with most of the population sizes being
in ranges that were comparable to the sizes observed in the
DLS study.

DSC, XRD, and FTIR Analyses. A DSC investigation was
performed to establish the melting and crystallization behavior
of FA-NS and the formulation excipients. Endothermic peaks
of P188 and bare FA were detected at 54.48 and 118.68 °C,
respectively (Figure. 7(II)A,B), while the lyophilized FA-NS
only showed a sharp endothermic peak at 42.46 °C (Figure
7(I1)D). The XRD diffractograms pattern of P188 and FA
showed 2 and 1 sharp peaks, respectively (Figure 7III). The
diffractogram pattern of the FA-NS nanosuspension showed no
peaks for FA; however, it contained two sharp peaks in similar
ranges to those of P188. The physical mixture was analyzed,
and the peaks for all of the respective excipients and FA were
observed (Figure 7(II)C). An FT-IR was also conducted to
evaluate if there were chemical changes in the drug during
formulation. The peaks for the C=O stretch for both
lyophilized FA-NS and bare FA were observed in the region
of 1713 and 1645 cm™, respectively, although the peak in the
FA-NS was attenuated (Figure 7I). Carboxylic OH stretching
groups were also present at the region of 343S and 3395, both
for the lyophilized and bare FA. The ester peak was missing in
the FA-NS but was present in the bare drug at 1253.46 cm™".
The disappearance might have been due to the hydrogen
bonding between P188 and FA during the formulation of the
FA-NS, as these kinds of interactions play a vital role in
solubilizing the drug.”® The fingerprint region spectra of the
FA-NS was almost similar to FA alone, with the broad sharp
peaks at 1079 and 1101 cm™" for FA-NS and P188 that were
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Table 3. Average Binding Energy and Its Components
Obtained from the MM-PBSA Calculation for the P188—FA
Complex

contribution

energy (kJ/mol)

AE 4, —70.664 + 1.680
AE,, —3.810 + 0.314
AGgper 36.075 + 1.151
AGhonpolar —11.416 + 0.233
AG —49.764 + 1.298

Figure 6. Morphology of the optimized FA-NS particles.

lacking in the bare FA, possibly due to a C—O stretch of the
ether bonds present in P188.

Stability Studies. Rheology. Rheology of the optimized
FA-NS demonstrated a Newtonian flow with a relative
viscosity of 1.335 =+ 0.049 mPa-s. After seven days and one
month the nanosuspension had viscosity of 1.371 + 0.079 and
1492 + 0.095 mPa-s respectively indicating no significant
change in the viscosity of FA-NS (p > 0.05) during the storage
period.

Physical Stability Study. The optimized formulation was
further assessed for stability as both wet and lyophilized
formulations for three months at room temperature (rt) and 4
°C. The FA-NS was found to be stable in both the lyophilized
and wet states stored at 4 °C for the whole 3-month period of
evaluation, with particle sizes below 300 nm. Furthermore, the
nanosuspension did not show any signs of coalescing and
caking (Table 4). Room temperature studies revealed that the
Iyophilized formulations were more stable than the wet ones,
with particle sizes below 300 nm after 60 days, increasing up to
500 nm after 90 days. The wet formulation was stable for two
months, and at the end of the 90 days, the particles sizes were
found to be above the nano ranges.
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Solubility Studies. Solubility studies were conducted to
determine the effect of formulating the FA into a nano-
suspension on an aqueous solubility. The solubility of the FA
and FA-NS was found to be 17.81 + 5.30 and 127.23 + 5.30
ug/mL respectively (Figure 8).

In Vitro Cytotoxicity. Biosafety of FA-NS was assessed by
quantifying viable mammalian cells after exposure to the
synthesized material. Two cell lines, A549 and HEK 293, were
employed to determine the biosafety of FA-NS in an in vitro
cell culture system. The results showed cell viability ranging
from 75.71% to 100.89% across all of the concentrations in all
of the cell lines tested (Figure 9) with no dose-dependent
toxicity within the concentrations studied.

Antibacterial Activity. In Vitro Antibacterial Activity. To
evaluate the efficacy of the FA-NS, the MIC values of the bare
FA and FA-NS MIC values were determined against S. aureus
and MRSA, with the results presented in Table 5. The MICs
for FA and FA-NS were 62.5 and 3.9 ug/mL, respectively,
against S. aureus, whereas for MRSA, the values were 250 and
31.25 pg/mL, respectively (Table 4).

Flow Cytometry Bacterial Cell Viability. To quantify the
number of bacterial cells killed at the MIC concentration of the
bare FA and FA-NS, a flow cytometry method was employed.
MRSA was incubated in an FA and FA-NS containing medium
for 24 h. Prl fluorescent dye, which does not penetrate the cell
wall, and Syto9 cell wall permeant dye were used to
differentiate the live from the dead cells in the population.
The histograms showing the count of cells that internalized PrI
after 24 h of incubation are presented in the Supporting
Information. The dead cells were sorted from the population
using a gate created beyond the fluorescence of viable cells
(Supporting Information).”” When the cells were incubated
with the bare FA and FA-NS at their respective MIC, the
average dead cells in the bacteria population were 38.8 +
2.35% and 73.14 + 1.35%, respectively, indicating a significant
difference (p < 0.0001). Furthermore, when the MRSA cells
were treated with FA at the concentration similar to that of the
MIC of FA-NS, the mean dead cells in the population were
found to be only 4.66 + 0.52%. The FA and FA-NS dot plots
of Prl versus Syto9 fluorescence®”" showed similar results.

In Vivo Antibacterial Activity. The efficacy of FA-NS was
further evaluated in vivo using a mouse skin infection model.
Intradermal injections of MRSA were administered causing
short-term localization of the bacteria within the dermis skin
layer without systemic infection. The number of CFUs was
quantified for each treatment group and converted to log,
CFU/mL, as represented in Figure 10. The mean bacterial load
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Figure 7. (I) FT-IR of bare FA, FA-NS, and P188. (II) DSC thermogram of (A) P188, (B) FA, (C) physical mixture, and (D) lyophilized FA-NS.

(111) Diffractogram for (1) FA, (2) FA-NS, and (3) P188.

Table 4. Stability Studies of FA-NS

formulation average size PI ZP

Time 0

wet 251.1 + 119 0.126 + 0.044 —-152 + 1.73

Iyophilized rt 262.9 + 2.59 0.179 + 0.030 —17.0 + 1.01
30 days

wet rt 386 + 5.4 0.094 + 0.015 -212 £ 1.6

wet 4 °C 274 + 3.33 0.179 + 0.042 —154 + 23

lyophilized rt 2964 + 6.29 0.327 £+ 0.072 -21.6 + 1.1

Iyophilized 4 °C 2764 + 5.7 0.087 + 0.007 —20.8 + 2.96
60 days

wet rt 426.8 + 13.53 0.263 + 0.164 —19.7 + 1.24

wet 4 °C 267.6 + 52.94 0.176 + 0.07 —15.6 + 1.02

lyophilized rt 280.5 + 38.79  0.286 + 0.04 —16.5 + 1.74

Iyophilized 4 °C 298.3 + 43.96 0.321 + 0.04 —15.04 + 4.08
90 days

wet rt 14374 + 681.2 0.908 + 0.11 —16.42 + 4.2

wet 4 °C 2213 +79 0.307 + 0.045 —16.42 + 4.2

lyophilized rt 481.53 + 70.70 0.50 + 0.039 —15.7 £ 12.9

Iyophilized 4 °C 292.4 + 50.8 0.361 + 0.04 —10.35 £ 0.43

for untreated, FA, and FA-NS groups were 6.58 + 0.01
(3790000 CFU/mL), 6.30 + 0.062 (2016667 CFU/mL),
and 4.35 = 312 log,, CFU/mL (26667 CFU/mL),
respectively.

During tissue harvesting, fluid-filled abscesses at the
injection site were visually observed in skin samples from the
MRSA-injected control and the FA-treated groups only, while
none were seen for the FA-NS treated groups (Figure 11A).
Histological analysis was also performed to further assess the
skin integrity and histomorphological changes after the MRSA
intradermal infection. The H&E images from the MRSA-
injected control group confirmed inflammation and the
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Table 5. MIC of FA and FA-NS“

SA (pug/mL) MRSA (pg/mL)
FA 62.5 250
FA-NS 39 3125
1% v/v DMSO NA NA

“NA = No activity. The values are expressed as mean + SD, n = 3
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Figure 10. MRSA burden after 48 h of treatment. * denotes
significant difference for FA versus the untreated group. ** denotes
significant difference between bare FA versus FA-NS. *** denotes
significant difference between bare FA-NS versus the untreated (n =
4).

formation of an abscess at the injection site (Figure 11B). The
MRSA-injected control tissue image also displayed evidence of
inflammation, as represented by the excessive swelling of the
dermal layer in the control image and the presence of white

blood cells. The FA-NS-treated tissue did not display any
definite abscess formation, although there was evidence of
minimal inflammation in the dermal layer (Figure 11D). In the
MRSA-injected control group, there were signs that a high
number of cells were infiltrated by the bacteria, as evidenced by
the large area of the abscess.

Bl DISCUSSION

This study explored formulating a FA antibiotic (BCS class II
drug) into a nanosuspension (FA-NS), and its ability to
enhance aqueous solubility and antibiotic activity due to the
small sized particles. MD simulations were done to understand,
at an atomic level, the interaction between FA and P188. FA-
NS nanosuspension was prepared using a bottom-up
antisolvent precipitation technique. To achieve a stable
nanosuspension, surfactants available in the market, various
organic solvents, and other formulation parameters, such as
sonication time and amplitude, were screened. PVP, SDS, and
P188 were surfactants that provided nanosuspensions with
small particle sizes, with P188 being found to be the surfactant
of choice, as it consistently generated nanosuspensions with
significantly lower PI than that of PVP (p = 0.0113) and SDS
(p = 0.0288). This may be due to the high hydrophilic—
lipophilic balance (HLB value = 29) of the amphiphilic block
copolymer, which may have led to better interactions with
hydrophobic FA during the nanosuspension formation.”®
Having chosen P188 as the surfactant of choice, various
surfactant concentrations were screened to determine a
suitable concentration that offers a stable nanosuspension.
However, it was witnessed that when the surfactant
concentration was >1% w/v, the particles sizes and the PI of
the system increased. Studies have shown that increasing the
surfactant above certain concentrations favors micelles
formation due to the self-assembly of the surfactant, rather
than providing stability to the nanosuspension, leading to the
Ostwald ripening of the nanocrystals in the antisolvent.”””*"
The formation of micelles at a higher concentration of the
surfactant resulted in a decreased amount of the surfactant
available at the aqueous/FA crystals interface to coat the

Figure 11. (A) Abscesses from untreated mice. Photomicrographs of the control and the treated skin selections for light microscopy (LM) stained
with H&E (X40) (scale bar = 500 ym). (B) Control (MRSA-injected, untreated (saline)). (C) Treated (FA). (D) Treated (FA-NS).
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surface of the formed solid phase, thus leading to Ostwald’s
ripening of the crystals. Various organic solvents were also
screened to identify the one that provides the better
antisolvent effect for precipitating the FA once the organic
solvent FA solutions come in contact with water. Of the
screened solvents, methanol was found to be the most suitable
as it generated a nanosuspension with better particle sizes, PI,
and ZP; although, we could not conclusively state why it gave
better particles sizes. These results could be ascribed to a
higher rate of mixing of the solvent/antisolvent per unit time
and easy crystal drawing out, which results in a shorter time of
nucleation and crystal growth, subsequently resulting in smaller
crystals®”

Drug concentration is also a critical variable in the
formulation of the nanosuspensions, as increasing the drug
concentration could result in an increased number of primary
particles per unit volume and a shorter interparticle distance.®
Consequently, this may lead to a chance of forming an
aggregate mass of loosely adhered particles by electrostatic
charges, which can give rise to increased sizes and lack of
uniformity among the particles formed.* This was also
witnessed in the formulation of FA-NS, as the drug
concentration increased from 10 to 30 mg/mL, particle sizes
increased from 552 + 13.3 to 1336 + 89.4 nm, and the PI
increased from 0.198 =+ 0.017 to 0.498 + 0.042. This
phenomenon has also been previously reported for norfloxacin,
griseofulvin, ampicillin, amoxicillin, and tetracycline nano-
suspensions,>*® where the above certain concentration of the
drug particles coalesced to larger particles.

To further reduce the particle sizes, sonication time and
amplitude were evaluated. Increase in the sonication time and
amplitude further reduced the particles sizes. However, above
1S min and an amplitude 30% of sonication, there was no
significant decrease in the particle size. The findings were in
agreement with the work reported by Dengning et al. in
formulating a nifedipine nanosuspension.”’ After screening to
optimize all of the parameters, a stable formulation was
achieved. During formulation, stirring provided a shear force
that kept the particles in constant Brownian motion,*®
sonication broke down the aggregating solid phase, while the
surfactant coated the particles, resulting in electrostatic
repulsion of neighboring like-charged particles® and packing
of the crystals into an amorphous state that resulted in a stable
colloidal system that had a particle size, PI, and ZP of 265 +
2.25 nm, 0.158 + 0.026, and —16.9 + 0.794, respectively.

MD simulations of 30 ns between P188 (10 units per
polymer block) and FA were performed. The negative binding
energy ((AGy —49.764 + 1.298) indicated the degree of
spontaneity of the binding process, and a higher negative value
reflected a more energetically favorable adsorption.”® The
favorable higher value of the binding energy was also an
indication of a strong binding between the molecules, which
would require a higher repulsive energy to break the binding
between the two molecules.”’ Furthermore, the energy
components of the complex showed that the P188—FA
binding was mainly governed by the hydrophobic interactions,
with VAW energy AE., as the major contributor to the
binding energy (Table 3). Previous studies on the ABA
triblock polymer, such as P188, have shown that, via its
hydrophobic central block, the polymer forms strong
interactions with the hydrophobic drug at the core, resulting
in nonsolvent assessable regions, while the hydrophilic block
shell consequently forms water accessible regions. This
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arrangement leads to a stable complex and increased water
solubility of the hydrophobic drug.”” Figure 6 and a video
available in the Supporting Information show similar arrange-
ments; thus, the stabilization of the nanosuspension and the
increased solubility of the FA in water could have occurred via
this phenomenon of the ABA triblock polymer solubilization.”®
These results were in agreement with experimental studies that
showed an increased solubility of the drug in water at the
simultaneous formation of a stable nanosuspension between
P188 and FA.

DSC, XRD, and F-TIR analyses were performed to
investigate the melting and crystallization behavior of FA-NS
and its formulation excipients. The DSC results showed the
absence of an FA peak in the thermogram of the FA-NS, with a
peak similar to that of the pure P188 being witnessed. This was
an indication that the P188 was coating the surface of the FA,
which was transformed into an amorphous state during the
formulation process. The XRD diffractograms showed similar
results to DSC, with the absence of the FA peaks in the
formulation diffractograms. The FT-IR analysis showed that
both the formulation and physical mixture had the character-
istic peaks of P188 and FA, and that the resultant FT-IR
patterns were in line with the previous literature for
nanosuspensions.”*”*® The transformation of FA into FA-NS
could have been due to the rapid drawing out of the drug
particles from the organic solvent, as the aqueous solution with
P188 as stabilizer coated the nascent drug particles nuclei,
resulting in fast nucleation termination, leading to amorphous
nanoparticles.”” The patterns of the DCS thermograms, XRD
diffractograms, and FT-IR wave numbers of P188 and FA in
the formulation and the crystalline pure P188 and bare drug
was an indication that no new chemical compound was
formed.”®

The possibility of interactions between like and unlike
particles in the system defines the stability of a suspension.”
The Ree and Eyring theory stated that viscosity is the sum of
the contribution of an indefinite number of unspecified units of
flow.'*%%" Therefore, Ostwald ripening, which might occur
during the storage of a suspension, could result in viscosity
changes that can be used to determine the stability of a
suspension. The FA-NS viscosity was evaluated for a period of
one month and showed that the nanosuspension had no
significant (p > 0.05) change of its viscosity. This might have
been due to constant Brownian motion as a result of the small
particle sizes that kept the system in a suspended state, the
stabilizing effect of the surfactant, and the high similar zeta
potential values within the particles that causes repulsion, thus
preventing Ostwald’s ripening.'> A further assessment of the
stability for wet and lyophilized formulations was performed
for three months at room temperature and 4 °C. FA-NS was
found to be stable in both lyophilized and wet state stored at 4
°C for the entire three months; however, room temperature
studies revealed that lyophilized formulations were more stable
than wet ones. These findings confirmed that the optimal
storage conditions for the FA-NS suspension was at 4 °C for
both wet and lyophilized formulations.

The applicability of the optimized formulation was evaluated
for solubility enhancement and antimicrobial activity. Using a
shake-flask method, the solubility was determined, there was a
7-fold increase in the solubility of FA when formulated as FA-
NS when compared to the bare drug. This phenomenon could
be explained using various theories, such as that of Ostwald—
Freundlich, in which the solubility of particles is inversely
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proportional to their radius;'**~'%° Mihranyan and Stromme,
who propose an increased solubility of nanoparticles due to
surface fractal dimension;'°® and Letellier et al, who postulated
that the improved solubility of nanoparticles is attributed to
thermodynamic descriptions involving the internal energy of
the particles.'”” An increase in the aqueous solubility of the
BCS class II drugs, such as FA, is significant for their efficiency.
Due to their hydrophobicity, they partition well through
biological membranes, although this does not translate to high
bioavailability, as their partition from the dosage form is
limited due to their low water solubility. Therefore,
formulating FA as a nanosuspension could enhance the
activity of the drug.

With the increase in the application of nanoparticles, there is
a need for the determination of their safety before application.
The biosafety of FA-NS nanosuspension was determined using
an in vitro MTT assay that quantifies viable cells upon
exposure of the test materials to the two cell lines. Since cell
viability upon exposure to FA-NS was above 75%, this
indicated that the formulation met the requirements for the
biocompatibility and toxicity regulatory requirements for
biomaterials.'”® These results were in line with the findings
in the literature where P188 has been reported to be biosafe
and has been approved by the FDA for 50 years as a surfactant
and therapeutically has been used to reduce the viscosity of
blood before transfusion.'” Therefore, these findings show
FA-NS to be a biosafe and nontoxic nanosuspension.

The impact on the antibacterial activity of formulating FA in
a nanosuspension was evaluated using the broth microdilution
method. MIC values for the bare drug and FA-NS against S.
aureus and MRSA showed that FA-NS had a 16- and 8-fold
lower activity against S. aureus and MRSA, respectively, when
compared those of the bare FA.

Generally, there was better activity against S. aureus than
MRSA, which can be attributed to its thicker cell walls. This
thickened cell wall is due to multiple peptidoglycan layers that
limit the drug molecules from crossing the membrane.
Enhanced activity of the antibacterial agents after formulation
as a nanosuspension have been reported elsewhere.''°~"'* This
enhanced activity by the FA-NS can be attributed to the
nanoparticulate sizes of the nanosuspension that led to an
increase in the surface area, which resulted in an increased
solubility for better penetration and higher uptake by the
cells.'"* In addition, drug adsorption efficiency is directly
proportional to the specific surface area of the adsorbent and
inversely proportional to the particle size."'*'"> Smaller FA-NS
nanoparticles may therefore have been effectively distributed
and adsorbed on the bacteria surface than bare FA, thus
enhancing activity. Enhanced FA activity via the FA-NS
underlines the use of nanosuspensions as a strategy to
formulate BCS class II antibiotics as prospective drug delivery
systems.

The viability of the surviving MRSA cells was determined
using a flowcytometry method after incubating the bacteria
with bare FA and FA-NS. Cells treated with FA-NS had almost
twice the percentage population of dead bacterial cells, despite
having an 8-fold lower MIC compared to bare FA.
Furthermore, when the MRSA cells were treated with FA at
the concentration similar to that of the MIC of FA-NS, the
dead cells in the population were found to be 4.66 + 0.52%,
which confirmed its efficacy. The minimal effect of the bare FA
on MRSA at a low concentration was due to it having a
bacteria static effect.''®
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This result could translate to the decreased amount of the
dosage amount required for treatment, with fewer dose
dependent side effects that are related to FA, such as hepatic
and hematological toxicities,"'” thus showing FA-NS nano-
suspension’s superiority over FA.

Further evaluation of the efficacy of FA-NS was performed
following a BALB/c mouse MRSA in vivo skin infection
model. After infection and treatment periods, the mice were
euthanized, their skin harvested, and the number of CFUs
quantified for each treatment group. A statistically significant
(p < 0.0001) reduction in bacterial load was recovered from
the treatment groups treated with FA-NS and FA when
compared to that of the untreated group (Figure 14). Bacterial
load recovered from the groups treated with bare FA compared
to that of the untreated groups showed that the former had a
significantly lower (p = 0.0133) load of MRSA. The FA-NS
treated samples had a 142.12-fold decrease in the bacterial
burden compared to the untreated groups (p = 0.0002). In
comparing the bare FA and FA-NS, a 76-fold greater reduction
of the MRSA load in the groups treated with FA-NS (p =
0.0081) was observed compared to that of the bare FA. These
results confirmed the ability of FA to enhance antibacterial
activity when it is formulated as a nanosuspension, which can
prove critical in treating infections of MRSA origin.

Histomorphological changes were also investigated as a
suggestive means of identifying the extent of tissue destruction
in the dermal layers that were infected with MRSA during the
48 h study. As all bacteria are recognized as foreign to the
body, there is an innate immune response after their
introduction into the intradermal layers,"'® which causes
inflammation upon entry of the bacteria into the tissue, the
degree of the response being proportional to the bacterial load.
The histomorphological evaluations directly correlated with
the findings of the bacterial load from each group of the in vivo
antibacterial study, as the FA-NS treated tissue displayed a low
isolated bacterial load and showed the least histomorphological
signs of tissue inflammation. However, the MRSA-injected
negative control group and the FA-treated group displayed a
statistically significantly larger number of isolated bacteria,
more histomorphological signs, and evidence of tissue
inflammation and abscess formation. These histomorpholog-
ical evaluations further confirmed the antimicrobial superiority
of the novel FA-NS.

Bl CONCLUSION

Nanotechnology-derived novel formulations are showing
significant potential for improving the efficacy of existing
antibiotics. More than 40% of NCEs (new chemical entities)
developed in the pharmaceutical industry are practically
insoluble in water, this being a major challenge for formulation
scientists. In this study, a new FA-NS formulation was
successfully formulated using a bottom-up antisolvent
precipitation with the goal of simultaneously enhancing
solubility and antibacterial activity. After various surfactants
were screened, solvents and formulation parameters of an
optimized nanosuspension, FA-NS with a particle size in the
range of 200 nm, were obtained. MD simulations revealed that
there was spontaneous binding between FA and P188 in the
aqueous milieu, with the average interaction energy and
distance between the molecules being ~ —74.42 kJ/mol and
~14.37 A. Further investigation on the contributions of various
energy components of the complex showed that van der Waals
interactions were the major contributor, and that the binding
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energy between FA and P188 was —49.764 + 1.298 kJ/mol.
This further supported the experimental work of the formation
of a stable nanosuspension between FA and P188. The
formulation of FA as a FA-NS improved its solubility by 8-fold.
The assessment of the in vitro antibacterial activity proved the
superiority of the FA-NS over the bare FA to control the
growth of susceptible and resistant S. aureus. In vivo
antibacterial activity against MRSA using a mouse skin
infection model showed that FA-NS was more efficient in
killing MRSA compared to bare FA. With these promising
results, the formulated novel FA-NS nanosuspension can
therefore be further exploited as a nanoantibiotic to fight
against other bacteria, and this method can possibly be
employed to enhance the efficacy of other BCS class II drugs
for various disease conditions.
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PURPOSE

Bacterial infections and antibiotic resistance is becoming a major health
concern globally. Nanocarrier systems is an innovative sirategy to
overcome the limitations with conventional dosage forms for improved

Preparation and characterization of Vancomycin loaded
unimolecular micelles (VM-G-1-PETIM-PEG-b-PCL)
VM-G-1-PETIM-PEG-5-PCL micelles were prepared by solvent evaporation
method and characterized for size, polydispersity index (PDI), zeta potential

In vivo antibacterial activity

Figure & MRSA burden post 43 h
treatment. Data represents mean £ 50
{n = 3). **denoctes significant for untreated

delivery and efficacy of antibiotics and also to overcome resistance. The
synthesis of novel materials for the design of nanoantibiotics with
enhanced performance is therefore essential.’ Whilst, micelles have
been employed to deliver drug, their disadvantage like their dissociation
in concentrations below the CMC has highlighted the need to design
unimolecular micelles 2.

(ZP), entrapment eficiency (%EE), surface morphology, in vitro drug release, in
vitro and in vivo antfibacterial activity.

RESULTS

In vitro cytotoxicity
MTT assay confirmed non-toxicity
of synthesized polymer as % cell

OBJECTIVES

The objectives of present work were to: (1) synthesize a nontoxic hybrid
dendrimer block & arm star polymer (G-1-PETIM-PEG-b-PCL) (2) ufilize
the synthesized novel G-1-PETIM-PEG-b-PCL star polymer to prepare
unimolecular micelles for sustained nano delivery of vancomycin to

el the problem of bacterial resist

METHODS

Synthesis of 6m-PEPEA

G-1-PETIM-PEG-b-PCL was synthesized by coupling G1-paly(propyl
ether imine) dendrimer (G1-PETIM) to mPEG-b-PCL block polymer
(Figure 1) using EDG/DMAP chemistry. The polymer was purified by
dialysizs method using dialysis bags of pore size 14KDa.

+
Figure 1. Scheme for synthesis G-1-PETIM-PEG-b-PCL.
Aggregation behaviour and cytotoxicity
Aggregafion behaviour of G-1-PETIM-PEG-5-PCL was determined by
dynamic light scattering (DLS) and in vitro cytofoxicity was performed
on A549, MCF 7 and Hep G2 cells using 3-{4,5-dimethylthiazol-2-yI)-
2 5-diphenyitetrazolium bromide (MTT) assay.

viability was = 77 % at all the
tested concentrafions against all
the cell lines.

Figure 2. Cytotoxicity evalustion of
G1-PETIM-FEG-b-PCL.

Aggregation behaviour

Figure 3. . Plot of concentration
{mg/mL) agsinst intensity (keps) for

Size and surface morphology
VWM-G1-PETIM-PEG-b-PCL micelles
were spherical with, size, PDI and ZP of
52.48 £ 2.6 nm, 0.103 £ 0.047, and -7_3
+ 1.3 mV respectively and %EE of
62.24 + 3.8%.

Figure 4. TEM image of VM-G1-PEA-
PEG-b-PCL micalles.

Figure 5. In vifro relesse pattern of Wi-
G1-PEA-FEG-b-PCLand VM sclution at
pH7T.4 (n=23)

In vitro antibacterial activity
VM-G1-PETIM-PEG-5-PCL had & and 16-
fold greater aclivity against 5. sureus and
MRSA when compared to bare VM. The

G1-PETIM-PEG-b-FPCL and mPEG-b- activity of VM-G-1-PETIM-PEG-5-PCL was

PCL.

sustained up fo 120 hours.

wersus bare VM. ***denotes significant
difference between untreated and ViM-G-1-
FETIM-PEG-b-PCL micelles and **denctes
significant difference between bara VM fras
base and VM-G-1-PETIM-PEG-b-PCL
micelles.

MESA bog, CFLmi,

S E S

There was a significant difference (p = 0.0017) in the bacterial colony
farming units per ml (CFU/mI) remaining in the skin of mice treated
with bare WM and those freated with VM-G1-PETIM-PEG-b-PCL. The
MRSA burden in VM-G1-PETIM-PEG-5-PCL micelles treated mice
was almost 7-fold less compared to the bare VM.

CONCLUSION

In conclusion, this study has introduced:

i) G1-PETIM-PEG-b-PCL , a novel safe biedegradable hybrid star
polymer, for pham | and biclogical applications, and

i) VM leaded G1-PETIM-PEG-b-PCL micelles with high drug loading
capacity, sustained drug release profile and enhanced anfibacterial
a A

Therefore, G1-PETIM-PEG-b-PCL can be of major significance in

improving the therapeutic efficacy of anfibacterial drugs, thereby

addressing drug resistance challenges by resistant bacteria.
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INTRODUCTION AND AIMS

O Staphylococcus aureus (S.A) is a pathogen of major
concern due to its immense ability to cause wide range
of infections and change its genome. This has resulted
in a resistant  isolates  Methicillin-resistant
Staphylococcus aureus (MRSA), that is resistant to a
wide range of antibiotics.t

O Nanotechnology has shown with significant success to
enhance and prevent antibiotic resistance .

O The synthesis of novel materials for the design of
nanoantibiotics with enhanced performance is
therefore essential.

O Whilst, micelles have been employed to deliver drug,
their disadvantage like their dissociation in
concentrations below the CMC has called the need to
fashion out unimolecular micelles 2.

QO The aim of this study was to was to synthesize a novel
six arm star polymer star to offer unimolecular
micelles with high loading capacity and sustained
delivery of vancomycin against susceptible and
resistant Staphylococcus aureus

O Figure 2. MTT assays showed 6-mPEPEA as nontoxic
with a high cell viability (77%-85%).

‘ﬁ solvent everporation
.
oSe!

VM intramolecular
encapsulation

6-mPEPEA VM

Control 20 40 60 80 100

Concentration of 6-mPEPEA (g/m1)
Figure 5. DSC thermogram of A= 6m-PEPEA, B= VM C=
physical mixture, E= VM-6-mPEPEA

QO Unimolecular spherical micelles were prepared.
Size, Pl and ZP was 52.4842.6 nm, 0.103 £ 0.047, -

MATERIALS AND METHODS

Preparation and characterization of VM-6m-PEPEA

O Synthesis of 6m-PEPEA was achieved via five step
synthesis and characterized for FTIR, !H and 13C
NMR, aggregation behavior and MTT assay for
biosafety.

Qa Vancomycin (VM) loaded Unimolecular micelles from
(6m-PEPEA VM-6m-PEPEA) were prepared using
solvent evaporation and characterized for particle
size, polydispersity index (PDI) and zeta potential (ZP)
using a Zetasizer Nano ZS90 (Malvern Instruments
Ltd., UK).

O Morphology was examined using a TEM (Jeol, JEM-
1010, Japan)

O Entrapment  efficiency and drug
determined by an ultrafiltration method.

O Thermoprofiles of 6m-PEPEA, VM and lyophilized

loading was

7.3+1.3 mV, respectively and drug loading was

Table 1. MICs of bare VCM, blank and VCM loaded 6-mPEPEA, against S. aureus and MRSA

120 24 48 %
MRSA (MIC pg/mL)
NA NA NA

Time (hours) 24 48 72 96

S. aureus (MIC pg/mL)
NA NA NA NA
0.488 0488 0488 0488 098 098 098 098
NA NA NA NA NA NA NA NA
NA = No activity. The values are expressed as mean £5D, n=3.

Bare VCM 39
VCM-6-mPEPEA  0.488
Blank NA

15.65

Figure 4. Morphology of the
unimolecular micelles

W= Untreated
w2 Bare VCM
== VCM-6-mPEPEA

MRSA log, ,CFU/mL

micelles was determined using Shimadzu DSC-60,
(Japan)

U In vitro drug release profile was performed using the
diffusion dialysis bag method.

O The minimum inhibitory concentration (MIC) values
for VM-6m-PEPEA micelles were determined against
S.A and MRSA by a broth dilution method.

O A mouse skin infection model was used to determine
in-vivo antibacterial activity (Protocol approval
number. AREC/104/015PD)

VM
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Figure 3. release profile of the VM-6-mPEPEA and bare

Fig 6. Disease burden of MRSA in treatment

groups
Q6-mPEPEA star polymer was successfully synthesized.

QThe synthesized polymer was evaluated from cytotoxicity and the cell viability proved the
polymer to be safe

QO VM loaded micelles were formulated from the star polymer and were found to be in ultra small
size of 52.48+2.6 with low polydispersity index.

QIn vitro drug release from the micelles and VM solution showed that VM release from the micelles
was at 88% after 72 hours while VM solution was 99% after 8 hours

QThere was 7 and 16 times lower MIC in S.A and MRSA respectively for VM-6-mPEPEA when
compared to bare VM

QO Mice treated with VM-6-mPEPEA had a 7 and 284 times lower disease burden when compared to
when treated with bare VM and untreated test groups

QO VM-6-mPEPEA was stable for 3month when stored at 4 °C and at room temperature

CONCLUSIONS

* The VM-6-mPEPEA star polymer proved to be safe. Release VM from VM-6-
mMPEPEA the micelles showed sustained release and the enhanced antibacterial
activity of VM against sensitive and resistant S. aureus in both invitro and in-
vivo studies. Therefore, this study suggest that VM-6-mPEPEA can be an
effective formulation to combat resistant infections .
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1.0 Synthesis and characterization of the hybrid dendrimer (NMR)
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Appendix VI

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 FFM / DBE: min = -1.5, max = 50.0
Element prediction: Off

Mumber of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron lons

28 formula(e) evaluated with 1 results within limits (up to 20 best isotopic matches for each mass)
Elements Used:

C:15-20 H:30-35 N:0-5 0O:0-5 Na:0-1

AEDTAE 53 (1.724) Cm (1:81)

TOF MS ES+
9.94e+005
100— 354.2260
o |
] 3552296
] 3491840
. 350.1868 358.?321 357 2567 361.2176 363.1993
L e o e e e LA A e o s o A e e o e e e e e A i e o e R
350.0 3520 350 356.0 358.0 360.0 362.0
Minimum: -1.5
Max imum : 5.0 5.0 50.0
Mass Cale. Mass mDa PEM DBE i-FIT i-FIT (Morm) Formula
354.2260 354.2256 0.4 1.1 1.5 185.0 0.0 C17 H33 W 05 HNa

HRMS compound |



Elemental Composition Report

Single Mass Analysis

Tolerance = 4.0 PPM / DBE: min =-1.5, max = 50.0
Element prediction: Off

Mumber of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron lons

8 formula(e) evaluated with 1 results within limits (up to 20 best isotopic matches for each mass)
Elements Used:

C:55-60 H:95100 MN:0-5 0:15-20 MNa:1-1

6-PEAPE 6 (0.163) Cm (1:61)

TOF MS ES+
3.23e+005
100+ 1172.6831
i 1173.6868
%—
] 1174 6897
] 1175.6934
1170.6681 1171.6692 1176.6968  1177.7063 iz
R T I e e e R B A AR A R AR R AR R R R R R R R
1170.00 1171.00 1172.00 1173.00 1174.00 1175.00 1176.00 1177.00 1178.00
Minimum: -1.5
Maximum: 5.0 4.0 50.0
Mass Calc. Mass mDa PFM DEE i-FIT i-FIT (HNorm) Formula
1172.6831 1172.6821 1.0 0.9 12.5 28.9 0.0 CE0 HO9 M3 OlE Na
HRMS compound I
Elemental Composition Report
Single Mass Analysis
Tolerance =4.0 PPM / DBE: min =-1.5, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2
Monoisotopic Mass, Even Electron lons
12 formula(e) evaluated with 1 results within limits (up to 20 best isotopic matches for each mass)
Elements Used:
C:3540 H:50-55 N:0-5 O:15-20
6-PEA 50 (1.652) Cm (1:61)
TOF MS ES+
3.05e+005
100 8143254
% 815.3292
3 816.3320
. 817.3345
% / 818.3356 825.3190_825.8193 8283414 8293475
LR L e e e e e e LN e e e e MM e S e o w114
814.0 816.0 818.0 820.0 822.0 824.0 826.0 828.0 830.0
Minimum: -1.5
Maximum: 5.0 4.0 50.0
Mass Calec. Mass mDa PPM DBE i-FIT i-FIT (Norm) Formula
814.3254 814.3246 0.8 1.0 12.5 89.6 0.0 C36 H52 N3 018

HRMS Compound Ill



Elemental Composition Report

Single Mass Analysis

Tolerance = 4.0 PPM [ DBE: min =-1.5, max = 50.0

Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron lons

8 formula(e) evaluated with 1 results within limits (up to 20 best isotopic matches for each mass)

Elements Used:
C:55-60 H:95-100 N:0-5 ©O:15-20 Na: 1-1
6-PEAPE 6 (0.169) Cm (1:61)

TOF MS ES+
3.23e+005
100~ 1172.6831
i 1173.6868
LT
] 1174.6897
| 1175.6934
11706681 1171.6692 1176.6968  1177.7063 iz
R R i R R e T T T T e e R A AR AR R
1170.00 1171.00 1172.00 1173.00 1174.00 1175.00 1176.00 1177.00 1178.00
Minimum: -1.5
Maximum: 5.0 4.0 50.0
Mass Cale. Mass mDa PPM LEE i-FIT i-FIT (Morm) Formula
1172.6831 1172.6821 1.0 0.9 12.5 29.9 0.0 C60 H%Y N3 018 Na

HRMS compound IV
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. INTRODUCTION AND AIMS

0 Staphylococcus aureus (S.A) is a pathogen of major
concern due to its immense ability to cause wide
range of infections and change its genome. This has
resulted in a resistant isolates Methicillin-resistant
Staphylococcus aureus (MRSA), that is resistant to a
wide range of antibiotics.*

O Nanotechnology has shown with significant success
to enhance and prevent antibiotic resistance .

O Nanosuspensions are among nanosystems that
increase surface area of drugs leading to enhanced
solubility and activity of poorly soluble drugs.?

O Whilst, fusidic acid has been formulated into various
nanosystems, its formulation as a nanosuspension has
not been previously explored despite it being a simple
nanosystem containing 100% drug and stabilizing
agent.

O The aim of this study was to prepare and characterize

fusidic acid nanosuspension (FA-NS) and evaluate its Fig 1. Effect of poloxamer 188 surfactant on the 30mg/ml  [1336+89.4 [0.498+0.042 |-5.19+2.19
formulation (n =

activity against SA and MRSA

Sonicatio

Preparation and characterization of FA-NS

Campus, Durban, 4000, South Africa.

| RESULTS

Table 1.Effect or Surtactant type on the formulation (n =
Surfactant { Size(om) | pPDI | ZP(mVv) |

563.5+ 6.18 0.354 + 0.031 -10.6 £0.243
____
SDS 388.6 + 58 0.592 + 0.124 -62.5 + 6.34
RH 40 1159+21.36  0.33 £ 0.045 -10 £ 0.163
HS15 1289 + 28 0.412 £ 0.23 -7.21 £1.67
Tween 80 772.4+ 471  0.375 £ 0.049 -11.1+ 0.0707
1403+18.69  0.462 + 0.004 -8.57 £ 1.16

Table 2. Effect of different concentration of FA(n =3.)
FA size (nm) PDI ZP (mV)

15mg/ml 788.54£52.8 |0.371+0.052 |-10.5+ 1.1

% concentration
20mg/ml 1183+111.0|0.488+0.093 |-62.5+ 6.3

3).

MIC pg/mL

: Table 3. The Effect of sonication time (n = 3.)
MATERIALS AND METHODS | Size (nm) ZP (mV) l aFA BFANS

0 Antisolvent  Sono-precipitation  technique was 552.3¢13.2  0.198:0.02 -11.6£0.7
employed to prepare FA-NS. 357.645.11 0.14:0.03 -18.1%7.9 MRSA

O Prepared FA-NS were characterized for particle size,
polydispersity index (PDI) and zeta potential (ZP)
using a Zetasizer Nano ZS90 (Malvern Instruments
Ltd., UK).

QO An optimum formulation was achieved through
screening for type and concentration of surfactant,
solvent, drug concentration, and sonication power and
time.

O Morphology was examined using a TEM (Jeol, JEM-
1010, Japan).

O The minimum inhibitory concentration (MIC) values
for FA-NS were determined against S.A and MRSA
by a broth dilution method.

O Solubility of FA was determined by a shaking
incubator technique at 37 °C for 24 hours. Undissolved
FA was removed by filtering through syringe filters
(cellulose acetate membrane, 0.2 mm, GVS filter
technology, USA)

O FA content was determined using a reported HPLC
method (Shimadzu Prominence DGU-20A3)

O A mouse skin infection model was used to determine
in-vivo antibacterial activity (Protocol approval
number. AREC/104/015PD)

0 Wet and lyophilized FA-NS were evaluated for their
stability for a period of three months by storing then at

\ REFERENCES

¥
Fig 3. Solubility of FA-NS and FA in water

S. aureus

-- Fig 2. Invitro activity of FA-NS and FA

against SA and MRSA

5000000

4000000

3000000

2000000

MRSA CFU/mL

1000000

¥

s Fig 4. Disease burden of MRSA in treatment

A= Lf68, B= mannitol, C= groups

FA, D= physical mixture, DlSCUSS[ONS

= 0O Poloxamer 188 stabilized the system better
' compared to other surfactants. This is probably
; due to hydrophobic polyoxypropylene in the
A surfactant.
Q There was an increase in particle size with
increase of FA concentration due to saturation

that supported crystal growth.

0 FA-NS had a significant (p= 0.0093) 8-fold
increase of solubility in water when compered to
water.

QO There was 16 and 8 times lower MIC in S.Aand
MRSA respectively for FA-NS when compared to
FA

Fig 6. Morphology of QO Mice treated with FA-NS had a 76 and 142 times
particles in FA-NS lower disease burden when compared to when
treated with FA and untreated test groups

Fig 5. DSC thermogram of FA-NS 0O FA-NS was stable for 3 months for both
and excipients lyophilized and wet formulations stored at 4 °C

and 2 months stability for formulations stored

1. Kalhapure et al. 2015, Nanoengineered drug delivery systems for enhancing antibiotic
therapy. Journal of pharmaceutical sciences 104:872-905.
2. Kesisoglou et al. 2007, Nanosizing Oral formulation development and
biopharmaceutical evaluation. Advanced Drug Delivery Reviews, 59(7), 631-644. .
ACKNOWLEDGMENT
College of Health Sciences, UKZN Nanotechnology Platform and National
Research Foundation of South Africa.

| & room temperature
|  CONCLUSIONS

* The FA-NS formulation improved solubility and enhanced antibacterial activity of
FA against sensitive and resistant S. aureus in both invitro and in-vivo studies.
Therefore, this study suggest that nanosuspensions can be an effective formulation
to combat resistant infections by improving activity of poorly water soluble
antibiotics.
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S Figure 1. 4-(tert-butoxy)-N-(3-(tert-butoxy)-3-oxopropyl)-N-(2-hydroxyethyl)-3-oxobutan-1-
aminium (compound 3) proton NMR.
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S Figure 3. 4-(tert-butoxy)-N-(3-(tert-butoxy)-3-oxopropyl)-N-(2-hydroxyethyl)-3-oxobutan-1-
aminium (compound 3) HRMS.
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S Figure 6. 4-(tert-butoxy)-N-(3-(tert-butoxy)-3-oxopropyl)-N-(2-(oleoyloxy)ethyl)-3-oxobutan-

1-aminium (compound 4) HRMS
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S Figure 8. 4-(tert-butoxy)-N-(3-(tert-butoxy)-3-oxopropyl)-N-methyl-N-(2-(oleoyloxy)ethyl)-
3-oxobutan-1-aminium (QL lipid (compound 5)) *C NMR
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ARTICLE INFO ABSTRACT

Keywords: Stimuli-responsive nano-drug delivery systems can optimize antibiotic delivery to infection sites. Identifying
NMEO novel lipids for pH responsive delivery to acidic conditions of infection sites will enhance the performance of
PH responsive SLNs nano-drug delivery systems. The aim of the present investigation was to synthesize and characterize a biosafe
Antibiotic novel pH-responsive lipid for vancomycin delivery to acidic conditions of infection sites. A pH-responsive solid
Nanotechnology

lipid, N-(2-morpholinoethyl) oleamide (NMEO) was synthesized and used to prepare vancomycin (VCM)-loaded
solid lipid nanoparticles (VCM_NMEO SLNs). The particle size (PS), polydispersity index (PDI), zeta potential
(ZP) and entrapment efficiency (EE) of the formulation were 302.8 + 0.12nm, 0.23 * 0.03,
—6.27 + 0.017mV and 81.18 * 0.57% respectively. The study revealed that drug release and antibacterial
activity were significantly greater at pH 6.0 than at pH 7.4, while the in silico studies exposed the molecular
mechanisms for improved stability and drug release. Moreover, the reduction of MRSA load was 4.14 times
greater (p < 0.05) in the skin of VCM_NMEO SLNs treated mice than that of bare VCM treated specimens. Thus,
this study confirmed that NMEO can successfully be used to formulate pH-responsive SLNs with potential to

Antibiotic resistance
Methicillin-resistant S. aureus

enhance the treatment of bacterial infections.

1. Introduction

The emergence of resistance against antibiotics has given rise to
many problematic strains of bacteria, one of them being methicillin-
resistant Staphylococcus aureus (MRSA) (Sonawane et al., 2016), a
bacterium responsible for a wide range of infections in community and
hospital settings (Ma et al., 2014a; Song et al., 2011). It is resistant to
several antibiotics and is also threatening vancomycin, which is con-
sidered a drug of last resort for combating MRSA infections (Kali et al.,
2013; Mandal et al., 2017; Zetola et al., 2005). This makes its infections
difficult and costly to treat, and associated with high mortality globally
(Boucher and Corey, 2008).

A major contributory factor for resistance development is the lim-
itations associated with the current dosage forms of antibiotics (Sharma
et al., 2012), which include inadequate concentrations of the drug at
infections sites and increased drug exposure to normal flora (Priya
et al., 2009). In addition, their high doses and frequency of adminis-
tration lead to toxicity, which affects patients’ adherence to treatment

regimens (Xiong et al., 2014). Nanosized drug delivery systems are a
strategy receiving increasing attention for their enhancing antibiotic
therapy (Andrade et al., 2013). Nanocarriers are considered suitable for
managing antimicrobial resistance as they are capable of ensuring both
targeted and controlled/sustained delivery of antibiotics at infection
sites as well as decreased exposure to normal tissues (Zazo et al., 2016).
In this way, a constant and effective drug concentration is maintained
above the minimum inhibitory concentration (MIC) at the site of in-
fection. Consequently, the frequency of administration is lowered, side
effects are decreased, and patient compliance is increased (Gao et al.,
2011; Huh and Kwon, 2011). Advances in nanoscience have enabled
researchers to design delivery systems that target biomarkers associated
with specific pathological conditions/tissues, and include the over ex-
pression of specific molecules or changes in physiological conditions,
such as pH and temperature (Kullberg et al., 2009; Timko et al., 2010;
Wang et al., 2008).

Of these biomarkers, pH is useful for targeting various disease
conditions such as cancer, inflammation and infection which are
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accompanied by a change in pH in comparison to normal physiological
pH (Lu et al., 2016; Sonawane et al.; 2017). Thus, novel materials can
be designed to specifically respond to pH changes resulting into tar-
geted delivery of drugs at the disease site (Liu and Thayumanavan,
2017). Bacterial infections, have been reported by various researchers
that the pH level at infection sites is usually lower than the physiolo-
gical value (7.4). (Gao et al., 2017; Gandhi et al., 2017; Liu et al., 2018;
Tate et al., 2002; Gao et al., 2017). Arming nanoparticles with moieties
that respond to pH changes has proved successfully in binding them to
bacteria and increasing the drug release at sites of infection and bac-
teria (Radovic-Moreno et al., 2012). However, literature shows that
most of the pH responsive systems reported so far are for cancer therapy
whilst very few papers report pH-based acid cleavable lipid nano-
particles for antibiotic delivery (Kalhapure et al., 2017a; Kalhapure
et al., 2017b; Pichavant et al., 2011; Radovic-Moreno et al., 2012).
There is therefore a need to identify novel materials and nanodelivery
systems of antibiotics with intrinsic pH responsiveness to maximize
their delivery to infection sites (Radovic-Moreno et al., 2012).
Various nano-based delivery systems, such as nanoemulsions
(Kumar et al., 2008; Rapoport et al., 2009), liposomes, polymeric na-
noparticles (PNs) (Chawla and Amiji, 2002; Dhar et al., 2008; Shenoy
and Amiji, 2005), and solid lipid nanoparticles (SLNs) (Gupta et al.,
2007; Spada et al., 2012) have been reported for targeted delivery. The
fabrication of nanoemulsions needs liquid oils while SLNs use solid li-
pids, which make them more stable (Geszke-Moritz and Moritz, 2016).
In addition, both SLNs and liposomes are made using physiological li-
pids, but unlike liposomes and PNs, SLNs avoids the use of organic
solvents (Briones et al., 2008). These features, their ability to en-
capsulate both hydrophobic and hydrophilic drugs, and their ease of
scaling up and sterilization has led to a growing interest by researchers
in SLNs (Gastaldi et al., 2014). SLNs are usually fabricated using solid
lipids such as fatty acids, glycerides and waxes which lack pH respon-
siveness, and results in researchers including pH sensitive materials
such as phospholipids in the lipid matrix to achieve pH-responsive
delivery (Kashanian et al., 2011; Rostami et al., 2014). Our group re-
cently reported a pH responsive SLN formulation for antibiotic delivery
using a stearic acid based acid cleavable lipid for targeted delivery of
vancomycin, this being the only study to do so (Kalhapure et al.,
2017b). There is therefore a need to widen the pool of available re-
sponsive lipids for targeting antibiotics to infection sites. In this project,
a novel pH responsive solid lipid, N-(2-morpholinoethyl) oleamide
(NMEO), was synthesized using oleic acid and 4-(2-Aminoethyl) mor-
pholine (4-AEM). This material was first synthesized by our group as an
intermediate for synthesizing heterocyclic quaternary ammonium sur-
factants (Jadhav et al., 2016). To the best of our knowledge, it has not
been reported as a formulation component for a nanodelivery system of
any drug class and disease condition. Oleic acid is a biocompatible,
unsaturated fatty acid that finds wide application in drug delivery
(Srisuk et al., 2012). It has been used as a penetration enhancer in
transdermal delivery systems (Touitou et al., 2002), a stabilizer in li-
posomes (Bergstrand et al., 2003; Drummond et al., 2000) and mag-
netic nanoparticles (Darwish, 2017; Soares et al., 2016) and a liquid
lipid in nanostructured lipid carriers (Zhao et al., 2016). It also has
antibacterial activity, which may enable the fabrication of nanocarriers
that can synergize antimicrobial activity of the encapsulated drugs
(Huang et al., 2011). 4-AEM is a ligand commonly used to synthesize
Schiff bases for application in biological systems. Based on its ability to
protonate at low pH, this moiety is used to target acidic micro-
environments, such as lysosomes (Wang et al., 2015; Yang et al., 2014;
Yu et al., 2012). Hence, we hypothesize that a lipid formed from these
two compounds would be biocompatible and display pH responsiveness
that could be helpful in targeting bacterial infection sites. Specifically,
this study aimed at synthesizing an oleic acid based lipid and subse-
quently exploring it to formulate pH responsive SLNs for the targeted
delivery of vancomycin to manage MRSA infections. In vitro, in silico
and in vivo results obtained by loading vancomycin in NMEO based
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SLNs are presented in this paper.

2. Materials and methods
2.1. Materials

Analytical grade 4-(2-Aminoethyl) morpholine (4-AEM) was pro-
cured from Sigma-Aldrich Co. Ltd., (UK). p-Dimethylamino pyridine
(DMAP) and oleic acid (OA) were purchased from Sigma-Aldrich Co.
Ltd. (USA), and N, N'-dicyclohexyl carbodiimide (DCC) and 3-(4,5-di-
methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were pur-
chased from Merck Co. Ltd., (Germany). Mueller- Hinton Broth (MHB)
was obtained from Sigma-Aldrich (USA), while Mueller Hinton Agar
(MHA) and Nutrient Broth were bought from Biolab Inc., (South
Africa). The water used was purified by an Elix® system from Millipore
Corp., (USA), and the bacterial strain used was S. aureus Rosenbach
ATCC®BAA-1683 (MRSA).

2.2. Methods

2.2.1. Synthesis and characterization of NMEO (Fig. 1)

NMEO was synthesized via steglich esterification (Ha et al., 2008,
2009; Xu et al., 2009), based on a previously reported procedure
(Jadhav et al., 2016). In brief, 4.25 g (35.3 mmol) of 4-AEM was slowly
added into 250 ml of dry dichloromethane (DCM) containing a mixture
of oleic acid 10 g (35.4 mmol), DMAP 0.5 g (4 mmol) and DCC 7.125 g
(34.5 mmol) under stirring at room temperature (RT). This mixture was
kept under stirring at the same temperature for 24 h, after which the
precipitated dicyclohexylurea was removed by filtration. The filtrate
was evaporated under reduced pressure to obtain the compound of
interest, which was purified by column chromatography. The structure
of the synthesized lipid (NMEO) was confirmed by Fourier transform
infra-red (FT-IR) spectroscopy, Nuclear magnetic resonance (NMR)
imaging (*H and '3C) and mass analysis. Bruker Alpha spectro-
photometer (German) and Waters Micromass LCT Premier/TOF-MS
instrument (United Kingdom) were used to record the FT-IR and Elec-
trospray ionization mass spectra respectively. 'H NMR and '°C NMR
spectra were obtained using Bruker 400/600 Ultrashield™ NMR spec-
trometer (United Kingdom) at 25 °C.

2.2.2. Invitro cytotoxicity

The biosafety of the synthesized NMEO was assessed using an MTT
assay following a literature reported procedure (Omolo et al., 2016).
The study used human lung epithelial (A549), human embryonic
kidney (HEK-293) and human liver (HEP G2) cell lines. The cells
(2.2 x 10%/cell) were seeded into 96-well plates, incubated for 24 h and
treated with NMEO concentrations of 20, 40, 60, 80 and 100 pug/ml for
48h. At the end of the 48h incubation period, the culture medium
containing the test material was removed from the wells into which
fresh culture medium and MTT solution (100 ul each) were added.
These two solutions (MTT solution and culture medium) were removed
after 4h of incubation at 37 °C, and the formed MTT formazan was
dissolved by adding dimethylsulfoxide. The absorbance corresponding
to each well was measured using a microplate spectrophotometer
(Spectrostar nano, Germany) at 540 nm. The culture medium with cells

Rj\x/\/‘\@)

H

0
R)J\OH + H:N\/\NL/\/\O
0A

DCC/DMAP
DCM

2-MEA NMEO

R=W/\MA

Fig. 1. Synthesis scheme for NMEO.
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was used as the positive and those without cells as a negative control,
with all experiments being run in six replicates. The following equation
was used to determine percentage cell viability:

% Cell viability = (Asgonm treated cells/Assonm untreated cells) x 100

2.2.3. Surfactant screening and preparation of SLNs

SLNs were formulated using a hot homogenization and ultra-
sonification method (Kalhapure et al., 2014), with the oily phase con-
sisting of NMEO (500 mg) as a solid lipid and vancomycin free base
(50 mg) and the aqueous phase of surfactant solution in milli-Q water.
Four surfactants (Cremophor RH 40, Lutrol F-68, Solutol HS 15 and
Tween 80) were screened at a fixed concentration (250 mg) to identify
the surfactant with the most desirable physicochemical properties for
the formulation of the SLNs. Both phases were heated separately to
80 °C, this being followed by the addition of the aqueous to oily phase
once the lipid had melted. The resultant mixture was homogenized at
10,000 rpm for 15 min and sonicated (30% amplitude) for 15 min using
an Ultra Turrax T-25 homogenizer (IKA Labortechnik, Germany) and
the Omni sonic ruptor 400 Ultrasonic Homogenizer (Kennesaw, GA
30144, USA) respectively. The obtained nanoemulsion was im-
mediately cooled to 20 °C for the lipid to crystallize and form VCM
NMEO _SLNs (Souto and Miiller, 2006), with the final volume being
adjusted to 125 ml using milli Q-water. The same procedure was used
for blank (drug-free) NMEO SLNs, while stearic acid SLNs (SA SLNs), as
a non-pH responsive nanosystem, were also prepared using the same
procedure for comparison to the pH responsive VCM NMEO_SLNs in
antibacterial studies.

2.2.4. Particle size (PS), polydispersity index (PDI), zeta potential (ZP) and
Morphology

The average PS, PDI and ZP of formulated SLNs were determined by
a dynamic light scattering technique. Dilutions were made using milli-Q
water or appropriate phosphate buffer solutions, and the parameters
were measured at room temperature (25°C) using a Zetasizer Nano
7590 (Malvern Instruments, UK), with all parameters being analyzed in
triplicate to ensure reliability. The morphological features of the na-
noparticles were investigated by transmission electron microscopy
(TEM) analysis (Goncalves et al., 2016). The samples were appro-
priately diluted, stained with phosphotungstic acid and fixed on a
copper grid for drying. The dried samples were analyzed on a JEOL
Microscopy (JEM 1010, Japan) with images being acquired at 100 kV.

2.2.5. Entrapment efficiency (EE) and loading capacity (LC)

The amount of drug encapsulated in the SLNs was determined by an
ultrafiltration method using Amicon® Ultra-4 centrifugal filter tubes (10
kDA molecular weight cut-off). Samples were placed in the centrifugal
filter tube and centrifuged at 3000 rpm at 25 °C for 30 min. After se-
parating the supernatant, the amount of drug in it was analyzed by a
UV-Visible spectrophotometer (Shimadzu UV-1650 PC) at 280 nm
(Kalhapure et al., 2014). The determination of % EE and % LC was
based on Egs. (1) and (2) respectively (Ma et al., 2014b).

%EE = (Mass of drug in nanoparticles/Mass of drug added) x 100% €D)]

@

LC = (Mass of drug in nanoparticles/Mass of nanoparticles) x 100%

2.2.6. Differential scanning calorimetry (DSC)

The DSC measurements of formulation components (individually),
physical mixture and the drug were performed by DSC (Shimadzu DSC-
60, Japan), and the weighed samples (2 mg) were placed in aluminum
pans that were then sealed and scanned from 30 °C to 300 °C under a
nitrogen stream at 10 °C/min.

2.2.7. In-vitro drug release study and drug release kinetics
A dialysis tube diffusion technique was used to investigate the in
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vitro release behavior of drug loaded formulations (pH responsive and
non-pH responsive SLNs) that were prepared in triplicate. Briefly, 2 ml
of the drug loaded SLNs and their respective blanks were loaded into
dialysis tubes (MWCO 14 kDa), sealed, and dialysed against 40 ml
phosphate buffer solutions (PBS) (7.4, and 6.0) at 37 °C in an incubator
maintained at 100 rpm. At predetermined time intervals, 3 ml samples
were withdrawn from the receiver and the amount of vancomycin was
determined by a spectrophotometric method (UV-1650PC, Shimadzu,
Japan) at 280 nm. To keep the volume of release medium constant and
maintain sink conditions, an equal amount of fresh PBS was added after
each sampling.

Drug release kinetics were evaluated using a DDsolver Add-In pro-
gram (Zhang et al., 2010). Six mathematical models were used whereby
the correlation coefficient (R?) and root mean square error (RMSE)
were calculated and compared, the models being zero order, first order,
Weibull, Korsmeyer-Peppas, Higuchi and Hixson-Crowel.

2.2.8. Physical stability

The short-term physical stability of the VCM_NMEO SLNs was
evaluated at 4 °C and at room temperature (RT) for 90 days. The eva-
luation of the physical appearance of the formulations, as well as their
particle size, PDI and ZP, was performed at the end of 30, 60 and
90 days, with the study being performed in triplicate.

2.2.9. Molecular modelling

Molecular modelling was performed to understand the type of in-
teractions that occurred between VCM and NMEO based on a pre-
viously reported method with modifications. All molecular modeling
techniques were performed using Bovia Materials Studio (MS) 2016
that was installed on the remote server at the Center for High
Performance Computing (CHPC) (Cape Town, South Africa). The
structure of VCM (PDB:1SHO) was obtained from the RCSB website,
while NMEO was drawn using ChemBioDraw Ultra 14. All the struc-
tures were cleaned and hydrogen atoms were added, while the smart
minimizer algorithm in geometry optimization option available in for-
cite module of MS software was used to optimize all the structures to
their lowest energy conformations. A universal energy force field was
applied and the convergence tolerance criteria set to 0.001 kcal/mol
during the geometrical optimization study. The molecular dynamics
(MD) study was performed in vacuum to obtain a stable complex of
VCM and NMEO, both being initially placed inside the cubic cell
(10x10x10 nm), with the crystal builder and amorphous cell module of
MS 2016 being used to construct this model. Geometry optimization of
the whole system was performed prior to MD simulation using the same
protocol, as mentioned above, and optimization of the cell parameters
was allowed during energy minimization. The stabilized system was
then subjected to MD simulation under periodic boundary conditions,
which was performed at room temperature and 4 °C over 50 ps. The
final complex structure was then studied for the intermolecular inter-
actions to understand the various non-covalent forces that were re-
sponsible for the complex formation, with the Biovia Discovery Studio
Visualizer being used to depict the interactions in the drug-lipid com-
plex.

2.2.10. In vitro antibacterial activity

The minimum inhibitory concentration (MIC) of vancomycin loaded
SLNs were determined using a broth dilution method (Mohammed
Fayaz et al., 2011). After an overnight growth in Nutrient Broth at 37 °C
in a shaking incubator (Labcon, USA), the MRSA cultures were diluted
with sterile de-ionised water using a densitometer (DEN-1B McFarland,
Latvia) to achieve a turbidity of 0.5 McFarland. The bacterial cultures
were further diluted 1:150 with sterile de-ionised water to obtain a
concentration of 2 x 10° colony forming units (CFUs)/ml. The
minimum inhibitory concentration (MIC) of bare VCM, drug-free
(blank) NMEO SLNs, VCM loaded SA SLNs (VCM_SA SLNS) and VCM
loaded NMEO SLNs (VCM_NMEO SLNS) were determined using the
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broth dilution method. The test compounds were serially diluted with
Mueller-Hinton Broth 2 in 96-well plates at pH 6.0 and pH 7.4. The
plates were incubated in a shaking incubator at 37 °C for 18h, after
which, 10l of each dilution was spotted onto Mueller-Hinton Agar
(MHA) plates after 24 h of further incubation. The MHA plates were
incubated at 37 °C for 18 h, with the studies being performed in tripli-
cate. The blank formulation of NMEO SLNs was used as a negative
control, while vancomycin loaded SA SLNs and bare VCM were used as
positive controls.

2.2.11. In vivo antibacterial activity

The in vivo antibacterial activity of bare VCM and VCM_NMEO
SLNS against MRSA was investigated using a procedure approved by
the Animal Research Committee of the University of KwaZulu-Natal
(UKZN) (Approval no. AREC/104/015PD). BALB/c mice (18-20g in
weight) were purchased from the University’s Biomedical Research Unit
and divided into three groups (n = 4) categorized as treatment, positive
and negative control groups. 50ul of MRSA saline suspension
(1.5 x 10® CFU/ml) was injected intradermally to the three groups of
with their back hair removed and disinfected with 70% ethanol one day
before. Half an hour after infection, bare VCM and VCM_NMEO SLNS
were injected at the infection sites of the mice categorized as the po-
sitive control and treatment groups respectively, while nothing was
given to the third group that was used as a negative control. After 48 h,
the infected skin was harvested from the sacrificed mice and homo-
genized in 5ml of phosphate buffer solution (pH 7.4). The serial dilu-
tions of tissue homogenates were plated on nutrient agar plates (Biolab,
South Africa) and incubated at 37 °C, with the number of CFUs being
counted after 24 h of incubation (Huang et al., 2011). The histological
investigation was performed according to a previously reported pro-
cedure (Omolo et al., 2016). Briefly, skin samples were fixed in for-
maldehyde at 25°C for seven days, dehydrated using ethanol, im-
planted in paraffin wax. The tissue wax blocks were sectioned using a
microtome (Leica RM2235, Leica Biosystems, Germany) and sections
were collected on slides, dried and stained with hematoxylin and eosin
(H&E). Sections were examined and captured with a Leica Microscope
DM 500, fitted with a Leica ICC50 HD camera (Leica Biosystems, Ger-
many).

2.2.12. Statistical analysis

Statistical analysis of data was performed using one-way analysis of
variance (ANOVA), followed by Bonferroni’s multiple comparison test
using GraphPad Prism® 6 (GraphPad Software Inc., USA). Statistical
significance was based on a p-value < 0.05, with the data being ex-
pressed as mean * standard deviation (SD).

3. Results and discussion
3.1. Characterization of NMEO

M.p. 42-44°C; FT-IR: 3285.91, 2918.5, 2848.71, 1646.85, 1559.86,
1462.07, 1117.96, 777.97, 715.29cm™. 'H NMR (CDCl3) & (ppm):
0.836-0.869 (t; 3H; —CH3), 1.241-1.276 (m; 20H; —CH,-), 1.581-1.616
(q; 2H; —-CH,CH,CO0-), 1.958-1.972 (m; 4H; —CH,~CH=CH-CH,-),
2.00-2.163 (t; 2H; CH,COO0-), 2.521-2.550 (m;6H; —CH,-N(CH>)»-),
3.351-3.379 (t; 2H; -NHCH,CH,-), 3.718-3.740 (t; 4H; —-CH,0CH-),
5.290-5.328 (m; 72H; —-CH=CH-), 6.25 (s; 1H; -NH-). *C NMR
(CDCl3) & (ppm): 14.09, 22.86, 25.72, 27.16, 29.15, 29.27, 29.48,
29.70, 31.88, 35.24, 36.68, 53.23, 57.23, 66.45, 129.70, 129.98,
173.31; ESI-TOF MS m/z [M+H]* - -calculated 395.3638
(Co4H46N5O + H, ), actual mass 395.3633.

3.2. In vitro cytotoxicity

Exposure of NMEO to the cell lines for a period of 48 h displayed
that the novel lipid exhibited a high percentage cell viability across the
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Fig. 2. Cytotoxicity evaluation of various concentrations of NMEO against
A549, HEK-293 and Hep G2 cells.

concentration range studied (Fig. 2). NMEO displayed a cell viability
between 79.42 and 88.12%, 78.42 to 81.75% and 76.96 to 79.70% for
A549, HEK-293 and HEP G2 cells respectively (Fig. 2). The results
displayed no dose dependent trends and is consistent with previous
studies that report on materials that exhibit cell viability that is in-
dependent of the concentration (Romic et al., 2016; Di Gioia et al.,
2015; Sikwal et al., 2017).

Literature reports that materials with a cell viability of greater than
75% can be considered as low toxicity in the framework of safety use
(Cao et al. 2010). The findings of the MTT study therefore suggest that
the use of NMEO will be safe for biological/pharmaceutical applica-
tions.

3.3. Preparation of drug-free NMEO SLNs

Initially drug-free SLNs were prepared from the newly synthesized
NMEO using several surfactants, the one with acceptable characteristics
being selected and its quantity optimized.

3.3.1. Screening and selection of surfactant

Surfactants of different types were screened at a fixed concentration
to identify the most suitable one for formulating blank NMEO SLNs with
desirable physicochemical characteristics. The surfactants used were
Cremophor RH 40, Lutrol F-68, Solutol HS 15 and Tween 80. Of these,
Tween 80 displayed the best results in terms of size and PDI (Fig. 3).
Similar results were obtained by Ebrahimi and coworkers who studied
the effect of different stabilizers (polyvinly alcohol, Pluronic F 127,
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Fig. 3. Effect of surfactant type on size and PDI of SLNs.
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Table 1
Effect of surfactant concentration on physicochemical characteristics of drug
free NMEO SLNs. The values given are expressed as mean *+ SD, n = 3.

pH PS (nm) PDI ZP (mV)

0.1%

7.4 215.0 = 8.3 0.34 = 0.031 —6.03 + 0.49
6.0 2276 = 1.5 0.340 + 0.025 5.1 = 0.250
5.5 211 + 1.51 0.369 + 0.07 10.4 = 1.60
0.12%

7.4 162.8 = 1.6 0.209 + 0.03 —5.04 = 0.471
6.0 162.0 = 5.21 0.171 + 0.013 4.4 = 1.16
5.5 145.5 = 2.4 0.179 * 0.01 9.7 = 1.9
0.16%

7.4 146.2 = 3.0 0.174 + 0.04 —-4.7 = 0.1
6.0 167.7 = 1.8 0.259 * 0.022 4.01 = 0.82
5.5 168.0 = 7.4 0.26 = 0.07 9.06 = 1.0
0.2%

7.4 122.2 = 5.54 0.129 * 0.02 —4.41 + 0.88
6.0 1243 = 7.4 0.137 + 0.012 3.46 = 0.48
5.5 122.6 = 3.1 0.152 *= 0.023 10.4 = 0.21
0.24%

7.4 130.2 = 0.74 0.119 * 0.026 —-4.17 + 0.6
6.0 129.1 = 1.35 0.095 + 0.01 3.28 = 0.48
5.5 140.9 = 3.24 0.146 = 0.037 7.45 = 1.77

polyvinyl pyrrolidone, Tween 80 and phosphatidylcholine) on the be-
havior of SLNs. According to these authors, surfactants of low mole-
cular weight, such as Tween 80, produce small sized particles due to
their ability to be quickly adsorb into interfacial surfaces (Ebrahimi
et al., 2015), which resulted in it being selected for further studies.

3.3.2. Effect of surfactant concentration

The surfactant (Tween 80) concentration was varied from 0.1% (w/
v) to 0.24% (w/v) to determine the optimal concentration. As depicted
in Table 1, PS and PDI of the blank formulations decreased with in-
creasing surfactant concentration, with the particle size increasing be-
yond 0.2%. These results are in line with the findings of other studies
related to SLNs (Das et al., 2011) and other types of nanoparticles (Dora
et al., 2010; Singh et al., 2010). The ability of a surfactant to produce
small particles depends on how fast it gets adsorbed to the particle
surfaces before the particles grow through collisions. At higher con-
centrations, this adsorption process is faster, with the particles being
maintained at smaller sizes (Helgason et al., 2009). Therefore, the drug-
free formulation composed of 0.2%w/v surfactant was considered sui-
table to proceed with drug loading.

3.4. Preparation and characterization of drug loaded SLNs

Drug loaded pH responsive SLNs were prepared using VCM, Tween
80 and NMEO as drug, surfactant and pH responsive lipid respectively.
Hot homogenization, a method that combines high pressure, thermal
and mechanical forces to attain consistent nanosized formulations was
used in addition to ultrasonification. The prepared SLNs were char-
acterized for pH responsiveness and other physicochemical character-
istics by dispersion in different buffer solutions. PS, PDI and ZP of
VCM_NMEO SLNS and VCM_SA SLNs are presented in Table 2 and
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Fig. 4. Effect of pH on zeta potential of VCM_NMEO SLNs.

Fig. 4. The zeta potential of VCM_NMEO SLNS changed from —6.27 at
pH 7.4 to +9.39 at pH 5.5, and there was a decrease in particle size
from 302.8 at pH 7.4 to 220.5 at pH 5.5. The switch from negative to
positive zeta potential was not observed for VCM_SA SLNs, which also
did not show any major change in size confirmed that the pH-respon-
siveness of SLNs was due to NMEO. The ability to switch from negative
at basic to positive charge at acidic pH is critical for pH-responsive
systems for antibiotic delivery as it serves two purposes: i) it helps the
system to become more hydrophilic and release higher quantities of the
drug in the acidic conditions of infection sites (Mura et al., 2013), and
ii) it enables the carrier to bind easily to the negatively charged bac-
terial cells, enhancing the targeting potential of the system
(Chakraborty et al., 2012). Morphological analysis using TEM showed
that VCM_NMEO SLNS were discrete and had an almost spherical shape
(Fig. 5). The % EE and DL for drug loaded NMEO SLNs were
81.18 = 0.57% and 8.1% respectively. While the entrapment effi-
ciency is often a challenge in drug delivery with nano-drug systems, the
% EE obtained in this study was higher than several non-pH responsive
SLNs reported (Liu et al., 2014; Seedat et al., 2016; Yousry et al., 2016),
will be beneficial for reducing drug loss and costs, and will significantly
reduce the amount of the drug to be administered. This data therefore
confirmed that the NMEO lipid can be used to prepare VCM solid lipid
nanoparticles with desirable properties.

3.5. DSC studies

The aim of the DSC studies was to confirm entrapment of VCM in
the NMEO SLNS, with the thermograms of SLNs, VCM and NMEO being
shown in Fig. 6, the thermal peaks of the latter two being observed at
112.14°C and 41.22 °C respectively. Analysis of their physical mixture
revealed no major shifts in the thermal peaks of the formulation ex-
cipients. The lyophilized SLNs exhibited an endothermic peak at
39.71 °C, which can be associated with the NMEO layer. The VCM peak
was absent in the SLN’s thermogram, indicating that the drug was en-
trapped in an amorphous form in the lipid matrix (Seedat et al., 2016).

3.6. In vitro drug release profiles and drug release kinetics

The in vitro release profiles of bare VCM, VCM_NMEO SLNs and
VCM_SA SLNs are shown in Fig. 7 A and B, with the release of bare VCM
at pH 7.4 and pH 6.0 being almost complete within the first 8 h.

Table 2
Effect of pH on VCM loaded formulations. The values given are expressed as mean + SD, n = 3.
SLN VCM_NMEO SLNS VCM_SA SLNs
pH
PS (nm) PDI ZP (mV) PS (nm) PDI ZP (mV)
7.4 302.8 = 0.12 0.292 + 0.025 —6.27 = 0.017 365.6 = 17.8 0.143 += 0.021 —-7.0 £ 0.11
6.0 260.7 + 9.5 0.261 + 0.018 6.05 = 0.013 363.8 + 15 0.316 + 0.022 —-4.12 = 0.27
5.5 220.5 £ 1.9 0.380 + 0.005 9.39 = 0.046 368.1 + 12.9 0.209 =+ 0.025 —2.57 = 0.09
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Fig. 5. Morphology of VM_NMEO SLNs.
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Fig. 6. DSC thermogram of (A) NMEO, (B) VCM (C) physical mixture of VCM
and NMEO and (D) lyophilized VCM_NMEO SLNs.

Throughout the study, the amount of VCM released from the
VCM_NMEO SLNs was higher at pH 6.0 than pH 7.4. After 8 h, the re-
lease of VCM from the VCM_NMEO SLNs was 34.66% at pH 7.4 and
74.89% at pH 6.0. At the end of the study (24 h), drug release was 1.58
times higher at acidic pH than at physiological pH. This increased drug
release at pH 6.0 can be due to the pH responsiveness of NMEO, with
the protonation of nitrogen atoms of its morpholinoethyl moiety at
acidic pH increasing the hydrophilicity of the formulation, promoting
faster drug release. Pu et al. (2014) obtained similar results, whereby
protonation of the imidazole moiety conjugated to the pendant groups
of poly (L-aspartate) triggered release of doxorubicin at acidic condi-
tions from the pH-sensitive poly (L-aspartate)-b-poly (ethylene glycol)
micelles.

The release of VCM from the VCM_SA SLNs was sustained at both
pH values and did not show any pH dependence, with drug release after
24 h being 87.63% at pH 7.4 and 85.07% at pH 6.0. It can thus be
concluded that the pH dependent drug release observed for VCM_NMEO
SLNs was linked to NMEO.

The drug release kinetics data of the drug loaded formulations are
presented in Table 3. At pH 7.4, both stearic acid and NMEO for-
mulations released vancomycin according to the Weibull model, which
is among the kinetic models that have a wide application in describing
drug release processes (Koester et al., 2004). The values of R? and RMSE
were 0.9848 and 2.2925 for the VCM_SA SLNs respective, and 0.9918
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Fig. 7. Effect of pH on drug release profiles of (A) bare VCM and VCM_NMEO
SLNs And (B) VCM and VCM_SA SLNs (n = 3).

and 2.1057 for the VCM_NMEO SLNs.

The Weibull release model, as applied to drug release, can best be
explained by considering its exponent parameter (), as it was de-
scribed by Papadopoulou et al. (Papadopoulou et al., 2006). A value of
B between 0.39 and 0.69 suggest that the release mechanism is diffu-
sion in fractal or disordered substrate, but the 0.69 < < 0.75 sug-
gests that the drug release was by diffusion in normal Euclidian space.
The value of exponent parameter () for VCM_NMEO SLNs was 0.629,
which suggests that the mechanism of VCM release at pH 7.4 was by
diffusion in fractal or disordered substrate.

At pH 6.0, Korsmeyer-Peppas was the best fit model, and the R* and
RMSE values were 0.9922 and 1.8138 respectively for VCM_SA SLN,
and 0.9976 and 1.1054 respectively for VCM_NMEO SLN. The value of
the release exponent (n) of the Korsmeyer-Peppas model at pH 6.0 was
above 0.5, suggesting a non Fickian mechanism of release (Waddad
et al., 2013).

3.7. Physical stability

The physical stability of the NMEO SLNs was assessed at 4 °C and at
RT for 90 days to understand how the physical stability related para-
meters were affected by time and storage conditions. The absence of
visual signs of instability, and the lack of significant difference in values
of particle size, PDI and ZP (p > 0.05), proved that the formulation
was stable at 4 °C throughout the study period (Table 4). Unlike those at
4°C, the samples kept at RT were not stable, as revealed by their sig-
nificant particle growth (p < 0.05) and high PDIs. Chemical stability
studies on the formulation can be undertaken in the future during
formulation optimization studies with the drug of choice.

3.8. Molecular modelling

Molecular modelling was used to investigate and identify the sta-
bility of the VCM NMEO SLN system, and the interaction between VCM
and NMEQO, as this understanding will also explain the release behavior
of VCM from the NMEO SLNs. The initial energy of VCM and NMEO
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Table 3
Drug release kinetics data for VCM NMEO_SLNs.
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Model Equation R? RMSE Release exponent (n)

pH 7.4 6.0 7.4 6.0 7.4 6.0
Zero order Q=k*t+ Qo 0.6286 0.8626 12.8061 7.8804 - -
First order Q= Qp*ekt 0.9032 0.9608 6.5348 4.2060 - -
Higuchi Q=k*t2 0.9584 0.9924 4.2870 1.8305 - -
Korsmeyer-Peppas Q=k*t" 0.9604 0.9976 4.3857 1.1054 0.527 0.566
Hixson-Crowell Qs =k*t+ Qo ¥s 0.8344 0.9374 8.5487 5.3143 - -
Weibull Q=1exp [—(t)“/b] 0.9918 0.9974 2.1057 1.2530 - -

R? = linear regression coefficient, RMSE = Root mean square error.

were found to be 3894.83 and 274.09 kcal/mol respectively. Geometry
optimization using the smart minimizer algorithm in forcite module
resulted in producing more stable molecules with final energy of
289.54kcal/mol for VCM and 41.59Kcal/mol for NMEO
(Supplementary materials S1). The MD study revealed the formation of
VCM-NMEO complex, with the potential energy, the mass of the com-
plex, increasing from 546.585 kcal/mol to 854.939 kcal/mol by the end
of MD study (Fig. 8 A). This confirms the successful formation of the
VCM NELO SLN system ((Florence and Attwood, 2015), while the rise
in potential energy also explains the increase in particle size from
122.2nm for blank to 302.8 nm when VCM was loaded into NMEO
SLNs. The stability of the VCM_NMEO SLNs was also studied using MD
simulation by monitoring the kinetic energy at room temperature and
4°C. The kinetic energy, which reflects the entropy of the molecules
during the simulation, was reduced by the end of the MD study at both
temperatures. At room temperature, the kinetic energy was reduced
from 685.88 kcal/mol to 386.34 kcal/mol, while at 4 °C it was reduced
from 633.64 kcal/mol to 370.61 kcal/mol. The kinetic energy is known
to be reduced at lower temperatures, resulting in reduced free energy
and hence a more stable complex. The presence of hydrogen bonds and
hydrophobic interaction were visualized using Discovery studio, and
contributed to the stability of the VCM_NMEO SLNs (Fig. 8 B). The
hydrogen bonds would have a major role in the stability of the
VCM_NMEO SLNs, as these bonds are more stable at lower temperatures
(Teo et al., 1997). The drug release profiles at pH 7.4 and pH 6 (Fig. 7A
and B) may also be explained by these MD studies. The slower release of
VCM from the NMEO SLNs at pH 7.4 can be attributed to not only
hindrance by the hydrophobic SLNs, but also to the presence of hy-
drogen bond interactions between VCM and NMEO (Hao and Li, 2011;
Ho et al., 2010). Conversely, at pH 6, due to protonation of the nitrogen
atom of NMEO, hydrogen bonding may no longer occur, leading to the
faster release profile displayed (Fig. 8).

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.ijpharm.2018.08.025.

3.9. In vitro antibacterial activity

Table 5 summarizes the results of the in vitro antibacterial activity
of bare VCM, drug free and drug loaded pH responsive NMEO SLNs and
VCM SA _SLNs against MRSA. The MIC value for bare VCM was 7.8 ug/

ml at physiological pH (7.4), and increased to 15.65 pug/ml at acidic pH

Table 4

Fig. 8. 3D illustration of vancomycin (stick model) (A) entrapped inside the
lipid network (hydrogen bond surface model) by means of hydrogen bond
(green lines) and hydrophobic interaction (purple line) (B). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

(6.0). The observed 2-fold loss of activity of bare VCM at acidic pH is
consistent with what has been reported by other researchers (Mercier
et al., 2002; Radovic-Moreno et al., 2012), and might be due to de-
creased solubility of vancomycin (Faustino, 2008). Bare VCM had a
lower MIC (7.8 ug/ml) than VCM NMEO _SLNs (15.65), an observation
consistent with other nanoantibiotic studies of VCM (Kadry et al., 2004;
Kalhapure et al., 2014). It should be noted that under in vivo condi-
tions, higher concentrations of VCM would still reach the infection site
in the SLN compared to a conventional VCM formulation for better

Effect of storage on physicochemical characteristics of vancomycin loaded NMEO SLNs. The values are expressed as mean + SD, n = 3.

Storage condition PS (nm) PI ZP (mV)

Time (days) 4°C RT 4°C RT 4°C RT

0 302.8 = 0.12 302.8 + 0.12 0.23 + 0.03 0.23 + 0.03 —6.27 = 0.01 —6.27 = 0.01
30 303.4 £ 5.2 585 = 1.70 0.253 + 0.07 0.395 + 0.02 —-6.4 = 0.4 —-6.0 = 0.6
60 303.7 = 1.03 588.9 + 12.3 0.251 + 0.01 0.422 + 0.09 —-6.50 = 1.0 -6.2 = 1.2
90 305.3 = 3.8 596 * 22.01 0.343 + 0.04 0.455 + 0.01 -6.30 = 0.7 -6.21 + 2.2

155
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Table 5
In vitro antibacterial activity of the formulations against MRSA at pH7.4 and
6.0. The values are expressed as mean * SD, n = 3.

Formulation (MIC pg/ml)

pH 7.4 6.0
Bare VCM 7.8 15.65
NMEO SLNs (drug free) NA NA
VCM_NMEO SLNs 15.65 0.244
VCM_SA _SLNs 315 31.5

NA = No activity.

activity. In addition, considering the toxicity of VCM, its encapsulation
in NMEO SLNs could be useful in mitigating the drugs toxic effects,
which includes nephrotoxicity (Dong et al., 2015). At pH 6, VCM NMEO
SLNs had a MIC value (0.244 ng/ml) that was lower than that of bare
VCM (15.65 pg/ml), which indicated that the NMEO SLNs were capable
of protecting VCM against loss of its efficacy, which occurs at low pH
(Radovic-Moreno et al., 2012).

The MIC value of the VCM_NMEO SLNs decreased from 15.6 pug/ml
at pH 7.4 to 0.244 pg/ml at pH 6.0, which is equivalent to an almost 64-
fold increase in their activity at acidic compared to neutral pH. These
results were comparable to those from a study previously reported by
our group, whereby VCM-encapsulated pH responsive SLNs (VCM-
FB_SA-3M_SLNs) also had an activity against MRSA that was better at
acidic than at physiological pH (Kalhapure et al., 2017b). Interestingly,
the previous study reported a 4-fold improvement of activity against
MRSA at acidic pH, which is lower than the 64-fold increase in activity
reported in this study.

In our previous study, pH responsive VCM SLNs (VCM-FB_SA-
3M_SLNs) were prepared from a novel acid-cleavable lipid that was
meant to facilitate higher drug release only by cleavage of an acid labile
link (acetal bond) at the acidic sites. VCM_NMEO SLNs in this study, on
the other hand, were made from a lipid that protonates and acquires a
positive charge at acidic medium. Superiority of the VCM_NMEO SLNs
over the VCM-FB_SA-3M_SLNs can be because the latter influences only
VCM release, while the former influences both release of drug from
formulation and its interaction with bacteria. Therefore, apart from
facilitating the release of the drug by making the system hydrophilic,
the positive charge also helps to adhere VCM_NMEO SLNs to bacterial
cells, thereby enhancing their activity (Forier et al., 2014).

Conversely, the MIC value of VCM_SA _SLNs against MRSA was
31.5 pug/ml at pH 7.4, and remained the same at pH 6. This indicated
their lack of pH dependent antibacterial activity and confirmed that
enhanced antibacterial activity of the formulation (VCM_NMEO SLNs)
might be due to the pH responsive NMEO lipid.

3.10. In vivo antibacterial activity

For proof of concept, in vivo studies in mice using a skin infection
model was thereafter performed to confirm the antibacterial activity of
VCM_NMEO SLNS, whereby MRSA were delivered intradermally to
localize temporarily at the dermal layer, without gaining a deeper entry
into the systemic circulation. For each treatment group, the number of
colony-forming units (CFUs) were determined and presented as logio,
as shown in Fig. 9. When compared to untreated skin samples, both the
VCM_NMEO SLNS and bare VCM significantly reduced the MRSA load
in the skin samples treated by them. The mean MRSA load (log;o CFU)
recovered from untreated skin samples was 6.58 *= 0.01, while the
values for the VCM_NMEO SLNS and bare VCM treated samples were
4.36 = 0.10 and 4.97 * 0.12 respectively. The log,o CFU values for
the formulation was statistically lower than both the untreated and
VCM only treated (p < 0.05). In terms of CFU/ml, the results showed
that the bacterial load in mice treated with the VCM_NMEO SLNS was
162.4 times lower than the one in the untreated mice (p < 0.05).
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Fig. 9. MRSA burden after 48h treatment period. Data is presented as
mean * SD (n=3). ** denotes significant difference between VCM
NMEO _SLNs and bare VCM. *** denotes significant difference when bare VCM
is compared to untreated samples and **** denotes significant difference be-

tween VCM NMEO_SLNs and untreated samples.

Bacterial load reduction by VCM_NMEO SLNS was also significantly
greater (4.14 times) than that of bare VCM (p < 0.05). This clearly
suggests that encapsulation of VCM in the NMEO SLNs improved its
antibacterial activity.

Vancomycin exerts its antibacterial activity by inhibiting bacterial
cell wall synthesis, which it does by diffusing through the cell wall and
reaching its target site (terminal D-Ala-d-Ala residues) located on the
cell membrane (Meng et al., 2017; Pereira et al., 2007). The thickened
cell wall displayed by the MRSA helps the bacteria to resist vancomycin
action by trapping the drug and reducing the number of drug molecules
that reach the cytoplasmic membrane (Van Bambeke and Struelens,
2008). In our study, the enhanced activity of VCM in NMEO SLNs was
probably be due to several factors, such as: i) a faster drug release
(Subedi et al., 2009) and improved binding to bacterial cells due to the
ability of the NMEO SLNs to acquire positive charge at pathological
acidic conditions; ii) improved permeation of VCM through the MRSA
cell wall to its target site due to the ability of oleamide portion of the
NMEO to act as a permeation enhancer (Lane, 2013), and iii) synergism
between VCM and its oleic acid based carrier, which is thought to have
inherent anti-MRSA activity also due to its membrane disruption ability
(Engelbrecht et al., 2011; Huang et al., 2011). By displaying the pos-
sibility of having multiple mechanisms of actions against MRSA, the
VCM_NMEO SLNs developed in this study have the potential to be ef-
fective in combating the growing threat of bacterial resistance against
vancomycin. Data regarding in vivo antibacterial studies of antibiotic
loaded pH responsive SLNs is limited, and this study could therefore
provide a foundation for future studies related to delivering antibiotics
using surface switching pH responsive SLNs.

The histomorphological evaluations were performed on excised skin
from the untreated, bare VCM and VCM_NMEO SLN group to assess the
morphological changes and skin integrity after MRSA infection. The H&
E stained slides revealed that the untreated skin samples displayed
evidence of tissue inflammation and abscess formation (Fig. 10A). The
bare VCM group also showed evidence of swelling and abscess forma-
tion, however to a lesser extent than the untreated group (Fig. 10B).
The VCM_NMEO SLN group displayed minimal signs of inflammation
and no evidence of abscess formation (Fig. 10C). Both the untreated and
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Fig. 10. Photomicrographs of the control and the treated skin samples H&E
stained (4X): (A) untreated (B) bare VCM treated and (C) VCM_NMEO SLN
treated.

bare VCM group presented with large quantities of white blood cells at
the infection site, however this was evidently lower in the VCM_NMEO
SLN group (Fig. 10C). The findings of the histomorphological analysis
correlate with the CFUs calculated in the in vivo antibacterial study as
the skin sample with the most number of recovered bacteria also pre-
sents with the highest degree of inflammation, abscess formation and
presence of white blood cells. This is due to the greater immune re-
sponse to the larger number of bacteria present at the infection site of
the untreated group. The VCM_NMEO SLN group which displayed the
lowest number of isolated bacteria presented with minimal signs of
inflammation and no abscess formation, this could be due to a reduced
immune response to a statistically lower number of isolated bacteria at
the infection site. These findings further exhibit the antimicrobial su-
periority of the VCM_NMEO SLNs.

4. Conclusion

Nanobased antibiotic carriers are increasingly being recognized as a
potential approach to improve the activity of existing drugs in an era
when bacterial resistance is rising while the discovery of new antibiotic
drugs is declining. In this project, a biosafe oleic acid based pH-re-
sponsive-lipid, NMEO, was synthesized, characterized and successfully
formulated into pH responsive SLNs. The in vitro release showed that
the release of vancomycin from the NMEO SLNs was faster at pH 6 than
at pH 7.4, with the MIC value of the formulation against MRSA de-
creasing by 64-fold at acidic pH. The potential of the NMEO SLNs was
also confirmed by their in vivo antibacterial activity. Mean bacterial
load of samples treated by NMEO SLNs were 4-fold lower than those
treated by bare VCM, and 162-fold lower than untreated samples. Thus,
the developed pH responsive NMEO SLNs could be an effective delivery
system to improve the performance of vancomycin and other antibiotics
against resistant bacteria infections.
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ABSTRACT

Current research has shown cell-penetrating peptides and antimicrobial peptides (AMPs) as probable
vectors for use in drug delivery and as novel antibiotics. It has been reported that the higher the
therapeutic index (TI) the higher would be the bacterial cell penetrating ability. To the best of our
knowledge, no in-silico study has been performed to determine bacterial cell specificity of the anti-
microbial cell penetrating peptides (aCPP’s) based on their TI. The aim of this study was to develop a
quantitative structure activity relationship (QSAR) model, which can estimate antimicrobial potential
and cell-penetrating ability of aCPPs against S. aureus, to confirm the relationship between the Tl and
aCPPs and to identify specific descriptors responsible for aCPPs penetrating ability. Molecular dynamics
(MD) simulation was also performed to confirm the membrane insertion of the most active aCPPs
obtained from the QSAR study. The most appropriate pharmacophore was identified to predict the
aCPP’s activity. The statistical results confirmed the validity of the model. The QSAR model was suc-
cessful in identifying the optimal aCPP with high activity prediction and provided insights into the
structural requirements to correlate their Tl to cell penetrating ability. MD simulation of the best aCPP
with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer confirmed its interaction with
the membrane and the C-terminal residues of the aCPP played a key role in membrane penetration.
The strategy of combining QSAR and molecular dynamics, allowed for optimal estimation of ligand-tar-
get interaction and confirmed the importance of Trp and Lys in interacting with the POPC bilayer.
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1. Introduction several classes of both prokaryotes and eukaryotes. They have

The resistance to antibiotics by bacteria poses a considerable
threat to global health (Davies & Davies, 2010; Sengupta,
Chattopadhyay, & Grossart, 2013, highlighting the need to
urgently develop novel antibacterial agents. Bacterial resistance
has prompted a search of natural inhibitors, leading to the use
of antimicrobial peptides (AMPs) (Wang, Zeng, Yang, & Qiao,
2016), which form an integral part of innate immunity (Branco,
Viana, Albergaria, & Arneborg, 2015; Bolintineanu, Hazrati, Davis,
Lehrer, & Kaznessis, 2010; Wiesner & Vilcinskas, 2010). AMPs are
small, cationic and amphiphilic molecules that are found in

structures such as linear o-helical peptides, B-sheet globular
arrangements, and peptides with uncommon sequences includ-
ing tryptophan and proline (Carnicelli et al, 2013; Michael
Henderson & Lee, 2013; Vale, Aguiar, & Gomes, 2014; Wang
et al, 2012). They have been seen to be structurally similar to
cationic cell penetrating peptides (CPPs), and while their mech-
anism of action has not been elucidated, it is thought that they
primarily target the bacterial cell membrane (Bhonsle,
Venugopal, Huddler, Magill, & Hicks, 2007; Lee, Hall, & Aguilar,
2016; Schmidt & Wong, 2013). Cationic AMPs can bind to
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lipopolysaccharides (LPS) or lipid A (LA) of Gram-negative bac-
teria. This action leads to membrane permeation through self-
promoted uptake and trans-membrane channel formation via a
“barrel-stave” or toroidal pore mechanism, or through mem-
brane destruction via a carpet-like mechanism (Mishra et al.,
2013; Wang et al., 2012). Several studies have suggested that
the success of AMP activity is mediated by its ability to aggre-
gate on the surface of the membrane of bacteria, or to traverse
the bacterial cell membrane and interrupt intracellular targets
(Carmona-Ribeiro & de Melo Carrasco, 2014; Da Costa, Cova,
Ferreira, & Vitorino, 2015; Guilhelmelli et al, 2013; Lv et al,
2014; Malanovic & Lohner, 2015; Tang, Shi, Zhao, Hao, & Le,
2008). However, membrane penetration/disintegration has been
reported to be the primary mechanism of action of these cat-
ionic AMPs (Huerta-Cantillo & Navarro-Garcia, 2016; Ong,
Wiradharma, & Yang, 2014; Porto, Silva, & Franco, 2012; Tsai
et al.,, 2009).

AMPs function with a great deal of similarity to CPPs
and share important features that include short sequence
lengths (~10-40 residues), net positive charge, and an
arrangement of amino acids with a substantial content of
non-polar residues. All of these are considered to promote
aCPP interaction and insertion with the hydrophobic core
of the bacterial membrane bilayer. Small sequence modifi-
cations of CPPs can alter their biological effect from cell-
penetrating to antimicrobial or vice versa, leading to the
formation of antimicrobial cell penetrating peptides (aCPP),
which are cell penetrating peptides with antimicrobial prop-
erties (Bahnsen, Franzyk, Sandberg-Schaal, & Nielsen, 2013).
These peptides have a dual effect which offers bacterial
membrane penetration together with antimicrobial activity,
as seen with the aCPP penetration (Bahnsen, Franzyk,
Sayers, Jones, & Nielsen, 2015; Henriques, Melo, & Castanho,
2006; Pushpanathan, Gunasekaran, & Rajendhran, 2016;
Splith & Neundorf, 2011). Other examples of aCPPs include
Bac7, which binds to bacterial ribosomal proteins and inhib-
its protein synthesis, and pep-1-K, which has a high mem-
brane perturbing activity (Bobone et al., 2011; Mardirossian
et al., 2014). The aCPPs have been widely reported as anti-
bacterial agents, and as part of conjugates, such as drugs
and polymers, and are utilised for the sole purpose of
enhancing biological activity(Arnusch et al., 2012; Eckhard
et al,, 2014; Maekawa et al.,, 2015; Souto et al., 2013). There
have also been reports of aCPPs being used as delivery sys-
tems to carry cargo across bacterial membranes (Carmona-
Ribeiro & de Melo Carrasco, 2014; Eriksen, Skovsen, & Fojan,
2013; Kingsbury, Boehm, Mehta, Grappel, & Gilvarg, 1984).
This is important, as it allows for the dual approach of cell
penetration and the release of conjugates to their respect-
ive intracellular targets, as well as the biological activity of
the aCPPs themselves. The aCPPs offer promising prospects
to be utilised as alternative agents to known antibiotics.
This is due to their ability to permeate the bacterial cell
membrane and its cationic charge, which allows them not
only to form pores on the bacterial cell membrane but also
to traverse this layer to interfere with intracellular targets
(Delcour, 2009; Schmidt & Wong, 2013). Another feature
that makes them attractive is their ability to carry cargo

across the bacterial cell membrane (Aparoy, Reddy, &
Reddanna, 2012; Burns, McCleerey, & Thévenin, 2016), this
strategy being useful to deliver conjugates, such as drugs
and polymers. Continued research in these areas is required
to identify the optimal aCPPs with high therapeutic indices
(Tls). Tools to facilitate the design of potent and selective
aCPPs, either as antibiotic entities themselves, or as compo-
nents of pharmaceutical materials such as polymers, or as
ligands for drug delivery carriers are essential to optimise
their applications.

Quantitative structure-activity relationships (QSAR) is a
useful tool in the rational design of potent and selective
aCPPs (Mollica et al., 2018). Frequently used predictive tools,
such as AntiBP2 and APD2 databases, are based on sequence
analysis and physicochemical features, whereas other predict-
ive models outline more structural-descriptor insight required
for the designing of novel AMPs by outlining specific
descriptors such as polarity of amino acids, free energy,
hydration, and isoelectric point which are all properties
responsible for biological activity (Vora et al., 2018; Wang
et al, 2012). One such model based on inductive descriptors
was developed by Cherkasov (2005), where the prediction
was based on artificial neural network (ANN) for a series of
newly synthesized polypeptides (Cherkasov, 2005; Torrent,
Andreu, Nogués, & Boix, 2011). Taboureau et al. (2006) used
GRID to generate 3D descriptors and built a high-perform-
ance QSAR model for novispirin AMPs (Taboureau et al.,
2006). Fjell et al. (2009) also carried out an ANN virtual
screening using physicochemical descriptors to screen for
potential AMPs (Fjell et al., 2009). QSAR is an important tool,
as it allows for the accurate design and structural elucidation
of the descriptors responsible for peptide activity (Porto
et al, 2012). This computational tool uses specific physico-
chemical descriptors that are directly responsible for the
mechanism of action of aCPPs (Torrent et al, 20171;
Vishnepolsky & Pirtskhalava, 2014). This quantitative method
of predicting activity is used to design or modify aCPPs to
elucidate their antibacterial activity.

Moreover, pharmacophore models can be generated
based either on the ligand or the target, which identifies the
groups in the former that are responsible for the potency or
the binding targets with respect to the target site (Xie, Qiu,
& Xie, 2014). QSAR models developed for antimicrobial pepti-
des correlate their structural features with antimicrobial activ-
ity (Toropova, Veselinovi¢, Veselinovi¢, Stojanovi¢, & Toropov,
2015). It has been reported that the higher the T, the higher
the bacterial cell penetrating ability (Aoki & Ueda, 2013;
Matsuzaki, 2009; Tripathi, Kathuria, Kumar, Mitra, & Ghosh,
2015). To the best of our knowledge, till date no QSAR mod-
els have been used to predict the bacterial cell specificity of
a CPP based on its Tl. The use of QSAR as a chemo-infor-
matic tool to predict the Tl of potential aCPPs by analysing
available experimental data will therefore hasten the design
and synthesis of novel aCPPs specific for bacterial cell, lead-
ing to development of efficient antibacterials. The Tl com-
pares the amount of a therapeutic agent to the amount that
causes toxicity (Muller & Milton, 2012; Tamargo, Le Heuzey, &
Mabo, 2015), with a high Tl being preferable for a drug to
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Figure 1. Workflow for identification of best aCPP for membrane penetration.

have a favourable safety profile. It is important in pharmaco-
therapy as an essential tool for therapeutic drug monitoring
to ensure a greater therapeutic benefit without resulting in
undesired toxicity (Tamargo, Le Heuzey, & Mabo, 2015). This
study aimed to develop a QSAR model to validate the cell
penetrating ability of aCPPs based on their Tl. The Tl was cal-
culated by correlating the minimum inhibitory concentration
(MIC) of the aCPPs to their effect on eukaryotic cells, with an
indicative Tl being calculated by relating the cell viability
ECso value to the MIC value. Pharmacophore hypothesis gen-
eration and 3D-QSAR were used to understand the cell pene-
trating ability of the aCPPs utilised based on their Tls. Finally,
the validated pharmacophore model was used to identify
the best aCPP and from the dataset obtained. The obtained
hits were further examined based on the fit function, and
the best fit was further tested using molecular dynamics to
study its membrane penetrating ability. Molecular dynamic
(MD) simulations are widely applied to understand the
atomic-level information peptides structures (Agrawal &
Skelton, 2016, 2018) and aCPP’s interactions with the mem-
branes (Arasteh & Bagheri, 2017; Mizuguchi & Matubayasi,
2018; Velasco-Bolom, Corzo, & Garduno-Juarez, 2017). Thus,
an integrated approach comprising of pharmacophore mod-
elling and MD simulation were employed to identify the best
aCPPs with optimal membrane penetrating ability across a
POPC bilayer membrane. POPC which is a phospholipid that
is ubiquitous in cell membranes, contains a phosphatidylcho-
line (PC) component which provides a structural framework
and functions as a permeability barrier (Koymans et al,
2015). POPC has also been found in numerous lipid mixtures
used to mimic bacterial cell membranes (Raymonda,
Almeida, & Pokorny, 2017). Therefore, in the context of
molecular dynamics, this phospholipid serves as a good tem-
plate for simulations studies to predict ligand—-membrane
interactions.

2. Materials and methods
2.1. Dataset

The data set was obtained from Park et al. (2009) and
Bahnsen et al. (2013), with the Tl being calculated and the
synthesized peptides showcasing the potent MIC values
against S. aureus (Bahnsen et al., 2013; Park et al., 2009). The
obtained data was randomly divided into 21 training set

compounds, with seven being reserved for a test set. The
biological activities (—log 1Cso) of both datasets were similar,
suggesting that the dataset was reasonable. The peptides’
3D structures which served as ligands were generated in
Maestro 9.8 molecular modelling package from Schrodinger.
Figure 1 describes the computational workflow conducted in
this study.

2.2. PHASE methodology

PHASE 3.0 was used for pharmacophore-based alignment and
utilized for the QSAR model development (Dixon et al., 2006).
Default pharmacophoric features used to develop the pharma-
cophore model included a hydrogen bond acceptor (A), hydro-
gen bond donor (D), hydrophobic (H), negative (N), positive (P)
and aromatic ring (R). Five steps were used in the process of
developing a pharmacophore model, which include ligand
preparation, creating pharmacophore sites from a set of fea-
tures, discovering common pharmacophore, scoring the
hypotheses, and building of the QSAR model. The maximum
and minimum number of sites was set to five to discover a
common pharmacophore. The size of the box of the pharmaco-
phore was set to 2 A, with the top-ranking hypotheses selected
for 3D QSAR analysis, for which grid spacing was 1 A and the
maximum partial least squares (PLS) was set to 3.

2.3. Pharmacophore hypothesis generation

PHASE is an important tool in the identification of 3D struc-
tural arrangements of the ligand functional groups, which
are common and responsible for inducing biological activity
(Kaur, Sharma, & Kumar, 2012). For site generation, the
default pharmacophoric features were utilised. The variant
AAHRR, for which all the compounds were matched, was
searched to generate the best common pharmacophore
hypothesis (AAHRR.114). The hypothesis AAHRR.114 was
selected as most appropriate as it has the highest survival
score (3.984) for common pharmacophore hypothesis, which
gives the best alignment of the active ligands. This align-
ment also gives the fitness to all the inhibitors, while the
best aligned ligand gives the maximum fitness. The evalu-
ation of the newly formed common pharmacophore was
achieved by comparing the experimental and the calculated
activities for the training set molecules. Common
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pharmacophore of significant statistical values was selected
for molecular alignments.

2.4. Pharmacophore model validation

The aim of the pharmacophore generation was to develop a
QSAR model that was statistically significant both internally
and externally (Kaur et al., 2012), where the evaluation and
predictability of the model being achieved by external valid-
ation. A scatter plot of experimental versus predicted activity
for the training set showed a substantial linear correlation
and a slight difference between the experimental and pre-
dicted activity. External validation was used to determine the
efficacy of the model. The dataset obtained was separated
into training and test set where validation of the model
(AAHRR) for the test set was judged by the cross-validation
coefficient (Q%). R* was determined for the training set which
depicted relevance of the model. The F value (which assesses
the statistical significance) and Pearson-R (which measures
the strength of the linear relationship between two variables)
indicated greater confidence of the model, where a higher F
value implies a more significant correlation and a Pearson-R
value closer to 1 indicates a strong positive linear correlation.
Standard deviation (SD) and Root-mean squared error (RMSE)
were calculated which reflected good stability of the model.
Model validation is an important step during pharmacophore
design, as it determines the success, accuracy and reliability
of the developed model (Meraj et al., 2013).

2.5. Molecular dynamic simulations

2.5.1. Peptide structure prediction

The 3D structure of “KLWKLWKKWLK” aCPP was predicted
using PEP-FOLD server, which uses a de-novo approach for
predicting peptide structure from amino acid sequences
(Figure 2(B)). PEP-FOLD server uses a greedy algorithm driven
by a coarse-grained force field for predicting the 3D model
of a peptide (Shen & Maupetit, 2012).

2.5.2. Molecular dynamics simulations
POPC bilayer was constructed using the CHARMM-GUI mem-
brane builder and contains a total of 128 lipid molecules

(A) KIWKIWKKWI K € Amino acid sequence

l Prediction of 3-D structure

Lo ot
A
I

Constructed POPC lipid bilayer
contains 128 lipids, 64 in upper
leaflet and 64 in lower leaflet

el

5"

(B) *=
i
B

gy
(©)

Figure 2. (A) Representation of the single amino acid code of the aCPP pep-
tide. (B) Representation of the predicted 3-D structure of aCPP and (C) shows
the constructed POPC lipid bilayer, P atoms have been shown in VdW sphere.

(Wu et al.,, 2014) (Figure 2(C)). The peptide was placed more
than 5 A away from any lipid molecules of the upper leaflet
of the bilayer. The Charmm36 force field was used for pep-
tide and POPC bilayer system, which was solvated using
TIP3P water model (Huang & MacKerell, 2013). The system
contains a total of 7572 water molecules, and 5Cl~ ions
were added to neutralize the system. The system was energy
minimized using the steepest descent algorithm, and 500 ps
simulated annealing under the isobaric-isothermic (NPT) con-
ditions was performed to equilibrate the water molecules
around the lipid head group atoms (Bixon & Limn, 1966).
The system was further equilibrated for 100 ps with canonical
(NVT) ensemble, followed by 1000 ps with NPT ensemble and
a 50ns production run was performed in the NPT ensemble.
The hydrogen bond lengths of peptide and lipid molecules
were constrained using the LINCS algorithm (Hess & Fraaije,
1997). Particle mesh Ewald (PME) method was used for calcu-
lation of long-range electrostatic interactions (Darden et al.,
2007). The van der Waals (vdW) and electrostatic interactions
were calculated using a cut-off of 1.2nm. The
Parrinello-Rahman method was used for pressure coupling
and the Nose-Hoover thermostat was used for temperature
coupling (Braga & Travis, 2014; Parrinello & Rahman, 1995).
The simulation was performed at a pressure of 1bar and a
temperature of 323 K using the GROMACS package (Hess &
Fraaije, 1997).

3. Results

Upon completion of the pharmacophore identification pro-
cess, 65 variant hypotheses were generated. In this study, 28
aCPPs were used to predict activity using PHASE and fitness
score determined (Table 1), with molecules 9, 10, 19, 20, 23
and 28 not being picked up by the system. The most appro-
priate pharmacophore model (AAHRR.114) to predict aCPP
activity had a five-point hypothesis that consisted of two
hydrogen bond acceptor (A), one hydrophobic group (H) and
two aromatic ring features (R), as shown in Figure 3.
Pharmacophore hypothesis scoring values are shown in
Table 2. Compound 25 had the best alignment on the
pharmacophore AAHRR as shown in Figure 4, and the dis-
tance between the sites in the pharmacophore is shown in
Figure 5. Alignment of both active and inactive molecules to
the hypothesis AAHRR.114 is shown in Figures 6 and 7,
respectively. A depiction of the cubes produced for the high-
est active molecule (compound 25) in the present 3D-QSAR
is shown in Figure 8(A-E), where the blue cubes indicate
favourable effect on activity and red cubes indicate
unfavourable effect. For the 3D-QSAR model generation, the
PHASE descriptors were considered as independent variables
and the activity values as dependent variables in deriving
the 3D-QSAR models by the PLS regression method. The 3D-
QSAR was evaluated by the Fisher test (F), correlation coeffi-
cient (R%) and Pearson-R. Table 2 outlines the summary of
the 3D-QSAR results. The statistical results of the model
exhibited an R? value of .9016, RMSE =0.5911, Q*=0.5311,
SD =0.2072, variance ratio (F) =36 and Pearson-R=.847. The
validation of the above model was achieved by predicting
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Table 1. aCPPs for training and test set (Bahnsen et al., 2013; Park et al., 2009)

Biological activity

Therapetic PHASE predicted

Entry Peptide Set index (Tl) MIC (uM) against S. aureus (—log 1Cs) activity (—log 1Cs) Fitness score
1 Penetratin Training set 4.4t 64 1.806 1.44 0.32
2 penArg Training set 231 16 1.204 1.30 0.31
3 pen13 Training set >33t 256 2.408 2.07 0.22
4 Pen13Arg Training set 1.1t 32 1.505 1.86 0.23
5 Penshuf Training set 0.3t 64 1.806 1.89 0.68
6 PenshufLeu Training set 0.6 16 1.204 137 0.76
7 PenshuflLysLeu Training set 1.0t 32 1.505 1.48 0.76
8 PenshufArgLeu Training set 0.3t 16 1.204 133 0.76
9 WR8 Training set 10.11 44 ND ND ND
10 Tat13 Training set <33t >256 ND ND ND
1" K8Ws3 Training set 200* 4 0.602 0.59 2.51
12 KL7W3 Training set 200* 4 0.602 0.53 2.97
13 K6L2W3 Training set 400* 2 0.301 0.51 2.98
14 K3L5W3 Training set 0.8* 4 0.602 0.54 299
15 K2L6W3 Training set 0.05* 32 1.505 0.58 297
16 R8W3 Training set 100* 8 0.903 0.81 2.46
17 R6L2W3 Training set 100* 4 0.602 0.66 2.50
18 06L2W3 Training set 200* 4 0.602 0.56 0.72
19 06X2W3 Training set 100* 4 ND ND ND
20 R6L2W3-D Training set 200%* 2 ND ND ND
21 Indolicidin Training set 12.5% 4 0.602 0.53 0.35
22 PenLys Test set >3.91 256 2.408 1.45 0.32
23 PenLeu Test set >15.6t1 64 ND ND ND
24 pen13Lys Training set >3.9t 256 2.408 2.02 0.23
25 K5L3W3 Test set 50* 2 0.602 0.52 3
26 K4L4W3 Test set 3.0% 2 0.602 0.53 299
27 R7LW3 Test set 200* 4 0.301 0.70 248
28 K6L2W3-D Test set 100* 4 ND ND ND

ND, not determined.
tValues taken as such from the literature.
*Values calculated by dividing %cell viability by MIC against S. aureus.

“Represents peptide sequences: |, Isoleucine; R, Arginine; K, Lysine; M, Methionine; L, Leucine; Q, Glutamine; W, Tryptophan; F, Phenylalanine; O,

Pyrrolysine; N, Asparagine; P, Proline; X, Any amino acid.

@ G

L«

Figure 3. Pharmacophore hypothesis (AAHRR). Purple sphere—A, green
sphere—H and brown ring—R.

Table 2. Summary of 3D-QSAR results

PLS statistical

PLS statistical parameters Results parameters Results

Number of molecule in training set 18 R? 9016

Number of molecule in test set 6 Q? 0.5311

Number of PLS factors 3 Standard 0.2072
deviation (SD)

Root-mean squared error (RMSE) 0.5911 Variance ratio (F) 36
Pearson-R .847

Figure 4. The best common pharmacophore hypotheses for compound 25.

Figure 5. The pharmacophore hypothesis showing distance between the phar-
macophoric sites of compound 25.

the biological activities of the training set molecules, as indi-
cated in Table 1. To further confirm the 3-D QSAR results,
compound 25 which was considered as the best aCPP based
on the fit function was further analysed for its membrane
penetrating ability by MD simulation. Figure 9 shows the
representative images from the simulation at different time
points. The time evolution of the distance of each residue of
the aCPP from the POPC bilayer showed that the peptide
formed strong interactions with the POPC bilayer at two dif-
ferent time points, one at approximately 28 ns and remained
bound until 50ns (Figure 10). The next time period we
observed the peptide to be bound at approximately 109 ns
and remained bound until 200ns. During this time, we
observed Lys-1 inserted into the PO4 groups of the mem-
brane (Figure 11). To further observe the closest residues
during the binding, average distances for each residues for
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Figure 6. Alignments of active molecules.

Figure 7. Alignments of inactive molecules.

(a) # é [=e} (b) . l

(e)

Figure 8. The 3D QSAR model based on compound 25 illustrating (A) hydrogen bond donor groups, (B) hydrophobic groups, (C) Electron withdrawing groups, (D)
other effects and (E) combined effects.

=120 ns t=200 ns

Figure 9. Two representative images of aCPP-POPC lipid bilayer interaction showing interaction, one at 120 ns and at 200 ns. PO, atoms of bilayer have been
shown in VDW representation and aCPP peptide has been shown in cartoon representation.
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Figure 10. Time evolution of centre of mass (COM) distance between each residue of peptide with the phosphate (PO,4) group of upper leaflet.
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Figure 12. Average distance for the last 20 ns for each residue.

the last 20 ns (180-200 ns) were calculated (Figure 12). As in
our simulation we have used periodic boundary conditions
(PBC), we observed the peptide to interact with both the
lower and upper leaflet of the membrane. Therefore, we
have calculated the COM between both leaflets and peptide
separately. The last 20ns (180-200 ns) average distances of
each residues (Figure 12) reveal that the Lys-1, Leu-2, Trp-3
and Trp-6 were the closest to the membrane during the
binding. The MD simulations therefore confirmed the inter-
action of compound 25 with the POPC bilayer.

4. Discussion

In this study, pharmacophore and QSAR model development
was performed by PHASE. Several hypotheses were gener-
ated, with the top-ranking ones being subjected to 3D-QSAR
analysis, where the grid spacing was set to 1 A and the max-
imum PLS factors set to 3. Partial least squares (PLS) is a stat-
istical method which is used to find the relationship
between two matrices and/or finds a linear regression model
between variables. The first hypothesis, AAHRR.114, was
found to be the best, being characterized by a high survival

score (3.984) and an R? of .9016. AAHRR 114 featured two
hydrogen bond acceptor (A), one hydrophobic group (H) and
two aromatic ring features (R). A R? value greater than .5 and
close to 1 confirmed the models predictive ability for the
compounds(Frimayanti, Yam, Lee, & Othman, 2011). Q? meas-
ures the robustness and predictive power of the QSAR model
and must be >0.5 but lower that the R? value (Veerasamy
et al, 2011). Compound 25 was the best and comprised of
the amino acids, lysine (K-5), leucine (L-3) and tryptophan
(W-3), with a positive net charge of +5 and a total hydro-
phobic ratio of 57%. There are several reports on peptides
which are rich in the amino acids lysine, leucine and trypto-
phan being specific for bacterial membrane penetration that
support our findings (Jin et al, 2016; Kim et al, 2013;
Nguyen et al.,, 2010; Su, Doherty, Waring, Ruchala, & Hong,
2009). The positive charge allows the aCPP to interact with
the negatively charged bacterial cell membrane whereas the
hydrophobicity allows the aCPP to penetrate deeper into the
hydrophobic core of the bacterial cell membrane causing
membrane lysis and pore formation (Chen et al, 2007).
Figure 8(A-E) represents features responsible for activity
(blue cubes) and those which attenuate activity (red cubes).
Features responsible for activity are specifically represented
in Figure 8(B and C) whereas Figure 8(A and D) show fea-
tures that attenuate activity. Substitutions at the domains
represented by the red cubes with amino acids which will
increase the aCPP’s cationicity will confer favourable activity
(Faraz, Verma, & Akhtar, 2016; Mehta, Khokra, Arora, &
Kaushik, 2012).

The MD simulation which ran for 200 ns showed spontan-
eous insertion of the aqueous phase aCPP into the upper
and lower leaflet region of the lipid bilayer. The last 20 ns of
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the simulation revealed that the Lys-1, Leu-2, Trp-3 and Trp-6
were the closest to the membrane during the binding,
revealing the importance of these amino acids in membrane
penetration based on their net charge. The importance of
charged residues in membrane penetration is well known
(Futaki, 2005; Herce & Garcia, 2008; Nakase, Takeuchi, Tanaka,
& Futaki, 2008; Persson, Esbjo, Gokso, Lincoln, & Norde,
2004). It could be significant since we observed in our study
that the C terminal region (residue 6-11) has more positive
charge compared with the N terminal region (residue 1-5),
which assisted the C terminal region to insert into the
bilayer. Charged Lys side chains have been seen to possess
high pKa values and this allows them to form strong electro-
static interactions with membranes, which leads to mem-
brane penetration (Li, Vorobyov, & Allen, 2013). Trp is
particularly prevalent among naturally occurring antimicro-
bial peptides and can strongly interact with hydrophobic
membrane components, thus leading to increased antimicro-
bial activity (Bi, Wang, Dong, Zhu, & Shang, 2014; Li et al.,
2013). The MD studies confirmed the importance of Trp and
Lys residues in interacting with the POPC lipid bilayer, which
allows the peptide to penetrate the model membrane.

5. Conclusion

This study presented the ligand-based pharmacophore and
3-D QSAR model which gave important structural-binding
features of aCPPs acting as S. aureus antagonists based on
their Tl. Pharmacophore modelling compares activities with
the 3-D arrangement of various physicochemical features.
The hypothesis AAHRR.114 was found to be the most appro-
priate pharmacophore model to determine the best com-
pound with potent activity. AAHRR.114 contains two
hydrogen bond acceptors, one hydrogen bond donor, two
hydrophobic regions, and one aromatic ring features. The
AAHRR.114 model was able to predict the activity of the
aCPPs, and the validation results provide additional confi-
dence. The best aCPP was found to be compound 25, with a
fitness score of 3 and the PHASE predicted activity of 0.52
being better that the experimental activity (0.602). The pro-
posed 3D-QSAR model AAHRR.114 was useful in estimating
the antimicrobial potential and cell penetrating ability of
aCPPs, confirm the relationship between the Tl and aCPPs,
where aCPPs with a higher Tl showed good activity and
PHASE was also able to predict the possible descriptors
responsible for activity. This QSAR approach in analysing
aCPP cell penetration, by observation of its Tl, can be used
for future studies to explore specific descriptors responsible
for biological activity that also accounts for cell penetration.
Membrane penetration study using MD simulation also
revealed the aCPP-POPC bilayer interaction, resulting in the
aCPP insertion across the bilayer. The combination of these
two computational studies will also lead to the rational
design of optimal and novel aCPPs for therapeutic activity
and for peptide-conjugate delivery.
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ARTICLE INFO ABSTRACT

The current global crisis of antibiotic drug resistance is driving the search for novel treatment approaches.
Antimicrobial peptides (AMPs) are small molecular weight proteins with varying number of amino acids found
in both eukaryotes and prokaryotes. They have recently been targeted as novel antimicrobial agents with the
potential to treat multiple-drug resistant infections. Their conjugation with various classes of materials such as
antibiotics, polymers, DNA, salts, phenolic derivatives and their delivery via nano carrier systems are strategies
being used to enhance their therapeutic efficacy. An update and understanding of their applicability as con-
jugates and nano delivery are essential to optimise their development and activity. This review focuses on
computational studies depicting their permeation through model membranes and identification of physico-
chemical descriptors for activity. It also highlights the potential of AMPs and their conjugates and encapsulation
into nano delivery systems for improving activity. Further, research to realise their potential as conjugates and
delivery via nano carrier systems are also identified. To our knowledge, this current review presents the first
account that comprehensively highlights AMPs targeting various microorganisms, and their conjugation to
different compounds to showcase the potential for nano delivery alone or in their respective conjugates for
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enhanced activity.

1. Introduction

Infectious diseases are one of the leading cause of mortality glob-
ally, despite modern technological advances of the 21st century on new
drugs and diagnostic equipment used to improve healthcare [1,2]. Over
the past 10 years in particular, re-emerging infectious diseases have
challenged researchers and the public health systems in their efforts to
curb the rise of pathogenicity [3-12]. Bacteria possess numerous drug
target sites, with the number of exploited sites being relatively small
[13]. This gap in the exploitation of bacterial intracellular targets al-
lows for the synthesis and design of newer antimicrobial agents. Anti-
microbial drugs have various modes of action, and depend on factors
such as their structural conformation and affinity to certain target sites
[14]. The most effective antibiotics act as inhibitors of cell wall
synthesis (e.g. penicillins, cephalosporins, bacitracin and vancomycin)
[15], cell membrane function (e.g. polymixin B and colistin) [16],
protein synthesis (e.g. aminoglycosides, macrolides, lincosamides,
streptogramins, chloramphenicol, tetracyclines), nucleic acid synthesis
(e.g. quinolones, metronidazole, and rifampin) and other metabolic
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processes (e.g. sulfonamides and trimethoprim) [17]. Despite the de-
velopment of numerous potent antibiotics, infections continue to be a
challenge to treat, with the bacteria developing strategies to circumvent
their action [18-21].

While antibiotics have revolutionised the therapy of infections,
several disadvantages with current dosage forms have been observed.
These include inadequate concentration at target infection sites, poor
penetration of the antibiotics, side effects and poor adherence [22-24].
These limitations have contributed to antibiotic resistance by micro-
organisms, causing infections on a global scale [25]. The World health
organization (WHO) also identified other causes of drug resistance that
include the inappropriate use of antibiotics, lack of quality medicines,
animal husbandry practices, poor infection control, weak surveillance
systems and a lack of progress in developing new vaccines to combat
drug resistance [26]. The reduction in effectiveness of a drug [27] is
mainly used in the context of pathogenesis, and occurs through a
number of mechanisms, such as: (a) drug modifications by enzymes,
such as -lactamases, (b) target site alterations, (c) metabolic pathways
alterations, and (d) reduced drug accumulation due to efflux pump

Received 20 September 2017; Received in revised form 13 December 2017; Accepted 13 December 2017

Available online 14 December 2017
1773-2247/ © 2017 Elsevier B.V. All rights reserved.



M. Faya et al.

Table 1
Examples of bacteria resistant to antibiotics.

Bacteria Type Drugs resistant to Ref
Methicillin-resistant Gram (+)  Vancomycin, Linezolid, [214]
Staphylococcus aureus cocci Daptomycin, Eicoplanin
(MRSA)
Vancomycin resistant Gram (+)  Erythromycin, Vancomycin [215]
Staphylococcus aureus cocci
(VRSA)
S. pneumoniae Gram (+) Doxycycline, Erythromycin, [216]
diplo- Penicillin G
coccus
E. faecium, VRE Gram (+) Vancomycin, Streptomycin, [217]
cocci Gentamicin, Penicillin,
Ampicillin
E. coli Gram (—) Ciprofloxacin, Levofloxacin [218]
rods
P. aeruginosa Gram (—) Imipenem, Meropenem, non-  [219]
rod antipseudo-monal Penicillins
K.pneumoniae Gram (=)  Colistin, [220]
rods
A. baumanii Gram (—) Imipenem, Meropenem [221]
rod

activity [28,29]. Drug resistance has led to the inadequacy of current
dosage forms and has significantly hindered the efficacy of antibiotics
[30]. This includes resistance to bacteria, such as Methicillin-resistant
Staphylococcus aureus (MRSA) (resistant to beta-lactams), E. faecium
(resistant to streptomycin), K. pneumonia (resistant to 2nd and 3rd
generation cephalosporins) and A. baumanii (Table 1) [31]. The pro-
liferation of multidrug-resistant strains has led to the search for effec-
tive therapeutic agents, and has ignited research into the design and
synthesis of novel antimicrobial molecules [32,33]. The development of
alternative therapeutic agents remains one of the major challenges to
circumventing the problem of drug resistance [34]. Antimicrobial
peptides (AMPs) represent a new class of potential drug candidate and
are proteins of smaller molecular weight (2-8-kDa) that are broad
spectrum in their activity against pathogenic bacteria, viruses and fungi
[35,36]. They are also known as host defence proteins (HDPs), and are
part of the innate immune system found in all classes of life [37]. The
discovery of AMPs dates back to 1939, with gramicidins being dis-
covered first and isolated from B. brevis [38]. Gramicidins have been
used to treat infected wounds on the skin of guinea-pigs [39], which led
to their consideration for clinical use, after which they were commer-
cially synthesized as antibiotics. The number of AMPs discovered and/
or synthesized to date is above 5000 [40].

AMPs are either natural based obtained from prokaryotes and eu-
karyotes [41], or synthetic based. They are divided into four structural
groups' viz. (a) -sheet; (b) a-helical; (c) loop and (d) extended peptides
with broad spectrum activity [42], with a-helix and B-sheets specifi-
cally being more common [43]. As AMPs are constructed by coupling
amino acids, it is easy to modify their structure [44], which is an ad-
vantage in designing various combinations. This ability also allows for
the possibility to change the AMP targets and improve their stability
against the degradative effects of proteases [45]. AMP activity occurs
mainly by disrupting the integrity of the membrane protein, inhibiting
DNA and RNA synthesis, or disrupting intracellular targets [46]. AMP
action is dependent on their cationic charge, which allows them to be
attracted to the anionic membrane of its targets and leads to the de-
struction of the cell membrane [47,48]. Fig. 1 shows the different
mechanisms AMPs used to traverse the bacterial membrane [49]. The
AMPs membrane penetrating ability is a major advantage over con-
ventional antibiotics, which may find it difficult to cross bacterial cell
membrane and make their way into intracellular targets [50]. Several
review papers have highlighted the applicability of AMPs as anti-
bacterial agents for enhancing activity against various organisms, such
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Fig. 1. The various AMPs mechanisms. A represents the Barrel-Stave model (AMPs pe-
netrate the membrane in a perpendicular fashion). B represents the carpet Model (sections
of the membrane are coated with AMPs). C represents the Toroidal-pore model (AMPs are
in a constant interaction with the membrane phospholipid head groups). AMP
Hydrophobic and hydrophilic parts are represented by the colour blue and red respec-
tively. Permission granted [69]. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

as LL-37, melittin and magainin-II, which are active against P. aerugi-
nosa, L. monocytogens, and MRSA respectively [51-53]. A number of
AMPs, such as pexiganan acetate, Omiganan, IMX924, Arenicin, Se-
maglutide and Dulaglutide, were found to be active against Gram po-
sitive and negative bacteria, and are now in clinical trials (Table 2).
Their intended use was for diabetic ulcers, catheter infection prevention
and Type 2 diabetes mellitus [54,55]. Despite their beneficial potent
antibiotic activity, their inherent drawbacks, including poor physico-
chemical stability, a short circulating plasma half-life and a high hae-
molytic effect [56] have the potential to render AMPs un-usable
[57-59]. Various strategies are therefore being used to overcome these
limitations. To potentiate their activity, AMPs are also being increas-
ingly explored for conjugation to several classes of materials. The
conjugation strategy of AMPs to other compounds amplifies their po-
tential to overcome the current drug resistance crisis [60] as it offers in
combination multiple benefits as opposed to the AMP alone. These AMP
conjugates can lead to multiple mechanisms of action against bacteria,
facilitate self-assembly of AMPs into nanostructures for delivery,
achieve intracellular targeting and prolong circulation life [61-64].
Administration of AMPs or its conjugates will eventually require its
incorporation into a dosage form for patient administration. The use of
current conventional dosage forms will limit the potential of AMPs as
they lead to inadequate delivery to the infection site, may not offer
protection against degradation by proteases and other degradative en-
zymes [23,65]. Although it has been noted that the mechanisms of
bacterial resistance to AMPs are still not well understood, and their
occurrence very unlikely, physico-chemical modifications in the bac-
terial cell membrane seems to be the first step to developing resistance
[66]. Once the bacteria changes the AMP target to make it less sus-
ceptible to the action of AMPs, fluidity and bacterial cell permeability
decrease due to alterations in the architecture of the outer and inner
membranes. Bacterial membrane surface modifications, which can lead
to reduced levels of specific membrane proteins and ions, as well as
changes in the membrane lipid composition, can promote resistance,
which alters the activity of the AMP at its site of action [67,68]. To
circumvent this occurrence, the encapsulation or association of these
AMPs into nanosized carriers as delivery systems is being explored to
achieve targeted delivery to the infection site and reduce resistance
[69]. This would provide an added advantage since these nano carriers
provide adequate delivery with selective targeting to the infection site
as well protection from enzymatic degradation. Also the nano carriers
will provide high stability, high carrier capacity, feasibility of in-
corporation of both hydrophilic and hydrophobic substances, and
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Table 2
AMPs under clinical trials and development.
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Product Description Indication Phase Company (location)
Magainin peptide/ 22-amino-acid linear antimicrobial Diabetic foot ulcers 3 Dipexium Pharma (White Plains,
pexiganan acetate peptide, isolated from the skin of the New York)/Macro Chem/Genaera

African clawed frog (Xenopus laevis)

Omiganan Synthetic cationic peptide derived from Rosacea 2 BioWest Therapeutics/Maruho
Indolicidin (Vancouver)

OP-145 Synthetic 24-mer peptide derived from Chronic bacterial middle-ear 2 OctoPlus (Leiden, The Netherlands)
LL-37 for binding to lipopolysaccharides infection
or lipoteichoic acid

Novexatin Cyclic cationic peptide, 1093 daltons Fungal infections of the toenail 1/2 NovaBiotics (Aberdeen, UK)

Lytixar (LTX-109) Synthetic, membrane-degrading peptide Nasally colonized MRSA 1/2 Lytix Biopharma (Oslo)

NVB302 Class B lantibiotic C. difficile 1 Novacta (Welwyn Garden City, UK)

MU1140 Lantibiotic Gram-positive bacteria (MRSA, Preclinical Oragenics (Tampa, Florida)

C. difficile)

Arenicin 21 amino acids; rich in arginine and Multiresistant Gram-positive Preclinical Adenium Biotech Copenhagen
hydrophobic amino acids bacteria

Avidocin and purocin Modified R-type bacteriocins from Narrow spectrum antibiotic for Preclinical AvidBiotics (S. San Francisco,
Pseudomonas aeruginosa human health and food safety California)

IMX924 Synthetic 5-amino-acid peptide innate Gram- negative and positive Preclinical Iminex (Coquitlam, British Columbia,

defense regulator

bacteria (improves survival and

Canada)

reduces tissue damage)

Adapted from Fox et al., 2013 [222].

feasibility of variable routes of administration and allows controlled
drug release from the matrix [70]. Several types of nanoparticles, which
are described in this review, such as liposomes, micelles, nanofibers,
metallic nanoparticles (silver and gold nanoparticles) and hydrogel
nanoparticles, also possess various mechanisms to bypass resistance.
Once the AMP is incorporated into these nano systems, it would pro-
mote the formation of reactive oxygen species, improve the delivery of
the bioactive AMPs by functioning as circulating micro-reservoirs for
sustained release at the infection site, and provide resistance to corro-
sion and oxidation in the case of metallic nano particles [71]. These
nano-based drug delivery systems have distinguished themselves as the
best approach to mitigate the development of drug resistance by de-
creased uptake and increased efflux of drug from the microbial cell,
biofilm formation and intracellular bacteria. Finally, nanoparticles can
target antimicrobial agents to the infection site, which leads to higher
drug doses accumulating at the infected site while keeping the total
dose of drug administered low. The strategy of having a high local dose
at the infection site promotes bacterial killing before resistance could
develop, while the lower total dose decreases the possibility that bac-
teria outside of the nanoparticle site of action will develop drug re-
sistance [72].

Molecular modelling of AMPs is being increasingly reported to un-
derstand their mechanisms of action and how they traverse the bac-
terial cell membrane [73-75]. Studies to identify structural and phy-
sicochemical descriptors for AMP activity are also being undertaken. An
understanding of such studies is critical to facilitate the design and
optimisation of future new conjugates and delivery systems of AMPs.

Reviews thus far on AMPs have focussed on their sources, applica-
tions, structural make-up, activity against various classes of bacteria
and design [38,76-80]. To date, there is no review paper focusing on
AMP-conjugates in combination with the nano delivery of AMPs and
molecular modelling approaches as strategies to potentiate the applic-
ability and activity of AMPs. An overview of molecular modelling and
quantitative structure activity relationship (QSAR) investigations of
AMP activity on the bacterial cell membrane specifically is also lacking.
This review paper provides an overview of available computational
studies depicting AMP-membrane penetration, as well as their quanti-
tative structure activity relationships (QSAR) that identify the char-
acteristic descriptors responsible for their cell membrane permeation. It
focuses mainly on the diversity and broad spectrum antimicrobial ac-
tivity of AMPs and their conjugates, as well as on the formulation and
evaluation of AMPs into various nano delivery systems. Future research
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to realise the potential of AMP-conjugates and AMP delivery via nano
drug delivery are also identified. This review paper therefore highlights
the AMPs ability to target various microorganisms, their conjugation to
different antibiotics, polymers and other conjugates, such as phenolic
compounds, DNA and salts, which have the potential to enhance AMP
activity. This review also highlights the molecular modelling ap-
proaches that could structurally elucidate the mechanism of membrane
penetration, and showcases the potential for nano delivery AMPs alone
and in their respective conjugates for enhanced activity.

2. In silico studies of AMPs in membranes

Since the advancement of computational drug designing and ma-
chine learning, In silico simulations have become a complementary
counterpart to experiments to understand the molecular mechanism of
macromolecules and develop novel drug candidates [81]. Molecular
modelling approaches, including molecular dynamics and QSAR, have
become an integral part of modern drug discovery [82]. An under-
standing of bacterial membrane penetration by AMPs is key to its uti-
lisation to circumvent drug resistance [83]. The mechanism of mem-
brane penetration by AMPs is not well understood [84], however, In
silico studies have emerged that utilised complex computational tools to
study receptor-ligand interactions and their binding affinities [85]. In
the literature, molecular studies, such as molecular dynamics (MD) and
quantitative structure-activity relationship (QSAR), have been utilised
to understand the mechanical behavior of biomolecules e.g. AMPg
[86-88]. As this review focuses on AMP-conjugates and AMP nano
delivery, a mechanistic understanding of the actions of AMPs is im-
portant to elucidate their membrane penetration ability. This section
will focus on a brief overview of molecular dynamic (MD) simulations
of AMPs through model membranes. Quantitative structure-activity
relationship (QSAR) is also discussed, which provides a deeper under-
standing of the structural descriptors that could be attributed to
membrane penetration.

2.1. Molecular dynamics (MD) simulations of AMPs in model membranes

Molecular dynamics is an In silico method that provides structural
insights, binding affinities and stabilities of proteins by complex cal-
culations of time dependent behavior of a molecular system [89]. Its
main aim is to provide a simulation that studies the conformational
rearrangements of molecules, the interaction and motion of atoms and
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(a)0ns

(b) 50 ns (c) 100 ns

molecules according to Newtons equation of motion [90]. MD utilises
force fields (e.g. CHARMM) to estimate the forces between interacting
atoms and to calculate the overall energy of system [91]. MD simula-
tions, the integration of Newton's laws of motions generates successive
configurations of the evolving system, providing trajectories that spe-
cify positions and velocities of the particles over time. From these MD
trajectories, a variety of properties can be calculated, including free
energy, kinetics measures, and other macroscopic quantities, which can
be compared with experimental observables [90]. Khandelia et al.
(2008) reviewed the impact of peptides in lipid membranes, and ob-
served that such MD simulations on model membranes are essential for
understanding the structural factors that account for membrane per-
meation, such as peptide amphiphilic character, conformation and
electrostatic effects [92]. MD simulations of AMPs in model membranes
allow for the behavioral and structural insights of how they are inserted
into the lipid bilayers, as well as the outlining factors that influence
lipid-peptide interactions, such as membrane thickness, lipid acyl-chain
order and dynamics, membrane elasticity, lipid-domain and annulus
formation to be described [93,94]. In this review, we focused on the
different MD simulations studies as examples to elucidate the AMP-
membrane interaction, with the hope that this will give an indication of
AMP factors that could attenuate or enhance their membrane pene-
tration potential. Sengupta et al. (2008) conducted a series of simula-
tions with the AMP, Melittin (GIGAVLKVLTTGLPALISWIKRKRQQ) in-
teracting with dipalmitoylphosphatidylcholine (DPPC) bilayers using
the GROMACS software package for MD simulations. The GROMOS
force field 43a2 was used to interpret the peptide-bilayer interactions.
The simulation revealed that two AMPs were inserted into the DPPC
bilayer pore, while the remainder were found to line the mouth of the
pore [95]. The authors indicated that the AMPs lining the mouth of the
pore are expected to give an initial burst effect and then a controlled
release behavior will be followed. We believe that this study not only
explains the interaction of AMPs with the membrane, but can also in-
dicate the AMPs' release behavior from future liposomal formulations
due to the similarity of the components between the liposomes and the
membrane bilayer. In another study, Dittmer et al., (2009) conducted a
study on incorporating AMPs (alamethicin) into membranes employing
liquid-State NMR and MD, with the C monomer from the X-ray crystal
structure of alamethicin being used for the system set up. The MD si-
mulations revealed the fluidity of the membrane environment, where
the AMP was dissolved rather than incorporated [96]. Dan et al. (2011)
reviewed the interaction of the AMP protegrin on lipid bilayer mem-
branes. An interesting observation from this review was that these
AMPs interact with the components of the outer membrane, and have
an increased bilayer disruption with increased AMP concentration [97].

Using another model lipid bilayer membrane of phosphatidylgly-
cerol (POPG) and phosphatidylcholine (POPC), Wang et al. (2012)
conducted a MD simulation of the AMP CM15 at 100 ns. The AMP was
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Fig. 2. MD simulation depicting the interaction of the amphipathic
helical AMP F[Nle]W[Hag]RWWV[Orn]L with an artificial lipid bi-
layer. Permission granted [78].

(d) 150 ns

reported to penetrate the model membranes with no hemolytic activity.
The study concluded that the initial conformation of the peptide played
an important role in inserting the peptide into the model membranes
[70]. From this study, we expect that the hydrophobicity of the AMPs
could determine their distribution between the lipid bilayer of the
membrane and the aqueous core, which is essential in formulating si-
milar structured nanocarriers. In a study conducted by Li et al. (2012),
molecular simulations were conducted to propose how a branched AMP
disrupts a bacterial membrane, with MD simulations being performed
for each model membrane using the CHARMMS36 force field. The con-
centration dependent effects of the branched AMP were studied by
performing simulations with varying peptide-lipid ratios: 1:128, 2:128
and 3:128. These ratios corresponded to different concentrations of the
AMP, and all the simulations were run for 200 ns using the GROMACS
package 4.5. The results indicated that the activity of the branched
AMP (B2088) is concentration dependent, and that at higher con-
centrations (using 3 B2088 molecules with 128 lipid molecules), sig-
nificant membrane perturbation may occur [87]. This study can be
considered significant because it can be used to predict the conjugation
of the AMPs with different ratios of polymers, and to interpret the in-
teraction behavior based on an analysis of the entropic energy values,
which could affirm the continuity or discontinuity of the interaction.
Wang et al. (2016) analyzed the susceptibility of AMPs that in-
corporated unnatural amino acids against microbial infections. The MD
simulation revealed the amphipathic-helix conformation of the de-
signed peptides, as depicted in Fig. 2, which were also seen to unfold
when they traversed the simulated lipid bilayer that mimics the bac-
terial membrane. In vitro susceptibility was conducted against P aeru-
ginosa, S. aureus, and E coli, with one AMP (F[Nle]W[Hag]RWWV[Orn]
L) showing very potent antimicrobial activity, having MIC's of 5.6, 18.9
and 11.2 ug/ml for S. aureus, P. aeruginosa and E. coli respectively [98].
We conclude that the importance of the Wang et al. (2016) study is that
a correlation between amino acid sequences and bacterial phospholi-
pids could be established to create the foundation for further experi-
mental studies using techniques that investigate the interaction be-
tween the AMPs. Balatti et al. (2017) conducted a study on the
differential interaction of amphiphilic AMPs (aurein 1.2 and maculatin)
with POPC lipid structures using coarse-grained MD simulations. The
AMP-lipid simulation was conducted in three initial configurations: (a)
peptides in water in the presence of a pre-equilibrated lipid bilayer; (b)
peptides inside the hydrophobic core of the membrane; and (c) random
configurations that allow self-assembled molecular structures. The re-
sults showed that both AMPs were capable of forming membrane ag-
gregation, however, the aurein 1.2 were seen to form pore-like struc-
tures, whereas the maculatin formed clusters and induced curvature at
low peptide-lipid ratios [99].

The above reports have been useful in demonstrating that the nature
of the AMP dictates how it will interact with the bacterial membrane,
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and whether it will be incorporated or disintegrate as it interacts with
it. These molecular dynamic studies of AMP-membrane interaction al-
lowed for the concise evaluation of the AMPs mechanism of action as
they traverse the lipid bilayer. This is important for guiding future re-
search that incorporates peptide conjugates and their delivery in nano
systems. It should be noted though that a challenging factor is the ex-
perimental validation of computer modelled simulated results, as most
MD studies having not been evaluated experimentally [100]. This
suggests the need to combine both computational and experimental
approaches in AMP design and application. In contrast to the above
research, where the authors focused on a single AMP (Protegrin), this
review focuses on various AMPs interacting with model membranes,
and further postulates that these AMP activities could be enhanced by
conjugation strategies.

The remainder of the above studies focused on molecular modelling
with AMPs on model membranes. The review of the current literature
therefore indicates that there is a considerable gap in molecular dy-
namic simulations of AMP-antibiotic conjugates and their delivery in
nano systems. Research on simulations of AMP-conjugates with model
membranes have potentially great prospects, specifically as some target
intracellular organelles. An MD study of these conjugates as they pe-
netrate the bacterial membrane, as well as when they interact with
intracellular targets, would offer a better understanding of their me-
chanism and how they could be improved. Only one study so far has
reported the modelling on AMP-nanoparticles. This study by Liu, Xu
et al. (2009) showed the self-assembly of cationic peptide nanoparticles
as an efficient antimicrobial agent. Those nanoparticles showed effi-
cient penetration through the blood brain barrier (BBB) in S. aureus-
infected meningitis rabbits for the treatment of brain infections [101].
Molecular dynamic studies on the various nano carrier systems that can
be used for AMP delivery is therefore highly warranted.

2.2. Quantitative structure activity relationship (QSAR)

QSAR is another well-known computational method used for
studying AMPs, and relies on identifying a set of structural or physio-
chemical descriptors to describe their activity [102,103]. This compu-
tational tool provides the added advantage of AMP structure-membrane
activity. While most studies employing QSAR modelling to study pep-
tides use this tool to predict structural descriptors attributed to peptide
activity, haemolysis and cytotoxicity [104], there are no QSAR model
studies that have related the structure of AMPs to their ability to pe-
netrate bacterial membranes. This review provides insights into AMP
structural descriptors in relation to their ability to penetrate bacterial
membranes. Frecer et al. (2006) developed a QSAR model to analyse
the haemolytic effects and antimicrobial activity of cyclic cationic
AMPs obtained from protegrin-1. The study utilised the genetic function
approximation algorithm to relate antibacterial activity to the AMPs net
charge and amphipathicity and the haemolytic activity paralleled with
the lipophilicity of the residues from the nonpolar surface of the [3-
hairpin. However, the results reflected that the protegrins, together
with their analogs containing a single or double disulfide bridge, de-
monstrated greater antimicrobial potency compared to their counter-
parts, with no disulfide bridges [105]. Jianbo Tong et al. (2008) re-
ported on a novel descriptor of amino acids and its use in designing
peptides with the principal component analysis (PCA) method, where
99 molecular indexes of amino acids were examined. For each amino
acid, nine principal component scores were selected and applied as new
vectors of descriptors. Vector of principal component scores (VSW)
were derived from the principal component analysis of the invariant
molecular indices of the amino acids. The observed and calculated ac-
tivities of the AMP sequences were compared, and were found to be
very similar [106].

Wang et al. (2012) built a QSAR model of cationic AMPs, basing it
on the structural properties of amino acids. The amino acid index da-
tabase was used to select 89 indices that depicted three classes of AMPs
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in the model (Surface-tethered cationic peptides, 101 synthetic cationic
polypeptides and novispirin AMPs) in order to calculate the contribu-
tion of the amino acids to the activity of the AMPs. The high perfor-
mance STR-MLR model enabled the prediction of antimicrobial activity
and identified the most suitable amino acids in the sequence to be used
for designing novel AMPs [107]. The importance of amino acid se-
quence was highlighted later in another study by Mariya et al. (2015).
They built a QSAR model, for which the Monte Carlo method was used,
of the activity of AMPs (mastoparan analogs) as a mathematical func-
tion of a sequence of amino acids. The results obtained were reasonably
good, with the pMIC values being better than those of the experimental
pMIC values.

From the above reports, it is clear that the use of QSAR studies is
important to establish the most potent descriptors that will allow for
optimal AMP activity and will subsequently facilitate the design of
optimal AMPs with good antimicrobial activity and less haemolytic
effects [108]. Importantly, we believe that these descriptors identified
could also be crucial in elucidating the most probable candidates that
are important in bacterial cell membrane penetration and nanoparticle
formation. As most AMPs main target is the cell membrane, we contend
that the descriptors outlined in the above studies not only account for
antimicrobial activity but membrane penetration as well. In conjunc-
tion with QSAR modelling, more in-depth computational approaches
are needed to further describe the mechanism of action of these de-
scriptors on the cell membrane components leading to membrane dis-
ruption. Zelezetsky et al. (2006) equates the activity of AMPs to their
structural conformation, where a-helical structuring permits optimal
spatial arrangement of aliphatic side chains for membrane insertion,
and their hydrophobicity allows for deeper insertion into the whole
lipid bilayer [109]. We also contend that since the formulation of nano
delivery systems requires certain physicochemical conditions, such as
pH, hydrophobicity, charge, solubility, entrapment and release profiles
[101], QSAR studies could assist in elucidating those descriptors re-
quired for nanoparticle formulation, and how these AMPs would be-
have in those nano systems.

A possible limitation of current QSAR reports on AMPs is that they
have mainly focused on the elucidation of possible physicochemical
descriptors responsible for activity and those that attenuate activity
[103,110]. Studies on membrane destabilization, AMP activity within
the bacterial cell wall and how it disrupts intracellular pathways are
lacking. Future reports on QSAR studies with AMPs can be strengthened
by the inclusion of experimental studies such as DNA based testing for
determining lysis of the microbial cell wall and microscale thermo-
phoresis (MST) for determining the intracellular interactions causing
the disruption of the intracellular pathways to provide a greater in-
depth understanding of how specific descriptors enhance membrane
permeation and intracellular interactions [111].

3. AMP-antibiotic conjugates

One approach to enhance the performance of AMPs is the applica-
tion of conjugation strategies [112]. AMPs can be conjugated to various
classes of materials forming AMP-conjugates, and are designed solely
for the purpose of combining the antimicrobial power of AMPs with the
desired conjugates to effectively kill microorganisms [45,60]. The AMP-
antibiotic conjugates offer better biological activities than AMPs alone,
this being confirmed by studies focused on using them as vectors to
deliver their respective conjugates [113-115].

Conjugation requires knowledge of both the type of conjugates to be
used and a thorough understanding of the microorganism being tar-
geted to ensure optimum conjugate activity without attenuating the
antibacterial action of the agent intended to be conjugated to the AMP.
Novel synthetic routes and various conjugation approaches using anti-
biotics, polymers, salts, DNA and phenoloic derivatives have been re-
ported thus far and are reviewed here under.
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[113]

MIC for CAP-UBIyg_4; was found to be 3.8 = 0.9 ug/mL for E. coli and 15.0 = 2.6 pg/mL for S. aureus

S. aureus, E. coli,
P. aeruginosa

Chlorampenicol

(CAP)

GRAKRRMQYNRR

UBl9.41

[128]

H-TriAl-Rifampicin did not increase the in vitro activity of Rifamicin. Moderate activity was observed with H-TriA1-

K. pneumoniae
VMC and H-TriAl-Ery.

Rifampicin,
Vancomycin,

WDGSTSDDXGVYS

Tridecaptin (H-

TriAl)

Erythromycin

[223]

The conjugate showed moderate activity against the tested strains.

S. aureus, E. coli,

P. aeruginsa, B.
subtilis

Levofloxacin

ILPWKWPWWPWRR

Indolicidin

[127]
[224]

The MIC of Magainin 2-VMC conjugate was 2 and 4 ug/mL against MRSA and VSE respectively.

enterococci
VSE, VRE,

Moraxella
catarrhalis

Vancomycin

ITSISLCTPGCKTGALMGCNMKTATCHCSIHVSK ~ Vancomycin

GIGKFLHSAKKFGKAFVGEIMNS

Magainin 2
Nisin

Derivative 5 of the conjugate was found to have good activity with an MIC value of 0.6 pg/mL against VSE (15A797)

[225]

DOPC/DOPG vesicles were used for leakage assay where conjugation of temporin L to VMC enhanced its activity.

Anoplin-VMC had lower membrane disruption activity.

Vancomycin

GLLKRIKTLL

Anoplin

FVQWFSKFLGRIL
FVVKKKKKVF

temporin L
Peptide-resin

[123]

The MIC of the peptide-resin conjugate was 0.0156 pg/mL in the presence of VMC.

S. aureus

Vancomycin

conjugate

CRAMP

[226]

CRAMP-VMC conjugate did not inhibit bacterial growth better than its separate compounds.

S. aureus,

Vancomycin

KIGEKLKKIGQKIKNFFQKLVPQPEQ
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3.1. AMP-antibiotic conjugates targeting gram positive bacteria

AMP-antibiotic conjugation offers a promising new class of ther-
apeutic agents and great prospects in reviving drugs that were rendered
ineffective by microorganisms' resistance strategies. Table 3 reflects
some of the AMP and their respective conjugates together with their
biological activity towards specific Gram positive and negative bac-
terial strains. AMPs have the ability to traverse the bacterial cell
membrane and disrupt intracellular targets [116], which makes them
ideal for conjugation with antibiotics that have difficulty crossing the
membrane barrier [117]. In this regard, they would have a dual ac-
tivity: i) transporting antibiotics across bacterial membranes, and ii)
providing their own potent antibacterial activity. This dual role has led
researchers to explore conjugation strategies to enhance the activity of
antibiotics, as well as to take advantage of the activity of AMPs on
bacterial membranes.

Levofloxacin, is a broad spectrum drug that belongs to the fluor-
oquinolone antibiotic class [118]. Recently, microorganism's resistant
against levofloxacin have been discovered in bacteria such as E. coli, P.
aeruginosa and S. aureus [119], which has attenuated the activity of this
drug. In an early study, to restore the potency of levofloxacin and ob-
tain synergistic activity, this antibiotic was conjugated to indolicidin
(ILPWKWPWWPWRR), a linear cationic AMP rich in tryptopan (Trp)
and proline (Pro), reported to be active against both Gram positive and
negative bacteria, fungi, and protozoa. The MIC values ranged from
0.03 to 0.1 pg/mL against P. aeruginosa and S. aureus and E. coli. The
conjugate activity was better than the activity of levofloxacin and In-
dolicidin alone indicating the success of the conjugation in restoring the
potency of Levofloxacin. It was hypothesized that the combination of
levofloxacin with indolicidin, a highly hydrophobic peptide, may im-
prove delivery of the antibiotic through the outer membrane of the
bacteria. In addition, the cationic antimicrobial peptide, Indolicidin is
known to further enhance antibiotic delivery by altering the membrane
integrity [47]. In the same study, the authors conjugated Tat
(GRKKRRQRRRPQ) to Levofloxacin via an amide bond or ester linkage,
and evaluated it against a number of strains, including E. coli, P. aeru-
ginosa and S. aureus. The MIC values of the conjugates against the tested
strains ranged between 0.08 and 0.12 ug/mL [120]. The conjugate had
better activity than TAT alone against all the tested strains and the
conjugate also showed better potency compared to Levofloxacin alone
against S. aureus.

Vancomycin is an antibiotic which interrupts cell wall synthesis by
complexation with peptidoglycan precursors and this makes it an ideal
antibiotic for conjugation with AMPs for membrane perturbation [121].
It has also been used as a last resort drug to treat serious infections
caused by penicillin resistant bacteria [122]. Instead of directly con-
jugating the antibiotic to the AMP as in the studies above, Cho et al.
(2007) investigated another strategy which involved firstly the synth-
esis of antibacterial peptide-resin conjugates and then its subsequent
conjugation to vancomycin. The cationic antimicrobial peptide (CAP)-
vancomycin conjugate displayed potent activity against S. aureus and
M. luteus, with MICs of 1.56 ug/mL and 3.12 pg/mL respectively, which
revealed that the activity of vancomycin was amplified by the peptide-
resin conjugate [123]. Another study by Nigam et al. (2015) evaluating
the synthesis of cathelicidin-related antimicrobial peptides (CRAMP)-
vancomycin conjugates using different linkers, the results indicating
that the conjugate with the short and hydrophobic linkers bearing an
aromatic group had better activity compared to those with longer chain
linkers without an aromatic group [124]. Other AMPs that have been
conjugated to vancomycin include Nisin, Anoplin and temporin L
[115]. All these AMPs were seen to have good to moderate anti-
microbial activity against Gram-positive bacteria. Using another anti-
biotic, Schmidt et al. (2014) synthesized a peptide-tobramycin con-
jugate and tested it against S. aureus. The results reflected that the
conjugate (Pentobra) was able to destabilize the bacterial membrane
and inhibit protein synthesis and also had significant bactericidal
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activity towards the Gram positive bacteria [125].

Contrary to the above-mentioned studies where activity was am-
plified, there is indeed the possibility that activity is decreased. This
was shown in a study by Arnusch et al. (2012), where ultra-short
peptide bioconjugates were synthesized and evaluated for antimicrobial
activity. The conjugates had no activity on all Gram positive strains and
were seen to be selective towards fungi [126]. Arnusch et al. (2012)
also synthesized vancomycin-Magainin II peptide derivatives via click
chemistry and tested them against MRSA, vancomycin susceptible en-
terococci (VSE) and vancomycin resistant enterococci (VRE). The MIC
values of the most promising conjugate was found to be 2-16 pug/mL
against MRSA, VSE and VRE respectively [127]. The conjugate had no
higher activity on the microorganisms than vancomycin alone where
the MIC values were 0.4pg/mL, 0.5ug/mL and 128 ug/mL against
MRSA, VSE and VRE respectively. Although it would have been useful,
these authors did not provide possible reasons for this unexpected
finding. We think that factors in the conjugate that could have resulted
in the undesirable effect were the choice of the linker, steric hindrance
mediated by the vancomycin on the AMP, amino acid sequence and/or
electron withdrawing effects in the peptide-linker-vancomycin se-
quence. With the above knowledge concerning AMP-antibiotic con-
jugation, the design of these conjugates requires further studies on their
activity, such as suitable linkers, how they confer such potent activity
with regards to their surface charge and stability to optimise their ac-
tivity. Using another antibiotic, Schmidt et al. (2014) synthesized a
peptide-tobramycin conjugate and tested it against Gram Positive S.
aureus. The results reflected that the conjugate (Pentobra) was able to
destabilize the bacterial membrane and inhibit protein synthesis and
also had significant bactericidal activity towards S. aureus.

3.2. AMP-antibiotic conjugates targeting gram negative bacteria

In addition to Gram positive bacteria, studies have also focused on
targeting Gram negative bacteria. Cochrane et al. (2015) investigated
the synthesis of Tridecaptin — antibiotic conjugates, which have activity
against Gram-negative bacteria. Tricadeptin was conjugated to ri-
fampicin, vancomycin and erythromycin, the latter combination pro-
viding better activity against K. pneumoniae infections, with an MIC
value of 0.4 ug/mL [128]. The conjugation however did not increase
the in vitro activity of rifampicin, the lowest MIC being 25 pg/ml against
E. coli and A. baumannii. The authors explained this occurrence as the
possibility of the peptide and antibiotic not arriving at the target site
together due to possible cleavage by proteolytic enzymes. However,
linking the AMP derivative H-TriA; to vancomycin resulted in a 16-fold
increase in activity against E. coli, and an 8-fold increase against multi-
drug resistant K. pneumoniae and A. baumannii. Targeting E. Coli was the
focus also of a study reported by Chen et al. (2015) who synthesized
and conjugated chloramphenicol (CAP) to the antimicrobial peptide
UBI4q.41, With the in vitro studies revealing an enhanced antibacterial
activity against E. coli. The activity of CAP alone on E. coli was
6.2 = 1.7 umol/L, whereas that of CAP-UBI,g 4; conjugate on E. coli
was 3.8 + 0.9 umol/L. The toxicity of the conjugate on normal cells
decreased significantly compared to CAP and most importantly CAP-
UBly9.4; conjugate exhibited more favourable antibacterial efficacy
than CAP alone. In addition, the toxicity of CAP-UBI,g_4; on ordinary
cells was reduced noticeably in contrast with CAP alone. Schmidt et al.
(2014) also synthesized a peptide-tobramycin conjugate and tested it
against E. coli. The conjugate (Pentobra) was able to destabilize the
bacterial membrane and inhibit protein synthesis and also had sig-
nificant bactericidal activity towards E. coli. These results confirm the
importance of AMP-antibiotic conjugation as a synergistic approach in
targeting pathogenic microorganisms. The difference in the activity of
AMP conjugates against both Gram positive and negative bacteria as
shown in these studies indicate the existence of various possibilities
causing either increased potency or reduced potency of the AMP-anti-
biotic conjugates. These could include surface charge of the AMP-
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antibiotic conjugate, aggregation before the AMP-antibiotic conjugate
enters the cell membrane, site of conjugation as well as the choice of
linker used which will effectively decrease or increase the accessibility
of the antibiotics. The conjugation of AMPs to antibiotics offers a pro-
mising approach in enhancing the therapeutic ability of antibiotics and
their targeted delivery to specific intracellular organelles. This ap-
proach allows AMPs to be used as delivery vectors as well as anti-
microbial agents themselves.

4. Cell culture and in vivo models evaluating AMP efficacy

The concept of AMP cell selectivity creates the necessities for eva-
luation tools to determine the biosafety and efficacy on both in vitro and
in vivo levels. One of the major advantage of the AMPs and AMP con-
jugates over the conventional antibiotics is their selectivity towards the
bacterial cells rather than the host cells. In addition, as the lipid com-
position of the cell surface determines the selectivity of the AMPs and
AMPs conjugates, cell culture studies could consider a good source of
information to understand such selectivity, biosafety and efficacy
[129]. The antimicrobial peptide Magainin II was tested for its cyto-
toxicity on tumour cells MCF-7 and normal cells HSF. The cells were
stained with FITC-Annexin V and propidium iodide and then observed
under fluorescence microscope for their apoptotic or necrotic state,
respectively. Quantitatively, FACS analysis was used to determine the
number of apoptotic and necrotic cells. The cell viability was also
measured using CCK-8 (cell counting kit-8), XTT and MTT [130-132].
The MICs (minimum inhibitory concertation) of cationic helical peptide
was investigated using broth microdilution method in which the AMPs
or AMPs conjugate were dissolved in broth medium with different
range of dilution using 96-well plates and then the absorbance mea-
sured spectrophotometrically. Field emission-scanning electron micro-
scopy and confocal microscopy could also be used to determine the
antibacterial mechanisms by direct monitoring of bacterial membrane
structure as well as pore formation of the bacterial membrane respec-
tively [133]. Bacterial Killing assay to determine MBC (minimum bac-
tericidal concentration) was used by Salomone et al. (2016) when they
tested the bactericidal activity of a novel cell penetrating peptide [134].
An alternative technique to MIC and MBC could be flow cytometry
which is could have been useful in displaying the penetration potential
of these peptides. The effect of Megainin II and Megainin II conjugate
on MCF-7 and HSF cell lines were studied using flow cytometry method
[131]. The effect of chimeric peptide with disruptive membrane prop-
erties when incubated with Hela cell line and the activity of AMPs in
conjugation with silver nanoparticles on E. coli were studied using FACS
(fluorescence activated cell sorting) a synonym for flow cytometry
[132,134,135].

Ron-Doitch et al. (2016) determined the antiviral effect of liposomal
indolicidin on Herps Simplex Virus-infected 3D epidermis model, the
formation of the tissues was validated and stained with hematoxylin
and eosin B stain for further evaluation [135]. Tridecaptin-Antibiotic
conjugates was evaluated on C57BL/6L mice infected with K. pneumo-
niae then survival rate was determined using Kapaln-Meier plot. Al-
though the activity of the peptide-antibiotic conjugates retained in vivo,
variation in the effect depended on the type of AMP-antibiotic con-
jugates (Rifampicin, Erythromycin and Vancomycin) used. Particularly,
Tridecaptin-Erythromycin conjugate exerted better activity than the
antibiotic alone [128]. The UBls94; AMP fragment was attached to
chloramphenicol antibiotic and ICG0O2 (near infra-red dye) for targeting
E. coli and S. aureus in ICR mice. The targeting capability was proved by
detecting the presence of the ICG02 dye at the site of infection using in
vivo imaging system [113].

From all of the above studies, it was observed that the AMPs or
AMP-conjugates had a higher selectivity toward a wide range of mi-
croorganisms with enhanced antibacterial effects. Plausible cytotoxicity
and binding affinity towards the cancer cell lines evaluated were also
observed, suggesting that these AMPs could be considered for cancer
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therapy. In vivo murine toxicity was not observed, indicating their
biocompatibility and potential for further exploration.

5. AMP polymer conjugates

Polymers such as hyperbranched polygycerol (HPG), polyethylene
glycol (PEG), poly- 1-lysine (PLL), Chitosan, and poly Lactic-co-glycolic
acid (PLGA) are generally used extensively in drug delivery, where they
function as drug carriers across bacterial membrane, and when inside
the cell membrane, they disintegrate and release the drug to its specific
target site [136]. These polymers have also been used for AMP delivery,
and function by protecting them from degradation and allowing them
to be released effectively to the target site [63]. The main role of
polymeric carriers in antibiotic or peptide delivery is to deliver the
cargo to the disease site, to function as protector groups of the cargo
being delivered, and to protect the cargo or peptide from degradation
by proteases and efflux channels [59]. The following section describes
conjugation approaches involving AMPs and polymers.

5.1. AMP- hyperbranched polygycerol (HPG) conjugates

HPGs are dendritic macromolecules with random branch-on-branch
topology, which has numerous advantages [137]. Firstly, HPGs are
more hydrophilic than PEG, and secondly, the hyper-branched as-
sembly allows the HPG to efficiently cover the surface more than PEG.
Thirdly, HPGs have a number of hydroxyl groups that allow for the
attachment of several ligands on the HPG [138]. In a study conducted
by Kumar et al. (2015), Aurein 2.2 was conjugated to a hyperbranched
polygycerol (HPG), with the MIC values for the conjugate being de-
termined, and S. aureus and S. epidermidis being used as test strains. The
MICs of the peptide against S. aureus and S. epidermidis were 16 and
32pug/mL respectively, whereas the MICs for the conjugates were
110 pg/mL and 120 pg/mL respectively [139]. The authors postulated
that the possible reasons for the decreased activity could be due to
peptide substitution where a higher peptide density within the con-
jugate would result in a higher antimicrobial activity. Despite the de-
crease in activity, the HPGylated peptides were also non-toxic to human
umbilical vein endothelial cells (HUVECs) and fibroblasts indicating
biocompatibility.

5.2. AMP- polyethylene glycol (PEG) conjugates

PEG is a non-toxic, non-immunogenic and FDA approved polymer
used to enhance the biocompatibility of many compounds [140]. PE-
Gylation of peptide drugs has been shown to enhance biocompatibility
of the peptide in question [139,141,142]. Conjugation of AMPs with
PEG have been undertaken with the aim of prevention of recognition
and degradation by proteolytic enzymes and increases the size of the
AMP, thus reducing the renal filtration and altering bio-distribution
[143]. Guiotto et al. (2003) Pegylated the AMP nisin, and determined
their MIC values for a number of bacterial strains. The results showed
the nisin-PEG conjugate to be less effective than the original AMP
alone, with MIC values of the conjugate ranging from 250 uM for S
aureus and > 500 uM for P aeruginosa [144]. In a study by Morris et al.
(2012), the AMP CaLL was Pegylated, forming a PEG-CaLL conjugate,
with the in vitro activity revealing that the CaLL was more active that
the conjugate [145]. Benincasa et al. (2015) also studied the PEGyla-
tion of the peptide Bac7 and tested the conjugate against S. typhi-
murium, with the MIC values of the BacE-PEG ranging between 4 and
8 uM when assayed in MH broth. The MIC values were also determined
in the presence of human serum and plasma, and were 1puM and
0.25uM in plasma for the BacE-PEG conjugate in the presence of
human serum [146]. The above studies which all showed a decreased
activity of the Pegylated AMP as compared to AMP alone, indicate that
even with prospects of PEG protecting the AMPs from degradative en-
zymes and increasing their biocompatibility, there is also a possibility
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of activity being compromised. As PEG coats both the hydrophobic and
hydrophilic parts of the AMP, this could result in the AMP not being
freely available for interaction with the bacterial membrane, thus de-
creasing its cell penetrative activity. PEG also has a high molecular
weight, which confers steric hindrance [147], which could be the
reason for the attenuated activity of the AMPs. This phenomenon is well
described by Lee et al. (2014), who conducted a molecular simulation
of PEGylated peptides. It was seen that the PEG chains wrap around the
AMPs and weaken their binding interactions with the lipid bilayers.
From the reviewed PEGylated AMPs, it was observed that decreased
activity was higher in fB-sheets than in a-helical AMPs, indicating a
structural influence on PEGylation [148]. The AMPs reported so far for
Pegylation were all hydrophilic. Pegylation could be advantageous for
highly hydrophobic AMPs as PEG is thought to play a crucial role in
increasing their solubility and reducing their antigenicity [55], and as
such, can play a crucial role in enhancing the AMP activity.

5.3. AMP-chitosan conjugates

Chitosan is a non-toxic cationic polysaccharide natural polymer
with a wide range of biomedical applications [149]. It is also easily
absorbable at low pH, and has antacid and antiulcer activities that
prevent and weaken drug irritation in the gastrointestinal tract
[149,150]. These properties make it an ideal candidate for controlled
drug release formulations that would provide an added advantage in
AMP-chitosan conjugate formulations. Batista et al. (2009) reported on
the novel synthesis of chitosan-pexiganan conjugate through the Sulfo-
EMCS Cross-Linker for treating infected skin lesions Fig. 3 [151]. In this
study, only the successful conjugation was reported, and no anti-
bacterial studies were performed. But based on the known activities of
both chitosan and the antimicrobial peptide pexiganan, the authors
indicated that this conjugate is very likely to undergo clinical trials for
topical uses [152,153]. Their assertion is supported by the following
two studies on chitosan and pexiganan. Flamm et al. (2015) tested a
non-conjugated pexiganan against a selected number of resistant strains
which included MRSA, S. aureus, E. faecium, E. coli, K. pneumoniae, P.
aeruginosa and A. baumannii. The MIC values from these pathogens
derived from diabetic foot infections ranged between 16 and 32 ug/mL
[154]. In Costa et al. (2014) described the antibacterial activity of
chitosan derivatives on C. albicans and the MIC values as being 1 ug/mL
for high molecular weight (HMW) chitosan and 3 pg/mL for low mo-
lecular weight (LMW) chitosan [155]. Therefore, based on the anti-
bacterial activity of these materials individually against the Gram-po-
sitive microorganisms, a conjugate would be expected to show
enhanced activity towards biofilm disruption. It has been reported that
C. albicans mycofilms actively enhance S. aureus colonization and their
interaction in a biofilm mode promotes staphylococcal infections [156].
To date, that is the only study involving the conjugation of pexiganan to
chitosan or other polymers and additional experimental research in-
volving pexiganan and chitosan conjugates is required. The above
studies involving pexiganan and chitosan activities indicate the po-
tential of this polymer and peptide conjugation strategy to yield good
results that can lead to clinical trials. Sahariah et al. (2015) reported on
the antimicrobial activity of Anoplin-chitosan conjugates, which were
synthesized using Copper-Catalyzed Azide-Alkyne Cycloaddition
(CuAAC) chemistry. The conjugates showed promising activity com-
pared to their parent peptide, with the lowest MIC observed against E.
coli (4pg/ml) [157]. Future research and reviews should explore the
chemical composition of chitosan using computational approaches and
how it can be used to enhance biocompatibility of AMPs, this compo-
nent making it ideal for conjugation studies with AMPs and to enhance
the delivery of AMPs.

Polymers have been used broadly as drug delivery vectors, and in
the formulation of polymeric nanoparticles due to their improved
bioavailability, enhanced encapsulation, controlled drug release and
attenuated toxicity demonstrated [158,159]. Their utilisation, in
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conjunction with AMPs, would also offer an enhanced nanoparticle
system that contains cell penetrating power due to the cationic prop-
erties of AMPs [63]. These types of nano systems would allow AMPs to
have a bi-directional approach of enhancing the cell penetrating ability
of the nanoparticle as well as interacting with the intracellular orga-
nelles.

6. Miscellaneous AMP conjugates

The following section discusses other various AMP conjugates that
have been reported.

6.1. AMP- phenolic conjugates

Phenolic groups are found in most drug molecules and have been
used in pro-drug modifications to overcome pharmacological barriers
that would attenuate drug action [160]. One of the strategies used by
phenols is to cover polar groups, and this allows a molecule to be more
lipophilic thus promoting membrane permeability [161]. This strategy
would be ideal in AMP-phenolic conjugates to effectively deliver the
AMP to its target sites through bacterial membrane penetration. Findlay
et al. (2012) reported on neomycin—phenolic conjugates with broad-
spectrum antibacterial activity. The conjugates had good activity
against neomycin sulfate resistant bacteria with low activity towards
neomycin susceptible strains. Several conjugates had activity towards
MRSA that was also similar to S. aureus, while activity against P. aer-
uginosa was slightly increased (64 pm/mL). Therefore, these conjugates
displayed improved activity towards Gram positive and negative bac-
teria. These conjugates had triclosan and clofoctol linkers, which could
be responsible for their activity [162]. The phenolic group in anti-
bacterial agents can be used in structural modifications to overcome
various properties that could be barriers in the application of the
compounds [160]. With the above promising data, future research
should explore conjugating phenolic groups to already known AMPs to
enhance their bioavailability [163]. There is considerable scope in nano
encapsulation of AMP-phenolic conjugates, with an absence of experi-
mental or review studies to elucidate the activity of AMP-phenols in
nano systems. As phenols show improved bioavailability and stability,

it is thought that their conjugation with AMPs would provide stability
to the formulation and protect them from degradation.

6.2. AMP-DNA conjugates

The strategy of AMP conjugation has been extended to DNA as this
offers the potential of to deliver AMPs to nucleic acids.

Ghosal et al. (2012) conducted research on the conjugation of
Peptide-Peptide Nucleic Acid (PNA) against P. aeruginosa, these being
nucleobase oligomers that are regarded as DNA, with a neutral peptide
backbone that is stable and resistant to hydrolytic cleavage [164].
These conjugates were synthesized by continuous solid phase synthesis
using Boc-chemistry and purified by HPLC. The conjugates had MIC
values ranging from 1 to 20 puM, indicating their potential to be used as
antibacterial agents and their activity was significantly higher than that
of the non-conjugated peptide [165]. Williams et al. (2012) synthesized
peptide-oligonucleotide conjugates via solid phase synthesis and its
formation was confirmed by reverse phase HPLC, and Maldi-Tof. An-
timicrobial activity was not carried out as the authors focussed only on
demonstrating the viability of this conjugation strategy, as this is an
emerging field. It is envisaged that this field of peptide-DNA nano-
technology will be very useful to direct individual peptides to specific
locations on the surface of a DNA nanostructures [166]. Conjugation of
AMPs to these nucleic acids would allow AMPs to be utilised as delivery
vehicle to pass through the membrane to deliver the nucleic acids into
the bacterial nucleus. This would allow the conjugate to inhibit bac-
terial replication, and to possibly attenuate genetic material that bring
about resistance. There is still a considerable gap in research focusing
on the nano delivery of AMPs with peptide nucleic acids and the en-
capsulation of these conjugates would allow effective targeted delivery
and a reduction in the dosing frequency.

6.3. AMP-salt conjugates

The strategy of conjugating AMPs to Imidazolium salt is that these
salts exhibit biological activity when part of ionic liquids and can form
hydrogen bonds with drugs and proteins.

Reinhardt et al. (2014) synthesized Imidazolium salt—peptide
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conjugates and screened them for their biological activity. Recent ob-
servations suggest that imidazolium cations, when part of ionic liquids,
exhibit biological activity. In this study, two AMPs were used: sC18,
which is a short C-terminal fragment of the cationic antimicrobial
peptide cathelicidin (CAP18) that binds lipopolysaccharide (LPS), and
the LL-37 peptide, which also belongs to the group of cathelicidins and
shows activity against a wide spectrum of Gram negative and positive
bacteria. Conjugation of these peptide-salt conjugates occurred by
coupling reactions, and antimicrobial activity was conducted against a
wide range of bacteria where the best MIC value was found to
be0.2-0.5 uM against all tested strains [167]. Imidazolium cations in
their liquid ionic state function as modifying agents, and in conjugation
with AMPs, they can confer their charge for effective membrane pe-
netration. These properties of Imidazolium cations would make them
ideal candidates in the formulation of hydrophobic AMPs. Future stu-
dies should explore using these cations to improve the conductivity of
peptides for effective membrane penetration, and encapsulating AMP-
Imidazolium conjugates for improved delivery.

The conjugation of various classes of materials to AMPs using dif-
ferent conjugation strategies all have the same goal of providing a
plausible vehicle capable of permeating the bacterial cellular mem-
brane, delivering the desired compound or AMP to the intracellular
targets, protecting the AMP from the action of degradative enzymes,
enhancing biocompatibility and overcoming pharmacological barriers.
Conjugations make use of intrinsic chemical routes that require an
understanding of both the AMP and conjugate materials involved in
terms of whether or not they would synergistically produce the desired
biological outcome as well as knowledge of the biological target with its
inherent pathogenicity and intracellular biochemical pathways, which
can dispel foreign substances, leading to resistance.

As a result of the enhanced biological activity of several conjugates
compared to their parent compounds, it is anticipated that their en-
capsulation into nano systems would provide improved antimicrobial
agents that have the ability to permeate the bacterial membrane and
interrupt intracellular targets. The formulation of these conjugates in
nano systems would also allow for a controlled and sustained release to
their specific target sites, reduced toxicity, protection against de-
gradative enzymes, increased bioavailability and high loading capacity,
as seen with their parent AMP [168,169].
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7. Nano-carriers employed in the delivery of AMPs

Despite their considerable antimicrobial activity, the application of
AMPs in clinical settings has been limited by their potential toxicity and
vulnerability to chemical degradation by proteases [47]. The en-
capsulation of AMPs, including their conjugates in suitable nano-car-
riers, has the potential to target the infection site of bacteria, overcome
side effects and protect them from enzymatic degradation [170]. En-
capsulating AMPs for effective delivery has been successful in several
nanostructures such as liposomes, micelles, nanofibers, metallic nano-
particles (MNPs) and hydrogel nanoparticles [171,172]. Table 4 sum-
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making them ideal nano structures for the delivery of amphiphilic
compounds [176]. One of the challenges that hinders the activity of the
liposomal formulation includes the premature release of the payload
before the target site is reached [177,178]. In addition, higher lipo-
somal volumes are necessary when the efficiency of the encapsulation is
low for clinical dosage [179]. In separate studies Benech et al. (2002)
and Were et al. (2004) studied the activity of nisin encapsulated in li-
posomes, and found that the encapsulation conferred a higher entrap-
ment efficiency with lower susceptibility to destabilization by nisin.
The formulation also had an enhanced efficacy against L. monocytogenes
compared to the free nisin [180,181]. Using another AMP, Alipour et al.
(2008) and Alipour et al. (2009) encapsulated polymyxin B which is a
cationic AMP with liposomes targeting resistant Gram-negative bac-
terial infections. The MICs of the liposomal polymyxin B against Gram-
negative strains was significantly lower than the free polymyxin B
[182,183]. In the above studies, the activity of the liposomal formula-
tions of polymyxin B was higher that the activity of the un-en-
capsulated. These four studies only reported antimicrobial activity,
encapsulation of AMPs into liposomes and entrapment. No other
characterisation data such as release kinetics, essential for formulation
optimisation was reported. However, in a more recent study by Ron-
Doitch et al. (2016) formulation characterisation was more extensive.
They encapsulated the AMP LL-37 in liposomes, and studied its cellular
uptake, in vitro cytotoxicity and physicochemical properties. The cyto-
toxicity results showed minimal cytotoxicity in HaCaT cells. From the
cellular uptake results (Fig. 4), LL-37 liposomal formulation was taken
up more rapidly than the free AMP in all the time periods. The time-
dependant uptake of the encapsulated LL-37 was observed as being
higher than that of the unbound LL-37 [135]. These studies show the
importance of AMP-liposomal formulations in delivering AMPs and the
effectiveness of liposomes as delivery vehicles.

7.2. Micelles

Since their discovery in 1984, micelles have gained much attention
as nano-based drug delivery systems, especially for poorly water-so-
luble drugs [184]. Owing to their size, ability to solubilize hydrophobic
drugs and achieve target or site-based drug delivery, micelles continue
to show great potential as vectors for drug delivery [185]. Micelles
possess distinctive structural properties that comprise of two or more
hydrophilic and hydrophobic blocks with different solubility ratios in
aqueous environment, which makes them effective for drug delivery
[186]. Liu et al. (2009) studied cationic AMPs which are capable of self-
assembly as potential antimicrobial agents. TEM imaging confirmed the
formation of micelles, and the in vitro results showed that these micelles
had broad spectrum activity with low MIC values [101]. Using another
micelle formation strategy, Williams et al. (2012) performed a study on
sterically stabilized phospholipid micelles of an antimicrobial wound
healing adjunct. The study aimed to examine whether the association of
a cationic decapeptide with sterically stabilized nano-micelles (SSMs),
would improve stability and in vivo antimicrobial effect. In vitro assays
against S. epidermidis reflected reduced activity of the cationic dec-
apeptide in SSM solution, however the in vivo studies in animal model
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Fig. 4. LL-37 uptake by HaCaT cells (shown as % of cells engulfing treatment) following
empty liposomes, free LL-37, or liposomal LL-37. Permission granted [151].
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with decapeptide-nano micelles preparations presented no differences
in microbial load at post-operative time points. We believe that the loss
of activity could be due to electrostatic interactions of the decapeptide
with the anionic surface of SSM [187]. The above studies employed
micelles to improve activity. To explore another application for micelles
Black et al. (2012) reported the self-assembly of peptide amphiphile
micelles with the aim of promoting a protective immune response in
vivo. The formation of the micelles was confirmed by TEM imaging.
These peptide amphiphile micelles were found to offer in vivo protec-
tion from tumours by stimulating T, cells This study confirmed the use
of the peptide amphiphiles in self assembled micelles as a new class of
growing nanoparticles that have the ability to induce an immune re-
sponse [188]. Clearly this study showed that, although these micelles
are effective in the entrapment and delivery of AMPs, the choice of the
micelle system should be chosen very carefully so that the surface
charge of micelles don't interfere with the AMP activity.

7.3. Nanofibers

Nanofibers (fibers with diameters less than 100 nm), which are a
product of polymers treated specifically to form filaments, possess great
prospective to be used for delivering AMPs and/or AMP-conjugates
[189]. These fibers are produced by electro-spinning, which uses elec-
tric force to draw charged threads of polymer solution [190], and are
developed from both natural and synthetic polymers, such as chitin,
chitosan, polyurethane, poly(i-lactic acid) and poly-vinyl alcohol. Na-
nofibers have large surface to volume ratio and surface-modification
possibilities, which make them ideal for AMP-loading and delivery
[191]. Heunis et al. (2010) described a novel approach in AMP de-
livery, where they were incorporated into nanofibers for wound dres-
sings. The AMP plantaricin 423 was encapsulated in nanofibers that
were produced by the electro-spinning of polyethylene oxide (PEO).
The PEO mobilised AMP showed high activity against E. faecium and L.
sakei. Nanofibers are therefore thought to be the ideal matrix for the
immobilization of AMPs, and/or their encapsulation for effective de-
livery to skin infection [191].

7.4. Metallic nanoparticles

Metallic nanoparticles (MNPs), such as those derived from noble
metals, including gold and silver, may serve as potential nano carriers
for AMPs and their conjugates. Owing to their large surface area and
surface charge, most MNPs easily attach to the surface of bacterial
membranes by electrostatic interactions, and thereby interrupt the in-
tegrity of the membrane [149,192]. Noble metals are resistant to oxi-
dation and corrosion, which this makes them ideal for nanoparticle
formation and reduced toxicity, as most nanoparticles accumulate in
the liver, spleen and lymph nodes [193]. Functionalized nanoparticles
can be formed by processes such as coupling or adsorption of specific
molecules (e.g. AMPs onto MNPs surfaces), with the aim of producing a
synergistic approach for the antimicrobial activity of both the NPs and
the selected AMP [194]. Silver nanoparticles (AgNPs) have been ex-
tensively studied and found to possess potent antimicrobial activities,
having been used for decades, especially as antibacterial agent [195].
The mechanism of action has been thought to be directed towards the
bacterial cell wall and membrane perturbation, as well as acting on
intracellular targets [196]. MNPs have a higher positive zeta potential,
promote membrane lysis and penetration when they interact with the
negatively charged bacterial membrane [197]. Liu et al. (2013) used a
cell penetrating peptide (G3R6YGRKKRRQRRR) which was then used
to form silver nanoparticles (AgNPs). The nanoparticles were found to
be active against the Gram-positive B. subtilis and the Gram-negative E.
coli [198]. In contrast to the previous studies where the AMPs were
used to form the silver nanoparticles, Pal et al. (2016) conducted a
study on the activity of an AMP conjugated to a silver nanoparticle
against E. coli and the nano-conjugate was reported to enhance
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List of FDA-Approved Nanomedicines Stratified by Material Category (adapted from D Bobo et al., 2016) [212].

Name Material description Nanoparticle advantage Indication(s) Year(s)
approved
Polymer Nanoparticles — synthetic polymer particles combined with drugs or biologics
Adagen’/pegademase PEGylated adenosine Improve circulation time and Severe combined 1990
bovine (Sigma-Tau deaminase enzyme decreased immunogenicity immunodeficiency
Pharmaceuticals) disease (SCID)
Cimzia®/certolizumab pegol PEGylated antibody fragment Improved circulation time and Crohn's disease 2008
(UCB) (Certolizumab) greater stability in vivo. Rheumatoid arthritis 2009
Psoriatic Arthritis 2013
Ankylosing Spondylitis 2013
Copaxone’/Glatopa (Teva) Random copolymer of Large amino-acid based Multiple Sclerosis (MS) 1996
L-glutamate, r-alanine, polymer with controlled
1-lysine and 1-tyrosine molecular weight and
clearance characteristics
Eligard” (Tolmar) Leuprolide acetate and polymer Controlled delivery of payload Prostate Cancer 2002
(PLGH (poly (pr-Lactide-co- with longer circulation time
glycolide))
Macugen/Pegaptanib PEGylated anti-VEGF aptamer Improved stability of aptamer as Macular degeneration, 2004
(Bausch & Lomb) (vascular endothelial growth a result of PEGylation neovacular age-related
factor) aptamer
Mircera’/Methoxy Chemically synthesized ESA Improved stability of aptamer as Anemia associated with 2007
polyethylene glycol-epoetin (erythropoiesis-stimulating a result of PEGylation chronic kidney disease
beta (Hoffman-La Roche) agent)
Neulasta’/pegfilgrastim PEGylated GCSF protein Improved stability of protein Neutropenia, 2002
(Amgen) through PEGylation Chemotherapy
induced
Pegasys~ (Genentech) PEGylated IFN alpha-2a protein Improved stability of protein Hepatitis B; Hepatitis C 2002
through PEGylation
Peglntron” (Merck) PEGylated IFN alpha-2b protein Improved stability of protein Hepatitis C 2001
through PEGylation
Renagel[sevelamer Poly(allylamine hydrochloride) Increase circulation and Chronic kidney disease 2000
hydrochloride]/ therapeutic delivery
Renagela [sevelamer carbonate] (Sanofi)
Somavert"/pegvisomant PEGylated HGH receptor Improved stability of protein Acromegaly 2003
(Pfizer) antagonist through PEGylation
Oncaspar’/pegaspargase Polymer-protein conjugate Improved stability of protein Acute lymphoblastic 1994
(Enzon Pharmaceuticals) (PEGylated L-asparaginase) through PEGylation leukemia
Krystexxa'/pegloticase Polymer-protein conjugate Improved stability of protein Chronic gout 2010
(Horizon) (PEGylated porcine-like uricase) through PEGylation;
introduction of unique
mammalian protein
Plegridy” (Biogen) Polymer-protein conjugate Improved stability of protein Multple Sclerosis 2014
(PEGylated IFN beta-1a) through PEGylation
ADYNOVATE (Baxalta) Polymer-protein conjugate Improved stability of protein Hemophilia 2015
(PEGylated factor VIII) through PEGylation
Liposome formulations combined with drugs or biologics
DaunoXome® (Galen) Liposomal Daunorubicin Increased delivery to tumour Karposi's Sarcoma 1996
site; lower systemic toxicity
arising from side-effects
DepoCyt© (Sigma-Tau) Liposomal Cytarabine Increased delivery to tumour Lymphomatous 1996
site; lower systemic toxicity meningitis
arising from side-effects
Marqibo” (Onco TCS) Liposomal Vincristine Increased delivery to tumour Acute Lymphoblastic 2012
site; lower systemic toxicity Leukemia
arising from side-effects
Onivyde” (Merrimack) Liposomal Irinotecan Increased delivery to tumour Pancreatic Cancer 2015
site; lower systemic toxicity
arising from side-effects
AmBisome” (Gilead Liposomal Amphotericin B Reduced nephrotoxicity Fungal/protozoal 1997
Sciences) infections
Liposomal Morphine sulfate Extended release Analgesia (post-operative) 2004
Visudyne® (Bausch and Liposomal Verteporfin Increased delivery to site of Macular degeneration, 2000
Lomb) diseased vessels; wet age-related;
photosensitive release myopia; ocular
histoplasmosis
Doxil”/Caelyx™ (Janssen) Liposomal doxorubicin Improved delivery to site of Karposi's Sarcoma; 1995
disease; decrease in systemic Ovarian cancer; 2005
toxicity of free drug. multiple myeloma 2008
Abelcet” (Sigma-tau) Liposomal Amphotericin B lipid Reduced toxicity Fungal infections 1995
complex
Curosurf’/Poractant alpha Liposome-proteins SP-B and Increased delivery for smaller pulmonary surfactant for 1999
(Chiesei farmaceutici) SP-C volume; reduced doxicity Respiratory Distress
Syndrome
Micellar nanoparticles combined with drugs or biologics
Estrasorb™ (Novavax) Micellar Estradiol Controlled delivery of Menopausal therapy 2003
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Table 5 (continued)
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Name Material description Nanoparticle advantage Indication(s) Year(s)
approved
therapeutic

Protein nanoparticles combined with drugs or biologics

Abraxane”/ABI-007 Albumin-bound paclitaxel Improved solubility; improved Breast cancer 2005

(Celgene) nanoparticles delivery to tumour NSCLC 2012

Pancreatic cancer 2013

Ontak” (Eisai Inc) Engineered Protein combining Targeted T-cell specificity; Cutaneous T-Cell 1999

IL-2 and diphtheria toxin lysosomal escape Lymphoma

Nanocrystals

Emend” (Merck) Aprepitant Surface area allows faster Antiemetic 2003
absorption and increases
bioavailability

Tricor” (Lupin Atlantis) Fenofibrate Increases bioavailability simplifies Hyperlipidemia 2004
administration

Rapamune” (Wyeth Sirolimus Increased bioavalibility Immunosuppresent 2000

Pharmaceuticals)

Megace ES” (Par Megestrol acetate Reduced dosing Anti-anorexic 2001

Pharmaceuticals)

Avinza® (Pfizer) Morphine sulfate Increased drug loading and Psychostimulant 2002
bioavailability; extended (2015)
release

Focalin XR® (Novartis) Dexamethyl-phenidate HCl Increased drug loading and Psychostimulant 2005
bioavailability

Ritalin LA” (Novartis) Metyhlphenidate HCI Increased drug loading and Psychostimulant 2002
bioavailability

Zanaflex” (Acorda) Tizanidine HCI Increased drug loading and Muscle relaxant 2002
bioavailability

Vitoss” (Stryker) Calcium phosphate Mimics bone structure allowing Bone substitute 2003
cell adhesion and growth

Ostim” (Heraseus Kulzer) Hydroxyapatite Mimics bone structure allowing Bone substitute 2004
cell adhesion and growth

OsSatura” (IsoTis Hydroxyapatite Mimics bone structure allowing Bone substitute 2003

Orthobiologics) cell adhesion and growth

NanOss” (Rti Surgical) Hydroxyapatite Mimics bone structure allowing Bone substitute 2005
cell adhesion and growth

EquivaBone® (Zimmer Hydroxyapatite Mimics bone structure Bone substitute 2009

Biomet)

Invega® Sustenna” Paliperidone Palmitate Allows slow release of injectable Schizophrenia 2009

(Janssen Pharms) low solubility drug Schizoaffective Disorder 2014

Ryanodex” (Eagle Dantrolene sodium Faster administration at higher Malignant hypothermia 2014

Pharmaceuticals) dses

Inorganic and metallic nanoparticles

Nanotherm” (MagForce) Iron oxide Allows cell uptake and Glioblastoma 2010
introduces
superparamagnetism

Feraheme™/ferumoxytol Ferumoxytol SPION with Magnetite suspension allows for Deficiency anemiairon 2009

(AMAG pharmaceuticals) polyglucose sorbitol prolonged steady release, deficiency in chronic

carboxymethylether decreasing number of doses kidney disease (CKD)

Venofer” (Luitpold Iron sucrose Allows increased dose iron deficiency in chronic 2000

Pharmaceuticals) kidney disease (CKD)

Ferrlecit” (Sanofi Avertis) Sodium ferric gluconate Allows increased dose iron deficiency in chronic 1999

kidney disease (CKD)

INFeD" (Sanofi Avertis) Iron dextran (low MW) Allows increased dose iron deficiency in chronic 1957

kidney disease (CKD)

DexIron/Dexferrum” Iron dextran (high MW) Allows increased dose iron deficiency in chronic 1957

(Sanofi Avertis) kidney disease (CKD)

Feridex"/Endorem” SPION coated with dextran Superparamagnetic character Imaging agent 1996 (2008)

(AMAG pharmaceuticals)
GastroMARK™; umirem”
(AMAG Pharmaceuticals)

SPION coated with silicone

Superparamagnetic character

Imaging agent

2001 (2009)

biological activity [132]. This study showed another approach of con-
jugation which utilises the potency of the AgNP together with the AMP
and this provides new insights of AgNP-AMP interactions and how this
strategy could be used to enhance biological activity. Gold nano-
particles (AuNPs), which are synthesized by the reduction of HAuCl,,
have lower toxicity than other nanoparticles due to their noble char-
acteristics [199]. AuNPs-AMP conjugates also possess several ad-
vantages, such as protecting the AMP from enzymatic degradation, and
do not prevent the AMP from folding into its biologically active con-
formation [200]. In a study by Casciaro et al. (2016), the AMP Esculen-
tin-1a(1-21)NH,, which was derived from a frog skin, was coated with

gold nanoparticles and evaluated against P. aeruginosa. The anti-
bacterial results showed that the AMP coated nanoparticles were more
potent than the free peptide [201]. In contrast to the studies above, Rai
et al. (2016) used a one-step synthesis approach to conjugate the AMP,
cecropin-melittin, to gold nanoparticles. The MIC values were also
found to be higher than the free AMP [90]. Pradeepa et al. (2017)
conducted a study on the application of Nisin gold nanoparticles as a
potent antimicrobial agent against E. faecalis and S. aureus. The syn-
thesized nanoparticles were found to be non-toxic with less hemolycic
activity and lower MIC values that Nisin alone [202].

These strategies of utilising AMPs to reduce silver nitrate to form
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AgNPs, or conjugating AMPs to AgNPs or AuNPs, combines the high
surface charge of these metallic nanoparticles together with the high
positive charge of AMPs, which will form a molecule well capable of
bacterial membrane lysis [203].

7.5. Hydrogel nanoparticles

Hydrogels are 3-dimensional, cross-linked networks of water-so-
luble polymers that can be formulated by various approaches, including
microparticles, slabs, coatings, films and more specifically, nano-
particles [204]. Hydrogels are used in a wide array of applications, such
as in cellular immobilization, tissue engineering and regenerative
medicine [205]. The physiochemical makeup of hydrogels has gener-
ated much interest for their use as drug delivery systems. They have a
highly porous structural makeup, this feature being important, as it
allows drug loading into the matrix of the gel and consequent drug
release [204,206]. Hydrogel nanoparticle in drug delivery offer mostly
pharmacokinetic benefits, as their formulations allow drugs to be
slowly eluted, thus retaining a high concentration of the drug in the
nearby tissues over a prolonged period of time [207]. Hydrogels are
also thought to possess high biocompatible properties due to their high-
water content, and their physiochemical resemblance to the native
extracellular matrix [208]. Various materials have been exploited so far
for the preparation of hydrogels with AMPs to target different organ-
isms. Rajan et al. (2014) designed a study for the controlled release of
the AMP subtilosin from polyethylene glycol-based hydrogels, and
showed that it was able to inhibit the growth of G. vaginalis, with a
reduction of 8 log10 CFU/ml [209]. Hakansson et al. (2014) reported
on the formulation of the AMP PLX150 in hydroxypropyl cellulose gel
(HPC) to target surgical site infections. The PLX150-HPC combination
killed more than 95% of S. aureus, and presented a dose-dependent
activity with a slow release of the AMP from the HPC hydrogel on the
wound site [210]. In a study by Babavalian et al. (2015), the AMP
CM11 was incorporated into alginate sulfate hydrogels to target MRSA.
The MIC and MBC activity of the CM11 peptide were 2-32 mg/L and
16-64 mg/L respectively, and 50% of the CM11 peptide was released
from the hydrogel in the first week [211]. Since hydrogel formulations
allow sustained release of drugs, incorporation of AMPs into these
systems would offer prolonged AMP release at target sites and retain
high AMP concentration in the nearby tissues.

Nanocarriers have shown to increase the biocompatibility of AMPs,
shield them from degradative enzymes as well as allowing enhancing
their release into specific target sites. These nano drug delivery systems
should be exploited further for AMP conjugates, with the aim of im-
proving targeted conjugate delivery into intracellular targets and de-
veloping plausible nanomedicines. Table 5 reveals a list of FDA ap-
proved nano products derived from various materials [212].

8. Conclusions and future perspectives

The continuous evolution of pathogenic bacteria has led to an on-
going search for novel ways to combat antimicrobial drug resistance.
The development of resistance to new antibiotic derivatives, and the
inability of antibiotics to reach infection sites at effective concentration,
pose a major threat to infection control and prevention. However, new
approaches, such as the design and application of AMPs, individually or
as conjugates and their delivery in nano-carriers, offer promising al-
ternatives to main-stream antibiotics.

Molecular dynamics of AMPs with model membranes and QSAR
approaches to identify or understand descriptors in AMPS for activity is
important for the eventual design of novel AMPs including their con-
jugates and nano delivery systems to achieve optimal efficacy and
safety. Molecular dynamic studies have been useful in confirming the
successful penetration of AMPs across different types of cell mem-
branes. It has also identified key interactions of AMPs with membrane
components for penetration. Molecular dynamic studies have has been
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further successfully exploited for understanding the stability of AMPs
with conjugates as well as their stability and encapsulation into nano-
carriers. QSAR approaches on AMPs to date have identified the possible
structural or physicochemical descriptors integral in influencing ac-
tivity against bacteria. However, a considerable gap remains in utilising
molecular modelling approaches to study the AMP interaction with
model membranes. Structure activity relationship of AMPs with respect
to membrane penetration is also lacking. Although limited, the findings
so far can guide scientists to: 1) design new AMPs with optimal activity
2) select specific sites for conjugation to various compounds without
losing their activity and 3) design and select suitable nanocarriers based
on the physicochemical descriptors of the AMPs identified. Whilst un-
derstanding penetration of the AMPs through membranes is important,
the interaction of AMPs as well as AMP-conjugates with intracellular
organelles is also critical because it can elucidate the effectiveness of
the AMP and AMP-conjugate strategy in being delivered across the
membrane for action on intracellular targets to maximise activity. Since
much of the MD and QSAR studies so far have focused on the interac-
tion of AMPs with biological membranes, future studies should there-
fore explore the mechanism of action of the AMPs and their conjugates
with intracellular targets such as the nucleus and mitochondria. Whilst
computational modelling of nano carriers with AMPs are beginning to
emerge, it needs to be extended further to AMP-conjugates in nano-
carriers. Molecular modelling studies should be used to identify for-
mulations that can maximise encapsulation and stability of the nano-
carriers and also mechanistically explain their formation and release
kinetics. MD simulations should be further explored in order to in-
vestigate the binding affinities of AMPs with their conjugates. We be-
lieve that these MD mechanistic studies will also elucidate the extent of
encapsulation with respect to AMP-conjugates in nano systems to fur-
ther tell us the best nano carrier which can be used to deliver these
conjugates.

In this review the potential of AMP as conjugates with antibiotics,
polymers and other classes such as DNA, salts and phenolic based
compounds to potentiate antibacterial activity have been successfully
demonstrated. Of the 4 groups of AMPs i.e. B-sheet, a-helical, loop and
extended peptides the a-helical classes have been the most widely
studies structural groups of AMPs used for conjugation to various
classes of materials. The widely used AMPs used for conjugation are the
indolicidin and they were found to have potency across both gram
positive and negative bacteria. It is suggested that other classes of
materials such as natural compounds from plant extracts and metal
complexes could also be potential conjugate components and should be
explored. With the conjugation strategy only preliminary character-
isation studies such as structural confirmation, in vitro antimicrobial
activity, cytoxicity and haemolytic studies, cellular uptake have been
reported. Further characterisation studies such as in vivo assays and skin
lesion studies is required to confirm the efficacy and safety of these
conjugates. Further, patient administration of the AMP-conjugates will
require its incorporation into a suitable delivery system. Therefore,
extensive physicochemical and in vitro/in vivo characterisation of drug
delivery systems for AMP-conjugates need to be undertaken.
Degradation studies of AMP-conjugates as they enter the bacterial
membrane should also be conducted, as this will allow for structural
manipulation in the design process, and the application of additive
factors directed at degradative enzymes. This would greatly enhance
the applications of AMPs and broaden their scope in finding therapeutic
agents.

Encapsulation of AMPs into five different classes of nano carriers i.e.
liposomes, micelles, nanofibers, metallic nanoparticles and hydrogels so
far have been successfully achieved with enhanced activity and sus-
tained release. The a-helical group of AMPs only have so far been ex-
plored for delivery via nano carriers. However, again these studies are
limited in their characterisation which is essential to ensure safety,
quality and efficacy for regulatory approval. Future studies should
clearly focus on experimental designs to rationally optimise
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formulations. Also, in depth characterisation studies to determine the
solid phase transformation properties, release kinetics, physicochemical
stability, cell uptake mechanisms and in vivo efficacy and toxicity
testing in animal models should be performed. In addition to en-
capsulation of the free AMPs into conventional lipid or polymer nano-
carriers, the strategy of incorporating the AMP as a structural compo-
nent of a lipid or polymer which then self assembles to form a nano-
system can also be a novel alternative.

The interest in AMPs as therapeutic agents has gained much interest
recently, with studies having shown that more than 60 AMPs have
reached the market, with some undergoing clinical trials [213], and
many having distinguished themselves to be the new front runners in
antimicrobial drug development. The current emerging data on AMP-
conjugates and nano-delivery of AMPs further demonstrate their po-
tential to be highly effective and advantageous in treating patients
suffering with bacterial infections of both susceptible and resistant
nature. Collaborations amongst a highly multidisciplinary team of re-
searchers is therefore highly warranted to realise the future commer-
cialisation of AMP-conjugates and AMP nano delivery systems.

Based on the approaches stated in this review, which utilises various
strategies in AMP development, it is envisaged that in the next decade
we can expect a rise in AMP based antibiotics that will have the ability
to circumvent drug resistance. Owing to the emergence of AMP con-
jugation to various compounds, we believe that AMP development will
go beyond the scope of targeting pathogenic bacteria. As natural AMPs
possess immunomodulatory functions, we believe that future studies
will focus on molecular mimicry by AMPs for T-cell activation, as well
as the nano delivery of AMP conjugates to release them to specific
immune cells for enhanced immunity.

Collaborations amongst a highly multidisciplinary team of re-
searchers is therefore highly warranted to realise the future commer-
cialisation of AMP-conjugates and AMP nano delivery systems.
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