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Abstract. This paper contains the concept of the generalization of the ap-
proximate continuity. The main result concerns that this continuity is equiv-
alent to continuity with respect to some type density topology.

Let l be the standard Lebesgue measure in the real line R, and L be
the σ–algebra of Lebesgue measurable sets of R. By N we shall denote
the set of all positive integers and by S the family of all unbounded and
nondecreasing sequences of positive numbers. We shall denote a sequence
{sn}n∈N ∈ S by 〈s〉. We shall also write A ∼ B if and only if l(A△B) = 0
for measurable sets A,B ⊂ R (where A △ B = (A \ B) ∪ (B \ A)).

Definition 1. (See [3]). We shall say that x ∈ R is a density point of a set
A ∈ L with respect to a sequence {sn}n∈N ∈ S (in abr. 〈s〉-density point) if

lim
n→∞

l(A ∩ [x − 1
sn

, x + 1
sn

])
2
sn

= 1.

Let 〈s〉 ∈ S and A ∈ L. Putting

Φ〈s〉(A) = {x ∈ R : x is 〈s〉 − density point of A},

we have the following result.

Theorem 1. (See [3]). For each A,B ∈ L and 〈s〉 ∈ S

(1) Φ〈s〉(∅) = ∅, Φ〈s〉(R) = R,

(2) Φ〈s〉(A ∩ B) = Φ〈s〉(A) ∩ Φ〈s〉(B),
(3) if A ⊂ B then Φ〈s〉(A) ⊂ Φ〈s〉(B),
(4) if A ∼ B then Φ〈s〉(A) = Φ〈s〉(B),
(5) Φ〈s〉(A) ∼ A.
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We get that for every 〈s〉 ∈ S the family T〈s〉 = {A ∈ L : A ⊂ φ〈s〉(A)}
forms a topology on the real line R (see [3]). Of course, if 〈s〉 = {n}n∈N

then T〈s〉 is simply the clasical ordinary density topology which is denoted
by Td (see [2]) and then for every A ∈ L

Φ(A) = {x ∈ R : x is a ordinary density point of the set A}.

We also recall the following result presented in [3].

Theorem 2. Let 〈s〉 ∈ S. Then

T〈s〉 = Td iff lim inf
n→∞

sn

sn+1
> 0.

Let S0 = {〈s〉 ∈ S : lim inf
n→∞

sn

sn+1
= 0}.

Definition 2. Let f : R −→ R and 〈s〉 ∈ S. We shall say that f is 〈s〉–
approximately continuous at point x0 ∈ R if there exsists a set Ax0

∈ L such
that

(1) x0 ∈ Φ〈s〉(Ax0
), and f(x0) = lim

x→x0,
x∈Ax0

f(x).

Let us recall the concept of appproximate continuity.

Definition 3. Let f : R −→ R and 〈s〉 ∈ S. We shall say that f is
approximately continuous at point x0 ∈ R if there exsists a set Ax0

∈ L
such that

(2) x0 ∈ Φ(Ax0
), and f(x0) = lim

x→x0,
x∈Ax0

f(x).

Our further results are well known for approximate continuity (see [6]).
We do generalization for 〈s〉-approximate continuity. In fact, by Theorem 2
the results are evidently extension of the classical results if 〈s〉 ∈ S \ S0.

Theorem 3. Let f : R −→ R be a Lebesgue measurable function and let
〈s〉 ∈ S. The function f is 〈s〉-approximately continuous at a point x0 ∈ R

if and only if the following condition is satisfied

(3) ∀ε>0 x0 ∈ Φ〈s〉({x ∈ R : | f(x) − f(x0) |< ε}).

The following lemma will be useful to prove this theorem. The condition
presented in this lemma is called the condition (J2) of J. M. Jȩdrzejewski
(see [5]).

Lemma 1. Let 〈s〉 ∈ S. For every decreasing sequence {En}n∈N of Lebesgue
measurable sets and for every point x0 ∈ R such that for every n ∈ N we
have x0 ∈ Φ〈s〉(En), there exists a strictly decreasing sequence {kn}n∈N of
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positive numbers less then 1 and convergent to 0 such that x0 is 〈s〉–density

point of set Ax0
=

∞
⋃

n=1
(En \ (x0 − kn, x0 + kn)).

Proof. Let 〈s〉 ∈ S and let {En}n∈N be a decreasing sequence of Lebesgue
measurable sets. Let us fix x0 ∈ R such that x0 ∈ Φ〈s〉(En) for each n ∈ N.

Let {εn}n∈N be a strictly decreasing sequence of positive numbers conver-
gent to 0. Since for every n ∈ N we have x0 ∈ Φ〈s〉(En) then

(4) ∀n∈N∃k(n)∈N∀k≥k(n)

l(En ∩ [x0 −
1
sk

, x0 + 1
sk

])
2
sk

> 1 − εn.

We can assume that sequence {k(n)}n∈N is increasing. Let {hn}n∈N be a
subsequence of the sequence {sn}n∈N expressed in the form hn = sk(n) for

each n ∈ N . Putting kn = εn ·
1

hn+1
for each n ∈ N , we obtain that {kn}n∈N

is strictly decreasing sequence and lim
n→∞

kn = 0. Let Ax0
=

∞
⋃

n=1
(En \ (x0 −

kn, x0 + kn)) and fix ε > 0. There exists n0 ∈ N such that 1 − 2εn > 1 − ε

for any n > n0. Obviously, there exists k0 ∈ N such that 1
sk

< 1
hn0+1

for

any k > k0. Let k > k0. There exsists n1 > n0 such that 1
sk

∈ [ 1
hn1+1

, 1
hn1

].

This fact with condition (4) implies that

l(Ax0
∩ [x0 −

1
sk

, x0 + 1
sk

])
2
sk

≥

≥
l((En1

∩ [x0 −
1
sk

, x0 + 1
sk

]) \ (x0 − kn1
, x0 + kn1

))
2
sk

≥

≥
l(En1

∩ [x0 −
1
sk

, x0 + 1
sk

])
2
sk

−
2kn1

2
sk

>

> 1 − εn1
−

εn1
· 1

hn1+1

1
sk

≥ 1 − εn1
− εn1

> 1 − ε.

Finally we have that lim
k→∞

l(Ax0
∩[x0−

1

sk

,x0+ 1

sk

])

2

s
k

= 1, which means that x0 is

〈s〉-density point of set Ax0
. �

Proof of Theorem 3. Let 〈s〉 ∈ S.
Necessity. Let x0 ∈ R and suppose that f is 〈s〉-approximately continuous

at a point x0 ∈ R. Thus there exists a set Ax0
∈ L such that x0 ∈ Φ<s>(Ax0

)
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and

∀ε>0∃δ>0∀x∈Ax0
x ∈ (x0 − δ, x0 + δ) ⇒| f(x0) − f(x) |< ε.

Hence

∀ε>0∃δ>0{x ∈ R :| f(x0) − f(x) |< ε} ⊃ Ax0
∩ (x0 − δ, x0 + δ).

Since

x0 ∈ Φ〈s〉(Ax0
∩ (x0 − δ, x0 + δ)) and {x ∈ R :| f(x0) − f(x) |< ε} ∈ L

for each ε > 0 then

∀ε>0 x0 ∈ Φ〈s〉({x ∈ R :| f(x0) − f(x) |< ε}).

Sufficiency. We assume that condition (3) holds and put for every n ∈ N

En = {x ∈ R :| f(x0) − f(x) |<
1

n
}.

Of course, {En}n∈N is a decreasing sequence of Lebesgue measurable sets
and x0 is 〈s〉-density point of set En for every n ∈ N . Lemma 1 implies
that there exists a strictly decreasing sequence {kn}n∈N of positive numbers

convergent to 0 such that x0 is 〈s〉-density point of a set Ax0
=

∞
⋃

n=1
(En \

(x0 − kn, x0 + kn)). Obviously, Ax0
∈ L and

f(x0) = lim
x→x0,
x∈Ax0

f(x).

Indeed, fix ε > 0. There exists n0 ∈ N such that 1
n

< ε for each n > n0. Let

δ = 1
kn0

. Since {kn}n∈N is decreasing so, if x ∈ Ax0
∩ (x0 − kn0

, x0 + kn0
)

then x ∈
∞
⋃

n=n0+1
(En \ (x0 − kn, x0 + kn)). Consequently, if x ∈ Ax0

∩ (x0 −

δ, x0 + δ) then there exists n1 > n0 such that x ∈ En1
, which means that

| f(x) − f(x0) |<
1
n1

< ε. And we have that f(x0) = lim
x→x0,
x∈Ax0

f(x). �

Definition 4. Let f : R −→ R and 〈s〉 ∈ S. We shall say that f is 〈s〉-
approximately continuous if f is 〈s〉-approximately continuous at every point
x ∈ R.

Theorem 4. A function f : R −→ R is Lebesgue measurable if and only if
there exists a sequence 〈s〉 ∈ S such that f is 〈s〉-approximately continuous
a.e.

Proof. Necessity. Let f be a Lebesgue measurable function. Then f is
approximately continuous a.e. (see [1]). Hence it follows that f is 〈s〉-
approximately continuous a.e. for every 〈s〉 ∈ S.
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Sufficiency. We suppose that there exists 〈s〉 ∈ S such that f is 〈s〉-
approximately continuous a.e. Let 〈s〉 ∈ S and α ∈ R. Put E = {x ∈
R : f(x) < α}. Let F be a set of all points x ∈ R such that f is 〈s〉-
approximately continuous at point x. Then we have E = (E ∩F ) ∪ (E \ F )
and l(E \ F ) = 0. We shall show that F ∩ E belongs to L. Firstly we shall
show that the following condition is fulfilled:

(5) ∀x∈E∩F∃Ex∈L(Ex ⊂ E ∩ F ∧ x ∈ Φ〈s〉(Ex)).

Indeed, let x0 ∈ E ∩ F. Then we have f(x0) < α and there exists a set Ax0

such that
x0 ∈ Φ〈s〉(Ax0

) and f(x0) = lim
x→x0,
x∈Ax0

f(x).

We can also assume that x0 ∈ Ax0
. Consequently, there exists δ > 0 such

that f(x) < α for each x ∈ Ax0
∩ (x0 − δ, x0 + δ). Let Ex0

= Ax0
∩ (x0 −

δ, x0 +δ)∩F. Obviously Ex0
∈ L and Ex0

⊂ E∩F. Moreover x0 ∈ Φ〈s〉(Ex0
).

Indeed, x0 ∈ Φ〈s〉(Ax0
∩ (x0 − δ, x0 + δ)) and

lim
n→∞

l
(

F ∩
[

x − 1
sn

, x + 1
sn

])

2
sn

= lim
n→∞

l
(

R ∩
[

x − 1
sn

, x + 1
sn

])

2
sn

= 1,

so x0 ∈ Φ〈s〉(F ). From the above and Theorem 1 we have that x0 ∈
Φ〈s〉(Ex0

). And condition (5) is satisfied.

Let B be a Lebesgue measurable kernel of the set E ∩ F. For every x ∈
E∩F , by condition (5) we have that l(Ex\B) = 0 and Ex ⊂ (Ex\B)∪B ∼ B.

From the above and Theorem 1 we have that Φ〈s〉(Ex) ⊂ Φ〈s〉(B) for every
x ∈ E ∩ F. Moreover, condition (5) implies that E ∩ F ⊂

⋃

x∈E∩F

Φ〈s〉(Ex).

Consequently,

B ⊂ E ∩ F ⊂
⋃

x∈E∩F

Φ〈s〉(Ex) ⊂ Φ〈s〉(B).

Simultaneously l(Φ〈s〉(B) \ B) = 0. Thus E ∩ F ∈ L and consequently E is
a Lebesgue measurable set. �

Corollary 1. A function f : R −→ R is approximately continuous a.e. if
and only if there exists a sequence 〈s〉 ∈ S such that f is 〈s〉-approximately
continuous a.e.

Theorem 5. Let f : R −→ R and 〈s〉 ∈ S. A function f is 〈s〉-approximately
continuous if and only if the sets Eα = {x ∈ R : f(x) < α} and Eα = {x ∈
R : f(x) > α} belong to topology T〈s〉 for every α ∈ R.
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Proof. Let f : R −→ R and 〈s〉 ∈ S.
Necessity. We have, by Theorem 4, that Eα, Eα ∈ L for each α ∈ R. Let

us fix α ∈ R and let x0 ∈ Eα. Then, by Definition 4, there exists Ax0
∈ L

such that
x0 ∈ Φ〈s〉(Ax0

), and f(x0) = lim
x→x0,
x∈Ax0

f(x).

Since f(x0) < α then there exists δ > 0 such that Ax0
∩(x0−δ, x0+δ) ⊂ Eα.

Consequently,

x0 ∈ Φ〈s〉(Ax0
∩ (x0 − δ, x0 + δ)) ⊂ Φ〈s〉(Eα).

And we obtain that Eα ⊂ Φ〈s〉(Eα), which implies that Eα ∈ T〈s〉 for every
α ∈ R.
Similary we can show that Eα ∈ T〈s〉

Sufficiency. Let x0 ∈ R, fix ε > 0 and suppose that sets Eα and Eα belong
to topology T〈s〉 for every α ∈ R. Consequently, f is Lebesgue measurable
function and

{x ∈ R : f(x0) − ε < f(x) < f(x0) + ε} ∈ T〈s〉.

Hence, it follows that x0 is 〈s〉-density point of the set {x ∈ R : | f(x) −
f(x0) |< ε}. By Theorem 3 we get, that the function f is 〈s〉-approximately
continuous at point x0. It follows that f is 〈s〉-approximately continuous. �

We have the below theorem

Theorem 6. Let f : R −→ R and 〈s〉 ∈ S. A function f is 〈s〉-approximately
continuous if and only if f is continuous with respect to topology T〈s〉 (in
abr. 〈s〉-continuous function).

Let 〈s〉 ∈ S. By C(T〈s〉) we shall denote the family of 〈s〉-continuous
function. In the paper [4] the following result is presented

Theorem 7. Let 〈s〉, 〈t〉 ∈ S. Then C(T〈s〉) = C(T〈t〉) if and only if T〈s〉 =
T〈t〉.

From the above and Theorems 2 and 6 we have that for every sequence
〈s〉 ∈ S0 there exists a function f and a point x0 ∈ R such that f is 〈s〉-
approximately continuous at point x0 and is not approximately continuous
at point x0.
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