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ABSTRACT 
 

Forests have important roles in ecosystem service provisions and maintenance of the global 

carbon cycle hence they are one of the main subjects of the Intergovernmental Panel on Climate 

Change which recommends strategies to stabilize greenhouse gas emissions. Remote sensing 

is an advancing science whose data products keep improving spectrally and spatially with time 

which makes them worth exploitation for broad scientific uses including forest-related studies 

such as biomass estimations. These are important for understanding of carbon sequestration 

potential of trees which informs monitoring and forest cover enhancement strategies across 

various environments.  

 

This study investigated the potential of optical data, Landsat 8 Operational Land Imager (OLI) to 

achieve biomass estimation in a secondary indigenous forest that buffers the Buffelsdraai landfill 

site. Image processing types used included extraction of spectral reflectance bands, vegetation 

indices and texture parameters. A Partial Least Squares analysis was performed to determine a 

significant set of independent variables that could predict aboveground biomass of the 

Buffelsdraai rehabilitation forest. 

 

The findings indicated that the Partial Least Squares models of bands and vegetation indices 

were rather weak in biomass prediction as only 11.22% and 30.88% biomass variation was 

explained, respectively. Models inclusive of texture extractions, however, performed much better 

and demonstrated an improved 77.33% variation explanation of above-ground biomass.  

Overall, the results indicate that texture parameters derived from Landsat 8 OLI optical data are 

effective to achieve improved biomass estimation. The development of allometric equations built 

directly from the species found in the rehabilitation zone and national instilment of environmental 

responsibility within society for improved local waste management were the major 

recommendations provided which would assist in the stabilization of greenhouse gas emissions 

in Buffelsdraai and South Africa.  
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CHAPTER ONE: INTRODUCTION 
 

1.1. Background 

The importance of forests as environmental features lays in their contribution to the growth of 

economies through the provision of employment (plantations, maintenance and harvesting 

thereof) for paper and furniture production while direct societal benefits from healthy forests 

include fuel wood and medicinal use (Ceballos et al., 2010). While on one hand there is a debate 

on the disregard of plantations as “true forests” by alternative community groups and natural 

forests are preferred for their intrinsic value and edible provisions (Biowatch, 2015), on the other 

hand all forest stands play ecological roles as: habitats for diverse living organisms; soil 

protectors preventing sedimentation of freshwater systems; buffer zones against floods; and 

carbon sinks enabling their performance as climate regulators (Reis, 2008; Ceballos et al., 2010; 

Tanhuanpää et al., 2017).  

 

More than a decade ago, forests occupied 30% of the world’s land area (Nabuurs et al., 2007); 

however, it has been acknowledged that forests are largely threatened by deforestation and 

desertification. Since the beginning of industrialization, anthropogenic activities including 

preference of agriculture and those propelled by increased use of fossil fuels to satisfy human 

needs and wants have exacerbated the effects of atmospheric greenhouse gas emissions such 

as climate change (Karl and Trenberth, 2003; Rejou-Mechain et al., 2017). Through industrial 

growth and increasing waste production, urban development raises the emission of greenhouse 

gases- including carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) - which increase 

atmospheric temperatures (Verburg et al., 2009; Yacouba et al., 2009). Some detrimental effects 

of climate change may include hazardous flooding and droughts in different geographical 

contexts which threaten human welfare and environmental integrity. 

 

Globally, the requirements of the Kyoto protocol include quantification and monitoring of 

terrestrial carbon stock, particularly in forests, as an indication of rising or dropping atmospheric 

CO2 concentrations (Gara et al., 2014). According to the NEMA (Act 107 of 1998) of South Africa, 

simultaneous or post development rehabilitation of degraded land is a promotable strategy to 
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counter climate change effects. In the fight against global warming, world citizens are 

encouraged to plant preferably mixed indigenous trees instead of monocultures. Reforestation 

of land surrounding landfills is therefore appropriate to promote greenness and enhance the 

sequestration of emitted carbon (Rejou-Mechain et al., 2017; Tanhuanpää et al., 2017). The 

continuous surveillance of forest is imperative as action of climate change modelling and 

assessing climate change mitigation. 

 

1.2. Motivation for this study: Buffelsdraai rehabilitation project  

The Buffelsdraai landfill site is a high source of methane (CH4) around which a forest buffer zone 

was built by the community in conjunction with Durban Solid Waste, eThekwini municipality, and 

Wildlands Conservation Trust. This reforestation project began in year 2008 through the 

Indigenous Trees For Life (ITFL) programme to rehabilitate the degraded landfill site ecosystem, 

increase biodiversity with strictly indigenous trees, and mainly to offset the greenhouse gas 

emissions which would result from hosting the 2010 FIFA World Cup in Durban. The work 

achieved through the ITFL programme is a classic example of strategically achieving sustainable 

living as the impoverished from nearby communities are included and employed to build small 

tree nurseries and assist in planting those trees as a means of poverty alleviation.  

 

The longer vision for the land use change from sugarcane farming to a secondary forest of mixed 

species was to ultimately create a nature reserve of indigenous trees over the landfill site. 

Carbon sequestration would increase during and beyond the greening period as the trees grow 

in number and size over years. This study is expected to provide insight on how the tree stands 

are growing and the potential of imagery data to predict biomass. Like commercial tree stands, 

the inventorying of this natural forest for rehabilitation purposes is too of great importance to 

achieve the modelling of climate change as well as the assessment of climate change mitigation. 

The results may be useful to all stakeholders involved in the project including government 

decision-makers for insightful management of this and other landfill sites in South Africa. 

Furthermore, the outcomes may encourage the same strategy of landfill site greening and 

monitoring to take place throughout South Africa as a local community undertaking where benefit 
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is for the land and the people of the land. As a land use based climate change mitigation activity, 

the success of this greening project can be assessed. 

 

1.3. Aim and objectives 

The aim of this study was to evaluate remote sensing data in modelling biomass of the 

rehabilitation forest around the Buffelsdraai landfill site. 

 

The specific objectives were: 

i. To investigate the above-ground biomass of the tree species planted in the buffer zone. 

ii. To investigate the relationship between above-ground biomass and spectral information 

of remotely-sensed data. 

iii. To investigate the relationship between above-ground biomass and textural information 

of remotely-sensed data. 

 

1.4. Outline of thesis 

This thesis is divided into seven chapters. The present chapter briefly outlines the importance of 

indigenous forest rehabilitation projects based on the Buffelsdraai landfill buffer zone in climate 

change protection and the aim and objectives of this research. The second chapter provides an 

overview of literature regarding the procedures involved in biomass modelling. It also discusses 

in detail how remote sensing data is utilized for biomass modelling and reviews some of the 

existing statistical methods that can be employed. Chapter 3 describes the location of the study 

area with visual aid. Chapter 4 provides a description of the data used and methodology followed 

to undertake this study. The findings of the study are presented and analyzed in the fifth chapter. 

Chapter 6 discusses the findings in detail and addresses the implications of this study. Finally, 

chapter 7 concludes the project and provides key recommendations for future research. 
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CHAPTER TWO: LITERATURE REVIEW 

 

2.1. Introduction 

Forests and other vegetation sequester atmospheric carbon dioxide through the process of 

photosynthesis (Fleming et al., 2015). This carbon forms their woody biomass. The health status 

and survival of forest stands is threatened by pests, alien invasions, deforestation and climate 

change (Fleming et al., 2015). For over three decades, remote sensing technologies have 

advanced to support the role of Geographic Information Systems in forest resource monitoring 

and management. Biomass estimation is a sub-field of forest monitoring which has gained 

popularity especially due to discussions on climate change mitigation strategies through carbon 

sequestration. This chapter seeks to provide background on global climate change mitigation 

policy and the importance of forest biomass monitoring in policy implementation. This will be 

followed by a layout of biomass modelling procedures whilst also discussing the application of 

remote sensing. The bulk of this review will be formed by image selection with special focus on 

Landsat 8 Operational Land Imager (OLI) and variable selection methods with emphasis on 

Partial Least Squares for biomass modelling.  At the onset, this section will set the scene of 

global policy in promoting increased carbon sequestration strategies. 

 

2.2. Biomass retrieval methods 

Trees, particularly standing forests, are an active and essential component of the global carbon 

cycle as a vegetation type observed to sequestrate the most atmospheric carbon especially from 

greenhouse gases (Henry et al., 2011; He et al., 2013). The Kyoto Protocol of the United Nations 

Framework Convention on Climate Change (UNFCCC) is an international policy which strongly 

encourages nations to monitor terrestrial vegetation carbon stocks (Henry et al., 2011; Gara et 

al., 2014). The success of this policy can be achieved by mapping carbon stock (Chave et al., 

2014). After the introduction of the Kyoto Protocol agreement, nations have engaged in 

discussions on how they could each reduce greenhouse emissions to curb the negative effects 

of climate change (Pelletier et al., 2012).  This environmental mandate would help to promote 
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reduction of emissions from deforestation and forest degradation, inform sustainable forest 

management across all involved nations and assist them in their climate change mitigation 

strategies (He et al., 2013; Chave et al., 2014; Zheng et al., 2014). Standing biomass 

assessment is important for the assessment of forest ecosystem productivity and to support 

studies which investigate the role of forests in the global carbon cycle (Das and Singh, 2012). 

To achieve this, accurate biomass should be estimated as an important indicator in the 

investigation and monitoring of forest resources (Zheng et al., 2014).  

 

Methodologies based on remote sensing can assist to infer biomass through estimations of 

forest variables or by developing relationships between spectral reflectance and field-based 

biomass estimation and allometric analysis (Galidaki et al., 2017). Both approaches require 

forest mapping to obtain important information. Biomass can be retrieved from different tree 

compartments. Above-ground biomass (AGB) is mainly determined from branches, tree trunk, 

and foliage while estimation of below-ground biomass would be achieved by accounting organic 

matter in the soil, and roots below the soil (Guendehou et al., 2012). Biomass can be determined 

by using destructive or non-destructive means. Destructive methods involve the direct harvesting 

of trees to measure their different compartments. Thereafter, actual wood-weight can be 

quantified from vegetation in an area of interest. This method would normally be applied for 

bioenergy interests and not for purposes of, for example, monitoring a population of endangered 

tree species. Although a destructive method would offer highly accurate biomass quantification, 

it is also time consuming especially when applied to areas of large scale (Henry et al., 2011).  

 

Non-destructive, also known as indirect biomass retrieval methods require the acquisition of field 

data by the measurement of forest parameters which may commonly include diameter at breast 

height (DBH), canopy or crown area, stem length, stem circumference and tree height (H) to 

name a few (Henry et al., 2011; Cai et al., 2013).  Mensah et al (2016), for example, evaluated 

above-ground biomass of South African mistbelt forests using DBH, H and wood density. Some 

useful field tools include industrial tape measures, measurement poles for height, and label tags 

for tree plots of interest. Using field variables as inputs, forest inventorying involves the 

application of allometric equations to aid in the inference of tree biomass (Henry et al., 2011; 



6 
 

Guendehou et al., 2012; Cai et al., 2013). According to Liu et al. (2014) it may sometimes be 

better not to include total tree height in procedures of biomass estimation as it is usually inferred 

rather than physically measured which introduces uncertainties. Unlike direct biomass 

estimation methods, non-destructive methods are preferable applications as they achieve 

biomass quantification time effectively whilst preventing human-induced loss of major carbon 

sequesters and biodiversity. Destructive or non-destructive methods may be considered for the 

development of allometric equations in biomass modelling. 

 

Historically, researchers have developed many models for biomass estimations. Generic 

biomass estimation equations are available however site and species-specific equations are 

more accurate (Litton and Kauffman, 2008; Goussanou et al., 2016). For example, Litton and 

Kauffman (2008) state that Brown (1997) and Chave et al (2005) have separately developed 

equations with DBH as a singular input variable, and with both DBH and tree height as predictor 

variables in moist, wet and dry conditions. Uncertainties associated with biomass estimations 

have resulted from the application of generic equations to trees belonging outside of the data 

domain for which the equations were developed (Goussanou et al., 2016). Site-specific 

equations may be based on climatic conditions of tree plot occurrence (moist or wet) or a 

particular geographical extent for example Hawaiian forest or South African mistbelt forests 

(Litton and Kauffman, 2008; Mensah et al., 2016). A species-specific equation would be built 

based on the measured structural attributes of a particular tree species. Approximately 50% of 

carbon sequestered by a single plant constitutes its dry biomass (Sharma and Chaudhry, 2015). 

Decomposition of organic matter releases carbon back into the atmosphere. It is a possibility to 

model carbon stock (Goussanou et al., 2016), however the focus of this study was on biomass 

and the evaluation of remotely-sensed imagery to support biomass prediction. 
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2.3. The significance of remote sensing (RS) in modelling AGB 

2.3.1. Remote sensing 

Remote sensing is an exceptional scientific art involving the acquisition and analysis of spatial 

imagery data which can be useful for the surveillance of wanted and unwanted, natural and man-

planted vegetation types including crops and forest (Lillesand et al., 2004; Sharma and 

Chaudhry, 2015). Many earth observation studies are reliant on these data sources because 

they provide excellent global and repetitive multispectral imagery coverage of the earth’s surface 

features allowing for both anthropogenic and natural changes to be detected and monitored 

through time (Reis, 2008; Deng et al, 2009; Giri, 2012). Prior to the science of remote sensing, 

surveillance and evaluation of forest was based on manually acquired data which demanded 

substantial amount of time and human effort (Zheng et al, 2014). Remote sensing allows for 

feasibility of forest management in areas that are and inaccessible by field survey (Du et al., 

2014). Remote sensing is a cost-effective technique to obtain critically useful data in the 

investigation of biomass (Li et al., 2008; Zheng et al, 2014). The application of remote sensing 

can therefore be in land use and land cover change detection assessments to determine if a 

particular country has achieved its emission reduction targets (Pelettier et al., 2012) where 

expansion of natural forest over time would ultimately be observed as a dual advantage in 

increased carbon sequestration and biodiversity persistence.  

 

2.3.2. Image selection and use 

Various possibilities of imagery exist among two categories, namely active and optical sensor 

data. Active sensor data comprises of radar and expensive LiDAR which is formed by a laser 

that sweeps through the earth’s surface and is powerful to extract structural data from trees and 

can be used to avoid destructive means of biomass inventorying (Tanhuanpää et al., 2017). 

SPOT, Landsat, Quickbird, IKONOS, MODIS, AVHRR, and Aster can be summed among the 

group of optical sensor data (Lu et al., 2014, Sharma and Chaudhry, 2015).  Imagery data 

possess different advantages and trade-offs for biomass estimation as each sensor product 

holds its own spatial, spectral, radiometric and temporal resolution properties (Lu et al., 2014, 
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Sharma and Chaudhry, 2015; Tanhuanpää et al., 2017). The choice of imagery is dependent on 

availability of resources to acquire and handle the data, as well as the purpose of a study. For 

example, between choosing SPOT 6 and Landsat 8 OLI images for a forest-related study, one 

image analyst may prefer the use of SPOT 6 because of its free availability from the South 

African National Space Agency Earth Observation archive and higher resolution (1.5m) than that 

of Landsat 8 OLI (30m), but another may deem Landsat 8 OLI as more appropriate because of 

its free availability from the United States Geological Survey Earth explorer online archive and 

improved band widths which enhance vegetation reflectance- a quality worth exploration. A brief 

development history of Landsat 8 OLI as an optical sensor product is subsequently explored.  

  

Introductions of Landsat imagery since 1972 have advanced the art of remote sensing and the 

imagery produced over the past decades is invaluable for environmental management. With 

every new development has come a better possibility for improved earth observations, feature 

analyses and information inventorying. After Landsat 7 popularly useful for land use and land 

cover change analyses, the National Aeronautics and Space Administration (NASA) in 

collaboration with the United States Geological Survey (USGS) launched Landsat 8 Operational 

Land Imager (OLI) in February 2013 which began its operations in that same year.  

 

Landsat 8 OLI is a medium resolution, multispectral sensor which holds exciting band-property 

advancements. It is readily and freely available for immediate utilization, and the spectral bands 

have been improved such that the vegetation reflectance in the near-infrared and panchromatic 

bands is enhanced. From the produced data, various vegetation conditions can be characterized 

due to the radiometric resolution of 12 bits. Moreover, the sensor has a swath-width of 185km x 

170km and a 16 day temporal resolution (Dube and Mutanga, 2015b). When processing such 

imagery, the acquisition of accurate surface reflectance is possible due to the narrowed near-

infrared band of the Landsat 8 sensor, hence, in comparison to other Landsat sensors, the signal 

to noise ratio is better (Dube and Mutanga, 2015b). The Landsat 8 OLI push-broom design with 

a four-mirror telescope also enables it to increase its focus time on all the pixels during operation, 

which apparently improves radiometric resolution (Dube and Mutanga, 2015b). These advances 
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inherent in Landsat 8 OLI sensor suggest the utility of this product’s image data for various earth 

observatory applications, including forest-related studies. 

 

2.3.3. Image pre-processing 

Before any form of processing begins, it is important to understand that a remotely-sensed image 

of choice may be in a distorted state as atmospheric effects such as haze, sun illumination, 

seasonal changes, sensor failures and terrain may all influence the radiance value (Toutin, 

2004). Unless obtained from a source who has rectified the data to its actual reflectance value, 

image pre-processing is the first step that would have to take place. This pre-processing 

procedure includes image quality and statistical evaluation, and radiometric correction (Jin-Song 

et al, 2009). Therefore, radiometric corrections are performed to eliminate errors that appear on 

the image due to atmospheric noise or sensor irregularities so that the data accurately reflect 

the radiation actually emitted by the surface features at the time of image capturing (Toutin, 

2004). These aforementioned pre-processing procedures prepare the image to then be 

processed with enhancement, sharpening, and image classification in different applications. 

 

2.4. Approaches to modelling biomass using remotely-sensed imagery 

Generally, modelling involves the use of potentially explanatory factors from which to identify 

powerful predictors of another or other response variables of interest. It is an investigative 

procedure which involves trying to find correlation between independent and dependent factors 

where a few independent factors can best explain a dependent variable. Potential variables 

which can be explored off optical sensor data in a biomass estimation procedure include spectral 

features and texture measures. 

 

2.4.1. Spectral features 

Spectral features that have commonly been derived from optical multispectral image data 

include spectral bands, vegetation indices, and transformed images using tasselled cap 
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transformation and principal component analysis (Lu et al., 2014). Vegetation indices (VIs) are 

based on leaf structure and chemistry. VIs are mathematical transformations of an image’s 

spectral reflectance to characterize the type and amount of vegetation, as well as interpret 

vegetation biomass in a scene of interest (Jackson and Huete, 1991, Das and Singh, 2012). 

They enhance vegetation signal while reducing the effects of soil background and minimizing 

solar irradiance.  One of the most widely used VIs is Normalized Difference Vegetation Index 

(NDVI) (Jackson and Huete, 1991; Zheng et al., 2014; Xue and Su, 2017). Das and Singh (2012) 

used stratified random sampling to estimate biomass using VIs. They found that Renormalized 

Difference Vegetation Index (RDVI) correlated the most with biomass, followed by Normalized 

Difference Vegetation Index (NDVI), Optimized Soil Adjusted Vegetation Index (OSAVI), 

Modified Simple Ratio (MSR) and Modified Soil Adjusted Vegetation Index (MSAVI). Various 

studies have assessed different spectral features while many focussed on the evaluation of 

spatial texture variables to predict biomass. 

   

2.4.2. Texture measures 

Texture is one of the most important features that can be extracted from remotely-sensed images 

through image texture analysis. Texture quantifies the visual characteristics of an image 

including but not limited to smoothness, roughness and regularity (Salas et al., 2016). It uses 

the distribution of gray levels among neighbouring pixels to measure variability in land cover 

structure (Dye et al., 2012; Salas et al., 2016). It is an estimate of the probability (p) that two 

neighbouring pixels (i and j) have the same intensity at a displacement vector of 1 or 2 pixels 

(Dye et al., 2012). Texture can be calculated on digital image bands which result in different 

information per band. Image texture analysis can be based on a Gray-Level Co-occurrence 

Matrix (GLCM) which involves moving window sizes in accordance with four angles which are 

0°, 45°, 90° and 135° (Li et al., 2008; Gebreslasie et al., 2011). Moving window sizes can be 

small (3x3, 5x5, 7x7) and follow the pattern to larger sizes such as 21x21, 23x23 and 25x25 

(Dye et al., 2012; Sarker et al., 2012; Lu et al., 2014). A variety of second order statistical 

measurements based on GLCMs can be generated including mean, range, skewness, 

dissimilarity, energy, homogeneity, contrast, correlation, and entropy (Haralick et al., 1973; 

Gebreslasie et al., 2011; Zheng et al., 2014; Dube and Mutanga, 2015a).  
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Texture variables have been widely used in biomass predictions and have been shown to 

improve estimation models in comparison to the exclusive use of spectral features (Dube and 

Mutanga, 2015a). Researchers that have constructed biomass estimation models using both 

spectral and texture features include Zheng et al. (2014) who successfully extracted and 

evaluated entropy, skewness, mean, range and variance in predicting above-ground biomass.  

They found that texture variables band1_mean, band2_mean, and band3_mean had the highest 

correlation to growing stock volume- a forest dependent variable. A combination of spectral and 

texture variables also improved the growing stock volume model to R2=0.80. Further research 

has been undertaken to determine optimum parameters for GLCMs. Conjoint analysis- a 

multivariate data analysis technique applied by Pathak and Dikshit (2010) found that texture 

feature and window size have higher importance relative to angle, band or displacement 

parameters in extracting texture measures. Although Haralick et al. (1973) suggested that 

GLCMs be found for all four angles, the work by Pathak and Dikshit (2010) may suggest that a 

generation of GLCMs could be based on one angle or displacement vector to reduce 

computational complexity.   

 

Testing both spectral and texture variables in one study provides an indication of how large the 

number of potential explanatory variables can be. In modelling, variable selection is an important 

part for variable reduction in an analysis and different methods have been applied in literature.  

 

2.5. Variable selection methods  

One of the methods applicable for the identification of optimal variables in biomass modelling 

would be the use of expertise in a specific area of study, or selecting variables that have strong 

correlation with biomass and weak dependency on each other. Hereafter, methods including 

stepwise regression, Partial Least Squares and non-parametric methods will be discussed.     
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2.5.1. Stepwise regression 

Stepwise regression is a traditional and standard statistical procedure for variable selection 

which involves the introduction of predictors individually at a time into the model. Three types of 

stepwise regression procedures include the forward selection, backward elimination and 

stepwise method (Chong and Jun, 2005). The forward selection method allows for addition of 

predictors one after the other while the backward elimination method begins with the inclusion 

of all the predictors in a model, and eliminates one variable at a time. The stepwise method 

resembles the forward selection at its start, and the backward elimination after each step where 

the power of each variable is observed and that variable could face exclusion. Stepwise 

regression is normally applicable on datasets that have less predictors than the sample size 

(Chong and Jun, 2005). 

 

2.5.2. Partial Least Squares 

A Partial Least Squares regression (PLSr) is a statistical variable selection procedure used to 

relate one or more dependent variables (Y) with other independent variables (X). This relation 

is based on the extraction of latent variables which break down the response and explanatory 

variables providing maximum explanation of variability in X, Y or both (Oliveira et al., 2013). It is 

useful in data analysis where the number of tested predictors is larger than the samples used 

(Chong and Jun., 2005; Oliveira et al., 2013; Akarachantachote et al., 2014). This may be known 

as high dimensional data. These data are often analyzed in different fields of research such as 

bioinformatics, marketing, and machine learning (Mehmood et al., 2012; Oliveira et al., 2013) 

and multicollinearity exists among the tested potential predictors. Multicollinearity is a 

phenomenon of observed potential predictors that are closely related to one another thereby 

making it difficult for a simple regression model to correctly summarize a relationship between 

the predictors and the responses (Chong and Jun, 2005; Akarachantachote et al., 2014). Oliveira 

et al. (2013) used PLSr to identify important in vitro sperm characteristics in the prediction of Bull 

fertility. Their study is one of many which have demonstrated the ability of a PLSr to combat the 

issue of collinearity.  
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Variable selection methods in a Partial Least Squares (PLS) procedure are necessary for the 

reduction of data by elimination of unimportant potential predictors. Variable selection methods 

can be categorized into embedded, wrapper and filter methods (Akarachantachote et al., 2014). 

An embedded method iteratively searches for a subset of variables by combining variable 

selection and modelling. This evaluation would have to include all possible subsets which 

increases computational time. A wrapper option can be described as an iterative, supervised 

learning approach where the PLS extracts variable subsets and fits a model to the subset 

variable (Mehmood et al., 2012). This makes a wrapper method even more time consuming as 

it involves outer and inner iterations of variable selection and model refitting, respectively 

(Mehmood et al., 2012). Options of filter measures include PLS regression coefficients, loading 

weight vectors, and Variable Importance of Projection (Mehmood et al., 2012). A filter method 

would simply identify important factors from the analyzed group by a defined threshold. 

Comparatively, with a large number of variables, a filter method may be more suitable for this 

study due to its simplicity and less intensive computational time.  

 

2.5.3. Non-parametric algorithms 

Many researchers have applied GIS to conduct various studies which aimed to inform 

improvement of forest stands to monitor conservation efforts. Common non-parametric 

algorithms include Random Forest, Artificial Neural Network, and K-Nearest Neighbour. Random 

Forest is a tree-based model involving the construction of many regression trees by random 

selection of bootstrap samples from the available dataset (Ali et al., 2012). This machine 

learning-based regression technique allows the use of colour and shape texture (Dye et al., 

2012). Outputs from regression trees are averaged to reach final output values. The Artificial 

Neural Network is referred to as a black-box model within which combinations of input variables 

are linked with output variables through network training thereby providing efficient 

approximations of different data and complex non-linear problems (Lu et al., 2014). Another 

approach to biomass estimation is the K-Nearest Neighbour (K-NN) algorithm. K-NN is 

implemented by the incorporation of either of three parameters, namely, a k-value (the number 

of nearest neighbours), a scheme to weight neighbours when calculating predictions, or a 

distance metric (McRoberts et al., 2015). It involves the prediction of, for example, biomass at a 
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certain location as a weighted average with k-neighbours. Random forests perform better when 

compared to other algorithms such as Artificial Neural Network (Lu et al., 2014).  

 

With a vast literature-base of possible combinations of remotely-sensed imagery, image-based 

variable choices that can be explored and algorithms to use for optimal variable selection, there 

exists a well of possibilities for biomass estimation improvements from current associated 

uncertainties. This can improve carbon quantification in monitored forests and enhance further 

efforts for carbon sequestration especially from greenhouse gases released at waste sites.     

 

2.6. Greenhouse gas emissions from waste 

The waste management industry involves cleaner production, minimization, reuse, recycling and 

composting of unwanted products (Lincoln, 2011). All landfills are evidence of the least 

favourable kind of waste management- disposals. This is because waste materials undergo 

chemical transformations which cause the release of greenhouse gases including carbon dioxide 

(CO2) and methane (CH4). The volume of accumulated waste is directly proportional to 

greenhouse gas (GHG) emissions. Karl and Trenberth (2003) and Friedrich and Trois (2011) 

mention that unless mitigated, these GHG emissions will significantly increase. CH4 emissions 

account for about 90% of waste-sector emissions globally (Friedrich and Trois, 2011). It is more 

astounding that carbon released as CH4 has a global warming potential that is 21 times more 

than when it is released as CO2. Other ripple effects of emission increase can be changed local 

weather patterns, sea level rise, flooding, drought, noise and air pollution which all threaten the 

wellbeing of ecological systems and people (Rejou-Mechain et al., 2017). The promotion of 

landfill stabilization through the achievement of climate protection is therefore one of the broad 

policies of landfill management. To mitigate adverse environmental effects of waste disposal, 

especially anthropogenic GHG emissions, the establishment of carbon sequestration forest 

around landfill sites can be one solution.  
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2.7. Landfills and rehabilitation forests 

Landfill sites are open land areas designated to service closely-residing communities as 

dumping areas for unwanted, general waste. Landfills should rightfully be designed with a base 

covering preventative of leachate penetration into the soil below and ground water. In alignment 

with the South African Health (Act 63 of 1977), it is mandatory that landfills have a buffer area 

separating residents from active landfill zones as these areas have high noise and air pollution. 

A prime example of a project that has implemented a sustainable climate protection method is 

of forest restoration on the Buffelsdraai landfill perimeter. Communities adjacent to the 

Buffelsdraai landfill site in conjunction with Durban Solid Waste, eThekwini municipality, and 

Wildlands Conservation Trust have since 2008 established a natural forest that surrounds the 

Buffelsdraai landfill. 

 

In the fight against global warming and for the protection of neighbouring communities from air 

and noise pollution, the buffer zone is particularly built using indigenous trees which are planted 

to sequester the carbon emitted from the landfill. The process involves the growth of seeds into 

bigger trees by some of the most impoverished communities in Durban. When the trees are 

older- according to the size of each tree grown- the local nurturer can exchange the trees for 

monetary valued uses such as food, water collection tanks, bicycles, building materials and 

school fees, thereby ensuring the continuation of reforestation. The expectation from this 

rehabilitation project is to offset about 50 000 tons of carbon dioxide from the landfill (Douwes et 

al., 2015). Moreover, this project is anticipated to locally increase adaptation and resilience to 

climate change within ecosystems through sediment regulation, flood attenuation, biodiversity 

refuge conservation, and ongoing removal of alien species (Douwes et al., 2015). Eventually, 

the hope is to expand the green space into a declared nature reserve. Altogether, the 

Buffelsdraai rehabilitation project highlights the golden co-benefits for off-setting landfill 

emissions in a local area and the success of trees to sequester carbon may be determined by 

performing tree biomass analyses. 
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2.8. Summary 

This chapter has presented an account of employable biomass estimation models and 

procedures based on the art of remote sensing. It managed to distinguish between the different 

measures of biomass based on above and below ground compartments. The significant role of 

remote sensing as a Geographic Information System tool has been alluded to- highlighting its 

various data options and invaluable advantages necessary for global policy implementation and 

scientific forest management.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 
 

CHAPTER THREE: GEOGRAPHICAL CONTEXT 
 

3.1. Introduction 

This chapter will provide background information on the eThekwini municipality within which the 

selected study area is found in KwaZulu-Natal, South Africa. It will clearly illustrate the location 

of the study area with a Landsat OLI subset zooming into compartments 8 and 9 of interest sites. 

Thereafter, descriptions of environmental attributes such as topography, vegetation and climate 

will be included. 

 

3.2. The eThekwini municipality 

The eThekwini municipal area has a hilly topography, with many ravines and gorges. There are 

18 catchments, 4000km length of rivers and 16 macro estuaries in the eThekwini municipal area 

(Boon et al., 2007). Over decades, the entire KwaZulu-Natal province has undergone rapid 

industrialization.  

 

Within eThekwini municipality, Durban is the largest and most populated city with a population 

of approximately 3.6 million people on an area of 2297km2 and owns 97km of the Indian Ocean 

coastline (Boon et al., 2007). Durban is described as a fast growing urban area with primary 

health care centres, schools, libraries, police stations, and a very large and busy harbour. This 

city is a tourist attraction and even a resort to local dwellers because of its distinctive warm, 

subtropical climate. A new stadium, Moses Mabhida, was constructed in the uMngeni coastal 

area to capacitate a number of the 2010 FIFA World Cup games. The Durban International 

Convention Centre (ICC) has hosted numerous world class events including the 2011 COP17 

conference.  

 

While South Africa is a developing country whose urban areas are growing very fast, the gap 

between the rich and poor continues to widen. With weak economic growth and a rising 

unemployment rate, many South African communities of informally and formally educated 

persons find themselves without job opportunities making them dwellers in poverty. A volatile 
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Rand performance is a cause for exacerbated devastation and more diminishing hope for 

financial stability among these households and access to basic needs by the masses.  

 

The Buffelsdraai area is one such context where communities are poverty stricken. Considering 

the global climate change challenge, these very communities would likely be the least adaptable 

to detrimental effects of climate change. It was therefore essential that the Buffelsdraai area be 

out-scouted for a forest rehabilitation project so that more South African citizens can be protected 

by the mitigation of natural disasters through the expansion of green carbon sinks, and are 

enabled to access food and education, and live in a healthy environment as provided by the 

national constitution.   

 

3.3. Buffelsdraai landfill site 

Situated in the eThekwini municipality, the Buffelsdraai landfill site is located about 25km north 

of Durban between iNanda and Verulam in KwaZulu-Natal, South Africa. The landfill was 

constructed in year 2006 and is managed by the Durban Solid Waste department. The active 

landfill is approximately 116ha in size and fenced from the buffer zone which is 800m wide and 

787ha in extent (Douwes et al., 2015). Historically, the buffer zone was farmed with sugarcane 

for more than a decade which caused major land transformation and has been motivational for 

the establishment of a conservancy for restoration. 

 

The areas relevant to this study are compartments 8 (32.52ha) and 9 (13.26ha) (Figure 1c and 

4) of communal indigenous rehabilitation forest forming the buffer zone initiated and maintained 

to sequester atmospheric carbon to mitigate the negative effects of climate change (Douwes et 

al., 2015). Blocks 8 and 9 were among the first management areas included in the first phase of 

planting which took place in 2009 and 2010. 
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Figure 1a: KwaZulu-Natal province of 

South Africa                                     

Figure 1b: EThekwini municipality within KwaZulu-

Natal  
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Figure 1c: Google Earth view of the Buffelsdraai landfill site and neighbouring communities 

 

On-site exists a ‘Prunit’ tree nursery of indigenous trees grown by community ‘tree-preneurs’, 

namely from Buffelsdraai and Osindisweni, who drive the restoration process for monetary 

goods in return thereby contributing to the alleviation of local poverty. These communities reside 

on the neighbouring lands adjacent to the landfill.  An outer demarcation boundary was created 

between the buffer zone and the neighbourhoods by planting thorny trees to prevent access of 

livestock to the rehabilitation site.     
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Figure 2a: The Prunit nursery on-site 

 

 

Figure 2b: ‘Tree-preneur’ communities adjacent to the Buffelsdraai restoration site 

 



22 
 

There is also a methane gas extraction flare on-site. Operational waste trucks in the Buffelsdraai 

landfill are designed to run on dual material; the gas from Buffelsdraai and renewable electricity 

extracted from other landfill sites.  

 

 

 

 

 

 

Figure 2c: Active landfill  Figure 2d: Methane gas 

extraction flare                                    

 

3.4. Soils and water courses  

The soil types found in blocks 8 and 9 include Swartland, Glenrosa and Sepane. The Black 

Mhlasini River flows above and closest to the management blocks of interest which are 

separated by a tributary.  
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3.5. Climate 

 

Figure 3: Temperature (⁰C) and rainfall (mm) experienced by the Buffelsdraai area 

(EThekwini municipality, 2011) 

 

In summer, the average daily temperatures around Buffelsdraai may reach 27.4⁰C and can 

decrease to 22.2⁰C in winter. During the winter season, eThekwini municipality receives its 

lowest mean rainfall (mm) of the approximated 766mm of rainfall per annum. The project area 

is classified as a tropical and dry area since the precipitation received annually is less than 

1000mm. 

 

3.6. Biological characteristics  

The buffer zone of the Buffelsdraai landfill site exists on lands classified as KZN thornveld 

grassland with patches of lowlands forest as one moves further from the site. Post sugarcane 

farming, the area now consists of indigenous trees sourced from PRUNIT, a nursery whose 

operation provides environmental and economic success of this conservation project. The 

species included in the sample are phenotypically unique in structure and form, and their counts 

have been recorded in the table below.  
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Table 1: Indigenous species sampled in blocks 8 and 9 of the Buffelsdraai landfill buffer zone  

 

Name Sample size Sample Richness (%) 

Erythrina caffra  150 28.85 

Dalbergia obovata  128 24.62 

Brachylaena discolor  65 12.50 

Milletia grandis  41 7.88 

Acacia karroo  33 6.35 

Acacia caffra  25 4.81 

Bridellia micranta  13 2.50 

Strychnos spinosa  12 2.31 

Clerodendrum glabrum  11 2.12 

Euphorbia tirucalli  9 1.73 

Harpephyllum caffrum  6 1.15 

Commiphora woodii  5 0.96 

Sclerocroton integerrimum  5 0.96 

Strelitzia nicolai  4 0.77 

Drotorhus logifolia  3 0.58 

Ficus natalensis  3 0.58 

Searsia lucida  2 0.38 

Syzygium cordatum  2 0.38 

Bauhinia tomentosa  1 0.19 

Ficus sur  1 0.19 

Kigelia africana  1 0.19 

Total 520 100.00 

 

A total of 520 trees were included in 50 sample plots of blocks 8 and 9 with a species richness 

of 22 indigenous species altogether. Erythrina caffra, Dalbergia obovata, and Brachylaena 

discolour were the most dominant tree species comprising 28.85%, 24.62% and 12.50% of the 

sample richness within the compartments, respectively. 
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3.7. Summary 

This section has provided the biophysical as well as socio-economic context of the study area. 

It has shown the appropriateness of this site for a study aimed at climate change protection.  
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CHAPTER FOUR: METHODOLOGY  

 

4.1. Introduction 

The purpose of this chapter is to provide a detailed account of the materials used and procedures 

followed to achieve the aim and objectives of this research. The data used are firstly described, 

followed by the procedures adopted for data processing, extraction of potentially predictive 

variables, and application of statistical analysis for the development of the most appropriate 

biomass model.  

 

4.2. Data Acquisition 

4.2.1. Satellite image 

The image produced on 30 July 2014 by the Landsat 8 OLI sensor was chosen for this study 

due to its distinct vegetation reflectance properties which are favourable for modelling biomass, 

as well as to match the field data collection time which was from June to August 2014. The 

satellite image was obtained from the U.S. Geological Survey Earth Resources Observation and 

Science archive (https://earthexplorer.usgs.gov/). Table 2 shows the characteristics of the image 

used to conduct this study. 
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Table 2: Technical characteristics of Landsat 8 OLI 

Spectral band Band reflectance Wavelength (µm) Spatial resolution (m) 

1 Coastal/ Aerosol 0.433-0.453 30 

2 Blue 0.450-0.515 30 

3 Green 0.525-0.600 30 

4 Red 0.630-0.680 30 

5 Near Infrared 0.845-0.885 30 

6 Short Wave Infrared 1 1.560-1.660 30 

7 Short Wave Infrared 2 2.100-2.300 30 

8 Panchromatic 0.500-0.680 15 

9 Cirrus 1.360-1.390 30 

 

4.2.2. Field forest measurements  

The measured field data were provided by the Wildlands Conservation Trust. The conduction of 

the survey in the buffer compartments (8 and 9) of focus provided an inventory of plot location, 

tree species found in each 5m-radius plot, and parameter readings including vertical and 

horizontal canopy diameter (m), diameter at breast height (cm) based on a conversion from 

basal circumference which had been taken at knee height because the secondary forest was of 

very young and short trees, and tree height (m). Table 1 (within the geographic context chapter) 

lists the indigenous species included in 50 circular plots of 78.5m2 each in size which were 

planted since the inception phase of rehabilitation between 2009 and 2010.  
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4.3. Data preparation and pre-processing  

4.3.1. Above-ground biomass  

Using Microsoft Excel (2010), field data were used to compute diameter at breast height which 

was a requisite for the estimation of above-ground (growing forest) biomass. Since the surveyed 

indigenous species lacked species specific equations for the estimation of AGB, a generic 

allometric equation presented by Glenday (2007) deemed suitable for mixed species of trees 

occurring in the Buffelsdraai rehabilitation zone was used: 

B = exp [-1.996 + 2.32 lnD], where                                                                                                                                                                        

D represents the diameter (cm) as the main predictor variable.  

 

4.3.2. Remote sensing data pre-processing 

The Landsat 8 OLI image was transformed to surface reflectance using the Fast Line-of-sight 

Atmospheric Analysis of Spectral Hypercube model within the Environment for Visualizing 

Images (ENVI) 5.2 software programme. The image was projected using the Universal 

Trasverse Mercator projection zone 36 South with Hartebeestehoek 1994 datum. To limit 

subsequent image-based computations to the extent of interest, a subset of the study area was 

created to the following coordinates: A (-29.607⁰ S, 30.967⁰ E), B (-29.607⁰ S, 31.007⁰ E), C (-

29.646⁰ S, 31.006⁰ E), and D (-29.646⁰ S, 30.967⁰ E). 
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Figure 4: Landsat 8 OLI image subset of the Buffelsdraai landfill site with compartments 8 

and 9 of rehabilitation focus within eThekwini municipality  

 

 

4.4. Spectral and texture predictors 

4.4.1. Spectral information and vegetation indices 

Commonly used vegetation indices were selected to investigate the potential of Landsat 8 OLI 

image to estimate AGB. These, combined with simple band ratio and surface reflectance bands 

summed to 18 spectral factors used in this study (Table 3).  
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Table 3: Evaluated remotely-sensed independent spectral factors for AGB estimation 

 

Vegetation Index Formula Author 

Difference Vegetation Index (DVI)  NIR - Red Jordan (1969) 

Normalized Difference Vegetation 

Index (NDVI) 

(NIR – Red) 

(NIR + Red)  

Rouse et al. 

(1974) 

Normalized Difference Infrared 

Index (NDII) 

(NIR - SWIR 1) 

(NIR + SWIR 1) 

Hardisky et al. 

(1983) 

Normalized Difference Moisture 

Index (NDMI) 

(SWIR 1 - NIR) 

(SWIR 1 + NIR) 

Goodwin et al. 

(2008) 

Soil Adjusted Vegetation Index 

(SAVI)   

[NIR – Red] x (1+L) 

(NIR + Red + L); 

0<L>1 

L=vegetation cover correction 

factor=0.5 

Huete (1988) 

Atmospherically Resistant 

Vegetation Index (ARVI) 

NIR – [(Red) - 1(Blue - Red)] 

NIR + [(Red) - 1(Blue - Red)] 

Kaufman and 

Tanre (1992) 

Ratio Vegetation Index (RVI) NIR 

Red 

Pearson and 

Miller (1972)  

Green Chlorophyll index 

(CIgreen) 

_NIR     -1 

Green           

Gitelson et al. 

(2006) 

Simple Band Ratio 

Blue/Green (B/G) 

Blue/Red (B/R) 

Blue/Near-Infrared (B/NIR) 

Green/Red (G/R) 

Green/Near-Infrared (G/NIR) 

Red/Near-Infrared (R/NIR) 

Band Reflectance 

 

Band 2 (Blue) 

Band 3 (Green)                   Visible 

Band 4 (Red) 

Band 5 (Near Infrared) 

 



31 
 

Vegetation indices (VIs) in this study adapted from Basati et al. (2011) include DVI, RVI, NDVI, 

NDII and SAVI. DVI distinguishes well the changes in soil background and can identify 

vegetation. RVI expresses the difference of vegetation responses between the NIR and Red 

bands and ranges from 1 to infinity. NDVI is the most commonly used vegetation index as it has 

a bold response considering greenness and health with a range of -1 and 1.  NDII gives insight 

to vegetation water content and is related to NDVI however the red band is replaced by short 

wave infrared. SAVI is similar to NDVI but has the additional soil adjustment coefficient L. ARVI 

corrects for radiance in the red channel with the difference between the blue and red bands 

thereby eliminating atmospheric influence when defining NDVI (Zheng et al., 2014). NDMI (Rokni 

et al., 2014) shows the difference between short wave infrared while CIGreen is a leaf chlorophyll 

index (Hatfield and Prueger, 2010).  

 

4.4.2. Texture measures  

Image texture analysis was performed at the Visible and Near Infrared wavelengths as these 

reflectance bands contain the most vegetation information (Sharma and Chaudhry, 2015). 

Performed in the ENVI 5.1 platform at distance= 1, the procedure followed entailed a selection 

of the texture parameter with the input of a window size off a specific band at either angle 0°, 

45°, 90°, or 135° as designed by Haralick et al. (1973). In this study, texture parameters included 

variance, homogeneity, dissimilarity, contrast and correlation as these have been observed to 

be successful across various similar and dissimilar studies. Window sizes 3x3 to 5x5 pixels were 

selected for texture analysis so that they could operate within the tree plots of this study. 

Altogether, 160 texture measures were evaluated. 
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Figure 5: A generation of texture factors for variance at 0° 

 

As illustrated in Figure 5, the input procedure was followed for variance firstly at 0°, and then at 

each of the three remaining angles (45°, 90°, and 135°) - at each band, and at each window size 

to generate 32 variance factors. Then, the entire process was repeated until all five texture 

parameters had been evaluated.  
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Table 4: Selected remotely-sensed independent texture measures for AGB estimation 

 

Texture Measures Formula 

Variance ∑i.j  (𝑥𝑖. 𝑗 − µ)2 

n-1 

Homogeneity 
∑

1

1 + (𝑖 − 𝑗)2

𝑖,𝑗−0

 P(𝑖, 𝑗) 

Dissimilarity 
∑ [𝑖 − 𝑗]P(𝑖, 𝑗)

𝑖,𝑗=0

 

Contrast 
∑ [𝑖 − 𝑗]2 P(𝑖, 𝑗)

            

  𝑖,𝑗=0

 

Correlation 
∑ 𝑃(𝑖, 𝑗)

             

               𝑖,𝑗=0

(𝑖 − µ𝑖)(𝑖 − µ𝑗)

(𝜎𝑖2)(𝜎𝑗2)
 

 

Variance is a texture parameter based on sum and difference histogram, where xi.j stands for 

the pixel value of pixel (i,j) in the summed kernel and n is the number of pixels that is summed. 

Homogeneity, dissimilarity, contrast and correlation are estimation measures based on the Gray 

Level Co-occurrence Matrix. Here, P (i, j) represents the normalized co-occurrence matrix where 

SUM (i, j = 0, N-1) (P (i, j)) = 1.  

 

4.5. Zonal statistics 

ArcGIS 10.2 was used to create the shapefile and map 50 forest plots at a 5m-radius buffer. GIS 

data were projected using the Transverse Mercator projection with datum Hartebeestehoek 

1994. Using ArcMap, a mean statistic from spectral and texture measurements of each plot zone 

was calculated and extracted to collate a table of 178 independent variables to biomass in 

Microsoft Excel.   

 

A Two-Step method was applied to transform the tabular data to normal variables in IBM SPSS 

STATISTICS 24 (SPSS). This approach was favoured because it works by transforming 
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continuous data- using a generation of fractional ranks, and then building the Inverse DF Normal 

function at mean and standard deviation values to produce perfectly normal variables 

(Templeton, 2011). As recommended by Templeton (2011), mean and standard deviation values 

of 0 and 1, respectively, were used for easier interpretation in this study. Another reason for the 

use of the Two-Step approach is that the PLS technique to be applied for biomass prediction is 

sensitive to normality and hindered to predict a highly skewed dependent variable, therefore the 

transformation as explained was imperative. Outlier analysis was excluded due to nature not 

being perfect and the desire that the sample set used is random and not altered. 

 

4.6. Partial Least Squares regression 

Within the Statistical Analysis Software 9.4 (SAS) environment, the PLS regression was an 

appropriate method to model biomass because the number of multicollinear remotely-sensed 

predictors (178 independent variables) exceeded the number of observations (50 forest plots). 

This regression is useful to find the least number of PLS factors that can explain most of the 

variation in collinear predictors, as well as the response. 

 

Because 50 observations were used in this study, splitting the data into 35 plots for use as the 

training set and only 15 plots to test the model would not be useful (Prof. Brown, pers.comm. 26 

January 2017). The entire dataset was therefore used to develop the model and a random 

sample generator in IBM SPSS Statistics 24 was used to select 70% of the plots as the validation 

set.  

 

The Partial Least Squares regression was combined with Variable Importance for Projection 

(VIP) as a filter variable selection method that has less risk of over-fitting in comparison to more 

flexible methods such as wrapper or embedded measures. The VIP score was calculated for 

each variable as follows: 
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VIPj = √∑ 𝑅^2ℎ
𝑎=1

(𝑦,𝑡𝑎)(𝑊𝑎𝑗/∥wa∥)^2

(
1

𝑝
) ∑ 𝑅^2ℎ

𝑎=1 (𝑦,𝑡𝑎)
 , where 

 

Waj refers to the weight of the jth predictor variable in component a. R2(y,ta) is a variance fraction 

in y explained by the component a. A VIP takes into account the variance explained for each 

PLS dimension. The variable with a higher VIP score is the one that is more important in 

predicting the response variable. 

                   

The Wold’s selection criterion used was 1.0 because moderate elimination of multicollinear 

predictors was favoured, per run, as opposed to the original lower cut-off point of 0.8 or a higher 

mark (Akarachantachote et al., 2014). PLSr runs were repeated until only the variables that met 

and exceeded the cut-off mark were retained in the final model. Altogether, the outputs produced 

include the Percent Variation Accounted for by Partial Least Squares Factors, R-Square 

Analysis chart, Correlation Loading plot, and Variable of Importance Projection (VIP) plot which 

were then analysed.  

 

4.7. Summary 

This chapter has summarized all the materials used and methods employed in this research. 

The Landsat 8 OLI image used was readily available for the purpose of this study. Various 

statistical steps were followed for the extraction of image data using GIS and intensive statistical 

procedures were undertaken within SAS for data analysis. This section has provided an account 

of data used and methodologies followed from the starting point of data acquisition through to 

the modelling phase whose results follow in the next chapter.  
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CHAPTER FIVE: RESULTS 

  

5.1. Introduction 

This chapter aims to provide statistical tables, graphs, and descriptions of the outcomes 

achieved in this study. Firstly, it presents information of indigenous trees in the rehabilitation 

compartments of interest. Thereafter, the results of the PLS regression model are illustrated and, 

based on the coefficients of determination (R2) the most predictive group of variables is chosen. 

Descriptions of findings produced by the PLS models are provided below each output. 

 

5.2. Biomass allometric estimation 

Table 5: Total average biomass of indigenous trees sampled in compartment 8 and 9 

 

 Number of plots Trees (n) Biomass (kg) Unique species (n) 

Compartment 8 27 215 319.3296922 15 

Compartment 9 23 305 490.5727632 17 

Total study area 50 520 809.9024554 21 

 

The total biomass calculated from the 50 plots of 520 indigenous tree species using the generic 

equation was 809.90kg. Although compartment 9 consisted of less plots (23) than compartment 

8 (27), compartment 9 had more trees, greater biomass and 2 more unique species than 

compartment 8 (Appendix A).  
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Table 6: Descriptive statistics 

       

Basic Statistic 50 Plots (100%) 35 Plots (70%) 15 Plots (30%) 

Mean 0.196 -0.002 -0.043 

Standard Deviation 0.942 0.880 0.827 

Minimum -2.05 -2.05 -1.55 

Maximum 2.05 1.75 1.17 

 

These descriptive statistics show the futility of using 30% of the plots for model validation with 

70% for model construction (Dobbin and Simon, 2011; Prof. Brown, pers.comm. 26 January 

2017). 

 

5.3. Partial Least Squares regression  

5.3.1. Biomass variation explained by 100% PLS factors  

a. Bands 

At the first iteration, all four bands only explained 11.2180% of biomass variation which 

decreased to 7.5184% after the second iteration. The validation set produced 12.0212% after 

the first run, which dropped to 10.8473% and 10.8354% in the second and third runs, 

respectively. Reflectance x163 remained as the best band after each iteration in both the training 

and validation sets. 

 

b. Spectral factors 

Spectral vegetation indices (VIs) performed slightly better than the bands. All 14 VIs factors 

explained 30.8778% of AGB with index 168 as the best predictor while the validation set 

explained 46.6929% of AGB with index 169 as the highest predictor. After the second and third 

run, 16.5176% and 7.9796% explanations were achieved respectively with index 173 rising and 

maintaining the lead. The validation set showed a drop to 31.9173% after 7 indices had been 

eliminated, with index 169 still standing as the best predictor, which however changed after the 

third run that explained 24.8107% without 10 indices and the best index then was 173.  
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c. Texture measures 

The model with all texture extractions demonstrated an improved 77.3321% variation of AGB 

where texture x25 was the most important factor. After the second run where 98 extractions had 

been eliminated, the variation explained was still 77.3321%, but predictor x151 became the new 

most important variable. After the third PLS run with 133 variables eliminated, a lower 70.1332% 

variation could be explained and x76 was then the new most important factor. The fourth iteration 

without 147 variables could only explain 43.4325% biomass variation but factor x76 was still 

most important. 

 

The validation data set explained 99.6898% of AGB after the first and second iteration and x76 

was the best predictor. At the third PLS run, again a lower 92.0838% variation was explained 

but extraction x137 was the highest explanatory variable. The fourth iteration which excluded 

150 variables only managed to explain 46.5984% variation and factor x76 became the most 

important predictor again.  

 

d. All variables 

The training set achieved the same 77.3321% predictive ability of biomass as the group of 

texture measures after the first two runs. R² decreased to 58.2323 and a low 42.4008 in run 3 

and 4, consecutively. After the first three iterations, validation percentage of 99.6868 was 

maintained, and dropped to 75.2933% after the fourth run.   

 

5.3.2.  Group-wise VIP variables  

Table 7: Best three VIP variables from each prediction group 

Group Model 

iteration 

Training Set Validation Set 

1 2 3 1 2 3 

Bands 1st x163 x164 x162 x163 X161 x162 

Spectral indices 1st  x168 x169 x173 x169 x168 x177 

Texture measure 2nd  x151 x143 x6 x76 x43 x115 

All variables 2nd  x140 x132 x143 x76 x115 x103 
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In this table, model iteration refers to the PLS run after which the best prediction was obtained 

for each prediction group. For bands, factor x163 was the most relevant in biomass prediction 

while x162 remained in position 3 in both the training and validation sets. Among spectral indices, 

factors x168 and x169 remained as the top two, alternating positions in the training and validation 

sets. No pattern can be observed among texture variables when comparing variable relevance 

across the training and validation sets. Factors x151, x143 and x6 were the three most important 

variables according to the training set, while x76, x43 and x115 scored the most at biomass 

prediction in the validation set. Again, no pattern of variable relevance was observable amongst 

the group of all 178 variables analysed in this study. Factor x143 commonly appeared in the top 

three of training sets in both groups of texture measues and all variables while among the 

validation models, x76 was observed as the best variable for both texture as well as all variables.  

 

5.3.3. Selection of the best group in the estimation of biomass  

 

 

 

Figure 6: Above-ground biomass variation (R²) explained by each prediction group at best 

iteration 
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Statistically, the group of bands demonstrated the poorest predictive ability (11.2180% variation). 

Spectral indices only managed a slightly better predictive ability of 30.8778%. Texture variables 

were represented in two groups- one of only texture measures and the other which included all 

remotely-sensed variables used in this study. Both texture-inclusive groups predicted the same 

amount of biomass variation explanation (77.3321%). 

 

5.3.4. VIP of best predictive group 

Although both texture and all variables produced the same coefficient of determination (R²), the 

group of only texture extractions was selected as most predictive of AGB at the second iteration 

where the model included 4 less factors than the group of all remotely-sensed variables. The 

VIP plot illustrated below is therefore of only texture measures. 

 



41 
 

 

Figure 7: VIP plot of texture measures at the second iteration 

From the original 160 texture variables, 62 variables achieved 77.3321% variation explanation. 

The best variables in the prediction of biomass were orderly x151, x143, and x6 while texture 

extractions that had the lowest predictive power were x70, x146 and x64.  
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Table 8: Texture measures which scored above Wold’s criterion mark of 1.0 in the final model 

Variable Symbol Variable Symbol 

B2Corr3.90 x5 B5cont3.45 x84 

B3Corr3.90 x6 B3corr3.45 x86 

B4Corr3.90 x7 B5diss3.45 x92 

B3Homo3.90 x14 B5homo3.45 x96 

B4Homo3.90 x15 B3cont5.45 x102 

B2Corr5.90 x25 B4Cont5.45 x103 

B4Corr5.90 x27 B3diss5.45 x110 

B5Corr5.90 x28 B4diss5.45 x111 

B4corr3.0 x47 B4homo5.45 x115 

B2cont5.0 x61 B2corr3.135 x125 

B2homo5.0 x73 B5var3.135 x140 

B4homo5.0 x75 B4cont5.135 x143 

B5homo5.0 x76 B4diss5.135 x151 

 

5.3.5. R-square analysis 

The best model group should be the one with the least number of predictive factors that account 

for the most explanation variation of AGB. Good predictive models can be provided by those 

latent factors that explain response variation well.  
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Figure 8: Plot of proportion of variation accounted for by PLS factors 

The R-square analysis illustrates the proportion of variation explained (R²) as the number of 

texture factors increases. 77.3321% variation of biomass and 99.0146% predictor proportion 

were explained by the first 32 factors. A model using the first 32 factors can be useful for biomass 

prediction as thereafter a plateau is reached.  

 

5.3.6. Window sizes and angles 

Additionally, performances of window sizes and angles as parameters at which texture variables 

were formed were also evaluated. 
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Figure 9: Above-ground biomass variation (R²) explained by window sizes 

 

It is observable at second iteration that the window size of 5x5 (67.1073%) pixels explained less 

biomass variation than the window size of 3x3 pixels (76.7042%). 
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Figure 10: Above-ground biomass variation (R²) explained by angles 

 

Across the four angles evaluated, the performance grew from 0° (74.4966%) to 135° 

(76.2294%). From there, 90° increased slightly (76.2504%). The 45° angle achieved the best 

variation explanation of 77.0928% at first model iteration.  

 

5.4. Summary 

This chapter summarized the main outputs and important results emanating from the study. 

Landsat 8 OLI was useful to derive remotely-sensed variables. It was identified that bands alone 

and spectral vegetation indices were weak in the prediction of biomass. Texture variables were 

the best group to explain biomass variation and thus the Variable of Importance Projection and 

R-square analysis outputs of texture at the second model iteration were selected for presentation 

and further discussion. Comparisons of window sizes and angles used were also presented. 

Inferences for the abovementioned findings are provided in the discussion to follow. 
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CHAPTER SIX: DISCUSSION 

 

6.1. Introduction 

In the present study, the potential of remotely-sensed variables to predict above-ground biomass 

(AGB) of a rehabilitation forest was assessed. Spectral factors and texture measures were 

analyzed for the identification of a group of the most important variables in the prediction of AGB. 

Remote sensing is commonly applied to plantation forests, however, this study explored its 

application on biomass prediction of a mixed secondary forest surrounding the Buffelsdraai 

landfill. This is special because indigenous trees are more ecologically sustainable than 

plantations.  The power of spectral features and texture variables derived from Landsat 8 OLI 

data to predict biomass was therefore evaluated using a PLS-analysis for the Buffelsdraai 

secondary forest. 

 

6.2. Biomass allometric estimation 

The total average AGB estimated from the 50 plots of 520 indigenous trees was 809.90kg.  

Although compartment 8 had 4 more forest plots than those in compartment 9 (n=23), biomass 

quantified in compartment 8 (319.33kg) was less than that calculated in compartment 9 

(490.57kg). This is likely to mainly be attributed to block 8 consisting of less individual trees than 

block 9 (Appendix A). This alludes to the value of standing forest because an area with a greater 

tree count will likely have a larger biomass content (and carbon sequestration potential) than a 

comparable area with less trees- provided those present species have similar physical 

characteristics. Appendix A is informative on the varying species composition within each block 

which could also be an influencing factor. Block 8 had four extra unique species, namely 

Bauhinia tomentosa, Clerodendrum glabrum, Ficus natalensis, and Strelitzia nicolai. In contrast, 

block 9 consisted of 6 extra unique species including Drotorhus logifolia, Ficus sur, Kigelia 

africana, Sclerocroton integerrimum, Searsia lucida, and Syzygium cordatum.  The rest of the 

species were common to both compartments. As illustrated in table 1, altogether there is a 

species richness of 22 indigenous trees. Erythrina caffra, Dalbergia obovata, and Brachylaena 

discolour were the three most dominant tree species comprising 28.85%, 24.62% and 12.50% 
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of the sample, respectively, within the compartments (Table 1). In agreement with Hu et al. 

(2015) who assessed the impact of species composition and stand structure on forest biomass 

carbon density, the results in this study demonstrate that forest biomass quantification is 

sensitive to both tree count and species composition with reference to tree structural attributes.   

 

6.3. Modelling by PLS 

6.3.1. Group comparisons and trends for biomass variation explanation 

With reference to figure 6, no group managed to explain 100% biomass variation. 

 

a. Spectral features 

By analyzing the relationship between forest AGB and the remote-sensing factors, it was found 

that the surface reflectance of all four bands was relatively poor (11.2180%) (Figure 6). Although 

latent factors derived from bands poorly explained biomass variation, bands were the only 

prediction group with the same best variable x163 in both training and validation set models.  

Table 7 and appendix B show that band 4 (green) was the most important band followed by band 

5 (NIR) for prediction. NIR did not maintain or improve its relevance based on the validation set. 

 

NDVI often correlates better among analyzed spectral vegetation indices (VIs) (Das and Singh, 

2012; Gizachew et al., 2016) however, according to the vegetation indices model in this study, 

DVI and NDII were the most relevant predictors (Table 7). Collectively, all 14 VIs managed to 

predict only 30.8778% of biomass variation. Even the validation set still achieved weak 

prediction (46.6929%). Although the spectral indices assessed in this study are common, this 

poor result may be due to a lack of suitable methods in literature to identify spectral factors that 

could have been most appropriate for biomass modelling (Cai et al, 2013; Dube and Mutanga, 

2015a; Xue and Su, 2017). Another reason for weak performance of spectral features in 

predicting biomass could be attributed to the forest composition phenology and growth vigour of 

sampled trees in the Buffelsdraai rehabilitation zone because these factors are said to influence 

and actually destabilize spectral variables (Sharma and Chaudhry, 2015).  
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b. Texture measures 

PLS modelling is performed with the hope of finding a good prediction model that is ideally built 

on the least number of explanatory predictors (Zheng et al., 2014). With reference to figure 6 

and appendix C, the assessment of the group consisting of only texture measures demonstrated 

a highly improved predictive ability in contrast to spectral features and was therefore selected 

as the best prediction model (77.33%). 

 

Research that yielded results in alignment with the findings of this study was by Eckert (2012). 

Eckert (2012) demonstrated that between texture measures, principal components, and 

vegetation indices, texture measures which were based on metrics of contrast, correlation and 

Angular Second Moment contributed to the best biomass and carbon stock model. Another 

similar study by Kelsey and Neff (2014) found that- even when texture-based models are 

compared to models that combined spectral with topographic features- all the models including 

texture strongly correlated with biomass rather than those that excluded any texture measure. 

These are some of many findings which emphasize the opportunity created by the quantification 

of image texture to estimate forest features from a variety of metrics and remote sensing data 

imagery (Eckert, 2012; Kelsey and Neff, 2014). 

 

c. Optimum window size and angle  

Due to texture factors being comprised of other properties such as bands, window sizes and 

angles, further evaluation was performed on each property. Window size 3x3 was compared to 

5x5, and angles 0°, 45°, 90° and 135° were compared to each other. The coefficients of 

determination returned indicate that overall, texture measures at a window size of 3x3 (67.11%) 

and angle of 45° (77.09%) had the most importance in the prediction of biomass. Studies by 

Gebreslasie et al. (2011) and Dube and Mutanga (2015a) which assessed model influences of 

different window sizes- although generated from different tree types, unique tree plots and 

imagery- agreeably showed that textural features computed using a 3x3 window also returned 

the highest coefficient of determination which then declined as window size increased from 3x3 

to 7x7 and 3x3 to 9x9, respectively. 
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Figure 6 and table 8 match with the VIP plot where texture variables at 45° were dominant in the 

texture subset. This is however contradictory to literature that is similar to research results by 

Dube and Mutanga (2015a) which found that good AGB accuracies were obtained from an offset 

of [0,1]. The difference in the results of these two studies may perhaps be due to the fact that 

the work of Dube and Mutanga (2015a) was based on uniform plantation forest, while this work 

was based on heterogeneous and randomly positioned tree objects of the Buffelsdraai 

rehabilitation zone on the image. The results of this study therefore suggest that future research 

based on mixed forests may be undertaken on only the 45° angle which would decrease 

computational complexity (Pathak and Dikshit, 2010). 

 

6.3.2. Multicollinearity 

The VIP plot generation helped to eliminate variables that did not meet the selection mark of 1.0. 

As suggested by Oliveria et al. (2013), the VIP variable selection method applied in this study 

was where after each iteration, the model statement required recoding for the inclusion of only 

the variables that were deemed important (reached the selection mark of 1.0). Appendix C shows 

that after each run of PLS analysis for bands and spectral indices, the variables included in the 

next run produced a lower variation percentage. This indicates that with the absence of some 

variables that were present in a previous PLS iteration, the model becomes weaker in its ability 

to predict biomass. This suggests that variables within a group do indeed possess dependency 

on each other for their overall prediction strength.  

 

Another column worth paying attention to is that which provides the best predictive variable at 

each PLS run within each group in appendix C. If multicollinearity did not exist within the data, it 

would be expected that the variable observed as the most important after the first iteration would 

actually maintain its position throughout the runs of each group (Chong and Jun, 2005). This is 

observable in the group of bands with variable x163 however this is mainly not the case. Within 

each of the other evaluated groups (spectral VIs, texture extractions, all variables, window sizes 

3x3 and 5x5, and angles 0°, 45°, 90°, and 135°) the best variable changes throughout the 

iterations. Within the best biomass predictive group of only texture extractions, for example, x76 

is a frequently appearing best variable, however, this leading variable performance only stands 

at iterations 3, 4, 5, and 6 in the training set and 1, 2, 4, 5, and 6 in the validation set. This attests 
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to the presence of multicollinearity which means that the results are influenced by the variables 

that influence each other within the PLS regression. 

 

6.4. Optimal variable subset 

The choice of texture as the most appropriate prediction group was entirely dependent on the 

explained variation of biomass presented in figure 6 and appendix C. A VIP provides the optimal 

subset of variables. It is a variable selection method that simply allows the identification of 

important factors for prediction of a response. It is clear that group-wise, the trend of predictive 

ability of biomass shows that bands have the least power, spectral indices have a slightly greater 

power, and groups including texture extractions are overall the better option of consideration for 

biomass estimation. However, the results obtained demonstrate that there is a core challenge in 

identifying very few explanatory variables for the prediction of biomass. Hence a substantial 

number of variables were retained even at the end of the PLS runs in the texture group (figure 

7). Texture extractions have a greater ability to predict biomass than other remotely-sensed 

variables used in this study. This is in line with many other studies (Gebreslasie et al., 2011; Dye 

et al., 2012; Menhood et al., 2012; Sarker et al., 2012; Cai et al., 2013; Lu et al., 2014; Zheng et 

al., 2014; Dube and Mutanga, 2015a and Rejou-Mechain et al., 2017).  

 

6.5. Summary 

Through the use of literature that focuses on the application of remote sensing for biomass 

estimations, this chapter has discussed the main findings of the research undertaken noting that 

texture measures were most predictive of biomass. Several explanations were provided for 

these observations and apparent relationships between and among independent and dependent 

variables. Hereditary characteristics of imagery and variables used, as well as the model 

performed have influenced the outcomes to inform future biomass estimations around the  

Buffelsdraai landfill site. 
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CHAPTER SEVEN: CONCLUSION AND RECOMMENDATIONS 

 

7.1. Introduction 

The observed behaviour of remotely-sensed variables is influenced by the data structure, 

number of sample plots, allometric equation used to estimate biomass, and probably the satellite 

data and variable selection method employed. It is important to dedicate this session to focusing 

not only on the methodologies employed but also the spatial context of this study. This chapter 

will therefore provide possible recommendations that can be useful to address some of the clear 

social, economic and environmental challenges of areas close to and including the Buffelsdraai 

landfill site so that the fight to stabilize greenhouse gases and alleviate poverty can perhaps be 

won.  

 

7.2. Local waste management 

Waste recovery can be a household-based strategy across the South African nation. Awareness 

should be raised for more households to better manage their waste. To reduce unfavourable 

waste disposal and carbon emissions, campaigns for composting and recycling at personal 

capacity should remain activated whose benefits can drive people toward development of home-

based food gardens and extra income. This form of inclusive waste management would be a 

powerful way to influence societies and instill in them environmental ethics so that they develop 

“green-consciousness” and environmentally responsible behaviour for protection of climate 

change (Pegels, 2012).  

 

Another important aspect is the economic situation in Buffelsdraai. The official unemployment 

rate for South Africa as a whole has increased from 22% in 1994 to 25% a decade later, and 

then quickly to 27.7% in 2017. This alarming reality should help us realize and promote the 

contribution of small scale projects which have a resounding environmental impact. With an 

increase in South Africa’s unemployment rate, communal forest expansion initiatives such as 

the Buffeldraai story are opportunities for the expansion of protected areas and poverty 



52 
 

alleviation. It is recommendable that more local community development projects are scouted 

on the principles of sustainability and introduced to other landfill locations. These can be funded 

by government authorities to help achieve poverty alleviation and simultaneously achieve the 

expansion of protected area coverage to enable green corridors for biodiversity persistence 

where possible. Good governance through eradication of corruption is an important form of 

peace-building which can greatly contribute to the economic upliftment of local people and 

successes of holistic initiatives in South Africa.  

 

Managing forests originating from afforestation and forest restoration systems is apparently an 

opportunity for climate change mitigation and adaptation (He et al., 2011). Another way to try 

and enhance the capacity of a landfill’s indigenous forest buffer zone could be strategic tree type 

planting. This may require analysis of C sequestration potential of various indigenous trees to 

determine which species can sequester the most C. This analysis would require that more of the 

tree-types which grow to have large amounts of biomass be planted to increase C sequestration 

thereby improving climate change protection. 

 

7.3. Equation development for Buffelsdraai rehabilitation mixed species 

Different indigenous tree species in comparison with one another have non-uniform physical 

characteristics. This suggests a need for the development of species-specific equations which 

would be the basis of more suitable biomass calculations and estimations of potential carbon 

sequestration of each tree species within the buffer zone. Building these equations would further 

inform landscape planners and managers on which species to cultivate more of in restoration 

and other similar projects for optimum carbon sequestration. Perhaps because planting like-

species in clumps might prove to not be a feasible exercise, equations based particularly on all 

those mixed species belonging to the Buffelsdraai landfill geographic extent should at least be 

prioritized for improved future biomass estimations. Lu et al. (2014) have reviewed that most 

biomass estimation models are not transferable to other sites due to the effects of biophysical 

environments on remote sensing data. More research is therefore needed for the development 

of reliable variables with sufficient stability to create biomass estimation models that are 

transferrable to differing environments. 
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7.4. Further exploration of remote sensing 

Landfill mapping allows for the identification and quantification of trees surrounding the waste 

disposal site and supports landfill management practices that are related to climate change 

mitigation. Modelling biomass using products of remote sensing is therefore a useful procedure 

in climate change mitigation as it may enable us to determine carbon sequestration potential 

and survey health and expansion of trees in an even quicker and most times cheaper manner 

(Cai et al., 2013; Zheng et al, 2014).  

 

Overall, biomass predictions vary among different studies according to natural variability as well 

as methodologies employed (Rejou-Mechain et al., 2017). Menhood et al. (2012) suggest that 

there is likely an interaction between a variable selection method and the properties of used data 

therefore none of the methods that have been used to select predictive variables in literature will 

always be the best for each data set. To achieve better prediction than that obtained in this 

study, other literature- based variable selection methods can therefore be explored. Future study 

can explore PLS on texture variables that are constructed on band 4 (green) at window size 3x3 

and angle 45°. The application of optical sensors for biomass estimation is valuable, however, 

the power of active sensors cannot be underestimated. Moreover, due to these varying 

advantages of different sensor data, multi-source remote sensing data may be the next step to 

achieve improved biomass estimations based on texture predictors for the Buffelsdraai landfill 

buffer zone. 

 

7.5. Concluding remarks     

Although the field data used represents a small vegetation cover in comparison to the vegetation 

of South Africa and the world, trees comprising the Buffelsdraai rehabilitation zone are still an 

important carbon sink. Protected area expansion is one of the national mandates in conservation 

efforts which should always be remembered. It is therefore important to be able to devise 

biomass estimation models for the Buffelsdraai rehabilitation forest as this forest will in future 

develop into a larger nature reserve and improve the biodiversity status of eThekwini 

municipality. Remote sensing is very useful in studies aiming to achieve biomass estimations. 
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Considering the broad array of available remotely-sensed imagery, field based and remotely-

sensed forest data inputs, biomass allometric equations, spectral and texture parameters as well 

as those that can be derived from image transformations and topographic features, almost 

endless possibilities exist for better biomass prediction by potential predictors and combinations 

thereof. Further research may therefore be needed for exploitation of remote sensing to support 

the value of easier biomass monitoring in the Buffelsdraai landfill rehabilitation zone.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 



55 
 

REFERENCES 

 

Akarachantachote, N., Chadcham, S., and Saithanu, K. 2014. Cut-off threshold of variable 

importance in projection for variable selection. International Journal of Pure and Applied 

Mathematics, 94(3): 307-322. 

 

Ali, J., Khan, R., Ahmad, N., and Maqsood, I. 2012. Random forests and decision trees. 

International Journal of Computer Science Issues, 9(5): 272-278. 

 

Basati, S., Rayegani, B., Saati, M., Sharifi, A., and Nasri, M. 2011. Comparison between the 

accuracies of different spectral indices for estimation of vegetation cover fraction in sparse 

vegetated areas. The Egyptian Journal of Remote Sensing and Space Sciences, 14: 49-56. 

 

Biowatch South Africa, 2015. ‘Underlying drivers of forest loss and new threats to forests’, 

presentation at the Civil Society Alternative Programme conference during the 14th World 

Forestry Congress in the Durban University of Technology, Kendra Hall, South Africa, 6th-11th 

September.   

 

Boon, R., Redman, G., Mkhwanazi, S., Mather, A. 2007. EThekwini municipality biodiversity 

report, Durban, South Africa. 

 

Cai, S., Kang, X., and Zhang, L. 2013. Allometric models for aboveground biomass of ten tree 

species in northeast China. Annals of Forest Research, 56(1): 105-122. 

 

Ceballos, G., García, A., and Ehrlich, P.R. 2010. The sixth extinction crisis loss of animal 

populations and species. Journal of Cosmology, 8: 1821-1831. 

 

Chave, J., Rejou-Mechain, M., Burquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B.C., 

Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C., Henry, M., Martinez-Yrizar, A., Mugasha, 

W.A., Muller-Landau, H.C., Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, E.M., Ortiz-

Malavassi, E., Pelissier, R., Ploton, P., Ryan, C.M., Saldarriaga, J.G., and Vieilledent, G. 2014. 



56 
 

Improved allometric models to estimate the aboveground biomass of tropical trees. Global 

Change Biology, 20: 3177-3190. 

 

Chong, I.G., and Jun, C.H. 2005. Performance of some variable selection methods when 

multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78: 103-112. 

 

Das, S., and Singh, T.P. 2012. Correlation analysis between biomass and spectral vegetation 

indices of forest ecosystem. International Journal of Engineering Research and Technology, 

1(5): 1-13. 

 

Deng, J.S., Wang, K., Hong, Y., and Qi, J.G. 2009. Spatio-temporal dynamics and evolution of 

land use change and landscape pattern in response to rapid urbanization. Landscape and Urban 

Planning, 92: 187-198.   

 

Dobbin, K.K., and Simon, R.M. 2011. Optimally splitting cases for training and testing high 

dimensional classifiers. BMC Medical Genomics, 4(31): 1-8. 

 

Douwes, E., Roy, K.E., Diederichs-Mander, N., Mavundla, K., and Roberts, D. 2015. The 

Buffelsdraai landfill site community reforestation project: leading the way in community 

ecosystem-based adaptation to climate change. EThekwini municipality, Durban, South Africa. 

 

Du, L., Zhou, T., Zou, Z., Zhao, X., Huang, K., and Wu, H. 2014. Mapping forest biomass using 

remote sensing and national forest inventory in China. Forests, 5: 1267-1283. 

 

Dube, T., and Mutanga, O. 2015a. Investigating the robustness of the new Landsat-8 

Operational Land Imager derived texture metrics in estimating plantation forest aboveground 

biomass in resource constrained areas. ISPRS Journal of Photogrammetry and Remote 

Sensing, 108: 12-32. 

 



57 
 

Dube, T., and Mutanga, O. 2015b. Evaluating the utility of the medium-spatial resolution Landsat 

8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. 

ISPRS Journal of Photogrammetry and Remote Sensing, 101: 36-46. 

 

Dye, M., Mutanga, O., and Ismail, R. 2012. Combining spectral and textural remote sensing 

variables using random forests predicting the age of Pinus patula forests in KwaZulu-Natal, 

South Africa. Journal of Spatial Science, 57(2): 197-215. 

 

Eckert, S.  2012. Improved forest biomass and carbon estimation using texture measures from 

WorldView-2 satellite data. Remote Sensing, 4: 810-829.  

 

EThekwini Municipality. 2011. Buffelsdraai Landfill Site Community Reforestation Project: 

Community, Climate and Biodiversity Standard Project Design Document. Prepared by The 

Cirrus Group.   

 

Ezemvelo KZN Wildlife, 2016. Modified 2016 KZN local municipality boundary- GIS coverage. 

Biodiversity Spatial Planning and Information, P.O.Box. 13053, Cascades, Pietermaritzburg, 

3202. 

 

Fleming, A.L., Wang, G., and McRoberts, R.E. 2015. Comparison of methods toward multi-scale 

forest carbon mapping and spatial uncertainty analysis: Combining national forest inventory plot 

data and landsat TM images. European Journal of Forest Research, 134: 125-137. 

 

Friedrich, E., and Trois, C. 2011. Quantification of greenhouse gas emissions from waste 

management processes for municipalities: A comparative review focusing on Africa. Waste 

Management, 31: 1585-1596. 

 

Galidaki, G., Zianis, D., Gitas, L., Radoglou, K., Karathanassi, V., Tsakiri–Strati, M., Woodhouse, 

I., and Mallinis, G. 2017. Vegetation biomass estimation with remote sensing: Focus on forest 

and other wooded land over the Mediterranean ecosystem. International Journal of Remote 

Sensing, 38(7): 1940-1966. 



58 
 

Gara, T.W, Murwira, A., Chivhenge, E., Dube, T., and Bangira, T. 2014. Estimating wood volume 

from canopy area in deciduous woodlands of Zimbabwe. Southern Forests, 76(4): 237-244. 

 

Gebreslasie, M.T., Ahmed, F.B., and Van Aardt, J.A.N. 2011. Extracting structural attributes from 

IKONOS imagery for Eucalyptus plantation forests in KwaZulu-Natal, South Africa, using image 

texture analysis and artificial neural networks. International Journal of Remote Sensing, 1-25. 

 

Giri, C.P. 2012. Remote Sensing of Land Use and Land Cover: Principles and Applications. 

Taylor and Francis Group, United States. 

 

Gizachew, B., Solberg, S., Næsset, E., Gobakken, T., Bollandsas, O.L., Breidenbach, J., 

Zahabu, E., and Mauya, E.W. 2016. Mapping and estimating the total living biomass and carbon 

in low-bioass woodlands using Landsat 8 CDR data. Carbon Balance and Management, 11(13): 

1-14. 

 

Glenday, J. 2007. Carbon storage and sequestration analysis for the eThekwini environmental 

services management plan open space system. For the eThekwini municipality environmental 

management department. 

 

Goussanou, C.A., Guendehou, S., Assogbadjo, A.E., Kaire, M., Sinsin, B., and Cuni-Sanchez, 

A. 2016. Specific and generic stem biomass and volume models of tree species in a west African 

tropical semi-deciduous forest. Silva Fennica, 50(2): 1-22. 

 

Guendehou, G.H.S., Lehtonen, A., Moudachirou, M., Mäkipää, R., and Sinsin, B. 2012. Stem 

biomass and volume models of selected tropical tree species in West Africa. Southern Forests: 

A Journal of Forest Science, 74(2): 77-88. 

 

Haralick, R.M., Shanmugam, K., and Dinstein, I. 1973. Textural features for image classification. 

IEEE Transaction on Systems, Man and Cybernetics, 3(6), 610-621. 

 



59 
 

Hatfield, J.I., and Prueger, J.H. 2010. Value of using different vegetation indices to quantify 

agricultural crop characteristics at different growth stages under varying management practices. 

Remote Sensing, 2: 562-578. 

 

He, Q., Chen, E., An, R., and Li, Y. 2013. Above-ground biomass and biomass components 

estimation using LiDAR in a coniferous forest. Forests, 4: 984-1002. 

 

Henry, M., Picard, N., Trotta, C., Manlay, R.J., Valentini, R., Bernoux, M. and Saint-André, L. 

2011. Estimating tree biomass of sub-Saharan African forests: A review of available allometric 

equations, Silva Fennica. 45(3B): 477-569. 

 

Hu, Y. Su, Z., Li, W and Ke, X. 2015. Influence of tree species composition and community 

structure on carbon density in a subtropical forest. Public library of Science One, 1-9. 

 

Jackson, R.D., and Huete, A.R. 1991. Interpreting vegetation indices. Preventive Veterinary 

Medicine, 11: 185-200. 

 

Jin-Song, D., Ke, W., Jun, L., and Yan-Hua, D. 2009. Urban land use change detection using 

multisensory satellite images. Pedosphere, 19(1): 96-103. 

 

Karl, T.R., and Trenberth, K.E. 2003. Modern global climate change. Science, 302: 1719-1723. 

 

Kelsey, K.C., and Neff, J.C. 2014. Estimates of aboveground biomass from texture analysis of 

Landsat imagery. Remote Sensing, 6: 6408-6422. 

 

Li, M., Tan, Y., Pan, J., and Peng, S. 2008. Modeling forest aboveground biomass by combining 

spectrum, textures and topographic features. Frontiers of Forestry in China, 3(1): 10-15. 

 

Lillesand, T.M., Kiefer, R.W., and Chipman, J.W. 2004. Remote Sensing and Image 

Interpretation. John Wiley and Sons: New York. 

 



60 
 

Lincoln, J. 2011. South Africa: Waste management. Swiss Business Hub South Africa, Pretoria. 

 

Litton, C.M., and Kauffman, J.B. 2008. Allometric models for predicting aboveground biomass in 

two widespread woody plants in Hawaii. Biotropica, 40(3): 313-320. 

 

Liu, X., Ekoungoulou, R., Loumeto, J.J., Ifo, S.A., Bocko, Y.E., and Koula, F.E. 2014. Evaluation 

of carbon stocks in above- and below-ground biomass in Central Africa: Case study of Lesio-

louna tropical rainforest of Congo. Biogeosciences, 11: 10703-10735. 

 

Lu, D., Chen, Q., Wang, G., Liu, L., Li, G., and Moran, E. 2014. A survey of remote sensing-

based aboveground biomass estimation methods in forest ecosystems. International Journal of 

Digital Earth, 1-45. 

 

McRoberts, R.E., Næsset, E., and Gobakken, T. 2015. Optimizing the k-nearest neighbors 

technique for estimating forest aboveground biomass using airborne laser scanning data. 

Remote Sensing of Environment, 1-10. 

 

Mehmood, T., Liland, K.H., Snipen, L., and Sæbø, S. 2012. A review of variable selection 

methods in Partial Least Squares Regression. Chemometrics and Intelligent Laboratory 

Systems, 118: 62-69. 

 

Mensah, S., Veldtman, R., du Toit, B., Kakaï, R.G., and Seifert, T. 2016. Aboveground biomass 

and carbon in a South African mistbelt forest and the relationships with tree species diversity 

and forest structures. Forests, 7(79): 1-17. 

 

Nabuurs, G.J., Masera, O., Andrasko, K., Benitez-Ponce, P., Boer, R., Dutschke, M., Elsiddig, 

E., Ford-Robertson, J., Frumhoff, P., Karjalainen, T., Krankina, O., Kurz, W.A., Matsumoto, M., 

Oyhantcabal, W., Ravindranath, N.H., Sanz Sanchez, M.J., and Zhang, X. 2007. Forestry. 

Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental 

Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New 

York, USA. 



61 
 

Oliveira, L.Z., Reeb, P.D., Monteiro, F.M., Carreira, J.T., and Arruda, R.P. 2013. The use of 

Partial LeastSquare (PLS) to explore the importance of sperm characteristics in the prediction 

of bull fertility. Journal of Veterinary Science and Technology, 11: 1-8. 

 

Pathak, V and Dikshit, O. 2010. A new approach for finding an appropriate combination of texture 

parameters for classification. Geocarto International, 25(4): 295-313. 

 

Pegels, A. 2012. Renewable energy in South Africa: Potentials, barriers and options for support. 

Energy Policy, 38: 4945-4954. 

 

Pelletier, J., Kirby, K.R., and Potvin, C. 2012. Significance of carbon stock uncertainties on 

emission reductions from deforestation and forest degradation in developing countries. Forest 

Policy and Economics, 24: 3-11. 

 

Reis, S. 2008. Analyzing land use/land cover changes using remote sensing and GIS in Rize, 

North-East Turkey. Sensors, 8: 6188-6202. 

 

Rejou-Mechain, M., Tanguy, A., Piponiot, C., Chave, J., and Herault, B. 2017. Biomass: An R 

package for estimating above-ground biomass and its uncertainty in tropical forests. Methods in 

Ecology and Evolution, 1-5. 

 

Rokni, K., Ahmad, A., Selamat, A., and Hazini, S. 2014. Water feature extraction and change 

detection using multispectral landsat imagery. Remote Sensing, 6: 4173-4189. 

 

Salas, E.A.L., Boykin, K.G., and Valdez, R. 2016. Multispectral and texture feature application 

in image object analysis of summer vegetation in eastern Tajikisttan Pamirs. Remote Sensing, 

8(78): 1-20. 

 

Sarker, L.R., Nichol, J., Ahmad, B., Busi, I., and Rahman, A.A. 2012. Potential of texture 

measurements of two-date dual polarization PALSAR data for the improvement of forest 

biomass estimation. ISPRS Journal of Photogrammetry and Remote Sensing, 69: 146-166. 



62 
 

Sharma, V., and Chaudhry, S. 2015. An evaluation of existing methods for assessment of above-

ground biomass in forests. International Journal of Engineering Research and Science and 

Technology, 4(2): 1-20.  

 

South Africa Government, 1977, Health Act, Republic of South Africa, Pretoria. 

 

South Africa Government, 1998, National Environmental Management Act (NEMA), Republic of 

South Africa, Pretoria. 

 

Tanhuanpää, T., Kankare, V., Setälä, H., Yli-Pelkonen, V., Vastaranta, M., Niemi, M.T, Raisio, 

J., and Holopainen, M. 2017. Assessing above-ground biomass of open-grown urban trees: A 

comparison between existing models and a volume-based approach. Urban Forestry and Urban 

Greening, 21: 239-246. 

 

Templeton, G, F. 2011. A Two-Step approach for transforming continuous variables to normal: 

Implications and recommendations for IS research. Communications of the Association for 

Information Systems, 28(4): 41-58. 

 

Toutin, T. 2004. Geometric processing of remote sensing images: Models, algorithms and 

methods. Journal for Remote Sensing, 25(10): 1893-1924. 

 

U.S. Geological Survey Earth Resources Observation and Science (USGS EROS) Resource 

Archive. Available online: https://earthexplorer.usgs.gov/ (accessed on 31 August 2015). 

 

Verburg, P., van de Steeg, J., Veldkamp, A., and Willemen, L. 2009. From land cover change to 

land function dynamics: A major challenge to improve land characterization. Journal of 

Environmental Management, 90(3), 1327-1335.  



63 
 

Xue, J., and Su, B. 2017. Significant remote sensing vegetation indices: A review of 

developments and applications. Journal of Sensors, 2017: 1-17. 

 

Yacouba, D., Guangdao, H., and Xingping, W. 2009. Application of remote sensing in land 

use/land cover change detection in Puer and Simao counties, Yunnan province. Journal of 

American Science, 5(4): 157-166.  

 

Zheng, S., Cao, C., Dang, Y., Xiang, H., Zhao, J., Zhang, Y., Wang, X., and Guo, H. 2014. 

Retrieval of forest growing stock volume by two different methods using Landsat TM images. 

International Journal of Remote Sensing, 35(1): 29-43. 

 



XI 
 

APPENDICES 
 

APPENDIX A 

Tree species found in each rehabilitation compartment 

 

 

 

 

 

 

 

Block 8 

Name Count 

Acacia caffra  14 

Acacia karroo  19 

Bauhinia tomentosa  1 

Brachylaena discolor  32 

Bridellia micranta  11 

Clerodendrum glabrum  11 

Commiphora woodii  3 

Dalbergia obovata  48 

Erythrina caffra  9 

Euphorbia tirucalli  7 

Ficus natalensis  3 

Harpephyllum caffrum  2 

Milletia grandis  40 

Strelitzia nicolai  4 

Strychnos spinosa  11 

Total 215 

Block 9 

Name Count 

Acacia caffra  11 

Acacia karroo  14 

Brachylaena discolor  33 

Bridellia micranta  2 

Commiphora woodii  2 

Dalbergia obovata  80 

Drotorhus logifolia  3 

Erythrina caffra  141 

Euphorbia tirucalli  2 

Ficus sur  1 

Harpephyllum caffrum  4 

Kigelia africana  1 

Milletia grandis  1 

Sclerocroton integerrimum  5 

Searsia lucida  2 

Strychnos spinosa  1 

Syzygium cordatum  2 

Total 305 
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APPENDIX B 

Remote sensing variables and their symbols used in SAS for modelling AGB 

 

Remote sensing variable Symbol 

Band B 

Band numbers 2,3,4 and 5 

Contrast Cont 

Correlation Corr  

Dissimilarity Dis  

Homogeneity Homo  

Variance Var  

3x3 window size 3.  

5x5 window size 5.  

0° 0  

45° 45  

90° 90 

135° 135 
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160 Texture measures 

B2Cont3.90 x1 B2Cont5.90 x21 

B3Cont3.90 x2 B3Cont5.90 x22 

B4Cont3.90 x3 B4Cont5.90 x23 

B5Cont3.90 x4 B5Cont5.90 x24 

B2Corr3.90 x5 B2Corr5.90 x25 

B3Corr3.90 x6 B3Corr5.90 x26 

B4Corr3.90 x7 B4Corr5.90 x27 

B5Corr3.90 x8 B5Corr5.90 x28 

B2Dis3.90 x9 B2Dis5.90 x29 

B3Dis3.90 x10 B3Dis5.90 x30 

B4Dis3.90 x11 B4Dis5.90 x31 

B5Dis3.90 x12 B5Dis5.90 x32 

B2Homo3.90 x13 B2Homo5.90 x33 

B3Homo3.90 x14 B3Homo5.90 x34 

B4Homo3.90 x15 B4Homo5.90 x35 

B5Homo3.90 x16 B5Homo5.90 x36 

B2Var3.90 x17 B2Var5.90 x37 

B3Var3.90 x18 B3Var5.90 x38 

B4Var3.90 x19 B4Var5.90 x39 

B5Var3.90 x20 B5Var5.90 x40 



XIV 
 

 

B2cont3.0 x41 B2cont5.0 x61 

B3cont3.0 x42 B3cont5.0 x62 

B4cont3.0 x43 B4cont5.0 x63 

B5cont3.0 x44 B5cont5.0 x64 

B2corr3.0 x45 B2corr5.0 x65 

B3corr3.0 x46 B3corr5.0 x66 

B4corr3.0 x47 B4corr5.0 x67 

B5corr3.0 x48 B5corr5.0 x68 

B2diss3.0 x49 B2diss5.0 x69 

B3diss3.0 x50 B3diss5.0 x70 

B4diss3.0 x51 B4diss5.0 x71 

B5diss3.0 x52 B5diss5.0 x72 

B2homo3.0 x53 B2homo5.0 x73 

B3homo3.0 x54 B3homo5.0 x74 

B4homo3.0 x55 B4homo5.0 x75 

B5homo3.0 x56 B5homo5.0 x76 

B2var3.0 x57 B2var5.0 x77 

B3var3.0 x58 B3var5.0 x78 

B4var3.0 x59 B4var5.0 x79 

B5var3.0 x60 B5var5.0 x80 



XV 
 

 

 

B2cont3.45 x81 B2cont5.45 x101 

B3cont3.45 x82 B3cont5.45 x102 

B4cont3.45 x83 B4Cont5.45 x103 

B5cont3.45 x84 B5cont5.45 x104 

B2corr3.45 x85 B2corr5.45 x105 

B3corr3.45 x86 B3corr5.45 x106 

B4corr3.45 x87 B4corr5.45 x107 

B5corr3.45 x88 B5corr5.45 x108 

B2diss3.45 x89 B2diss5.45 x109 

B3diss3.45 x90 B3diss5.45 x110 

B4diss3.45 x91 B4diss5.45 x111 

B5diss3.45 x92 B5diss5.45 x112 

B2homo3.45 x93 B2Homo5.45 x113 

B3homo3.45 x94 B3homo5.45 x114 

B4homo3.45 x95 B4homo5.45 x115 

B5homo3.45 x96 B5homo5.45 x116 

B2var3.45 x97 B2var5.45 x117 

B3var3.45 x98 B3var5.45 x118 

B4var3.45 x99 B4var5.45 x119 



XVI 
 

B5var3.45 x100 B5var5.45 x120 

 

B2cont3.135 x121 B2cont5.135 x141 

B3cont3.135 x122 B3cont5.135 x142 

B4cont3.135 x123 B4cont5.135 x143 

B5cont3.135 x124 B5cont5.135 x144 

B2corr3.135 x125 B2corr5.135 x145 

B3corr3.135 x126 B3corr5.135 x146 

B4corr3.135 x127 B4corr5.135 x147 

B5corr3.135 x128 B5corr5.135 x148 

B2diss3.135 x129 B2diss5.135 x149 

B3diss3.135 x130 B3diss5.135 x150 

B4diss3.135 x131 B4diss5.135 x151 

B5diss3.135 x132 B5diss5.135 x152 

B2homo3.135 x133 B2homo5.135 x153 

B3homo3.135 x134 B3homo5.135 x154 

B4homo3.135 x135 B4homo5.135 x155 

B5homo3.135 x136 B5homo5.135 x156 

B2var3.135 x137 B2var5.135 x157 

B3var3.135 x138 B3var5.135 x158 

B4var3.135 x139 B4var5.135 x159 



XVII 
 

B5var3.135 x140 B5var5.135 x160 

 

4 Bands 

Band2 x161 Band4 x163 

Band3 x162 Band5 x164 

 

14 Spectral Indices 

ARVI x165 SAVI x172 

NDMI x166 Blue/Green x173 

CIGREEN x167 Blue/NIR x174 

DVI x168 Blue/R x175 

NDII x169 Green/NIR x176 

NDVI x170 Green/R x177 

RVI x171 Red/NIR x178 
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APPENDIX C 

VIP results per PLS run for all analyzed groups 

 



XIX 
 

 50 plots 35 plots 

Group Iteration Biomass 

variation 

explained by 

100%  PLS 

factors 

Eliminated Best 

variable 

Biomass 

variation 

explained  

by 100% 

PLS 

factors 

Eliminated Best 

variable 

 

4 Bands 

reflectance 

1st  11.2180 0 163 12.0212 0 163 

2nd  7.5184 2 163 10.8473 1 163 

3rd     10.8354 2 163 

 

14 Spectral 

indices 

1st  30.8778 0 168 46.6929 0 169 

2nd  16.5176 10 173 31.9173 7 169 

3rd  7.9796 12 173 24.8107 10 173 

4th     24.8098 11 177 

5th     11.5410 12 173 

 

160 

Texture 

extractions 

1st  77.3321 0 25 99.6868 0 76 

2nd  77.3321 98 151 99.6868 92 76 

3rd  70.1332 133 76 92.0838 135 137 

4th  43.4325 147 76 46.5984 150 76 

5th  32.9810 153 76 37.8476 155 76 

6th  31.0288 155 76 30.1348 158 76 

 

178 All 

variables  

1st  77.3321 0 164 99.6868 0 76 

2nd  77.3321 112 140 99.6868 103 76 



XX 
 

3rd  58.2323 152 125 99.6868 143 137 

4th  42.4008 168 96 75.2933 162 137 

5th  15.3882 175 125 58.5376 171 76 

6th  14.8665 176 125 24.0455 176 76 

 

3x3 1st  77.3321 0 56 99.6868 0 137 

2nd  76.7042  42 45 99.6868 44 137 

3rd  56.9195 62 15 63.0152 62 137 

4th  32.0427 68 6 41.4143 71 137 

5th  20.2188 73 125 34.6049  76 43 

6th  11.0295 77 125 25.7279  77 43 

7th  10.8097 78 6 15.6064  78 43 

 

5x5 1st  77.3321 0 76 99.6868 0 76 

 2nd  67.1073 48 76 99.6868 41 76 

 3rd  44.0948 67 76 50.8956 63 76 

 4th  34.0948 72 76 40.8635 72 76 

 5th     30.6119  77 76 

 

45° 1st  77.0928 0 108 47.8603 0 116 

 2nd  47.5398 20 108 47.8603 21 108 

 3rd  37.3945 29 88 28.0531 32 108 

 4th  26.5700 35 96 15.7429 38 88 

 5th  12.1888 38 108    

 



XXI 
 

135° 1st  76.2294 0 127 99.6868 0 146 

 2nd  40.2089 25 138 81.9712 23 137 

 3rd  30.6686 31 125 24.2364 33 137 

 4th  18.5327 35 151 16.6317 38 137 

 5th  10.7264 38 151    

 

90° 1st  76.2504 0 8/40 99.6868 0 7 

 2nd  42.3177 21 7 41.9723 26 6 

 3rd  28.1269 32 6 21.6855  34 26 

 4th  19.1975 37 6 12.9874  37 6 

 

0° 1st  74.4966 0 76 99.6868  0 76 

 2nd  33.2148 23 76 63.6071  23 76 

 3rd  26.8892 31 76 44.6962  32 76 

 4th  13.0701 35 80 36.4049  35 76 

 5th  8.6446 37 80 15.8142  38 76 

 6th  8.4499 38 80    


