
UNIVERSITY OF KWAZULU-NATAL

FACTORS INFLUENCING THE LEARNING OF INTRODUCTORY

COMPUTER PROGRAMING AT THE DURBAN UNIVERSITY OF

TECHNOLOGY

By

Kelvin Samuel Osaji-Onalo

216076915

A dissertation submitted in fulfillment of the requirements for the

degree of

Master of Commerce Coursework in Information Systems &

Technology

School of Management, IT and Governance

College of Law and Management Studies

Supervisor: Dr. S Ranjeeth

2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ResearchSpace@UKZN

https://core.ac.uk/display/288925977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

 DECLARATION

I, Kelvin Samuel Osaji-Onalo declare that

(i) The research reported in this dissertation/thesis, except where

otherwise indicated, and is my original research.

(ii) This dissertation/thesis has not been submitted for any degree or

examination at any other university.

(iii) This dissertation/thesis does not contain other persons’ data,

pictures, graphs or other information, unless specifically

acknowledged as being sourced from other persons.

(iv) This dissertation/thesis does not contain other persons’ writing,

unless specifically acknowledged as being sourced from other

researchers. Where other written sources have been quoted, then:

a) Their words have been re-written but the general information

attributed to them has been referenced;

b) Where their exact words have been used, their writing has been

placed inside quotation marks, and referenced.

(v) Where I have reproduced a publication of which I am an author, co-

author or editor, I have indicated in detail which part of the

publication was actually written by myself alone and have fully

referenced such publications.

(vi) This dissertation/thesis does not contain text, graphics or tables

copied and pasted from the Internet, unless specifically

acknowledged, and the source being detailed in the

dissertation/thesis and in the References sections.

Signature:

Date: 11/09/2019

 iii

ACKNOWLEDGMENTS

My profound gratitude goes to my Supervisor, Dr. Sanjay Ranjeeth for his

support, guidance, advice, encouragements and constructive feedback all

through the completion of this dissertation. He has made me a far better

student and researcher than I was. He never accepted less than my best efforts.

He was a blessing to me and also the best research supervisor any student

could wish for. Many thanks to all the staff in the discipline of Information

Systems and Technology who have imparted knowledge to me in one way or

the other, I say a big thank you.

To my administrators, Vaneshree Govender, Prem Mohun and most especially

Hazvinei Muteswa who is always there for the students. I say a big thank you

to you all.

I would also like to thank my Master’s program lecturers, most especially Dr.

Prabhakar Rontala Subramaniam, and Dr. Given Mutinta, who not only

encouraged me but also gave me valuable advice.

A very big thank you to my Family, Mrs. Marry Osaji-Onalo, my siblings and

their partners, Princess Anupu and Ogene, Prince Eng. Azubike Gideon and

Ngozi, I will not stop until I mention Princess Chekira and Eng. C.E Ofoluwa,

Prince Obiajulu Ignatius and Roseline, Prince Boneface and Eziego, Prince

Monday Metelojo, Princess Uyo Osaji-onalo, Prince Monday, Princes

Chukwuma and Bose, Princess Ego Osaji-Onalo, also Princess Thereza for all

their love, care and moral support, guidance and encouragements. I cannot

thank you all enough; you have been very supportive all through this journey.

To my nephews and niece, Monday, Regina, Luis, Ada, Bright, Esther, Onome,

Ese, Tega, Edirin, Ojode, Udego, Atadele, Ndudi, and Junior, I say a big thank

you and I love you all.

 iv

My sincere appreciation to my friends, Mc MacDon, Ifanyi Ego, Baby

Chimamanda, Onyebuchi Celestine, Jude Ike, James Onuoha, Mthoko,

Ebuka,Vusi, John, Rasta Kaka, Andrew Oranwa, Tapiwa, Pillay Rajaan,

Mariah Jordan, Attwood Heidi, Obi Richard, Ugeshnie, Ravesen Moodley,

Charles, Kibwe, Sinqobile Ndimande, Dlamini Wenzile and my lovely wife

Osaji-Onalo Ajuma who have made this journey colourful, exciting and

enjoyable. In addition, to my superior colleagues who I consulted for assistance,

Prof. Seraphin Eyono Obono, Cheryl Rose White, Dr. Delysia Timm, Avenal

Jane, Jairajh Roopraj, Jude Kala, Lawrence De Law, Obafemi Samson, I say a

big thank you to you all.

I will also use this opportunity to remember the late Zuko Mbombo, my class

mate and my best friend from under-graduate education (B-Tech) at the

Durban University of Technology till the last phase of our Master’s Degree

level (MCom) at the University of KwaZulu-Natal. I just want to say “I love

you Zuko” and I will uphold the dreams we shared together. Thank you for

everything.

To my Father in the Lord Prophet T.B Joshua whom God used to break the

captivity of limitation in my life. You have pointed a direction which I should

go the way of Cross of Calvary. One of the quotes that keep me going, He said

“Don’t mistake GOD silence as rejection. His love is constant and

unchanging. For, God has a time for everything, a time to be born, a time to

grow, a time to face persecution, a time to overcome and a time to show the

proceeds of victory i.e. time to reap the product of victory”

Finally, thanks to EmmanuelTV teams and glory to God Almighty who has

made it possible for me to complete this dissertation.

 v

LIST OF ABBREVIATIONS

APPDEV Application Development

DUT Durban University of Technology

ICT Information and Communication Technology

ID Intellectual Development

IT Information Technology

MFILCP Model of Factors that Influence the learning of

Computer Programming

NSFAS National Student Financial Aid Scheme

UKZN University of KwaZulu-Natal

UOT University of Technology

 vi

ABSTRACT

FACTORS INFLUENCING THE LEARNING OF INTRODUCTORY

COMPUTER PROGRAMING AT DUT

Computer programming is an extremely difficult skill to master for

students who are novice computer programmers. The preceding assertion is

based on reports of high failure rates in introductory computer programming

courses offered by tertiary education institutions. This is not just a South

African problem but a number of cross-institutional and multi-national studies

show that the problem is well known and is common (Grover et al., 2016).

The current study investigated the factors influencing the learning of

introductory computer programing at Durban University of Technology (DUT).

The objectives of the study were to understand the influence of previous

experience on students’ learning of introductory computer programming as

well as to understand the influence of self-efficacy on students’ learning

of introductory computer programming. The study also focused on

understanding the influence of the ‘mental model ‘representation of the

problem domain on students’ learning of introductory computer programming,

and to understand the influence of the ‘mental model’ representation of the

problem domain on students’ self-efficacy in the learning of introductory

computer programming. The study adopted the quantitative research method

to investigate the subject matter. This study embraced a survey research

strategy and data collection carried out was over a short period. The study used

simple random sampling to select 200 respondents at DUT. Data were collected

using questionnaires. Data quality control was ensured by conducting a

reliability and validity test on the data collection instrument used in this

study. Ethical approval for the study was obtained from DUT. The quantitative

 vii

data collected were analyzed using the SPSS, version 25.0. The study utilized

statistics such as frequency, descriptive (mean and standard deviation) and

inferential statistics (Cronbach’s alpha and Spearman correlation). The overall

findings from the study suggested that the self-efficacy level of the research

participants was high. The results of the study revealed that there was a

moderate positive relationship between self-efficacy and computer

programming. Furthermore, it found was that the mental model adopted by

students when solving computer programming problems positively influences

student performance in computer programming.

An outcome of the study is the recommendation that the teaching and

learning of computer programming should focus on language structure and the

correct mental interpretation of the problem domain so that students could

improve their performance.

 viii

Table of contents

Supervisor’s Permission to Submit Error! Bookmark not defined.

Declaration .. ii

Acknowledgments.. iii

List of Abbreviations ... v

Abstract .. vi

List of Tables .. xi

List of Figures ... xii

1.0 Introduction ... 13

1.1 The Challenge of Learning Computer Programming 13

1.2 Background and Context for the Study .. 14

1.3 Research Questions and Objectives of the Study................................... 15

1.4 Research Rationale .. 17

1.5 Significance of the Study ... 18

1.6 Outline of the Study ... 18

1.7 Summary .. 19

2.0 Literature Review... 21

2.1 Introduction .. 21

2.2 The Teaching of Introductory Computer Programming 21

2.3 Factors that Influence the Learning of Introductory Computer

Programming ... 28

2.4 The Study’s Theoretical Model ... 32

2.5 Summary .. 34

3.0 The Research Methodology .. 36

3.1 Introduction .. 36

3.2 Research Philosophy .. 38

3.3 Research Approach .. 39

3.4 Research Strategy .. 40

3.5 Research Design .. 41

 ix

3.6 Research Choice .. 42

3.7 Time Horizon ... 42

3.8 Research Site and Setting... 43

3.9 Population of the Study .. 43

3.10 Sampling and Sampling Technique ... 44

3.11 Data Collection Instrument .. 45

3.12 Summary .. 49

4.0 Data Presentation, and Discussion of the Findings 50

4.1 Introduction .. 50

4.2 Reliability: Cronbach’s Alpha Coefficient .. 51

4.4 Overview of the Questionnaire Design .. 52

4.5 Descriptive Statistics ... 54

4.6 Mental Model ... 58

Descriptive statistics: Key dimensions of the study ... 62

4.7 Inferential Statistics .. 63

4.8 Spearman Correlation ... 63

4.9 Chapter Summary .. 66

5.0 FINDINGS AND CONCLUSION ... 68

5.1 Introduction .. 68

5.2 The influence of previous experience .. 68

5.3 The influence of self-efficacy on students’ learning 70

5.4 The influence of the ‘mental model’ representation on students’

learning .. 71

5.5 Implications for Computer Programming Pedagogy 72

5.6 Conclusion ... 75

 x

References ... 76

Appendix A: Questionnaire .. 84

SECTION B (Self-efficacy): ... 88

SECTION C (Mental model): ... 90

SECTION D (Suggested Enhancement): .. 91

Appendix B: Ethical Clearance... 92

Appendix C: Research Approval Letter ... 93

Appendix D: Request For Permission To Conduct The Research 95

Appendix E: Similarity report ... 96

Appendix F: General factor .. 97

Appendix G: participants opinion of computer programming self-
efficacy .. 98

Appendix H: corresponding statements used for correlation 99

Appendix J: Declaration Certificate Of The English Language Editing Of
The Dissertation. .. 101

 xi

LIST OF TABLES

Table 4.1 Reliability: Cronbach’s Alpha Coefficient 51

Table 4.2 Validity: Factor analysis Error! Bookmark not

defined.

Table 4.3 KMO and Bartlett's Test.. 52

Table 4.4: Overview of Questionnaire Design 53

Table 4.6 Demographic information .. 56

Table 4.7 The mental models identified in the study 60

Table 4.8 Descriptive statistics: Key dimensions of the

study ... 62

Table 4.9 Mental Model and Self-efficacy 64

Table 4.10 Self-efficacy and previous experience 65

Table 4.11 Previous Experience and Mental Model 66

 xii

LIST OF FIGURES

Figure 2.1: The MFILCP adapted from Wiedenbeck et al. (2004) 33

Figure 3.1 The research Onion taken from Saunders et al., (2017, p. 54) 37
Figure 4.1 Self-efficacy.. 57
Figure 4.2 Number and percentage of participants for each model of value assignment 61

13

1.0 INTRODUCTION

1.1 The Challenge of Learning Computer Programming

Owing to the growth in information and communication

technologies (ICT), the need for graduates with a high competence in

computer programing skills is ever increasing in knowledge-based

economies around the globe. Likewise, market analysis has shown that

the level of investment in computer technology software-related

industries is rapidly growing compared to technological hardware-

related industries, which is a phenomenon that puts an emphasis on the

learning of programming (Chen, 2017). As a result, such opportunities

pose new challenges particularly the challenges that influence students’

learning of introductory computer programming.

However, despite the demands on human sources for high

competence and skills in computer programming, there are plenty of

studies in the literature which report that there is a deficiency in

computer programming training initiatives (Groen&Hosseini, 2017). It

is reported that computer programming courses at university level have

seen a student dropout and failure rate as high as 30%, therefore

indicating that programming is a challenging activity (Hosseini, 2017).

Whilst the afore-mentioned factors such as previous experience,

self –efficacy, mental model and performance are usually beyond the

control of lecturers, they are of the opinion that the learning style

adopted by a student of computer programming influences that

student’s mastery of computer programming concepts. The main

objective of this study is to examine the influence of various factors on

14

the learning of computer programming at a tertiary educational

institution. It is envisaged that such a study would enhance pedagogical

knowledge thereby contributing to an improved pass rate (Carpenter et

al., 2016).

1.2 Background and Context for the Study

According to Bawa (2012) the former Vice-Chancellor of DUT,

higher education has emerged as a key ingredient in the development

strategies of democratic countries. Bawa (2012) further maintains that

there is a growth unprecedented in higher education’s provision for

increased participation rates to promote equity of access to the

historically disenfranchised who seek to realize their potential through

tertiary education. A goal of the national higher education system is to

build institutions with new organizational forms, identities, and

cultures as integral components of a single coordinated national higher

education system (Horton & Craig, 2015). This goal seeks to transform

the national higher education landscape into a constitutionally

acceptable pedagogic endeavor devoid of any barriers to entry based on

social or ethnic standing.

There are disparities within South Africa’s schooling system,

which is the feeder system into the higher education system (Balfanz et

al., 2012). Many of the students registering for courses such as ICT do

not have prior exposure to the field from their high school training. At

the Durban University of Technology (DUT), many students struggle to

cope with the challenges of academic study. These students are

therefore required to register for foundation courses in order to obtain

the pre-requisite knowledge needed to cope with the learning

environment. This challenge exacerbated by the difficulties inherent in

15

the learning of computer programming. There are many factors that

may influence students’ learning of computer programmings such as the

lack of prior ICT exposure and proficiency in mathematics or science-

related subjects (Schiefele, 2017). These factors were been examined as

part of this study. The study conducted will be in the Department of

Information and Communication Technology, within the Faculty of

Accounting and Informatics at DUT. The researcher employed is

currently within this Department as a lecturer in computer

programming to first and second-year students.

1.3 Research Questions and Objectives of the Study

It is common among South African first-year students registered

in IT/ICT Departments to find the introductory computer programing

courses difficult. These difficulties are as a result of factors such as

students lacking prior exposure to an ICT environment; lack of their

knowledge of the basic use of computers; inadequate students’ problem-

solving ability which could involve mathematics competency; self-

efficacy; attitude toward learning; and as well as other factors

(Thomsett-Scott, 2016). According to Schoeman and Gelderblom (2016),

attitude is equally as important as capability. Students admitted into

higher education remain disadvantaged and underprepared. This has

serious implications for the state, the economy, academic institutions

and the youth at large (Cutts et al., 2006). Underperformance and

dropout of students from the system at increased rates is a costly issue

for the University and therefore there is a major concern about the high

dropout rate of students at tertiary institutions globally.

16

Huang and Shiau (2017)state that, improving graduate outcome

in terms of numbers, quality and productivity, is crucial for South

Africa’s future. Thus, first-year students’ adjustment and successful

transition from high school to university are of great concern, both

nationally and internationally. These issues, therefore, necessitate an

investigation into factors influencing comprehension of and training in

introductory computer programing language with a particular focus on

first year ICT students at DUT.

The research questions and research objectives of this study are as

follows:

1.3.1 Research Questions

 How does ‘previous experience’ influence students’

performance in the learning of computer programming

 How does Self-efficacy influence students’ performance in

the learning of computer programming

 How does the ‘Mental Model’ representation of the problem

domain influence students’ performance in the learning of

computer programming

 How does the ‘mental model’ representation of the problem

domain influence students’ self-efficacy in the learning of

computer programming

1.3.2 Research Objectives

The primary objective of this study is to investigate the factors

influencing the learning of introductory computer programing with a

17

particular focus on first year ICT students at DUT. The research

objectives are as follows:

 To evaluate the influence of previous experience on

students’ learning of introductory computer programming

 To evaluate the influence of self-efficacy on students’

learning of introductory computer programming

 To evaluate the influence of the ‘mental model

‘representation of the problem domain on students’

learning of introductory computer programming

 To evaluate the influence of the ‘mental model’

representation of the problem domain on students’ self-

efficacy in the learning of introductory computer

programming

1.4 Research Rationale

The rationale behind this study was that little research was done

in the past to investigate factors that influence first-year students’

learning of computer programming in the African context and more

specifically in the South African context (Hjorth, 2017). Again, existing

research conducted has been mostly in Computer Science and

Technology course-related institutions and not in a university setting

which includes a University of Technology (UoT). Reports shows that

among other factors the four basic influences on computer programing

skill are previous experience, self-efficacy, mental model, and student’s

attitude (Bringula & Aviles, 2017) while some other authors have added

to this list by including previous experience as the de facto requirement

18

for computer programming skill (Edgcomb et al., 2017). These studies

have shown that exposing students to prior ICT knowledge has a

positive effect on student performance in Computer Programming

courses at tertiary level. It is envisaged that such an intervention will

adequately prepare these students for the demands at the tertiary level

(Grover et al., 2016).

1.5 Significance of the Study

The focus of this research is on identifying which conceptual

factors lead to success in learning computer programming, and, equally,

which students are most likely to face difficulties in the course due to

their inability to grasp the concepts. By identifying the vulnerable

population, the ICT department and lecturers can assist these students

early through recommendations with the goal of helping improve

performance in the learning of computer programming. As a lecturer of

a computer-programming course at the DUT, the researcher has

observed that many first-year students face difficulties in the course

leading to a high failure and dropout rate. This study will add to existing

knowledge on the factors that influence the learning of introductory

computer programing and it will provide a platform for future research

even in different contexts.

1.6 Outline of the Study

Chapter One introduces the study including the background of

the study, the research problem, the research questions, research

objectives, research rationale and the significance of the study.

19

Chapter Two reviews the existing literature conducted on

factors influencing first-year students learning computer programing,

exploring their gaps and weaknesses, hence justifying the need for this

study. Basic introduction of computer programing discussed. This

chapter also critically reviewed models available for selection,

identifying their gaps and constructs, hence explaining and justifying

the model adopted for this study, displaying the constructs in order to

explain the various factors considered in this study.

Chapter Three describes the methodology adopted for this

study. The research philosophy, research strategy, research choice of

data collection, research design, study site, population, sample and data

collection procedure of the study were all discussed. This chapter also

described the data collection instruments, as well as ethical

considerations for this study.

Chapter Four presents and analyses the data obtained in this

study. Tables, bar graphs, and pie charts used were for better

representation of the descriptive statistics. Similarly, an inferential

statistical test used was to provide a detailed explanation of results and

to explain relationships between variables considered in this study.

Chapter Five presents the conclusion of the study. It also

confirms that the research questions addressed and that the research

objectives achieved. The limitations of the study, recommendations, and

suggestions for future research provided will be in this chapter.

1.7 Summary

This chapter has introduction provided to the study, the

background, the research problem, the research questions, research

20

objectives, research rationale and the significance of the study. The

structure of the dissertation presented was also in this chapter.

The following chapter provides an overview of the different types

of computer programing languages; it also reviews various literary

contributions to the discussion of the factors influencing ICT students’

academic performance by identifying gaps in the body of knowledge.

Similarly, it also critically reviews the theoretical model used in the

study to explore the factors influencing previous experience and self-

efficacy in the learning of computer programing.

21

2.0 LITERATURE REVIEW

2.1 Introduction

This chapter seeks to explain the research questions posed in the

study by discussing the several factors that influence the learning of

computer programming. Most importantly, the chapter will

comprehensively analyze different literature on introductory computer

programing and what makes students find programming skill difficult

to achieve success in academic performance, exploring gaps within the

literature, hence justifying the need for this study.

The model adopted for this study is been explained, illustrating

the constructs in order to clarify the various factors the variables

considered in this study and justifying why it was considered

appropriate for this study.

2.2 The Teaching of Introductory Computer Programming

Introductory computer programming language usually taught in

the tertiary institution by means of a series of lectures. Mauer et al.

(2017)state that these lectures cover the simple concepts of

programming (variables declaration, method, loops, conditionals,

architectural ties and so on). These concepts are illustrated using the

syntax of a particular language and more details of the language are

added regularly as the students become more familiar with the course

(Watson, 2013).

Computer programming involves quite a number of tasks,

including planning, coding, testing, debugging, deploying and

22

maintaining the programs source code (Creswell & Poth, 2017).

Students in tertiary institutions progress in these skills through a series

of courses. According to Barnes et al. (2017) in introductory courses,

learners learn a certain portion of each of the activities involved in

computer programming. Some courses emphasize coding and debugging

tasks from the beginning and some focus on design activity first (Coles

and Phalp (2016). However, there is no proof that any specific approach

has an effect on learners’ pass rate. In programming, one needs to note

the following:

 Without visualizing the principal tasks such as execution

of an algorithm in pseudocode and flowchart form, writing

or reading a chunk of code is impossible.

 Debugging activity cannot be successful without a clear

understanding of what each line of code does and what they

do collectively as a snippet.

 Designing also heavily relies on understanding the

capability and limitation of programs (Rex & Roth, 1998).

Success in an introductory computer programming course

demonstrates a student’s ability to visualize the logical processes behind

the execution of programs (Thomsett-Scott, 2016). This ability is an

important foundation, which makes all programming tasks easier, and

without it, learning computer programming may be difficult. The

dynamics of students to which computer programming have changed

over the years and a first year students’ computer programming course

now has to be able to meet the needs of a highly diverse set of students.

Hašková et al. (2014) say that computing is also a degree course that is

23

assumed by many to lead directly to a creative and innovative career in

the IT industry (Rodrigo et al., 2009). It has been shown simultaneously

that many students are likely to embark on the course with the view to

gaining a highly paid job as the sole aim (Kumar & Laakso, 2016). These

students will have little interest in computing (or programming) other

than as a means to an end (Coles & Phalp, 2016).

2.2.1 Completion Rate in Introductory Programming

Although the problem of high failure rates in introductory

programming has become a global phenomenon, according to Bain and

Wilson (2017) few studies have focused on providing reasons for this

occurrence. Chen and Cheng (2012) conducted a survey of five

educational institutions teaching computer studies to first-year

students. In general, they found that the pass rate was higher for

smaller classes and for colleges rather than universities, but that the

programming language used does not matter. Chi and Berger

(2017)undertook a longitudinal study by searching articles published

between 1960 and 2013 to find those that reported data on failure rates.

In all, they found 54 articles that described failure rates in 161

computer-programming courses at 51 institutions across 15 countries

from 1979-2013. The worldwide mean for passing was 67.7%. but no

study was there a common definition of ‘passing,’ whether anything

above an F or only those grades that allowed a student to continue to

the next course and whether or not the passing rates counted course

attrition as well as failure. However, the means in the two studies being

as close as they were presents a good argument that the population

means is around 67% (Chi & Berger, 2017).

24

2.2.2 Students’ Success in Learning Introductory

Computer According to Bowlick and Goldberg (2017) in order to

improve the pass rate for introductory computer programming, there is

a need to have a better idea of what factors contribute to the high

percentage of failure. One possibility is that the abstract content

essential for programming is too logical for some students to grasp fully.

Miller and Ramirez (2017) developed a tool to predict success in an

introductory computer-programming course based on Jean Piaget's

intellectual development (ID) levels. The actual level is categorized by

the use of logic applied to diagnose the problems. It involves inductive

thinking, but not logical thinking (Thomsett-Scott, 2016). The formal

level is characterized by theoretical and logical thinking and the ability

to use symbols associated with abstract concepts in a logical way. Barker

and Unger's instrument had 11 questions that were categorized as

concrete, early formal, formal or late formal. Answering both early

formal questions (direct proportion and probabilistic thinking)

incorrectly placed students in the late concrete category. If either was

answer correctly the student was placed in early formal, and if, in

addition, the student answered three out of four of the late formal

questions (propositional and correlational reasoning, deductive logic or

permutations) they were categorized as late formal. Idemudia et al.

(2016) suggest that those who struggle with abstract thinking may need

more time to internalize the concepts upon which programming

depends.

Breese et al. (2017) sought a means of filtering out students less

likely to succeed in programming in response to a high demand for the

course that the faculty could not meet. They found some correlation

25

between math and verbal statistics scores and success, but these along

with the other factors they considered (rank in high school and grades

in prior exposure to ICT and problem-solving skill) accounted for at most

25% of the dissimilarity of grades (Carpenter et al., 2016). Elarde (2016)

tested a model with 12 predictive factors, which included problem

solving skill background, contributions for success/failure (explanations

students give for their success or failure on the midterm exam), domain-

specific self-efficacy, mental model, comfort level in the course, favorite

work style, previous programming experience and previous non-

programming computer experience. Comfort level, mathematics and a

competitive work style preference positively correlated with

performance in the midterm, while attribution of performance in the

exam to luck or the difficulty of the task negatively correlated with

performance in the midterm examination. Furthermore, while prior

programming experience, in general, did not show any effects as they

found a prior formal class in programming to be predictive of success. In

addition, while other computer experience (internet, games, and office

applications) in general did not have any effects, hours playing

computer games did have a negative influence. Lopez and Whalley

(2008), tested a different set of predictors namely spatial visualization,

reasoning designing, sketching a map as well as attitudinal factors, to

see which correlated with success. Some of their correlations are

statistically significant, though not strong. Others are not statistically

significant unless they also include the students who did not complete

the course. Bringula and Aviles (2017), found a trend toward students

who created survey maps that modeled both the routes and the

landmarks to be stronger at programming than those who sketched out

26

routes or landmarks alone. They also found students who could better

articulate their search strategy more efficient than those who were less

articulate. In general, their analyses are analogs to programming,

therefore, someone who can create a more complete abstract model or

who can articulate their search methodology in more detail shows better

performance in problem-solving in a domain involving abstraction and

algorithmic thinking (Mathews, 2017).

2.2.3 Motivation and Habits of Students Who Failed

Barnes et al. (2017) looked at differences between students who

were taking the course again and new students. First-year students

generally take their introductory programming course, and the first

semester has an enrolment of 400 students. The second semester has an

enrolment of 80 students. The study conducted was in the second

semester of 2016, whereof the 80 students enrolled, 58% were taking the

course for at least the second time. Barnes et al. (2017) did this survey

halfway through the semester and another at the end of the semester.

They found that most of the repeat students had little interest in

programming, but initially wanted to go into business school not

information technology. The repeat students also worked significantly

more hours at jobs outside school than the students new to the course.

Many of the repeat students had poor attendance at lectures. The

authors described the repeat students as having a shallow learning

approach, being reluctant to seek out and explore extra resources using

their own resourcefulness. Many of the repeat students did not use or

own the textbook, though it was strongly recommended. While about a

quarter of the new students failed the course, over a third of the repeat

students failed the class again. This study suggests a lack of motivation

27

to learn programming is the primary concern, but since the study was

done after the students had failed the course for the first time, their lack

of motivation and interest in other majors courses may in some cases be

a result rather than a cause of their failing the first time.

2.2.4 Performance in Introductory Programming Courses

Predicting performance in introductory programming courses is

a widely studied problem, and the motivation behind these studies is

usually the high failure rates. Ideally, the study wants to be able to

recognize the students who are struggling early on during the course, so

that those students can then be offered additional help and support

(Johnson-Laird, 1983). On the other hand, successful students could

offer additional challenges to improve their learning experience.

Understanding the reasons behind failing or succeeding can help to plan

these interventions and teaching methods in general. Carpenter et al.

(2016) are of the opinion that factors related to students ‘background,

such as previous academic success and previous programming

experience as well as psychological and mental model factors, self-

efficacy and self-esteem influence first-year students’ learning of

computer programming. Some studies have also included demographics

like gender and age (Hjorth, 2017). More recently, as it has become more

and more common to collect log data on introductory programming

courses, newer studies have also included variables based on this data.

These variables try to capture students’ behavior while they are solving

exercises, for example by taking into account how much times they

spend dealing with errors.

When predicting performance, an important thing to consider is

how to measure it (Bain & Wilson, 2017) said that most studies have

28

focused on predicting performance on introductory programming

courses, the final grade or midterm grade is a natural choice as a

measurement scale. In most cases, the grade consists of performance in

exercises and the final exam, though final exam usually makes up for

most of the grade. Exam and lab performance have also been examined

separately and other more specific performance measures have been

used.

2.3 Factors that Influence the Learning of Introductory

Computer Programming

There are numerous social and cognitive factors that influence

the learning of computer programming (Wiedenbeck et al., 2004).

However, for the purpose of the current study, the most significant of

these factors are discussed below.

Previous Experience and Computer Programming

Research shows that previous programming experience has a

positive effect on success in an introductory university course (Ahadi et

al., 2017). Other factors that may affect course success have been

studied but not in depth (Baldwin et al., 2017). Two recent studies have

shown a positive relationship between mathematics or science

background to computer programming success (Farmer & Tierney,

2017). Various factors regarding student learning styles and learning to

the program have been found in many studies (Bain & Wilson, 2017).

Other interesting factors that have been addressed in recent studies

include student attributions of success to oneself or to outside forces

(McGee et al., 2017) and students’ course outcome expectations (McGee

et al., 2017). A factor of potential interest that has not widely been

29

studied in computer programming is computer playfulness (Horton &

Craig, 2015). A negative factor affecting student success is a high

amount of game playing by students (Huang & Shiau, 2017).

Self-Efficacy and Its Role in Learning

Holzberger et al. (2013) define self-efficacy, as “…people’s

judgments of their capabilities to organize and execute courses of action

required attaining designated types of performance.” Self-efficacy

beliefs are keys element in human performance over a very broad range

of situations, for example, efficacy for work tasks, for physical activities,

and for personal relationships (Schultz & Schultz, 2016). Self-efficacy is

important in learning activities because learning involves more than

just acquiring skills. As Holzberger says, “…competent functioning

requires both skills and self-beliefs of efficacy to use them effectively”

(Miller & Ramirez, 2017). Schultz and Schultz (2016) are of the opinion

that learning situations and self-efficacy influence the use of cognitive

strategies while solving problems. The amount of effort expended, the

type of coping strategies adopted, the level of persistence in the face of

failure, and the ultimate performance outcomes are all influential in

determining computer programming proficiency. Chamorro-Premuzic

(2016) states that according to self-efficacy theory, judgments of self-

efficacy are based on four sources of information. These are the

individual’s performance attainments, experiences of observing the

performance of others, verbal persuasion, and physiological reactions.

The most important is performance attainments, that is, the

individual’s evaluation of the outcomes of his or her direct attempts to

perform an activity.

30

Educational researchers recognize that, because skills and self-

beliefs are so intertwined, one way of improving student performance is

to improve student self-efficacy. Interventions to improve student self-

efficacy focus on specific skills or knowledge and target the four sources

of information that students use to evaluate their self-efficacy, as

defined above. Providing students with direct hands-on experiences in

an activity is critical since the strongest source of information is

performance outcomes (De Neve & Ro, 2015). Making positive hands-on

experiences is also important, especially in the early stage of learning,

when the task may seem overwhelming. According to Schiefele (2017)

attempts have also been made, with some success, to increase self-

efficacy in learning by peer modeling of tasks, verbal persuasion, or

other types of social influences, such as cooperative learning

environments (Phillips et al., 2017).

Mental Models and Computer Programming

Guzdial et al. (2017)define a Mental Model as a predictive

representation of real-world systems. People create internal

representations of objects and processes in the world, and they use these

mental representations to reason about, explain and predict the

behavior of external systems. Mental models are critical in debugging a

process when things go wrong because the mental model supports the

person in reasoning about and localizing possible faults (Moyer et al.,

2017). Mental models have been studied in many domains and

situations.

In recent years, the mental model's concept has been popularized

by practitioner magazines and websites in areas such as human-

computer interaction (Huang & Shiau, 2017). Programming is a

31

cognitive activity that requires the programmer to develop abstract

representations of a process and express them in the form of logic

structures. In the case of creating, modifying, reusing, or debugging a

program, the programmer must also translate these abstract

representations into completely correct code using a formal language.

Having a well-developed and accurate mental model is likely to affect

the success of a novice programmer in an introductory programming

course (Moyer et al., 2017).

A programmer’s mental model could encompass useful knowledge

about how programs work in general, stereotypical ways of solving

common programming problems and how a particular program is

structured and functions, as well as knowledge about the syntax and

semantics of a specific language (Coles and Phalp (2016).

Chen (2017) referred to mental models as schemas or plans that

have been showing to play an important role in program comprehension

and in comprehension-related tasks, such as modification and

debugging. Rumsey et al. (2017) found strong effects of mental model

formation in a program modification task. Participants were asked to

modify a program but not given any explicit instructions about how to

approach the task. The results showed that programmers who first

attempted to systematically read and comprehend the program were

much more successful in doing the modifications than programmers who

jumped immediately into making modifications.

The difference in performance between programmers who built a

mental model of the program and those who did not be especially great

in modifications that involved interactions with code in other parts of

the program. Similar results were reported by Schoeman and

32

Gelderblom (2016) in a comparison of novices and experts debugging a

program. A conclusion can be made from these studies is that novices’

success in programming tasks may be increased by greater attention to

building a good mental model of the program. These studies of mental

models in programming do not deal directly with the issue of success in

introductory programming courses. However, the various factors a good

mental model and success in programming tasks suggest that having a

good mental model may be an important contributor to course outcomes.

2.4 The Study’s Theoretical Model

This study adopts a model of computer programming

performance by novice programmers based on the factors of Previous

Experience, Self-efficacy, and Mental Model. The study’s theoretical

model has been adapted from the Model of Factors that Influence the

Learning of Computer Programming (abbreviated as MFILCP)taken

from Wiedenbeck et al. (2004). The adapted model is been illustrated in

Figure 2.1. The main constructs or variables of the model are been

represented by ovals and the relationships between these constructs are

illustrated as directional lines.

33

Figure 2.1: The MFILCP adapted from Wiedenbeck et al. (2004)

Previous experience: Previous experience is important to

success in an introductory programming course. Previous experience

acts as a significant predictor of both students’ self-efficacy and mental

models of programming, which in turn predicts course performance

(Baldwin et al., 2017)

Self-efficacy: Based on self-efficacy theory, there is a positive,

causal relationship between previous experience and self-efficacy in the

domain of application. An extrapolation of this relationship into the

domain of computer programming suggests that as the ‘hands on’

exposure to computer programming tasks increase, so too will students’

self-efficacy in computer programming increase. It is also hypothesized

that students’ mental models of programming will have a significant

effect on their self-efficacy beliefs (Miller & Ramirez, 2017).

34

Mental Model: Previous experience also has a positive influence

on the accuracy of the mental models that students develop when trying

to solve a computer programing task (Wiedenbeck et al., 2004). A further

observation is that a clear mental model of what programs do and how

they do, it will increase students’ feelings of self-efficacy about

programming. It is expected that both the Mental Model

Performance: According to Wiedenbeck et al. (2004),

performance in computer programming is influenced by previous

experience. However, this relationship is not a direct one. A more

accurate representation is that performance in computer programming

is linked to previous experience through the mediating influence of Self-

efficacy and Mental Model. According to Mason (2017), self-efficacy

explains is a pivotal factor when it comes to understanding students’

performance in computer programming courses (Mason, 2017).

2.5 Summary

The current chapter has provided detail on issues related to

student performance in computer programming assessment. A

significant outcome of this discussion is that students have been

grappling with the mastery of computer programming at an

introductory level. An incursion into the realm of cognitive processing

that influences the acquisition of computer programming skill suggests

that previous experience, self-efficacy and mental models of the problem

domain play a significant role in determining computer programming

proficiency. A theoretical model aligned with the preceding constructs

35

has been identifying as a viable framework to underpin the empirical

phase of the current study.

The subsequent chapter describes the methodology, the research

approach, choice of data collection methods, the study site, the study’s

sample, and the data collection instrument.

36

3.0 THE RESEARCH METHODOLOGY

3.1 Introduction

The literary incursion into factors that influence the learning of

computer programming has been discussed as part of the literature

study, the Model of Factors that Influence the Learning of Computer

Programming (MFILCP) has been identified as the underpinning

theoretical framework for the study. The MFILCP plays a defining role

in the methodology adopted for the study.

Research is conducted for two reasons; either to find a solution to

a problem or to answer a question (Marinova & Hartz-Karp, 2017).

According to Creswell and Poth (2017), research is defined as a process

of finding new information on a specific topic. However, research

methodology refers to the process, tools, and procedures that are

adopted when conducting a research study (Alvesson & Sköldberg,

2017). It is further described as a systematic way and process that is

adopted when carrying out a research study (Robson & McCartan,

2016).

The research process and procedures used in the current study

has been informed by the Research Onion model presented in Saunders

et al. (2017) and illustrated in Figure 3.1.

37

Figure 3.1 The research Onion taken from Saunders et al., (2017, p. 54)

The process and procedures like the research philosophy,

research approach; choice of data collection, time horizon, techniques

and procedures adopted in this study is explained in the various sections

of the current chapter to answer the following research questions:

 How does ‘previous experience’ influence students’

performance in the learning of computer programming?

 How does Self-efficacy influence students’ performance in

the learning of computer programming?

 How does the ‘Mental Model’ representation of the problem

domain influence students’ performance in the learning of

computer programming?

38

 How does the ‘mental model’ representation of the problem

domain influence students’ self-efficacy in the learning of

computer programming?

3.2 Research Philosophy

Research philosophy refers to the researcher’s belief and

philosophical approach adopted to investigate a phenomenon (Saunders

& Tosey, 2013). The different types of research philosophies are

positivism, realism, interpretivism, and pragmatism (Saunders &

Tosey, 2013).

 Realism is defined as a philosophical approach associated with

scientific inquiry (Saunders & Tosey, 2013).

Interpretivism approach involves gathering rich and detailed

insights into a phenomenon. It involves using small samples and it is

best suited for a qualitative study (Saunders & Tosey, 2013).

Pragmatic approach, on the other hand, uses multiple

techniques for gathering data and it results in an interpretation which

is best suited for studies that adopt both a quantitative and qualitative

method for better understanding of a problem (Saunders & Tosey, 2013).

A positivist approach is an approach that involves using

scientific methods to test theories (Saunders & Tosey, 2013). It gathers

data from a larger sample (Patten & Newhart, 2017). It also uses an

empirical approach to addressing a research problem thereby providing

an explanation based on what is observed thus giving room for

generalization (Creswell & Poth, 2017).

The current study adopts a positivist research approach because

it is quantitative in nature. Furthermore, this study follows an

empirical approach by gathering data from a large sample and employs

39

statistical analysis in order to provide a comprehensive explanation of

the previous experience of self-efficacy and the mental model to

determine the performance of students at DUT

3.3 Research Approach

The research approach is largely dependent on the research

philosophy that a researcher adopts to guide his / her study (Saunders

& Tosey, 2013). The approach a study adopts depends on what a study

intends to address. Research approaches are of two types, a deductive

and an inductive research approach (Creswell & Poth, 2017). An

inductive approach is the opposite of a deductive approach. In an

inductive research approach, the researcher develops the research

questions before adopting a model and it is most suitable for qualitative

research (Saunders & Tosey, 2013)

In a deductive research approach, the researcher firstly examines

the previous literature conducted on the study, then extracts variables

considered in the literature and the model that guides the study

(Creswell & Poth, 2017). The research questions and the variables

considered in a deductive approach are developed from the literature

examined and the model adopted to guide the study (Saunders & Tosey,

2013). A deductive research approach uses the scientific method for data

collection which is analyzed using statistical analysis (Anderson-Gough

et al., 2017). It aligns with a positivist research philosophy because it is

highly objective in nature, and it is best suited for studies, which

attempt to explain various factors (Saunders et al., 2017).

The current study embraces a deductive approach because the

model adopted guided the research questions as well as the variables

40

considered in this study in order to investigate the factors influencing

learning computer programming

3.4 Research Strategy

Research strategy refers to procedures adopted by researchers

when addressing research questions (Saunders & Tosey, 2013). The

different strategies involved in conducting a research study are

experimental, survey, case study, action, grounded, ethnography and

archival research strategy.

An experimental research survey is mostly adopted when

comparing the effect of a phenomenon on two different groups; a

controlled and a treatment group (Saunders & Tosey, 2013). A case-

study research strategy involves conducting a study by selecting a

certain subject with a certain characteristic (Saunders & Tosey, 2013).

Action research is usually adopted when attempting to find a solution

to a problem identified (Creswell & Poth, 2017). In ethnography

research, the researcher conducts the study in the context of a specific

culture or group, while an archival research is a strategy where the

researcher obtains data from existing data; usually involving secondary

data (Creswell & Poth, 2017).

A survey strategy gives room for the researcher to collect data

from respondents which is a representation of the whole population

hence giving room for objectivity (Alvesson & Sköldberg, 2017). In other

words, “survey strategy presents the opinions of a population by

studying a sample of that population” (Creswell & Poth, 2017). A survey

strategy mostly involves the use of a questionnaire to gather data from

41

a sample. In other words, it follows the deductive approach (Jagdale et

al., 2018)

The current study adopts a survey research strategy because a

sample was taken from a part of the whole population of the university

students to investigate the factors influencing the learning of computer

programing.

3.5 Research Design

According to Creswell and Poth (2017), a research design gives

the direction of a research study. It also articulates what method(s) a

research study will adopt (Glaser, 2017). There are three major types of

research designs: descriptive, exploratory and explanatory research

design.

An exploratory research design is best suited for studies that

provide a deeper insight into a research problem that is not clearly

understood (Glaser, 2017), while a descriptive research design simply

provides a comprehensive discussion of a problem that is being

investigated (Coolican, 2017).

An explanatory research design, on the other hand, describes

various factors by providing a detailed explanation of various factors in

a study (Coolican, 2017). An explanatory research design gives detailed

information compared to a descriptive research design (Saunders et al.,

2017).

Descriptive studies report instant data such as measures of

central disposition including the mean, median, mode, deviance from

the mean, variation, percentage, and correlation between variables, as

descriptive study might employ methods of analyzing correlations

42

between multiple variables by using tests such as Pearson's correlation,

regression, or multiple regression analysis.

The current study embraces a descriptive research design

approach in order to study the factors influencing learning introductory

computer programing at DUT.

3.6 Research Choice

Research choice refers to the mode of data collection when

conducting a research study (Glaser, 2017). The different mode of data

collection is mono-method, mixed-methods and multi-method (Saunders

and Tosey, 2013).

A mixed-method uses a “combination of both qualitative and

quantitative mode of data collection technique” (Creswell and Poth,

2017: p 38). A multi-method uses a combination of more than one

quantitative and more than one qualitative mode of data collection

technique (Saunders and Tosey, 2013). A mono-method uses only a

single mode either of data collection technique, which can be using a

questionnaire or by an interview (Saunders and Tosey, 2013).

The current study adopts a mono-method mode of data collection

technique because it only gathered data with a questionnaire.

3.7 Time Horizon

Time horizon refers to the period it takes for a researcher to

gather data. According to Saunders and Tosey (2013), there are two

types of time horizon, they are a cross-sectional and a longitudinal time

horizon.

43

The longitudinal time horizon research requires a researcher to

gather data over a long period and it is suitable for an experimental and

archival research strategy (Kim et al., 2017). The cross-sectional time

horizon research requires data to be collected over a short period, and

data is collected only once for the study (Saunders and Tosey, 2013).

Cross-sectional research studies are most suitable for studies that adopt

a case study and survey research strategy.

The current study embraces the cross-sectional time-horizon

approach because it adopts a survey research strategy and data

collection was carry out over a short period.

3.8 Research Site and Setting

The research site for this study is the Durban University of

Technology, while the research setting is the Faculty of Accounting and

Informatics on the Ritson Campus of DUT targeting the first year

Bachelor of Technology (BTech) First-year students.

3.9 Population of the Study

A total population of 200 students was selected from the IT

department at the Ritson campus of DUT to participate in the survey.

According to Leon-Garcia (2017), sampling as a process of selecting a

subset from a population. It also described as the process of selecting

subjects for a study. A sampling technique is a process of selecting a

member from a population for a study (Abdelkader, 2017).

There are two types of sampling techniques, namely probability

and non-probability sampling technique. In a probability sampling

technique, members of the population have an equal chance of

participating in the study (Coolican, 2017), while in non-probability

44

techniques, “the members in the population do not have an equal chance

of being selected to participate in the study” (Coolican, 2017: p 43).

An example of a probability sampling technique is a simple

random probability technique where elements in the target population

have an equal chance of selection to participate in the study (Elwood,

2017). Hence, this study utilizes a simple random probability technique

because all the elements in the target population had an equal chance

of selection to participate in the study

3.10 Sampling and Sampling Technique

The total sample size of this survey was calculated according to

the sample size formula proposed by Naing et al. (2006) (see equation

3.1) for finite populations, where n= sample size, Z=confidence level,

P=Estimated proportion, d=precision or acceptable margin of error, and

N=Population size. The value of n was estimated using the following

parameters: Z=1.96, P=0.05, d=0.035 and N= 204 students which give a

sample size of 200 students. The construction of the sample for 200

students surveyed by this study was done as follows: The ratio of the

students in that department from business analysis and application

development were calculated compared to the total number of registered

students for application development in the department, and this ratio

was multiplied by the sample size in order to get the number of students

in the sample for the department. Equation 3.1 was used to determine

the sample size for the study.

45

Equation 3.1.

According to Scott (2017) and Moser and Kalton (2017), the

population of a study is a group of people that have a common

characteristic, while a target population refers to the population that

includes all clinical and demographic characteristics where results will

be generalized.

The target population considered in this study was Bachelor of

Information and Communication Technology (First year) students in

the Faculty of Accounting and Informatics on the Ritson Campus of

DUT. The Ritson Campus has the highest population of students who

learn introductory computer programming at DUT. Also, first-year

students are the ones likely to face factors influencing the learning of

computer programming because of little experience compared to mature

students who have experienced coding, debugging and implementation

right from their undergraduate study, hence, they can provide robust

information on how factors influenced their academic performance in

computer programming over the years.

3.11 Data Collection Instrument

The data collection instrument refers to the tool used in collecting

data in a research study (Saunders and Tosey, 2013). In a qualitative

study, data is collected through observation and the use of interviews,

which can be structured, semi-structured or unstructured, and are

46

mostly analyzed using content analysis (Berggren et al., 2017). A mixed

method mode of data collection uses both interviews and a questionnaire

(Saunders and Tosey, 2013). A mixed method data collection is suitable

when either the quantitative or the qualitative approach is inadequate

to address suitably the problem that is being investigated (Creswell and

Poth, 2017).

A quantitative model of data collection, on the other hand, uses a

questionnaire to gather data, which analyzed are and interpreted using

a statistical test (Creswell and Poth, 2017). It uses more samples

compared to a qualitative research, and it gives room for generalization

of results. A quantitative research mostly deals with numbers and

statistics and it used is to examine various factors i.e. independent and

dependent factors in a study (Saunders and Tosey, 2013).

In the current study, data was collected using a questionnaire

because it is a quantitative study. In addition, the result of the study

was analyzed and interpreted using statistical analysis in order to

examine the influence that the variables identified in the study, have on

the learning of computer programming.

3.11.1 Questionnaire Design

The questionnaire was designed using Microsoft Word. It was

administered physically to the target population identified in the study.

The questionnaire was designed to conform to the Psychology of

Programming model that underpinned the study. These were done in

order to get a well-informed response, which provided a richer and

better understanding to explain the influence of factors influencing the

47

learning of introductory computer programming. The questionnaire was

divided was into four sections (Refer to Appendix B).

Section A consists of the demographic background information

and previous experience. Questions asked in this section include

participants’ name, student number, age, gender, and Matric or any

equivalent Merits. The two basic questions asked in this section also

include participant experience. For example, did you ever write a

computer program in any language before you started APPDev @ DUT

this year? Is this your first course in programming, if not, what other

programming courses have you studied.

Section B - The self-efficacy construct as seen in the Psychology

of Programming model in Figure 4.1 is examined here. This section was

to identify how familiar or skillful participants are in computer

programming. This addressed Research Question 2.

Section C – The Mental model construct as seen in the

Psychology of Programming model in Figure 4.2 is presented here. This

section was to identify critical thinking to determine a mental model

and the ability to maintain consistency in resolving basic computer

programming problems. This addressed research question part three.

3.11.2 Data Quality Control

Data quality control ensured by conducting a reliability and

validity test on the data collection instrument used in this study.

Reliability refers to the extent to which a test or an experiment will yield

the same results when carried out repeatedly (Montgomery, 2017). In

other words, if a study can reproduce similar results under different

circumstances, then it is considered reliable (Leon-Garcia, 2017).

48

Validity refers to how truthful the results of a study are. It also

determines whether the research accurately measures what it is

intended to measure (Montgomery, 2017).

The researcher ensured reliability by conducting a consistency

test using the Cronbach’s alpha coefficient test on the parameter used

to measure academic performance in this study. Validity was also

ensured by conducting a pilot study through the process of distributing

questionnaire among 10 participants identified in the target population.

The feedback received was used to modify the questionnaire in order to

remove aspects that were ambiguous or not clear. An adjusted

questionnaire was designed which conveyed questions in a simple

language so that it could be easily interpreted by participants. Also, the

researcher ensured that all questions asked were strongly aligned with

the objectives of the study.

3.11.3 Ethical Considerations

The researcher requested permission from the registrar of the

University in order for the study conducted to be among students at the

Durban University of Technology (DUT). After the permission was

granted by the registrar, the researcher attached a copy of the

permission letter to a copy of the questionnaire (Refer Appendix C) and

a duly filled in ethical form was forwarded to the Ethics Committee of

the University in order to be granted ethical approval for the study to

be conducted.

An ethical approval letter issued to the researcher (Refer

Appendix C), which granted the researcher permission to conduct the

study among students of the university. A consent form attached was

49

the questionnaire where participants either accept or decline to

participate in the study.

The researcher explained the purpose of the study to the target

population, stating the objectives of the study, emphasizing that

participation is voluntary and both the researcher and the school will

uphold confidentiality. The participants assured that their identity

would not be revealed without getting their approval should there be a

need for it to be revealed. Also, data collected will be used only for the

purpose of this study.

3.12 Summary

This chapter has described and justified the methodology adopted

to explore the factors that influence first-year student’s learning

introductory computer programming language at DUT. The research

philosophy, research approach, research survey, research design, and

the choice of data collection used for this study were justified and

explained. The sampling technique adopted, the data collection

instruments used and the procedure for data collection were all

described in details.

The following chapter presents the results and analysis of the

data gathered in this study.

50

4.0 DATA PRESENTATION, AND DISCUSSION OF THE

FINDINGS

4.1 Introduction

The previous chapter provided a discussion on the research methodology

that has been implemented to undertake the empirical phase of the

current study. The current chapter provides detail of the data analysis

that has been conducted to facilitate the answering of the study’s main

questions and to ensure that the objectives of the study have been

achieved. The presentation and analysis of the findings were based on

the research, which objectives are:

 To understand the influence of previous experience on

students’ learning of introductory computer programming;

 To understand the influence of self-efficacy on students’

learning of introductory computer programming;

 To understand the influence of the ‘mental model’

representation of the problem domain on students’ learning

of introductory computer programming.

The data are presented in three parts. The first part of the chapter

presents the results using frequency and percentage graphs. The second

part deals with the presentation of the results using descriptive

statistics. The third part covers the presentation of the results using

inferential statistics. As indicated in Chapter 3, 200 respondents were

selected for the study. The researcher administered 200 questionnaires

51

to the respondents and all the 200 questionnaires were retrieved from

the respondents, which represented a 100% response rate.

4.2 Reliability: Cronbach’s Alpha Coefficient

Reliability measures the degree of the consistency of the research

instrument over time. In other words, it is the extent to which the

reseach instrument mesures what it was designed to measure (Sekara

& Bougie, 2013).

The Cronbach’s alpha coefficient was computed to determine the

reliability of the research instrument used. The Cronbach’s alpha

coefficient of 0.70 and beyond was considered as reliable as

recommended by Sekaran and Bougie (2013). The results are shown in

Table 4.1.

Table 4.1 Reliability: Cronbach’s Alpha Coefficient

Table 4.1 indicates that the questionnaire for measuring self-efficacy

has a very high degree of inter-item consistency and reliability (a =

0.901). Therefore, the questionnaire measuring self-efficacy is reliable

and can be used by other researchers for the same purpose.

Dimensions No. Cronbach’s

Alpha

Self-efficacy 9 0.901

52

4.3.1 KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling

Adequacy.

0.903

Bartlett's Test of

Sphericity

Approx. Chi-Square 2922.745

Df 36

Sig. 0.000

Table 4.2 KMO and Bartlett's Test Measure Sampling Adequacy

It is evident from the Table 4.2 that Measure of Sampling Adequacy

[MSA] for the self-efficacy, a mental model is 0.903, and Bartlett’s test

is significant, which indicates that the data set complies with the

requirements of sampling adequacy and sphericity for the factor

analysis performed.

4.4 Overview of the Questionnaire Design

The questionnaire (Appendix A) was designed to conform to the

Model of Factors that Influence the Learning of Computer Programming

(MFILCP) proposed by Wiedenbeck et al. (2004). The item in each

section of the questionnaire was aligned with the constructs of the model

adopted for this study. The objectives of these constructs are explained

in Table 4.3.

The Questionnaire Design

Section

Constructs

of the

model

Objective of

question

Question

number in the

questionnaire

Total

53

A
Previous

Experience

To understand the

previous experience

factors that

influence students’

learning of

computer

programming

A4, A5 3

B Self-efficacy

To understand the

influence of self-

efficacy factors on

students’ learning of

computer

programming

B1- B9 9

C
Mental

Model

To understand the

influence of mental

model factors on

students’ learning of

computer

programming

C1- C4 4

Table 4.3: Overview of Questionnaire Design

Responses were recorded on a 5-point Likert scale ranging from

‘very easy’ to ‘very difficult’. For analysis purposes, ‘very easy’ was coded

as five and ‘very difficult’ was coded as one. A neutral response was

coded as three. The analysis of the findings were represented in figure

and tabular format indicating frequency and percentage as participants’

responses to each of the four categories from the measure of Previous

Experience, Self-efficacy and to that of Mental Model responses were

54

recorded on a 3-point assignment scale ranging from ‘correct answer’,

“almost correct“ and ‘wrong answer. For analysis purposes, ‘correct

answer’ was coded as three, ‘almost correct’ was coded as one and ‘wrong

answer’ was coded as zero.

4.5 Descriptive Statistics

The perceptions of the participants regarding self-efficacy and mental

model were assessed by asking the respondents to respond to various

aspects of the items using a 1 to 5 point Likert scale and 1 to 4 point

Likert scale for SE respectively and to that of Mental Model responses

were recorded on a 3-point assignment scale ranging from 0 to 3 point

marks assignment. The results were processed using descriptive

statistics. Descriptive statistics is a statistical tool which is used to

summarize or describe numerical data (Wilson, 2010). The purpose of

using descriptive statistics is to inform the readers on the overview of

the data gathered prior to the data analysis. In this study, the kind of

descriptive statistics employed is mean, standard deviation, minimum

and maximum.

The mean is also known as the arithmetic average of a frequency

distribution (Wilson, 2010). The mean was determined through the

summation of the individual items in the questionnaire and then

divided by the total number of the items. It was computed using the

SPSS. The mean helps to identify the strength and the direction of the

value. Using the scale of 1-5, the mean score of 3 and above is considered

as significant while below 3 is non-significant. Also, using the scale of 1-

55

4, the mean score of 2 and above is considered as significant, while below

2 is considered non-significant.

According to Saunders et al. (2009), the standard deviation is used to

describe or compare the extent to which the data value for a variable is

spread around the mean. Sekaran and Bougie (2013) suggested that the

standard deviation is a commonly used measure of dispersion, being a

square root of the variance which indicates the range of variability in the

data. A large or positive standard deviation indicates that the data

values are far from the meanwhile a small or negative standard deviation

indicates that values are clustered closely around the mean. The sign of

the deviation (positive or negative), reports the direction of that difference.

Both the maximum and minimum are normalization methods. The

maximum represents the highest scale while the minimum represents

the least scale. For example, on the scale of 1-5, the maximum is 5 while

the minimum is 1. The results of the descriptive statistics are shown in

Table 4.4.

4.5.1 Demographic information

This section describes the demographic profile of the respondents,

including age, qualification obtained, programming experiences and

performance. The findings are presented in Table 4.4.

Information N %

Gender

 Male 143 71.5

 Female 57 28.5

 Other -- 0.0

56

Table 4.4 Previous Experience

As shown in the Table 4.6 7.15% of the respondents representing

the majority were males. The majority (63.5%) of the respondents were

between the ages of 17- 20 years. Furthermore, 67.5% respondents had

experience in computer programming. Besides, 38.8% of the

respondents who constituted the majority had experience in the C#

programming. Also, a significant observation was that 38.5% of the

respondents had no experience in computer programming.

4.5.2 Self efficacy

There are nine (9) items, which measured self-efficacy in the

study. Self-efficacy was measured using the Computer Programming

Self-efficacy scale (Chen, 2017). This instrument used previously by

Age

 17-20 Years 127 63.5

 21-23 Years 54 27.0

 24 Years and Above 19 9.5

Experience in computer programming

 Yes (2-5 years) 135 67.5

 No (less than 2 years) 65 32.5

Programming year experience

 1-3 Months 70 35.0

 4-6 Months 32 16.0

 7-11 Months -- 0.0

 1 Year 15 7.5

 2 Years 6 3.0

 Other 77 38.5

57

Kunkle and Allen (2016) in their research on success factors in

introductory computer programming courses. The scale consists of nine

questions that ask students to judge their capabilities in a wide range

of programming tasks and situations. As mentioned earlier, the study

utilizes the 5-point Likert scale ranging from ‘very easy’ to ‘very

difficult’. The findings are shown in Figure 4.1.

Figure 4.1 Self-efficacy

The information from Figure 4.1, shows that the majority (21% +

34% = 55%) of the respondents reported that it was easy for them to

write syntactically correct C# statements. Approximately half (50.5%) of

the respondents indicated that they easily understood the language

structure of the C# programming language. Also, 56.5% reported that it

21 13.5 16.5 16.5 18.5 20 18 26 33.5

34 37 40 36 38 39 41
38.5

35

37 45 37 42.5 36.5 33 34.5 31.5 27
8 3 5 4 6 6 4 2.5 40 1.5 1 1 1 2 2.5 1.5 0.5

Self-efficacy

Very easy Easy Neutral Difficult Very difficult

58

was easy for them to write a long and complex C# program to solve any

given problem. From an object-oriented perspective, approximately

52.5% of the respondents were of the view that it was easy for them to

relate objects from the problem domain to their C# application. The

results showed that 56.5% of the respondents reported that they could

complete a programming project once someone else helps them get

started. Another 59% of the respondents indicated that they have

debugged (correct all the errors) complex C# program that they had

written and made it work. Furthermore, 59% of the respondents were of

the view that they could come up with a suitable strategy for a given

programming project in a short time. The findings revealed that 64.5%

of the respondents reported that they could find ways of overcoming the

problem if they got stuck at a point while working on a C# programming

project. Besides, 68.5% of the respondents indicated that they could

mentally trace through the execution of a long C# program.

4.6 Mental Model

The researcher made use of the words “Correct answer” “partially

correct” and “wrong answer” in this context for data analysis purpose to

categorizes those respondents who provide the right answers as

requested by the researcher and points are been assigned on each

multiple choice answers in assending order from 1 to 3 i.e wrong answer

=1, almost correct =2 and right answer =3. The scope of these points

assignment is to give higher marks to those students who answered the

question correctly and also to categorize those students who almost got

59

the right answer from those who got it wrong, with breaking down of the

section data will be easily interpreted in understandable manner in

Figure 4.2.

The mental model questions are designed to be a mental exercises with

the option of the answers very familiar to each other, as researcher with

programming knowledge knowning fully well that students always

found problem solving task challanging. therefore, students must be

very sure of their solution before selecting an answer of their choice,

each question are subsequently designed to be familiar to each other and

likewise the options of right or wrong answers but required thorough

solution in other to identify that which is the correct answers from other

similar option known as partial answer.

This section of the study is “driven” by the programming related tasks

that the respondents of the study were asked to respond to the

programming related tasks were focused on assignment statements that

entailed an interchange of primitive and object-oriented variables (as

can be viewed in Table 4.5). The researcher expected that students

would have some notion of what a = b might mean, and would use that

knowledge in providing a correct response to the question asked. Each

of the questions asked in Table 4.5 is linked to a different mental model

as identified by the MFILCP theoretical framework that underpins the

study. These mental models have been labeled as MM1, MM2, MM3,

and MM4. The strategy used in the study was to allocate points/marks

to the respondent’s answers depending on whether they provided a

60

correct answer for each of these mental model oriented questions. Table

4.5 provides a summary of the mental models.

Model Description model

MM1 Person a, b, c; a = new Person (“Jack”); b = new Person

(“Tom”); c = new Person (“Jim”); b = a; a = c; c = b; what is

the value of b, a, c?

MM2 int a = 5; int b = 3 int c = 7; a = c; b = a; c = b; what is the

value of a b c?

MM3 Person a, b; a = new Person (“Jack”); b = new Person

(“Tom”); b = a; a = b; what is the value of b & a?

MM4 int a = 10; int b = 20; a = b what is the value of a=?

Table 4.5 The mental models identified in the study

As seen in Table 4.7, MM1 alludes to three objects identified as a,

b and c. A means “Jack”, B means “Tom” and C mean “Jim”. From the

mathematical point of view, b =a; a =c; c =b. Therefore, what is the value

of a, b & c? In relations to MM2, int a = 5; int b = 3 int c = 7; a = c; b = a;

c = b; what is the value of a b c? Regarding MM3, Person a, b; a = new

Person (“Jack”); b = new Person (“Tom”); b = a; a = b; what is the value

of b & a? In reference to MM4, int a = 10; int b = 20; a = b what is the

value of a=? The results of the study are shown in Figure 4.2.

61

Figure 4.2 Number and percentage of participants for each model of value

assignment

Figure 4.2 presents the rating of the student’s mental model influence

contributing to the factors affecting learning introductory computer

programming at DUT. From the Figure 4.2, 44.5% of the participants

representing the majority of the students have provided correct answers

and 33.75% of the participants representing the almost answered

correctly while 21.75% of them reported that they were unable to

provide correct answers. Regarding the Mental Model Question 1, the

62

majority (150) of the participants answered correctly (e.g. Jack only),

another 40 of the respondent’s answers were deemed to be almost

correct, while the remaining 10 responded with an incorrect answer.

In terms of the Mental Model Question 2, half (100) of the

respondents answered the question correctly. Furthermore, 80 of the

respondents provided an almost correct answer. However, the rest of the

20 of the respondents indicated that they answered the question

wrongly.

In relation to the Mental Model Question 3, 75 of the respondents

answered the question correctly. Another 75 provided an answer that

was deemed to be almost correct. The remaining 60 of the respondents

answered the question wrongly.

 Concerning the Mental Model Question 4, 36 of the respondents

answered the question correctly. Another 80 respondent provided an

answer that was deemed to be almost correct. The remaining 84 of the

respondents answered the question wrongly. From the findings, one

could draw a conclusion that each of the respondents had an additional

responsibility that could affect his/her study such.

Descriptive statistics: Key dimensions of the study

Dimension Mean 95 % Confidence

Interval

Std.

Dev.

Min

.

Ma

x.

 Lower

Bound

Upper

Bound

Self-efficacy 3.290 2.1981 2.3819 0.24653 1.00 5.00

Table 4.6 Descriptive statistics: Key dimensions of the study

63

Furthermore, on the scale of 1 to 4, a mental model had the mean score

value of 2.455. The mean score suggests that there was a significant

relationship between Mental Model and the performance of the students

in computer programming.

4.7 Inferential Statistics

The inferential statistics were computed on the dimensions such as self-

efficacy in order to assist the researcher to draw valid conclusions.

The Cronbach’s alpha coefficient was further computed to determine the

reliability of the research instrument used. The Cronbach’s alpha

coefficient of 0.70 and beyond what is considered as reliable. The results

are shown in Table 4.6.

4.8 Spearman Correlation

Spearman correlation was computed to determine the relationship

between the variables such as mental model, self-efficacy and

performance of the respondents (students). The decision to opt for a

Spearman Correlation is based on the observation that most of the

study’s data may be regarded as ordinal and the Spearman Correlation

is a more robust test as compared to the Pearson Correlation test. The

Spearman coefficient is measured on a scale with no units and can take

a value from −1 through 0 to +1. If the sign of the correlation coefficient

were positive, then a positive correlation would have existed. On the

other hand, if the sign of the correlation coefficient is negative, then a

negative correlation would have existed, indicating that those factors

with a smaller number of a factor or it relationship were associated with

64

a larger variable, or vice versa. Table 4.7 below contains the results on

Spearman correlation.

The strength of the correlation was based on the distance matrix from

+1 or -1, meaning the closer the value to 1, the stronger the correlation

(Archambault, 2002). Using Spearman’s correlation analysis of the 3

factors (Previous Experience, Mental Model and Self-Efficacy), revealed

the magnitude and direction of the association between the variables

that are significant and positive as indicated in tables 4.7 to 4.9.

4.8.1 Spearman Correlation: Mental Model and Self-efficacy

Correlations

 MM SE

Spearm

an's rho

Mental

model

Correlation

Coefficient

1.000 .480**

Sig. (2-tailed) . .000

N 200 200

Self-

Efficacy

Correlation

Coefficient

.480** 1.000

Sig. (2-tailed) .000 .

N 200 200

**. Correlation is significant at the 0.01 level (2-tailed).

Table 4.7 Mental Model and Self-efficacy

As reflected in the Table 4.7 above, there exists a significant positive

relationship between mental model and self-efficacy. In other words, it

can be explained that, there is a direct link between the mental model

and self-efficacy suggesting that if students scored high on the self-

65

efficacy rating then in all likelihood, they will also have a correct mental

model representation of the problem domain.

4.8.2 Spearman Correlation: Self-efficacy and previous -

experience

Correlations

 SE PE

Spearman'

s rho

Self-

Efficacy

Correlation Coefficient 1.00

0

.428**

Sig. (2-tailed) . .000

N 200 200

Previous

Experien

ce

Correlation Coefficient .428
**

1.000

Sig. (2-tailed) .000 .

N 200 200

**. Correlation is significant at the 0.01 level (2-tailed).
Table 4.8 Self-efficacy and previous experience

As reflected in Table 4.10 above, there exists a significant positive

relationship between mental models. In other words, it can be explained

there is a direct link between self-efficacy and previous experience

suggesting that if students scored high on previous experience then in

all likelihood they will also achieve a high score on self-efficacy when it

comes to computer programming.

66

4.8.3 Spearman Correlation: Previous Experience and Mental

Model

Correlations

 PE MM

Spearman'

s rho

Previous

Experience

Correlation

Coefficient

1.000 .508**

Sig. (2-tailed) . .000

N 200 200

Mental Model Correlation

Coefficient

.508** 1.000

Sig. (2-tailed) .000 .

N 200 200

**. Correlation is significant at the 0.01 level (2-tailed).

Table 4.9 Previous Experiences and Mental Model

As reflected in Table 4.9 above, there exists a significant positive

relationship between previous experience and mental model. In other

words, it can be explained there is a direct link between previous

experience and mental model suggesting that if students scored high on

previous experience, then they will also have a correct mental model

representation of the problem domain.

4.9 Chapter Summary

The chapter presented, analyzed and discussed the key findings in line

with the research objectives. The main research objectives were to

67

understand the influence of the main variables in the study, namely

previous experience, self-efficacy and mental model representation of

the problem domain on the learning of computer programming. Data

was collected to operationalize these variables so that their influence on

computer programming competency could be understood. By making

use of Spearman’s correlation, it has been established that each of the

variables identified from the theoretical model used in the study, do

have a positive influence on the learning of computer programming. The

implications of these findings will be discussed in the subsequent

chapter.

68

5.0 FINDINGS AND CONCLUSION

5.1 Introduction

 To evaluate the influence of previous experience on students’

learning of introductory computer programming

 To evaluate the influence of self-efficacy on students’

learning of introductory computer programming

 To evaluate the influence of the ‘mental model ‘representation of

the problem domain on students’ learning of introductory

computer programming

 To evaluate the influence of the ‘performance’

representation of the problem domain on students ‘self-

efficacy in the learning of introductory computer

programming

The results of the study are discussed and related to existing theory in

sections 5.2 to 5.4 and the implications for teaching and learning are

discussed in Section 5.5.

5.2 The influence of previous experience

The study investigated the influence of previous experience on

students’ learning of introductory to computer programming. The

overall results of the study showed that the previous experience

69

positively influenced students’ learning of introductory computer

programming. Thus, there was a significant positive relationship

between previous experience and student learning of introductory to

computer programming. The findings from the study supported existing

research on previous experience and students’ learning of computer

programming.

Scholarly literature shows that previous programming experience has a

positive effect on success in an introductory university course (Ahadi et

al., 2017). Another study showed that previous experience acts as a

significant predictor of both students’ self-efficacy and mental models of

programming, which in turn predicts course performance (Baldwin et

al., 2017). Recent studies have also shown a positive relationship

between mathematics or science background to computer programming

success (Farmer & Tierney, 2017). Various factors regarding student

learning styles and learning to the program have been found in many

studies (Bain & Wilson, 2017). Other interesting factors that have been

addressed in recent studies include student attributions of success to

oneself or to outside forces (McGee et al., 2017) and students’ course

outcome expectations (McGee et al., 2017). A factor of potential interest

that has not widely been studied in computer programming is computer

playfulness (Horton & Craig, 2015). A negative factor affecting student

success is a high amount of game playing by students (Huang & Shiau,

2017).

70

5.3 The influence of self-efficacy on students’ learning

The study further determined the influence of self-efficacy on

students’ learning of introductory computer programming at DUT. The

response patterns showed that the respondents responded positively to

all the items in the questionnaire. The analysis of the findings suggests

that the respondents responded positively to all the nine items although

there were some forms of disagreement among them. The findings

suggest that the self-efficacy level among the respondents was high. The

findings from this study are in keeping with existing research discussed

in Chapter 2.

Self-efficacy has been considered as a very important aspect of

learning activities because learning involves more than just acquiring

skills, it also entails “…competent functioning that requires both skills

and self-beliefs of efficacy to use them effectively” (Miller & Ramirez,

2017). Schultz and Schultz (2016) in their study argued that learning

situations and self-efficacy influence the use of cognitive strategies

while solving problems. They further suggested that the amount of

effort expended, the type of coping strategies adopted, the level of

persistence in the face of failure, and the ultimate performance

outcomes are all influential in determining computer programming

proficiency.

Similarly, Chamorro-Premuzic (2016) states that according to

self-efficacy theory, judgments of self-efficacy are based on four sources

of information, namely: individual’s performance attainments,

experiences of observing the performance of others, verbal persuasion

and physiological reactions. However, the most important among the

four is the individual’s performance attainments. Educational

71

researchers recognize that, because skills and self-beliefs are so

intertwined, one way of improving student performance is to improve

student self-efficacy. Interventions to improve student self-efficacy focus

on specific skills or knowledge and target the four sources of information

that students use to evaluate their self-efficacy, as defined above.

Providing students with direct hands-on experiences in an activity is

critical since the strongest source of information is performance

outcomes (De Neve & Ro, 2015). Making positive hands-on experiences

is also important, especially in the early stage of learning, when the task

may seem overwhelming.

5.4 The influence of the ‘mental model’ representation

on students’ learning

The findings from the study suggested that mental model representation

positively influenced students’ learning of introductory computer

programming. According to Guzdial et al. (2017), a mental model is a

predictive representation of real-world systems. The authors argue that

people create internal representations of objects and processes in the

world, and they use these mental representations to reason about,

explain and predict the behavior of external systems. Moyer et al. (2017)

postulate that mental models are critical in debugging a process when

things go wrong because the mental model supports the person in

reasoning about and localizing possible faults.

In recent years, the mental model's concept has been popularized

by practitioner magazines and websites in areas such as human-

computer interaction (Huang & Shiau, 2017). The scholars assert that

programming is a cognitive activity that requires the programmer to

72

develop abstract representations of a process and express them in the

form of logic structures. They suggest that when creating, modifying,

reusing, or debugging a program, the programmer must also translate

these abstract representations into completely correct code using a

formal language.

5.5 Implications for Computer Programming Pedagogy

The current study provides empirical support for the validity of

the main constructs from the theoretical model used in the study.

Previous Experience

Although the influence of previous experience has been commonly

accepted as influential in the learning of computer programming, this

commonly held perception has been confirmed in the context of students

who learn computer programming at DUT. The pivotal role that

previous experience plays needs to be recognised and mitigated in the

case where students who enroll for computer programming courses and

have little previous experience in the learning of computer

programming. A viable strategy would be to add in “bridging courses”

that enable students who have little prior experience of computer

programming to use these course so that enhance their levels of

programming experience. Clearly, the study has confirmed that such an

intervention would result in better programming performance and

correct mental model representations of the problem domain.

Self –Efficacy (SE)

The items used in the study’s questionnaire attest to students’

level of Se when it comes to computer programming. These items refer

73

to computer programming aspects such as mastery of a computer

programming language with regards to its syntax as well as the use of

the language to enable problem solving. Many of the computer

programming languages taught at DUT, such as Java and C# are not

easy to understand from a syntax perspective. The lack of

understanding and mastery of the syntax will also influence students’

ability to use these languages as problems solving tools. A lack of syntax

understanding and a lack of ability to use a computer programming

language as a problem solving tool will result in low SE scores thereby

resulting in incorrect mental model representations and low computer

programming performance scores. Hence as an intervention,

experienced tutors should be assigned with the task of providing tutorial

sessions that focus on the mastery of syntax and the ability to use this

syntactical knowledge to solve simple computer programming problems.

Extensive exposure to such an intervention will ensure that the

students SE in computer programming will be improved.

Another strategy suggested in Coles and Phalp (2016) is the use of social

persuasion techniques. Students working together, especially if they

have different levels of self-efficacy, are in a position where social

persuasion takes place. A tutor can facilitate social persuasion in the

classroom or online by forming workgroups of students with different

levels of capableness and giving them tasks that promote the interaction

of group members (Coles & Phalp, 2016).

Mental Model

The correct mental model representation of the problem domain

is pivotal to ensure that students are able to excel in computer

74

programming. However, this aspect of computer programming pedagogy

is the most abstract and not easily achieved. The best that could be

suggested in this regard is to engage in a strategy that mitigates the

influence of previous experience in the hope that such a strategy would

lead to better mental model representations of the problem domain,

Also, the employment of experienced teachers of computer programming

to teach computer programming would be highly beneficial to students.

The challenge of obtaining a correct mental model representation of the

problem domain may be mitigated if the course teacher has a clear and

correct mental model representation of the problem domain so that this

message is conveyed to the class. A serious shortcoming in this regard

is that the lack of experienced teachers and lecturers result in a lack of

correct knowledge that is disseminated to the class. In many instances,

higher education institutions employ lecturers on the basis of their

research credentials rather than on their technical knowledge of

computer programming. This strategy is seriously detrimental to

ensuring that students acquire a correct mental model representation

of the problem domain.

Another strategy that could be used to enhance Mental Model is aligned to the

suggestion in Coles and Phalp (2016) who recommend a strategy of getting

students to steadily carry out tasks of increasing difficulty until they have

a history of solid attainments. Frequent but small hands-on

programming activities would be likely to build the history of success

more than less frequent, large assignments. For students to monitor

their capableness, timely and sufficient feedback is necessary so that

students are able to incrementally build a correct mental model

representation of the problem domain.

75

Coles and Phalp (2016) also suggest a technique of peer modeling. In

programming courses, peer modeling could be “live” in a classroom with

a peer working through a problem while other students watch or it could

be done by students viewing a video of a peer successfully planning and

executing a programming task. In peer, modeling it is important that

the viewers see the model confronting difficult situations and

overcoming them. The modeling scripted should not eliminate struggle

because the point is for students to see how obstacles are overcome.

5.6 Conclusion

The chapter discussed the results of the study. The chapter has

concluded with a set of suggestions that are oriented around the main

constructs used in the study. These suggestions provide an empirical

basis for strategies that may be used to improve computer programming

performance by students in an educational setting. It is imperative that

studies such as the current one are conducted on a regular basis and in

different contexts so that a proper platform for the pedagogy of computer

programming is provided for students in academic institutions. The

study has achieved its objective of understanding the influence of

previous experience, self-efficacy and mental model representation of

the problem domain on the learning of computer programming.

76

REFERENCES

Abdelkader, A., Alexopoulos, A., & Kotagal, P. (2017). Ontogeny of

Seizure Semiology: a longitudinal study (P1. 246). Neurology, 88(16

Supplement), P1-246.

Ahadi, A., Lister, R., Lal, S., Leinonen, J., & Hellas, A. (2017).

Performance and Consistency in Learning to Program. Paper

presented at the Proceedings of the Nineteenth Australasian

Computing Education Conference.

Alvesson, M., & Sköldberg, K. (2017). Reflexive methodology: New vistas

for qualitative research: Sage.

Anderson-Gough, F., Edgley, C., & Sharma, N. (2017). Qualitative data

management and analysis software. The Routledge Companion to

Qualitative Accounting Research Methods, 405.

Bain, G. M., & Wilson, G. (2017). CONVERGENT PATHWAYS IN

TERTIARY EDUCATION What makes our students succeed?

ACM Inroads, 8(2), 37-40.

Baldwin, D., Barr, V., Briggs, A., Havill, J., Maxwell, B., & Walker, H.

M. (2017). CS 1: Beyond Programming. Paper presented at the

Proceedings of the 2017 ACM SIGCSE Technical Symposium on

Computer Science Education.

Balfanz, R., Bridgeland, J. M., Bruce, M., & Fox, J. H. (2012). Building

a Grad Nation: Progress and Challenge in Ending the High

School Dropout Epidemic. Annual Update, 2012. Civic

Enterprises.

Barnes, D. J., Kölling, M., & Gosling, J. (2017). Objects first with Java:

A practical introduction using Bluej: Pearson.

Bawa, A. (2012). South African higher education: at the center of a

cauldron of national imaginations. social research, 76(3), 669-694.

77

Berggren, M., Ruiz-González, C., Niño-Garcia, J. P., & Del Giorgio, P. A.

(2017). Contrasting dynamics and environmental controls of dispersed

bacteria along a hydrologic gradient.

Bowlick, F. J., & Goldberg, D. W. (2017). Computer Science and

programming courses in Geography Departments in the United

States. The Professional Geographer, 69(1), 138-150.

Breese, S., Milanova, A., & Cutler, B. (2017). Using Static Analysis for

Automated Assignment Grading in Introductory Programming

Classes. Paper presented at the Proceedings of the 2017 ACM

SIGCSE Technical Symposium on Computer Science Education.

Bringula, R. P., & Aviles, A. D. (2017). Factors Affecting Failing the

Programming Skill Examination of Computing Students.

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B.,

Betancourt, M., Brubaker, M. A., Guo, J., Li, P., & Riddell, A.

(2016). Stan: A probabilistic programming language. Journal of

Statistical Software, 20, 1-37.

Chamorro-Premuzic, T. (2016). Personality and individual differences:

John Wiley & Sons.

Chen, C.-L., & Cheng, S.-Y. (2012). A study of misconceptions and

missing conceptions of novice Java programmers. Paper

presented at the Proceedings of the International Conference on

Frontiers in Education: Computer Science and Computer

Engineering (FECS).

Chen, I.-S. (2017). Computer self-efficacy, learning performance, and

the mediating role of learning engagement. Computers in Human

Behavior, 72, 362-370.

Chi, T.-Y., & Berger, D. E. (2017). Computer Skill Acquisition: The

Effects of Computer-aided Self-explanation on Knowledge

Retention and Transfer.

78

Coles, M., & Phalp, K. (2016). Brain-type as a programming aptitude

predictor. Paper presented at the 27th Annual Workshop of the

Psychology of Programming Interest Group-PPIG.

Coolican, H. (2017). Research methods and statistics in psychology:

Psychology Press.

Creswell, J. W., & Poth, C. N. (2017). Qualitative inquiry and research

design: Choosing among five approaches: Sage publications.

Cutts, Q., Fincher, S., Haden, P., Robins, A., Sutton, K., Baker, B., Box,

I., de Raadt, M., Hamer, J., & Hamilton, M. (2006). The ability to

articulate strategy as a predictor of programming skill. Paper

presented at the Proceedings of the 8th Australasian Conference

on Computing Education-Volume 52.

De Neve, W., & Ro, Y. M. (2015). Efficient and effective human action

recognition in video through motion boundary description with a

compact set of trajectories. Paper presented at the Automatic Face

and Gesture Recognition (FG), 2015 11th IEEE International

Conference and Workshops on.

Edgcomb, A., Vahid, F., Lysecky, R., & Lysecky, S. (2017). Getting

Students to Earnestly Do Reading, Studying, and Homework in

an Introductory Programming Class. Paper presented at the

Proceedings of the 2017 ACM SIGCSE Technical Symposium on

Computer Science Education.

Elarde, J. (2016). Toward improving introductory programming student

course success rates: experiences with a modified cohort model to

student success sessions. Journal of Computing Sciences in

Colleges, 32(2), 113-119.

Elwood, M. (2017). Critical appraisal of epidemiological studies and

clinical trials. Oxford University Press.

Farmer, S. M., & Tierney, P. (2017). Considering creative self-efficacy:

Its current state and ideas for future inquiry. The Creative Self:

Effect of Beliefs, Self-Efficacy, Mindset, and Identity, 23.

79

Glaser, B. (2017). Discovery of grounded theory: Strategies for

qualitative research: Routledge.

Grover, S., Pea, R., & Cooper, S. (2016). Factors influencing computer

science learning in middle school. Paper presented at the

Proceedings of the 47th ACM technical symposium on computing

science education.

Guzdial, M., Li, B., & Riedl, M. O. (2017). Game engine learning from

video. Paper presented at the international Joint Conference on

Artificial Intelligence (IJCAI 2017).

Hair Jr, J.F., Sarstedt, M., Ringle, C.M. and Gudergan, S.P., 2010.

Advanced issues in partial least squares structural equation modeling.

SAGE Publications.

Hašková, A., Munk, M., & Zahorec, J. (2014). Assessment of Selected

Aspects of Teaching Programming in SK and CZ. Informatics in

Education - An International Journal, 13(1), 157-178.

Hjorth, M. (2017). Strengths and weaknesses of a visual programming

language in a learning context with children.

Holzberger, D., Philipp, A., & Kunter, M. (2013). How teachers’ self-

efficacy is related to instructional quality: A longitudinal

analysis. Journal of Educational Psychology, 105(3), 774.

Horton, D., & Craig, M. (2015). Drop, fail, pass, continue Persistence in

cs1 and beyond in traditional and inverted delivery. Paper

presented at the proceedings of the 46th ACM Technical

Symposium on Computer Science Education.

Hosseini. (2017). Assessing Programming Behaviors Through Evidence-

Centered Design.

Hovland, C. I., & Lumsdaine, A. A. (2017). Experiments on mass

communication (Vol. 4976). Princeton University Press.

Huang, L. C., & Shiau, W. L. (2017). Factors affecting creativity in

information system development Insights from a decomposition

80

and PLS-MGA. INDUSTRIAL MANAGEMENT & DATA

SYSTEMS, 117(3), 496-520. 10.1108/IMDS-08-2015-0335

Idemudia, E. C., Dasuki, S. I., & Ogedebe, P. (2016). Factors that

influence students' programming skills: a case study from a

Nigerian university. International Journal of Quantitative

Research in Education, 3(4), 277-291.

Jagdale, S. C., Hude, R. U., & Chabukswar, A. R. (2018). Research

Methodology Encyclopedia of Information Science and

Technology, Fourth Edition (pp. 6767-6778): IGI Global.

Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science

of language, inference, and consciousness: Harvard University

Press.

Kim, M., Bae, J. M., Choi, K. H., Jung, H. M., Kim, S. Y., Kim, G. M., ...

& Lee, Y. B. (2017). Subsequent vitiligo after hematopoietic stem cell

transplantation: A nationwide population-based cohort study from

Korea. Journal of the American Academy of Dermatology, 76(3), 459-

463.

Krejcie, R. V., & Morgan, D. W. (2017). Determining sample size for

research activities. Educational and psychological measurement, 30(3),

607-610.

Kumar, V. A., & Laakso, M.-J. (2016). Cultural Issues That Affect

Computer Programming: A Study of Vietnamese in Higher

Education. Asian Journal of Education and e-Learning (ISSN:

2321–2454), 4(02).

Kunkle, W. M., & Allen, R. B. (2016). The impact of different teaching

approaches and languages on student learning of introductory

programming concepts. ACM Transactions on Computing

Education (TOCE), 16(1), 3.

Law, K. M. Y., Lee, V. C. S., & Yu, Y. T. (2010). Learning motivation in

e-learning facilitated computer programming courses. Computers

& Education, 55(1), 218-228. doi: 10.1016/j.compedu.2010.01.007

81

Lakshmi, S., & Mohideen, M. A. (2013). ISSUES IN RELIABILITY AND

VALIDITY OF RESEARCH. International journal of management

research and reviews, 3(4), 2752.

Lopez, M., & Whalley, J. (2008). Relationships between reading, tracing

and writing skills in introductory programming. Paper presented

at the Proceedings of the fourth international workshop on

computing education research.

Lumsdaine, A., Duckworth, R., Rapp, J., Bjorholm, T., Demko, J.,

McGinnis, D., ... & Goulding, R. (2017). Progress in magnet design

activities for the material plasma exposure experiment. Fusion

Engineering and Design, 124, 211-214.

Marinova, D., & Hartz-Karp, J. (2017). Methods for sustainability:

Introducing pathways to hope Methods for Sustainability

Research (pp. 1-13): Edward Elgar Publishing.

Mason, R. (2017). Introductory Programming Courses in Australasia in

2016. Paper presented at the Proceedings of the Nineteenth

Australasian Computing Education Conference.

Mathews, D. K. (2017). Predictors of Success in Learning Computer

Programming. The University of Rhode Island.

Mauer, R., Neergaard, H., & Linstad, A. K. (2017). Self-efficacy:

Conditioning the entrepreneurial mindset Revisiting the

Entrepreneurial Mind (pp. 293-317): Springer.

McGee, S., McGee-Tekula, R., Duck, J., Greenberg, R. I., Dettori, L.,

Reed, D. F., Wilkerson, B., Yanek, D., Rasmussen, A. M., &

Chapman, G. (2017). Does a taste of Computing Increase

Computer science enrollment? Computing in Science &

Engineering, 19(3), 8-18.

Miller, A. D., & Ramirez, E. M. (2017). The influence of teachers’ self-

efficacy on perceptions: Perceived teacher competence and

respect and student effort and achievement. Teaching and

Teacher Education, 64, 260-269.

82

Montgomery, D. C. (2017). Design and analysis of experiments. John

Wiley & sons.

Moser, C. A., & Kalton, G. (2017). Survey methods in social

investigation. Routledge.

Moghaddam, M. H. Y., Leon-Garcia, A., & Moghaddassian, M. (2017).

On the performance of distributed and cloud-based demand response in

the smart grid. IEEE Transactions on Smart Grid.

Moyer, K., Bapat, A., Morrison, L., & Ellman, M. (2017). Are Internal

Medicine Residents Meeting the Bar? Comparing Resident

Knowledge and Self-Efficacy to Published Palliative Care

Competencies (S777). Journal of Pain and Symptom

Management, 53(2), 452-453.

Naing, L. G., Winn, T. N., & Rusli, B. (2006). Practical issues in

calculating the sample size for prevalence studies. Archives of Orofacial

Sciences, 1 (1): 9-14.

Patten, M. L., & Newhart, M. (2017). Understanding research methods:

An overview of the essentials: Taylor & Francis.

Phillips, A. E., Walker, C. G., Ehrgott, M., & Ryan, D. M. (2017). Integer

programming for minimal perturbation problems in university

course timetabling. Annals of Operations Research, 252(2), 283-

304.

Rex, K., & Roth, R. M. (1998). The relationship between computer

experience and computer self-efficacy to performance in

introductory computer literacy courses. Journal of Research on

Computing in Education, 31(1), 14-24.

Robson, C., & McCartan, K. (2016). Real world research: John Wiley &

Sons.

Rodrigo, M. M. T., Tabanao, E., Lahoz, M. B. E., & Jadud, M. C. (2009).

Analyzing online protocols to characterize novice Java

programmers. Philippine Journal of Science, 138(2), 177-190.

83

Rumsey, C. A., Burke, Q., & Thurman, C. (2017). Cracking the Code:

Bringing Introductory Computer Science to a Charleston Middle

School. Paper presented at the Proceedings of the 2017 ACM

SIGCSE Technical Symposium on Computer Science Education.

Saunders, M., & Tosey, P. (2013). The layers of research design.

Saunders, P. U., Rice, A. J., Thompson, K. G., Woods, A. L., Sharma, A.

P., & Garvican-Lewis, L. A. (2017). Four weeks of classical

altitude training increases resting metabolic rate in highly

trained middle-distance runners. International journal of sport

nutrition and exercise metabolism, 27(1), 83-90.

Schiefele, U. (2017). Classroom management and mastery-oriented

instruction as mediators of the effects of teacher motivation on

student motivation. Teaching and Teacher Education, 64, 115-

126.

Schoeman, M., & Gelderblom, H. (2016). The Effect of Students'

Educational Background and Use of a Program Visualization

Tool in Introductory Programming. Paper presented at the

Proceedings of the Annual Conference of the South African

Institute of Computer Scientists and Information Technologists.

Schultz, D. P., & Schultz, S. E. (2016). Theories of personality: Cengage

Learning.

Thomsett-Scott, B. (2016). The Librarian's Introduction to

Programming Languages.

Veerasamy, A. K., D’Souza, D., Lindén, R., & Laakso, M.-J. (2017). The

Impact of Prior Programming Knowledge on Lecture Attendance

and Final Exam. Journal of Educational Computing Research,

0735633117707695.

Watson, K. (2013). Beginning Visual C# 2012 programming.

Indianapolis, Ind: John Wiley & Sons.

Wiedenbeck, S., Labelle, D., & Kain, V. N. (2004). Factors affecting

course outcomes in introductory programming. Paper presented

84

at the 16th Annual Workshop of the Psychology of Programming

Interest Group.

APPENDIX A: QUESTIONNAIRE

RESEARCH TOPIC: FACTORS INFLUENCING FIRST YEAR

STUDENTS’ LEARNING INTRODUCTORY COMPUTER

PROGRAMING LANGUAGE AT DUT

M.Com (ISDN) Coursework

 The discipline of Information Systems & Technology

 School of Management, Information Technology &

Governance University of

KwaZulu-Natal (Westville Campus)

Researcher: Kelvin Osaji-Onalo (0613497946)

Supervisor: Dr. Sanjay Ranjeeth (033 260 5641)

INTRODUCTION

My name is Kelvin Osaji-Onalo, an M.com student in the Discipline of

Information Systems and Technology, School of Management, IT and

Governance at the University of KwaZulu-Natal, Westville campus,

Durban, South Africa.

The purpose of this questionnaire is to gather information from you in

order to understand the factors influencing first-year students

learning introductory computer programing at DUT. The questions

asked will enable me to gain insights on the prior exposure to ICT

environment and how much the factors influenced the students’

performance in programming skill.

Through your participation, and with the result of the survey, I hope to

provide recommendations on how to improve students’ academic

performance through previous experience, self-efficacy, and mental

model.

The following keywords would be frequently used: previous experience,

self-efficacy, mental model and performance:

Previous experience: A relationship between student learning styles

and programming styles.

85

Self-efficacy: refer to as “people’s judgments of their capabilities to

organize and execute courses of action required attaining designated

types of performance.

Mental model: could encompass useful knowledge about how

programs work in general, stereotypical ways of solving common

programming problems and how a particular program is structured

and functions, as well as knowledge about the syntax and semantics of

a specific language.

Performance: This simply refers to how a student has performed in

his/ her studies at an educational institution.

The filling of the questionnaire should take about 10 – 15 minutes.

86

COLLEGE OF LAW AND MANAGEMENT

 SCHOOL OF MANAGEMENT, INFORMATION TECHNOLOGY

AND GOVERNANCE

M.COM (ISTN) Coursework

Researcher: Kelvin Osaji-Onalo (0613497946)

Supervisor: Dr. Sanjay Ranjeeth (033 260 5641)

Research Office: Ms. M Snyman (031 260 8350)

Reference No: HSS/ 2126 / 017M

 Respondent No: -

CONSENT

I, …………………………………………………… (full names of

participant) hereby confirm that I understand the content of this

document and the nature of the research project.

I also understand that I am at liberty to withdraw from the project at

any time, should I so desire.

I hereby consent / do not consent to participate in this study.

SIGNATURE OF PARTICIPANT DATE

………………………….

……………………..

87

FACTORS INFLUENCING FIRST YEAR STUDENTS’

LEARNING INTRODUCTORY COMPUTER PROGRAMING

LANGUAGE AT DUT

In those sections where options are provided, please indicate

your response by making a cross (X) in the boxes provided.

SECTION A: Demographic Background Information and

Previous experience

(1).Gender Male Female Other

(2).Age 17-20yrs 21-23yrs 24yrs and above

(3).Matric or any

equivalent Merits

obtained:

Matric (Specify)

(4).Did you ever

write a computer

program in any

language before you

started APPDev @

DUT this year?

Yes

if yes what language?

No

(1).C++ (2).C# (3).JAVA (4).(Specif

y)

(5). Is this being

your first course in

programming? If

not, what other

programming

courses have you

studied?

Yes Institution Duration Year

 (1) other varsity (1).1-3 weeks

(Specify) (2) private collage (2). 2-6 months

(3) NGO (3). 6-11 months

(4)Apprentices (4).(Specify)

88

SECTION B (SELF-EFFICACY):

In this section, please provide your response with respect to the

following statements concerning how skilled you are in

computer programming. Please indicate your response by

making a cross (X) in the boxes provided.

1. I can write syntactically correct C# statements

2. I understand the language structure of C# programming

language.

3. I can write a long and complex C# program to solve any given

problem.

4. I can relate objects from the problem domain to my C#

application.

Very Easy Easy Neutral Difficult Very Difficult

Very Easy Easy Neutral Difficult Very Difficult

Very Easy Easy Neutral Difficult Very Difficult

Very Easy Easy Neutral Difficult Very Difficult

89

5. I could complete a programming project once someone else

helped me get started.

6. I have debugged (correct all the errors) complex C# program that

I had written and made it work

7. I could come up with a suitable strategy for a given programming

project in a short time.

8. I could find ways of overcoming the problem if I got stuck at a

point while working on a C# programming project.

9. I could mentally trace through the execution of a long C#

program.

Very Easy Easy Neutral Difficult Very Difficult

Very Easy Easy Neutral Difficult Very Difficult

Very Easy Easy Neutral Difficult Very Difficult

Very Easy Easy Neutral Difficult Very Difficult

Very Easy Easy Neutral Difficult Very Difficult

90

SECTION C (MENTAL MODEL):

In this section, it involves critical thinking to determine your mental

model and ability to maintain consistency in resolving basic

computer programing problems. Cross the appropriates answers

with (X)

(2) Person a, b;

 a = new Person

(“Jack”);

 b = new Person

(“Tom”);

 b = a;

a = b;

what is the value of b

&a?

1. Jack, Tom

2. Tom, Jack

3. Jack only

4. Tom only

(1) int a = 10;

 int b = 20;

a = b

what is the value

of a=?

1. 10

2. 20

3. 30

4. 0

(3) int a

= 5;

 int b

= 3

 int c

= 7;

a = c;

b = a;

c = b;

What is

the value

of a b c?

1. 5,3,7

2. 7,3,7

3. 7,5,7

4. 7,7,7

(4) Person a, b, c;

 a = new Person

(“Jack”);

b = new Person

(“Tom”);

c = new Person

(“Jim”);

b = a;

 a = c;

c = b;

what is the value of

b,a, c?

1. Jim, Tom,

2. Tom, Jim

Jack

3. Jack, Jim,

4. Jim, Jack,

Tom

91

SECTION D (SUGGESTED ENHANCEMENT):

Please make suggestions with regards to how you think that learning

programing skill may be improved.

Thank You for Your Participation

92

APPENDIX B: ETHICAL CLEARANCE

93

94

APPENDIX C: RESEARCH APPROVAL LETTER

95

APPENDIX D: REQUEST FOR PERMISSION TO CONDUCT THE

RESEARCH

96

APPENDIX E: SIMILARITY REPORT

97

APPENDIX F: GENERAL FACTOR

Statement Number of

participants

“The terms used in the programming are

confusing ”
6

“programming is sweet and logical but we needed

to be taught to be logical too”
22

“programming skill demands constant practice,

therefore, it is a time-consuming course”
81

“There are too many things to know at the same

time “
98

“Programming is competitive and I hate

competition”
110

“I am waiting to hear that programming is off the

campus”
163

“Programming requires fast learners who are

logical but sometimes I am creative but no logical”
174

“if possible we should be given extra

classes/tutorials”
192

98

APPENDIX G: PARTICIPANTS OPINION OF COMPUTER PROGRAMMING

SELF-EFFICACY

Statement Number of participants

“I found programming challenging at DUT

because I was not taught programming in

high school. Now I am struggling”

2

“I am lacking motivation or Interest,

commitment, and determination in

programming”

10

“I am not prepared enough to face the

challenges in the chosen course in

programming”

37

“I don’t have any knowledge about

computers, so I am struggling to know both

computers and programming“

45

“Some of us chose the computer

programming course because it is in

popular demand”

67

“The lecturers/tutors are not patient

enough because they are busy with other

stuff”

140

“Since students are always on mobile

phones maybe coding programming with

mobile apps should be suggested ”

156

“Programming needs consistency and it is

difficult for me to maintain that”
200

99

APPENDIX H: CORRESPONDING STATEMENTS USED FOR CORRELATION

Numb

er of

Q

A corresponding statement or question number used

for Correlation (See appendix A correlation below)

1 Self-Efficacy_Average

2 Mental_Model

3 Performance

4 Means of Previous Experience (5 Likert Scale Items)

5

Person a, b, c; a = new Person (“Jack”); b = new Person

(“Tom”); c = new Person (“Jim”); b = a; a = c; c = b; what is

the value of b,a, c?

6
int a = 5; int b = 3 int c = 7; a = c; b = a; c = b; what is

the value of a b c?

7
Person a, b; a = new Person (“Jack”); b = new Person

(“Tom”); b = a; a = b; what is the value of b and a?

8 int a = 10; int b = 20; a = b what is the value of a=?

9 I can write syntactically correct C# statements

10
I understand the language structure of C# programming

language

11
I can write a long and complex C# program to solve any

given problem

12
I can relate objects from the problem domain to my C#

application.

13
I could complete a programming project once someone else

helped me get started

14
I have debugged (correct all the errors) complex C#

program that I had written and made it work

100

15
I could come up with a suitable strategy for a given

programming project in a short time

16
I could find ways of overcoming the problem if I got stuck at

a point while working on a C# programming project

17
I could mentally trace through the execution of a long C#

program

101

APPENDIX J: DECLARATION CERTIFICATE OF THE ENGLISH

LANGUAGE EDITING OF THE DISSERTATION.

