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Abstract  

The deteriorating condition of land in parts of the world is negatively affecting livelihoods, 

especially, in rural communities of the developing world. Zimbabwe has experienced significant 

vegetation cover losses, particularly, in low and varied rainfall areas of the Save catchment. The 

concern that Save catchment is undergoing huge vegetation losses has been largely expressed, 

with the causes being environmental and anthropogenic. Given the magnitude of the problem, 

research studies have been undertaken to assess the extent of the problem in the south eastern 

region of Zimbabwe, which, nevertheless, have been mainly localized. The present study seeks 

to identify and quantify vegetation degradation at a landscape scale in the Save catchment of 

Zimbabwe, using remote sensing technologies. To achieve this, two objectives were set. The first 

objective provided a review of the application of satellite earth observations in assessing 

vegetation degradation, the causes, as well as associated impacts at different geographical scales. 

A review of literature has revealed the effectiveness of satellite information in identifying 

changes in vegetation condition. A second objective sought to establish the extent of vegetation 

degradation in the Save catchment. Moderate Resolution Imaging Spectroradiometer- 

Normalised Difference Vegetation Index (MODIS NDVI) datasets were used for mapping NDVI 

trends over the period 2000-2015. Further analysis involved application of residual trend 

(RESTREND) method to separate human influences from climatic signal on vegetation 

degradation. RESTREND results showed an increasing trend in NDVI values in about 33.6% of 

the Save catchment and a decreasing trend in about 18.3% from 2000 to 2015. The results of the 

study revealed that about 3,609,955 hectares experienced significant human induced vegetation 

degradation. Approximately 38.8% of the Save Catchment was significantly degraded (p< 0.05), 

3.6%, 12.8%, and 22.4% of which were classified as severely, moderately, and lightly degraded, 

respectively. Severe degradation was mainly found in the central districts of the Save Catchment, 

mainly Bikita, Chipinge and northern Chiredzi. The results of this study support earlier reports 

about ongoing degradation in the catchment. Vegetation changes observed across the landscape 

revealed different degrees of the impacts of land use activities in altering the terrestrial 

ecosystems. The study demonstrated the usefulness of the RESTREND method in identifying 

vegetation loss due to human actions in very low rainfall areas.  

 

Keywords: remote sensing; residual trend; NDVI; semi-arid; vegetation degradation 
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CHAPTER 1 

General Introduction 

 

1.1 Introduction 

Terrestrial ecosystems are rapidly changing due to vegetation degradation and these changes are 

observed in species diversity and their geographical spread (Ndayisaba et al., 2017). Vegetation 

degradation may be described as the reduction of the capacity of land as a productive resource 

(Bai et al., 2008). Various forms of degradation include soil erosion, water quality reduction, 

changes in species composition and vegetation loss (Reynolds et al., 2007).  The major drivers of 

the changes are largely anthropogenic, with little impact from physical factors (Vlek et al., 

2008). These changes have made terrestrial ecosystems to be less resilient and even more 

vulnerable to slight disturbances, thus, reducing the generation or restoration capability. 

Reduction in land ‘s biological productivity due to natural causes and human actions leads to 

environmental concerns, especially, in semi-arid ecosystems whose fragile soils support the 

livelihood of m an y r u r a l  communities (Evans & Geerken, 2004).  

 

Globally, the population depending on these fragile ecosystems exceed one billion people (Vlek 

et al., 2008), approximately 42% of whom are poor people dependant on the degraded soils for 

their livelihoods (Braun et al., 2010). Sub-Saharan Africa (SSA) experiences land deterioration 

the most (Nkonya et al., 2015), where, about 28% of the 924.7 million inhabitants occupy the 

marginal lands (Le et al., 2014). Tully et al. (2015) revealed that, about 75% of the rural poor 

living in SSA largely relies on this fragile soil resource for subsistence farming. In Kenya, for 

example, more than 12 million people are occupying areas that have experienced vegetation 

degradation (Mulinge et al., 2016). The “villagization” programme, initiated in Tanzania from 

1973 to 1976, known as the Ujamaa, pushed the poorest into the most unproductive lands (Tully 

et al., 2015). In 2010, approximately 2% of the population living in communal areas of 

Zimbabwe occupied degraded arable land, an increase of 30% from year 2000 (Global 

Mechanism of the UNCCD, 2018). 

 

There are many processes involved in the destruction of the quality of land. These processes, 

together with the varied assessment methods used, make the results of different studies 
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inconsistent (De Jong et al., 2011). Earlier assessments under the Global Assessment of Soil 

Degradation (GLASOD) project have relied mainly on expert knowledge and opinions (Nkonya 

et al., 2011). Their results were considered gross estimates and unreliable (Vlek et al., 2010). 

GLASOD survey results failed to distinguish between areas with degradation processes 

underway or where there was improvement (Nkonya et al., 2011), failing to provide the extent 

and severity of degradation at scales relevant for decision-making (Dubovyk, 2017). Field 

observations are an alternative method to identify vegetation degradation but are too expensive. 

Hence, ground based observations are still lacking globally (Ruppert et al., 2015). For 

inventorying and monitoring at catchment and national scales, objective methods capable of 

spatial differentiation are required (Prince, 2004). Earth observations have assisted in the 

development of objective techniques for quantifying levels of degradation (Wessels et al., 2007). 

Remote sensing assessment of land condition has proved to be more effective over a broad range 

of geographical scales (Mulinge et al., 2016). 

 

In many studies, Normalised difference vegetation index (NDVI) has been applied as an 

indicator of degradation. It has proved to be useful in assessing the environmental condition from 

global, regional to local levels (Kapalanga, 2008). Fensholt et al. (2013) utilised the National 

Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer (NOAA-

AVHRR) NDVI to analyse land condition in drylands of Sahel region. That study assessed the 

net primary productivity (NPP) from 1982 to 2010.  In another study by Forkel et al. (2013), a 

comparison was made between different techniques for quantifying vegetation productivity 

trends using AVHRR NDVI data in Alaska. Other authors include Tsevelmaa (2017), who 

assessed desertification and vegetation degradation in Steppe zone in Mongolia using trends of 

Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI time-series. Bai et al. (2008) 

used the Global Inventory Modelling and Mapping Studies (GIMMS) to demonstrate 

effectiveness in using NDVI to assess degradation of ecosystems in low rainfall regions. Their 

studies revealed uncertainties that arise when interpreting the vegetation index for dryland 

environments that are characterised by sparse vegetation and high rainfall variability.  

Of equal scientific importance in vegetation degradation monitoring is explanation of the causes 

of vegetation dynamics, as well as vegetation response to these drivers (Vlek et al., 2010; Tully 
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et al., 2015). In SSA, climatic disasters in the form of droughts contribute to increased pressure 

on the ecosystems of dry areas causing increased rate of degradation (Hermann et al., 2005; Vlek 

et al., 2010). Zimbabwe experienced episodes of droughts and large rainfall variations recently, 

altering vegetation growth patterns and leading to food shortages for the land dependant 

population, especially small holder farmers (Simba et al., 2012). Land managers and policy-

makers would benefit from continuous monitoring of the quality of land condition in order to 

develop efficient strategies that ensure sustainable utilization of the resource and an overall 

ecological sustainability of drylands (Dubovyk, 2017).  

 

Vegetation degradation, that is, reduced vegetation cover, has been characteristic of drylands in 

the Save Catchment (Reynolds et al., 2007) because of this region’s vulnerability to the 

continued impacts of climate change. This study focuses on vegetation degradation. Since 

knowledge of degradation causes is essential for mapping vegetation degradation (Vlek et al., 

2010), understanding those causes is crucial in landscape management (Li et al., 2012). Several 

studies have used residual trend (RESTREND) technique to separate vegetation changes 

triggered by activities of man from productivity decline due to rainfall variations (Evans & 

Geerken, 2004; Li et al., 2012). It is this ability of the technique to isolate the influence of 

rainfall and predict only the role of human activities in vegetation cover dynamics that justifies 

its use in the Save catchment which experiences high inter-annual rainfall variability. 

 

 

1.2 Aim & Objectives 

The study aims to establish the location and extent of vegetation cover decline, quantify 

vegetation cover change and establish the underlying drivers in the context of vegetation 

degradation. 

1.2.1 The specific objectives were to:  

1.  Provide a detailed overview on the application of satellite earth observations in assessing 

and monitoring vegetation degradation. 

2. To establish the effectiveness of RESTREND method in detecting human induced 

vegetation degradation. 
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1.3 Research questions 

This research aims to address the following questions: 

 

1. To what extent are remote sensing techniques useful in detecting and mapping vegetation 

degradation at landscape scale? 

2. Can the RESTREND method effectively detect and map the extent and severity of vegetation 

degradation at the Save catchment? 

 

1.4 General structure of the thesis 

 

Excluding the introduction and the synthesis chapters 1 and 4, the thesis comprises two research 

papers that answer each of the research questions in section 1.3. The literature review and 

methodology are entrenched within the mentioned papers. Chapter two reviews the concept of 

vegetation degradation and the application of remote sensing in assessing the degradation. The 

initial part reviews the global picture of degradation of land, the drivers and impacts, as well as 

key indicators of the process. Methods of mapping degradation using satellite earth observations 

were explored in this chapter, with main focus on utilisation of NDVI in characterising 

vegetation degradation. Chapter three focuses on identifying areas that are degraded and 

mapping their distribution in the study area. MODIS NDVI time-series images were used in the 

assessment of vegetation distribution patterns. RESTREND method was used to exclude the 

contribution of rainfall variations, which would allow the mapping of degradation which is 

strictly due to human influences. 
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CHAPTER TWO 

Progress in remote sensing applications in vegetation degradation assessment and 

monitoring in sub-Saharan Africa 

 

This chapter is based on a paper by: 

Matarira, D., Mutanga, O. & Dube, T. 2019. Progress in remote sensing applications in 

vegetation degradation assessment and monitoring in sub-Saharan Africa. Journal 

of Physics and Chemistry of the Earth Manuscript ID: JPCE_2019_76 (Under 

review). 

 

Abstract 

The deteriorating condition of land in parts of the world has become a challenge, particularly in 

developing countries. It has become a threat to sustainable development since it impacts 

negatively on the livelihoods, agricultural output, provision of food, as well as the natural 

environment. The impacts of vegetation degradation are largely felt by poor communities where 

deforestation and inappropriate agricultural practices, are the major drivers. This study reviewed 

techniques that are used to determine and understand vegetation degradation, with emphasis on 

remote sensing technologies. This review establishes the extent, major drivers and impacts, key 

indicators and degree of vegetation degradation at various scales through a review of recent 

studies. Literature has revealed varied estimates of areal extent of vegetation degradation. 

Variations have mainly been due to differences in defining the process, the indicators assessed 

and the approaches employed in its quantification. Results from earlier assessments have been 

criticised for being unreliable, lacking objectivity and relying mainly on perceptions. Satellite 

information has proved to be effective and reliable for monitoring this process over large 

geographical regions. Studies that have utilized remote sensing effectively used normalised 

difference vegetation index (NDVI) to show where deterioration in land condition is taking 

place. NDVI time-series has been the most useful in determining the degradation trends. Because 

degradation of vegetation interacts closely with climatic fluctuations, literature revealed 

problems in disentangling the climate signal from the contribution of human actions in 

vegetation degradation assessment. Residual trend (RESTREND) method is effective in 
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identifying changes in vegetation status due to human actions alone by removing the contribution 

of rainfall. 

 

Keywords:  satellite information, normalised difference vegetation index, residual trend, time-

series   

 

2.1 Introduction 

The deterioration of semi-arid and arid regions has had serious impacts on ecosystem 

productivity (MEA, 2005). Of paramount importance in the evaluation of vegetation degradation 

in the world’s drylands is the ability to show the magnitude of deterioration of the land 

(Reynolds et al., 2007). Vegetation degradation tends to be applied interchangeably with 

desertification (Ibrahim et al., 2015). While definitions vary, the process relates more to the 

decline of ecosystem productivity (Dubovyk, 2017). According to the UNCCD (2015), the 

process is a result of climatic changes and human alterations of the environment. There is, 

however, no agreed position on what it is and no consensus with respect to the method of 

measuring the process, resulting in largely differing and, probably, overstated estimates of its 

magnitude (Safriel, 2007). Despite various efforts aimed at mapping degradation at various 

geographical scales (Wessels et al., 2007), there is no reliable estimate of the spatial extent of 

different kinds and degrees of vegetation degradation, globally (Dubovyk, 2017). Estimates of 

the magnitude and spatial extent of diminished land productivity have varied substantially. This 

is especially because natural vegetation in low rainfall regions has been almost ubiquitously 

degraded to the maximum possible extent, save and except in some protected forest lands 

(Ndayisaba et al., 2017).  

 

Spatial information on degradation is required to address the socio-economic implications of the 

deterioration in land condition (Okin et al., 2001). However, there is a lack of agreement on the 

appropriate methodology to map vegetation degradation (Higginbottom & Symeonakis, 2014). 

The chosen approach depends on the contextual definition and the indicator used to characterise 

the process (Dubovyk, 2017). The assessment method also depends on the size of the area under 

study, specific interpretation of the process and the purpose of the monitoring (Warren, 2002). 

The major impact of the deterioration of land is on the sustainability of human habitation, 
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especially where exploitation of the land resource is the source of income and food (Prince et al., 

2009). Statistics on aspects of degradation are required for rehabilitation and remediation of 

degraded lands (Dube et al., 2017). Vegetation degradation assessments and maps are also 

important for decision-making and management of the ecosystems (Vagen et al., 2016). 

Shortcomings in existing global maps of vegetation degradation emanate from the fact that 

earlier mapping studies were mainly based on subjective expert opinion surveys without 

evaluation of any measurement errors (Le et al., 2016). Digitizing and field surveys are some of 

the methods used to acquire information on the distribution of degraded areas. These methods, 

although considered the most accurate in detecting degradation, are resource demanding so they 

can only be applied over a small area (Pickup, 1996).  

 

Mankind has excelled in delimiting vegetation degradation at various spatial scales, following 

the development of satellite earth observation and computing systems (Vlek et al., 2010). 

Previously, scientists and policymakers found it difficult to detect the onset of vegetation 

degradation (Higginbottom & Symeonakis, 2014). It has since emerged that, remote sensing 

method is the most effective, operational, environmental monitoring approach at landscape scale 

(Dube et al., 2017). It has a demonstrated capability to collect large quantities of data in a cost-

effective manner (Higginbottom & Symeonakis 2014). Among various biophysical indicators of 

vegetation productivity loss is the normalised difference vegetation index (NDVI) (Dubovyk, 

2017), which is applied in assessing land condition because of its ability to measure patterns of 

vegetation greenness (Verón et al., 2006). The widespread reliance on the NDVI in monitoring 

degradation (Le et al., 2016) supports the link between reduction in vegetation cover over a long 

period and vegetation degradation (FAO, 2015). Geographic data and field measurements are 

used to validate the results from the analysis of remotely sensed data to infer degradation 

patterns (Mambo & Archer, 2007). 

 

To date, there is limited information on the drivers of the processes associated with vegetation 

degradation (De Jong et al., 2011). This creates major obstacles in efforts aimed at reducing the 

process (Liniger et al., 2011). According to Pierre (2008), it is necessary to, first, provide 

information on the current degradation status and its underlying drivers in order to avert the 

process. In support of this view, Dubovyk et al. (2017) revealed that detection and 
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characterization of vegetation change over time forms the basis of identifying the causes of 

degradation. Acquiring such information enables countries to develop the most appropriate, 

effective and sustainable actions in combatting the process. Save Catchment, being a marginal 

area, lacks a constant vegetation cover due to unreliable rainfall, as well as, severe pressure from 

human activities (Mambo & Archer, 2007). Previous research addressing vegetation degradation 

in the Save catchment has provided limited information on the trends and distinct causes of the 

observed degradation. In order to undertake a full assessment of the condition of land it becomes 

necessary to cover all the four themes, as follows: causes, type, degree as well as the extent of 

degradation (Yengoh et al., 2014). This chapter aims to explore the process of degradation from 

global to local level, its drivers, impacts and key indicators. The research reviews its assessment 

using remotely sensed data. 

 

2.2 Degradation on a global scale 

An early spatial assessment carried out to map vegetation degradation globally was implemented 

within the Global Assessment of Human-Induced Soil Degradation (GLASOD) project 

(Oldeman et al., 1990). This mapping relied on judgement by experts (Oldeman et al., 1990). 

Degree of degradation was qualitatively described as: light, moderate, strong, or extreme (Vlek 

et al., 2010). The GLASOD project only looked at the human contribution in the degradation 

process (De Jong et al., 2011), with no reference to climate change impacts, particularly in 

Africa (Vlek et al., 2008). According to the authors, there was little information on the influence 

of rainfall variability on land productivity during the early 1980s.  

 

Scientific articles report varying statistics of degradation. While some record figures as low as 

15%, others have degradation levels reaching 63% of the globe (Safriel, 2007). The amount of 

land that has been degraded in drylands has been reported to be ranging from 4% to 74% 

(Safriel, 2007). The GLASOD project revealed that, approximately 15% of the global area and 

60% of low rainfall regions have been lost to degradation (Oldeman et al., 1990). Because these 

results were based only on informed opinions the global estimates of vegetation degradation are 

said to be based on poor data (Hassan et al., 2005).  

 

https://www.tandfonline.com/doi/full/10.1080/22797254.2017.1378926
https://www.tandfonline.com/doi/full/10.1080/22797254.2017.1378926


9 
 

Statistics revealed by German Technical Development Cooperation (GTZ) (2005) indicated the 

loss of valuable agricultural land due to degradation, each year. According to a number of 

studies, severe degradation is responsible for the loss of agricultural land amounting to 5-10 

million ha every year (Gao & Liu, 2010). Bai et al. (2008) revealed that, globally, forests, 

cultivated lands and grasslands are very prone to degradation, 30%, 20% and 10% of which are 

already lost through various degradation processes, respectively. Land lost due to unsustainable 

agricultural activities, overgrazing and deforestation amounted to about 6 million hectares, six 

hundred and eighty million hectares, and 580 million hectares, respectively (GTZ, 2005). 

Firewood collection destroyed a further 137 million hectares, with 19.5 million hectares lost due 

to industries and urbanisation (Johnson et al., 2006).  The statistics point to the human factor as a 

major driver of the process of vegetation degradation.  

 

Across Africa, degradation of the environment is a challenge, with wind and water erosion 

claiming 25% and 22% of the land respectively (Reich et al., 2001). On the other hand, GEF 

(2006) gave 39% of the continent as being degraded and suggested that 65% of the agricultural 

land was prone to desertification. This agreed with the GLASOD expert survey which confirmed 

that 65 percent of Africa ‘s productive regions experienced a decline in the quality of land from 

the last century (FAO, 2015). Because of these differing statistics, information on the magnitude 

of the process has been unreliable, hence, no agreement on its severity (Vlek et al., 2010). 

Moreover, these studies rarely used spatially distributed data and do not identify the exact 

regions most affected by degradation (Vlek et al., 2010). This creates uncertainties with regards 

to the associated impacts across the African continent (Reich et al., 2001; GEF, 2006).  

 

Countries in SSA, with population densities averaging 30 people /km2 (Vlek et al., 2010), 

experience the highest rate of destruction of forests in the world. Parts of the continent lost 10% 

of their forest cover between 2004 and 2009 (IFAD, 2009), due to degradation. The area under 

cultivation in this zone is, approximately, 15% and 4% is covered by a mixture of crops and 

forests (FAO, 2015). In South Africa, degradation of land has become a major environmental 

problem, where 29% of the country degraded from 1981 to 2003 (Bai et al., 2008). Eighty per 

cent of communal areas of Zimbabwe are estimated to be degraded (Scoones, 1992). This is due 

to the long history of environmental and political neglect since the 1930s (Mambo & Archer, 
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2007). The expansion of subsistence farming in the communal areas over the years has 

exacerbated the problem. Approximately 21% (around 4,694,000 hectares) of Zimbabwe’s forest 

cover was lost due to deforestation between 1990 and 2005, leading to the disappearance of all 

old forests (Global Mechanism of the UNCCD, 2018). 

. 

 

2.3 Drivers of vegetation degradation 

Degradation of land is triggered by various interconnected factors, the effects of which are 

modified by local conditions (Nkonya et al., 2016). There is, therefore, a need to carry out 

extensive local level studies to determine the impact of these factors, many of which depend on 

the scale of analysis (Camberlin, 2008). Close examination of the causes of degradation 

processes allows accurate interpretation of spatial distribution of the degraded lands (Dubovyk, 

2017). It has since been established that environmental and human factors are the major 

contributors to declining land quality and alteration of terrestrial ecosystems (Hill et al., 2008). 

However, the degradation process is largely linked to human influences, making human induced 

vegetation degradation a key economic, security and environmental issue, worldwide (Eswaran 

et al., 2001). While overpopulation, poverty and pressure on pasture lands trigger the process of 

degradation, mainly, in SSA, poor management of land and ineffective resource ulitisation 

policies compound the problem (Dube et al., 2017). Biodiversity loss has resulted from such 

human influences on soil, water and vegetative cover, negatively affecting ecosystem structure 

and functions (Mambo & Archer, 2007).  

 

The rural areas of many developing countries are experiencing rapid increases in population 

pressure. This has often resulted in unsustainable land use changes, mainly, due to forest 

clearance, with the intention of increasing agricultural production. It is largely documented that, 

such unsustainable land resource utilisation reduces vegetation cover and leads to soil erosion 

(Mambo & Archer, 2007). Most farmers in SSA have limited options and capacities to improve 

their land. In their pursuit to earn a living, it is postulated that, once degradation of land begins, it 

is highly possible that such farming communities will engage in even more degrading activities 

(Vlek et al., 2008). This eventually diminishes the productive potential of the land to an extent 

that it loses its capacity to restore itself (Greenland et al., 1994). Hoekstra et al. (2005) revealed 
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that human influences on vegetation degradation could go beyond such direct land alterations, 

mainly by local communities, and may stretch to unsustainable international economic activities 

(UNEP, 2012). According to Lal and Singh (1998), hunger and famine will be a threat to many 

countries in Africa if vegetation degradation is not controlled. 

2.4 Cost of vegetation degradation 

The environmental and socio-economic impact of vegetation degradation has been highly 

discussed since the first attempt to map degradation globally (Nkonya et al., 2016). Most 

research efforts relied on estimates of costs associated with soil loss as being representative of 

degradation costs (Braun et al., 2010). This emanates from the reliance on estimations of soil 

loss as the indicator of degradation of land by earlier researchers (Vlek et al., 2010). This may 

also be due to the linkages between different vegetation degradation processes, where vegetation 

reduction alters the rate of soil erosion. Despite challenges involved in providing the exact 

figures of vegetation degradation, due to complexity of the process, many countries are 

cognizant of the costs of the process. It has been shown to have major impacts in developing 

countries (Braun et al. (2010). This is because of its significant effects on the ability of land in 

the provision of wood fuel and sustaining field crops, which are essential services for the 

existence of humans in poor countries (Vogt et al., 2011).  

 

Statistics on negative impacts of degradation have been widely reported. According to studies by 

Bai et al. (2008), livelihoods of 1.5 billion people had been affected over the previous 25 years. 

Similarly, Eswaran et al. (2001) demonstrated equally devastating effects on 2.6 billion people 

due to deteriorating quality of land in 33% of global area. Worldwide, 74% of the resource-

dependent, poor population, are most affected (UNCCD, 2015; Nkonya et al., 2016). With rising 

population figures in developing countries, coupled with low or no budget allocations for land 

management, the quality of land is bound to continuously decrease (Vlek et al, 2008). The 

United Nations puts the cost of desertification, in the form of lost income, at US$45 billion per 

year (Wessels, 2005), impacting adversely on sustainable development (UNCCD, 2015). The 

world is losing about US$10.6 trillion annually, that is, 17% of global gross domestic product, 

towards vegetation degradation. In Zimbabwe, approximately US$382 million, which is 6% of 

the country’s annual income, is lost due to deteriorating land quality (Global Mechanism of the 

UNCCD, 2018). 
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In assessing cost implications of deterioration in the quality of land, an important step in the 

analysis should be the distinction between on-site and offsite costs (Berry et al., 2003). This is 

because unsustainable agricultural practices may loosen the soil at a particular point, resulting in 

siltation of reservoirs, downstream. In mountainous regions of Northern Ethiopia, soil erosion 

leads to serious losses of top soil, resulting in siltation of water reservoirs (Adimassu et al., 

2014). Deposited sediments amounting to, about, 5-20 t ha-1y-1 has been reported in small 

catchments of Tigray, Ethiopia (Tamene et al., 2017). Small dams that supply rural areas with 

water are also reported to be highly silted (Zimbabwe Environmental Management Agency, 

2015). Studies have revealed that, in Masvingo province, Zimbabwe, 50% of 132 small dams 

have been regarded as silted (Dalu et al., 2013). Such high siltation levels also affect the aquatic 

ecosystems that are said to be degraded beyond restoration (Worm et al., 2006). The siltation of 

dams and waterways has a foremost impact on GDP of a country (Gore et al., 1992).   

 

One million eight hundred and forty-eight thousand hectares were reported to have been 

subjected to erosion in Zimbabwe (Whitlow, 1988), with soil losses averaging 76 tonnes per 

hectare, annually (Mambo & Archer, 2007). Soil erosion is contributing immensely to decline in 

soil fertility in most arable lands of Zimbabwe. Nitrogen, organic matter, and phosphorus are lost 

to erosion with amounts reaching 1.6 million tonnes, 15.6 million tonnes and 0.24 million 

tonnes, respectively (Environmental Management Agency, 2015). This loss of nutrients results in 

decline in crop yields, affecting the wellbeing of the population whose livelihood is agriculture 

based. Degradation of the land leads to costs which may be reflected in diminishing carbon 

sequestration (Nkonya et al., 2011). Deforestation diminishes the ability of land to function as a 

carbon sink. The decline in carbon sequestration does not only have effect at a national level but 

its impacts are felt across the globe because such ecosystem services cross international 

boundaries (Global Mechanism of the UNCCD, 2018). Clearance of forests leads to increased 

atmospheric carbon dioxide concentrations (Kareiva et al., 2007). This has got impacts on 

climate change since the increase in greenhouse gasses may lead to global warming. Sustainable 

land use is therefore imperative to prevent drylands from experiencing continuous decline in 

productivity potential, which may culminate into desertification (Hill et al., 2008). 
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Security in ownership and tenure strongly influences management of land (Tully et al., 2015) 

since it incentivises farmers to use the land sustainably and invest in it. Without rights to 

ownership, land is prone to unsustainable uses and investment in land conservation will not be a 

priority. Where land issues depend on political expedience, deterioration of the environment is 

inevitable, causing vegetation degradation concerns. The political decision to decongest the 

communal areas of Zimbabwe, by creating resettlement areas, led to the destruction of forests by 

1.41% between 1990 and year 2000 to 16.4% between year 2000 and 2005 (Dalu et al.,2013). 

During that fast track land reform programme, commercial farms were converted into small 

holder farms exerting pressure on lands that had been properly managed and highly productive. 

Such small farmlands are characterised by limited investments because there is, usually, lack of 

security in ownership. As a result of that land distribution exercise, forests were massively 

cleared. Because of improper planning on sustainable farming practices there was resultant 

decline in the productive capacity of most lands leading to decline in agricultural yields (Tully et 

al., 2015). 

 

For sustainable development to be realized, the current degradation trends have to be reversed. 

This motive has led to the introduction of a global comprehensive framework to evaluate the 

financial implications of vegetation degradation (Nkonya et al., 2016), in view of negative 

changes in carbon, water resources and cultural services (Nachtergaele et al., 2010). 

 

2.5 Biophysical manifestation of vegetation degradation 

 Remote sensing of the environment has enabled identification of physical environmental 

conditions that indicate improvement or degradation of ecosystems (Dubovyk, 2017). Indicators 

that relate to processes of vegetation degradation include changes in biological productivity, 

vegetation cover decline and soil erosion (Prince, 2002). These characterise vegetation 

degradation and allow for the delineation and mapping of degraded areas (Le et al., 2012). 

Ibrahim et al. (2015) used satellite information in mapping the changes in land condition, by 

examining the decline in vegetation productivity, whose pattern and dimension is seen without 

regard to the causes of change (Stellmes et al., 2015). The biological productivity of ecosystems 

is a key factor which describes the functioning of an ecosystem (Del Barrio et al., 2010), whose 

most important service is support of the primary production (MEA, 2005).  
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Since NDVI and vegetation productivity tend to vary with each other (Reed et al., 1994), a 

decrease in net primary productivity (NPP) can, therefore, be interpreted as vegetation 

degradation (Reynolds et al., 2007). NPP, a ratio of NDVI to rainfall, quantifies net carbon 

stored in vegetation (Yengoh et al., 2017). Several studies support the link between NDVI, a 

proxy for greenness, and in-situ NPP measurements (Wessels, 2007; Yengoh et al., 2017). NDVI 

correlates positively with absorbed Photosynthetic Active Radiation (APAR), which relates to 

the NPP (Fensholt et al., 2004). Dryland vegetation dynamics is dependent on rainfall. Therefore, 

rain-use efficiency (RUE), which is the ratio of NPP to rainfall, is closely related with decline in 

productive potential of land (Bai et al., 2008), hence its use in monitoring changes in land 

condition (Prince, 2002). However, decline in productivity can be due to factors like, climatic 

variability instead of loss of land capability (Bai et al., 2008). The component of climatic 

variability would have to be eliminated in order to establish productivity decline caused by 

degradation.  

 

 Changes in land condition can also be determined by assessing vegetation cover (Safriel, 2007). 

Loss of vegetation is commonly used in the characterization of vegetation degradation (Feresu, 

2010) because it can easily be quantified by earth observation technologies (De Jong et al., 

2011). Lambin & Ehrlich (1997) confirmed that vegetation cover can represent vegetation 

condition and, in turn, the level of degradation. However, Tucker et al. (2004), suggest that, 

occurrence of short-term droughts reduces the reliability on vegetation cover to assess the land 

condition. Despite this contradicting view, vegetation cover, in particular, variations in 

greenness, is widely used in the characterisation of degradation (Prince, 2002). Observable 

vegetation change is a result of vegetation degradation in semi-arid regions, hence its use as a 

proxy in its monitoring (Reynolds et al., 2007). Increase in vegetation greenness implies 

vegetation improvement whereas vegetation browning may indicate reduced vegetation density, 

a form of vegetation degradation (Ibrahim et al., 2015).   

 

2.6 Remote sensing and application of NDVI in vegetation degradation assessment  

The capability of remote sensing techniques to address the changes in degradation processes 

enhances their effectiveness in determining the rate and extent of degradation, as well as its 
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mapping and monitoring (Burell et al., 2017). The satellite observation techniques have been 

widely utilized to map and assess vegetation degradation (De Jong et al., 2011) because long 

term data is available (Albalawi & Kumar, 2013; Bai et al., 2008). Time-series analysis 

technique assumes that degraded lands show sustained low NDVI values (Bai et al., 2008). 

Available satellite time-series data, for Africa, are available at reduced cost, cover a long period 

and can be subjected to statistical analysis (Vlek et al., 2010). When merged with global climate 

data, soil, topography, land use, and human demographics, analysis of remotely sensed data can 

reveal the underlying vegetation degradation drivers and processes at various scales (Yengoh et 

al., 2014). This enables determination of the spatial progression of vegetation development 

(Prince et al., 1998) and effective monitoring of vegetation degradation (Dubovyk, 2017). 

According to Rouse Jr et al. (1974), NDVI is obtained by subtracting red band (RED) from near-

infrared band (NIR) and dividing by the sum of these two bands, as follows 

 

 NDVI=NIR-RED/NIR+RED             (2.1) 

  

Where NIR represents reflectivity in the near-infrared band and RED represents reflectivity in 

the red band of the visible portion.   

 

NDVI algorithm is based on the finding that dense, healthy vegetation reflects highly in the NIR 

band than in the red band with the reverse being true for sparse or browning vegetation (Yengoh 

et al., 2015). NDVI is sensitive to such differences in reflectivity, thus, helping in detecting the 

presence or absence of photosynthetically active vegetation (Fensholt & Sandholt, 2005). 

 

For satellite-based products to be useful, it is important to consider all spatial, spectral and 

temporal characteristics of the sensor, as well as availability and accessibility of the data 

(Yengoh et al., 2014). Remote sensing products rarely meet all the requirements. There is often, 

no match between spatial observation scale, and time scale of satellite imagery as well as 

ecological scales of vegetation degradation processes (Dubovyk, 2017). For degradation 

monitoring at landscape scale, imagery from high resolution satellites such as Landsat would 

allow detailed analysis, especially, in heterogeneous areas (Dubovyk, 2017). However, such 

satellites are best suited for the analysis of local environmental issues and factors and may be 
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unsuitable for viewing a larger geographical extent (Symeonakis & Higginbottom, 2014). The 

use of AVHRR-derived data has been extensively covered in literature. Although its spectral 

resolution is low, its use in the monitoring of vegetation cover has been highly prescribed 

(Nemani et al., 2003). However, the development of the moderately high-resolution MODIS 

sensors, with better revisit facilities has led to improvement in environmental monitoring (De 

Jong et al., 2011). Since 2000, NDVI data derived from MODIS sensor of resolution 250m to 

1000m has been applied in long term vegetation change analysis because of its time-series 

consistency (Yengoh et al., 2014). Modis sensor has narrower bands (Fensholt & Sandholt, 

2005), making it more sensitive to vegetation reflectance and more accurate in vegetation cover 

monitoring than AVHRR data (Huete et al., 2002).  

 

2.6.1. Relevance of NDVI in vegetation degradation assessment 

According to Ibrahim et al. (2015), among 150 vegetation indices used for environmental 

monitoring, satellite derived NDVI has been regarded as the most appropriate in the mapping of 

vegetation degradation trends (Dubovyk, 2017). NDVI quantifies the amount of light absorbed 

and used for photosynthesis by plants, thus characterising increasing or declining photosynthetic 

activity (Running et al., 2004). High values of NDVI imply great vegetation vigour and amounts 

whilst low values show bare surfaces and probably, water bodies (Sokoto, 2013). This index can 

be directly correlated with biomass (Dubovyk, 2017). Researchers have proved the existence of a 

link between NDVI and vegetation productivity in the detection of the degree of, and area 

affected by, vegetation degradation (Jensen, 2007; Purkis & Klemas, 2011). Its ability to detect 

early stages of vegetation degradation makes it important in giving a warning of the process 

(Weiss et al., 2004). This index is capable of determining areas already experiencing decline in 

land condition and those experiencing improvement (Mambo & Archer, 2007). Through the 

analysis of yearly variations of NDVI, the long-term dynamics of vegetation cover in different 

terrestrial ecosystems can be revealed and quantified (Ndayisaba et al., 2017). Over the years 

there has been a rise in the utilisation of the long term NDVI analysis in determination of 

changes in vegetation coverage.  Global NDVI data, available since the early 1980s (Jensen, 

2007), has promoted the use of that approach. One of the most useful applications of NDVI in 

vegetation degradation mapping is its ability to be analysed using the time-series technique (De 
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Jong et al., 2011). Many studies have also confirmed that satellite derived NDVI data represents 

vegetation response to precipitation variability, particularly in dryland ecosystems. 

 

2.6.2 Limitations of NDVI in vegetation degradation assessment 

The use of NDVI in mapping the health of the ecosystem is not without limitations. According to 

Bai et al. (2008), one problem encountered when using NDVI to identify degradation is that, it 

does not differentiate the types of degradation occurring. The extraction of information on 

vegetation degradation becomes complex when the apparent increase in NDVI over long periods 

could be a result of change in plant species, some of which represent degradation (Pettorelli et 

al., 2005). Complexities arise due to contribution of such invasive plant species to greenness 

which might be interpreted as vegetation cover increase (D’Odorico et al., 2012). The challenge 

encountered when using NDVI is on accurately distinguishing greenness due to a contribution of 

different species (Nagendra, 2001).  

 

Although an early warning of vegetation degradation can be provided by remotely sensed NDVI, 

indecisions in interpreting NDVI may be encountered in dry environments which are 

characterised by low NDVI values because of sparse vegetation (Weiss et al., 2004). 

Reflectances due to different soil characteristics may be interpreted as being due to vegetation, 

thus, presenting a major drawback in the use of NDVI in those areas (Symeonakis & 

Higginbottom, 2014). The sensitivity of vegetation indices to such soil background materials 

distorts the linearity between vegetation cover and NDVI, thereby weakening accuracy of NDVI 

as a proxy for condition of land (Prince, 2002). Because of this limitation, NDVI signals in 

savanna regions were only used to assess the association between vegetation and rainfall (Farrar 

et al.1994). Other indices, like the soil adjusted vegetation index (SAVI), the modified soil 

adjusted vegetation index (MSAVI) and the optimized soil-adjusted vegetation index (OSAVI) 

have been developed, to reduce the soil effects (Huete et al.,2002). The Enhanced Vegetation 

Index (EVI) has also been used to ensure reduction in atmospheric influences (Running et al., 

2004).  

 

 Many environmental factors, more importantly climate, influence the health of vegetation, so a 

negative NDVI trend may not necessarily imply degradation (Bai & Dent, 2007). Bai & Dent 
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(2007)’s study revealed that factors such as rainfall variability and length of growing season may 

influence vegetation vigour. This is because vegetation changes reflect contributions of 

environmental and human factors in influencing growth patterns and performance (Yengoh et al., 

2014). Measuring degradation, especially, in drylands has, therefore, been challenging. These 

regions are subjected to very little rainfall (Ruppert et al., 2015), as well as high year-to-year 

rainfall variability compared to other ecosystems (Khishigbayar et al., 2015). Extreme rainfall 

episodes are experienced over most of Africa and have increased after 1970 because of 

widespread and more intense droughts and floods (Ruppert et al., 2015) linked to the El Niño-

Southern Oscillation and La Niña events, respectively. These global climatic events affect 

ecosystem productivity in the tropical regions (Plisnier et al., 2000).  

 

For effective assessment and monitoring of vegetation degradation, there is need to disentangle 

such climate influences from the vegetation changes due to other human factors (Hoscilo et al., 

2014). Utilisation of NDVI in characterising non-degraded and degraded regions may not yield 

effective results if the distinction between the two major drivers of vegetation degradation is not 

made (Yengoh et al., 2014).  

 

2.7 Differentiating the climate- and human-induced drivers of vegetation degradation by 

RESTREND method  

Distinctions between vegetation degradation due to human alteration of the landscape and that 

due to natural processes, is an important issue in dry regions where inter-annual climatic 

variations exist. Trends in vegetation changes may be correlated with trends in climate changes 

(Yengoh et al., 2014). However, it has been realised that rainfall and vegetation in arid regions 

exhibit year-to-year variations (Wessels et al., 2007). To identify regions with vegetation 

changes which are solely due to human activities, the rainfall factor has to be removed (Evans & 

Geerken, 2004). The RESTREND analysis has been used to overcome the problem of separating 

the effect of human activities on ecosystem productivity from those due to rainfall variability 

(Herrmann et al., 2005). The method uses the difference between predicted NDVI obtained when 

NDVI and rainfall are correlated in a least square model and observed NDVI (Wessels et al., 

2007). It is a widely used technique in monitoring degradation (Higginbottom and Symeonakis, 

2014), particularly in dry areas (Nemani et al., 2003), where ecosystem processes are subjected 

to water shortages (Huxman et al., 2004). The technique is effective in detecting vegetation 
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condition, as well as poor land quality (Wessels et al., 2007). Residuals of NDVI trends 

(RESTREND) clearly distinguish degradation due to human activities (Ibrahim et al., 2015). 

However, according to Burell et al. (2017), RESTREND is more useful in situations where 

vegetation and rainfall exhibit a strong correlation (Bai et al., 2008). Data representing severe 

degradation, which may appear mid-way through the time-series, tends to disrupt the strong 

correlation, making RESTREND results inconclusive (Wessels et al., 2012).  

 

2.8 Conclusions 

The current study has reviewed previous studies on the use of satellite earth observations in 

mapping vegetation degradation. Although reliable statistics on the condition of land, globally, is 

lacking, there is clear indication of widespread degradation, with impacts largely experienced by 

the poor people occupying unproductive areas of the drylands. Remotely sensed data were 

reliable at revealing the land areas that have been affected at different spatial scales. Studies on 

the utilisation of satellite earth observations in degradation assessment have widely used satellite 

derived MODIS NDVI. However, sensitivity of vegetation to rainfall variations have to be 

considered when interpreting the results.  Residual trend analysis method has been widely 

applied to remove the effect of the climatic component on vegetation degradation. Further 

research in its application for different regions is recommended. 
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CHAPTER THREE 

Landscape scale vegetation degradation mapping in the semi- arid areas of the Save 

catchment, Zimbabwe 

 

This chapter is based on a paper by 

Matarira, D., Mutanga, O. & Dube, T. 2019. Landscape scale vegetation degradation mapping in 

the semi- arid areas of the Save catchment, Zimbabwe. South African 

Geographical Journal, (Under review). 

 

Abstract 

Vegetation degradation has become a major concern around the world, with key drivers being 

natural processes and human actions. The effects on the natural environment, functioning of 

landscapes, as well as welfare of those who depend on land for a living, have been highly 

documented. Although degradation of vegetation in the Save catchment of Zimbabwe impacts 

negatively on ecosystems productivity, quantitative data on degradation at landscape scales is 

scanty. This research investigates the distribution and magnitude of the problem in the Save 

catchment. The main objective was to map and quantify the changes in vegetation coverage due 

to human activities in Save catchment, using residual trend analysis (RESTREND) method. This 

investigation was done using the normalised difference vegetation index (NDVI) time-series data 

recorded using the Moderate Resolution Imaging Spectroradiometer (MODIS), and gridded 

precipitation datasets from Climate Research Unit, recorded between 2000 and 2015. NDVI and 

rainfall time-series, as well as ordinary least squares regression models used in the analysis were 

computed in R statistical program. Zonal statistics tool, in the Geographic Information System 

(GIS) environment, was used to quantify vegetation degradation trends. The study revealed that, 

approximately 18.3% of Save catchment experienced declining residual trends whilst increasing 

residual trends covered 33.6% of the area. These trends covered 1,705,910 ha and 3,129,390 ha, 

respectively. Approximately 3,609,955 hectares experienced significant human induced 

vegetation degradation during the study period. This area represents 38.8% of the Save 

catchment, 3.6%, 12.8%, and 22.4% of which were classified as severely, moderately, and 

lightly degraded, respectively. The results indicated the vulnerability of Save catchment to 
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human induced degradation.  Severe degradation was noted in the central districts of the Save 

Catchment, notably Bikita, Chiredzi and most parts of Chipinge. These findings demonstrate 

the effectiveness of RESTREND in removing influence of precipitation changes from vegetation 

degradation. Based on these results, recommendation is given for the use of RESTREND method 

in detecting vegetation degradation that is triggered by human actions. 

 

 Keywords: normalised difference vegetation index, degradation, time-series, residual trend  

 

3.1 Introduction  

 

Drylands constitute 41% of our planet where over 30% of the planet’s human population resides 

(Safriel & Adeel, 2005). These dryland ecosystems are being affected by vegetation degradation 

processes environmentally, socially and economically. Primary productivity of lands in these 

ecosystems has declined (Qureshi et al., 2013) and more than 60 million people live on those 

unproductive lands in sub-Saharan Africa (SSA) (Vlek et al., 2010). Zimbabwe, like most 

countries in SSA is subject to degradation risk, with unsustainable utilisation of land resources 

and climate change playing key roles in driving the processes (FAO, 2015). Accelerated loss of 

productive land is a major challenge in communal lands that are characterised by subsistence 

farming. These communal lands cover about half of the country and are inhabited by more than 

half of Zimbabwe’s population (Waeterloos & Rutherford, 2004). Several studies have been 

carried out worldwide and confirmations have been made of the negative effects of the process 

on subsistence communities who derive their living from the land resource (Tully et al., 2012). 

South-eastern region of Zimbabwe, in particular, is experiencing widespread vegetation 

degradation. The fragility of terrestrial ecosystems of the Save catchment has made the region 

vulnerable to the driving forces of climate variations. Low annual total rainfall and its high 

variability, characteristic of the study area, impact on the growth of its vegetation.  Apart from 

climatic variations, unsustainable human activities, for example, overgrazing, fuelwood 

collection, mineral extraction, and poor agricultural practices equally impact negatively on 

ecosystem productivity (Prince et al., 2009). These drivers were also identified by other 

investigators like Eswaran et al. (2001) who defined the process of degradation as “decline in 

land quality caused by human activities”. This shows that, the influence of unsustainable uses of 

land and rainfall variability on the livelihood of the people and ecosystems of the Save 
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catchment are an important characteristic of this region. The interaction of these two drivers 

greatly alters the status of vegetation, and their influence on vegetation growth processes has 

attracted widespread attention (Li et al., 2012). 

 

The increased threats of degradation have made governments to be aware of the problem, hence 

the need to combat it through sustainable policies (Evans & Geerken, 2004). Effective 

implementation of conservative, preventative and/or remediation policies requires availability of 

statistics as evidence of the existence of degradation (Higginbottom & Symeonakis, 2014). 

Mapping the distribution of areas undergoing deteriorating land condition and establishment of 

the extent of deterioration is crucial and acts as evidence that the problem really exists 

(Higginbottom & Symeonakis, 2014). Knowing the degradation status and its possible causes is 

also a key factor in developing appropriate mitigation measures as well as sustainable strategies 

on the proper utilisation of the land resource (Stellmes et al., 2015). Remote sensing-based 

systems are advocated for determining the distribution of degraded areas and calculation of their 

area of coverage. The repetitive nature of earth observation satellites is an advantage in the 

quantification of degradation, given the temporal nature of the process (Yengoh et al., 2014). 

Although several studies have quantified degradation by measuring amount of greenness in 

drylands, complexities due to the contribution of climate have arisen. In these ecosystems, the 

growth of vegetation cover depends on rainfall, which is highly variable (Evans & Geerken, 

2004). Normalised difference vegetation index (NDVI) trends in these regions tend to vary in 

direction and magnitude. Therefore, for any meaningful mapping of permanent degradation, the 

contribution of precipitation to degradation has to be removed (Wessels, 2007). Although 

separation of the two determinants of degradation is regarded as important in the management of 

semi-arid landscapes, it has been challenging (Li et al., 2015). Recent studies on vegetation 

degradation have advocated the use of residual trend analysis (RESTREND) method in 

distinguishing the two drivers (Evans & Geerken, 2004; Wessels, 2007; Ibrahim, 2017). 

Although several studies have been done to identify vegetation degradation in Zimbabwe, few 

studies have focused on NDVI trends, let alone time-series. Mambo & Archer (2007) used 

change detection methods to map vegetation degradation in Buhera district. Other researchers, 

notably, Prince et al. (2009), used local net production scaling technique to map vegetation 

degradation in Zimbabwe. Residual trend analysis, as a remote sensing technique, has not been 
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fully explored in this region and a study mapping only human induced vegetation degradation 

has, to date, not been conducted. This research aims at establishing the effectiveness of 

RESTREND method in detecting human induced vegetation degradation. 

 

3.2 Materials and methods  

3.2.1 Description of the study area 

Save catchment is part of the south-eastern region of Zimbabwe, from 17.50 S to 22.50 S, and 300 

E to 330 E (figure 3.1). The region covers an area of 9,317,850 hectares. On the eastern side, the 

region rises to some 2,000m above sea level. The lowest point in the catchment is 500m above 

sea level. The mountainous region records rainfall amounts reaching up to 2,000 mm/year (FAO, 

2012). This drops to an average of between 400mm and 600mm per year in the low veld which 

also experiences high rainfall variability (Unganai, 1996). The rainy season extends from 

November to April, with vegetative growth attaining its maximum between March and April. 

The natural vegetation in South Eastern part of Zimbabwe comprises of mainly savannah 

woodlands and thickets, as well as indigenous forests and open grasslands. The upper reaches of 

the catchment are characterised by a mountainous ecology where exotic tree plantations and the 

miombo woodlands are confined. This is in contrast to the low veld area which is barren, hot and 

dry. Dry Savannah dominates the low veld. Dominating vegetation species are Colophospermum 

mopane, Terminalia sericea and Vachelia species (Whitlow, 1988). Soils are diverse across the 

landscape. The soils are mainly sodic in the lowlands, which are mopane dominated, while the 

higher elevation sections have lateritic soils (FAO, 1978; Nyamapfene, 1991). They are, 

however, predominantly siallitic and sodic with parent material of the later relatively being rich 

in sodium and releasing weatherable minerals (Nyamapfene, 1991). 
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Figure 3.1 Study area- Save catchment area in Zimbabwe 

 

3.2.2 Rainfall data processing 

There are 12 synoptic weather stations in the Save Catchment (Climate handbook of Zimbabwe, 

1981). The study area is made up of 17 districts, with, on average, one weather station in each 

district. For a study, such as this, densely distributed precipitation data are needed (Ensor & 

Robeson, 2008). Hence, remotely sensed precipitation data becomes the most appropriate. 

Therefore, gridded rainfall dataset obtained from the University of East Anglia’s Climatic 

Research Unit (CRU) was used in this study. The advantage of using gridded datasets is that they 

provide a complete spatial representation of rainfall (Ensor & Robeson, 2008). Each rainfall 

dataset from CRU is made up of gridded monthly precipitation with a spatial grid resolution of 
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0.5° latitude/longitude (Harris et al., 2014). Rainfall data were extracted from the CRU dataset 

version TS 4.01 from 2000 to 2015.  Cumulative monthly rainfall during the November to March 

rainy season was used.  Grid point rainfall for 65, 0.50 by 0.50, grid points were established and 

captured in excel for each year. The period was from the year 2000 to 2015 growing season. The 

totals for each year were entered on a spreadsheet per coordinate. The files were saved as csv file 

format and were imported into Q-GIS, as delimited text, where yearly rainfall maps were 

produced. Precipitation measurements were interpolated in Q-GIS using Inverse Distance 

Weighting algorithm to produce spatially continuous raster images.  

 

3.2.3 MODIS NDVI data acquisition and processing 

The March remotely sensed MODIS NDVI data were used in this study. NDVI data for March 

was extracted from MOD13A1 V6 product. The MODIS data, which are available in 

Hierarchical Data Format (HDF), were downloaded as tiles. The first step was to select the tiles, 

time frame and product and then download them from earthexplorer.usgs.gov. In this study only 

end of March images were analysed. An overlay of four MODIS data tiles for a single year 

covered the study area. The tiles were h20v10, h20v11, h21v10, h21v11. The process involved 

downloading and processing 64 data tiles.  

3.2.4 Data analysis 

Vegetation dynamics has been assessed by other researchers using MODIS NDVI data (Lu et al., 

2015; Fensholt & Proud, 2012; Eckert, 2015; Prince et al., 2009). In this study, NDVI value for 

March (NDVImax) represented the total green biomass production in each year because 

vegetation growth is at its maximum around March. Agriculturally, this is the time of the year 

when biomass will be at its peak. In this study, changes in biomass production, was assessed 

through analysis of NDVI trend maps, with areas experiencing decline in green biomass 

described as degrading (Evans & Geerken, 2004). In this analysis, information on soil, 

vegetation cover and agro-ecological zones was useful in determining the drivers behind the 

variations in vegetation condition.  

 

3.2.5 Raw NDVI trend analysis 

To distinguish vegetation degraded areas from non-degraded areas in the Save Catchment, linear 

trend analysis (LTA) method was used. It has been applied in assessing variations in vegetation 
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vigor, by relating vegetation index to time (year) (Vlek et al., 2010). Temporal trends in the 

NDVI datasets were evaluated using linear regression model. NDVImax value was regressed 

against time, following other studies which have explored vegetation dynamics using NDVI 

time-series (Fensholt & Proud, 2012). The NDVImax values, recorded from year 2000 to 2015 

were regressed against time (year) to generate the regression equation for every pixel. Equation 

3.1 is the ordinary least squares regression model which was used to determine the slope that 

reflected the changing trend in vegetation (NDVImax) with time x. This allowed the generation of 

spatial patterns of magnitudes of change. The slope coefficient indicated the rate and magnitude 

of change per year (Eastman, 2009). 

 

Yearly changes in NDVI were estimated by A, the slope coefficient, in the model below: 

 

NDVI = A × Year + β                                       (3.1) 

 

In the above equation, β represents the intercept. A is the slope, an indication of the trend, which 

can be positive or negative. Setting the initial year (2000) to zero, β becomes the initial value of 

NDVI for any pixel (Vlek et al., 2010). The NDVI trend categories were quantified by 

establishing percentages of areas covered by the same trend category. Zonal statistics tool, in the 

GIS environment, was used to quantify the trends. The quantification of trends helped in the 

determination of the extent of decline in vegetation cover. In order to isolate areas with 

significant trends, significance testing was carried out in R at 95% significance level. This was 

done by identifying the probability value (p value) (P < 0.05).  

 3.2.6 Residual trend analysis method 

According to Lu et al. (2015), trend analysis of the residual NDVI can explain magnitude of 

degradation processes. RESTREND method was applied in this research to isolate the role 

of rainfall in ecosystem productivity and detect only the influence of human activities. 

The residual NDVI trend, negative or positive, was used to identify regions experiencing 

degradation and those with improved conditions, respectively. These would be vegetation 

changes due to other factors different from rainfall variations (Yengoh et al., 2014). 

According to Li et al. (2012), climate variability and other physical phenomena do not cause a 

directional change in the residuals but human interference on the environment does. 
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RESTREND analysis involved regression of NDVI against rainfall, using ordinary least 

squares model, following the study by Wessels et al. (2007). Peak growing season NDVI 

(NDVImax), and the accumulated precipitation from November to March, each year, were used. 

In this model, NDVI and rainfall were the dependent and independent variables, respectively 

(Equation 3.2). This regression also produced slopes, intercepts and R2 values that were also 

useful in the analysis. 

  

The linear regression model is: 

 

Y=           (3.2) 

In this equation, Y represents the dependent variable (NDVI), 

x is the independent variable (rainfall), 

 is the intercept, representing the value of y when x set at 0,  

 the slope, which is, the rate of change in y when x changes by one unit, 

  is the error term. 

The method followed the following steps. 

1. First, NDVI values were regressed against rainfall for each pixel.  

2. A regression equation between observed NDVI and rainfall was established for each 

pixel. 

3. Predicted values of NDVI for each pixel, were calculated from the statistical model. 

4.  The differences between the observed NDVI and the predicted NDVI, called residuals, 

were computed. 

5. The residuals were regressed against time, pixel by pixel, and residual trends were 

determined. 

 

Areas with a negative trend represented declining vegetation condition and those with positive 

trend indicating an improvement (Ibrahim et al., 2015). Examining residual trends allows 

identification of areas with human induced degradation as well as those with human induced 

vegetation cover improvement. Additional analysis was done to isolate areas with statistically 

significant negative changes. Statistical significance of the declining trends was tested in R. To 

capture the dynamics of decreasing green biomass, pixels without significant slopes or with 
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significant positive slopes were not included in further analysis. The areas without significant 

slopes are those areas where trends in vegetation greenness are associated with trends in 

rainfall dynamics.  

 

3.3 Results 

3.3.1 NDVI linear trends in the Save catchment 

Spatial distribution of NDVI trends in the Save catchment for the period 2000-2015 is 

represented in figure 3.2A. Substantial decrease in vegetation cover (- 0.6 to - 0.1 year-1) 

characterised, mainly, the central areas. The Western part of the Save valley is the most 

degraded area as indicated by the dark brown colour that represents substantial decline in 

vegetation cover. Areas that include Buhera South, Bikita East, Mutare South, Chipinge and 

Chiredzi North had such strong negative trends. These are areas that extend along the Save river 

valley. Moderately decreasing trends have been observed in North Western Chivi, Masvingo, 

Mid Zaka, parts of Buhera, Gutu and parts of Chiredzi (-0.1 to -0.01 year-1). Vegetation cover 

did not decrease much in those parts of the study region, as indicated by lower rates of change.  

From 2000- 2015, vegetation cover increase was characteristic of mainly the northern and 

eastern parts of the Save catchment. Those districts with positive trends (-0.01 to 0.6year-1) 

include; Seke, Chikomba, Hwedza, Makoni, Mutasa, part of the Eastern Highlands and Southern 

Chiredzi. Some areas in Masvingo, northern Wedza, and Chirumanzu showed negative trends, 

interspersed between areas with positive trends. 
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Figure 3.2 NDVI trends in the Save Catchment where A. is a rate of change in normalised 

difference vegetation index (NDVI) as a function of time (year) in the Save catchment of 

Zimbabwe and B. shows significant NDVI trends (p<0.05). No change areas are shown in white. 

 

Table 3.1 shows the areal extent and percentages of NDVI trend values for each category in 

figure 3.2A. Areas that show substantial decrease in vegetation constitute 15% of the area. The 

area with increasing vegetation covers 35% of the study region. The remaining area (50%) 

shows moderate decrease. Therefore, 65% of the region’s vegetation is degraded, from moderate 

degradation (50%) to substantial degradation (15%) whilst 35% of the region’s vegetation 

showed improvement during the period of study. Spatially, land area of about 6084140 ha lost 

greenness over the years. This area included areas with moderate and substantial decrease. 

Conversely, a land area of approximately 3,233,710 ha showed an improvement in greenness 

from 2000-2015 (table 3.1). The area covered by decreasing trend, that is negative trend, is 

larger than the area showing a positive trend (table 3.1).    
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Table 3. 1 Spatial distribution of normalised difference vegetation index (NDVI) change trend  

___________________________________________________________________________ 

                   Area (ha)          % of total area  

_____________________________________________________________________ 

 

Substantial decrease   1,438,870   `    15 

Moderate decrease      4,645,270       50 

       Increase                 3,233,710                 35        

       Total                                             9,317,850                                    100   

_____________________________________________________________________ 

        

 

Negative significant slopes were also depicted during the same period (figure 3.2B) in some 

parts of the area, usually coinciding with the boundaries of the semi-arid regions. Significant 

linear regression slope values of NDVI over 2000-2015 were mapped in figure 3.2B where 

white areas represented statistically non-significant trends. Based on the 5% threshold (p< 0.05), 

the area with a decline in vegetation during the 16 year-period, amounts to 6,388,50 ha (about 

6.9% of the study region), whereas about 90,493.7 ha (about 1% of the study region) exhibits an 

increase in vegetation productivity (table 3.2).  

 

Table 3. 2 Percentage of pixels in the Save Catchment that exhibited positive and negative 

change trends in the normalised difference vegetation index (NDVI) dataset at 95% level of 

significance. 

_______________________________________________________________________________ 

      Area (ha)  Significant pixels (%) 

_______________________________________________________________________ 

Positive trends / Increasing    90,493.7   1 

trend    

Negative trends / Decreasing   638,850              6.9 

trend  

_______________________________________________________________________ 
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Table 3.2 illustrates the percentages of significant slopes covering the Save catchment. From 

the table, it can be deduced that a smaller portion of the study region (about 8%) encountered 

significant trends. Significant negative trends covered an area of 638,850ha whilst the positive 

trends covered 90,493.7ha, representing 1% and 6.9% of the study area, respectively. 

 

3.3.2 Spatial patterns of the NDVI – rainfall relationship 

The per-pixel slope of NDVI against Rainfall is shown in figure 3.3. The slopes of the local 

regressions (figure 3.3) describe the magnitude and nature of vegetation response per unit 

rainfall (Evans & Geerken, 2004). The slopes were categorized into 3 classes: low increase (-

0.002-0.0002), moderate increase (0.0002-0.0006), high increase (0.0006-0.002). Response of 

vegetation to increase in rainfall is high in areas such as Chiredzi, Chivi, western Chipinge, 

Eastern Bikita and south-eastern Buhera, parts of Masvingo, Zaka and Mutare. Lower slope 

values were mostly pronounced in some parts of Chipinge, Chimanimani, Mutare, Mutasa, 

Makoni and Marondera. The rest of the study area shows moderate slope values. 

 

 
Figure 3. 3 Rate of change in normalised difference vegetation index (NDVI) as a function of 

rainfall in the Save catchment of Zimbabwe 
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To determine the percentage contribution of rainfall to NDVI variations, the coefficient of 

determination (R2) was computed at each pixel (Figure 3.4). Rainfall’s contribution to NDVI 

was weakest in the humid areas of Seke, Northern Marondera, Makoni, Chikomba, Hwedza, and 

the Eastern Highlands. R2 values were low in these districts ranging from 2 x 10-9 to 0.26. Figure 

3.5a and 3.5b illustrate the relationship using Marondera (grid point18.5S, 32E) and 

Chimanimani (grid point 20S, 32.75E) where R2 = 0.11 and 0.05 respectively. High R2 values 

are evident, mostly, in the semi-arid areas of Chipinge, Chiredzi, Chivi, Bikita, Buhera, Mutare 

South and Chivu. These areas portrayed stronger relationships between NDVI and rainfall. 

Buhera (grid point 19.5S, 32E) and Chiredzi (grid point 22S, 31.5E) are representative sites 

chosen to illustrate (figure 3.5c and 3.5d) that relationship in the semi- arid areas. In Buhera and 

Chiredzi, the values of R2 were 0.36 and 0.31, respectively. R2 values for the representative sites 

are shown in table 3.3 

 

             

 Figure 3. 4 Coefficient of determination (R2) of NDVI –rainfall relationship 
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Figure 3. 5 Regressions between NDVImax  and rainfall for (a) Marondera (grid point18.5S, 32E),    

(b) Chimanimani (grid point 20S, 32.75E), (c) Chiredzi (grid point 22S, 31.5E) and (d) Buhera 

(grid point 19.5S, 32E). 
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Table 3. 3 Coefficient of determination (R2) of the relationship between rainfall and NDVI. 

_____________________________________________________________________________ 

Station                                                                                                     R2    

__________________________________________________________________________________________________________ 

Buhera                      0.36 

Chimanimani           0.05 

Chiredzi           0.31   

Marondera              0.10   

______________________________________________________________________                                                                      

 

The intercept (figure 3.6) indicates the NDVI value from the regression model when the 

rainfall amount is set at zero. The intercepts were computed to consider variations in 

relationships between NDVI and rainfall due to other influences, which include, different soils 

as well as vegetation types. The intercepts in non-degraded areas of Chipinge, Chimanimani, 

Mutasa, Makoni and Marondera were higher than those in degraded low rainfall areas. 

Intercept parameters increased from very arid to humid areas of Save Catchment. The slope 

parameter decreased in the same direction. Most areas with the lowest slope values when 

NDVI was regressed against rainfall had highest intercepts. 
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Figure 3. 6 Intercept of the relationship between NDVI and rainfall in the Save catchment of 

Zimbabwe 

 

3.3.3 Spatial patterns of the NDVI residual trends  

The NDVI residual trends, defined earlier as the observed minus the predicted NDVI at each 

pixel, was analysed using the ordinary least squares model. Figure 3.7 is a map of the spatial 

distribution of residual trends, showing vegetation productivity trends, which are either positive 

or negative, when the effect of rainfall has been removed. Higher regression slopes of residuals 

existed in the Northern districts (slope>0.002) of the Save Catchment. Negative trends in NDVI 

are clustered in the central and southern regions. Negative residual trends are in eastern Bikita, 

south-eastern Buhera, eastern Chipinge, south of Mutare, Chimanimani and northern Chiredzi. 

These areas stretch along the Save Valley.  

 

 
Figure 3. 7 Slope, which is the rate of change in normalised difference vegetation index (NDVI) 

residuals as function of time (2000-2015), in the Save catchment of Zimbabwe 
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Table 3. 4 Spatial distribution of normalised difference vegetation index (NDVI) residual trends  

_________________________________________________________________________ 

    Area (ha)  % of total area 

__________________________________________________________________ 

 

Negative (-0.03- -0.002)  1,705,910    18.3 

Moderate (-0.001-0.002)  4,469,150    48 

Positive (0.003-0.04)   3,129,390    33.6 

____________________________________________________________________ 

 

The percentages of total area representing different classes of residual trend values were 

calculated for every district (table 3.5). This was meant to determine the district that was mostly 

affected by human induced degradation. From table 3.5, the districts were arranged in 

descending order, from the heavily degraded to the least degraded. It can be deduced that 

Chiredzi experienced the most human induced degradation over the study period. 60.5% of 

Chiredzi district was covered by negative residual trends. The least degraded was Seke district 

which had 6.5% of the district area experiencing human induced degradation. 

 

Table 3. 5 Level of human induced vegetation degradation in every district within the Save 

catchment of Zimbabwe 

_____________________________________________________________________________________ 

District  Total area (ha) % of total area affected by degradation 

______________________________________________________________________________ 

      Negative Moderate       Positive  

______________________________________________________________________________ 

Chiredzi  1,752,562  60.5  23.8  15.8 

Bikita   517,156.5  52.7  28.8  18.5 

Buhera   533,419  50.4  23  26.6 

Chipinge  515,900  48.3  28.7  23 

Mutare   561,831  45  32.8  22.1 

Chivi   354,099.7  41.5  46.2  12.3 

Chimanimani  327,875  29.6  39.8  30.6 

Wedza   257,524.8  25.4  41.6  33 

Makoni  782,569  19.8  42.5  37.7 

Zaka   309,918.3  19.4  55.2  25.4 
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Mutasa   251,431.3  18.2  32.9  48.8 

Marondera  352,131  18.2  35  46.7 

Masvingo  687,012  18  41  41 

Gutu   710,437  16.8  38.9  44.3 

Chirumanzu  469,187.3  14.1  31.3  54.6 

Chikomba  660,868.5  7.7  34.9  57.3 

Seke   253,806.3  6.5  26.8  66.7 

 

3.3.4 Comparison of RESTREND with raw vegetation index trends 

RESTREND and raw NDVI trend analysis both show considerable areas covered by greening 

trends (38% and 35% respectively) (table 3.6). Negative raw NDVI trends, however, covered a 

greater percentage of the study area (65%) than the negative residual trends (26%) although 

there is similarity in their spatial distribution patterns. 

 

Table 3. 6 The percentage of pixels that increased or decreased, in the NDVI linear trend analysis 

and the RESTREND analysis methods 

__________________________________________________________ 

    % increasing  % decreasing 

_____________________________________________________ 

NDVI trend    35   65 

Residual trend    38   26 

_____________________________________________________ 
 

3.3.5 Severity of vegetation degradation 

 Pixels recording significant negative residual trends (p< 0.05) were mapped in figure 3.8 and 

used to formulate different degradation classes following Vlek et al. (2008).  Pixels that had a 

statistically significant, decreasing trend constituted 38.8% of the study area, covering 3,609,955 

ha. Approximately 3.6% of the study area was severely degraded, 12.8% was moderately 

degraded and 22.4% was lightly degraded. The corresponding areas of significant degradation 

were 332,575 ha, 1,189,820 ha, and 2,087,560, respectively. Table 3.7 illustrates the 

geographical extent of the catchment affected by significant human-induced degradation 

processes. 
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Figure 3. 8 Areas showing significant negative residual trends at 95% significance level  

* Areas with non-significant changes are shown in white colour. 

 

Table 3. 7 Degradation severity in Save catchment (percentage of area by severity class) 

__________________________________________________________________________ 

Degree of Degradation   Area (ha)  Percentage (%) 

_________________________________________________________________________ 

Severe    332,575   3.6 

Moderate    1,189,820   12.8 

Light    2,087,560   22.4 

Total    3,609,955   38.8 
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3.4 Discussion 

From the analysis of NDVImax  trends, vegetation cover decline was observed in most parts of the 

Save Catchment, during the period 2000-2015 (figure 3.2A). Since significant negative trends 

were also exhibited during the same period (figure 3.2B) and considering high precipitation 

variability in the dry areas (Mambo & Archer, 2007), it suggests that this decrease could partly 

be as a result of rainfall anomalies. Buhera, Bikita, Masvingo, Chiredzi, Zaka and Chivi, and 

some parts of Chipinge and Chimanimani experienced wide coverage of negative NDVI trends. 

These are the dry regions in Zimbabwe (Vincent & Thomas, 1960). They lie in natural regions 3, 

4 and 5, characterised by unreliable, low and erratic rainfall that averages between 400mm and 

600mm per annum (Climate handbook of Zimbabwe, 1981). The existence of patches of 

degraded land interspersed between positive trends in humid areas of Chimanimani and Chipinge 

(fig 3.2A) can be explained in terms of vulnerability of some arid areas in the districts, given that 

Chipinge and Chimanimani have all the five agro-ecological regions (FAO, 2012). Zimbabwe 

has experienced increased frequency of drought associated with Elnino events in recent decades 

with, on average, 1-3 droughts experienced every 10 years. Droughts have occurred in 2001/2, 

2002/3, 2004/5, 2006/7 seasons (Simba et al., 2012; Richardson, 2007). These drought years 

could have contributed to overall negative NDVI trends which are widespread in most parts of 

the Save Catchment because an arid climate hinders vegetation growth (Li et al., 2015). Tropical 

cyclones, a weather scenario associated with both Elnino and La Nina years also help explain 

strong negative trends in these semi-arid regions where associated floods caused massive 

vegetation destruction, mainly, in the districts of Mutare, Chimanimani, Chipinge, Chiredzi, and 

Zaka (FAO, 2012). Cyclone Eline, associated with extensive and disastrous floods was 

experienced in the year 1999/2000 and above normal mean rainfall (942mm) was recorded in 

those districts in that growing season (FAO, 2012). Vegetation, that included vast areas of 

plantations was destroyed in districts of Chimanimani and Chipinge where an estimate of 3,340 

hectares of timber was damaged, which, according to the Timber Producers Association, was an 

equivalent of a year’s harvest (Reason & Keible, 2004). Coupled with the negative impacts of 

drought, these destructive floods contributed immensely to the widespread negative trends in the 

Save Catchment. Poor soils could also have accelerated the degradation in these semi-arid 

regions. Most communal lands that have suffered huge biomass losses have granite derived 

sandy soils that are highly erodible (FAO, 2012). The communal areas of Chiredzi, characterised 
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by sandy soils (Cunliffe et al., 2012) have evidence of widespread degradation, presumably, 

because of these poor soils.  

 

With all the above factors pointing towards increased vegetation degradation in these areas, 

Chimanimani district clearly shows some positive trends in vegetation recovery. Tropical 

rainforests are still evident in the moist foothills of Chimanimani, with woodlands dominating 

the more exposed or drier sites (Timberlake et al., 2016). An example is the Maronga Forest 

Reserve.  Despite the fire of 1992, the 1991/1992 drought and the effects of Cyclone Eline in 

2000, which caused widespread forest destruction, the regeneration capacity of the landscape is 

promoting new forest growth (Timberlake et al., 2016). The Northern districts of the Save 

catchment, most of which lie in regions 2 and 3, as well as region 1 areas of the Eastern 

highlands, also experienced positive NDVI trends during the study period. These high rainfall 

areas, complemented by deep fertile soils, are characterised by high photosynthetic activity 

which explains vegetation improvements over the years. The distribution patterns of the raw 

NDVI trends follow rainfall patterns, revealing the effect of climate on terrestrial ecosystems 

dynamics.  

 

According to Li et al. (2004), NDVI and rainfall relationships can explain ecosystem 

productivity variations and deterioration in land condition in dry areas. The distribution of 

regression slopes of NDVI against rainfall, in this study, agreed with those reported in other 

studies (Ibrahim, 2017; Wessels, 2007; Evans & Geerken, 2004; Lambin, 2001). The dry areas of 

the Save Catchment exhibited strong linear relationships as shown by high slope values in those 

semi-arid regions. The slopes indicate the amount of change in vegetation cover per unit change 

in rainfall (Ibrahim, 2017). Pixels in the semi-arid regions of Buhera, Bikita, Chipinge and 

Chiredzi have higher regression slope values compared to the high rainfall mountainous areas 

which are covered by the evergreen miombo forests. These findings indicate that vegetation in 

dry areas is highly responsive to the high rainfall variability (Lu et al., 2015; Wessels et al., 

2007). High rainfall zones that include humid forest areas of Chimanimani and Chipinge 

exhibited weak responses. This is largely because annual rainfall amounts usually exceed a 

certain threshold, above which vegetation becomes non-responsive (Lu et al., 2015). Such high-

altitude areas, characterised by deep loamy soils that have high water holding capacity and are 
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not easily eroded, have sustained vegetation growth even in low rainfall regimes (FAO, 2012). 

Given the varied landscapes of the two districts, areas in the valleys, that are mainly in region 4 

and 5 are characterised by sand to sandy loam soils that are strongly leached, have low water 

holding capacities and that do not sustain growth (FAO, 2012). That explains lower slope values 

in those semi-arid areas of the two districts. Similarities were identified in the distribution 

patterns of NDVI-rainfall slopes and R2 values. Those areas receiving large amounts of rainfall 

and characterised by low R2 values coincided with low responsiveness to increase in rainfall. 

Wetter regions exhibit low NDVI-rainfall correlation, since saturation point is attained, beyond 

which further greening would not occur, despite an increase in water supply (Chikore & Jury, 

2010). Because Manicaland is home to indigenous forests, as well as commercial plantations of 

exotic trees and tea estates, proper management can help explain the low R2   values. Most humid 

areas also had the highest intercepts, whilst very low rainfall areas had low intercepts, suggesting 

the importance of rainfall as determinant of vegetation growth in semi-arid regions (Evans & 

Geerken, 2004). These results reveal rainfall as highly influential in vegetation production in the 

Save catchment, a factor that may mask negative impacts of human-induced degradation 

processes (Wessels, 2007). 

 

According to Wessels et al. (2007), assessing vegetation changes without removing rainfall 

impact has misleading implications for landscape management. This is because human beings 

alter the structure of landscapes, mainly through various land use practices. During the study 

period, considerable areas (18.3%) exhibited negative residual trends. These were mainly 

concentrated in Buhera, Mutare, Bikita, Chipinge, parts of Chimanimani and Chiredzi and the 

areas that also experienced significant degradation. Chiredzi was the most degraded district, 

where negative trends covered 60.5% of the district area, with the least degraded being Seke 

district (6.5%) (Table 3.5). Severe degradation is evident mostly in the Save Valley, with Bikita, 

Chipinge, Chiredzi and part of Buhera districts being the mostly affected. In agreement with 

these findings, Mambo & Archer (2007) also observed degradation in Buhera district with high 

susceptibility to the south-eastern part of the district. This study also revealed portions of severe 

degradation in Buhera, coinciding with almost the same areas of high susceptibility found by 

Mambo & Archer (2007). They also revealed a large portion of Buhera district under cultivation 

from 1992 data, with woodlands continuously being cleared for agricultural expansion. Prince et 
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al. (2009) also identified degradation, reflected by local net scaling (LNS) maps, in most   

communal areas of the Save. Clearance of forests for the establishment or expansion of 

agricultural land, together with intensive fuelwood extraction is rapidly depleting communal 

areas of vegetation resulting in soil erosion. This breakdown in community resource 

management also results in siltation of water reservoirs such as the Save river, affecting the 

river’s capacity as well as the aquatic ecosystems (Makwara & Gamira, 2012). 

  

Degradation patterns on the RESTREND map (fig 3.7) agree with results by Prince et al. 

(2009). From their studies, commercial farms stretching through Chivu, north of Harare, 

Marondera and even those in Chiredzi exhibit good vegetation cover. Some degradation was 

detected in these commercial lands. In most of those commercial areas where rainfall is high, 

low NPP was related to improper agricultural practices among the neighbouring subsistence 

farmers (Prince et al., 2009). This also helps explain patches of degraded areas, mainly in some 

areas of Marondera, Wedza, Chimanimani and Chipinge that have vast stretches of commercial 

farms and plantations. Particular examples were to the southern part of Chiredzi where there is 

a clear distinction between greening areas of Triangle and Chisumbanje sugarcane estates and 

browning, communal areas of Chiredzi district. Zimbabwe has had a long history of neglected, 

poor degraded communal areas (Scoones, 2002).  

 

According to Mambo & Archer (2007), investigating susceptibility t o  degradation requires   

investigation of other  factors, especially the human factors (Eswaran et al., 1997).   Mutasa 

district, has the highest population density of 66 persons per km2. This area should be one of the 

most severely degraded regions. On the contrary, the district is lightly degraded and there are 

just patches of degraded land. There are more positive residual trends (48.8%) than negative 

residual trends (18.2%) covering Mutasa district. This supports the view that high concentration 

of population may not always lead to the deterioration of land condition (Eswaran et al., 2001). 

This is also in agreement with Bai et al. (2008), whose research results, on a global scale, show 

an improvement in vegetation condition in densely populated areas of SSA. Voortman et al. 

(2000) argued that, high population density in SSA characterises the most fertile areas, 

particularly, mountain slopes. These fertile areas would support vegetation growth. Therefore, 

degradation is determined by what the occupants do to the land and not just population pressure 
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(Eswaran et al., 2001). 

 

In this study, there were areas that experienced negative correlation between population density 

and vegetation condition, notably, in communal areas of Chipinge district (50 persons km-2) and 

Buhera district (46 persons km-2) (https://www.citypopulation.de/php/zimbabwe-admin.php) 

whose negative residual trends occupied 48.3% and 50.4%  of the study area (table 3.5), 

respectively. Excessive pressure in the overcrowded communal lands of these areas is the leading 

factor in the degradation process. There are also areas with low population densities that have 

been affected by human induced degradation. These include parts of Chiredzi district (16 persons 

per km2) and Bikita district (31persons per km2). In these areas human induced degradation was 

experienced in 60.5% and 52.7% of the study area (table 3.5), respectively. This agrees with 

Mambo & Archer (2007) who detected high indication of degradation in wards of Buhera 

district having the lowest population density. Most of these areas are unsuitable for agriculture 

because of topographical and soil constraints. Unfavorable topography and soil conditions pose 

inherent restrictions on exploitation and habitation (Vlek et al., 2008; Wang, 2016). 

 

The interaction that takes place between humans and their environment, inevitably results in 

degradation, mainly because of wind and water soil erosion, chemical reactions and soil 

disturbance by animals. Negative land use practices (Lal, 2001) include cultivation of marginal 

lands like semi-arid areas, steep slopes and shallow soils. The utilisation of marginal lands is a 

result of an increasing number of farming communities in need of agricultural land, yet there is a 

decline in availability of arable land (Lal, 2000). Other factors include traditional grazing 

systems, deforestation and firewood collection. Further influences arise from political, socio-

economic and historical backgrounds. Therefore, poor resource utilisation works hand in hand 

with biophysical influences like soil properties, climatic characteristics, topography and 

vegetation types, making the task of isolating the role of physical from anthropogenic factors 

more difficult (Einsele and Hinderer, 1998) . 
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3.5 Conclusions 

Based on the findings of this study, residual trend analysis method was demonstrated to be useful 

in distinguishing between climatic and human induced factors as drivers of vegetation 

degradation in semi-arid landscapes. In this regard, this study has revealed that: 

• Climate is an important factor in vegetation cover changes, particularly, in semi-arid 

areas. Vegetation in dry areas is responsive to rainfall variations. The responsiveness is 

not the same in humid areas where a weak relationship between vegetation and rainfall is 

observed.  

• Vegetation significantly degraded in 38.8% of the Save catchment as a result of human 

activities. 

• The degrading trend in vegetation was most severe in the central districts of the Save 

catchment.  

• Vegetation cover decline can successfully be used as a proxy of vegetation degradation. 

However, it is not comprehensive in characterising vegetation degradation. As a 

recommendation, further studies should examine vegetation degradation using other 

proxies, for example, reduced soil organic carbon, wetland decline, and others. 

• As a recommendation, further studies should investigate the influence of soil 

characteristics and topographic factors on vegetation cover in the fragile ecosystems of 

the Save catchment in the context of vegetation degradation. 
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CHAPTER FOUR: Objectives reviewed and conclusions 

4.1 Introduction 

This research aimed at determining the degree to which human activities influence the decline in 

land condition in the Save Catchment, Zimbabwe, using NDVI time-series data. This chapter 

evaluates the objectives presented in Chapter one against findings. Furthermore, the chapter 

highlights major conclusions, limitations and recommendations for future research. 

4.2 Objectives reviewed 

Overview of the application of satellite earth observations in assessing and monitoring 

vegetation degradation. 

 

The research reviewed vegetation degradation monitoring across landscapes. The extent and rate 

of degradation was reviewed from planetary to local scales. Identification of the exact causes of 

decline in land productivity was described as challenging because of interactions between many 

triggering factors. However, interactions of climatic changes, unsustainable land management 

and land tenure systems have been regarded as major contributors to the deteriorating quality of 

land. Negative impacts of this degradation result in millions of dollars being lost annually. Large   

populations suffer from poverty and food insecurity.  Literature has also revealed that, although 

global assessment of vegetation degradation started a long time ago (1980s), estimates of its 

extent and severity have not been consistent. The varied definitions regarding the process and 

lack of standardized method for its assessment has led to inconsistencies in interpretation of 

results. Early assessments have largely been questioned since the results tended to be local and 

relied on opinions from experts. The results lacked reliable supporting data especially in the 

early stages of the process. Traditional assessment methods, for example, field surveys were 

criticized for being costly and for failure to provide a global view of ecosystem changes. 

Mankind has excelled in determining vegetation degradation at various spatial scales, following 

the development of satellite earth observation technologies and computing systems. Remote 

sensing technologies, especially the use of NDVI time-series, have been advocated as the most 

viable way in vegetation degradation mapping. This was revealed to be because of its ability to 

provide up to date assessments at scales relevant for decision making. Although NDVI, a widely 

used proxy of vegetation degradation, was extensively applied in vegetation degradation 

monitoring, its use in semi-arid regions was mainly limited by rainfall variability. The 
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application of Residual trend method in disentangling the impact of rainfall was reviewed. The 

method was effective in separating vegetation degradation due to human activities.  

 

The effectiveness of RESTREND method in detecting human induced vegetation 

degradation. 

 

Using ordinary least squares regression model, vegetation degradation trends were established 

from NDVI-time relationships. Areas experiencing vegetation improvement or loss due to both 

natural and anthropogenic causes were determined from this analysis. From this study, 65% of 

the catchment was covered by negative trends whereas 15% experienced improvement. The map 

of significant NDVI trends demonstrated, in part, the influence of human actions in vegetation 

cover growth. Regression model analysis of NDVI and rainfall showed that vegetation growth 

was strongly influenced by climatic variations in semi-arid areas of the Save catchment where 

regression slope values and R2 values tended to be higher than in humid areas. Higher intercepts 

were characteristic of northern districts and mountainous areas of the eastern districts and drier 

areas that were largely dependent on rainfall for growth, had low intercept values. The regression 

slope, intercept maps and R2 portrayed the important role played by rainfall variations in 

determining ecosystem productivity. Residual trend analysis method was effective in separating 

the influence of rainfall and human activities on degradation trends. A clear distinction between 

degraded areas, improved areas and areas with moderate changes was mapped using this 

technique. From the analysis of residual trends, 18.3% and 33.6% of the study area encountered 

degradation and improvement, respectively. The larger portion of negative raw NDVI trends 

compared to negative residual trends reflects the important role climate plays in influencing 

vegetation growth in very low rainfall    parts of the Save catchment, sometimes masking the 

human influences. Statistical analysis established significantly degraded pixels, from which 

severity classes were produced and mapped. Severe degradation was observed to the east of 

Bikita, west of Chipinge and Northern Chiredzi. The drivers of the changes were suggested using 

information on agro-ecological zones, soil types, vegetation cover as well as population density 

statistics. RESTREND method effectively separated areas of degradation due to human 

activities.  
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4.3 Conclusions 

The development of satellite earth observation technologies, together with computing systems, 

has enabled the determination of vegetation degradation at various spatial scales, because of its 

ability to provide up to date assessments at scales relevant for decision making. This study 

examined long-term MODIS NDVI data to assess changes in vegetation in Save catchment from 

2000 to 2015. Time-series analysis of NDVI trends revealed large areas experiencing vegetation 

cover loss. Vegetation growth was strongly influenced by climatic variations. Existence of 

significant trends indicated the role humans play in promoting land productivity losses. 

RESTREND method was effective in isolating climatic influences, allowing for the mapping of 

alteration of the ecosystems which was a result of human activities. As a recommendation, future 

studies on long term vegetation changes should employ methods that consider breaks in the trend 

patterns, because this aspect is not handled well using the RESTREND method.  

 

The use of MODIS data, that is available for all the years, allowing time-series analysis, is not 

without limitations. Its spatial resolution is relatively coarse and lacks detail required for the 

quantification of small-scale vegetation cover changes. Future studies should utilise higher 

resolution data to enhance quality of analysis results. Because some areas have been identified as 

severely degraded in the Save catchment, policy action is needed to rehabilitate those areas and 

to combat the process. Land management policies should be effectively implemented, especially 

in communal agricultural lands, where land tenure system does not encourage investment in the 

land.  
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