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ABSTRACT 

FACTORS INFLUENCING THE LEARNING OF INTRODUCTORY 

COMPUTER PROGRAMING AT DUT 

 

Computer programming is an extremely difficult skill to master for 

students who are novice computer programmers. The preceding assertion is 

based on reports of high failure rates in introductory computer programming 

courses offered by tertiary education institutions. This is not just a South 

African problem but a number of cross-institutional and multi-national studies 

show that the problem is well known and is common (Grover et al., 2016). 

The current study investigated the factors influencing the learning of 

introductory computer programing at Durban University of Technology (DUT). 

The objectives of the study were to understand the influence of previous 

experience on students’ learning of introductory computer programming as 

well as to understand the influence of self-efficacy on students’ learning 

of introductory computer programming. The study also focused on 

understanding the influence of the ‘mental model ‘representation of the 

problem domain on students’ learning of introductory computer programming, 

and to understand the influence of the ‘mental model’ representation of the 

problem domain on students’ self-efficacy in the learning of introductory 

computer programming. The study adopted the quantitative research method 

to investigate the subject matter. This study embraced a survey research 

strategy and data collection carried out was over a short period. The study used 

simple random sampling to select 200 respondents at DUT. Data were collected 

using questionnaires. Data quality control was ensured by conducting a 

reliability and validity test on the data collection instrument used in this 

study. Ethical approval for the study was obtained from DUT. The quantitative 
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data collected were analyzed using the SPSS, version 25.0. The study utilized 

statistics such as frequency, descriptive (mean and standard deviation) and 

inferential statistics (Cronbach’s alpha and Spearman correlation). The overall 

findings from the study suggested that the self-efficacy level of the research 

participants was high. The results of the study revealed that there was a 

moderate positive relationship between self-efficacy and computer 

programming. Furthermore, it found was that the mental model adopted by 

students when solving computer programming problems positively influences 

student performance in computer programming.  

An outcome of the study is the recommendation that the teaching and 

learning of computer programming should focus on language structure and the 

correct mental interpretation of the problem domain so that students could 

improve their performance. 
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1.0 INTRODUCTION 

 

1.1 The Challenge of Learning Computer Programming 

Owing to the growth in information and communication 

technologies (ICT), the need for graduates with a high competence in 

computer programing skills is ever increasing in knowledge-based 

economies around the globe. Likewise, market analysis has shown that 

the level of investment in computer technology software-related 

industries is rapidly growing compared to technological hardware-

related industries, which is a phenomenon that puts an emphasis on the 

learning of programming (Chen, 2017). As a result, such opportunities 

pose new challenges particularly the challenges that influence students’ 

learning of introductory computer programming.   

However, despite the demands on human sources for high 

competence and skills in computer programming, there are plenty of 

studies in the literature which report that there is a deficiency in 

computer programming training initiatives (Groen&Hosseini, 2017). It 

is reported that computer programming courses at university level have 

seen a student dropout and failure rate as high as 30%, therefore 

indicating that programming is a challenging activity (Hosseini, 2017).  

Whilst the afore-mentioned factors such as previous experience, 

self –efficacy, mental model and performance are usually beyond the 

control of lecturers, they are of the opinion that the learning style 

adopted by a student of computer programming influences that 

student’s mastery of computer programming concepts. The main 

objective of this study is to examine the influence of various factors on 
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the learning of computer programming at a tertiary educational 

institution. It is envisaged that such a study would enhance pedagogical 

knowledge thereby contributing to an improved pass rate (Carpenter et 

al., 2016). 

1.2 Background and Context for the Study 

According to Bawa (2012) the former Vice-Chancellor of DUT, 

higher education has emerged as a key ingredient in the development 

strategies of democratic countries.  Bawa (2012) further maintains that 

there is a growth unprecedented in higher education’s provision for 

increased participation rates to promote equity of access to the 

historically disenfranchised who seek to realize their potential through 

tertiary education. A goal of the national higher education system is to 

build institutions with new organizational forms, identities, and 

cultures as integral components of a single coordinated national higher 

education system (Horton & Craig, 2015). This goal seeks to transform 

the national higher education landscape into a constitutionally 

acceptable pedagogic endeavor devoid of any barriers to entry based on 

social or ethnic standing. 

There are disparities within South Africa’s schooling system, 

which is the feeder system into the higher education system (Balfanz et 

al., 2012). Many of the students registering for courses such as ICT do 

not have prior exposure to the field from their high school training. At 

the Durban University of Technology (DUT), many students struggle to 

cope with the challenges of academic study. These students are 

therefore required to register for foundation courses in order to obtain 

the pre-requisite knowledge needed to cope with the learning 

environment. This challenge exacerbated by the difficulties inherent in 
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the learning of computer programming. There are many factors that 

may influence students’ learning of computer programmings such as the 

lack of prior ICT exposure and proficiency in mathematics or science-

related subjects (Schiefele, 2017). These factors were been examined as 

part of this study. The study conducted will be in the Department of 

Information and Communication Technology, within the Faculty of 

Accounting and Informatics at DUT. The researcher employed is 

currently within this Department as a lecturer in computer 

programming to first and second-year students. 

 

1.3 Research Questions and Objectives of the Study 

It is common among South African first-year students registered 

in IT/ICT Departments to find the introductory computer programing 

courses difficult. These difficulties are as a result of factors such as 

students lacking prior exposure to an ICT environment; lack of their 

knowledge of the basic use of computers; inadequate students’ problem-

solving ability which could involve mathematics competency; self-

efficacy; attitude toward learning; and as well as other factors 

(Thomsett-Scott, 2016). According to Schoeman and Gelderblom (2016), 

attitude is equally as important as capability. Students admitted into 

higher education remain disadvantaged and underprepared. This has 

serious implications for the state, the economy, academic institutions 

and the youth at large (Cutts et al., 2006). Underperformance and 

dropout of students from the system at increased rates is a costly issue 

for the University and therefore there is a major concern about the high 

dropout rate of students at tertiary institutions globally.  
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Huang and Shiau (2017)state that, improving graduate outcome 

in terms of numbers, quality and productivity, is crucial for South 

Africa’s future. Thus, first-year students’ adjustment and successful 

transition from high school to university are of great concern, both 

nationally and internationally. These issues, therefore, necessitate an 

investigation into factors influencing comprehension of and training in 

introductory computer programing language with a particular focus on 

first year ICT students at DUT. 

 

The research questions and research objectives of this study are as 

follows: 

1.3.1 Research Questions 

 How does ‘previous experience’ influence students’ 

performance in the learning of computer programming 

 How does Self-efficacy influence students’ performance in 

the learning of computer programming 

 How does the ‘Mental Model’ representation of the problem 

domain influence students’ performance in the learning of 

computer programming 

 How does the ‘mental model’ representation of the problem 

domain influence students’ self-efficacy in the learning of 

computer programming 

1.3.2 Research Objectives 

The primary objective of this study is to investigate the factors 

influencing the learning of introductory computer programing with a 
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particular focus on first year ICT students at DUT. The research 

objectives are as follows: 

 To evaluate the influence of previous experience on 

students’ learning of introductory computer programming 

 To evaluate the influence of self-efficacy on students’ 

learning of introductory computer programming 

 To evaluate the influence of the ‘mental model 

‘representation of the problem domain on students’ 

learning of introductory computer programming  

 To evaluate the influence of the ‘mental model’ 

representation of the problem domain on students’ self-

efficacy in the learning of introductory computer 

programming  

 

1.4 Research Rationale 

The rationale behind this study was that little research was done 

in the past to investigate factors that influence first-year students’ 

learning of computer programming in the African context and more 

specifically in the South African context (Hjorth, 2017). Again, existing 

research conducted has been mostly in Computer Science and 

Technology course-related institutions and not in a university setting 

which includes a University of Technology (UoT). Reports shows that 

among other factors the four basic influences on computer programing 

skill are previous experience, self-efficacy, mental model, and student’s 

attitude (Bringula & Aviles, 2017) while some other authors have added 

to this list by including previous experience as the de facto requirement 
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for computer programming skill (Edgcomb et al., 2017). These studies 

have shown that exposing students to prior ICT knowledge has a 

positive effect on student performance in Computer Programming 

courses at tertiary level. It is envisaged that such an intervention will 

adequately prepare these students for the demands at the tertiary level 

(Grover et al., 2016).  

1.5 Significance of the Study 

The focus of this research is on identifying which conceptual 

factors lead to success in learning computer programming, and, equally, 

which students are most likely to face difficulties in the course due to 

their inability to grasp the concepts. By identifying the vulnerable 

population, the ICT department and lecturers can assist these students 

early through recommendations with the goal of helping improve 

performance in the learning of computer programming. As a lecturer of 

a computer-programming course at the DUT, the researcher has 

observed that many first-year students face difficulties in the course 

leading to a high failure and dropout rate. This study will add to existing 

knowledge on the factors that influence the learning of introductory 

computer programing and it will provide a platform for future research 

even in different contexts. 

 

1.6 Outline of the Study 

Chapter One introduces the study including the background of 

the study, the research problem, the research questions, research 

objectives, research rationale and the significance of the study.   
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Chapter Two reviews the existing literature conducted on 

factors influencing first-year students learning computer programing, 

exploring their gaps and weaknesses, hence justifying the need for this 

study. Basic introduction of computer programing discussed. This 

chapter also critically reviewed models available for selection, 

identifying their gaps and constructs, hence explaining and justifying 

the model adopted for this study, displaying the constructs in order to 

explain the various factors considered in this study.  

Chapter Three describes the methodology adopted for this 

study. The research philosophy, research strategy, research choice of 

data collection, research design, study site, population, sample and data 

collection procedure of the study were all discussed. This chapter also 

described the data collection instruments, as well as ethical 

considerations for this study.     

Chapter Four presents and analyses the data obtained in this 

study. Tables, bar graphs, and pie charts used were for better 

representation of the descriptive statistics. Similarly, an inferential 

statistical test used was to provide a detailed explanation of results and 

to explain relationships between variables considered in this study.  

Chapter Five presents the conclusion of the study. It also 

confirms that the research questions addressed and that the research 

objectives achieved. The limitations of the study, recommendations, and 

suggestions for future research provided will be in this chapter.     

 

1.7 Summary 

This chapter has introduction provided to the study, the 

background, the research problem, the research questions, research 
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objectives, research rationale and the significance of the study. The 

structure of the dissertation presented was also in this chapter.  

The following chapter provides an overview of the different types 

of computer programing languages; it also reviews various literary 

contributions to the discussion of the factors influencing ICT students’ 

academic performance by identifying gaps in the body of knowledge. 

Similarly, it also critically reviews the theoretical model used in the 

study to explore the factors influencing previous experience and self-

efficacy in the learning of computer programing.  
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2.0 LITERATURE REVIEW 

 

2.1 Introduction 

This chapter seeks to explain the research questions posed in the 

study by discussing the several factors that influence the learning of 

computer programming. Most importantly, the chapter will 

comprehensively analyze different literature on introductory computer 

programing and what makes students find programming skill difficult 

to achieve success in academic performance, exploring gaps within the 

literature, hence justifying the need for this study.  

The model adopted for this study is been explained, illustrating 

the constructs in order to clarify the various factors the variables 

considered in this study and justifying why it was considered 

appropriate for this study. 

 

2.2 The Teaching of Introductory Computer Programming 

Introductory computer programming language usually taught in 

the tertiary institution by means of a series of lectures. Mauer et al. 

(2017)state that these lectures cover the simple concepts of 

programming (variables declaration, method, loops, conditionals, 

architectural ties and so on). These concepts are illustrated using the 

syntax of a particular language and more details of the language are 

added regularly as the students become more familiar with the course 

(Watson, 2013).  

Computer programming involves quite a number of tasks, 

including planning, coding, testing, debugging, deploying and 
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maintaining the programs source code (Creswell & Poth, 2017). 

Students in tertiary institutions progress in these skills through a series 

of courses. According to Barnes et al. (2017) in introductory courses, 

learners learn a certain portion of each of the activities involved in 

computer programming. Some courses emphasize coding and debugging 

tasks from the beginning and some focus on design activity first (Coles 

and Phalp (2016). However, there is no proof that any specific approach 

has an effect on learners’ pass rate. In programming, one needs to note 

the following:  

 Without visualizing the principal tasks such as execution 

of an algorithm in pseudocode and flowchart form, writing 

or reading a chunk of code is impossible.  

 Debugging activity cannot be successful without a clear 

understanding of what each line of code does and what they 

do collectively as a snippet. 

  Designing also heavily relies on understanding the 

capability and limitation of programs (Rex & Roth, 1998).  

Success in an introductory computer programming course 

demonstrates a student’s ability to visualize the logical processes behind 

the execution of programs (Thomsett-Scott, 2016). This ability is an 

important foundation, which makes all programming tasks easier, and 

without it, learning computer programming may be difficult. The 

dynamics of students to which computer programming have changed 

over the years and a first year students’ computer programming course 

now has to be able to meet the needs of a highly diverse set of students. 

Hašková et al. (2014) say that computing is also a degree course that is 
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assumed by many to lead directly to a creative and innovative career in 

the IT industry (Rodrigo et al., 2009). It has been shown simultaneously 

that many students are likely to embark on the course with the view to 

gaining a highly paid job as the sole aim (Kumar & Laakso, 2016). These 

students will have little interest in computing (or programming) other 

than as a means to an end (Coles & Phalp, 2016). 

 

2.2.1 Completion Rate in Introductory Programming 

Although the problem of high failure rates in introductory 

programming has become a global phenomenon, according to Bain and 

Wilson (2017) few studies have focused on providing reasons for this 

occurrence. Chen and Cheng (2012) conducted a survey of five 

educational institutions teaching computer studies to first-year 

students. In general, they found that the pass rate was higher for 

smaller classes and for colleges rather than universities, but that the 

programming language used does not matter. Chi and Berger 

(2017)undertook a longitudinal study by searching articles published 

between 1960 and 2013 to find those that reported data on failure rates. 

In all, they found 54 articles that described failure rates in 161 

computer-programming courses at 51 institutions across 15 countries 

from 1979-2013. The worldwide mean for passing was 67.7%. but no 

study was there a common definition of ‘passing,’ whether anything 

above an F or only those grades that allowed a student to continue to 

the next course and whether or not the passing rates counted course 

attrition as well as failure. However, the means in the two studies being 

as close as they were presents a good argument that the population 

means is around 67% (Chi & Berger, 2017). 
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2.2.2 Students’ Success in Learning Introductory 

Computer According to Bowlick and Goldberg (2017) in order to 

improve the pass rate for introductory computer programming, there is 

a need to have a better idea of what factors contribute to the high 

percentage of failure. One possibility is that the abstract content 

essential for programming is too logical for some students to grasp fully. 

Miller and Ramirez (2017) developed a tool to predict success in an 

introductory computer-programming course based on Jean Piaget's 

intellectual development (ID) levels. The actual level is categorized by 

the use of logic applied to diagnose the problems. It involves inductive 

thinking, but not logical thinking (Thomsett-Scott, 2016). The formal 

level is characterized by theoretical and logical thinking and the ability 

to use symbols associated with abstract concepts in a logical way. Barker 

and Unger's instrument had 11 questions that were categorized as 

concrete, early formal, formal or late formal. Answering both early 

formal questions (direct proportion and probabilistic thinking) 

incorrectly placed students in the late concrete category. If either was 

answer correctly the student was placed in early formal, and if, in 

addition, the student answered three out of four of the late formal 

questions (propositional and correlational reasoning, deductive logic or 

permutations) they were categorized as late formal. Idemudia et al. 

(2016) suggest that those who struggle with abstract thinking may need 

more time to internalize the concepts upon which programming 

depends.  

Breese et al. (2017) sought a means of filtering out students less 

likely to succeed in programming in response to a high demand for the 

course that the faculty could not meet. They found some correlation 
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between math and verbal statistics scores and success, but these along 

with the other factors they considered (rank in high school and grades 

in prior exposure to ICT and problem-solving skill) accounted for at most 

25% of the dissimilarity of grades (Carpenter et al., 2016). Elarde (2016) 

tested a model with 12 predictive factors, which included problem 

solving skill background, contributions for success/failure (explanations 

students give for their success or failure on the midterm exam), domain-

specific self-efficacy, mental model, comfort level in the course, favorite 

work style, previous programming experience and previous non-

programming computer experience. Comfort level, mathematics and a 

competitive work style preference positively correlated with 

performance in the midterm, while attribution of performance in the 

exam to luck or the difficulty of the task negatively correlated with 

performance in the midterm examination. Furthermore, while prior 

programming experience, in general, did not show any effects as they 

found a prior formal class in programming to be predictive of success. In 

addition, while other computer experience (internet, games, and office 

applications) in general did not have any effects, hours playing 

computer games did have a negative influence. Lopez and Whalley 

(2008), tested a different set of predictors namely spatial visualization, 

reasoning designing, sketching a map as well as attitudinal factors, to 

see which correlated with success.  Some of their correlations are 

statistically significant, though not strong. Others are not statistically 

significant unless they also include the students who did not complete 

the course. Bringula and Aviles (2017), found a trend toward students 

who created survey maps that modeled both the routes and the 

landmarks to be stronger at programming than those who sketched out 
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routes or landmarks alone. They also found students who could better 

articulate their search strategy more efficient than those who were less 

articulate. In general, their analyses are analogs to programming, 

therefore, someone who can create a more complete abstract model or 

who can articulate their search methodology in more detail shows better 

performance in problem-solving in a domain involving abstraction and 

algorithmic thinking (Mathews, 2017). 

2.2.3 Motivation and Habits of Students Who Failed 

Barnes et al. (2017) looked at differences between students who 

were taking the course again and new students. First-year students 

generally take their introductory programming course, and the first 

semester has an enrolment of 400 students. The second semester has an 

enrolment of 80 students. The study conducted was in the second 

semester of 2016, whereof the 80 students enrolled, 58% were taking the 

course for at least the second time. Barnes et al. (2017) did this survey 

halfway through the semester and another at the end of the semester. 

They found that most of the repeat students had little interest in 

programming, but initially wanted to go into business school not 

information technology. The repeat students also worked significantly 

more hours at jobs outside school than the students new to the course. 

Many of the repeat students had poor attendance at lectures. The 

authors described the repeat students as having a shallow learning 

approach, being reluctant to seek out and explore extra resources using 

their own resourcefulness. Many of the repeat students did not use or 

own the textbook, though it was strongly recommended. While about a 

quarter of the new students failed the course, over a third of the repeat 

students failed the class again. This study suggests a lack of motivation 



 

 

 

 

27 

to learn programming is the primary concern, but since the study was 

done after the students had failed the course for the first time, their lack 

of motivation and interest in other majors courses may in some cases be 

a result rather than a cause of their failing the first time. 

2.2.4 Performance in Introductory Programming Courses 

Predicting performance in introductory programming courses is 

a widely studied problem, and the motivation behind these studies is 

usually the high failure rates. Ideally, the study wants to be able to 

recognize the students who are struggling early on during the course, so 

that those students can then be offered additional help and support 

(Johnson-Laird, 1983). On the other hand, successful students could 

offer additional challenges to improve their learning experience. 

Understanding the reasons behind failing or succeeding can help to plan 

these interventions and teaching methods in general. Carpenter et al. 

(2016) are of the opinion that factors related to students ‘background, 

such as previous academic success and previous programming 

experience as well as psychological and mental model factors, self-

efficacy and self-esteem influence first-year students’ learning of 

computer programming.  Some studies have also included demographics 

like gender and age  (Hjorth, 2017). More recently, as it has become more 

and more common to collect log data on introductory programming 

courses, newer studies have also included variables based on this data. 

These variables try to capture students’ behavior while they are solving 

exercises, for example by taking into account how much times they 

spend dealing with errors.  

When predicting performance, an important thing to consider is 

how to measure it (Bain & Wilson, 2017) said that most studies have 
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focused on predicting performance on introductory programming 

courses, the final grade or midterm grade is a natural choice as a 

measurement scale. In most cases, the grade consists of performance in 

exercises and the final exam, though final exam usually makes up for 

most of the grade. Exam and lab performance have also been examined 

separately and other more specific performance measures have been 

used.  

2.3 Factors that Influence the Learning of Introductory 

Computer Programming 

There are numerous social and cognitive factors that influence 

the learning of computer programming (Wiedenbeck et al., 2004). 

However, for the purpose of the current study, the most significant of 

these factors are discussed below. 

Previous Experience and Computer Programming 

Research shows that previous programming experience has a 

positive effect on success in an introductory university course (Ahadi et 

al., 2017).  Other factors that may affect course success have been 

studied but not in depth (Baldwin et al., 2017). Two recent studies have 

shown a positive relationship between mathematics or science 

background to computer programming success (Farmer & Tierney, 

2017). Various factors regarding student learning styles and learning to 

the program have been found in many studies (Bain & Wilson, 2017). 

Other interesting factors that have been addressed in recent studies 

include student attributions of success to oneself or to outside forces 

(McGee et al., 2017) and students’ course outcome expectations (McGee 

et al., 2017). A factor of potential interest that has not widely been 
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studied in computer programming is computer playfulness (Horton & 

Craig, 2015). A negative factor affecting student success is a high 

amount of game playing by students (Huang & Shiau, 2017).   

Self-Efficacy and Its Role in Learning 

Holzberger et al. (2013) define self-efficacy, as “…people’s 

judgments of their capabilities to organize and execute courses of action 

required attaining designated types of performance.” Self-efficacy 

beliefs are keys element in human performance over a very broad range 

of situations, for example, efficacy for work tasks, for physical activities, 

and for personal relationships (Schultz & Schultz, 2016). Self-efficacy is 

important in learning activities because learning involves more than 

just acquiring skills. As Holzberger says, “…competent functioning 

requires both skills and self-beliefs of efficacy to use them effectively” 

(Miller & Ramirez, 2017). Schultz and Schultz (2016) are of the opinion 

that learning situations and self-efficacy influence the use of cognitive 

strategies while solving problems. The amount of effort expended, the 

type of coping strategies adopted, the level of persistence in the face of 

failure, and the ultimate performance outcomes are all influential in 

determining computer programming proficiency. Chamorro-Premuzic 

(2016) states that according to self-efficacy theory, judgments of self-

efficacy are based on four sources of information. These are the 

individual’s performance attainments, experiences of observing the 

performance of others, verbal persuasion, and physiological reactions. 

The most important is performance attainments, that is, the 

individual’s evaluation of the outcomes of his or her direct attempts to 

perform an activity. 



 

 

 

 

30 

Educational researchers recognize that, because skills and self-

beliefs are so intertwined, one way of improving student performance is 

to improve student self-efficacy. Interventions to improve student self-

efficacy focus on specific skills or knowledge and target the four sources 

of information that students use to evaluate their self-efficacy, as 

defined above. Providing students with direct hands-on experiences in 

an activity is critical since the strongest source of information is 

performance outcomes (De Neve & Ro, 2015). Making positive hands-on 

experiences is also important, especially in the early stage of learning, 

when the task may seem overwhelming. According to Schiefele (2017) 

attempts have also been made, with some success, to increase self-

efficacy in learning by peer modeling of tasks, verbal persuasion, or 

other types of social influences, such as cooperative learning 

environments (Phillips et al., 2017). 

Mental Models and Computer Programming 

Guzdial et al. (2017)define a Mental Model as a predictive 

representation of real-world systems. People create internal 

representations of objects and processes in the world, and they use these 

mental representations to reason about, explain and predict the 

behavior of external systems. Mental models are critical in debugging a 

process when things go wrong because the mental model supports the 

person in reasoning about and localizing possible faults (Moyer et al., 

2017). Mental models have been studied in many domains and 

situations. 

In recent years, the mental model's concept has been popularized 

by practitioner magazines and websites in areas such as human-

computer interaction (Huang & Shiau, 2017). Programming is a 
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cognitive activity that requires the programmer to develop abstract 

representations of a process and express them in the form of logic 

structures. In the case of creating, modifying, reusing, or debugging a 

program, the programmer must also translate these abstract 

representations into completely correct code using a formal language. 

Having a well-developed and accurate mental model is likely to affect 

the success of a novice programmer in an introductory programming 

course (Moyer et al., 2017).  

A programmer’s mental model could encompass useful knowledge 

about how programs work in general, stereotypical ways of solving 

common programming problems and how a particular program is 

structured and functions, as well as knowledge about the syntax and 

semantics of a specific language (Coles and Phalp (2016). 

Chen (2017) referred to mental models as schemas or plans that 

have been showing to play an important role in program comprehension 

and in comprehension-related tasks, such as modification and 

debugging. Rumsey et al. (2017) found strong effects of mental model 

formation in a program modification task. Participants were asked to 

modify a program but not given any explicit instructions about how to 

approach the task. The results showed that programmers who first 

attempted to systematically read and comprehend the program were 

much more successful in doing the modifications than programmers who 

jumped immediately into making modifications.  

The difference in performance between programmers who built a 

mental model of the program and those who did not be especially great 

in modifications that involved interactions with code in other parts of 

the program. Similar results were reported by Schoeman and 
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Gelderblom (2016) in a comparison of novices and experts debugging a 

program. A conclusion can be made from these studies is that novices’ 

success in programming tasks may be increased by greater attention to 

building a good mental model of the program. These studies of mental 

models in programming do not deal directly with the issue of success in 

introductory programming courses. However, the various factors a good 

mental model and success in programming tasks suggest that having a 

good mental model may be an important contributor to course outcomes. 

 

2.4 The Study’s Theoretical Model 

This study adopts a model of computer programming 

performance by novice programmers based on the factors of Previous 

Experience, Self-efficacy, and Mental Model. The study’s theoretical 

model has been adapted from the Model of Factors that Influence the 

Learning of Computer Programming (abbreviated as MFILCP)taken 

from Wiedenbeck et al. (2004). The adapted model is been illustrated in 

Figure 2.1. The main constructs or variables of the model are been 

represented by ovals and the relationships between these constructs are 

illustrated as directional lines.  
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Figure 2.1: The MFILCP adapted from Wiedenbeck et al. (2004) 

 

Previous experience: Previous experience is important to 

success in an introductory programming course. Previous experience 

acts as a significant predictor of both students’ self-efficacy and mental 

models of programming, which in turn predicts course performance 

(Baldwin et al., 2017) 

 

Self-efficacy: Based on self-efficacy theory, there is a positive, 

causal relationship between previous experience and self-efficacy in the 

domain of application. An extrapolation of this relationship into the 

domain of computer programming suggests that as the ‘hands on’ 

exposure to computer programming tasks increase, so too will students’ 

self-efficacy in computer programming increase. It is also hypothesized 

that students’ mental models of programming will have a significant 

effect on their self-efficacy beliefs (Miller & Ramirez, 2017).  
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Mental Model: Previous experience also has a positive influence 

on the accuracy of the mental models that students develop when trying 

to solve a computer programing task (Wiedenbeck et al., 2004). A further 

observation is that a clear mental model of what programs do and how 

they do, it will increase students’ feelings of self-efficacy about 

programming. It is expected that both the Mental Model  

 

Performance: According to Wiedenbeck et al. (2004), 

performance in computer programming is influenced by previous 

experience. However, this relationship is not a direct one. A more 

accurate representation is that performance in computer programming 

is linked to previous experience through the mediating influence of Self-

efficacy and Mental Model. According to Mason (2017), self-efficacy 

explains is a pivotal factor when it comes to understanding students’ 

performance in computer programming courses (Mason, 2017). 

 

2.5 Summary 

The current chapter has provided detail on issues related to 

student performance in computer programming assessment. A 

significant outcome of this discussion is that students have been 

grappling with the mastery of computer programming at an 

introductory level. An incursion into the realm of cognitive processing 

that influences the acquisition of computer programming skill suggests 

that previous experience, self-efficacy and mental models of the problem 

domain play a significant role in determining computer programming 

proficiency. A theoretical model aligned with the preceding constructs 
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has been identifying as a viable framework to underpin the empirical 

phase of the current study.  

The subsequent chapter describes the methodology, the research 

approach, choice of data collection methods, the study site, the study’s 

sample, and the data collection instrument.  
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3.0 THE RESEARCH METHODOLOGY 

 

3.1 Introduction 

The literary incursion into factors that influence the learning of 

computer programming has been discussed as part of the literature 

study, the Model of Factors that Influence the Learning of Computer 

Programming (MFILCP) has been identified as the underpinning 

theoretical framework for the study. The MFILCP plays a defining role 

in the methodology adopted for the study. 

Research is conducted for two reasons; either to find a solution to 

a problem or to answer a question (Marinova & Hartz-Karp, 2017). 

According to Creswell and Poth (2017), research is defined as a process 

of finding new information on a specific topic. However, research 

methodology refers to the process, tools, and procedures that are 

adopted when conducting a research study (Alvesson & Sköldberg, 

2017). It is further described as a systematic way and process that is 

adopted when carrying out a research study (Robson & McCartan, 

2016).   

The research process and procedures used in the current study 

has been informed by the Research Onion model presented in Saunders 

et al. (2017) and illustrated in Figure 3.1. 
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Figure 3.1 The research Onion taken from Saunders et al., (2017, p. 54) 

 

The process and procedures like the research philosophy, 

research approach; choice of data collection, time horizon, techniques 

and procedures adopted in this study is explained in the various sections 

of the current chapter to answer the following research questions:  

 How does ‘previous experience’ influence students’ 

performance in the learning of computer programming? 

 How does Self-efficacy influence students’ performance in 

the learning of computer programming? 

 How does the ‘Mental Model’ representation of the problem 

domain influence students’ performance in the learning of 

computer programming? 
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 How does the ‘mental model’ representation of the problem 

domain influence students’ self-efficacy in the learning of 

computer programming? 

3.2 Research Philosophy 

Research philosophy refers to the researcher’s belief and 

philosophical approach adopted to investigate a phenomenon (Saunders 

& Tosey, 2013). The different types of research philosophies are 

positivism, realism, interpretivism, and pragmatism (Saunders & 

Tosey, 2013). 

 Realism is defined as a philosophical approach associated with 

scientific inquiry (Saunders & Tosey, 2013). 

Interpretivism approach involves gathering rich and detailed 

insights into a phenomenon. It involves using small samples and it is 

best suited for a qualitative study (Saunders & Tosey, 2013).  

Pragmatic approach, on the other hand, uses multiple 

techniques for gathering data and it results in an interpretation which 

is best suited for studies that adopt both a quantitative and qualitative 

method for better understanding of a problem (Saunders & Tosey, 2013). 

A positivist approach is an approach that involves using 

scientific methods to test theories (Saunders & Tosey, 2013). It gathers 

data from a larger sample (Patten & Newhart, 2017). It also uses an 

empirical approach to addressing a research problem thereby providing 

an explanation based on what is observed thus giving room for 

generalization (Creswell & Poth, 2017).   

The current study adopts a positivist research approach because 

it is quantitative in nature. Furthermore, this study follows an 

empirical approach by gathering data from a large sample and employs 
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statistical analysis in order to provide a comprehensive explanation of 

the previous experience of self-efficacy and the mental model to 

determine the performance of students at DUT 

3.3 Research Approach 

The research approach is largely dependent on the research 

philosophy that a researcher adopts to guide his / her study (Saunders 

& Tosey, 2013). The approach a study adopts depends on what a study 

intends to address. Research approaches are of two types, a deductive 

and an inductive research approach (Creswell & Poth, 2017). An 

inductive approach is the opposite of a deductive approach. In an 

inductive research approach, the researcher develops the research 

questions before adopting a model and it is most suitable for qualitative 

research (Saunders & Tosey, 2013) 

In a deductive research approach, the researcher firstly examines 

the previous literature conducted on the study, then extracts variables 

considered in the literature and the model that guides the study 

(Creswell & Poth, 2017). The research questions and the variables 

considered in a deductive approach are developed from the literature 

examined and the model adopted to guide the study (Saunders & Tosey, 

2013). A deductive research approach uses the scientific method for data 

collection which is analyzed using statistical analysis (Anderson-Gough 

et al., 2017). It aligns with a positivist research philosophy because it is 

highly objective in nature, and it is best suited for studies, which 

attempt to explain various factors (Saunders et al., 2017). 

The current study embraces a deductive approach because the 

model adopted guided the research questions as well as the variables 
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considered in this study in order to investigate the factors influencing 

learning computer programming 

 

 

3.4 Research Strategy 

Research strategy refers to procedures adopted by researchers 

when addressing research questions (Saunders & Tosey, 2013). The 

different strategies involved in conducting a research study are 

experimental, survey, case study, action, grounded, ethnography and 

archival research strategy.   

An experimental research survey is mostly adopted when 

comparing the effect of a phenomenon on two different groups; a 

controlled and a treatment group (Saunders & Tosey, 2013). A case-

study research strategy involves conducting a study by selecting a 

certain subject with a certain characteristic (Saunders & Tosey, 2013). 

Action research is usually adopted when attempting to find a solution 

to a problem identified (Creswell & Poth, 2017). In ethnography 

research, the researcher conducts the study in the context of a specific 

culture or group, while an archival research is a strategy where the 

researcher obtains data from existing data; usually involving secondary 

data (Creswell & Poth, 2017). 

A survey strategy gives room for the researcher to collect data 

from respondents which is a representation of the whole population 

hence giving room for objectivity (Alvesson & Sköldberg, 2017). In other 

words, “survey strategy presents the opinions of a population by 

studying a sample of that population” (Creswell & Poth, 2017). A survey 

strategy mostly involves the use of a questionnaire to gather data from 
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a sample. In other words, it follows the deductive approach (Jagdale et 

al., 2018) 

The current study adopts a survey research strategy because a 

sample was taken from a part of the whole population of the university 

students to investigate the factors influencing the learning of computer 

programing. 

3.5 Research Design 

According to Creswell and Poth (2017), a research design gives 

the direction of a research study. It also articulates what method(s) a 

research study will adopt (Glaser, 2017). There are three major types of 

research designs: descriptive, exploratory and explanatory research 

design.  

An exploratory research design is best suited for studies that 

provide a deeper insight into a research problem that is not clearly 

understood (Glaser, 2017), while a descriptive research design simply 

provides a comprehensive discussion of a problem that is being 

investigated (Coolican, 2017). 

An explanatory research design, on the other hand, describes 

various factors by providing a detailed explanation of various factors in 

a study (Coolican, 2017). An explanatory research design gives detailed 

information compared to a descriptive research design (Saunders et al., 

2017).  

Descriptive studies report instant data such as measures of 

central disposition including the mean, median, mode, deviance from 

the mean, variation, percentage, and correlation between variables, as 

descriptive study might employ methods of analyzing correlations 
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between multiple variables by using tests such as Pearson's correlation, 

regression, or multiple regression analysis. 

The current study embraces a descriptive research design 

approach in order to study the factors influencing learning introductory 

computer programing at DUT. 

3.6 Research Choice 

Research choice refers to the mode of data collection when 

conducting a research study (Glaser, 2017). The different mode of data 

collection is mono-method, mixed-methods and multi-method (Saunders 

and Tosey, 2013).   

A mixed-method uses a “combination of both qualitative and 

quantitative mode of data collection technique” (Creswell and Poth, 

2017: p 38). A multi-method uses a combination of more than one 

quantitative and more than one qualitative mode of data collection 

technique (Saunders and Tosey, 2013). A mono-method uses only a 

single mode either of data collection technique, which can be using a 

questionnaire or by an interview (Saunders and Tosey, 2013).   

The current study adopts a mono-method mode of data collection 

technique because it only gathered data with a questionnaire.   

 

3.7 Time Horizon 

Time horizon refers to the period it takes for a researcher to 

gather data. According to Saunders and Tosey (2013), there are two 

types of time horizon, they are a cross-sectional and a longitudinal time 

horizon.   
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The longitudinal time horizon research requires a researcher to 

gather data over a long period and it is suitable for an experimental and 

archival research strategy (Kim et al., 2017). The cross-sectional time 

horizon research requires data to be collected over a short period, and 

data is collected only once for the study (Saunders and Tosey, 2013). 

Cross-sectional research studies are most suitable for studies that adopt 

a case study and survey research strategy.   

The current study embraces the cross-sectional time-horizon 

approach because it adopts a survey research strategy and data 

collection was carry out over a short period. 

3.8 Research Site and Setting 

The research site for this study is the Durban University of 

Technology, while the research setting is the Faculty of Accounting and 

Informatics on the Ritson Campus of DUT targeting the first year 

Bachelor of Technology (BTech) First-year students. 

3.9 Population of the Study 

A total population of 200 students was selected from the IT 

department at the Ritson campus of DUT to participate in the survey. 

According to Leon-Garcia (2017), sampling as a process of selecting a 

subset from a population. It also described as the process of selecting 

subjects for a study. A sampling technique is a process of selecting a 

member from a population for a study (Abdelkader, 2017).    

There are two types of sampling techniques, namely probability 

and non-probability sampling technique. In a probability sampling 

technique, members of the population have an equal chance of 

participating in the study (Coolican, 2017), while in non-probability 



 

 

 

 

44 

techniques, “the members in the population do not have an equal chance 

of being selected to participate in the study” (Coolican, 2017: p 43).    

An example of a probability sampling technique is a simple 

random probability technique where elements in the target population 

have an equal chance of selection to participate in the study (Elwood, 

2017). Hence, this study utilizes a simple random probability technique 

because all the elements in the target population had an equal chance 

of selection to participate in the study 

3.10 Sampling and Sampling Technique 

The total sample size of this survey was calculated according to 

the sample size formula proposed by Naing et al. (2006) (see equation 

3.1) for finite populations, where n= sample size, Z=confidence level, 

P=Estimated proportion, d=precision or acceptable margin of error, and 

N=Population size. The value of n was estimated using the following 

parameters: Z=1.96, P=0.05, d=0.035 and N= 204 students which give a 

sample size of 200 students. The construction of the sample for 200 

students surveyed by this study was done as follows: The ratio of the 

students in that department from business analysis and application 

development were calculated compared to the total number of registered 

students for application development in the department, and this ratio 

was multiplied by the sample size in order to get the number of students 

in the sample for the department. Equation 3.1 was used to determine 

the sample size for the study. 
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Equation 3.1. 

   

 

According to Scott (2017) and Moser and Kalton (2017), the 

population of a study is a group of people that have a common 

characteristic, while a target population refers to the population that 

includes all clinical and demographic characteristics where results will 

be generalized.   

The target population considered in this study was Bachelor of 

Information and Communication Technology (First year) students in 

the Faculty of Accounting and Informatics on the Ritson Campus of 

DUT. The Ritson Campus has the highest population of students who 

learn introductory computer programming at DUT. Also, first-year 

students are the ones likely to face factors influencing the learning of 

computer programming because of little experience compared to mature 

students who have experienced coding, debugging and implementation 

right from their undergraduate study, hence, they can provide robust 

information on how factors influenced their academic performance in 

computer programming over the years. 

 
  

3.11 Data Collection Instrument 

The data collection instrument refers to the tool used in collecting 

data in a research study (Saunders and Tosey, 2013). In a qualitative 

study, data is collected through observation and the use of interviews, 

which can be structured, semi-structured or unstructured, and are 
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mostly analyzed using content analysis (Berggren et al., 2017). A mixed 

method mode of data collection uses both interviews and a questionnaire 

(Saunders and Tosey, 2013). A mixed method data collection is suitable 

when either the quantitative or the qualitative approach is inadequate 

to address suitably the problem that is being investigated (Creswell and 

Poth, 2017).  

A quantitative model of data collection, on the other hand, uses a 

questionnaire to gather data, which analyzed are and interpreted using 

a statistical test (Creswell and Poth, 2017). It uses more samples 

compared to a qualitative research, and it gives room for generalization 

of results. A quantitative research mostly deals with numbers and 

statistics and it used is to examine various factors i.e. independent and 

dependent factors in a study (Saunders and Tosey, 2013). 

In the current study, data was collected using a questionnaire 

because it is a quantitative study. In addition, the result of the study 

was analyzed and interpreted using statistical analysis in order to 

examine the influence that the variables identified in the study, have on 

the learning of computer programming.  

 

3.11.1    Questionnaire Design 

The questionnaire was designed using Microsoft Word. It was 

administered physically to the target population identified in the study.   

The questionnaire was designed to conform to the Psychology of 

Programming model that underpinned the study. These were done in 

order to get a well-informed response, which provided a richer and 

better understanding to explain the influence of factors influencing the 
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learning of introductory computer programming. The questionnaire was 

divided was into four sections (Refer to Appendix B).  

Section A consists of the demographic background information 

and previous experience. Questions asked in this section include 

participants’ name, student number, age, gender, and Matric or any 

equivalent Merits. The two basic questions asked in this section also 

include participant experience. For example, did you ever write a 

computer program in any language before you started APPDev @ DUT 

this year? Is this your first course in programming, if not, what other 

programming courses have you studied. 

Section B - The self-efficacy construct as seen in the Psychology 

of Programming model in Figure 4.1 is examined here. This section was 

to identify how familiar or skillful participants are in computer 

programming. This addressed Research Question 2.  

Section C – The Mental model construct as seen in the 

Psychology of Programming model in Figure 4.2 is presented here. This 

section was to identify critical thinking to determine a mental model 

and the ability to maintain consistency in resolving basic computer 

programming problems. This addressed research question part three.  

3.11.2  Data Quality Control 

Data quality control ensured by conducting a reliability and 

validity test on the data collection instrument used in this study. 

Reliability refers to the extent to which a test or an experiment will yield 

the same results when carried out repeatedly (Montgomery, 2017). In 

other words, if a study can reproduce similar results under different 

circumstances, then it is considered reliable (Leon-Garcia, 2017). 
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Validity refers to how truthful the results of a study are. It also 

determines whether the research accurately measures what it is 

intended to measure (Montgomery, 2017).  

The researcher ensured reliability by conducting a consistency 

test using the Cronbach’s alpha coefficient test on the parameter used 

to measure academic performance in this study. Validity was also 

ensured by conducting a pilot study through the process of distributing 

questionnaire among 10 participants identified in the target population. 

The feedback received was used to modify the questionnaire in order to 

remove aspects that were ambiguous or not clear. An adjusted 

questionnaire was designed which conveyed questions in a simple 

language so that it could be easily interpreted by participants. Also, the 

researcher ensured that all questions asked were strongly aligned with 

the objectives of the study.   

3.11.3  Ethical Considerations 

The researcher requested permission from the registrar of the 

University in order for the study conducted to be among students at the 

Durban University of Technology (DUT). After the permission was 

granted by the registrar, the researcher attached a copy of the 

permission letter to a copy of the questionnaire (Refer Appendix C) and 

a duly filled in ethical form was forwarded to the Ethics Committee of 

the University in order to be granted ethical approval for the study to 

be conducted.   

An ethical approval letter issued to the researcher (Refer 

Appendix C), which granted the researcher permission to conduct the 

study among students of the university. A consent form attached was 
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the questionnaire where participants either accept or decline to 

participate in the study.  

The researcher explained the purpose of the study to the target 

population, stating the objectives of the study, emphasizing that 

participation is voluntary and both the researcher and the school will 

uphold confidentiality. The participants assured that their identity 

would not be revealed without getting their approval should there be a 

need for it to be revealed. Also, data collected will be used only for the 

purpose of this study. 

 

3.12 Summary 

This chapter has described and justified the methodology adopted 

to explore the factors that influence first-year student’s learning 

introductory computer programming language at DUT. The research 

philosophy, research approach, research survey, research design, and 

the choice of data collection used for this study were justified and 

explained. The sampling technique adopted, the data collection 

instruments used and the procedure for data collection were all 

described in details.   

The following chapter presents the results and analysis of the 

data gathered in this study. 
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4.0 DATA PRESENTATION, AND DISCUSSION OF THE 

FINDINGS 

 

4.1 Introduction  

The previous chapter provided a discussion on the research methodology 

that has been implemented to undertake the empirical phase of the 

current study. The current chapter provides detail of the data analysis 

that has been conducted to facilitate the answering of the study’s main 

questions and to ensure that the objectives of the study have been 

achieved. The presentation and analysis of the findings were based on 

the research, which objectives are:  

 To understand the influence of previous experience on 

students’ learning of introductory computer programming; 

 To understand the influence of self-efficacy on students’ 

learning of introductory computer programming; 

 To understand the influence of the ‘mental model’ 

representation of the problem domain on students’ learning 

of introductory computer programming.  

The data are presented in three parts. The first part of the chapter 

presents the results using frequency and percentage graphs. The second 

part deals with the presentation of the results using descriptive 

statistics. The third part covers the presentation of the results using 

inferential statistics. As indicated in Chapter 3, 200 respondents were 

selected for the study. The researcher administered 200 questionnaires 
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to the respondents and all the 200 questionnaires were retrieved from 

the respondents, which represented a 100% response rate. 

4.2 Reliability: Cronbach’s Alpha Coefficient 

Reliability measures the degree of the consistency of the research 

instrument over time. In other words, it is the extent to which the 

reseach instrument mesures what it was designed to measure (Sekara 

& Bougie, 2013). 

 

The Cronbach’s alpha coefficient was computed to determine the 

reliability of the research instrument used. The Cronbach’s alpha 

coefficient of 0.70 and beyond was considered as reliable as 

recommended by Sekaran and Bougie (2013). The results are shown in 

Table 4.1.  

Table 4.1 Reliability: Cronbach’s Alpha Coefficient 

 

Table 4.1 indicates that the questionnaire for measuring self-efficacy 

has a very high degree of inter-item consistency and reliability (a = 

0.901). Therefore, the questionnaire measuring self-efficacy is reliable 

and can be used by other researchers for the same purpose.  

 

  

Dimensions  No. Cronbach’s 

Alpha 

Self-efficacy  9 0.901 
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4.3.1 KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling 

Adequacy. 

0.903 

Bartlett's Test of 

Sphericity 

Approx. Chi-Square 2922.745 

Df 36 

Sig. 0.000 

Table 4.2 KMO and Bartlett's Test Measure Sampling Adequacy 

 

It is evident from the Table 4.2 that Measure of Sampling Adequacy 

[MSA] for the self-efficacy, a mental model is 0.903, and Bartlett’s test 

is significant, which indicates that the data set complies with the 

requirements of sampling adequacy and sphericity for the factor 

analysis performed.  

 

4.4 Overview of the Questionnaire Design 

The questionnaire (Appendix A) was designed to conform to the 

Model of Factors that Influence the Learning of Computer Programming 

(MFILCP) proposed by Wiedenbeck et al. (2004). The item in each 

section of the questionnaire was aligned with the constructs of the model 

adopted for this study. The objectives of these constructs are explained 

in Table 4.3. 

The Questionnaire Design 

Section 

Constructs 

of the 

model 

Objective of 

question 

Question 

number in the 

questionnaire 

Total  
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A 
Previous 

Experience 

To understand the 

previous experience 

factors that 

influence students’ 

learning of 

computer 

programming 

A4, A5 3 

B Self-efficacy 

To understand the 

influence of self-

efficacy factors on 

students’ learning of 

computer 

programming 

B1- B9 9 

C 
Mental 

Model 

To understand the 

influence of mental 

model factors on 

students’ learning of 

computer 

programming 

C1- C4 4 

Table 4.3:  Overview of Questionnaire Design 

Responses were recorded on a 5-point Likert scale ranging from 

‘very easy’ to ‘very difficult’. For analysis purposes, ‘very easy’ was coded 

as five and ‘very difficult’ was coded as one. A neutral response was 

coded as three. The analysis of the findings were represented in figure 

and tabular format indicating frequency and percentage as participants’ 

responses to each of the four categories from the measure of Previous 

Experience, Self-efficacy and to that of Mental Model responses were 
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recorded on a 3-point assignment scale ranging from ‘correct answer’, 

“almost correct“ and ‘wrong answer. For analysis purposes, ‘correct 

answer’ was coded as three, ‘almost correct’ was coded as one and ‘wrong 

answer’ was coded as zero.   

 

4.5  Descriptive Statistics  

The perceptions of the participants regarding self-efficacy and mental 

model were assessed by asking the respondents to respond to various 

aspects of the items using a 1 to 5 point Likert scale and 1 to 4 point 

Likert scale for SE respectively and to that of Mental Model responses 

were recorded on a 3-point assignment scale ranging from 0 to 3 point 

marks assignment. The results were processed using descriptive 

statistics. Descriptive statistics is a statistical tool which is used to 

summarize or describe numerical data (Wilson, 2010). The purpose of 

using descriptive statistics is to inform the readers on the overview of 

the data gathered prior to the data analysis. In this study, the kind of 

descriptive statistics employed is mean, standard deviation, minimum 

and maximum.  

The mean is also known as the arithmetic average of a frequency 

distribution (Wilson, 2010). The mean was determined through the 

summation of the individual items in the questionnaire and then 

divided by the total number of the items. It was computed using the 

SPSS.  The mean helps to identify the strength and the direction of the 

value. Using the scale of 1-5, the mean score of 3 and above is considered 

as significant while below 3 is non-significant. Also, using the scale of 1-
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4, the mean score of 2 and above is considered as significant, while below 

2 is considered non-significant.  

According to Saunders et al. (2009), the standard deviation is used to 

describe or compare the extent to which the data value for a variable is 

spread around the mean. Sekaran and Bougie (2013) suggested that the 

standard deviation is a commonly used measure of dispersion, being a 

square root of the variance which indicates the range of variability in the 

data. A large or positive standard deviation indicates that the data 

values are far from the meanwhile a small or negative standard deviation 

indicates that values are clustered closely around the mean. The sign of 

the deviation (positive or negative), reports the direction of that difference. 

Both the maximum and minimum are normalization methods. The 

maximum represents the highest scale while the minimum represents 

the least scale. For example, on the scale of 1-5, the maximum is 5 while 

the minimum is 1.  The results of the descriptive statistics are shown in 

Table 4.4. 

4.5.1 Demographic information  

This section describes the demographic profile of the respondents, 

including age, qualification obtained, programming experiences and 

performance. The findings are presented in Table 4.4.  

Information N % 

Gender  

 Male  143 71.5 

 Female  57 28.5 

 Other  -- 0.0 
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Table 4.4 Previous Experience 

As shown in the Table 4.6 7.15% of the respondents representing 

the majority were males. The majority (63.5%) of the respondents were 

between the ages of 17- 20 years. Furthermore, 67.5% respondents had 

experience in computer programming. Besides, 38.8% of the 

respondents who constituted the majority had experience in the C# 

programming. Also, a significant observation was that 38.5% of the 

respondents had no experience in computer programming. 

4.5.2 Self efficacy  

There are nine (9) items, which measured self-efficacy in the 

study. Self-efficacy was measured using the Computer Programming 

Self-efficacy scale (Chen, 2017). This instrument used previously by 

Age 

 17-20 Years  127 63.5 

 21-23 Years 54 27.0 

 24 Years and Above 19 9.5 

Experience in computer programming 

 Yes (2-5 years) 135 67.5 

 No (less than 2 years) 65 32.5 

Programming year experience   

 1-3 Months 70 35.0 

 4-6 Months  32 16.0 

 7-11 Months -- 0.0 

 1 Year 15 7.5 

 2 Years  6 3.0 

 Other  77 38.5 
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Kunkle and Allen (2016) in their research on success factors in 

introductory computer programming courses. The scale consists of nine 

questions that ask students to judge their capabilities in a wide range 

of programming tasks and situations. As mentioned earlier, the study 

utilizes the 5-point Likert scale ranging from ‘very easy’ to ‘very 

difficult’. The findings are shown in Figure 4.1.  

 

Figure 4.1 Self-efficacy 

 

The information from Figure 4.1, shows that the majority (21% + 

34% = 55%) of the respondents reported that it was easy for them to 

write syntactically correct C# statements. Approximately half (50.5%) of 

the respondents indicated that they easily understood the language 

structure of the C# programming language. Also, 56.5% reported that it 

21 13.5 16.5 16.5 18.5 20 18 26 33.5

34 37 40 36 38 39 41
38.5

35

37 45 37 42.5 36.5 33 34.5 31.5 27
8 3 5 4 6 6 4 2.5 40 1.5 1 1 1 2 2.5 1.5 0.5

Self-efficacy

Very easy Easy Neutral Difficult Very difficult
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was easy for them to write a long and complex C# program to solve any 

given problem. From an object-oriented perspective, approximately 

52.5% of the respondents were of the view that it was easy for them to 

relate objects from the problem domain to their C# application.  The 

results showed that 56.5% of the respondents reported that they could 

complete a programming project once someone else helps them get 

started. Another 59% of the respondents indicated that they have 

debugged (correct all the errors) complex C# program that they had 

written and made it work. Furthermore, 59% of the respondents were of 

the view that they could come up with a suitable strategy for a given 

programming project in a short time. The findings revealed that 64.5% 

of the respondents reported that they could find ways of overcoming the 

problem if they got stuck at a point while working on a C# programming 

project. Besides, 68.5% of the respondents indicated that they could 

mentally trace through the execution of a long C# program.  

 

4.6 Mental Model 

The researcher made use of the words “Correct answer” “partially 

correct” and “wrong answer” in this context for data analysis purpose to 

categorizes those respondents who provide the right answers as 

requested by the researcher and points are been assigned on each 

multiple choice answers in assending order from 1 to 3 i.e wrong answer 

=1, almost correct =2 and right answer =3. The scope of these points 

assignment is to give higher marks to those students who answered the 

question correctly and also to categorize those students who almost got 
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the right answer from those who got it wrong, with breaking down of the 

section data will be easily interpreted in understandable manner in 

Figure 4.2. 

The mental model questions are designed to be a mental exercises with 

the option of the answers very familiar to each other, as researcher with 

programming knowledge knowning fully well that students always 

found problem solving task challanging. therefore, students must be 

very sure of their solution before selecting an answer of their choice, 

each question are subsequently designed to be familiar to each other and 

likewise the options of right or wrong answers but required thorough 

solution in other to identify that which is the correct answers from other 

similar option known as partial answer.   

   

This section of the study is “driven” by the programming related tasks 

that the respondents of the study were asked to respond to the 

programming related tasks were focused on assignment statements that 

entailed an interchange of primitive and object-oriented variables (as 

can be viewed in Table 4.5). The researcher expected that students 

would have some notion of what a = b might mean, and would use that 

knowledge in providing a correct response to the question asked. Each 

of the questions asked in Table 4.5 is linked to a different mental model 

as identified by the MFILCP theoretical framework that underpins the 

study. These mental models have been labeled as  MM1, MM2, MM3, 

and MM4. The strategy used in the study was to allocate points/marks 

to the respondent’s answers depending on whether they provided a 
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correct answer for each of these mental model oriented questions. Table 

4.5 provides a summary of the mental models.  

 

Model  Description model 

MM1 Person a, b, c; a = new Person (“Jack”); b = new Person 

(“Tom”); c = new Person (“Jim”); b = a; a = c; c = b; what is 

the value of b, a, c? 

MM2 int a = 5;  int b = 3  int c  = 7;  a = c;  b = a;  c = b; what is the 

value of a b c? 

MM3 Person a, b; a = new Person (“Jack”); b = new Person 

(“Tom”); b = a;   a = b; what is the value of b & a? 

MM4 int a = 10;  int b = 20; a = b  what is the value of a=? 

Table 4.5 The mental models identified in the study 

As seen in Table 4.7, MM1 alludes to three objects identified as a, 

b and c. A means “Jack”, B means “Tom” and C mean “Jim”. From the 

mathematical point of view, b =a; a =c; c =b.  Therefore, what is the value 

of a, b & c? In relations to MM2, int a = 5; int b = 3 int c = 7; a = c; b = a; 

c = b; what is the value of a b c? Regarding MM3, Person a, b; a = new 

Person (“Jack”); b = new Person (“Tom”); b = a; a = b; what is the value 

of b & a? In reference to MM4, int a = 10; int b = 20; a = b what is the 

value of a=? The results of the study are shown in Figure 4.2.  
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Figure 4.2 Number and percentage of participants for each model of value 

assignment  

Figure 4.2 presents the rating of the student’s mental model influence 

contributing to the factors affecting learning introductory computer 

programming at DUT.  From the Figure 4.2, 44.5% of the participants 

representing the majority of the students have provided correct answers 

and 33.75% of the participants representing the almost answered 

correctly while 21.75% of them reported that they were unable to 

provide correct answers. Regarding the Mental Model Question 1, the 
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majority (150) of the participants answered correctly (e.g. Jack only), 

another 40 of the respondent’s answers were deemed to be almost 

correct, while the remaining 10 responded with an incorrect answer. 

In terms of the Mental Model Question 2, half (100) of the 

respondents answered the question correctly. Furthermore, 80 of the 

respondents provided an almost correct answer. However, the rest of the 

20 of the respondents indicated that they answered the question 

wrongly.   

In relation to the Mental Model Question 3, 75 of the respondents 

answered the question correctly. Another 75 provided an answer that 

was deemed to be almost correct. The remaining 60 of the respondents 

answered the question wrongly. 

 Concerning the Mental Model Question 4, 36 of the respondents 

answered the question correctly. Another 80 respondent provided an 

answer that was deemed to be almost correct. The remaining 84 of the 

respondents answered the question wrongly. From the findings, one 

could draw a conclusion that each of the respondents had an additional 

responsibility that could affect his/her study such.   

Descriptive statistics: Key dimensions of the study 

Dimension Mean 95 % Confidence 

Interval 

Std. 

Dev. 

Min

. 

Ma

x. 

  Lower 

Bound 

Upper 

Bound 

   

Self-efficacy  3.290 2.1981 2.3819 0.24653 1.00 5.00 

Table 4.6 Descriptive statistics: Key dimensions of the study 
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Furthermore, on the scale of 1 to 4, a mental model had the mean score 

value of 2.455. The mean score suggests that there was a significant 

relationship between Mental Model and the performance of the students 

in computer programming.  

4.7  Inferential Statistics  

The inferential statistics were computed on the dimensions such as self-

efficacy in order to assist the researcher to draw valid conclusions.  

The Cronbach’s alpha coefficient was further computed to determine the 

reliability of the research instrument used. The Cronbach’s alpha 

coefficient of 0.70 and beyond what is considered as reliable. The results 

are shown in Table 4.6.  

 

4.8  Spearman Correlation  

Spearman correlation was computed to determine the relationship 

between the variables such as mental model, self-efficacy and 

performance of the respondents (students). The decision to opt for a 

Spearman Correlation is based on the observation that most of the 

study’s data may be regarded as ordinal and the Spearman Correlation 

is a more robust test as compared to the Pearson Correlation test. The 

Spearman coefficient is measured on a scale with no units and can take 

a value from −1 through 0 to +1. If the sign of the correlation coefficient 

were positive, then a positive correlation would have existed. On the 

other hand, if the sign of the correlation coefficient is negative, then a 

negative correlation would have existed, indicating that those factors 

with a smaller number of a factor or it relationship were associated with 
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a larger variable, or vice versa. Table 4.7 below contains the results on 

Spearman correlation. 

The strength of the correlation was based on the distance matrix from 

+1 or -1, meaning the closer the value to 1, the stronger the correlation 

(Archambault, 2002). Using Spearman’s correlation analysis of the 3 

factors (Previous Experience, Mental Model and Self-Efficacy), revealed 

the magnitude and direction of the association between the variables 

that are significant and positive as indicated in tables 4.7 to 4.9.  

 

4.8.1 Spearman Correlation: Mental Model and Self-efficacy 

Correlations 

 MM SE 

Spearm

an's rho 

Mental 

model 

Correlation 

Coefficient 

1.000 .480** 

Sig. (2-tailed) . .000 

N 200 200 

Self-

Efficacy 

Correlation 

Coefficient 

.480** 1.000 

Sig. (2-tailed) .000 . 

N 200 200 

**. Correlation is significant at the 0.01 level (2-tailed). 

Table 4.7 Mental Model and Self-efficacy 

As reflected in the Table 4.7 above, there exists a significant positive 

relationship between mental model and self-efficacy.  In other words, it 

can be explained that, there is a direct link between the mental model 

and self-efficacy suggesting that if students scored high on the self-
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efficacy rating then in all likelihood, they will also have a correct mental 

model representation of the problem domain. 

 

4.8.2 Spearman Correlation: Self-efficacy and previous -

experience 

Correlations 

 SE PE 

Spearman'

s rho 

Self-

Efficacy 

Correlation Coefficient 1.00

0 

.428** 

Sig. (2-tailed) . .000 

N 200 200 

Previous 

Experien

ce 

Correlation Coefficient .428
** 

1.000 

Sig. (2-tailed) .000 . 

N 200 200 

**. Correlation is significant at the 0.01 level (2-tailed). 
Table 4.8 Self-efficacy and previous experience 

As reflected in Table 4.10 above, there exists a significant positive 

relationship between mental models. In other words, it can be explained 

there is a direct link between self-efficacy and previous experience 

suggesting that if students scored high on previous experience then in 

all likelihood they will also achieve a high score on self-efficacy when it 

comes to computer programming.  

 

 



 

 

 

 

66 

4.8.3 Spearman Correlation: Previous Experience and Mental 

Model 

Correlations 

 PE MM 

Spearman'

s rho 

Previous 

Experience 

Correlation 

Coefficient 

1.000 .508** 

Sig. (2-tailed) . .000 

N 200 200 

Mental Model Correlation 

Coefficient 

.508** 1.000 

Sig. (2-tailed) .000 . 

N 200 200 

**. Correlation is significant at the 0.01 level (2-tailed). 

Table 4.9 Previous Experiences and Mental Model 

As reflected in Table 4.9 above, there exists a significant positive 

relationship between previous experience and mental model.  In other 

words, it can be explained there is a direct link between previous 

experience and mental model suggesting that if students scored high on 

previous experience, then they will also have a correct mental model 

representation of the problem domain. 

 

 

4.9 Chapter Summary  

The chapter presented, analyzed and discussed the key findings in line 

with the research objectives. The main research objectives were to 
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understand the influence of the main variables in the study, namely 

previous experience, self-efficacy and mental model representation of 

the problem domain on the learning of computer programming. Data 

was collected to operationalize these variables so that their influence on 

computer programming competency could be understood. By making 

use of Spearman’s correlation, it has been established that each of the 

variables identified from the theoretical model used in the study, do 

have a positive influence on the learning of computer programming. The 

implications of these findings will be discussed in the subsequent 

chapter.   
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5.0    FINDINGS AND CONCLUSION 

 

5.1 Introduction 

 To evaluate the influence of previous experience on students’ 

learning of introductory computer programming 

 To evaluate the influence of self-efficacy on students’ 

learning of introductory computer programming 

 To evaluate the influence of the ‘mental model ‘representation of 

the problem domain on students’ learning of introductory 

computer programming  

 To evaluate the influence of the ‘performance’ 

representation of the problem domain on students ‘self-

efficacy in the learning of introductory computer 

programming  

 

 

The results of the study are discussed and related to existing theory in 

sections 5.2 to 5.4 and the implications for teaching and learning are 

discussed in Section 5.5. 

 

5.2 The influence of previous experience 

The study investigated the influence of previous experience on 

students’ learning of introductory to computer programming. The 

overall results of the study showed that the previous experience 
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positively influenced students’ learning of introductory computer 

programming. Thus, there was a significant positive relationship 

between previous experience and student learning of introductory to 

computer programming. The findings from the study supported existing 

research on previous experience and students’ learning of computer 

programming. 

Scholarly literature shows that previous programming experience has a 

positive effect on success in an introductory university course (Ahadi et 

al., 2017). Another study showed that previous experience acts as a 

significant predictor of both students’ self-efficacy and mental models of 

programming, which in turn predicts course performance (Baldwin et 

al., 2017).  Recent studies have also shown a positive relationship 

between mathematics or science background to computer programming 

success (Farmer & Tierney, 2017). Various factors regarding student 

learning styles and learning to the program have been found in many 

studies (Bain & Wilson, 2017). Other interesting factors that have been 

addressed in recent studies include student attributions of success to 

oneself or to outside forces (McGee et al., 2017) and students’ course 

outcome expectations (McGee et al., 2017). A factor of potential interest 

that has not widely been studied in computer programming is computer 

playfulness (Horton & Craig, 2015). A negative factor affecting student 

success is a high amount of game playing by students (Huang & Shiau, 

2017).   
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5.3 The influence of self-efficacy on students’ learning  

The study further determined the influence of self-efficacy on 

students’ learning of introductory computer programming at DUT. The 

response patterns showed that the respondents responded positively to 

all the items in the questionnaire. The analysis of the findings suggests 

that the respondents responded positively to all the nine items although 

there were some forms of disagreement among them. The findings 

suggest that the self-efficacy level among the respondents was high. The 

findings from this study are in keeping with existing research discussed 

in Chapter 2.  

Self-efficacy has been considered as a very important aspect of 

learning activities because learning involves more than just acquiring 

skills, it also entails “…competent functioning that requires both skills 

and self-beliefs of efficacy to use them effectively” (Miller & Ramirez, 

2017). Schultz and Schultz (2016) in their study argued that learning 

situations and self-efficacy influence the use of cognitive strategies 

while solving problems. They further suggested that the amount of 

effort expended, the type of coping strategies adopted, the level of 

persistence in the face of failure, and the ultimate performance 

outcomes are all influential in determining computer programming 

proficiency.  

Similarly, Chamorro-Premuzic (2016) states that according to 

self-efficacy theory, judgments of self-efficacy are based on four sources 

of information, namely: individual’s performance attainments, 

experiences of observing the performance of others, verbal persuasion 

and physiological reactions. However, the most important among the 

four is the individual’s performance attainments. Educational 
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researchers recognize that, because skills and self-beliefs are so 

intertwined, one way of improving student performance is to improve 

student self-efficacy. Interventions to improve student self-efficacy focus 

on specific skills or knowledge and target the four sources of information 

that students use to evaluate their self-efficacy, as defined above. 

Providing students with direct hands-on experiences in an activity is 

critical since the strongest source of information is performance 

outcomes (De Neve & Ro, 2015). Making positive hands-on experiences 

is also important, especially in the early stage of learning, when the task 

may seem overwhelming. 

 

5.4 The influence of the ‘mental model’ representation 

on students’ learning 

The findings from the study suggested that mental model representation 

positively influenced students’ learning of introductory computer 

programming.  According to Guzdial et al. (2017), a mental model is a 

predictive representation of real-world systems. The authors argue that 

people create internal representations of objects and processes in the 

world, and they use these mental representations to reason about, 

explain and predict the behavior of external systems. Moyer et al. (2017) 

postulate that mental models are critical in debugging a process when 

things go wrong because the mental model supports the person in 

reasoning about and localizing possible faults.  

In recent years, the mental model's concept has been popularized 

by practitioner magazines and websites in areas such as human-

computer interaction (Huang & Shiau, 2017). The scholars assert that 

programming is a cognitive activity that requires the programmer to 
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develop abstract representations of a process and express them in the 

form of logic structures. They suggest that when creating, modifying, 

reusing, or debugging a program, the programmer must also translate 

these abstract representations into completely correct code using a 

formal language.  

 

5.5 Implications for Computer Programming Pedagogy 

The current study provides empirical support for the validity of 

the main constructs from the theoretical model used in the study.  

Previous Experience 

Although the influence of previous experience has been commonly 

accepted as influential in the learning of computer programming, this 

commonly held perception has been confirmed in the context of students 

who learn computer programming at DUT. The pivotal role that 

previous experience plays needs to be recognised and mitigated in the 

case where students who enroll for computer programming courses and 

have little previous experience in the learning of computer 

programming. A viable strategy would be to add in “bridging courses” 

that enable students who have little prior experience of computer 

programming to use these course so that enhance their levels of 

programming experience. Clearly, the study has confirmed that such an 

intervention would result in better programming performance and 

correct mental model representations of the problem domain. 

Self –Efficacy (SE) 

The items used in the study’s questionnaire attest to students’ 

level of Se when it comes to computer programming. These items refer 
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to computer programming aspects such as mastery of a computer 

programming language with regards to its syntax as well as the use of 

the language to enable problem solving. Many of the computer 

programming languages taught at DUT, such as Java and C# are not 

easy to understand from a syntax perspective. The lack of 

understanding and mastery of the syntax will also influence students’ 

ability to use these languages as problems solving tools. A lack of syntax 

understanding and a lack of ability to use a computer programming 

language as a problem solving tool will result in low SE scores thereby 

resulting in incorrect mental model representations and low computer 

programming performance scores. Hence as an intervention, 

experienced tutors should be assigned with the task of providing tutorial 

sessions that focus on the mastery of syntax and the ability to use this 

syntactical knowledge to solve simple computer programming problems. 

Extensive exposure to such an intervention will ensure that the 

students SE in computer programming will be improved. 

Another strategy suggested in Coles and Phalp (2016) is the use of social 

persuasion techniques. Students working together, especially if they 

have different levels of self-efficacy, are in a position where social 

persuasion takes place. A tutor can facilitate social persuasion in the 

classroom or online by forming workgroups of students with different 

levels of capableness and giving them tasks that promote the interaction 

of group members (Coles & Phalp, 2016). 

 

Mental Model 

The correct mental model representation of the problem domain 

is pivotal to ensure that students are able to excel in computer 
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programming. However, this aspect of computer programming pedagogy 

is the most abstract and not easily achieved. The best that could be 

suggested in this regard is to engage in a strategy that mitigates the 

influence of previous experience in the hope that such a strategy would 

lead to better mental model representations of the problem domain, 

Also, the employment of experienced teachers of computer programming 

to teach computer programming would be highly beneficial to students. 

The challenge of obtaining a correct mental model representation of the 

problem domain may be mitigated if the course teacher has a clear and 

correct mental model representation of the problem domain so that this 

message is conveyed to the class. A serious shortcoming in this regard 

is that the lack of experienced teachers and lecturers result in a lack of 

correct knowledge that is disseminated to the class. In many instances, 

higher education institutions employ lecturers on the basis of their 

research credentials rather than on their technical knowledge of 

computer programming. This strategy is seriously detrimental to 

ensuring that students acquire a correct mental model representation 

of the problem domain. 

Another strategy that could be used to enhance Mental Model is aligned to the 

suggestion in Coles and Phalp (2016) who recommend a strategy of getting 

students to steadily carry out tasks of increasing difficulty until they have 

a history of solid attainments. Frequent but small hands-on 

programming activities would be likely to build the history of success 

more than less frequent, large assignments. For students to monitor 

their capableness, timely and sufficient feedback is necessary so that 

students are able to incrementally build a correct mental model 

representation of the problem domain.  
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Coles and Phalp (2016) also suggest a technique of peer modeling. In 

programming courses, peer modeling could be “live” in a classroom with 

a peer working through a problem while other students watch or it could 

be done by students viewing a video of a peer successfully planning and 

executing a programming task. In peer, modeling it is important that 

the viewers see the model confronting difficult situations and 

overcoming them. The modeling scripted should not eliminate struggle 

because the point is for students to see how obstacles are overcome. 

 

5.6 Conclusion  

The chapter discussed the results of the study. The chapter has 

concluded with a set of suggestions that are oriented around the main 

constructs used in the study. These suggestions provide an empirical 

basis for strategies that may be used to improve computer programming 

performance by students in an educational setting. It is imperative that 

studies such as the current one are conducted on a regular basis and in 

different contexts so that a proper platform for the pedagogy of computer 

programming is provided for students in academic institutions. The 

study has achieved its objective of understanding the influence of 

previous experience, self-efficacy and mental model representation of 

the problem domain on the learning of computer programming.  
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APPENDIX A: QUESTIONNAIRE 

RESEARCH TOPIC: FACTORS INFLUENCING FIRST YEAR 

STUDENTS’ LEARNING INTRODUCTORY COMPUTER 

PROGRAMING LANGUAGE AT DUT 

M.Com (ISDN) Coursework                                       

  The discipline of Information Systems & Technology                                   

           School of Management, Information Technology & 

Governance                                         University of 

KwaZulu-Natal (Westville Campus) 

Researcher: Kelvin Osaji-Onalo (0613497946) 

Supervisor: Dr. Sanjay Ranjeeth (033 260 5641) 

 

INTRODUCTION   

My name is Kelvin Osaji-Onalo, an M.com student in the Discipline of 

Information Systems and Technology, School of Management, IT and 

Governance at the University of KwaZulu-Natal, Westville campus, 

Durban, South Africa.   

The purpose of this questionnaire is to gather information from you in 

order to understand the factors influencing first-year students 

learning introductory computer programing at DUT. The questions 

asked will enable me to gain insights on the prior exposure to ICT 

environment and how much the factors influenced the students’ 

performance in programming skill.   

Through your participation, and with the result of the survey, I hope to 

provide recommendations on how to improve students’ academic 

performance through previous experience, self-efficacy, and mental 

model.   

The following keywords would be frequently used: previous experience, 

self-efficacy, mental model and performance: 

Previous experience: A relationship between student learning styles 

and programming styles. 
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Self-efficacy: refer to as “people’s judgments of their capabilities to 

organize and execute courses of action required attaining designated 

types of performance.  

Mental model: could encompass useful knowledge about how 

programs work in general, stereotypical ways of solving common 

programming problems and how a particular program is structured 

and functions, as well as knowledge about the syntax and semantics of 

a specific language. 

Performance: This simply refers to how a student has performed in 

his/ her studies at an educational institution.   

The filling of the questionnaire should take about 10 – 15 minutes. 
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COLLEGE OF LAW AND MANAGEMENT 

 SCHOOL OF MANAGEMENT, INFORMATION TECHNOLOGY 

AND GOVERNANCE 

 

M.COM (ISTN) Coursework 

 

Researcher: Kelvin Osaji-Onalo (0613497946) 

Supervisor: Dr. Sanjay Ranjeeth (033 260 5641)                                                   

Research Office: Ms. M Snyman (031 260 8350)                                           

Reference No: HSS/ 2126 / 017M   

                                                             Respondent No: - 

 

CONSENT 

 

I, …………………………………………………… (full names of 

participant) hereby confirm that I understand the content of this 

document and the nature of the research project.   

I also understand that I am at liberty to withdraw from the project at 

any time, should I so desire.    

I hereby consent / do not consent to participate in this study.     

 

 

SIGNATURE OF PARTICIPANT                                         DATE   

                                                                                                                                                                                                                                                  

………………………….                                                                    

…………………….. 
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FACTORS INFLUENCING FIRST YEAR STUDENTS’ 

LEARNING INTRODUCTORY COMPUTER PROGRAMING 

LANGUAGE AT DUT 

 

In those sections where options are provided, please indicate 

your response by making a cross (X) in the boxes provided. 

SECTION A: Demographic Background Information and 

Previous experience 

(1).Gender Male Female  Other 

(2).Age 17-20yrs  21-23yrs 24yrs and above  

(3).Matric or any 

equivalent Merits 

obtained: 

Matric  (Specify) 

(4).Did you ever 

write a computer 

program in any 

language before you 

started APPDev @ 

DUT this year? 

Yes  

if yes what language? 

No  

(1).C++  (2).C#   (3).JAVA  (4).(Specif

y)  

(5). Is this being 

your first course in 

programming? If 

not, what other 

programming 

courses have you 

studied? 

Yes  Institution Duration  Year 

 (1) other varsity  (1).1-3 weeks   

(Specify) (2) private collage  (2). 2-6 months   

(3) NGO  (3). 6-11 months 

(4)Apprentices (4).(Specify) 
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SECTION B (SELF-EFFICACY):   

In this section, please provide your response with respect to the 

following statements concerning how skilled you are in 

computer programming. Please indicate your response by 

making a cross (X) in the boxes provided. 

1. I can write syntactically correct C# statements 

 

 

2. I understand the language structure of C# programming 

language. 

 

 

3. I can write a long and complex C# program to solve any given 

problem. 

 

4. I can relate objects from the problem domain to my C# 

application.  

 

Very Easy  Easy Neutral Difficult Very Difficult 

Very Easy  Easy  Neutral Difficult  Very Difficult 

Very Easy  Easy  Neutral  Difficult Very Difficult 

Very Easy  Easy  Neutral  Difficult Very Difficult 
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5.  I could complete a programming project once someone else 

helped me get started. 

 

 

 

6. I have debugged (correct all the errors) complex C# program that 

I had written and made it work 

 

 

7. I could come up with a suitable strategy for a given programming 

project in a short time. 

 

 

8. I could find ways of overcoming the problem if I got stuck at a 

point while working on a C# programming project.    

 

 

9. I could mentally trace through the execution of a long C# 

program. 

Very Easy  Easy Neutral  Difficult  Very Difficult  

Very Easy  Easy Neutral Difficult Very Difficult  

Very Easy  Easy  Neutral  Difficult  Very Difficult  

Very Easy  Easy  Neutral  Difficult Very Difficult 

Very Easy  Easy  Neutral  Difficult Very Difficult 
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SECTION C (MENTAL MODEL):    

In this section, it involves critical thinking to determine your mental 

model and ability to maintain consistency in resolving basic 

computer programing problems.  Cross the appropriates answers 

with (X) 

 

 

 

 

 

 

 

 

(2) Person a, b; 

 a = new Person 

(“Jack”); 

 b = new Person 

(“Tom”); 

 b = a;   

a = b; 

what is the value of b 

&a? 

1. Jack, Tom 

2. Tom, Jack 

3. Jack only 

4. Tom only 

(1) int a = 10; 

 int b = 20; 

a = b 

what is the value 

of a=? 

1. 10 

2. 20 

3. 30 

4. 0 

 

(3) int a 

= 5; 

 int b 

= 3 

 int c 

= 7;  

a = c;  

b = a;  

c = b; 

What is 

the value 

of a b c? 

1. 5,3,7 

2. 7,3,7 

3. 7,5,7 

4. 7,7,7 

(4) Person a, b, c; 

 a = new Person 

(“Jack”);  

b = new Person 

(“Tom”);  

c = new Person 

(“Jim”);  

b = a; 

 a = c;  

c = b; 

what is the value of 

b,a, c? 

1. Jim, Tom,  

2. Tom, Jim 

Jack 

3. Jack, Jim,  

4. Jim, Jack, 

Tom 
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SECTION D (SUGGESTED ENHANCEMENT):    

Please make suggestions with regards to how you think that learning 

programing skill may be improved. 

 

Thank You for Your Participation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

92 

APPENDIX B: ETHICAL CLEARANCE 
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APPENDIX C: RESEARCH APPROVAL LETTER 
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APPENDIX D: REQUEST FOR PERMISSION TO CONDUCT THE 

RESEARCH 
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APPENDIX E: SIMILARITY REPORT 
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APPENDIX F: GENERAL FACTOR 

 

Statement Number of 

participants 

“The terms used in the programming are 

confusing ” 
6 

“programming is sweet and logical but we needed 

to be taught to be logical too” 
22 

“programming skill demands constant practice, 

therefore, it is a time-consuming course” 
81 

“There are too many things to know at the same 

time “ 
98 

“Programming is competitive and I hate 

competition” 
110 

“I am waiting to hear that programming is off the 

campus” 
163 

“Programming requires fast learners who are 

logical but sometimes I am creative but no logical” 
174 

“if possible we should be given extra 

classes/tutorials” 
192 
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APPENDIX G: PARTICIPANTS OPINION OF COMPUTER PROGRAMMING 

SELF-EFFICACY 

 

Statement Number of participants 

“I found programming challenging at DUT 

because I was not taught programming in 

high school. Now I am struggling” 

2 

“I am lacking motivation or Interest, 

commitment, and determination in 

programming” 

10 

“I am not prepared enough to face the 

challenges in the chosen course in 

programming” 

37 

“I don’t have any knowledge about 

computers, so I am struggling to know both 

computers and programming“ 

45 

“Some of us chose the computer 

programming course because it is in 

popular demand” 

67 

“The lecturers/tutors are not patient 

enough because they are busy with other 

stuff” 

140 

“Since students are always on mobile 

phones maybe coding programming with 

mobile apps should be suggested ” 

156 

“Programming needs consistency and it is 

difficult for me to maintain that” 
200 
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APPENDIX H: CORRESPONDING STATEMENTS USED FOR CORRELATION 

 

  

Numb

er of 

Q 

A corresponding statement or question number used 

for Correlation (See appendix A correlation below) 

1 Self-Efficacy_Average 

2 Mental_Model 

3 Performance 

4 Means of Previous Experience (5 Likert Scale Items) 

5 

Person a, b, c; a = new Person (“Jack”); b = new Person 

(“Tom”); c = new Person (“Jim”); b = a; a = c; c = b; what is 

the value of b,a, c? 

6 
int a = 5;  int b = 3  int c = 7;  a = c;  b = a;  c = b; what is 

the value of a b c? 

7 
Person a, b; a = new Person (“Jack”); b = new Person 

(“Tom”); b = a;   a = b; what is the value of b and a? 

8 int a = 10;  int b = 20; a = b  what is the value of a=? 

9 I can write syntactically correct C# statements 

10 
I understand the language structure of C# programming 

language 

11 
I can write a long and complex C# program to solve any 

given problem 

12 
I can relate objects from the problem domain to my C# 

application. 

13 
I could complete a programming project once someone else 

helped me get started 

14 
I have debugged (correct all the errors) complex C# 

program that I had written and made it work 



 

 

 

 

100 

15 
I could come up with a suitable strategy for a given 

programming project in a short time 

16 
I could find ways of overcoming the problem if I got stuck at 

a point while working on a C# programming project 

17 
I could mentally trace through the execution of a long C# 

program 
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APPENDIX J: DECLARATION CERTIFICATE OF THE ENGLISH 

LANGUAGE EDITING OF THE DISSERTATION. 

 


