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Lady Anne's voyage was a long one. After passing Madeira and the Canary Islands, 

and reaching the low latitudes of the Cape of Good Hope, her ship, the Guardian, was 

blown into the icepacks of the southern Atlantic. Eventually, there came a change of wind 

and the 'joyful news' that land had been sighted. Alas, the sea mists and fogs were still so 

thick as 'not to permit us to enjoy its appearance till we were exactly placed in the Bay 

opposite to Cape Town... Then, as if by one consent the Lion's Rump whisked off the 

vapours with his tail; the Lion's Head untied, and dropped, the necklace of clouds which 

surrounded its erect throat, and Table Mountain over which a white damask table cloth had 

been spread half way down showed its broad face and smiled'. 

- Tristram Hunt, Ten Cities that Made an Empire, 2014 
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ABSTRACT 

The development and progression of architecture throughout the ages has been for the most 

part as a result of the influence of new technologies. Today, more environmentally 

responsible and innovative buildings are being constructed thanks to research and 

developments in technology. As the information age transforms into the digital age, the trend 

for digital integration into every-day life is becoming the norm. Concurrently, the promotion 

of sustainable living in our society has been facilitated by digital technology.  While digital 

technology and sustainable living might seem like completely different fields, they are more 

interconnected than we may believe. This dissertation explores how digital technology can 

enhance an environmentally responsive architecture. The thesis provides principles for 

developing a connection between digital technology and environmental architecture in order 

to facilitate a sustainable approach toward sourcing water.     
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1.0 INTRODUCTION 

1.1.1 Background: 

 

Buildings account for a substantial proportion of gross energy consumption in the industrialised 

world through services such as air conditioning, heating, lighting and ventilation (Hawkes et al., 

2002). Third world economies such as China who are embracing industrialised economies are 

becoming recklessly extravagant in their energy demands, becoming major sources of 

environmental pollution. 

Throughout history, the impact of architecture on the environment has steadily increased, 

contributing to a high percentage of carbon dioxide emissions, raising air temperatures significantly, 

as well as using a large amount of water (EPA, 2009). Furthermore, the use of land is increasing at 

a dramatic rate which greatly harms the various natural ecosystems, and at the turn of the 20th 

century its negative impact began to be scrutinized by environmentalists. Architects are responding 

to this by designing buildings which consider the environment as well as address their energy 

efficiency in order to reduce our dependence on natural resources. This led to many architects 

(Frank Lloyd Wright was arguably the first) adopting passive technologies such as sun shading, the 

use of natural materials and building orientation, which would consciously provide a standard of 

comfort to the inhabitants without relying on foreign sources of energy.   

The science and technology behind renewable sources of energy has been growing at an 

astounding pace, but has until recently been received with much hesitation by design professionals 

in the field of environmental design. The environmental movement has been hesitant in adopting 

digital technology, citing it as the primary cause for climate change and the negative impacts on the 

natural environment (Maffey et al.,2015). This is due to the negative connotations associated with 

man-made technologies and the anthropogenic impacts they have had on the environment, such as 

loss of biodiversity, deforestation and pollution. This research considers how architecture can be 

influenced by digital technology in order to be more environmentally friendly. It seeks to explore if 

digital technology has the potential to help address the environmental crisis and whether it will be 
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the great epoch to a new architectural style. Many avant-garde architects have realised the potential 

in digital technology in various different ways, from fabrication, to documentation, construction as 

well as energy performance and aesthetics. This study will ultimately seek to determine the role of 

digital technology and how it can positively contribute to the relationship between architecture and 

the environment. 

 

Digital technologies impact on architecture is mostly experienced in the abstract form-making of 

various contemporary buildings which have become trademarked by a handful of “Master” 

architects, namely Frank Gehry, Zaha Hadid Architects, Norman Foster and Jan Kaplicky of Future 

Systems, to name a few. The reliance on computational architecture to generate the forms is a 

radical departure from traditional architecture design. These methods have often received criticism 

due to the insensitivity of the designs which often seem to be indifferent to the environmental context 

in which they have been sited, as well as the recurring typology in which it is used (museums, opera 

and theatre houses). Critics of the movement argue that the style is purely aesthetic, however the 

superiority of the architectures ability to adapt to a multitude of complexities has largely been 

overlooked. It is important to note that the methods and theory are very much geared towards the 

correlation between systems, including environmentalism. Whilst this type of architecture for many 

seems to take on more of a sculptural purpose, it is possible to use the various digital methods in an 

environmental context to improve effectiveness.  

1.1.1.1 Contributions of digital technology to the environment 

 

Historically, major technological innovations have had far-reaching environmental impacts, 

some bad and others good (Sui and Rejeski, 2002). The pressure to conserve and protect 

the natural environment has however transformed the way in which technology is being used. 

The introduction of digital and “green” technologies is already helping many sectors of 

environmental movements such as nature conservation (Arts et al., 2015). Termed ‘digital 

conservation’(fig.1), this method relies on data and data integration in order to monitor, 

evaluate, and implement effective strategies towards the conservation project. What makes 
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it so effective is the ability to use high-tech, mass-produced sensors for cheaper, faster and 

more accurate data capture (Arts et al., 2015).  

 

 

 
Figure 1: The five key dimensions of digital conservation. Source, Arts et al., 2015 

 Sustainable energy is one of three most important global problems along with healthcare 

and water scarcity (Vergragt, 2006). Reductions in toxic vehicle emissions of 70-80% since 

1977 were made possible by innovations in electronics, and energy-related greenhouse gas 

emissions are being slowed down thanks to innovations in fuel cell technology and the use 

of natural energy sources, such as the sun and wind (Austin and Macauley, 2001).  

 

Digital technology has also impacted water scarcity by allowing innovations of sourcing and 

purifying potable water. One of the most technological advances is in desalination, which 

essentially removes the dissolved salt and impurities from ocean waters (Llamas and Gunn, 

2008). One of the methods for desalination involves a process called reverse osmosis, which 

became possible due to advancements in chemical engineering and membrane technology 

(Service, 2006). The benefits of reverse osmosis compared to multi-staged flash distillation 

(using heat to evaporate water) is the reduced amount of energy required for the process. 
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The downside to this technology is the negative impact that desalination can have on the 

environment, such as air and noise pollution and high concentrated discharges of brine and 

other chemicals to name a few (Mutatz, 1991). Desalination is currently being heavily 

researched in order to find ways to minimize negative environmental impacts. 

 

Other innovations in water harvesting around the world include the use of rain-water 

harvesting technologies. Geographical Information Systems (GIS) provide the ability to 

identify the best potential sites for rainwater harvesting, and include maps of rainfall, slope, 

soil texture, drainage, soil depth and land cover (Mbilinyi, 2007). In the North Western 

Himalayan Region, Jammu, water scarcity is being combated with the help of GIS and 

remote sensing to find out where the moisture deficits and surpluses are. Thanks to these 

technologies, suitable sites for rainwater harvesting were identified (Jasrotia et al., 2009). 

 

In Cape Town, the reliance on surface bodies of water which are replenished by rainfall 

resulted in a water crisis, due to longevity of the drought. The water shortage in the Western 

Cape has influenced commercial, private and public sectors and driven the need to explore 

alternate water sources. Some suggested methods for sourcing water have been 

desalination plants and boring for groundwater, both of which have many negative 

environmental implications. Fog water harvesting has proven itself successful as an 

alternative source of potable water in many arid regions of the world, including Namibia in 

the south western part of Africa, and the Atacama Desert in Chile. The research will attempt 

to drive awareness on sustainable water sources which go beyond traditional methods of 

collecting water through the influences of digital technologies.  

1.1.1.2 The relationship between digital technology and environmental design 

 

Digital technology has the potential to assess the complex nature of the architectural design 

process holistically. While the typical design process is linear and sequential, to achieve 

maximum efficiency the optimization of the system as a whole - by addressing building form, 
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envelope, orientation, glazing area and a host of interaction and control issues involving the 

building’s electrical and mechanical systems - is required (Metz et al., 2007). The possibility 

for near perfect optimization for all of these is reliant on modern technologies and systems 

which are integrated into the design, throughout the entire design and building process. 

Thus, with the aid of digital technology and the advancements of materials, the possibility for 

the improvement of environmental design can be researched.  

1.1.2 Motivation: 

 

Innovations in digital technology have resulted in many design tools becoming digitalized.  These 

methods rely on the strength of computational software to accurately translate data into real world 

parameters which can be translated by people into a design which achieves the most optimal 

environmental response.  Architectures capacity to respond to environmental factors has 

traditionally been static, passive and fixed. As humans we require a stable core temperature to 

survive and as such the shelters we create need to maintain a stable environment (Meagher, 2014).  

This environment is generally operated by human interaction such as the opening and closing of 

windows, vents, operating louvres and blinds and air-conditioning. Technology’s influences are 

already being felt through building automation; sensors which respond and adjust to external factors 

such as temperature, humidity and light intensity. Adopting these technologies into environmental 

architecture to address the issues of water security may have the ability to drive awareness and to 

change the perceptions that water shortages are a chronic problem by going beyond traditional 

means of sourcing water. 
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1.2 DEFINITION OF THE PROBLEM, AIMS AND OBECTIVES 

1.2.1 Problem statement 

 

The impact of digital technology in society is experienced in almost all facets of living. With the 

encouragement to live sustainably, many of these technologies are being utilized in architecture in 

ways which minimize energy usage. Despite this, the transition into an environmental architecture 

has been slow and the potential of digital technology to inform an environmentally responsive 

architecture needs to be explored. 

 

1.2.2 Definition of the problem: 

 

The Western Cape, and Cape Town specifically, have been most affected by water shortages, 

prompting researchers across many fields to look for alternate solutions of sourcing water. The use 

of fog to capture water has been used effectively in semi-arid and arid regions which are water scarce 

and which meet the climatic requirements for regular fog. Although effective, the systems used are 

basic and not adaptable. With the recent advancements in technology and digital design, research 

into implementing future proof and “smart” design principles in the outdated technology to improve 

efficiency of collecting water can be explored. Furthermore, the impact that this technology might 

have on the architecture and the changes it might bring to spatial arrangements as well as the 

aesthetics must be explored. 

1.2.3 Aims and Objectives: 

 

The aim of the study is to facilitate a paradigm shift that considers digital technology as a strong 

proponent for environmental architecture and sustainable design. This in turn aims to drive a shift in 

paradigm which considers water scarcity as a chronic challenge by looking beyond conventional 

water supplies as a backdrop to address local water scarcity. 
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The objectives of this study are: 

 

1. To explore how digital technology and computational design can inform environmentally 

responsive architecture  

2. To explore the evolution of architecture within current technology. 

3. To contextualise digital technologies and environmentally responsive architectures in the 

South African context 

1.3 SETTING OUT THE SCOPE  

1.3.1 Delimitation of research problem: 

 

The focus of this dissertation is on the impact and influences of digital technology on environmental 

architecture, specifically in the South African context. The issues of water conservation, alternate 

water sources and sustainability will be addressed through the corresponding architectural lens. The 

impact that this might have socially will therefore not be covered. The systematic complexities of 

Parametricism are intricate and varied, and can be applied to small scale design as well as large 

urban schemes and as such the focus therefore will be solely on the environmental aspect.  Digital 

technology may be applied to architecture through a broad spectrum of ways. For this dissertations 

purpose, the focus will be solely on sustainable and environmental impacts which it may or may not 

affect. 

1.3.2 Definition of terms 

 

GCM 

• A Global Climate Model which mathematically represents the major components 

of the climate system, including, atmosphere, ocean, land surface and sea ice, 

and their corresponding interactions. 
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CAD 

• Computer Aided Design is used to create, analyse, optimize and modify designs 

using a computer system. CAD helps to effectively increase efficiency, 

productivity and quality. 

 

Blobism 

• A sub-style of parametricism. An architectural movement where buildings take on 

bulging, organic-amoeba shaped forms. 

Foldism 

• A sub-style of parametricism. An architectural movement where buildings seem 

to take on the form of folded fabrics. 

NURBS 

• Non-uniform rational basis splines are mathematical representations of 2 and 3-

dimensional objects. NURBS are used in computational design for generating 

surfaces and curves.  

Splines 

• A mathematical function which is used for smoothing or interpolation. 

Digital scripting 

• a list of commands written by a person that are executed by a certain scripting 

engine or program.  
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Environmental architecture 

• Concerns itself with minimizing the negative impacts of built form to the 

surrounding environment through efficiency and moderation in the use of energy, 

materials, and the ecosystem at large.  

GIS 

• Acronym for Geographic Information System, a computer system holding multiple 

layers of geographical and spatial data. 

 

 High-Tech 

• Using the most advanced and developed methods or equipment. 

 

Low-Tech 

• Simple technology, often absent from anything mechanical. Traditional, pre-

industrial revolution. 

 

Parametric Design 

• Parameters of a particular design that are declared rather than its shape. 

Parametricism 

• An avant-garde design theory termed by Patrik Schumacher of Zaha Hadid 

Architects. 

Tectonism 

• A sub-category of parametricism and the newest development of the theory 

tectonism aligns itself with materiality within the movement. 

Digital Morphogenesis 

• computationally based processes of form origination and transformations. 
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Digital Technology 

• the branch of scientific or engineering knowledge that deals with the creation and 

practical use of digital or computerized devices, methods and systems. 

Responsive facades 

• Building envelopes or facades which have the ability to respond to their 

environment by either physical transformation or the altering of material 

properties to reflect surrounding environmental conditions. 

Kinetic facades 

• The physical movement of the building envelope or façade, motions or 

transformation in space which don’t compromise the overall structural integrity. 

Digital Design tools 

• Grasshopper 

Grasshopper is a plug-in for Rhinoceros 3d, meaning it operates within Rhinoceros 

3d. It is a visual programming language and allows programming to become more 

intuitive by providing a visual representation of various algorithms. 

• Rhinoceros 3d 

3D graphic, computational design software which focuses on the mathematical 

precision of NURBS to generate complex curved and freeform surfaces. 
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1.3.3 Stating the Assumptions 

 

It is assumed that digital technology can play an important role and have a positive contribution to 

sustainable design through an architectural implementation. If successfully implemented, it can 

potentially respond to a variety of environmental concerns. The assumptions are that digital 

technology can help to address the problem of water scarcity in Cape Town by enhancing and 

updating existing technologies to be more effective. Furthermore, it is assumed that this will help to 

create awareness in finding and embracing alternate sources of energy and water. 

1.3.4 Key Questions: 

 

Primary question: 

 

1. How can digital technology and computational design inform an environmentally 

responsive architecture? 

Sub-questions: 

 

2. What water harvesting technologies have been implemented to inform an 

environmentally responsive architecture? 

3. What technologies in a South African context are relevant in order to facilitate an 

architectural response to the water crisis in Cape Town? 
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1.4 CONCEPTS AND THEORIES 

1.4.1 Introduction 

 

The digital approach to architecture and environmentalism concerns itself with improving various 

sustainable systems using technological means. This may happen during the design stage and in 

the final built form or even in both. In many cases, these influences appear in the form of automated 

systems which allow the building to adapt to various environmental, economic and social conditions.  

Digital technology also translates into the use of cutting edge materials and various ways of 

constructing a built form. Finally, technology is increasingly being integrated into our daily lives in the 

form of personal computers, cell phones and cars, and is rapidly being introduced into buildings in 

ways to control things such as ventilation, light and interior temperature.  

Theorizing this technological approach to built form is perhaps best understood by looking at 

environmentally responsive architecture and adaptive architecture, which as the name suggests, 

allows buildings to adapt to a multitude of conditions. Another important theory to look at is 

parametricism, which currently may be associated with neo-futurism.  

Parametricism, as an architectural style is immediately recognizable due to the abstract, free-form 

shaped architecture. What separates this style from “regular” modern architecture, is the use of 

various digital design and form-finding tools which allow the generation of such complex forms. 

These design tools have the fundamentals required to respond to environmental challenges by being 

able to simulate conditions. Furthermore, interactive systems and non-static building components 

can be animated and their behaviours visualized virtually.  
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1.4.2 Environmentally Responsive Architecture 

 

Environmental architecture is in essence an ecological and aesthetic response to the buildings 

surroundings, in a harmonious way. Its relationship with architecture has been considered at its 

earliest with Vitruvius, (fig 2), (Fieldson, 2004).  

 

 

 

Figure 2:Vitruvius fundamentals to building. Source: Authors own edited from Fieldson, 2004 

 

These three requirements, (fig.2) considered the fundamentals to building, were evident in many 

vernacular building types which allowed the survival of communities in harsh environments 

(Fieldson, 2004). Vernacular buildings were made from locally sourced materials and responded to 

the various seasons, which made them environmentally responsive. Over the years, the influence of 

fashion and aesthetic resulted in a removal of these values, as “exotic” materials sourced 

internationally (at a great cost) became popular.  A resurgence in vernacular ideologies of making 

buildings however, has resulted in environmental architecture stemming from anti-industrial 

revivalists on the one side, and passive design theorists looking for a new model on the other.  

 

Industrialization and increasing energy demands have taken the brunt of environmentalist criticism, 

but it is widely accepted that the influence of technological advancements led to the improvements 

of architecture (Fieldson, 2004). The introduction of electricity and internal lighting for example was 

a considerable factor in how architecture advanced and firmly stamped its intention on ridding the 
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inadequacies of vernacular design (Fieldson, 2004).  Olgyay (1963), provided his interpretation of 

the relationship between architecture and the environment, as seen in figure 3. 

 

  

 

Figure 3: Olgyay’s interpretation of the fundamentals to building. Source: Authors own, edited from Fieldson, 2004 

 

This interpretation (fig.3) requires technology to be present in order to create an optimal environment 

in the built structure. The progression of technology, especially digitally, has the potential for 

addressing environmentalist concerns in an innovative way.  

 

With technology and industrialization, modernism imprinted itself on everything during the 20
th 

century. It moved away from ornamentalism, embraced simplicity and minimalism and placed an 

emphasis on structure and materialism. This resulted in rectangular, rigid buildings, cream or white 

in colour (generally) with static, disorientating layouts. During this period when architecture was 

largely a proponent of the ecological and economic crisis associated with industrialization, 

environmental and “green” or “sustainable architecture” was only being practiced by a handful of 

prominent architects.  
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The effects of modernisms uncertainties, which was marked by a few styles including 

Postmodernism, Deconstructivism and Minimalism, are still felt today and should be closed to allow 

for a new movement which is able to better deal with various complexities. Environmental 

architecture is in essence an ecological and aesthetic response to its surroundings in a harmonious 

way. Environmental design encompasses sustainable practices and promotes design strategies 

which rely on the function of the building as a selective filter for the conditions that determine human 

comfort (Hawkes et al., 2002).  

 

In the past, humankinds need for defence against nature’s elements resulted in architecture which 

was removed from the environment and damaging to nature itself. In an effort to preserve nature, 

environmental architecture seeks to impart a more responsible and responsive relationship with the 

natural environment. In order to reduce negative environmental impacts, Rayner Banham (1969), 

proposes the idea of ‘selective design’. This theory proposes that the environmental process of a 

building should selectively be organized through form and construction, the intention being to 

dissolve dependence on mechanical systems of environmental control (Hawkes et al., 2002).  

1.4.2.1 Selective vs. exclusive design 

With the introduction of power-operated systems for environmental control came significant 

energy consumption, and a new phase of architecture began. During this time, it was 

believed that technology provided a solution to most problems. The most effective approach 

for mechanical systems comes in the fine-tuning stages of an environmentally capable 

building structure, which adheres to selective environmental principles (Hawkes et al., 2002).  
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The general characteristics of exclusive vs selective mode buildings are shown in table 1 

below. 

To determine the relationship between the internal and external environment, the distinction 

between “exclusive” and “selective” modes to control the environment need to be identified (Bay and 

Ong, 2006).  

Exclusive design (table 1) deals with minimizing the impact of the natural exterior climate, on the 

interior of a building. Mechanical and electrical systems as well as an enclosed building envelope 

result in a building which is almost entirely artificial.   

Selective design (table 1) is an answer to the separation between exclusive design and nature, and 

introduces the notion to achieve holistic interior conditions by working with the natural environment. 

Table 1: Table demonstrating the differences between exclusive and selective design. Source: Author edited from 

Olgyay, 1963 

EXCLUSIVE MODE SELECTIVE MODE 

ENVIRONMENT IS AUTOMATICALLY CONTROLLED 

AND PREDOMINANTLY ARTIFICIAL 

 

Environment is controlled by a combination of automatic 

and manual means and a mixture of natural and artificial 

elements 

SHAPE IS COMPACT AND AIMS TO MINIMIZE 

EXTERNAL AND INTERNAL ENVIRONMENT 

INTERACTION 

Shape is dispersed and aims to maximize the collection 

of ambient energy 

ORIENTATION IS UNIMPORTANT Orientation is a crucial consideration 

FIXED WINDOWS AND RESTRICTED IN SIZE Windows vary in size and depend on room size, 

orientation and function. Solar controls are incorporated. 

ENERGY COMES PRIMARILY FROM GENERATED 

SOURCES AND IS USED CONSTANTLY 

Energy is primarily ambient supplemented by generated 

sources when essential. Usage varies seasonally 
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Olgyay (1963) further then invented the ‘Bioclimatic Chart’, an analytical system which can 

determine the relationship between climate and comfort for any conditions. Then, a taxonomy of 

environmentally friendly building forms can initiate an appropriate design. Whilst this might be an 

effective solution, it does not take into consideration unique environmental situations, and rather than 

be adaptive, simply remains a reactive solution. By inputting environmental parameters digitally into 

software, greater customization of form is achieved, unique to the site and its conditions. The building 

relies on its form, but also responsive automation in order to provide the maximum comfort at all 

times, whilst keeping energy input low. 

1.4.3 Adaptive Architecture 

 

If adaptive architecture were to be defined, a line would have to be drawn between what is adaptable 

and what is adaptive. Buildings are all adaptable, being able to be altered manually through human 

intervention (fig 7, 8), whilst adaptive architecture is specifically designed to function automatically 

as a built-in system within the building to adapt to either the external and internal environments (fig 

5.), or the objects and inhabitants within. 

 

Figure 4: Flood house adapts to its immediate environment, rising and falling with the tides of the Thames estuary. 

Source: Brotherton Lock, 2016 
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Figure 5: The new headquarters of the Institute of Environmental Science and Technology and the Institut Català de 

Paleontologia (ICTA-ICP) in Barcelona is wrapped in a responsive, bioclimatic skin which reduces water consumption up 

to 90% and energy consumption levels by 62% Source: Inhabitat, 2015. 

 
Figure 6: Adaptive design strategies such as automated louvres for ventilation and solar control, as well as adjustable 

solar panels. Source: Architecture AU 2011 

 

Figure 7: passive design strategies are static in nature and cannot adapt to large variety of environmental conditions. 

Source: http://www.eere.energy.gov, 2018 

Adaptive Architecture is primarily concerned with buildings which are specifically designed to adapt 

to a changing environment, which is steadily becoming the main concern as sustainable design 
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evolves. According to Frazer (1995), architecture should be a “living, evolving thing.” And Le 

Corbusier (1923) famously called architecture “machines for living in.” The connection between 

architecture and living things is very static as buildings are just a rigid, permanent space for human 

habitation. Adaptive architecture then suggests that the architecture itself may be the managing 

system of the spaces and interactions within the built form. 

 

The adaptation process can be through automation or by human intervention and often relies on 

digital technology to function, which is the primary driver of the research (Schnadelbach, 2010).  

The concept of adaptation has become important to architects who realise that flexibility of a building, 

whether it be in the buildings envelope or even in interior spaces, can ensure a positive response to 

events (climate change) which may unfold in an unpredictable way.  

 

Adaptive architecture has a broad range of implementation in architecture as well as other disciplines 

and is thus difficult to categorize as one specific field. According to Schnadelbach (2010), its range 

extends from eco-buildings, to art installations, media facades and artificial intelligence. Ultimately, 

buildings which adopt strategies that allow them to be flexible or dynamic, that is, the ability to change 

spatial form and function as well as the ability for the buildings envelope to change, take preference 

over buildings which exists as static objects (Schnadelbach, 2010). The process of having a variety 

of disciplines on board to create innovative designs to address an adaptive architecture is a great 

advantage, however may cause perceptions of extreme complexity and disjointedness.   

 

The key driver in environmental adaptiveness lies in the motivation to live more sustainably. Striving 

to live sustainably has manifested itself in our society to the extent where adaptive elements are 

used to control interior comfort levels as well as energy expenditures (Schnadelbach, 2010). This 

may be done in a variety of ways including adaptive surfaces of buildings (adaptive facades 

externally and digital image projection on internal surfaces), adaptive components and modules 

(such as re-usable components and adaptive internal partitions), spatial features (transformation of 

orientation, form and location) and technical systems (sensors, actuators and system software).  
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Some adaptive elements of internal environments are things such as lighting which can have a 

profound effect on occupants’ mood and wellbeing. (Christoffersen, 2011). Furthermore, airflow and 

air quality may be optimized according to various environmental parameters such as high C02 levels, 

and the temperature can be controlled either through full automation or through user assisted 

automation. There are many strategies for adaptive architecture, such as re-use, mobility etc, the 

focus for this research is however geared towards automation. How much of the building is 

automated is dependent on the buildings context. Automation is based on a pre-programmed 

system designed to respond to a certain time frame of events and can then be introduced to respond 

to a variety of stimuli. The effects that it has on a building are either visible as an external component 

such as a façade or envelope, or internally as adjustable spaces. 

 

Adaptive architecture translates to flexibility in a building and is really governed by the buildings 

context. As discussed, there are various situations in which different adaptive methods can be 

implemented into the built form. In the case of sustainable and environmental architecture, the 

adaptations would exist to improve the sustainability of the building by replacing expensive 

mechanical systems such as air-conditioning with systems which rely on various passive design 

strategies to ensure thermal regulation, lighting and air quality conditions. The initial cost as well as 

the running and maintenance cost of adaptive systems are much lower, due to less energy 

requirements, and can produce much better results.  

The impact that this might have on the architecture can range from being very subtle, relying on 

sensors to control the internal environment, to becoming the primary design strategy which affects 

the buildings external aesthetics and internal spaces. It is clear, however, that adaptive architecture 

is an important theory in understanding the implications that digital technology may have on 

sustainability and environmental architecture.  
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1.4.4 Parametricism 

 

Coined in 2008 by Patrik Schumacher, Parametricism describes a contemporary, avant-garde style 

of architecture which is projected as a successor to post-modern architecture. According to 

Schumacher (2008), the defining characteristics of this style are the parametrically malleable 

elements across the architectural product (fig.8). The design parameters are all variables, digitally 

designed and fabricated, which allow the designs to adapt to various complex requirements. Instead 

of relying on traditional and classic geometries such as rectangles, circles, spheres, cubes and 

pyramids, Parametricism relies on splines, NURBS, and subdivisions. 

 

 

Figure 8: Nordpark cable railway, Innsbruck, Austria, Zaha Hadid Architects. Source: www.austinsails.com, 2016 

Of the five agendas intended to further the parametric paradigms, parametric responsiveness, which 

deals with kinetic adaptation, can be most related to environmental design. According to 

Schumacher (2009, p.17), ‘urban and architectural environments possess an inbuilt kinetic capacity 

that allows those environments to reconfigure and adapt in response to prevalent occupation 

patterns.’  In essence, the architecture seeks to establish a complex spatial order, using digital 
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scripting to differentiate and correlate all subsystems and elements of a design. This allows all 

elements of the architecture to be interconnected and to function as an eco-system. Parametricism 

in its infancy stages concerned itself with various sub-styles such as ‘blobism’ (fig. 10) and ‘foldism’ 

(fig 9). 

 

Figure 9: The Heydar Aliev Centre by Zaha Hadid Architects illustrates the concept of foldism. Source: Hufton 

Crow/Zaha Hadid Architects, 2013 

Foldism as a style concerned itself with the architecture being one continuous flowing element rather 

than many joined together, whilst blobism formed architecture that had an organic, blob, or amoeba-

shaped form. These sub-styles resulted in architecture of continuous curves made only possible by 

the use of steel frames clad with polypropylene or fiberglass sheets and were mostly white in colour. 

This is most problematic in terms of contextualizing place, and thus a new sub-style emerged called 

Tectonism.  

The epoch to a new style of architecture is how Patrik Schumacher (2008) envisions parametricism. 

The theory describes this new style to consist of malleable elements which are not constrained to 

classic geometric shapes such as squares, rectangles, etc. It makes use of computational software 
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to manipulate form into any shape imaginable and thus exploring new and alternative ways of 

interlinking various spaces and functions.  

Parametricism can be seen as elitist; only a handful of architects have been able to utilize this style 

in real buildings. This may be due to the immense cost of engineering and constructing such complex 

forms, and the multitude of challenges which come with it, not to mention a very open and forward-

thinking client. The trade-off is an architecture with a spatial freedom and expression and sculptural 

qualities not experienced in traditional, non-computational architecture. It is difficult to justify the 

worth of such an architecture, and thus the focus of parametricism in this research proposal falls 

onto the digital tools used to design it.  

Parametricism makes use of various software such as Grasshopper, Rhinoceros 3d, and even 

Autodesk Maya (an animation software) to visualize complex shapes and forms. Its real strength lies 

in the ability for optimization and simulation and architects with the know-how for coding are also 

able to write specific scripts to solve very specific project related challenges.  

 

 

Figure 10: The Kunsthaus in Graz, Austria, designed by Archigram founders Peter Cook and Colin Fournier is a blobism 

landmark. Source: citylab.com, 2017 
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1.4.4.1 Parametricism in environmental architecture 

Whilst Schumacher (2010, p.1) suggests that “style is virtually the only category through 

which architecture is observed and recognised. A named style needs to be put forward in 

order to stake its claim to act in the name of architecture”, parametrics may actually be a style 

where aesthetics is a result of environmental, sustainable architecture and not the other way 

around with predetermined styles of fashion (Schumacher, 2009). Whilst styles in the past 

created aesthetics by utilizing theory which could be informed by various trends or 

ideologies, parametrics is entirely pragmatic.  

The software used are programmed to search for solutions based on constraints or a set of 

given parameters. If for example the parameters related to environmental design such as 

prevailing winds, pressure zones, orientation, natural light, comfort and massing, the 

software will search for the ideal solution based on the set of constraints, forming iterations 

of the ideal shapes. The difference between this method of design and traditional, linear 

design methods, is that the parametric systems function as a spreadsheet, where the values 

are interdependent of one another. This means that by changing one value, the entire project 

is modified automatically whilst maintaining pre-determined parameters between areas, 

functions or elements. This is a very effective way to manage efficiency in projects both small 

and large and is a method being adopted by many architects.  

1.4.4.2 Tectonism 

Much like traditional Tectonics, the emphasis is placed on materiality, and materiality of the 

context. Tectonism concerns itself with material performance and aesthetics (within the 

dogmas of Parametricism), and seeks to revolutionize traditional methods of utilizing 

traditional materials through the use of advanced fabrication techniques (fig.12). Essentially, 

tectonism allows much greater expressive variety. According to Patrik Schumacher (2007, 

p.113), “tectonic articulation is understood as the architectural selection and utilization of 

technically motivated, engineered forms and details for the sake of a legible articulation that 
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aims at an information-rich, communicative spatial morphology, for the sake of visual or 

tactile communication”. 

 

Figure 11:ICD/ITKE Stuttgart Research pavilion 2013-2014 represents tectonic articulation through its woven form. 

Source: designboom, 2013 

1.4.5 Parametricism as an informant for adaptive architecture 

Parametricism forms the basis for adaptive architecture and computation by generating design 

solutions through the use of digital design tools such as parametrics, simulation, optimization and 

generative design. Parametricism also describes a type of art in which the power of computational 

processing is used to generate complex shape and form development relying on various different 

design methods (Kolaveric, 2000). The impact that this might have on environmental architecture is 

rather significant. With the help of computational processing power, the collection of various data 

such as weather patterns can be synthesized and projected to develop an architectural language 
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which we use to respond to the environment. Furthermore, the use of prediction software has the 

ability to accurately predict conditions which the designer can account for in the early stages of 

design.  

1.4.5 Conclusion 

 

From an environmental perspective, adaptation plays a crucial role in its preservation, and is 

important to enhance and protect the natural environment. In order to survive in our ever-changing 

conditions, mutations need to happen. For the built environment to co-exist with the natural 

environment, the most important form of adaptation is structural. Parametricism and adaptive 

architecture are theories which challenge the traditional methods of construction which are rigid and 

can be adapted, but are not by nature adaptive. These theories further seek to create buildings which 

will encourage the user to adapt its behaviour. Additionally, in order to improve old systems and to 

respond to new challenges, new design and construction methods and tools are required. 

Parametricism and Adaptive Architecture are at the forefront of harnessing cutting-edge technology 

which has the ability to address the ever-changing, complex nature of our environments. 

 

The following chapter will discuss the research methods and research materials which were used to 

gather the relevant information. Additionally, it gives a brief explanation why specific methods and 

materials were used. 
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1.5 RESEARCH METHODS AND MATERIALS 

1.5.1 Research Methods 

 

The approach towards this research is primarily qualitative in nature, making use of primary and 

secondary data. 

The primary qualitative method involved the use of semi-structured interviews with leading 

authorities and workers in the field of computational design as well as structural and Mechatronic 

engineers, and environmental architects. Each field sought to collect semi-structured interviews 

from one and two workers/experts of each field respectively, in total 3 respondents, in order to 

evaluate similarities and differences. This small sample size ensured that all information gathered 

could be thoroughly explored. Observational data was also collected from the particular site in its 

climatic context. 

The secondary research method involved the use of literature, particularly relying on relevant and 

up-to-date material published in books, journals and on the internet. Dissertations as well as 

precedent studies were used as examples to justify research and were of relevance to the research 

and the context.  

Key information on Fog harvesting in the Western Cape was provided in literature by Jana Olivier, 

(2002, p.349-359) from the University of South Africa. 

Respondents from Zipcord Industries and Modena Design Centres deemed critical for the research 

were identified. There was one respondent from Zipcord Industries specialising in building 

automation, and two from Modena Design Centres in Cape Town, one of who specialises in software 

engineering and applications, and the other respondent in environmental and sustainable design 

and software.  

 

Key ideas and questions relevant to each particular respondent was provided in order to promote a 

discussion. The interviews were voice recorded and key elements highlighted for further analysis. 
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1.5.2 Research Materials 

 

The literature which was analysed gave insight into Adaptive architecture and Digital design methods 

for enhanced environmental performance. Key ideas and or concepts formed part of the discussion 

within the semi-structured interviews. 

This research was done in order to determine if the relationship between digital design and 

environmental architecture, specifically with regards to fog water collecting, can produce effective 

and efficient solutions to the current drought and future water resources in Cape Town.  

 

A case study in Cape Town was done to gain a better understanding of its climatic conditions. The 

case study looked at the relationship of the topography of Cape Town and the climate, as well as the 

context of Signal Hill, as it was identified as a suitable site for the research. 

 

Concurrently, literature research was conducted, through the use of published books, journals and 

online sources. New findings or ideas were presented to the supervisor. 

 

Every effort was made to ensure that the topic of discussion was approached in an unbiased and 

critical manner. Every effort to ensure academic rigour throughout the research process was made. 

The research presented was done in an ethical manner and all sources are referenced. 
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CHAPTER 2.0 

2.1 INTRODUCTION 

Architectures path towards the digital really first began in the early 1990’s when electronic 

technology began to influence and change almost every aspect of daily life (Carpo, 2013). Whilst 

electronics were revolutionizing society, architecture, despite having high expectations of being at 

the forefront of change, was not following suit. This is still true in the AEC industry today and occurs 

as a result of the uncertainties of being ‘first-adopters’ of new technologies (Becerik-Gerber, 2011). 

Furthermore, the lack of training to use new technologies also plays a significant barrier in adopting 

new methods of design, especially when time-management is crucial for design professionals whose 

need get things done outweighs learning a new way of doing it. During this time, many Architects 

assumed that the influence of electronics would transpire to traditional mortar and brick buildings 

being replaced by designs in virtual reality; codes existing in cyberspace - a radical alternative to the 

physical existence of a building. The change however, would ultimately develop more slowly. The 

introduction of digital tools for fabrication and design would not radically change the architecture 

itself, but would change how physical buildings were made (Carpo, 2013).    

To understand how the relationship between environmental architecture and computational 

architecture is evolving, this chapter will focus on the digital influences of computer software on the 

design and fabrication of physical buildings. In turn, the various implications this might have on 

sustainable and environmental architecture will be explored. This will help to understand the 

relationship between digital technology and environmental architecture. 

The various components will be briefly explored in the following sub-chapters: 

I. Splines and the roots of computational design 

II. Environmentally responsive architecture 

III. Digital technology in architecture 

IV. Adaptive and Kinetic Facades 
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V. Fog-water harvesting 

VI. Merging Fog-water harvesting and the built environment 

2.2 THE ROOTS OF COMPUTATIONAL DESIGN  

In order to understand how digital technology became more widespread in architecture and design, 

it is important to know what specifically was so ground-breaking that it ended up changing the course 

of the AEC industry. Curves have for many centuries existed in architecture, as is evident in Roman 

arches, where they were structurally quite important. In ancient Greece, they were used 

aesthetically, for example, the entasis made columns appear to be bulging under their load 

(Townsend, 2015). Computers and CAD had already existed for some time, and it was really the 

introduction of the spline curve which led to digital and computational design as we know it today. 

The term spline originally referred to the flexible bows of wood which made up the cross sections of 

boat hulls. Today, splines can be defined by various definitions, the most basic being a flexible, 

computational curve (Steenstrup et al., 2016). However, in building design, the spline takes on a 

geometric definition, where it is most often used in NURBS modelling. NURBS stands for Non-

Uniform Rational B-Splines which are mathematical representations of 3-D geometry. This allows 

any shape from a simple 2-D shape, line or curve to the most complex free-form or surface of a 3-D 

model to be accurately described (Townsend, 2015). This means that any shape created from 

NURBS can be manufactured. This is applicable in multiple disciplines, from various engineering 

components to furniture design and ultimately, architecture.  

New technical development of spline modelers in the early 1990’s in the form of software were made 

possible by cheap processing power. This allowed designers to directly manipulate spline curves 

using control points directly on a screen. This resulted in the development of two lasting design 

consequences: continuous splines, and parametric functions which would determine whether lines 

or surfaces are created (Carpo, 2013).  This allowed designers the freedom to visually express their 

ideas without being limited by their design tools.  
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Figure 12: Casteljau’s method creates points (black) at proportional distances. Then new points are created to connect 

these points (pink) and this process is repeated until one final point remains. Source: Sto Editors, 2016 

As splines progressed, each geometrical representation expanding on previous ones, greater 

inclusivity was created. NURBS and subdivision surfacing are allowing the designer to create objects 

without the traditional constraints of blending different surfaces from various fixed construction 

geometries (Townsend, 2014). The implications of this? Splines are bringing mankind ever closer to 

complete mastery of form.  

 

 
Figure 13: The control points of NURB’s can be manipulated individually. Source: Sto Editors, 2016 

With mastery of form, the challenges for architects now not only present themselves as needing to 

master certain software knowledge to create free forms, but rather in how to feasibly bring these 

forms to life. Architecture and engineering have made advances in this regard by using computation 

to rationalize irregular forms into discrete components for fabrication and assembly (Townsend, 

2014).  
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2.2.1 Digital design theory 

 

Carpo (2014) argues that the anti-mechanistic ideologies from digital designs earlier times often 

drew on psychologistic and ‘ethereal’ notions of cyberspace and immersive environments. Today, 

the uniqueness and magic of craft have furthered a more spiritual approach to digital tectonics. The 

emergence theories of the early 2000’s were inspired by less spiritual, but more technological 

ideologies, which still form part of contemporary digital design, particularly in performative design 

experimentation.  

2.2.2 The influence of 3-D Printing 

 

The introduction of 3-D printing in 2013 allowed craft and industry to merge, and complexity in 

modelling to be realized. Complex surfaces and new materials are able to be created with almost no 

limits. Many advantages of 3-D printing include being able to discard of moulds, and the elimination 

of waste materials as experienced in milling, where a shape is cut and the material around it 

discarded. The true strength of 3-D printing however lies in its ability for custom design, where for 

example, optimized structural nodes for certain parts of a building can be created.  

When thinking about computational architecture and 3-D printing from an environmental 

perspective, the possibilities for the creation of a building which serves the environment are very 

conceivable. Kengo Kuma, Japanese architect and professor at the Graduate School of Architecture 

at the University of Tokyo is one such architect who relies on digital design to produce architectures 

which serve the environment. He recently produced a spiralling, air-purifying sculpture able to 

absorb the emissions of up to 90 000 cars produced each year.  
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Figure 14: “Breath/ng” by Kengo Kuma is a sculpture made from a fabric that filters air. Source: Luke Hayes, 2018 

The sculpture aptly named “Breath/ng” is made from a new cutting-edge material which contains a 

nano-molecule activated core which has the ability to separate and absorb toxic molecules by using 

the natural flow of air (Novozhilova, 2018). Made from hand folded panels, the entire structure is 

suspended from carbon rods and fixed in place by 46 unique, 3-D printed joints.  

2.3 DIGITAL TECHNOLOGY IN ARCHITECTURE  

Since its inception, digital technology has played a major role in Architecture. The connection 

between architectural design and other disciplines is either direct, for example, a BIM collaboration 

with a structural engineer, or indirect, as a platform for the translation of data.  The combination of 

this is where the power of technology becomes apparent.  

The first part of this chapter will briefly provide a background on the predominant tools used to bridge 

the connection between technology and design. The second part will focus on the influence which 

these technologies have on the architectural and design process. The intention is to provide a 

technical knowledge foundation to understand the many ways in which digital technology may be 

used as a tool for environmental and architectural design. 
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2.3.1 The computer 

 

At the core of digital technology lies the computer which through development has provided the 

ability to process vast amounts of information. The reciprocal effect of this has been an exponential 

increase in access to information which in turn has demanded an increase in processing ability.  The 

computer has evolved from being a programmable, general-purpose, computation machine, to a 

machine which can augment the ability of man to deal with complexity (Loveridge, 2012). 

In the design professions, computers are more frequently being used to develop new methods of 

design, through digital scripting and software design, and to manage complexity. In this regard, the 

power of computers to respond to problems has reached new heights. Processing power in the 

computers of today has increased one-trillion-fold in the last 50 years. To provide some perspective, 

Floating Operations Per Second (FLOPS), which measures the performance of a computer, 

increased from 10 thousand FLOPS in 1956 to over 1 -Quadrillion FLOPS in 2017 for super 

computers. Commercially available hardware, like Video game consoles, Personal Computers and 

smartphones manage over 100 Billion FLOPS (Routley, 2017). The processing power of two 

Nintendo Consoles is the same processing power which powered the Apollo 11 spaceflight. This 

type of processing power has the ability to solve incredibly complex equations in very little time. The 

implications this has on Architecture is difficult to assess, especially when we are still at the beginning 

of the revolution. Climate modelling (GCM) however - the simulation of the interactions between the 

atmosphere, land surfaces, oceans and ice - can help to project future climates and help architecture 

respond as efficiently as possible to the environment - but requires an unimaginable amount of 

processing power. 

Advanced software, which acts as a “translator” for mathematical representation of problems, 

enables the contextualization of output for the user. Devices carrying various types of data can be 

“plugged in” to the computer’s hardware enabling it to respond to that specific input. What this means 

essentially, is the ability to solve a magnitude of complex problems given that the required data can 

be collected. These complex numerical results can then be translated to be understood at a human 
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scale. Furthermore, these tools allow for the modelling of geometrical information under the 

mathematical rules of geometry.  

2.3.1.1 Digital Control 

The ability of the computer to exert control is manifested mechanically where precision and 

timing is required and this ability to control machines makes the computer an invaluable tool. 

Digital control has extended to almost all common devices such as cell phones and 

computers and is largely used for physical construction, e.g. robots in automobile 

manufacturing, robotics and printing. The translation of this to complex modelling can now 

happen as the computer is able to simulate conditions (Loveridge, 2012). If, for example, a 

model is encoded with parametric variables, various conditions and contexts can be 

predicted. 

In architectural and environmental design where climatic conditions can be unpredictable, 

the software is not only able to predict performance more accurately, but also determine the 

conditions which provide the optimal performance and in turn, the designer is able to provide 

an optimized solution.   

 

Figure 15: Structure of a digital control system for mechanical machines. Source: Rind, 2016 

2.3.1.2 Digital simulation 

The precision of simulation systems has dramatically improved over the last decade 

(Loveridge, 2012). Everyday workstations have the ability to manage basic to intermediate 

simulation and evaluation, whilst more complex simulations can be accessed via online 

cloud-based services. Software analysis can provide feedback for design decisions or form 

finding (fig. 16), but in the case of environmental requirements evaluation data may also be 



48 
 

used. The quality of the parameters directly influences the quality of the results, which means 

the utmost quality needs to be maintained. According to Loveridge (2012), the criteria for 

evaluation and simulation can be divided into four main objectives: 

1. Design optimization 

2. Structural, energy, environmental or any other objective performance optimization 

3. Safety issues and occupancy performance, and 

4. Manufacturing and construction optimization  

 

Figure 16: Simulating wind movement over a bridge. Danjiang Bridge, Zaha Hadid Architects. Source: Lynch, 2015 

 

There are various digital evaluation tools such as Grasshopper, Arduino, Rhinoceros 3d, 

Dynamo and Autodesk’s Ecotect, which encompasses environmental simulation and 

evaluation.  
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Figure 17: example of how a system may be structured. Source: El-Dabaa,2016 

 

Figure 17 provides a diagram of an approach to an architectural or mechanical system whereby the 

system can be replicated as a virtual model where it is tested in a variety of ways, evaluated and 

optimized, and ultimately implemented in the final product. 

2.3.1.3 Digital output 

In order for the design process to be implemented, instructions need to be provided. These 

typically appear as plans, sections, elevations and 3D visual representations. CAD software 

keeps evolving, allowing various other representations such as exploded axonometric, detail 

views, rendered sections and various other forms of representation. With the introduction of 

VR (virtual reality) and AR (augmented reality) it is becoming more possible for 3-dimensional 

digital models to replace traditional 2-D documents. 

 

 

 

 

 

System 

Experiment with the 

actual system 

Experiment with a model 

of the system 

Physical Model Mathematical Model 

Analytical solution Simulation 



50 
 

2.4 DIGITAL FABRICATION AND ITS INFLUENCE ON THE ENVIRONMENT 

2.4.1 Introduction 

 

The potential of expanding the limitations of environmental architecture lies in innovative technology 

such as digital fabrication. Being able to directly fabricate elements from design information is 

helping many production and design disciplines to transform (Augusti-Juan, Habert, 2017). A study 

performed by Augusti-Juan and Habert (2017) on environmental design guidelines for digital 

fabrication indicated that sustainability of architectural projects was dependent on the production of 

the building materials and the impact of digital fabrication was very similar to the manufacturing 

process of the materials. The study also showed that environmental impact could be lessened by 

incorporating additional functions into structural elements using digital fabrication. Furthermore, the 

study showed that the use of high amounts of highly industrialized materials can be reduced using 

digital fabrication.  

2.4.2 Fabrication methods 

 

The increasing use of manipulating digital geometry has allowed more complex geometry to be 

formed relatively easily, however, traditional fabrication methods have been optimized for Cartesian 

and Euclidean geometries and struggle to deal with the complex forms inherent with emerging 

designs. With the introduction of Computer Numerically Control (CNC) Machines, complex as well 

as simple geometry can be created, as the machine is controlled by digital control system, which 

determines the precision, movement and speed of the modulated step motors. The digital control 

system is directly encoded in the CAD package which issues the instructions, which means the 

machines do not need to be set up manually.  

There are two types of fabrication methods (Loveridge, 2012): 

• Additive 

• Subtractive 
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The additive method includes tools such as 3D printing, which creates 3D objects directly from CAD 

software. Complex forms can be created by creating sections of the model and printing each section 

layer on top of the other sequentially. There are various materials and methods which are used, 

based on the requirements of the design.  

 

Figure 18: (A) 3D-printer, (B), CNC milling machine. Source: YouTube, 2018  

The subtractive method includes the use of milling and CNC machines, which remove material from 

a block, until the final form is realized, the contemporary equivalent of a marble sculptor chiselling 

the marble down to the desired form. Other forms of subtractive fabrication include laser cutting 2D 

shapes and lathing. 

The potential for digital fabrication and digital design to converge to create complex forms is being 

realized across many fields. The challenge however does not lie in the design of complex geometry, 

but rather in the practical application of these tools, taking into consideration efficiency, budget 

constraints or any other specific parameters. The benefits that digital control systems and fabrication 

methods provide, are processing, precision, control and prediction which allows the designer to 

create something with less waste and which is more expressive, more precise and made with more 

control (Loveridge, 2012). Furthermore, the possibility of integration of 3D printing with BIM can help 

increase energy efficiency, be more cost effective and can attribute to better design (Sakin and 

Kiroglu, 2017). 

 

A B 
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2.5 CONSTRUCTION MATERIALS  

Throughout the years there has been little change in the preferred material choice for building 

construction. Brick and mortar, steel and glass, wood and stone are still predominantly used in 

architecture. As technology continues to further influence architecture, designers are looking to 

various other fields to adopt other materials which may be more suited for a particular function, such 

as reduced thermal gain, or an alternative material which has less of a negative impact on the 

environment than traditional materials. The scale of materials in architecture is widening thanks to 

digital technology and digital production which means architects can begin to design more 

sustainable and innovative materials.  3D printing is enabling architects to use recycled materials in 

an innovative way, by mixing recycled plastics and metals into the printing compound. Collaborations 

with scientists and biologists can also create innovative materials, such as self-healing concrete 

which “heals itself” by filling cracks with sodium silicate. This can reduce carbon emissions through 

the prevention of maintenance as well as extending the life of the buildings (O’Keefe, 2017).  

2.5.1 Emerging materials 

 

2.5.1.1 Synthetics 

Various types of “contemporary” materials have begun to emerge in architecture thanks to 

the discovery of techniques such as vulcanizing 1 (Loveridge, 2012). Modern plastic was 

developed using this method, but more importantly the ability to optimize material properties 

was discovered which has allowed for a vast array of unique materials with explicit properties. 

These materials are commonly called synthetics. Synthetic Lightweight Aggregates (SLAs) 

are created from recycled mixed plastics and fly ash and are a more environmentally friendly 

alternative to regular coarse aggregate (Swan, 2009).  

                                                            
1 A chemical process of hardening rubber or related polymers by heating them with accelerators such as sulphur or 
equivalent curatives. 
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Figure 19: Synthetic Lightweight Aggregate can be used for paving and even as a substrate for green roofs.  

Source: carpetrecovery.org, 2015 

2.5.1.2 Composite materials 

Composite materials with explicit characteristics are created by combining multiple materials 

to form heterogenous compositions. These materials are specifically designed to respond to 

an external stimulus and are most often used in aerospace and automotive design where 

strength to weight ratio play a crucial role. 3D composites which fall into this category can be 

created by combining various materials with different compositions (flexible, hard, soft, etc.) 

which allows for a high performative structure. Cross Laminated Timber (CLT) is a composite 

material which is being used that is cost-effective, has improved thermal performance, 

reduced waste, improved design versatility and is also quick to install. Furthermore, the wood 

used for CLT is sourced from a variety of young trees, and essentially any locally sourced 

wood can be used (Pierce, 2017). 
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Figure 20: Polymer Matrix Composites are made from a reinforcing material such as wood, and a polymer which binds 

them together. Source: compositebuild.com, 2013 

2.5.1.3 Re-engineered materials 

Traditional materials which have had something added or subtracted from them to increase 

the performative qualities, are also known as re-engineered materials. One of the most 

common examples is ply-wood, which doesn’t have the normal weaknesses associated with 

the directional grain of timber. Other types of re-engineered materials are flexible/bendable 

glass, fibre reinforced bendable concrete and translucent concrete. Spray Polyurethane 

Foam (SPF) is a product which consists of two components engineered at a molecular level 

and is most often used in insulating roofs, walls and below slab-on-grade. Furthermore, when 

SPF is applied to roofing systems, it increases the wind uplift resistance rating (Harris). 

2.5.1.4 Biomaterials 

In the natural environment, materials respond to external stimuli by modifying their shape or 

material properties e.g. plants which rely on sunshine for photosynthesis will point their 

leaves in the direction of the sun/light source to ensure the maximum amount of coverage 

exposure. These methods of adaptation have influenced the field of biomimetics which seek 

to replicate these systems. Advanced materials have been created through biomimetics, 

such as synthetic spider thread and self-healing concrete (Brownell, 2016). By using digital 

technologies, these kinds of systems can be incorporated into skins, systems and structures 

of architecture. Biomaterials can significantly reduce the waste and impact of construction 

(Becker, Brownell, 2016). 
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Figure 21: Alulight, a lightweight aluminium foam with extraordinary structural properties. Source: transmaterial.net, 

2007 

Biomaterials have low-embodied energy, are renewable and make use of waste repurposing. These 

factors can significantly reduce the impact of construction on the environment.  

 

2.5.2 Smart materials in environmental architecture 

 

According to Philip Ball (1999) Smart materials represent the epitome of a new paradigm of material 

science whereby structural materials are being replaced by functional ones. Smart materials are 

designed materials which respond to changes in their environment, such as light, temperature, 

stress, moisture and pressure (Kamila, 2013). These materials rely on their intrinsic values to 

perform tasks. Thermochromic glass is an example of a passive smart material, which darkens in 

response to heat. In response to environmental challenges however, active smart materials are 

where things get exciting. Active smart materials are part of a system which is controlled by an 

internal signal as well as external forces (Smith, 2003). An active smart system relies on feedback 

which allows the system to respond and adapt to a changing environment instead of being controlled 

passively by external forces (Smith, 2003). Smart materials such as ‘shape memory alloys’ (SMAS), 

return to their original shape after deformation. This can happen due to the crystal structures 

changing when heated. This is incredibly useful for operating ventilation louvres or 
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heating/ventilation diffusers. These types of louvres do not require any energy or electronic systems 

to operate and provide an alternative to the usually pneumatic or motor-based systems (Arup, 2013). 

The extensive use of glass in building envelopes and the challenges of solar protection that 

accompanies it, is a challenge which shape-memory alloys are equipped to respond to. These types 

of louvres have the potential for shading, increased thermal performance in both hot and cold 

weather, as well as reduced energy consumption (Arup, 2013). 

2.6 CONSTRUCTION TECHNOLOGY 

The process of making a building is just as complex as the various stages of design and requires 

coordination between a multitude of specific fields outside of architecture. This process is managed 

more efficiently through the use of Building Information Modelling (BIM )2, a digital method of 

collaboration between consultants. Arguably the most powerful feature of BIM is the visualization of 

workflow and with it the ability to see and respond impromptu to problems (fig.19). Digital tools have 

the ability to save time through efficiencies in production, which in the construction industry equates 

to money. Construction technology can play a major part in environmental architecture and 

sustainability and can be categorized into three main types which will be discussed below.  

 

 

Figure 22: The 3D Modelling of BIM encourages teamwork between the various consultants to ensure that all systems 

have the proper location and clearance from other systems. Source: http://detailingexpress.co.za, 2015 

 

                                                            
2 Specifically, the use of virtual 3D Models 
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2.6.1 Assembly 

 

When something is assembled, it means that various parts are put together in a logical process 

defined by instructions. In turn, efficiency is maximized. In assembly, the complexity of the parts and 

the order in which they are assembled are the main parameters which need to be solved. Digital 

tools are able to solve these issues before they occur on site through customized, unique 

connections which can only be joined in one possible way, and through more common methods of 

specialized labelling. Thus, the design of assembly in conjunction with digital tools can have a 

pronounced effect on the efficiency and speed of construction, as well as the quality of the project 

(Loveridge, 2012). Off-site production is seen as a viable method to increase sustainability by 

manufacturing most of the operations and on-site works in a controlled environment. This greatly 

increases production efficiency whilst having less impact on the environment (Zhai, et.al, 2013).  

2.6.2 Robotics 

 

Robotics has played major roles in industrial manufacturing, the automotive and aero-space 

industries and through the trickle-down effect is slowly being introduced into the architecture 

profession. In a society where terms such as “hand-crafted and “unique” are trending, the appeal of 

robotics and the impression that products created by them are mass produced and not of high quality 

are some of the reasons why robotics has taken so long to appear in architecture. Of course, robotics 

does not represent the industrial machines used to mass produce consumer products. The use of 

robotics on a construction site still has limited use, mainly due to it relying on positioning information. 

A robot needs to operate from a known position or point (often a fixed position) from which to execute 

tasks from. The adaptability of programming as well as the movement flexibility are tools which 

provide certain capabilities too good to overlook by the avant-garde architect. The flexibility of 

robotics allows it to be used as both a tool for mass production, as well as a tool for mass 

customization. Robots are becoming more economically feasible thanks to evolving software and 

flexible working configurations. 
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Figure 23: In-situ fabricator, NCCR Digital Fabrication. Source: robohub.org, 2015 

 

2.6.2.1 Flight assembled Architecture 

Architecture created by flying robots has been envisioned in various screen productions and 

ultimately culminated in the production of “Flight Assembled Architecture”, an installation by 

Gramazio & Kohler and Raffaelo D’Andrea at the Fonds Regional d'Art Contemporain 

(Regional Contemporary Art Fund) du Centre in Orléans, France. This project is a 

combination of biomimicry in the form of swarming algorithms with networked, block carrying 

drones. This type of technology is an answer to the site constraints which apply to regular 

robots. Flying machines do not have the same constraints and have a much larger space in 

which to operate in. This makes it feasible for the machines to work at a 1:1 scale opening 

up a new framework for architects to realize their designs (Augugliaro et al., 2014). 
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Figure 24: “Flight Assembled Architecture”, Gramazio et.al,  

FRAC Centre, Orléans, France. Source: http://editions-hyx.com, 2011 

2.6.3 Design precision 

 

Whilst the precision of digital technology is unquestionably one of its biggest traits, the compatibility 

of tolerances on a construction site can be problematic. Unpredictable conditions on site may cause 

pieces which have been machined with low tolerances to not have the flexibility to fit together during 

site irregularities, whilst too high of a tolerance may equate to poor construction. Ultimately it is the 

responsibility of the Architect and the construction supervisors to determine the correct tolerances, 

which can be helped with the use of BIM, simulation and digital modelling. 

2.6.3.1 Pre-fabrication 

The manufacture of sections, components or even entire projects in an industrial setting, then 

packaged and transported to site for quick assembly on site is called pre-fabrication. The 

advantages in this method include being able to produce each component in all of its 

complexity which can minimize complications on-site as well as reduce cost due to the speed 

of assembly. As mentioned above however, complications can arise due to unpredictable 

on-site tolerances which may result in a pre-fabricated component not fitting (Loveridge, 

2012).  



60 
 

2.7 Conclusion 

 

Digital technology covers a wide spectrum of uses within the built environment. Some of these are 

still being developed, such as robotic construction techniques and new, composite materials. It is 

clear however that the strength lies in the power of the computer.  

Being able to manipulate form so easily has opened the doors for innovation in almost every 

aspect of design. With computing power constantly evolving, complex problems can be solved 

more quickly and efficiently than ever before. Additionally, the scientific input in the creation of 

stronger, more sustainable and biodegradable materials is largely thanks to the ability to shared 

data between many different professional fields simultaneously. 

Chapter 3 will discuss how these types of technologies may directly impact environmental 

architecture with regards to water use, energy harvesting, lighting and building envelopes, before 

analysing specific water harvesting techniques and the technology that is currently used. 

 

 

 

 

 

 

 

 

 

 



61 
 

3.0 INNOVATIONS IN ENVIRONMENTAL ARCHITECTURE 

3.1.1 Introduction 

 

In environmental and sustainable design, digital innovation is the process of utilizing digital tools to 

improve architectural design and to innovate sustainable solutions of building projects. These new 

design processes refer to methods which are computationally mediated rather than conventional 

paper-based methods (Ramilo, Embi, 2015). A building’s exterior envelope in many cases 

represents the architecture within and it is also the buildings envelope which controls the interior 

climate. This is the reason why many innovations in architecture have been around the buildings 

envelope. Being able to control the interior climate using the building’s façade is an extremely 

effective way to create an environmental responsive architecture. Other innovations in architecture 

have occurred in a variety of ways including in the design tools, materials, visualizations, lighting, 

water, and energy and thermal properties. 

3.1.2 Water use 

 

Water use varies between different types of buildings; however, the majority of water usage is still 

attributed to bathrooms and toilets. To reduce the amount of water used in bathrooms, many 

innovations have happened in plumbing fixtures to reduce the amount of water needed to flush a 

toilet or the amount of water being released through a showerhead.  

Structural water saving features, and designs which utilize rainwater to substitute their water needs 

have a direct impact on the architectural design. These innovations often rely on roofs and gutter 

systems to catch and store rainwater.  
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Figure 25: House in the Countryside by Herreros Arquitectos in Spain. 

Source: Archdaily, 2008 

House in the countryside (fig.24) presents a modern, updated take on an innovative design strategy 

to maximise the amount of rainwater which can be collected, by utilizing a butterfly style roof which 

encourages all of the rain which falls on the roof to be directed into one catchment area.  

 

Figure 26: Innovative technologies in buildings. Source: http://www.e2econsulting.co.za, 2017 
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Figure 25 depicts various innovative solutions to deal with challenges involving light, water, energy 

and insulation in buildings. 

3.1.3 Integrated energy harvesting  

 

Innovations in building materials allow buildings to convert energy from the sun into electricity. 

Photovoltaic cells which convert energy from the sun into electricity are already being used 

worldwide. Building Integrated Photovoltaics (BIPV) form part of the architecture and can be 

integrated into walls and roofs. A company has developed a product called Solar Squared, which is 

similar to a normal glass block. These blocks however, have smart optics which allows rays from the 

sun to focus onto small solar cells. This enhances the overall energy generated by each individual 

cell. The electricity that is generated can be used to power the building or it can be stored (Phys.org, 

University of Exeter, 2017).  

 

Figure 27: Solar Squared block can convert the sun's energy into usable electricity. Source: Solar Squared, phys.org, 

2017 

3.1.4 Artificial Lighting 

 

Light is considered to be one of the most important features in architecture as it has a great influence 

in how we perceive spaces and objects. Filling a building with natural light is a big priority for 

sustainable architecture in order to reduce the amount of artificial light needed. Artificial light has 
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however been greatly improved on, both in energy consumption, as well as quality of the light itself. 

Light Emitting Diodes (LED’s) are the most sustainable light choice currently available (Ellis, et al., 

2013). LED’s do not contain any harmful chemicals and have a long lifespan of up to 20 years or 

more. Furthermore, they emit much less heat than other light sources and use much less energy 

than other types of light bulbs. LED’s have revolutionized the way spaces can be illuminated by being 

able to integrate them into architectural components, thanks in part to their low heat-emitting 

properties.      

3.1.5 Adaptive and Kinetic Facades 

 

Excess solar gain in hot dry climates can often result in high energy consumption due to the use of 

mechanical cooling systems, such as air-conditioning, as well as cause occupant discomfort. Sun 

control is an integral aspect in energy efficient building design strategies and digital, computational 

tools allow the possibility of accurately simulating thermal and solar conditions to facilitate the design 

of a responsive shading system.  

Adaptive and kinetic facades essentially allow parts of a buildings envelope to move in response to 

environmental conditions. Of these facades, movable shading devices have become the most widely 

used, reportedly being able to decrease the load of energy on a building (Lee, et al., 2016). 

Recently, kinetic facades have taken on the role as an environmental mediator. The strength of 

kinetic facades lies in its adaptability; energy requirements can be lowered if the façade can 

response to diurnal changes in temperatures (Alotaibi, 2015). Furthermore, the quality of indoor 

daylighting can be greatly improved with the use of kinetic shading devices as opposed to static 

shading systems (Sharaidin,2014). It is however important to note that interaction between the 

occupant and the shading system is necessary to ensure occupant satisfaction. 
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Figure 28: Detail of a Kinetic facade and its adaptations to various external environmental factors.  

Source: hoaarchitect.wordpress.com, 2011 

In order to ensure that a kinetic façade performs well, the design and evaluation needs to be 

extensive. Kinetic facades are complex systems which involve three-dimensional interactive 

elements which are constantly changing (Sharaidin,2014). The strength of digital simulations allows 

designers to overcome many limitations and is a very cost-effective and efficient way of testing. 

Facades and envelopes can be multifunctional, and have been used in buildings to harvest wind 

energy, water, and solar energy.  

The Sony City Osaki Building in Tokyo provides an innovative use for the buildings envelope, by 

using specialized louvres made from ceramic to funnel rainwater through the system, which acts like 

a sprinkler and cools the air of the surrounding building (materialdistrict, 2016). Traditional Japanese 



66 
 

techniques for cooling air such as Uchimizu, a water spraying technique, and bamboo shading 

screens are what inspired the ‘BioSkin’ concept. 

 

Figure 29: Sony City Osaki Building utilizes a BioSkin to cool the surrounding air. Source: materialdistrict.com, 2016 

Rainwater is funnelled into the pipes on the façade (fig. 28) where it penetrates outwards and 

evaporates. The evaporating water then cools the surrounding air by 2 ˚C. The excess water is 

released into the ground below. 

On the Southern side of the façade, solar panels are used as shading devices, helping to power the 

building whilst keeping it cool.  

Building envelopes and facades can effectively contribute to a buildings performance and efficiency 

by utilizing the environment in innovative ways. The below chapters will introduce the concept of fog 

water harvesting and its implementation in architecture. 
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3.2 TECHNOLOGY IN FOG WATER HARVESTING 

3.2.1 Introduction 

 

Fog water harvesting has been used for centuries, as noted by the remains of historic structures in 

different countries such as the Middle East, North Africa, North America, India and China (Diehl, 

2010). Most of the methods used are known as fog drip, which forms when atmospheric water vapor 

passes over objects allowing tiny droplets of water to coalesce into bigger drops, which eventually 

drip down and can be collected (Qadir et al., 2018). In ancient Palestine, honeycombed walls were 

built surrounding plants and vines so they could have immediate access to the precipitation from 

mist and dew (Olivier, 2002). Ancient Greeks were reportedly able to supply the entire city of 

Theodosia (Ukraine, Feodosia, Crimea) with water collected from fog (Nikolayev et al., 1995).  These 

ancient methods of collecting fog usually consisted of mounds made of earth and stones which 

would allow water to trickle down the centre (Diehl, 2010; Olivier, 2002; Olivier, 2004).  

 

Figure 30: Zibold dew condenser a) beach pebble cone, 20m diameter at base and 8m diameter on top b) concrete bowl 

from which a pipe leads to a point of collection c) ground level d) limestone base Source: Cornelius, 2009 
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Figure 31: Zibold condenser in 1912. Source: Tougarinov, 1931 

Figures 29 and 30 depict Zibold collectors, which had a 20m diameter at the base and 8m diameter 

on top, and was named after the engineer and forester. Zibold built the condenser to prove that dew 

could be collected in it, and to prove that the mounds found in Theodosia could have been dew 

condensers (Diehl, 2010). 

3.2.2 Fog collection technology  

 

Fog collection technology has since then advanced and become more effective, however, the basic 

principles remain the same; Fog passes over or through an object on which it condenses, the fog 

droplets coalesce to form larger drops, which through the pull of gravity drip down into a gutter and 

get stored in a reservoir. The appeal of fog-water harvesting lies in the simplicity of the apparatus, 

and the cost to performance value. Standard Fog collectors (SFC), the most widely used collectors, 

are cheap to manufacture, easy to install, and produce good results, and cost can be further 

minimized by the use of local materials and labour (Molina, Escobar, 2008).  

Traditional methods of harvesting fog water involve the use of a simple apparatus, consisting of a 

mesh collecting surface (commonly made from a carbon impregnated polypropylene mesh) strung 

between two poles (like a volleyball net) and planted in the ground in an area containing frequent 
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fog. Whilst effective, this method is not adaptable to extreme wind conditions, with high wind speeds 

damaging the apparatus; A higher fog density is situated higher up in the stratosphere which means 

that the collecting surface needs to be in a higher altitude or suspended between long poles to 

increase effectiveness and is thus easily destroyed. The Van Schoor fog water collector was a 

prototype developed in 1993 which was designed to withstand gale force winds by fixing the 

aluminium frame to concrete foundations (Olivier, 2002). Whilst effective at low heights, collectors 

which stood higher than 2 meters were unstable and required steel guide cables. Furthermore, the 

gutters and collecting surfaces are often blocked with sand and other debris which pollutes the water 

and greatly decreases the amount of water collected (Olivier, 2002). The amount of water collected 

largely depends on the direction of the wind, which means if the wind is not blowing directly into the 

collecting surface then very little water will be produced (Schemenauer, et al.,1994). This low-tech 

approach has been proven effective in good to near-perfect conditions, however there are too many 

variables which ensure it does not operate at its full potential. There are regular requirements of 

ensuring the collecting surface is clean and the gutters are unobstructed, height restrictions due to 

material strength and design, repairs to damaged apparatus as well as the inability of the system to 

respond to wind direction are all factors which might be addressed with certain technological 

implementations.  

 

 
Figure 32: standard fog collector (SFC) Source: Schemenauer and Cereceda, 1994 



70 
 

 

Figure 33: Standard fog collectors in the Atacama Desert, Chile, consisting of Raschel nets spanned between two 

upright posts and a horizontal gutter, and anchored with cables. Source: quemaoviejo.com 

Digital technologies impact in fog water harvesting can be seen in updated and improved versions 

of SFCs.  

 

Figure 34: The DropNet Fog Collector can collect between 10-20L of water per day, Source: inhabitat.com, 2010 
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The DropNet Fog Collector (fig. 29) designed by Imke Hoehler, is a versatile modern take on 

traditional fog collectors. Its tent-like structure makes transport easy, and is extremely simple to set 

up (Paul, 2010). The tent-like structure could easily be assembled by local communities in a variety 

of terrains and the improved strength of the synthetic materials reduce the amount of maintenance 

that the system requires.  

 

Further advances in Fog collection are made possible by GIS, regional, historical and local 

climatological data. Using interpolation methods, Garcia and Zarraluqui (2008) created a fog 

database which is capable of generating fog prediction maps. Furthermore, the expanding use of 

computer modelling and simulation can show how fog can be affected by external conditions, such 

as agricultural irrigation. Models demonstrated that the humidity caused by irrigation can be related 

to the formation of fog (Diehl, 2009).   

 

Storage tanks play an important part in fog water collection. After water has been collected, it 

requires a place to be stored. Above ground storage tanks and underground storage tanks are two 

main types. Of these, the above ground can be ponds or reservoirs whilst underground storage tanks 

may include aquifiers and cisterns (Prinz, 2002). The quality of lightweight storage tanks has thanks 

to technology greatly improved over the years, with new tanks being made from various eco-friendly 

synthetic materials. These tanks are more resistant to ultraviolet rays, are lighter, and some even 

have built-in filtering systems. This ensures that the water is kept purer and extends the life of the 

fog harvesting system. Furthermore, these types of tanks are disposable and recyclable (Matos, 

2013). 

Digital technologies power is evident again in its direct mediating effect on design, as well as its 

ability to analyse data and create accurate models for the prediction of fog in various locations. 
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3.2.3 Techniques used for harvesting water 

Harvesting water from fog is best achieved using three main techniques: 

1. Drop coalescence  

2. Chemical absorption and desorption processes on devices 

3. Condensation on cold surfaces 

Of these techniques, two main groups emerge: large fog collectors (LFC) and standard fog collectors 

(SFC). The typical sizes for these are 1x1m for SFC’s with LFC’s having no specified size, generally 

being much larger and rectangular in shape to compensate for aerodynamic purposes (Caldas et 

al.,2018). Plastic gutters collect water droplets which have condensed on the nets and are pulled 

down by gravity, and directed into a storage tank, usually located on the ground. Polypropylene 

Raschel mesh is the current material of choice (Klemm et al.,2012) however, other materials have 

also been successfully used. Researchers at MIT are currently experimenting with new materials 

which have so far produced excellent results. The material is made from stainless steel filaments, is 

roughly quadruple the size of a human hair, and densely spaced, according to the research team. 

Furthermore, the mesh is coated in a solution which decreases contact-angle hysteresis which 

allows droplets to slide more easily into the collecting gutter before they can be blown off the surface 

by wind (Buczynski, 2015).    

Chemical collectors work through absorption and desorption of a desiccant installed on a specifically 

engineered system (Gandhidasan and Abualhamayel, 1996). The system is rectangular and is made 

of a heat-insulating layer at the bottom and a cover on top which is made of glass. Separated by a 

450mm air gap, the device functions based on two phases: During the night, water is collected by 

harvesting fog and during the day the water is distillated using solar radiation. The desiccant used is 

generally calcium chloride due to its low toxicity and cost, its high thermal conductivity as well as its 

high resistance to thermal degradation (Caldas et al.,2018). This desiccant is applied to the surface 

at night to enhance fog capturing by providing an absorbent film. The tilted system allows the 

condensed water from the glass to drip to one side where it is collected. The temperature differential 
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between the two surfaces allows water in the air gap to evaporate and condense on the inside glass 

face (Gad, Hamed, El-Sharkawy,2001). 

Radiative condensers (fig. 34) take advantage of highly emissive properties of the material surface 

to allow the surface to cool quickly during the night, enhancing its dew collecting potential. The 

materials used require a high infrared emissivity to be effective and many variants of foil are used for 

this purpose. To enhance emissivity additives such as titanium dioxide and barium sulphate are 

added (Caldas et al.,2018).  

 

Figure 35: radiative condenser. a) condensing surface, b) collecting gutter, c) insulation, d) stand. Source: 

https://upload.wikimedia.org, 2016 

 

To determine which of these methods is most suitable for building façade integration, the main 

technical features are compared and analysed. The collector type, location, relative humidity (RH) 

ranges and the yield were compared.  According to the data, SFC and LFC mesh collectors perform 

much better than the other systems with consistently higher yields (Caldas et al.,2018).  

Climatic factors do play a large role in the systems effectiveness with relative humidity and 

temperature and wind speed and direction affecting the results (Fessehaye et al.,2014; Caldas et 

al.,2018). Of the climatic factors, wind is the most relevant as it directly affects how much humid air 

is passed through the system. This needs to be maximized in order to achieve the best yields 

possible.  
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3.2.4 Merging Fog-Water Harvesting and The Built Environment 

 

Combining fog-water harvesting and the built environment through the use of building envelopes and 

facades is a concept intended to improve both the function of the fog-water harvesting system, as 

well as to adapt this system into an urban setting. Furthermore, the potential for decreased thermal 

and solar gain for better internal comfort utilizing fog-water harvesting systems as shading devices 

is explored. The usage of fog-water harvesting on building facades may also allow the water 

production to be available straight from the source, ensuring significant savings in the infrastructural 

system which is used.  

3.2.5 Integrating fog harvesting on building facades 

 

Providing an additional function to a building’s façade such as fog water harvesting as well as 

adaptive shading and lighting, provides an innovative solution to a host of sustainability challenges.  

The most effective fog-harvesting systems as indicated above are the SFC and LFC, which are 

relatively simple in nature and easily attached to buildings via various types of sub-frames.  The low-

cost of SFC (around 150$ the cost for the materials for an entire setup) is an aspect which may 

influence design choices. Considering the complexity of the chemical and radiative condensers and 

the cost to yield ratio, these types of systems would not be ideal to implement in building design.  

One of the most important things to consider is the maintenance and risk of failure in these systems, 

and pairing it with a kinetic system may impose an even higher risk and maintenance requirements. 

Mesh collectors have had maintenance issues, specifically in areas affected by strong winds which 

can tear the fabrics, however, collectors have been designed specifically to be more resistant to wind 

loads (Hamed, 2001).  

The complexity of chemical condensers can result in ultimate system failure with the malfunctioning 

of just one part, which ultimately renders them an unsuitable system for façade use. Radiative 

condensers also are susceptible to damage due to high wind loads, reporting high incidences of foil 

breakage. The cost to replace foil is however much higher than the cost to replace mesh. 
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Moving parts in kinetic systems are also susceptible to damage from wind loads, requiring careful, 

precise engineering. Corrosive environments such as coastal areas may also lead to the seizure of 

mechanisms requiring the intelligent use of corrosive resistant materials. The complexity of the 

façade should be very carefully balanced in order to reduce potential failures and having a manual 

overriding system may be necessary to ensure the building continues to operate effectively. The 

adaptability of the façade should also be considered, as replacing such a system to cater for a new 

function can be very costly. 

Large surface areas of building envelopes may be successfully exploited to harvest water 

considering the number of successful projects of harvesting fog water. The simple and affordable 

LFC and RFC’s with their potential for high yields from 3-8l/sqm per day, have a lot of potential. 

3.2.6 Biomimicry in Fog-harvesting 

 

Nature has the most efficient designs, adapted over millions of years, to cope with the stresses of 

the multitude of climatic factors. Leaves and insects have the most efficient water harvesting systems 

on the planet, which have adapted in areas where water is very scarce. These systems often make 

use of the moisture found in air and have allowed these species to survive in some of the driest 

regions in the world (Martorell and Ezcurra, 2002).  

The Namib desert beetle survives the harsh conditions of the Namibian desert by harvesting the little 

moisture that is present in the air with its body (Naidu, Hattingh, 1988). Tiny grooves and bumps on 

its shell help condense and direct water towards the beetle’s mouth. Hydrophilic and hydrophobic 

zones on the shell help to increase the water harvesting efficiency. 
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Figure 36: a) dry plant; b) wet plant; c) the 

Cotulla fallax hierarchical water collection system. 

Source: Andrews et al.,2011 

Figure 37: The Namib Desert Beetle collects and 

drinks dew which has formed on its body.  

Source: asknature.org/strategy/water-vapor-harvesting, 2017 

 

Various processes to optimize the process of collecting fog-water haven their roots in mimicking 

nature. The different approaches of doing this include the creation of certain materials which 

replicate the conditions found on plants or insects like the Namib beetle (Caldas et al.,2018). Nano-

textured materials which promote condensation through the cone and pillar-like surface for 

enhanced yield are being explored. These patterns can be printed onto surfaces of panels, such as 

kinetic shading systems, and even onto regular façade panels. According to Wang (2015), this can 

increase the drop accumulation as well as the direction of collected liquid. Other technologies which 

mimic nature are still being developed, such as plate-based collectors which take inspiration from 

feeding mechanisms of birds who collect water on their beaks (Heng, Luo, 2014).  

The Cotula Fallax is an indigenous plant to the Western Cape in South Africa and is classified as a 

fynbos species. This plant has a complex microstructure on its leaves which allows it to generate 

small drops of water (Andrews et al.,2011).  

In an attempt to tune the mesh material, McKinley studied and modelled different types of meshes 

and how condensation formed on them. The results led to increased efficiency through the 

optimization of the geometry of the fibres, the radius of them, and the size of the holes between. The 

yield with this optimized mesh increased from the maximum of 6L/sqm to up to 10L/sqm, an increase 
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of 67% (Park et al.,2013). These mesh systems are highly dependable on wind to drive the fog 

through them and are thus limited for use on cliffsides or hills. Biological or nano-textured materials 

on the other hand do not require the presence of wind and are thus suitable for use in a variety of 

climatic conditions, although the presence of wind would increase their already extraordinary ability 

to collect fog (Parker & Lawrence, 2001).  

The strength of Nanotechnology lies in its capability of nanoscale patterning to mimic a multitude of 

biological structures and has proven to be extremely effective at collecting water from fog. There is 

a caveat however; nanotechnology processes currently are expensive and simply not cost-effective 

to be used on a large scale such as building envelopes.  

3.2.7 Conclusions 

 

Digital technology has become ubiquitous in our lives, manifesting itself in every means possible.  

Whilst the well-known “The Terminator” franchise forebodes the day that “Skynet” (its net-based, 

superintelligence system) becomes self-aware and attempts to erase the human race might be 

unlikely, the prospect exists for digital technology to become indistinguishable between everyday 

life. From what has been observed historically however, technologies influences in architecture have 

always been subtle and tentative. In a discipline where there is reluctance to try new things, digital 

technologies most influential traits have been in the management, design and procurement stages 

of projects.  

Where digital technology has seemingly had a big impact on is the buildings envelope, as one of the 

most important ways of saving energy in a building is through its façade (Ahmed et al., 2015). The 

envelope and facades of buildings directly control the interior climate of the building, and therefore, 

innovative strategies to enhance the interaction between the external and internal have been 

experimented with in many ways. Building envelopes now are not perceived as static shells to keep 

bad weather out, but rather as adaptable mechanisms which have the ability to utilize the 

environment, in order to enhance the buildings functions — whether its harvesting wind, water, or 

regulating temperature and light.  
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The research uncovered some key findings about digital technology and fog harvesting, and the 

integration of both of these into a building.  It demonstrated that fog water harvesting can be very 

effective under the right conditions, and that the influence of digital technology was able to enhance 

the effectiveness of the standard fog harvesting systems to produce higher yields. Some 

technologies, such as nanotechnology, are able to produce excellent yield results, however the high 

cost to manufacture the material renders it ineffective.  

As stated in the delimitation, the focus of the research is the impact that digital technology may have 

on sustainable and environmental architecture. The literature has indicated that fog harvesting 

technology can greatly benefit from the influence of digital technology, and that it is viable in 

implementing into buildings. The following chapter will explore Fog water harvesting around the 

world and then in Namibia, before leading into a case study for Cape Town. 

The following chapter will look at Fog-water harvesting around the world in order to assess where it 

commonly takes place, what factors determine why it is a water harvesting technique that is used, 

the conditions required for it to be successful and how successful this alternative method of 

producing water really is. Chapter 4 then provides a case study of fog-water harvesting in the 

Western Cape and Cape Town. 
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3.3 FOG-WATER HARVESTING AROUND THE WORLD 

3.3.1 Introduction 

 

Geographic features, such as mountains, affect fog (Garcia, Zarraluqui, 2008). Additionally, the 

amount of water that can be collected from fog depends on the local topographical and climatological 

conditions (Schemenauer et al., 1988). Urban development, proximity to the coast, wind patterns 

and temperature all affect the frequency of fog occurrences (Diehl, 2009; Teixera, Goncalves et al., 

2008). 

The table below provided by Diehl (2009), shows the altitude of ideal fog collection sites around the 

world. According to the United Nations Environment Programme (1998), (UNEP), optimal fog 

collection happens at altitudes of between 400-1200m. These altitudes are optimal conditions and it 

is still possible to harvest fog water at lower heights, although the water yield might be impacted. 

Table 2: Altitude of Fog collection Sites. Source: Diehl, 2009 

 

 



80 
 

The atmospheric phenomenon of fog is directly affected by wind speed and direction, which vary at 

different altitudes (Abdul-Wahab, Lea, 2008). The droplets of water in the atmosphere are so small 

that their mass is essentially unaffected by gravity. They do however have a falling velocity of 1-

5sm/s which causes them to move horizontally through the atmosphere, making vertical objects ideal 

for capturing them (Abdul-Wahab, Lea, 2008).  

Fog collection is considered viable if 2.5 or more litres of water can be collected per meter squared 

of collection surface (Diehl, 2009). The below table depicts the various amounts collected from 

Different countries.  

Table 3: Amount of fog collected from various countries globally. Source: Diehl, 2009 

 

 

 

 

 

 

Table 2 demonstrates that altitude is very important when collecting fog water. Advection sea fog 

has to be intercepted at a minimum of 200m above mean sea level. The table demonstrated that the 

lowest effective altitude was at 240m in the Czech Republic. Along the South West Coast of Africa, 

ideal altitudes for collecting fog water are above 300m above mean sea level.  
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Table 4: Amount of fog collected from various countries globally. Source: Diehl, 2009 

 

 

The tables 3 and 4 demonstrate similar collection yields from countries around the world, and in most 

cases, the collected water is pure and safe for drinking. The cost for these systems can remain low, 

as expensive purifying and filtering systems are not required. 
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3.3.2 Fog water harvesting in Namibia 

 

Namibia which borders South Africa in the south-western part of Africa, is an area which receives 

very little rain, and has no perennial rivers (Mtuleni et al., 1998). Fog occurs between 60 -200 days 

a year, which makes Namibia a viable location for harvesting fog water (Mtuleni et al., 1998; Seely 

& Henschel, 1998). The Central Namib Water Scheme supplies Namibia with the bulk of its water 

from aquifiers in the Kuiseb and Omaruru rivers, and groundwater reserves are dependent on 

rainfalls (Jacobson et al., 1995). More water has been consumed in the recent years than has been 

input and groundwater is running dry. According to Schemenauer (1994), fog water can be a reliable 

source of water for small-scale users, demonstrated in a case in Chile. 

 

Figure 38: Fog from the Atlantic Ocean over dunes in the Namib Desert. Source: Martin Harvey, 2018 

To test the quantity of fog water yield, fourteen Standard Fog Collectors (SFC) were erected near 

villages in six sites of the Namib Desert. The collectors were erected facing a north-west direction to 

take advantage of the winds blowing the fog in from the Atlantic. Three of the sites which were closest 

to villages that had the highest needs for water were chosen for the study. The villages were all within 

50km of the sea, and at altitudes ranging 332m, 340m and 387m (Mtuleni et al., 1998).  

The project data revealed the minimum yield per day to be 0.084 litres per square meter of collecting 

surface, and a high of 3.345 litres per square meter (Mtuleni et al., 1998). The quantities were lower 

than expected due to the strong winds which blow sand through the collection surfaces and disrupt 
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how much fog water can settle. The conclusions were that the fog water harvesters should be 

designed appropriately to withstand wind speeds of 35m/s from an easterly direction (Mtuleni et al., 

1998). 

3.3.3 Conclusion 

To conclude, it was established that it is viable to collect fog water for local communities, as long as 

certain parameters are met. It is only possible to collect fog water within 50km of the Atlantic Ocean, 

and at an altitude of 300m or higher. Namibia, Like Cape Town, borders the Atlantic Ocean and has 

a very warm landmass. Both Cape Town and Namibia are very prone to advection sea fog which 

occurs at similar altitudes. Cape Town City lies within 6km of the Atlantic which means that advection 

sea fog won’t have travelled far and dissipated as much, unlike the sites tested in Namibia which are 

over 40km inland from the sea. Furthermore, the topographical nature of Cape Town ensures that 

the Fog can be intercepted quickly via Signal Hill, Lions Head, Devils Peak and Table Mountain, 

without being affected by too much pollution from sand, dust, and the City.   

The findings presented in the literature review point to the effectiveness of current fog-water 

collectors and highlight the possibilities for the future with nanotechnology. It is assumed that the 

lower yields in Namibia are partly due to the systems being set up below 400m, but as stated above, 

the impact of sand and strong winds contaminating the nets and blowing the water droplets back 

into the atmosphere could also have contributed to the low yield. It concludes that fog water 

harvesting can be an effective technique in Cape Town above certain altitudes to supplement the 

supplies of water to local communities and even the City itself. Furthermore, the significant amount 

of water which can be collected with an enhanced version of the mesh from standard fog collectors, 

and the ability to implement it into building facades is truly innovative. Similarly, as technology 

progresses and bio-inspired materials become cheaper to produce, the potential exists to accelerate 

the field of fog harvesting and its implementation on a larger scale and as a possible material for 

building envelopes.  
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4.0 FOG-WATER HARVESTING IN THE WESTERN CAPE AND CAPE TOWN - A CASE 

STUDY 

4.1 Introduction 

 

As a semi-arid country, South Africa has always been more water stressed than other countries, with 

an average annual rainfall of 450mm, significantly lower than the worlds average of 860mm per year. 

Based on current water usage trends, it is estimated that South Africa will have exceeded availability 

of fresh water demands by the year 2025 (Department of Water Affairs and Forestry, South Africa, 

2009).  

Most of South Africa’s fresh water originates in Lesotho, of which 10% of the natural runoff is 

available for use through dams, basin transfers and other countrywide water developments, enough 

to meet the countries total requirements (estimated in 2000) of 13.28 billion cubic meters of water 

(Department of Water Affairs and Forestry, South Africa, 2009). Design strategies to satisfy future 

water demands in the form of desalination plants can have a range of harmful environmental impacts, 

such as high concentrated brine discharges. Noise, visual impact, air pollution, impact on the aquifer, 

and disturbance of recreational areas are other environmental impacts on a more local scale (Brika, 

2015).  

4.2 Location and Climate 

 

Cape Town is located on the south western tip of South Africa, at -33.93 latitude and 18.42 longitude 

and is the metropolitan hub and legislative capital of South Africa. The city of Cape Town is 

surrounded by Table Mountain, Signal Hill and Lions Head, and Devils Peak on one side, and 

borders with the Atlantic Ocean and Table Bay on the other side. 
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Figure 39: Map of the Western Cape and Cape Town. Source: Author, 2018 

Cape Town has a Mediterranean climate, with temperatures peaking at an average of 26.9˚C in 

February, and17.7˚C in July with the lowest averages being 9.1˚C in July. The average rainfall has 

been 560 to 1400mm around the mountains of the Cape Peninsula (Tadross, Johnston, 2012). Cape 

Town is known for its strong winds, however, a study done between 1995 and 2014 indicated that 

the coastal wind speeds are actually decreasing (Wright, Grab, 2017). Figure 40 shows that wind 

speeds are highest in the summer months and lowest during the winter months between April and 

July.  

 

 

Figure 40: Monthly wind speed in Cape Town in m/s. Source: weather-and-climate.com, 2016 

South Africa’s Mediterranean west coast is prone to severe water shortages which occur regularly 

each year. The current drought is one of the worst recorded droughts in Cape Towns’ history, 

however, the City has endured many more throughout its history. In 1652 when the Dutch first arrived 

in Cape Town, the colony was supplied with water which came from streams running off Table 
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Mountain. Eventually these streams were dammed and the first reservoir was built (The History of 

Cape Town’s Water Supply, 2012). As the Colony grew and the demand for water increased, 5 more 

dams on the back of Table Mountain were built. Despite the reservoir and these new Dams, water 

restrictions were rampant in the Summer months. Throughout the 20
th

 century, various 

augmentation schemes were constructed to assist in the supply for water of the growing city built 

(The History of Cape Town’s Water Supply, 2012).  

Dams filled by rain have become unreliable as the population of Cape Town has continued its rapid 

expansion. Many rivers which are also a large resource face many threats of pollution from fertilisers, 

mining, waste water treatment plants, and face excessive loss from leaking pipes. Water is an 

irreplaceable resource and cannot be substituted with anything else.  

 Even though rainfall is mostly limited to the months of July through to August 

(www.worldweatheronline.com/cape-town-weather-averages), Cape Town experiences frequent 

occurrence of fog and low clouds, which may prove to be a source of fresh water to supplement the 

City’s supply. The population increase in the City as well as the booming tourism  

 

Figure 41: Fog water harvesting around the world. Source: Furey, 1998 

industry, the reliance on rainfall and dams as the sole suppliers of water needs to be addressed.  

Almost all Cape Town’s municipal water is supplied by 6 dams (in order of size): Theewaterskloof, 
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Voëlvlei, Berg River, Wemmershoek, and Steenbras Lower and Upper (Water services and the cape 

Town Urban Water Cycle, 2018). Theewaterskloof dam has an unfortunate problem in its size to 

depth ratio; a large amount of water is lost through evaporation.  

Another method of gaining water is through groundwater aquifers, of which Cape Town has three 

main supplies: The Table Mountain Group aquifer (TMG) is the largest and runs through the Western 

Cape up to Kwazulu-Natal. The Cape flats aquifer which is located on the Cape flats, and the Atlantis 

aquifer, just north of the City. Whilst drilling for ground water is an affordable way of acquiring clean 

drinking water, not enough is known about how aquifers work; there could be serious implications of 

using it. Drying up an aquifer by extracting too much water could cause it to fill up with sea water, 

creating a different type of ecological crisis (Morris, 2003).  

Alternative sources of water need to be identified, however, water from fog is largely ignored by 

authorities from the water provision, due to misguided perceptions of relatively small yield, and the 

fact that fog harvesting systems have only been implemented in small scale communities. There is 

a lack in existing studies proving that the amount of water collected is enough to sufficiently supply 

large communities and even cities. Fog water harvesting however was a method used extensively 

in ancient times, albeit in other countries (Olivier, 2002). There is unfortunately not enough 

information to establish if fog harvesting techniques were used by tribes native to the Western Cape.  
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Figure 42: Topographical map of Cape Town. Source: Author edited from googlemaps.com, 2018 

 

Figure 42 depicts the close distance between Signal Hill and Lions Head to the Atlantic. These Hills 

intercept any fog blown in from the North-west. Accessibility to Signal Hill is the easiest, with Signal 

Hill road leading to the top, and multiple pedestrian/hiking routes allowing easy pedestrian access. 

The Peninsula Formation Sandstone (PFS) is part of the Table Mountain Group within the Cape 

Supergroup and is made up of quarzitic sandstone. It is a very hard and erosion resistant layer which 

has allowed it to remain as the highest peak in the Western Cape (Joubert, 1992). 
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Signal Hill is comprised mainly of rocks and is part of the Malmesbury Group from the Tygerberg 

Formation. The Malmesbury group consists mainly of Shale ranging from a grey to green colour, 

siltstone, and fine to medium grained greywacke (Joubert, 1992). 

 

Figure 43:Schematic geology of Cape Town and Table Mountain Nature Reserve. Source: UCT Dept Geological 

Science, 2015 

 

The terrain is steep, gravelly and rocky and consists predominantly of <30cm topsoil of rubble, 

consisting of 15-20% clay. Fynbos coverage is marked as sparse with an average of 15 species/sq. 

although at the summit the coverage is much less. Each variety of sand and rock types has its own 

variety of fynbos species. One of these species, the Cottula Fallax (fig.36), discussed in chapter 

3.2.6, utilizes water from fog to survive the dry months.  
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4.3 Types of Fog  

 

According to Olivier (2002), the feasibility of implementing fog water collection is reliant on the quality 

and the expected yield thereof. These depend on the type of fog which can vary in moisture content 

and in the duration and frequency. The speed of the wind also plays a crucial role (Nagel, 1956). 

These factors are dependent on altitude and regional climatic factors, such as sea surface 

temperature as well as pressure distribution. The direction and speed of the wind are also affected 

by the type of terrain and on the microtopography of the area (Schemenauer et al., 1987; Cereceda 

and Schemenauer, 1988) These factors determine which fog is the most ideal for collecting water 

and also determines the ideal location of harvest. The two most common types of fog in Cape Town 

are briefly discussed below. 

Advection sea fog, also called sea fog, occurs when moist air moves over a cold surface which 

results in the near-surface air to cool below its dew-point temperature. Due to the regions hot land 

surface and the cold sea surface temperature (13˚-15˚) fog is formed on average on more than 50 

days/year (Olivier and Van Heerden 1999), which has been deemed as a viable amount 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 45: advection sea fog rolling through the city of 

  cape town. Source: M. Eloff, 2015 

 

Figure 44: Table Mountains infamous "table cloth" is a 

result of orographic lift. Source: New York Times, 2014 
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Up-slope fog occurs when air is pushed over sloping terrain where it is cooled to its dew point and 

saturation. This is also known as orographic lift and is the reason why Table Mountain in Cape Town 

is often covered in what is called the “table cloth”. This type of fog can maintain itself at higher wind 

speeds because of increased lift and adiabatic cooling, which is a result of a parcel of air 

encountering the mountain and being forced upward. The resulting decrease in air pressure with 

altitude causes the air parcel to expand, which in turn causes air to cool to its dew point. When this 

happens, the water vapour in the air condenses and becomes visible as a cloud 

(weather.gov.,2018).   

4.4 Method and Data 

 

J Olivier (2002) from the department of Anthropology, Archaeology, Geography and Environmental 

Studies at the University of South Africa, did a study documenting the feasibility of fog water 

harvesting along South Africa’s West Coast (fig 46). The data came from the Weather Bureau 

publication, SAWB, 1986, as well as 11 weather stations located within the region. The mean annual 

Fog Day Frequency (FDF) from each station was transferred onto a map in order to link similar FDF 

values.  

 

 

 Figure 46: the resulting map highlighting fog distribution patterns along the Western Cape. Source: Olivier, 2002 
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In the Cape Peninsula, Cape Point has a distinct summer-autumn fog season whereas stations 

located further inland such as Cape Town International airport, Kirstenbosch and Observatory have 

autumn-winter fog maxima (Olivier and Van Heerden, 1999).  According to Olivier (2002), this 

occurrence is likely due to radiation fog on winter mornings with low temperatures and high 

atmospheric humid temperatures.  

4.4 Fog Duration 

 

Although it is difficult to document the precise commencement and cessation of a fog episode, it was 

observed that the occurrences lasted between 2 to 6 hours (Olivier, 2002). Due to advection sea fog 

being more persistent, the fog in Cape Town can be expected to last longer. In higher latitude and 

longitudes, some episodes lasted over 30 hours with the longest recorded incidence in Rooiheuwel 

lasting 55 hours (Olivier, 2002).  

4.5 Fog Collection 

 

The fog water was harvested four locations in the Western Cape, Kalkbaken se Kop, Brand se Baai, 

Cape Columbine and Lamberts Bay using what is called the Van Schoor collectors, which consisted 

of a flat, rectangular carbon impregnated polypropylene mesh screen of around 4m². The screens 

three-dimensional properties were designed to create 3vorticity to increase particle circulation 

through the mesh (Olivier, 2002). The mesh was suspended between an aluminium frame which 

was anchored to the ground. During a fog episode, tiny droplets of fog impinge on the screen, form 

larger drops and run down into a gutter which transports the water into a storage tank. This is the 

most common and currently most efficient method for harvesting water from fog however is not 

suitable to regions with high wind velocities. Wind velocity in Cape Town (fig.40) is lower during the 

months in which fog is most prevalent, however, wind gusts can still be quite high and cause damage 

to the structures. To avoid damage to the fog nets, sensors which detect wind velocity can be 

installed in the structures, allowing the structure to essentially fold up when high wind gusts are 

                                                            
3 Clockwise or counter-clockwise spin in the troposphere 
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detected, thus reducing damage to the system (fig47). Using simulation, the structural elements as 

well as the fog net can be put under wind load to evaluate the performance under different wind 

speeds. The materials and the design can then be optimized using the data.  The gutters, pipes and 

mesh are also prone to blockages from dust and sand which greatly decreases the ability to collect 

water. 

 

Figure 47: Adaptable, foldable screen and fog harvesting system. Source: Author, 2018 

 

The information provided in the literature review proves however, that fog water harvesting is viable 

in Cape Town. The close proximity to the Atlantic Ocean, as well as the rapid change in altitude due 

to the Mountain ranges, ensure that Cape Town meets the fundamental guidelines required for 

successful fog harvesting. The Advection sea fog which is prevalent in the Western Cape has been 

tested, albeit further north, with good results.  

Adaptable façade opened 75%. The 

red represents fog harvesting and 

shading mesh 

Closed adaptable facade 
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4.6 Analysis and results 

 

Olivier (2002) found that water yields could be as high as 5.7L/m² of surface collection and annually 

produced 2080L/m² of water. Using a low-tech method like the Van Schoor collectors can yield a 

significant amount of water, enough to make an impact on the people living in the area. The 

cleanliness of the harvested water was also tested in two different samples. Both samples were free 

from any disease-causing bacteria and thus did not constitute a health hazard.     

Fog-water harvesting in semi-arid regions around the world has been tested and effectively used, 

and many of these stations are still operational. To determine suitability for this type of technology, 

the three most important factors are: 

1. Frequency of fog occurrence. The entire west coast of south Africa, including Cape Town 

experiences a high occurrence of fog. Cape Town specifically experiences on average 50 

days per year of advection sea fog alone.  

2. Fog-water content. Not all Fog carries the same amount of water. Advection sea fog as well 

as clouds caused by orographic lift, however, contain a high percentage of water content 

which can be successfully harvested. 

3. The Design of the fog water harvesting and collection system. The design has to take 

into consideration wind direction and velocity, topographic conditions, as well as the 

materials used. 

4.7 Conclusion 

 

The main disadvantages of this alternate method of sourcing water is the requirement for persistent 

community involvement in order to maintain these systems. Of the many fog-water collectors 

implemented, the majority of those that are no longer in use are due to a lack of community 

participation as well as difficulty to access the sites and cost (Qadir et al., 2018). However, with the 

implementation of digital technology and smart, active systems, it is possible to create an automated 



95 
 

system which does not depend on human maintenance, and which is able to increase its surface 

area and orient itself to adapt to the site conditions in order to produce the best yield possible.  

Various smart/responsive materials which expand in certain conditions, orient themselves according 

to wind, as well as digital systems which can automate environmental and climatic responses based 

on external stimuli, are all methods which might be implemented into this type of technology in order 

to improve it. 

   

Chapter 5 discusses and analyses three different precedents which were selected as examples and 

guides to be considered for the proposed building. They highlight a range of different technological 

implications, from very simple, to highly complex. Additionally, their design philosophies are aligned 

with environmentalism and digital innovation. 
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5.0 PRECEDENT STUDIES 

5.1 Introduction 

 

The trend of digital freeform and the awareness of environmental issues have propelled architecture 

to a higher level by comprehensively merging new technologies and green concepts. These 

observations suggest that we need a new structure for understanding the design process that 

integrates digital technology and the sustainable concept (Lee, 2010). In order to elevate the design 

process to a more comprehensive level, Lee (2010) maintains that the concerns with micro issues 

should be replaced with a concern for the fusion of overall interactions of sustainability and digital 

technology and a new design process with the resulting dogma being an intuitive and 

comprehensive design process. 

Digital technologies and self-sufficient thinking have over time crept into the traditional approach of 

sustainability. The way in which architects and designers now approach sustainability has also been 

affected by new technologies. As Yeang (1999) aptly described an ecological building as a ‘kind of 

living organism’, environmental architecture is steadily becoming more responsive to its surrounding 

environment.   

The digital techniques discussed in the above chapters, such as 3D computer modelling, CNC 

technology (Computer Numerical Control), laser cutting and even 3-D printing, provide cost-effective 

production methods for architectural applications. These methods allow building components to be 

pre-assembled which can save waste and reduces building cost. Furthermore, new technologies 

allow for experimentation for new materials which could suit environmental needs better (Lee, 2010).  

The introduction of adaptable building components to account for external and internal conditions is 

also a concept which is being explored.  

The following precedent studies represent digital technologies influences on environmental 

architecture through different design and conceptual approaches. The chosen precedents look at a 

variety of important factors discussed in the literature: 
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1. Digital technology does not need to be apparent in an architectural structure. It can be 

applied through almost any theoretical framework (phenomenology, critical regionalism). 

Additionally, it may enhance efficiency of purpose whilst respecting the context.  

2. A building with a utilitarian function should still be beautiful, have optimal performance, and 

be able to enhance the natural environment. Additionally, computational design and new 

technologies can help to achieve these goals. 

3. Digital design, simulation and documentation are vital to ensure that innovative designs 

perform as intended. Furthermore, high-end technological implementations that are 

environmentally friendly rely on the power of computers to ensure optimal efficiency. 

The commonality between the precedents is the respect for cultural, environmental and historical 

context, the use of digital design tools and technology, as well as the contrastingly different 

architectural approaches taken. It is important to mention that each of the precedents also served a 

particular function:  

a. collecting water  

b. treating and purifying water 

c. automatically regulating internal natural daylighting and temperature 

The functions of these buildings and how they were designed and work are important to the research, 

and thus the method of analysing the precedents is more from a technological (the technological 

implications on the structures) standpoint, rather than analysing how they function spatially.  

 

 

 

 



98 
 

5.2 Warka Water 

Ethiopia 

Arturo Vittori  

 

Introduction 

 In a country where 61 million people lack access to safe drinking water (Keredin et.al, 2016), the 

Warka Water tower provides relief to many people suffering from water deprivation. Created by 

Architect designer Arturo Vittori and his team of architects, the tower collects water from dew, rain 

and fog. It was designed using digital technologies, specifically parametric modelling in order to 

maximise its efficiency.  

Figure 48: WarkaWaters passive technologies to collect water were made more efficient through the use of parametric 

modelling Source: www.dezeen.com, 2016 
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Design Intent 

Taking its inspiration from the Warka tree, a wild fig tree native to Ethiopia, the WarkaWater tower 

can collect up to 100L of water a day and according to Vittori can be assembled in just a few hours. 

It is low cost, requires no electricity and is constructed from bamboo lashed together, which ensures 

the tower is easily packed and moved. “WarkaWater is a philosophy that is looking at the 

environment and different possibilities to collect and harvest water in a sustainable way” (Vittori, 

2016). 

 
 

Figure 49: Warka Water Towers are designed in such a way as to let the local communities learn how to build it 

themselves and replicate it as needed. Source: www.dezeen.com, 2016 

The 12-metre-high structure was designed in a way in which it could be erected without needing 

scaffolding and machinery by separating it into 5 different components which were essentially 

prefabricated and then stacked on top of each other. According to Vittori (2016), the cutting-edge 

technology required to meet this design challenge came in the form of parametric modelling software 

which allowed design improvements to occur with only minor design alterations. The project is open 
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source, meaning the people can be trained on how to construct the tower and are free to replicate it 

wherever as needed. The Warka Water tower is furthered designed to be used as a community 

meeting point, much like the Warka tree, with shade cloth spanning the circumference of the 

structure, encouraging social gatherings.  

 
 

Figure 50: dew droplets form on the hydrophobic meshes and coalesce to form bigger droplets of water. Gravity pulls 

the pure water droplets down the nets and into a reservoir. Source: warkawater.org, 2016 

 

Structure and Materials 

The effectiveness of this technology was enhanced by the designer’s ability to take advantage of 

digital technological power during the design stage to tweak the design throughout the process to 

provide maximum efficiency. Furthermore, the components’ attributes modelled using this technique 

have real-world behaviours which means the performance can be simulated and adjusted 

accordingly. The result is an environmentally friendly, sustainable architecture which responds to 

the challenges of a water starved country. The Warka Water Tower is an excellent example of an 

environmentally responsive architecture which has been enhanced by the influence of digital 

technology in a very subtle way.   

Whilst the structure is seemingly low-tech, the design of it was influenced heavily by digital 

technology (fig. 51).  
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Figure 51: The digital design of the Warka Water Tower is parametrically malleable. Source: Dezeen, 2016 

Ethiopia has around one million hectares of untapped bamboo, making it the largest area in East 

Africa. Bamboo has excellent structural properties — its hollow stems ensure that it is lightweight, it 

is a natural composite material and has great tensile and compressive properties. Furthermore, it is 

cheap and easy to work with. 

The design was created to incorporate as many triangles as possible (fig. 48) which ensures that the 

structure is rigid. The digital software was able to simulate which pieces were in tension and 

compression and then optimized which ensured that the joints did not lose any strength.  

 

Figure 52: Warka Water Tower bamboo structural properties. Source: Author, 2019 
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Engineering, Craftmanship and Architecture 

What separates architecture from engineering is sometimes difficult to define — engineering is 

driven by purpose and an ultimate objective whereas architecture contains artistic expression which 

does not need to be driven by purpose, but rather can hold a specific meaning or purpose. Designing 

with digital technology has incited concern that future architects are losing the connection to 

understand nature, history and culture as traditionally becoming an architect involved the process of 

studying the built and natural environments through sketching, painting and drawing. Digital 

technology however, is just a tool, like a paint brush or pencil, which provides different means of 

expression.   

 

Figure 53: Local Ethiopian Huts, Warka Water Tower, Warka meeting tree. Source: Author, 2019 

 

In Ethiopia, traditional crafts such as weaving, basketry and pottery (fig. 53, 54) are an essential part 

of every household. The Warka Water tower has managed to combine a purpose driven structure 

(collecting water), with local, biodegradable and natural material and form, which represents the 

traditional crafts of the local community.  

 

Figure 54: a villager in Ethiopia, shaping a clay pot. Source: Dezeen, 2016 

The structure of the fog harvesting tower is purpose and function driven. 

It would exist for the purpose of collecting as much water as possible, 

driven by various parameters to ensure it is as efficient as possible. 

Embodying historical and cultural elements in it allows it to be expressed 

sculpturally and to challenge the notion of art versus architecture.   
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5.3 Whitney Water Purification 

South Central Connecticut, U.S.A 

Steven Holl 

 

Introduction 

Below a vast 10 000m² green roof, lies a water purification plant and public park which uses water 

as its guiding concept for the design. Rated as one of the top ten green projects of 2006 by the 

Committee on the Environment (COTE/AIA), this water purification plant transforms a utilitarian 

function into a beautiful architectural statement. The facility serves as a reserve water source for the 

South-Central Connecticut Regional Water Authority and draws water from the nearby Lake 

Whitney. 

 
 

Figure 55: The 12-metre-long sliver takes its form from a water droplet. The steel shingles which clad the building reflect 

the environment whilst simultaneously dissipating any heat gain through the edges. Source: http://www.stevenholl.com, 

2007 
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The striking exterior cladding of the building consists of interlocking stainless-steel shingles, which 

reflect the natural environment and sky, and the changing of light conditions along with the various 

seasons (Alter, 2007). The inverted drop of water indicates the function of the architecture which 

happens beneath it. The shape creates a curvilinear interior space which opens up to an expansive 

windowed view of the surrounding landscape with the exterior reflecting the landscapes horizon. 

Design Intent 

The public park is comprised of six sectors which are analogues to the 6 stages of the plants water 

purification and reflect the various changes in scale from molecular to the landscape above 

(Divisare, 2007). The micro to macro interpretation results in challenging material-spatial aspects, 

like bubble skylights which correspond to ozone bubbling and which allow light to descend into the 

treatment plant below.  

 

 

 

Figure 56: Whitney Water above ground(A) and below ground(B) layouts. Source: Author, 2019 
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The silver sliver (administration building) is the only hint that the natural environment surrounding it 

is part of a building. The layout of the building (fig. 52 (A)) was arranged in such a way so that the 

various gardens would enhance the filtering process of the pond.  To respond to the filtration 

process, a public entrance is defined by vine wall elements on trellises. Figure 52 (B) details the 

layout of the plant and filtering process below, with each operation or area responding to the context 

above. This creates a meaning within the operation by demonstrating that there can be a connection 

between science and the natural environment. The buildings form is dictated by its function; the 

entire operation happens underground which allows the filtration and treatment process to be gravity 

driven, eliminating the need for electrical pumps.  

 

 
Figure 57: the architecture's impact on the environment is really only present and expressed through the stainless-steel 

sliver protruding from below the landscape. Source: Steven Holl Architects, divisare.com, 2007 

Sustainable building and site development are fundamental to innovative design. Steven Holl 

Architects combine advanced mechanical systems with passive design strategies such as double 

walls and green roofs to emphasize these qualities. In order to minimize site disturbance, the existing 

conditions and natural vegetation are preserved and the landscape design supports biodiversity (fig. 

52). Certain site features such as the wetland being a rest point for migrating birds has been 

document and this feature has been preserved and enhanced. The site flora is predominantly shrubs 
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and native grass species which reduce irrigation and maintenance costs (Divisare, 2007). 

Implementing similar strategies in the proposed building in order to restore destroyed ecosystems 

and habitats is a big step in helping the natural wildlife as well as preserving the natural environment 

for the future. 

Structure and Materials 

Steven Holl’s material library is always changing, with his primary material, light, influencing which 

matter best expresses it (Ferentinos, Olivares, 2013). The office’s experiential nature often calls for 

materials which have not been used for construction purposes yet, prompting in the hard work of 

figuring out the technical means to utilize it. The water purification plant utilizes stainless steel 

shingles which were fixed onto a framing system which was fixed onto induction bent steel tube 

hoops which make up the frame for the sliver. The bespoke design required various digital means in 

order to produce the parts for the assembly, utilizing technologies outside the field of architecture, 

such as fabrication specialists.  

 

Figure 58: the juxtaposition between the natural environment and the protruding sliver is downplayed by the reflective 

materiality of the building. The architecture has also not only allowed the flora to be preserved, but enhances it. 

Landscape. Source: Steven Holl Architects, divisare.com, 2007 



107 
 

5.4 Al Bahr Towers 

Abu Dhabi 

Aedas Architects 

 

Introduction 

The Al Bahr towers in Abhu Dhabi, United Arab Emirates, are the culmination of the aspirations to 

lead in the fields of sustainability and technological prowess. The 145m high towers remarkability 

lies in its innovative shading façade, developed by Aeda’s parametric team. This responsive façade 

is inspired by the “Mashrabiya”, a traditional Islamic shading device (Cilento, 2012).  

 

Figure 59: Inspired by traditional Islamic shading devices, this kinetic facade responds to the movement of the sun to 

control the solar gain in the buildings. Source: https://www.archdaily.com, 2012 

 

Design Intent 

Nurturing innovation is fundamental for positive change in the built environment and in our lives. The 

project brief for the Al Bahar towers required that the building reflect prestige, the environment, and 

the architectural heritage of Abu Dhabi and the UAE, whilst utilising modern technology. The building 

should essentially become recognized as a landmark for Abu Dhabi. 
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Performance criteria 

Environmental challenges are important concerns facing architects, and dynamic facades and 

building envelopes which respond to changes in climate are a real requirement. Adaptive facades 

can improve energy efficiency and provide the best comfort and indoor environmental quality with 

high effectiveness.  

 

Figure 60: Dynamic mashrabiya are inspired from folding and unfolding, natural adaptive systems, as well as from 

technologies of the past. Source: Journal of Façade Design and Engineering, 2015 

 

Adaptive facades such as the Al Bahr Towers’ are high performance envelopes which are able to 

respond mechanically to the external climatic dynamics to meet the requirements of the occupants 

inside. The goal of the mashrabiya screen is to block direct solar rays from entering occupied work 

spaces, specifically from 09:00 until 17:00. Additionally, a daylight threshold ranging from 250 to 

2000 Lux during the same working hours was required. This involved the use of sensors which would 

activate dimmers once light levels dropped lower than 250 Lux. 
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These ‘robotic’ devices sit on a separate frame 2m away from the building and were designed by the 

computational design team at Aedas. The facades panels were developed by simulating their 

operation in response to the sun exposure and the changing angles of incidence throughout the year. 

The parametric description allowed the panels to be adjusted without having to change the design 

which allowed a great degree of precision and an optimal design.   

 
Figure 61: With the sunrise in the east, the facade will close along the east and continue closing following the suns path 

throughout the day. Source: Archdaily.com, 2012 

 

The solar gain is reduced by up to 50% using this technology as well as reducing the requirements 

for air-conditioning. In a climate with average temperatures of over 30C˚ this results in substantial 

energy savings. The façade also allowed the Architects to use more naturally tinted glass which 

provides better views and reduces the amount of artificial light needed. Other systems of shading 

could include overhangs, horizontal and vertical fins as well as thermal, tinted glazing. In the case of 

the Al Bahar Towers however, the concept of the mashrabi makes a strong case for being the optimal 

solution within the buildings context. 
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Figure 62: Aesthetically, the façades expression is firmly rooted in the rich cultural context of the UAE. Source: 

archdaily.com, 2012 

 

The shading system is separated from the curtain glass wall through a sub-structure which utilizes 

movement joints which allows independent response from the sub-structure (Attia, 2017). The 

triangular units which make up the shading system are made from polytetrafluorethylene (PTFE), a 

relatively new synthetic material best known for its non-stick properties and its use in Teflon. The 

material is hydrophobic, resistant to high temperatures, chemicals and weathering and is extremely 

versatile (Sawyer et al 2003).  

There are 1049 1.5-ton shading devices on each tower, with 22 variations which made the 

manufacturing and assembly process challenging to manage. The shading devices are opened and 

closed once per day using a linear actuator and a pre-programmed sequence. On overcast and 
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windy days, built-in sensors send a signal to the control unit to open all facades to allow more light 

into the building. 

 

Figure 63: (a) Three fully opened shading devices allowing an open view during non-solar periods and (b) a group of 

fully opened shading devices. Source: photo courtesy of Terry Boake, 2012 

The control unit or central Building Management System (BMS) can control each unit individually or 

in groups. Every 15 minutes the system is updated according to an anemometer and light meter on 

the roof and in overcast conditions the system is automatically overridden (Attia, 2017). The shading 

device has a service life of 20 years with the linear actuators having a service life of 15 years.  

The nature of the façade dictated the requirement for a lot of testing in order to ensure proper 

functionality. The initial testing was done digitally, using simulation, animation as well as 

computational fluid dynamic (CFD) analysis to evaluate the performance. The kinematic and visual 

models were then set up and wind tunnel tests conducted on them. After completion, a 12-month 

monitoring system conducted to evaluate the real-world performance and to highlight deficiencies 

during the summer and winter seasons. 

A survey was done on the users of the buildings comfort levels, specifically from zone 2 which is 

comprised of offices from levels 10 to 20. According to Attia (2017) 12% experienced very 

comfortable conditions, 42% of users experienced comfortable conditions whilst 32% experienced 

neutral conditions, 10% felt uncomfortable and only 4% were extremely uncomfortable. These 

results can be interpreted in a positive manner, proving that the façade design is effective. 

Interestingly, the main reason for discomfort was overcooling which was recorded from female 
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occupants. Another main reason for discomfort was the actual movement and automated response 

of the façade, the regular opening and closing causing annoyance to occupants, as well as the 

inability to directly interact with the shading system. 

5.5 Precedents relevance to research 

 

Warka Water 

Structures can serve more than just an engineering function intended to provide a resource (water, 

energy), but can also become architectural in that they also have to provide shelter as is the case 

with Warka Water — the water harvesting tower is also used as a communal meeting spot and 

provides shelter for the local communities from the sun. Additionally, the culture and history of the 

local communities, as well as the environmental context has been captured in the structure which 

directly contributes to, and enhances, its architectural value. 

Whitney Water Purification 

Steven Holl’s Whitney Water plant has quite a utilitarian function which is often accommodated in 

large warehouses, however he decided to take advantage of technology to enhance the natural 

ecosystem of the site, and ultimately, the architecture. The purification plant is an example of how 

new design technologies can be used to influence architecture in a way which enhances the 

environment rather than imposing on it. It is a paradox where new technologies and the natural are 

juxtaposed but work together harmoniously in a manner which benefits the user as well as the 

environment.  

The major influencing factors for this precedent are the way in which the form is dictated by the 

function, yet still achieves pleasing aesthetics. Furthermore, the utilitarian function that is a treatment 

and purifying plant, is elevated to something which encompasses much more than just treating 

water. It includes the restoration and conservation of local flora and fauna, as well as providing the 

public with a green, public space, as well as educational facilities to learn about the process of 

treating water. Additionally, the materials, design and construction method are heavily influenced by 
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digital technology and largely made the building a possibility. The steel shingles not only provide a 

striking exterior, but their shape also allows the sun’s rays to reflect and absorb, which reduce heat 

gain in the building. Additionally, the buildings thin profile allows easy access to daylight in all 

occupied areas.   

The proposed building considers a fog water purifying plant, and the sensitivity of the site requires 

that its scale and visibility is heavily considered. Additionally, the site has suffered loss of endemic 

vegetation which needs to be restored. Whitney Water provides a number of strategies to tackle this 

variety of problems. 

Al Bahr Towers 

The Al Bahar towers are the culmination of traditional design fused with the power of digital 

technology. They highlight the importance of structure, sustainable principles, architectural form and 

digital technology as an ecosystem coinciding together, each dependent on one another. The 

successful collaboration between the various consultants was made possible through the use 

Building Information Modelling (BIM) and parametric modelling which allowed the process to 

become efficient and effective. The concept is ground-breaking and culminated in an Iconic 

architecture which set new standards for quality in the Architecture, Engineering and Construction 

industry.  

The level of innovation required to complete the project was unprecedented — nothing similar had 

been done before and many of the structural and automated parts, as well as written programs had 

to be specially made and coded.  

The high-performance and adaptive solutions of the Al Bahr Towers are designed to respond to the 

dynamic nature of context and the buildings user. The benefits of integrated dynamic systems and 

what they offer building design are important precedents to the proposed building which seeks to 

determine what the relationship between digital technology and environmental design is. The Al Bahr 
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Towers are an example of innovation beyond mainstream standards of building in which 

performance and aesthetics are equally prioritized. 

The purpose of this chapter was to highlight the various ways in which digital architecture has 

influenced environmental and sustainable architecture in different climates. Whilst each building was 

very different and ranged from a seemingly low-tech approach to very hi-tech solutions, the design 

processes were very similar in that the main design tools used were computationally based. Whilst 

it was clear in two of the examples that some sort of hi-tech process had to have been involved in 

the process of creating the architecture, in one of the examples it was hardly noticeable, if even at 

all. This is very important if digital technology begins to play a larger role in architecture in the future, 

as it contributes to the values of sustainable principles.      

The buildings which were analysed investigated the role that digital technology played in their 

specific contexts and whether their functions were enhanced and effective. The outcome made it 

clear that the innovation was only made possible through the use of digital design tools. These tools 

allowed the various systems to be tested in digital simulations which were able to prove the 

successes or failures before any physical testing needed to be done. It allowed the streamlining of 

design between various consultants and the tweaking and optimization without the need for 

redesigning entire systems. Furthermore, environmental impacts were reduced, and the “hi-tech” 

buildings achieved great green-star ratings.  

The precedent studies and literature reviews have exposed vital information on which digital design 

strategies may enhance the functionality, practicality and effectiveness of the proposed building, and 

will be used to generate a design brief for the design of a Fog water harvesting and visitors Centre.   

The following chapter will describe the analysis taken from the interviews, as well as the description 

of the interviews. It attempts to extract information relating to the research questions and objectives.  
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6.0 ANALYSIS AND DISCUSSION 

6.1 Introduction 

 

This chapter will report back on the analysis of the interviews, and how it responds to the research 

questions. The current state and progress of digital technology in our everyday lives is extremely 

fascinating, and the coalescence of these technologies and the built environment is a subject which 

is still relatively new in South Africa. The interview data was collected in order to gain a deeper 

understanding of the current and future implications of digital technology, specifically its implications 

for environmental architecture and sustainable practices. 

6.2 Description of interviews 

 

The interviews conducted with two staff members from Modena Design Centres as well as one 

engineer from Zipcord Industries (building automation, mechatronics) were very insightful and 

described the extents of digital technology in architecture and design in South Africa. Compared to 

many countries in Europe, America, China and Japan, South African companies have not yet 

adopted many digital and computational software tools. The interviews helped to gain a deeper 

insight into understanding the key question posed in this dissertation, and the possibilities of 

implementing solutions into the design proposal.   

Speaking to an Autodesk engineering professional who provides support and training for BIM and 

various other newer software (such as Dynamo) revealed that South African professionals are using 

these tools to streamline very basic, menial tasks. The conversation revolved around how design 

professionals in the AEC industry are utilizing computational software and if and where parametric 

design fit in. It was explained that “computational design is a long way off in South Africa”, and, 

surprisingly although some professionals are adopting these digital tools, they are being used for 

organization of files, keeping object libraries and families updated, creating real-time updates 

between excel spreadsheets and design data, and data management. In other words, for the most 

part, architecture professionals are not taking advantage of new technologies.  
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A big reason for this is the fact that there is little knowledge for how to use these programs, a large 

reason of which stems from the fact that architecture schools in South Africa still operate in a very 

traditional way. Many professors and academic leaders seem to view these “modern” processes as 

outlandish and an advanced and variety of software skill and knowledge is not something which is 

actively encouraged. Furthermore, many Architecture companies do not provide training for software 

which may or may not be utilized and learning them often happens through the persons own interest. 

This may also be attributed to software engineers, mechatronic engineers and structural engineers 

who collaborate with architects being the ones responsible for the components which require a more 

extensive knowledge of cutting edge design tools. 

According to Garth Hamilton, managing director of SVA International, digital integration will 

ultimately in the future drive a new era of building practices and architecture in South Africa and the 

next ten years will inform a new and radical revolution. For now, the extent for digital integration lies 

in BIM, which has allowed the seamless collaboration on projects between various offices based 

throughout the country.  

It is clear that the intentions for digital technological integration extend to streamlining processes 

between consultants, managing time effectively and speeding up various processes. Although there 

are certainly going to be professionals engaging with adaptiveness and automation in sustainable 

architecture, the interview below gives some insight into the direction of these methods.  

A Zipcord Industries engineer noted that building automation is increasingly playing a big part in 

South African architecture. The conversation revolved around how building automation is currently 

being used in South Africa and the response revealed that there are a lot of Building Management 

Systems (BMS) being introduced into buildings such as Malls and various other large buildings 

which require constant monitoring systems. “With automation in buildings, it’s all about efficiency 

and optimization and security”. HVAC systems for example do not need to be run constantly and 

programs which manage the system activate and deactivate it where necessary. Systems will be 

more intelligent and can even respond to things such as weather apps. “The biggest thing however, 
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is being able to review your data”. The smart systems will be able to monitor building performance 

data, such as energy performance, and adjust or alert the system accordingly. It can also detect 

changes or faults in mechanical and electrical systems which are installed, and in so doing ensure 

that preventative maintenance is minimized.  

BMS can also monitor water usage in a building, detecting leaks or higher than normal usage, which 

can be rectified and optimized.  Lastly, security is a big problem in South Africa, and automation has 

proven to be an excellent method of maintaining a high security level. Systems such as biometrics 

ensure that access to certain spaces is only granted to dedicated persons. 

There is clearly a large variety of different circumstances that digital automation can be applied to, 

however, the ability to monitor energy and water and to collect data is crucial in ensuring that a 

building is running at the intended efficiency.  

6.3 Analysis of Interviews and Findings  

 

The research uncovered some key findings about digital technology and fog harvesting, and the 

integration of both of these into a building. The research demonstrated three key findings: the 

effectiveness of fog water harvesting, that it can be integrated into a building façade, and that the 

materials and systems can be enhanced using digital technology to produce higher water yields. 

The interviews that were conducted were compared to the findings gathered from the literature 

review and the precedent studies, and provided a key insight into digital and technological 

innovations in our South African context, with regards to environmental and sustainable design. The 

literature and precedent studies presented effective and innovative solutions for environmental 

challenges utilizing digital technology in very innovative ways. The precedents demonstrated great 

technical knowledge and prowess in the use of advanced digital design tools from the various 

consultants who played a role in the design and construction of the buildings. The interviews 

demonstrated that there is a gap in software knowledge in South Africa, rather than technical skill. In 

order to construct a building which utilizes innovative, state-of-the-art, technological solutions, all 
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consultants on the project would need to have similar knowledge in the various design tools, as such 

projects require intensive collaboration between a wide variety of specialists, such as mechatronic 

and structural engineers, building automation specialists, specialists in fabrication, construction 

companies and of course the architects. According to the interviews, there is a lack in software 

knowledge, and there is also a lack in forward-thinking clients, who are not willing to gamble on such 

“futuristic” projects.  

Chapters 3.3 to 4.0 explored fog water harvesting, providing key findings on how to evaluate if the 

site is suitable, what technologies are most effective, how climatic factors can impact yields, various 

water storage systems, cost and feasibility, the types of fog which are most suitable, as well as how 

these technologies can be improved. It was uncovered that the coast of the Western Cape is 

susceptible to fog occurrences, and Table Mountains topographical nature creates its own separate 

climatic conditions. The Cape Town city bowl which lies in close proximity to the coast, is often 

affected by advection sea fog, which is especially suited for collecting water.   

Table Mountain is more often susceptible to fog generated by orographic lift (as opposed to 

advection fog), as warm air from the city is lifted up the slope by updrafts, where it rapidly cools. This 

is what creates the “table cloth” or “blanket” which is often seen covering the top of the mountain. 

The strong winds on Table Mountain and fairly restricted accessibility are major drawbacks however 

to fog harvesting systems. Table Mountain can be a viable source for harvesting fog water, but 

challenges of accessibility and wind would need to be further researched.  

Chapter 3.2 found that the possibility for integration into a building façade was viable, and that the 

building façade could further be responsive, in essence becoming multi-functional. The material and 

design choices have to be carefully considered however to account for corrosion and to reduce 

maintenance and mechanical failures. Different types of fog harvesting systems were also explored, 

and the findings proved that the most effective are standard fog collectors, using mesh as the 

condensing object. However, the properties of the mesh itself could be improved to achieve a greater 

yield. It was also discovered that the buildings envelope could be clad in a patterned skin, made with 
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nanotechnology. These wall panels mimic various insects and plants’ methods of collecting dew and 

moisture from the atmosphere. The drawback is that nanotechnology is still very expensive, although 

it might become a viable option for the future as digital technology progresses and manufacturing 

processes become cheaper.  

6.4 Conclusion 

 

The findings highlighted the state of digital technology in South Africa with regards to architecture, 

and showed that the type of digital technology and structural implications as discussed in the 

precedent studies are still slowly being developed. Unfortunately, the type of innovations which are 

highlighted throughout this study are complex and expensive, meaning only a select few high-profile 

architectural and engineering firms can utilize the digital design tools to their potential. 

On the contrary, fog-water harvesting was shown to be an effective strategy in supplementing 

communities starved of potable water. Furthermore, this strategy was proven to be viable in the 

Western Cape. Finally, digital technology can greatly improve fog-water harvesting systems 

efficiency through optimized design and better material, and even implement them into architectural 

components and envelopes. 

Chapter 7 will highlight how the outcomes from the findings and interviews have answered the 

research questions as well as the objectives, and provides design recommendations based upon 

these findings. 
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7.0 CONCLUSION AND RECOMMENDATIONS 

7.1 Introduction 

 

This studies outcome, based on all the research, has provided some key understandings into an 

avenue which is still being developed. Particularly in South Africa, the understanding of how digital 

technology can enhance environmental architecture is still a relatively new concept when faced 

with so many other economic and social complexities. However, addressing environmental crises 

through innovation with technology is not only crucial in preventing future environmental issues, but 

additionally paves the way to tackle a multitude of problems in the future.  

7.2 Outcomes of Research Questions 

 

1. How can digital technology and computational design inform an environmentally    

responsive architecture? 

 

Digital technology and computational design can inform environmental architecture in three major 

ways: 

a. Design 

The Al Bahr Towers, as discussed in the precedent studies, highlight how the design of an 

environmental architecture is conceived, not through a traditional linear process, but rather through 

a streamlined process in which many different fields work together simultaneously to find a solution 

to a problem, in this case, solar rays, heat and natural lighting inside a work space.  This is possible 

because of Building Information Modelling (BIM), which allows designs and technical information to 

be updated and altered live, meaning all consultants will get direct feedback on any changes that 

are made, as they are made.   

b. Simulation 

Simulations are a powerful tool that allow the user to test a variety of systems including mechanical, 

structural and environmental processes. This can have a great impact on time and cost, as complex 

systems can be accurately modelled, tested and any faults rectified before being physically 
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produced. Furthermore, it allows a buildings structural integrity to be tested in regions prone to 

earthquakes or high winds, and can simulate how a variety of different materials behave under 

various loads and stresses. All of these simulations and tests lead to a more optimized and efficient 

design. Simulations also have the ability to accurately predict environmental changes, allowing the 

designer to account for these changes during the design stage. 

c. Fabrication 

Digital fabrication, such as Computerized Numerical Control (CNC) machines and 3D printing, have 

the ability to manufacture large structural components as well as incredibly small parts. Subtractive 

manufacturing (CNC) and additive manufacturing (3D printing) are often combined to create a hybrid 

manufacturing as it is possible to manufacture incredibly complex parts, such as sensor systems. 

Additionally, this type of manufacturing allows a variety of materials to be used, providing great 

flexibility. Composite materials can be manufactured into structural parts, cladding, and a variety of 

other building components and furthermore many of these composites are environmentally friendly. 

The combination of new materials and being able to manufacture virtually any shape of component 

provide great possibilities for innovative strategies in enhancing environmental architecture. 

These design methods were implemented in the proposed building, particularly in the design of the 

automated facades, as well as the form of the fog harvesting tower. The research showed that the 

facades of the building could also function as a fog harvesting element. Sensors detect levels of fog 

and the screens close up, creating a large collection surface. Additionally, the screens reduce 

energy requirements for cooling of the interior as well as lighting.  

2. What water harvesting technologies have been implemented to inform an    

environmentally responsive architecture? 

 

Current water harvesting technologies consist predominantly of rain water harvesting systems, 

designed to catch the water from the roofs of buildings or other surfaces. This is an extremely 

effective technique and is often used for irrigation, grey water, and in some cases even as drinking 



122 
 

water. Whilst extremely effective in the wetter parts of South Africa, semi-arid regions which do not 

experience much rainfall only marginally benefit from this technology.  

The proposed building not only uses fog to harvest water, but also collects rain water from the large 

roof garden of the water bottling plant. Additionally, the mesh nets of the fog harvesting tower also 

collect rain which is transported directly into the water purifying and treatment facility.  

 

3. What technologies in a South African context 

are relevant in order to facilitate an architectural response to the water crisis in 

Cape Town? 

 

There has been a lot of debate around water harvesting and treatment systems such as desalination 

plants, which can provide fresh, potable water, but come with many unwanted risks such as noise, 

traffic, land-use, brine disposal concerns and energy consumption. Cape Town currently has three 

desalination plants running in Monwabisi, Strandfontein and the V&A Waterfront which 

accumulatively produce 8 million litres of water per day. Unfortunately, desalination plants cause a 

lot of environmental damage, and if not managed correctly can have disastrous effects.  

 

Another technology includes recycling wastewater, which is used in many countries around the 

globe. Singapore provides 40% of the country’s potable water from recycled wastewater. In South 

Africa, municipal wastewater systems collect high concentrations of microbial pathogens and 

chemical contaminants and would require complex treatment. Furthermore, several processes will 

be required to ensure public safety. Lastly, community perceptions on using recycled wastewater 

would need to shift. The research proved that in some areas of South Africa, alternative sources of 

water, such as water from fog, dew and rain, can be reliable sources of water to facilitate community 

supply. These still rely on traditional and older technologies which can be upgraded and have the 

potential for large yields. Innovative design, such as introducing water harvesting systems in the 

envelopes or facades of buildings has a lot of potential. 
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7.3 Achieving Aims and Objectives 

 

Aims 

The aim of the study is to facilitate a paradigm shift that considers digital technology as a strong 

proponent for environmental architecture and sustainable design. This in turn aims to drive a shift in 

paradigm which considers water scarcity as a chronic challenge by looking beyond conventional 

water supplies as a backdrop to address local water scarcity. 

 

The studies aim which looked at both digital technology and environmental architecture, and the 

combination of the two in order to address water scarcity, was achieved by utilizing innovative 

strategies and technologies to take advantage of specific weather conditions from which water can 

be provided.  

Objectives 

 

1. To explore how digital technology and computational design can inform environmentally 

responsive architecture 

  

Environmentally responsive architecture can be informed through a multitude of ways, of which the 

predominant methods are computational design, simulations, and materials and fabrication. These 

are manifested predominantly in facades, and structural systems and components. 

 

2. To explore the evolution of architecture within current technology 

 

Architectures evolution has always happened alongside technological innovations, as the many 

architectural movements and styles (such as modernism and postmodernism) over the decades 

have shown. How current technology is shaping architecture today, is evident in a variety of buildings 

which follow parametric or neo-futuristic styles, characterised by organic, free-form and curvilinear 

forms particular to digital design techniques. Additionally, architectures evolution is becoming 

manifested in environmental concerns, and as such, a buildings function relative to its context and 
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its users has reached new heights. Many standards for environmentally friendly buildings which have 

been set by a number of ‘green’ building councils, require the use of digital simulations to show 

energy performance of a buildings system, in order to meet these requirements. This has a direct 

effect on spatial planning, as well as the structure and buildings envelope and facades. More and 

more architecture is taking advantage of sensors to allow automated adjustments to occur based on 

light, temperature, energy expenditure and water use. This can happen internally, or, be part of a 

buildings envelope and aesthetic as well as the structure. 

 

3. To contextualise digital technologies and environmentally responsive architectures in the 

South African context 

 

Digital technologies progression in South Africa is still very much in its infancy stage, however, there 

is great promise for the future as it continues developing.  

Automation systems in buildings are very advanced and smart systems which have the ability to 

adapt to environmental challenges are already being utilized. This study highlighted the pro’s and 

the cons of digital integration in the context of South Africa, which is that implementation of new 

technologies beyond streamlining existing processes is low, but developing.   

7.4 Conclusions 

 

The findings in the literature as well as the interviews conclude that the technical ability for building 

automation exists, and is implemented on a large scale. Where it is lacking, however, is in innovative 

sustainable solutions, on a large scale.  Natural, sustainable resources are still not being taken 

advantage of in innovative ways. Environmental design in South Africa needs a built example which 

will inspire design professionals to consider the technical innovations possible with digital 

technology to enhance sustainable design in South Africa.  

 

The literature review and case study indicated that fog harvesting is viable in Cape Town. 

Furthermore, it showed that fog water harvesting systems can be introduced into buildings, and that 
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digital technology has the ability to enhance the effectiveness of the water harvesting process, and 

the architecture, as an interrelated ecosystem. 

 

This means that integrating fog harvesting technology into a building will likely ensure that the 

building can be more energy efficient by a) the fog harvesting nets performing a double function by 

also acting as adaptable shading devices, responding to the movement of the sun to shade the 

interior appropriately b)the fog harvesting nets themselves will require less maintenance due to the 

adaptive nature of the system being able to detect bad weather patterns and respond appropriately 

by folding away, reducing cost of maintenance c)a direct source of water to the building, reducing 

the need for piping and other necessary infrastructure, d) a sustainable source of water which can 

be collected, stored and used to service the building and its users, as well as provide supplementary 

water to local communities.  

 

The literature also indicated that altitude plays an important role in how much fog is available, 

effectively suggesting that the intervention should happen at a minimum altitude of 300m above 

mean sea level for the best results. Close proximity to the Atlantic Ocean additionally can increase 

potential water yield due to the fog not having dispersed as much. The ideal site would need to be 

a) accessible by vehicles and pedestrians, b) be close to the Atlantic Ocean, and c) be at an altitude. 

Whilst Signal Hill meets these requirements, the literature indicated that at least one part of the 

architectural intervention should be in the form of a tower to extend the height of the fog harvesting 

system for the optimal fog water yield. 

 

Addressing the natural environment of Signal Hill, it is clear that the vegetation has suffered and 

requires restoration and protection. The Summit of Signal Hill is almost bare aside from a few 

Umbrella Pines. Various Proteaceae and Renosterveld fynbos can be re-introduced as a rooftop 

garden.    
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Regarding the buildings envelope, the literature showed that adaptive and kinetic facades are 

effective solutions for controlling the interior environment and to reduce energy consumption of the 

building. Users of the building should however be able to interact with the shading system to control 

their immediate environment, according to their preferences. Adaptive and kinetic facades should 

also not be overly complex as this can more likely lead to mechanical failures and malfunctions. 

Simple mechanisms to control the opening and closing of such facades would need to be developed. 

 

It is clear that environmental architecture in South Africa is a big priority.  Digital technology is being 

used to collect data on building performance which is an effective strategy in monitoring the 

efficiency of the technologies which have been utilised. Essentially, data collection is very important 

as it helps to evaluate which technologies work and which ones do not. Understanding what is 

effective will eliminate the need for testing designs which can be costly and time consuming.  

 

A successful blueprint for environmental and sustainable design already exists in South Africa, and 

digital technology has not yet become a major component of it. It is however only a matter of time 

before it will begin to play a larger role.  
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7.5 Recommendations 

7.5.1 Introduction 

 

This chapter will provide insight into the approach taken towards an architectural design which 

responds to the water crisis in Cape Town in an environmental and innovative way. The vision was 

to create awareness on alternative, sustainable sources of water and to provide an example of how 

innovations in digital technology can play a positive role in enhancing environmental and sustainable 

architecture. To achieve this, the environment and climate around Signal Hill had to be promoted in 

a way which would draw attention and interest and provide a backdrop for conversations on 

technological and environmental requirements towards a sustainable future. To do this, the 

architecture would have to be effective in its functions of harvesting water and for meeting new 

standards in sustainable design with technological innovations. 
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7.5.2 Design parameters — Who, What and Why 

 

Who 

The architecture is meant to impact local communities within Cape Town, local and international 

tourists, recreational users and the surrounding natural environment.  

What 

The most important part of the design needs to be the symbol for the alternate, sustainable source 

of water. This symbol should be interactive for the users, but also visible from a distance, to stand 

as a reminder of the fragility of our most precious resource. The architectural space should promote 

discussions regarding sustainable innovations for the future, as well as promoting responsible 

tourism behaviour. 

Why 

Water is our most precious resource and needs to be protected. Highlighting the fragility of this 

resource is important to create awareness for the current and future generations of people. By 

demonstrating how water can be successfully collected in ways which go beyond conventional 

means of collecting water, discussions can be fuelled on sustainable practices which provide 

solutions to other environmental challenges. Furthermore, with digital technology promising to 

become even more ubiquitous in society, the possibilities to harness this resource as a positive 

influence towards sustainable design needs to be marketed. 

7.2.3 Client Proposal 

The client, the Department of Environmental and Water Affairs of the Western Cape, as well as the 

Department of Economic Development and Tourism of the Western Cape, in an attempt to raise 

awareness for alternate water sources and environmental concerns has commissioned the 

architects to design a fog-water harvesting and visitors centre on Signal Hill in Cape Town which will 

make use of the regular occurrence of fog to harvest water. The building would function as both a 
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tool to harvest water from fog, as well as being an iconic structure, new symbolic icon for Signal Hill, 

to stand at the forefront of innovative, environmental design for the city of Cape Town. 

7.6 Site selection 

 

For the building to be functional, the site had to meet specific requirements. According to the data 

established in the literature review and case study, the requirements for optimal fog harvesting 

conditions are presented as the following:  

• The site has to be in a location which experiences fog at least 40 days per year. Cape Town 

receives advection sea fog and fog due to orographic lift around 50 days per year, ensuring 

the first and most important requirement has been met. 

• The optimum altitude for collecting fog is above 300m above sea level, which requires the 

site to be situated on a hill or mountain. 

• The distance from the Atlantic Ocean from which the advection fog is blown in from has to 

be less than 50km. 

• The requirement for wind to drive the fog through the collecting surface is important as 

otherwise the fog would eventually just deposit onto the ground. 

• Accessibility to the site is important for vehicles and pedestrians to ensure that the systems 

can be maintained easily, and for the interaction between the architecture and recreational 

users to happen. 
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Figure 64: Site choices. Source: Author, 2018 

The choices for the site were Signal Hill, site A, and Lions Head, site B.  

Site B 

Lions Head has a higher altitude at 669m above sea level at the summit. This is a good altitude for 

harvesting fog water, however, does not have vehicular accessibility. Lions Head has extremely 

Site 

B 

Site 

A 
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rough terrain and also is a protected site. This would make construction difficult and would impose 

negative impacts on the natural environment.  

Site A 

Site A, Signal Hill, has an altitude of 350m at the summit, which is a good altitude for harvesting fog 

water. Its close proximity to the Atlantic Ocean ensures that It also is the first object at considerable 

altitude for advection sea fog to come into contact with. The benefits of this are reduced pollution of 

the fog. Furthermore, Signal Hill experiences updrafts from the North-West, which are used for 

paragliding, and which would help to drive fog into a harvesting system. Signal Hill is also accessible 

to vehicles and pedestrians via Signal Hill road. Signal Hill also has existing infrastructure on it, 

despite being part of the Cape Town Nature Reserve, and this will help to justify the architectural 

design proposal.  

 

Figure 65: Site A presents itself as the optimal site for the design intervention. Source: MapData, 2018 
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7.6.1 Signal Hill – Site analysis 

 

 

Figure 66: Signal Hill, aerial view. Source: Luke Maximo Bell 

7.6.1.1 Location 

Signal Hill is located in Cape Town, amongst Lions Head and Table Mountain. It lies within close 

proximity to the Atlantic Ocean and is flat-topped. At an altitude of 350m above mean sea level, it is 

one of the highest hills in Cape Town (fig 42).  

7.6.1.2 Accessibility 

The main access to Signal Hill is via Signal Hill road, which branches off from Kloof Nek Road/M62. 

Military Road which also branches off from Kloof Nek Road leads to the Noon Guns on Signal Hill. 

Kloof Nek road has several Bus stops which end at the beginning of Signal Hill road. Signal Hill road 

is primarily used by private vehicles, although public transport vehicles such as tourist buses and 

mini-van taxies also use it. 

Alternatively, Signal Hill can be accessed by foot via the Lions Head path which begins at Upper 

Rhine road, off of Ocean View drive, or from Top Road, both in Sea Point (fig.61).  
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Signal Hill is a popular destination for people to watch the sunrise and sunset and during sunset 

especially, Signal Hill road sees a lot of traffic. Full moon hikes are also very popular and contribute 

to traffic on the hiking paths, albeit on Full-Moon days only.   

 

Figure 67: map showing access points to Signal Hill. Source: Author edited from Google Maps, 2018 

Signal Hill is also popular amongst extreme sports enthusiast such as Mountain Bikers and 

Paragliders, the latter of which have several stations just below the summit which is accessed via 

Signal Hill road.  

The Lion Battery and the Noon Guns are a historical Landmark on Signal Hill, serving as a time 

signal. The correct term for these guns is in fact time-guns (Bisset, 1984). The Noon Guns as they 
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are now commonly known, consist of two Dutch naval black powder cannons, fired alternatively at 

noon every day.  

 

    Figure 68: time-gun/noon gun on Signal Hill.  

Source: https://www.sa-venues.com/attractionswc/noon-day-gun.htm 

 

Figure 69: time-gun no.54 outside the Lioness gateway at the Castle of Good Hope.   

   Source: Scientia Militaria, South African Journal of Military Studies, Vol 14, Nr 4, 1984 

The combination of outdoor adventure, sports, history, tourism, fitness culture and recreational 

activities are what define the spirit of Signal Hill. 

7.6.1.3 Context  

Signal Hill and Lions Head, is also known as the Lion Couchant, a French adjective used to describe 

the position of the animal lying down with its head raised. It compares the mountain with the Lion, a 

majestic animal carrying notions of royalty and nobility (Botha, 2013, De Beer, 1987). These 

landforms along with Table Mountain and Devils Peek, have become iconic symbols and play a 

major role in how the culture of Cape Town is defined.  The natural context of Signal Hill is in great 

Fig 62. Shows the current time-guns 

which consist of two guns, one of 

which is used as backup if the first 

one misfires.  

Fig 63. Is an image of a former time-

gun, number 54, which had been 

secretly moved to the Lion Battery 

in 1945 after becoming 

unserviceable during an accident in 

which the re-venting tool had 

become stuck in the vent chamber.  
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juxtaposition to the surrounding urban context and holds various small fragments of culture, history 

and vegetation.  

 

Figure 70: Urban context surrounding Signal Hill.  

Source: Author edited from google maps, 2018 

The majority of the context surrounding Signal Hill are middle and high-income suburbs which 

account for a large percent of users of Signal Hill and Lions Head (Conservation Development 

Framework, 2001).  

Signal Hill forms part of the Cape Peninsula National Park (CPNP) which was established in 1998 

and represents a combination of cultural and natural heritage. The Cape Peninsula is nominated as 

a World Heritage Site and plays a vital part in identifying and embodying Cape Town’s history, 

cultural diversity and memories.  

1. Industrial 

2. Commercial 

3. Mixed-residential 

4. Residential 

 

Signal Hill is 

predominantly 

surrounded by 

residential zones, with 

the CBD (zone 2) being 

in close proximity 
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Figure 71: spatial distribution of visits across the CPNP indicates the primary access points (42%) being clustered 

around the City Bowl.  

Source: Conservation Development Framework for the CPNP, March 2001 
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7.6.1.4 Topography 

The Cape Peninsula is made up of three types of different rock with different ages. Signal Hill is part 

of the Tygerberg-formation of rocks which fall under the Malmesbury Group 1, also called 

Malmesbury Slate or Shale (Kisters, 2016). Signal Hills marine siltstones were dated using Zircon 

crystals which estimates them to be around 560 million years old, making them the oldest rocks in 

Cape Town.  

 

Figure 72: Signal Hill and Lions Head geology.  

Source: Author edited from https://en.wikipedia.org/wiki/Peninsula_Shale_Renosterveld#, 2009 

Many of Cape Town’s historical buildings from around 1666 are constructed of local natural stone, 

and the Cape Town castle (Cape Towns’ oldest building) was built during this time using Malmesbury 

Slate. From 1850, Cape Granite and Table Mountain sandstone were utilized for building (Cole, 

2018). This stone should be used in the proposed building to respond to the context and relate to 

part of the history of the development of Cape Town. 
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Figure 73: Cape Town Castle or the Castle of Good Hope was constructed in 1666 using Malmesbury Slate.  

Source: www.portfoliocollection.com/visit/castle-of-good-hope-and-iziko-william-fehr-collection, 2015 

The vegetation on Signal Hill was used for grazing before European settlement designated certain 

areas for foresting and cultivation (Joubert, 1991, 1992). The vegetation falls under the category of 

Fynbos and is broadly classified as West Coast Renosterveld. Signal Hill provides a unique West 

Coast Renosterveld however, due to the fact that it is the only part of the Malmesbury shale area that 

is influenced by coastal fog (Joubert, 1992).   

Peninsula Shale Renosterveld is endemic to Cape Town’s peninsula, which is a narrow strip that 

runs from Signal Hill south to the Cape point (see fig.65).   

Some of the earliest descriptions of Signal Hill are from sea-men of which one described in 1702 as 

‘…Lion’s Rump…is grown over with luxurious grass and a few trees…’ (Joubert, 1992, p.257). 

Some descriptions of the flora on Signal Hill included fields of Proteas and according to Joubert 

(1992, pg.257), ‘almost the whole of Signal Hill used to be covered with Proteaceae…’. Today, most 

of the original vegetation on Signal Hill has been destroyed with the remaining vegetation consisting 

of gums, taaibos, pines and abundant grass.  
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Figure 74: Renosterveld on Signal Hill.  

Source: http://planet.botany.uwc.ac.za/nisl/bdc321/ekapa 

%20cape%20towns%20lowlands/module2 

/renosterveld.htm 

 

Figure 75:  Acacia Karoo tree. Source:  

https://www.seedsforafrica.co.za 

 

Figure 76: Pinus pinea, also called Stone Pine 

or Umbrella Pine.  

Source: http://www.ridgwayramblers.co.za, 2012 

The transformation of the vegetation on Signal Hill which includes the invasion of various alien and 

indigenous species, is evidence that in order to improve conservation of the highly threatened 

Renosterveld Shale, a certain extent of restoration is required. 

(A)Peninsula Shale Renosterveld is the 

only type of vegetation that is evenly 

distributed across Signal Hill and is one of 

the two last remnants of the species in the 

world. (Joubert, 1992). 

 

(B) The Acacia Karoo tree was once 

abundant on the lower slopes of Signal 

Hill but has greatly diminished. A few still 

remain scattered around the bottom 

slopes. 

 

(C)The Umbrella Pine or Stone Pine is 

abundant throughout the Cape Peninsula; 

however, it is not an indigenous species and 

was planted extensively in the 1700’s. It has 

since become part of the landscape. 
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Figure 81: Figure ground map of existing structures on Signal Hill. Source: Author edited from Google Earth, 20

(A) Public toilets with Enviro 

Loos and a radio tower (B) 

are situated close to the 

parking lot 

(C)Viewing platform made 

from timber provides a view 

over Seapoint and Lions 

Head 

(D)Lift-off area for 

paragliders and sunset 

viewing area covered with a 

tarp. 

(E)The Appleton Scouts 

campsite was once a WWII 

RADAR base in 1941 

Figure 79: Source: 

https://wp.wpi.edu/capetown/projects, 

2013 Figure 78: Source: Google Earth, 2018 

Figure 77:Source: 

https://www.morequarters.co.za, 

2016 
Figure 80: Source 
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Temporary infrastructure on the summit of Signal Hill included a public sculpture called the 

SunStar, designed by artist Christopher Swift, which was partially constructed from old fencing 

from the prison on Robben Island. The 25metre high, eight-pointed star would light up at night, a 

symbol of a brighter future. The LED’s on the installation were powered by photovoltaic cells on 

top of a temporary shipping container. After a period of six-months it was permanently relocated to 

Sun Internationals’ Sun City Resort. 

 

Figure 82: the SunStar installation illuminated during the night by LED's powered by a series of photovoltaic cells. 

Source: Simon Richmond, 2015 

7.6.1.5 The people 

Signal Hill falls under the Cape Peninsula National Park (CPNP) and as such is visited annually by 

Tourists, nature conservationists and locals from around Cape Town. According to the 

Conservation Development Framework (CDF) for the CPNP of 2001, park visits occurred 

predominantly at the City Bowl sites, which include Signal Hill. This has classified Signal Hill as a 

‘High Intensity Leisure Zone’ where many human activities are accommodated. These zones are 
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accessible by motor vehicle and often are the gateway to other zones. The CDF proposes that 

infrastructure such as restaurants, braai facilities, bush camps, formal/informal trading, and 

environmental facilities could be provided at these high intensity leisure zones (CDF for CPNP, 

2001). Large scale tourist facilities should however preferably be located within the urban areas of 

these zones. 

A high-volume site such as Signal Hill accommodates more than 100 000 visits annually, the 

majority of which are tourists (CDF for CPNP, 2001).  

The building will look to respond to the proposal of the CDF and include amenities for tourists such 

as restaurants, an information centre, local community artwork workshops and exhibition spaces, 

and nature conservation including the restoration of endangered plant species and a response to 

the water crisis which will also serve as an environmental education facility.  

A local community living on an abandoned military base in Tamboerskloof also called ERF 81 (fig 

77.), have turned the abandoned plot of land into a home and work environment. The vibrant 

community consists of artists, writers and musicians, it serves as a foster home for abandoned 

children, a place to grow vegetables and has become a conservation area for animals who are 

facing an ever- increasing habitat loss.  

 

Figure 83: ERF 81, Tamboerskloof, is home to a community who have been excluded from the City of Cape Town. 

Source: Author edited from Google Earth, 2019 
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Figure 85: Treehouse, ERF 81.  

Source: Ashley Walters, 2017 

 

Figure 86: Military Barracks, ERF 81.  

Source: Google Earth, Deontjie, 2018 

 

ERF 81 is a site of historical value and provides meaning to community members as well as the 

City of Cape Town. The proposed building may be able to provide support and further exposure to 

this farm, which is threatened by urban development. The design proposal is intended to create 

(A) ERF 81 Frog Nursery and Workshop.  

Andre Laubscher, who began the ERF 81 

community after coming across it whilst 

searching for pastures for his goats, 

decided he would have to stay after rain 

fell and he heard the croaking of frogs. 

  

Figure 84: Frog Nursery and Workshop.  

Source: Ashley Walters, 2017 

(B) ERF 81 Children’s playground  

Homeless children who found refuge 

within ERF 81 play amongst the trees, 

surrounded by animals.  

 

  

(C) ERF 81 Military Barracks  

The military barracks on ERF 81 are now 

used as a type of informal housing 
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awareness around this community by providing exposure through workshops and art exhibitions. 

Additionally the community can be supplied with clean, potable water from the fog harvesting 

systems. 

7.6.1.6 Wind and fog 

Cape Town has a Mediterranean climate which means it experiences cold winters and hot 

summers. The dry periods are in January, February, March, November and December. Although 

rain in scarce during these months, fog still frequents the late summer months and occurs 

throughout the year.  

 

Figure 87: Prevailing wind patterns over the Western Cape. Source: http://maritimesa.org, 2015 

 

Figure 84 shows how the prevailing winds move over Cape Town. These wind directions are 

important because they push the fog that forms in the Atlantic through Cape Town. This fog is 

usually quite dense at an altitude of 300m and above and often engulfs Signal Hill. Additionally, 

the winds are required as they need to drive the fog through the water harvesting surface in order 

for the water to condense on the material.   
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The majority of fog which occurs around Signal Hill is advection sea fog, blown in from the 

Atlantic, although upslope fog does occur occasionally. The density of the fog will also increase 

with wind speeds of around 15 knots (27.78km/h). 

 

 

Figure 88: time-lapse photo using long exposure showing how fog moves over Cape Town. The fog is most dense as 

it moves over the hill and exists at heights from 300-500m. Source: Eric Nathan, 2013 

 

 

 
Figure 89: Most of the time, advection fog ranges between a few hundred meters in total depth, becoming thinner at its 

lowest and highest points as it dissipates. This can be observed when it gets pushed over mountains and hills. Source: 

Author, 2019 
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Conclusion 

Signal Hills spirit is steeped in history, culture, nature conservation, tourism and recreational 

activities. It is a sensitive site which has to be treated as such. The following chapter will discuss 

how the proposed design will interact with the site. 

7.7 Early design developments 

 

Reaching the summit of Signal Hill on foot via one of the stony hiking paths would slowly reveal a 

sleek tower reaching out of the irregular landscape, glowing softly like a lantern. The fog harvesting 

tower reaches up into the sky, intercepting fog up to a 400m altitude. The journey would continue 

through a series of low-lying angular buildings, like the jagged rocks and stones which form part of 

the landscape. The visitors centre acts as a wayfinding and orientation point, as well as an 

information centre for tourists. Walking through the curved path, now with walls on either side, 

occasionally reveals glimpses of what lies ahead.  

Initial design developments developed around the idea of a fog harvesting tower as the primary 

hierarchical element which would always be visible to serve as a symbol of the end of water scarcity 

as a chronic problem. It embodies the symbolism of Signal Hill as a beacon of hope for visitors and 

locals. 

The Fog harvesting tower is a 50m high cylindrical structure which necessary to extend to a higher 

altitude to take advantage of the densest fog. The tower merges with the landscape which forms 

part of a rooftop garden consisting of a large variety of Fynbos and Renosterveld Shale species. 

The tall, elegant cylindrical tower allows a great surface area for the substructure and its mesh 

nets, which condense the water vapor from fog events. As the tower is ascended via the helical 

staircase, the views are extended to the entire City bowl, and it is observed how the condensed 

fog water trickles down the nets to fill up the water reservoirs. The tower is regarded as the 

termination point of the physical journey, providing an overview of the various tactile and learning 

experiences.  
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Figure 90: Initial design concept centred around the tower as part of the entire building. Source: Author, 2018 
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7.7.1 Developed Concept sketches 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 91: Concept design sketch laying out the various elements of the design.  Source: Author, 2018 
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Figure 92: When wind hits the surface, vortices are created which swirl the fog around. If the tower is open, many 

small vortices can happen within, essentially trapping the fog and allowing it to pass through the mesh nets multiple 

times, allowing a higher amount of water droplets to settle. Source: Author, 2018 

 

Figure 93: concept sketch with building rising from the ground and terminating in a vortex shaped tower. Source 

Author, 2018 

 

Figure 94: The towers form was inspired by how fog moves over hills. Source: Author, 2019 
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Fog density 

 

 

 

Figure 95: section through signal Hill showing fog densities at different heights. Source: Author, 2019 

 

The majority of fog events which occur over Signal Hill are due to advection sea fog and are 

blown in from the Atlantic. Figures 95 and 96 depict the densities of fog at different altitudes. In 

order to maximise the amount of water that can be collected it is important to intercept the fog in 

the region where it is the densest. Fog density can range between 0.05 g/m3 of water for medium 

fog (visibility of 300 m) and 0.5 g/m3 for thick fog (visibility of 50 m).  

Table Mountain Lions Head Signal Hill 
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Figure 96: Fog Density on a micro scale, ranging from 350 to 400m. Source: Author, 2019 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 97: wind deflects around curved surfaces, greatly reducing drag compared to flat surfaces. Source: 

Author, 2019 
  

+400m 

+350m 

Surface area of curved sides     = 2𝜋𝑟ℎ  

                 =        2356m² 

Minus surface area of columns =        2356 - 625 

        =        1731m² 

 

At 10L/m² the tower can collect 17 310L/day 

2𝜋𝑟ℎ  
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Figure 98: Automated shading screens open up the spaces according to the path of the sun and the luminosity. 

Sensors detect light levels, so on an overcast day screens will be opened fully to allow maximum daylighting. Source: 

Author, 2018 

 

 

Figure 99: On foggy days the screens close, creating a surface for fog to settle on. The droplets of water run down into 

a gutter which is transported to a storage tank. Source: Author, 2018  
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Figure 100: Concept design sketches. Source: Author, 2018 

-Hiking path leads into visitors’ centre 

-Path continues up to fog water tower 

-Tower provides 360˚ views of the 

journey 

-visitors centre rises out the landscape 

-solar panels on the roof power the building 

-Tower rises 50m to intercept the dense fog 

-vertical axis wind turbine helps power the 

bottling and purifying plant below  

-The water bottling and purifying plant is 

embedded in the landscape 

- Fynbos roof garden disguises the building 

below and enhances the natural landscape  

-Fog water mesh/nets between the vertical 

columns of the tower  

-The fog collects on the mesh and is guided 

down into storage tanks below ground. The 

entire process can be viewed by users of 

the building 

-The height and diameter of the tower allow 

a large surface harvesting area, 

maximizing yields. Yields up to one million 

litres can be expected annually. 
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7.7.2 Accommodation Schedule 

 

       Water Purifying and Bottling Facility        Visitors Centre 

 

• Water collection and storage tanks, 

capacity 1 000 000 litres 

• Filtration and purification space  

• Labs 

• Research labs 

• Bottle blowing and bottle storage 

• Bottle feeding and packaging 

• Mechanical and electrical rooms 

• Reception and lobbies 

• Clean room  

• Waste storage 

• Storage 

• Equipment store 

• Deliveries 

• security 

• Offices 

• Staff change & bathrooms 

• Staff canteen & kitchen 

• Public space 

 

• Public toilets 

• Roof garden fynbos exhibition 

• Viewing platforms 

• Workshop x2 

• Gallery 

• Exhibition space 

• Auditorium 

• Restaurant 

• Café 

• Shops 

• Office 3x 

• Security 

• Storage 

• Lobby and reception 

• Public toilets 

• Generator room 

• Mechanical and electrical room 

• Equipment store 

• Store 

• deliveries 

  



157 
 

Technological Considerations 

 

The impact of digital technology on the architecture is expressed in various ways. The research 

showed that some of the most effective implementations of digital technology are in the form of 

kinetic or adaptive facades, which respond to the path of the sun and adjust accordingly to reduce 

solar gain and control interior daylighting. Furthermore, the facades will also be used to harvest 

water from rain and fog.  

In order to provide an optimal response to climatic conditions and solar gain, the facades of the 

building are automated in two ways. The main shell of the circular building consists of automated 

slats (fig. 101) which have been programmed to swivel as the suns path moves during the day. On 

overcast days, sensors on the roof will override the pre-programmed control and open all slats to 

allow for maximum daylighting. The slats can also be controlled to allow for air flow through the 

building. 

 

 

 

 

 

Figure 101: slats are able to automatically swivel according to the exterior conditions. Source: Author, 2018 
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A façade was developed for the Water purifying and bottling facility, which expands and collapses, 

similarly to an umbrella (fig 102). The system is made of aluminium with a polytetrafluorethylene 

(PTFE) fabric shade-cloth, which doubles as a fog-water collection surface.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 102: Kinetic facade panels. Source: Author, 2018 

 

The main shell of the Visitor’s Centre has a roof consisting of a combination of glass panels, solar 

panels and fynbos gardens. The solar panels have an output of 250kW each, averaging 1000 watts 

per day per panel (1kWh), with 4 hours of sunlight.  
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Material choices 

 

Figure 103: cladding detail for the visitor’s centre consists of local 

cape granite and slate. Source: Author, 2018 

 

Figure 104: visitors centre sketch 

 

Figure 105: detail showing the facade system for the first floor of the visitor’s centre. Source: Author, 2019 

The cladding of the Visitor’s Centre 

consists of panels sourced from the 

local cape granite and slate rock 

formations on Signal Hill.  

The stone acts as an insulating 

material and helps keeps the interior 

spaces cool in summer and warm in 

winter.  

The stone finish also allows the 

buildings to rise from the ground as if a 

natural rock formation (fig. 103; fig 

104, 1), and pays homage to some of 

the earliest buildings in Cape Town 

which were constructed using Slate 

and granite. 

To juxtapose the heavy, grounded 

walls, glass with translucent insulation 

is used to elevate the upper floor of the 

visitor’s centre (fig 104, 2) in order to 

provide an ethereal floating effect, 

which is inspired by the fog which 

‘floats’ over the hill.  

1  

2  
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Figure 106: Bottling centre detail section.  

Source: Author, 2019 

The water bottling facility and fog 

harvesting tower combines two 

structures — the bottling facility is 

underground, concealing its function 

beneath a garden of endemic 

renosterveld. The filtration system is 

aided by gravity. The north, east and 

south facades are exposed and 

daylighting and temperature are 

controlled by an automated façade 

system. This system also serves as a 

fog harvesting surface (fig. 107, 1; fig. 

106), the mesh screens directing 

water into a storage system which 

supplements the buildings users 

drinking supply. 

Figure 107: Water Bottling facility and Fog 

harvesting tower. Source: Author, 2019 

1 

2 
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Figure 108: Fog harvesting tower detail section. Source: Author, 2019 

 

The fog harvesting tower reaches up into the sky at a height of 50m. This is important as fog is 

densest at higher altitudes. The towers structure is made from timber beams which are assembled 

in parts. The fog harvesting mesh is spanned between the beams with steel rods (fig. 108).  The 

droplets of water which condense on the mesh are pulled down by gravity into closed gutters, which 

transport the water down into the treatment, purifying and bottling plant. The cylindrical form of the 

tower and the gaps between the beams allow for a high resistance against wind as well as pay 

homage to the signal cannons. The fine mesh used to collect water is translucent but visible to 

birds, ensuring that they do not fly into it. 
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Structural Influences 

Further influences came in the form of a parametric script created in Dynamo, used to design the 

fog harvesting tower (fig. 109). The tower is fully parametric, meaning everything is adjustable and 

configurable. The towers height, number of floors, structural components and shape can all be 

optimized according to wind loads and direction as well as structural stress factors.  

 

 

The cylindrical shape also takes inspiration from the Signal Hill cannons, a homage to its name.  

The proposal seeks to embody an innovative architecture by embodying various digital 

technologies in order to enhance the effectiveness of the design holistically. At the same time, it 

integrates with its surrounding context, both in form and in materiality. The result is a juxtaposition 

of natural materials with man-made materials, hardness and softness, lightness and heaviness, 

translucent and opaque.  

The proposal acknowledges its position as a framework for contemporary culture, technology, art, 

and the issues of water conservation and sustainability in the future of South Africa. 

  

Figure 109: Parametric script for Fog harvesting Tower design. Source: Author, 2018 
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GROUND FLOOR PLAN 

Visitors centre and Fog-Harvesting Tower and Water treatment and Bottling facility 

FIRST FLOOR PLAN 

Visitors centre – exhibition/gallery and auditorium 
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SECTION 

NORTH ELEVATION 
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