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ABSTRACT

Ł. Kwiatkowski. Markov Switching in Stochastic Variance. Bayesian Comparison of Two Simple Models. 
Folia Oeconomica Cracoviensia 2008-2009, 49-50: 109-143.

In the paper tw o particular M arkov Sw itching Stochastic Volatility m odels (M SSV) are under 
consideration: one with a sw itching intercept in the Iog-volatility equation, and the other —  
with a regim e-dependent autoregression parameter. W hile the form er one is fairly com m on 
in the literature (as a tool of taking account for regim es of different m ean volatility level), 
the latter has not been paid almost any attention so far. We note the fact, that state-varying 
mean volatility m ay arise from sw itches in the intercept or in the autoregression param eter. 
Hence, w e aim to com pare these tw o m odels in respect of goodness of fit to the data from  
the Polish financial m arket, em ploying Bayesian techniques of estim ation and m odel com pa
rison. Clear evidence of structural shifts in the volatility pattern is found. Two different re
gimes of the econom y are characterized in term s of the m ean volatility level and the varian
ce of volatility.
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1. INTRODUCTION

Recent years have witnessed a rapid increase in the interest in modelling time- 
varying volatility of financial time series. Among the most popular tools de
vised to capture some of its common features have been two parametric model 
families: the ARCH processes, introduced by Engle (1982) (along with their 
num erous extensions starting w ith GARCH process of Bollerslev, 1986), and 
the stochastic volatility (SV) processes, of whose the main concept has been 
presented by Clark (1973). Although in formally different ways, in both of the 
above conditional variance equation is defined explicitly.

The underlying assum ption of these constructions is homogeneity of the 
m odelled time series, which m eans exclusion of potential structural breaks 
occurring in the analyzed period. It allows one to presume that the parameters 
of interest rem ain constant over time. However, volatility clustering, a com
m on phenom enon observed in stock returns series, may question this belief. 
It is so due to some heuristic reasoning that less volatile periods alternating 
w ith these of higher uncertainty m ay som ehow correspond with structural 
breaks occurring in the data. In view of potential heterogeneity of a certain 
time series, models such as GARCH or SV are of too restrictive nature (Hwang 
et al., 2004). Not being able to capture discrete shifts of states of the economy 
may be the cause for these models to yield somewhat misleading results. For 
instance, Granger and H yung (1999) and Diebold and Inoue (2001) suggest 
that structural breaks in the m ean of volatility m ay be a source of volatility 
persistence. It follows that a proper model should include an explicit mecha
nism capable of accounting for possible regime changes. One of the most popular 
in this respect is Markov switching (MS) mechanism introduced by Hamilton 
(1989). W hat he suggested is an autoregressive process whose parameters are 
subject to changes over time according to a latent homogeneous Markov chain. 
Since then m any studies have been undertaken to employ the idea of MS into 
volatility models, mainly those of the GARCH family (see Bauwens et al., 2006, 
among many).

The aim of the paper is Bayesian estimation and comparison (in terms of 
goodness of fit to the data) three SV specifications: a non-switching basic sto
chastic volatility (BSV) model and two Markov Switching SV (MSSV) models 
(one w ith a regime-changing intercept and the other with a switching autore
gression param eter in the volatility equation). The dataset comprises daily 
observations on the 1-month W arsaw Interbank Offered Rate (WIBOR1M) 
interest rates over the period from April 17, 2000 to April 7, 2008. Incidental 
to the analysis of the regime-switching constructions is a search for potential 
structural shifts occurring in the series and — if any are found — character
ization of the identified states of the economy.

There are several reasons behind our research. Firstly, em ploying non
switching models in view of potential structural breaks in the time series may
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lead to a model misspecification error. In this regard, switching specifications, 
like the MSSV processes, may be of value as they account for discrete shifts in 
the parameters. Secondly, we note that abrupt changes in the m ean volatility 
level, which is the reason widely cited in the literature for employing the MSSV 
structures, may be attributed not only to the switching intercept but, alterna
tively, to the regime-changing autoregression param eter in the volatility equa
tion. Finally, neither the issue above nor the MSSV models with a switching 
elasticity of volatility2 are tackled in the literature known to the au thor .3

As regards the current state of the literature on the MSSV m odels, in 
a predom inant part of the studies only two-state specifications w ith a switch
ing intercept are concerned (Smith, 2000; Kalimipali and Susmel, 2001; Casarin, 
2003; Shibata and W atanabe, 2005; Carvalho and Lopes, 2006). Three-state 
models are analyzed in So et al. (1998) and Hw ang et al. (2003, 2004). In terms 
of the estimation tools the Bayesian approach prevails, with use of either stan
dard MCMC procedures (the Gibbs sampler; So et al., 1998; Kalimipali and 
Susmel, 2001, Shibata and Watanabe, 2005) or more recent (auxiliary) particle 
filters (Casarin, 2003; Carvalho and Lopes, 2006). Some of the models feature 
additional elements such as term structure (Smith, 2000; Kalimipali and Sus
mel, 2001) and heavy-tailed distributions of the noise term  in the observable 
process (Casarin, 2003).

We conduct the analysis in the Bayesian setting, which allows fully prob
abilistic inference on all the unknown quantities of the model as well as well- 
founded m odel comparison. As opposed to the 'classical' (i.e. non-Bayesian) 
tools, Bayesian m ethodology in the context of sw itching m odels (or, m ore 
generally, m ixture models) is found even more appealing. The latter stems 
from the possibility of inference on the latent regimes unconditionally upon 
the param eter estimates (see Gartner, 2007).

The remainder of the paper is organized as follows. In Section 2 we present 
the models under consideration and selected regime characteristics, of which 
use is made in the further parts. Bayesian estimation of the models and their 
comparison are briefly discussed in Section 3, followed by an empirical illus
tration of the presented methodology in Section 4. Finally, Section 5 concludes.

2 'Elasticity of volatility' is the term used by Smith (2000) with reference to the autoregression 
parameter, <p, in the log-volatility equation of a SV model given as: ln/i, = n  + tplnh,^ + at],. Assu
ming 7], ~ » 0 (0 ,1 )  (i.e. each T], is an independent and identically distributed random variable with 
zero mean and unit variance) the third parameter, a, is a standard deviation of the innovation term 
arh, and hence referred to as 'volatility of volatility'.

3 The only works in which the autoregression parameter is allowed to switch over the regimes 
are of Hwang et al. (2003, 2004). However, not only the estimation approach employed in these 
studies (Quasi-ML), but also the specification of the log-volatility equation is different than in our 
work.
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2. SELECTED MARKOV SWITCHING SV (MSSV) MODELS

In this part the basics of selected MSSV processes are presented. We start with 
the following definition of a general Markov Switching SV process.

A stochastic process4 [yt, t e N  u{0)} follows a two-state M arkov Switching 
Stochastic Volatility (MSSV) process if and only if for each t e  N u  {0} the fol
lowing assum ptions hold:

{Sf/ t e N  u{0}} — a homogenous, ergodic and irreducible two-state Mar-

The observable variable, y(, is defined as a product of a Gaussian white 
noise and conditional standard deviation .5 Equation 2 defines the log-volatil- 
ity which evolves over time according to a simple switching autoregressive 
process. Since all of the parameters in the latter feature regime-changing prop
erty, the definition may be viewed quite general, although further extensions 
are possible (a heavy-tailed distribution for et can be considered, for instance, 
as in Casarin, 2003). The switching mechanism, represented by the family of 
discrete random  variables S('s, is assumed to follow a simple two-state Markov 
chain, in accordance with the idea proposed by Hamilton (1989). For the sake 
of our study, ergodicity and irreducibility of the chain are assumed by restrict
ing the transition probabilities, p-, to lay strictly within the unit interval.

One should note, that a basic stochastic volatility process (BSV), with the 
log-volatility equation defined as:

4 By N we denote the set of positive integers.
5 It is straightforward to show that —  conditionally upon a a -algebra with respect to which h, is 

measurable —  the latter constitutes conditional variance of the process {y(), i.e: Var(yt IF , //(, S() = 
ht, where FM is the past information about the process (/i( , f e  N  u  (0(( up to the moment f-1.

D e f i n i t i o n  1

Vt = £ t y f i t  )

\nht = n Si +(pSi \nht_ i+ a Sirjt i

(1) 

(2)

ln/i( -  ju + p]nht_i + crrjt,
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may be viewed as a particular case of the general MSSV process once fdx -  //2, 
(px = (p2 and CTj = <J2 hold. However, the transition probabilities, p-, remain then 
unidentified.

In our work two special cases of the general MSSV process are of particu
lar interest: the one with a switching intercept and the other — with a regime- 
dependent autoregression param eter. A concise discussion of both follows.6

2.1. M S S V  m o d e l  w i t h  a s w i t c h i n g  i n t e r c e p t ,  M S S V ( ^ )

In this case Equation 2 collapses to:

, , , , \V--i + + cm, <=> St = 1
\nh, = jus +(p]nh,_1 + 077, = < . (3)

f HS‘ * ‘ 1 " \ v 2 +(p\nht_1 + oilt «  St = 2 w

For the sake of identifiability of the model we reparametrize the switching 
param eter as (see So et al., 1998):

t*Sl = n + r j i s t = 2)'
where yx e R, y2 c  0 and I(.) denotes the indicator function which takes one if
the condition in the parentheses is satisfied and zero otherwise. Such a repre
sentation of the switching intercept results in inequality /j.y > /ur  It m ay be 
shown that the latter is equivalent to predetermining states V  and '2' as ones 
of high and low mean log-volatility level, respectively, that is:

/ / ,  > f i 2 <=> E(ln/tf I St = 1) > E(ln/tf I S( = 2) .

For the model in question we shall also assume covariance stationarity of 
the log-volatility process following Equation 3, for which it is necessary and 
sufficient7 to guarantee that I cp I < 1 .

2.2. M S S V  m o d e l  w i t h  a s w i t c h i n g  a u t o r e g r e s s i o n  
p a r a m e t e r ,  M S S V ( ^ )

In our study we note that discrete shifts in the mean volatility level may result 
from not only a switching intercept, but — alternatively — a regime-changing 
autoregression parameter. Hence, we consider a MSSV model w ith Equation 
2 assuming the form:

In ht = n  + (ps \nht._! + OTit, (4)

6 For a comprehensive work on non-switching SV models we refer to Pajor (2003).
7 General results on second-order and strict stationarity of switching vector autoregression 

processes may be found in Francq and Zakolan (2001).
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log-volatility

Fig. 1. Simulated path of a MSSV(^) process (// = -2 .5 ; tp} = 0.2; <p2 = 0.5; a 2 = 0.6132; pu = 0.98; 
p22 = 0.95) and the corresponding log-volatility and regime-switching processes

For the identifiability reasons we shall impose the inequality (pA < <pT Once 
formulas for conditional expectations E(ln/z( I Sf = 1) (i -  1, 2) are available (see 
the following subsection), it is easily shown that:

H < 0 => [<pi < q>2 <=> £(lnht I St = 1) > E(\nht I St = 2)]
and

/1 > 0  => [(p\ < (p2 <=> E ( \ n h t I S t = 1) <  E ( \ n h t I S t = 2 )] ,

which indicates different m ean volatility levels in each of the regimes.
Further, we assum e covariance stationarity  of the log-volatility process

following Equation 4. The relevant (necessary and sufficient) condition is giv
en by the set of inequalities:8

p i  <1

\R 2 < 2,
where:

K l =  Pll<Pl +  P2292 + ( 1 -  P l l  -  P22)<Pl<P2 /

R2 = pn (pi + P22P2 •

8 The condition is also valid for the general case, in which all the three volatility parameters are 
allowed regime shifts (see Francq and Zakoian, 2001). One should note that the condition is some
what contrary to an initial 'intuition' according to which it should be 'enough' to assume that
I (ft I < 1 and I (fa I < 1 .  The latter constitutes neither a necessary nor a sufficient condition for 

second-order stationarity of a two-state switching first-order autoregression (ibid.).



Figure 1 depicts a sim ulated path of a certain MSSV($>) process and the 
corresponding regime-switching and (stationary) log-volatility processes. The 
latter displays evident shifts in the m ean level (according to the sw itching 
mechanism), which manifest themselves in the form of volatility clustering.
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2.3. S e l e c t e d  r e g i m e  c h a r a c t e r i s t i c s

While allowing different states of the economy, it is natural to characterize the 
regimes in some systematic way. In our work we do so by calculating selected 
regime-specific characteristics both of the log-volatility process and the switching 
mechanism as well, including: ,
— state-conditional m ean log-volatility level:9

E1 3 E(\nht I Sf = 1) = ------^ l l - _(p2p22) + fi2(p]( l - p n )--------^
I - M 2 ~ V2P220-~ <Pl) ~ flPuO--<P2) ’

E2 s  E (ln^ I S t = 2 ) = -  ■ ^ ( 1 - W l l ) +  ^1<P2( 1 - P 2 2 )  .
1 -  (p{(p2 ~  <P2V220- -  9 l )  -  № l l ( l  -  9 2 )

— state-conditional variance of the log-volatility process:

Vi s  Var(\nht I St = i) = E(ln2 ht I St = i) -  E? for i = 1, 2, !

where:

and

E (ln2 h t I S t =  l ) =  d 1Q .-(p% p22) + d 2< p f ( l - p n ) ^

1 - < P lP l l  -9 2 .V 2 2  +(P l f 2 ( ~ ^ JrP n  + P22)  ,

pfln2 h K  =  ?V= ^2(1-<Pi2P i i )  +  d l q > l Q . - p 22)
\ t t  / - 2 2 2 2/ i  \ '

1 - W l l - ^ 2P22+ W 2 (-1 + P l l + P 22)

di =  n f  + 2 fi i(piE {\nh t_ 1 I S t = i) +  o f  fo r  i  =  1 ,  2 ,

E(Infif_1 I St = i) = i ?)-,-E(ln/!, I S, = j)
. /=1 

with py; = = i I Sj = / ) being the inverse transition probabilities;10

9 First- and second-order state-conditional moments of the log-volatility process have been 
obtained for the general case (that is the one in which all three parameters are regime-changing) 
under assumption of covariance stationarity of that process and based on the results of Nielsen 
and Olesen (2000). , •

10 In the case of a two-state Markov chain the inverse transition probabilities defined as 
p* = Pr(SM = i \ S l = j )  are easily shown to equal the ordinary transition probabilities, = Pr^S, =
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.11— ergodic probabilities:

7C\ -Pr(S{ =1) = -- 1 ~ ^ 22 ,
2 ~Pn~P22

n2 - Pr(Sf = 2) = 1 -K \)

— expected duration12 of state T  (once the system has switched to that state; 
see Ham ilton, 1989):

Dun = — -—  for i = 1, 2.
1 -  Pa

3. BAYESIAN ESTIMATION AND COMPARISON 
OF THE MSSV MODELS13

Estimation of the MSSV models is not trivial. H andling the maximum likeli
hood procedure is riddled w ith serious numerical obstacles due to the pres
ence of (as m uch as) two latent processes underlying the observable process: 
the conditional volatilities, ht's, and the states, St's. In our work we resort to 
Bayesian methodology, which prevails in the MSSV literature.14 Although new 
m ethods — based on the (auxiliary) particle filters — have been developed of 
recent,15 we employ the already 'classical' MCMC procedures: the Gibbs sam
pler and the Metropolis-Hastings algorithm, to simulate from the joint poste
rior distribution of all the unknow n quantities of the model.

Let y = (j/j, y z, y T)' denote the m odelled time series, vector h = (hv  
h2, ..., hT)' be the  series of the la ten t cond itional volatilities and  vector 
S = (Sj, S2, ..., ST)' — the unobserved Markov chain. We define the parameter 
vector as 0=  (/?', <j2, pn , p22y  with a 2, pn  and p22 being the parameters common 
to both MSSV models, and p  comprising the model-specific parameters:

0 _ [(YvYi'VY  for MSSV(n)
\{li,<pi,(p2)' for MSSV(<p)'

Further, we employ the data-augmentation technique introduced by Tan
ner and Wong (1987), w ithin which all the unknown quantities of the model

11 Ergodic probabilities calculated for an ergodic Markov chain tell us approximately for how 
long (in terms of a part of the analyzed time series) the chain remains in each of its states. In the 
study we assume that pj;- e  (0,1) for i = 1, 2, which ensures ergodicity of the switching process.

12 Expected duration of a certain regime is calculated conditionally upon being in that state.
13 In the paper we discuss only the estimation of the switching SV models. For a detailed 

description of the Bayesian estimation of simple SV constructions we refer to Pajor (2003).
14 For the relevant references see Section 1.
15 Ditto.
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are treated as random  variables subject to estimation and taking values in the 
common space:

c o '= ( 0 ' , h ' , S ' ) e  n  = 0 x H x Q T,

where 0 e  <9c R6, h e H c  7?J, S e QT and Q = {1, 2}. ,
The joint posterior distribution of co is factorized as :16

p ( 9 , h , S  l j ) o c  p ( y \ h ) p ( h \ S , e ) p ( S \ 0 ) p ( 0 ) t (5 )

which reveals its hierarchical structure. Individual components of (5) are pre
sented in the Appendix. Here, we focus on the prior structure of the param 
eters, for (almost) all of which m utual independence is assumed:

p (0 ) = | p ( j 8)p(<72)p(P i1)p (P 22) for MSSV(u), '
\ p ( P \ P n ’P22)P (° 2)P(Pu)P(P22) for MSSV(<p).

Conditioning on the transition probabilities in p(J3\pn , p ^)  for the m odel 
with a switching autoregression param eter stems from imposing prior restric
tions of covariance stationarity of the underly ing log-volatility process (see 
Section 2.2). . , ■

In the study we choose fairly diffuse priors, letting the posterior results 
arise mainly from the information contained in the data. More specifically, we 
have: .. . , - ; ■ ■

1. prior distributions for the parameters common to both MSSV m odels:17

— p(cr2) = f IG(cr2 1 vv  v2), vx = 1, v2 = 200;
— p(Pii) = U p,s 1 av b)r  ai = bi = i / for 1 2;
where f B(Pjj I «,■, bj) denotes the density function of a Beta-distributed random  
variable, pu, with the shape and scale param eters equal a; and fy, respectively; 
, 2 . prior distribution for /}:■
— for the MSSV(//) model:

pifi) = (J3\J30, A Q~1)I(y2 < 0)7(1 ^1 < 1), J3Q = 0(3xl), A0 = 0,01 • 73,

where I A 0_1) denotes the density function of a normally distributed
fc-variate random  variable, /3, w ith the m ean vector and the precision matrix 
equal f3Q and A 0, respectively;

16 The analysis is conducted conditionally on h0 = 1, dependence on which is omitted in the 
notation.

17 We parametrize the density of the inverse gamma distribution as:

p ( e 2) = f , c ( v 2 ^ , v 2)=  |- 2y , -exp
v 2a 2 

1 y
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— for the MSSV(^) model: M

VWVXV P22) = / N(3) V ) r<Ri < ° №  < OX f i0 = o0xl), A0 = 0,01 • V

As regards prior distributions for the param eters of the BSV model, we 
follow the structure employed in Pajor (2003), namely:

— p(a2) = f lG{a2\vv  v2), vl = 1, v2 = 200;
— P(M,<P) = / n(2)(A <P10(2xl), A 0~')I(\<p\ < 1 ), A 0 = 0,01 • I3.

The prior structure presented above provides very convenient (in terms of 
the sampling method) conditional posterior distributions of the model param
eters .18 The latter are employed to construct a hybrid chain within the MCMC 
procedure, through which a N-sized sample from the joint posterior distribu
tion is obtained, {<D(<7)} _^+i , where q denotes the num ber of the cycle of the 
sampling algorithm, of which the first M  cycles are discarded, and a №  signi
fies the outcome on co from the q-th step. Once the algorithm is complete, it 
is straightforw ard to obtain also a sample of any measurable function of co, 
such as regime characteristics, in particular. '

In order to allow Bayesian m odel comparison, the marginal likelihood for 
each of the estimated models needs to be evaluated. In our work we resort to 
the procedure introduced by Newton and Raftery (1994), in which the quan
tity of interest is estim ated as:

' ' ' n-1 '
1 M.+N  1

I
N  q= M + 1 p ( y  I , M j )u(i)

where *(y I M;) is the estimator of the marginal likelihood in the z-th model, M;. 
Despite its lamentable numerical instability, the m ethod proved satisfactory in 
our applications. Finally, to compare the models pair-wise use is m ade of Bayes
factors, Btj, defined as:

E p ( y \ M j )  

p ( y  I M j )

18 Full details on the posterior structure of all the estimated quantities are found in the Ap
pendix.
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4. EMPIRICAL STUDY

4.1. D a t a  d e s c r i p t i o n

The m ethodology presented above is' illustrated w ith  an empirical study  in 
which data from the Polish financial m arket is analyzed. More specifically, we 
consider a series of daily quotations of the 1-month W arsaw Interbank Offered 
Rate (WIBOR1M) interest rates over the period from  April 17, 2000 to April 
7, 2008 (which makes the total of 2002 observations). The series is plotted in 
Figure 2.

WIBOR1M interest rates (2000.04.17-2008.04.07)  ̂ .
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Fig. 2. The series of W IBOR1M interest rates, wt

We calculate the daily log-retum s, rt's, on the WIBOR1M interest rates, 
defined as:

rt = 100 ]n(wt/zvtA),

where wt denotes the price of the instrum ent at tim e t. The series of r ’s is 
presented in Figure 3.

Log-retums on W ILBOR1M  (2000.04.18-2008.04.07)

Fig. 3. Daily log-retums, r(, on the W IBOR1M (April 18, 2000-April 7, 2008)
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Further, w e apply a simple linear filter — a first-order autoregressive model 
— to the data as to account for possibly non-zero conditional m ean of the data 
generating process .19 Henceforth, the analysis is conducted for the resulting 
series,of. AR(l)-residuals2P (see Fig. 4), denoted  as y t w ith t = 1, 2, ..., T -  2000. 
The latter display features commonly found in financial data, including vola
tility, clustering, high value of the empirical kurtosis coefficient (see Tab. 1), no

; AR(1)-residuals for W ILBOR1M  (2000.04.19-2008.04.07)

Fig. 4. The AR(l)-residuals for the daily log-retums on the WIBOR1M

Descriptive statistics for AR(l)-residuals for WIBOR1M

Table 1

Min Max Mean Stand, deviation Asymmetry Kurtosis ARCH(2) effect

-7.2629 6.5844 0.0000. ’ 0.8394 -0.4339 18.5818 TR2= 177.1391 
(p-value = 0.0000)

1.4
1.2

1:0
0.8
0.6
0.4
0.2

0

. '

.......... .........frfffff ■ ■ ■■tlTbl-ri mn.........
l o l o l o l o l o l o l o l o l o l o  
N S C M S N . N S N S N  
T-; C q C D C O ^ T — C O C Q C O t - ;
...o  r  c\j c*j i/i

Fig. 5. Empirical distribution of the series \ y t, t = 1, 2, ... ,  T] with fitted normal density (left) 
and the autocorrelation function of the series and its square (right)

19 Estimation of the AR(1) model for the series of the log-retums, r 's , yields the results:
r = -0.0464 + 0.1537 r . + u t

(0.0188). (0.0221) '

20 An alternative approach is to simulate the parameters of the conditional mean modelled 
with an AR(1) process from their conditional posterior distributions. However, we expect that au
tocorrelations in the log-retums have little impact on the volatility and, hence, adopt the method 
used by So et alv 1998. , , ;
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significant autocorrelations in the original series, yet strong auto-dependen
cies in the squared series (see Fig. 5). A dditionally, left asym m etry  in  the 
empirical distribution of the residuals is found (see Tab. 1).

4.2. R e s u l t s  f o r  t h e  B a s i c  SV m o d e l

For the estimation of the BSV m odel we employed the Gibbs sam pler com
bined w ith the Metropolis-Hastings step for sam pling the latent conditional 
volatilities, ht's, as done in Pajor (2003). The first M  -  500,000 bum t-in itera
tions are discarded and the subsequent N  = 1,500,000 iterations are regarded 
as a simulated sample from the joint posterior density.

Table 2 contains posterior m eans and standard  deviations of the m odel 
parameters. One notes the posterior mean of the autoregression param eter, <p, 
being fairly close to unit. It is a common finding in  the SV literature (see Pajor, 
2003, among many), indicating evident persistence in the conditional volatility 
process. Despite prior independency between the parameters we observe strong 
posterior correlations (see Tab. 3). The latter m ay arise as a result of 'stabili
zation' of the unconditional characteristics of the volatility process, such as 
m ean and variance.

Table 2

Posterior means and standard deviations (in parentheses) of the BSV parameters

<P a 2

-0.3384 0.8269 1.1053

(0.0508) (0.0215) (0.1285)

Table 3

Posterior correlation matrix of the BSV parameters

Mi M V yCT2'

A 1 0.8753 -0.6590

: <p 1 -0.7185 ‘

a 2 1

In Figure 6 the m arginal prior and, posterior d istribu tions of the BSV 
parameters along with the plots of their ergodic means (against the num ber of 
cycles) are depicted. The results of posterior densities being of regular shapes 
and fast convergence of the ergodic m eans convergence to their posterio r 
counterparts rem ain consistent with Pajor (2003).
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4.3. R e s u l t s  f o r  t h e  M S S V  ( / / )  m o d e l

To estimate the model we employ the sampling algorithm presented in the A p
pendix .21 The first M  = 2,000,000 burn-in iterations are discarded and the sub
sequent N  = 1,500,000 iterations constitute a simulated sample from the joint 
posterior density.

As it can be gathered from the posterior means of the transition probabil
ities located very close to unit (see Tab. 4), the switching mechanism manifests 
strong persistence. Once a certain state is achieved, little is the probability of 
a switch to the alternative regime. Furthermore, one notes significantly neg
ative posterior m ean of y 2, which provides compelling evidence of discrete 
shifts in the value of the intercept. As compared w ith the results for the BSV 
model, the m ean posterior of the elasticity of volatility is m arkedly lower. It 
is the most common finding cited in the MSSV literature, where it is argued 
that structural shifts unaccounted for by standard SV: models m ay im ply spu
riously high persistence in the volatility process. However, we w ould not jump 
to such conclusions, unless the true autocorrelation functions of the log-vola- 
tility process in  the BSV and MSSV m odel are surveyed .22 One m ay presum e, 
that the very same 'spuriously' high volatility persistence implied by the non
switching SV specification may be captured by the switching counterpart, yet 
in a different m anner (resulting, for instance, in the close-to-unit m ean poste
rior probabilities pti, i = 1, 2). The issue m erits further research.

Table 4

Posterior means and standard deviations of the parameters of model M2

P n P 22 ft . . <p , ,

0.9960 0.9964 -0 .2 7 5 3 -0 .7 2 9 2 0.6658 1 .3594

(0.0027) (0 .0026) (0 .0647) (0 .1051) (0.0360) (0 .1437)

According to the posterior correlation matrix of the parameters (see Tab. 5), 
prior assumption of their m utual independence seems to be overruled by the 
data. In our belief, the non-zero posterior correlation coefficients m ay arise 
from 'stabilization' of the regime characteristics as well as the unconditional 
moments of the log-volatility process.

21 We note that the minimum acceptance rate while sampling h,'s via the M -H algorithm, 
amounted to approximately 60%, which is found much satisfying.

22 For the purpose of comparison of volatility persistence implied by the BSV and both MSSV 
models, we averaged posterior empirical autocorrelation function (ACF) coefficients (lags: 1 to 15) 
for the sampled series of ln/i/s . The results appear not to reject the individual hypotheses of equal 
mean ACF coefficients across different models, therefore advocating the conjecture to follow in the 
main text.
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Table 5

Posterior correlation matrix of the parameters of model M 2

M 2 •: ■ P ll P 22 7 i 72 " <P o 2  . - f . ;

P u 0 .3966 -0 .0 0 6 2 0 .1986 0 .1292 0.0035

P 2 2 . 1 0 .1 5 2 4 0 .2 2 3 2 , 0 .1523 0 .0078  1

: .■ ■■ ■  / i 1 1 0 .1262 0 .5273 -0 .3 9 2 1  : ; i . :

7 2
• ’ ! ■ ' .

, ' 1 : 0 .8012 -0 .4 8 7 1  ’■

, 9  : 1 -0 .6 6 4 7

cr

M arginal posterior densities of the transition probabilities pü concentrate 
tightly: on the left of unit (seeFig. 7), which indicates that the analyzed dataset 
is very informative w ith regard to the switching mechanism. Posterior-distri-

p(p„|y, M2) P iP jy .  M2)

200
180
160
140
120

100

80
60
40
20
0

COID
CO<J>

O
COO

250

200

150

100 -

50

P(P2il/> M2) p(p22\y' M2)

04 l l lM i 'nrrrnn iTTrrni imim im m

250

200

150

100

50

CO CO CO CO CO COh- © , . h*» . T- Tf
O  T- r- T- CM CM

CO _  00 T- 
CM CO

.0 ll fTTl'ini irrrrn

O)o

n r t d

Fig. 7. Marginal prior (solid line) and posterior distributions of the transition probabilities
in model M 2
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butions of the rem aining param eters are clearly unim odal and cluster (with 
slight asymmetries) around their means (see Fig. 8). Prior covariance station- 
arity of the log-volatility process is not rejected by the data, as the posterior 
density of the autoregression param eter, (p, clusters aw ay on the left of unit.

P(r,ly. M2) P(r2ly. M2)

CD 1C

? 7

m

o

i 111 11 1111111 
in  in  m  in
t :  ^  S i  no  co in  t -  o>
CM t- o  o  o

4.5
4.0
3.5
3.0
2.5
2.0
1.5 
1.0 

0.5
0

p(<p,\y,M2) p(o2 \y ,M 2)

CN h-
LO ' Tfr 
T  CO

Fig. 8. Marginal prior (solid line) and posterior distributions of the log-volatility parameters
in model M„

A somewhat unstable behaviour of the ergodic m eans of the param eters 
(except for the transition probabilities) m ay raise concerns as regards conver
gence of the MCMC procedure (see Fig. 9). However, one should note rather 
negligible m agnitude of the visible fluctuations.
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4.4. R e s u l t s  f o r  t h e  M S S V ( ^ j) m o d e l

As in the previous case, the quantities of interest are sampled w ithin the MCMC 
procedure presented in the Appendix .23 The first M  = 2,000,000 burn-in iter
ations are discarded and the subsequent N  = 1,500,000 iterations constitute 
a simulated sample from the joint posterior density.

As far as the switching mechanism is concerned, similar (to the previous 
model) results are obtained. Posterior m eans.of the probabilities p ti are very

Table 6

Posterior means and standard deviations of the parameters of model M3

Pn Pll <Pi <Pi c?

0.9939 0.9961 -0.4511 0.5465 0.8201 1.2485

(0.0046) (0.0026) (0.0642) (0.0869) (0.0233) (0.1375)

close to unit, implying high persistence in the latent Markov chain (see Tab. 6). 
Moreover, the posterior means of the switching param eter differ substantially 
acrpss the two regimes. It follows that switches betw een tw o genuinely dis-

. Table 7

Posterior correlation matrix of the parameters of model M3

M3 pn P22 ; , M ; <Pi .. . <h o2

P u 1 . 0.4241 0.0631 0.3608 - 0.1015 ■ 0.0225

Pn 1 0.0970 0.0765 0.0071 -0.0020

: A 1 0.4967 0.8355; : -0 .6405 ,

• 1 ' . ■ 0.5678 -0.3328- . ;

<h 1 -0.6360

£ 1

25 The minimum acceptance rate while sampling ht's via the M-H algorithm, amounted to 
approximately 60%.
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Fig. 10. Marginal prior (blue solid line) and posterior distributions of the transition probabilities
in model M ,

tinct states of the economy do occur in the m odelled time series. Again, the 
posterio r correlations betw een  the param eters  appear to  reject their p rio r 
independence, a reason for which is believed to be the same as in  the model 
w ith a regim e-changing intercept.

M arginal posterior densities of the transition probabilities resemble much 
those obtained for the MSSV(//) model. A part from a strong left asymmetry of 
param eter q>x, no other irregularities are found in the posterior distributions 
of the param eters (see Fig. 11).
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The behaviour of the ergodic means seems to raise no concerns w ith re
gard to the convergence of the MCMC algorithm  (see Fig. 12).

To analyze the validity of the prior constraints for second-order station
arity of the log-volatility process is a more dem anding task than in the previ
ous cases. Therefore, we present Figure 13, plotting the values of Rx and R2, 
which are required to satisfy the inequalities: Rj < 1 and R2 <2 (see Section 2.2). 
We note that only the dark area in the figure represents the set of pairs (Rv  
R2) that guarantee stationarity of the log-volatility process.24 W ithin the region 
two-dimensional contours of the posterior density of random  vector (Rv  R2) 
are plotted. Despite the location of the latter close to the stationarity border, 
the data appears rather no t to reject the prior stationarity restrictions.

24 The stationarity region has been obtained by simulation and therefore displays slight inac
curacies.
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4.5. R e g i m e  c h a r a c t e r i s t i c s

Both regime-switching SV specifications im ply existence of tw o distinguish
able states of the economy. It is evident even m ore in  Figure 14, depicting 
averaged posterior probabilities25 Pr(Sf = 1 \y) in each of the two models along 
with the modelled time series and the averaged posterior log-volatilities, ln/if's, 
extracted from model M 2.26 Unit-close values of the 1-state m ean probabilities 
clearly correspond w ith the period of relatively higher volatility of , the daily 
WIBOR1M interest rates (from about April, 2001 to September, 2004). M ost of 
the remaining part of the sample period is definitely labelled as state '2'. There 
is a rather short sub-period, however, lasting from March, 2005 to September, 
2005, that cannot be ascribed to any of the regimes unambiguously. It m ay the

25 Mean posterior probabilities of state '1 ' have been obtained as:

Pr(S, =1|>’) = ^ X ^ , (,) =1), t = 1, 2 T.NijsA! 11 .
: 26 The series of the averaged posterior ln/i/s only from model M 2 is presented, as it coincides

quite much with the ones obtained from other specifications, i.e. M 1 and M y
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Fig. 14. Mean posterior probabilities of state '1 ' in models M 2 and M3 (upper plot) along with 

the modelled time series (lower plot) and averaged posterior lnfy's model M2

case that yet another state (i.e. the one representing a m edium  volatility level) 
should be introduced to the model, yielding a three-state MSSV specification.

Posterior m eans of the regime characteristics (see Tab. 8) indicate that the 
m odels differentiate the tw o regim es in term s of either only the m ean log- 
volatility level (model M 2) or, additionally, in  term s of the state-dependent 
variances of the log-volatility process (model M3), with the low-volatility state 
'2 ' featuring relatively increased 'variability of volatility'. One should note that 
w hat characterizes the expected durations of each of the states is considerable 
d ispersion (in term s of the standard  deviation) in  their posterior densities 
featuring very long and heavy right tails (see Fig. 16). On average, the expect
ed  time of the M arkov chain rem aining in  a particular state (once it has been 
achieved) differs from its posterior m ean by about 805 to 5251 weekdays (see 
Tab. 8). As regards the ergodic probabilities, it is noticed that their posterior 
densities, though of a regular shape, are fairly diffused over the unit interval, 
therefore precluding precise inference on approximately how  long27 the chain 
rem ains in a particular state .28 On the other hand, posterior distributions of the 
rem aining regime characteristics (i.e. state-dependent log-volatility means and 
variances) evidently  cluster a round  their posterior m eans, although slight 
asymm etries in their profiles m ay be observed (see Fig. 17 and 18).

27 In terms of a part of the entire period over which the data is analyzed.
28 We draw attention to the fact, that such an interpretation of the ergodic probabilities of a Mar

kov chain is valid once the chain has converged to its stationary (ergodic, invariant) distribution.
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Table 8

Posterior means and standard deviations (in parentheses) of selected regime characteristics
in model M 2 and M 3

Regime characteristics
lviuuei

7l\ 7tl Dur 1 Dur2 Ei Ei Vi V2

M 2 0.4736 0.5264 467.60 555.61 -0.8396 -2.9871 2.4658 2.4643

[MSSV(//)] (0.1873) (0.1873) (1149.07) (5251.38) (0.1639) (0.1615) (0.1967) . (0.1964)

M3
0.4104 0.5896 337.52 484.60 -1.0254 -2.4847 . 1.8301 3.8422

[M SSV ($] (0.1799) (0.1799) (80524) (979.22) (0.1600) (01959) (02428) (03792)

p K  i y, M2) p (^ iy , M2)

p ( ^ ly ,  M3) 1 p(TT2ly , M3)

Fig. 15. Marginal prior (solid line) and posterior distributions of ergodic probabilities 
, in model M 2 and M , •
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4.6. B a y e s i a n  m o d e l  c o m p a r i s o n

In Table 9 w e present selected quantities (obtained via the Newton-Raftery 
procedure) allowing Bayesian comparison of the analyzed models in respect 
of their fit to the data. It is seen that both switching SV specifications are strongly 
preferred over the basic stochastic volatility model. Posterior probability29 of

136

Table 9

Logs of the marginal likelihoods along with the posterior model probabilities and logs 
. : ; of Bayes factors against model M r  /

Model Number 
of parameters lo g .o P O 'l^ ,) Pr(M,- 1 y) logio Bn Rank

Mi (BSV) 3 . -440.8213 6.215E-16 0 3

M 2 [MSSV(//)1 6 -425.6148 0.999997 15.2066 1

M 3[MSSV(f»)] , 6 -431.0917 0.000003 9.7296 2

  ■ log p [ y | M (1 ) ]  -log p\y\M{2)]  log p[y|M(3)]

Fig. 19. Logs of the marginal likelihoods of the models against the number of cycles

29 Posterior model probabilities, Pr(M; I y), have been obtained under equal prior probabilities 
of the models, i.e. Pr(Al) = 1/3.
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the model w ith a switching intercept is as m uch as about 1015 times the pos
terior chances of the BSV model, and about 105 times the chances of the other 
switching model; These are compelling argum ents against the hom ogeneity 
(i.e. the lack of structural shifts) of the m odelled time series.

Nevertheless, the results m ay be considered som ewhat dubious in view 
of the notorious instability of the Newton-Raftery algorithm . Therefore, the 
logs of the m arginal likelihood in  each of the models and selected Bayes fac
tors are plotted against the num ber of MCMC iterations (see Fig. 19 and 20). 
We observe relative stabilization of these quantities only after about 650,000 
cycles. More importantly, however, the ranking of the models remains visibly 
unchanged throughout (see Fig. 19).
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5. CONCLUSIONS

In the paper tw o special cases of a general M arkov switching SV m odel are 
under consideration. One of them  allows discrete shifts only in the intercept, 
whereas the other — in the autoregression param eter of the latent log-vola- 
tility process. Both constructions are capable of accounting for sudden changes
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in the m ean volatility level. Hence, we aim to compare these two specifications 
in respect of goodness of their fit to the data. : . ,r

The results of the Bayesian analysis of both switching models as well as 
a basic SV m odel provides compelling evidence against homogeneity of the 
series of the AR(l)-residuals for, the daily WIBORIM interest rates, as evident 
superiority  of the switching m odels over the BSV construction is observed. 
Am ong them  the one that features a regime-changing intercept is undoubtedly 
p referred  the m ost. . , , ... y ,

The two regimes are distinguishable in terms of either only the mean log- 
volatility level, (in the m odel w ith a switching intercept) or, additionally, the 
state-dependent variances of the log-volatility process (while the autoregres
sion param eter is allowed regime-changing).
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APPENDIX

U nder the notation established in Section 3, the joint posterior distribution of 
all the unknow n quantities of the MSSV m odel is decomposed as:

p (6 ,h ,S  \ y ) <* p(y  I h)p(h I S,9)p(S  10)p{6),

Individual components of the above factorization presents themselves as 
follows:

—  P(y \ h)  = Y l f N(yt \Q,ht),
/=1

where: f N{yt 10, ht) denotes the density function of a normally distributed ran
dom  variable y t w ith m ean and variance equal zero and ht, respectively;

— p( h \S / 6) = Y [ f w (ht \ml,(T2),
1

where: f LN(ht I m t, cr2) denotes the density function of a log-normally distrib
u ted  random  variable ht w ith  the scale param eter equal a 2 and the location 
param eter equal mt given as:

| u s + <p In ht_x for MSSV (ji)
1YI —  < 1 '

* [/J. + (pSi ln/zf_, for MSSV (cp)'

— P(S I e ) oc p(s0)p(s 10 ) = p(s0) f [ p ( s ( 1 s M; 0 ),
<=i

where p(S0) denotes the probability distribution of a discrete random  variable 
SQ. In the study the latter does not constitute a quantity of interest, although 
it is straightforw ard to accommodate the sampling algorithm so that inference 
on S0 is available.

U nder the prior structure presented in Section 3, the following conditional 
posterior distributions are obtained:

140

— V(Vu 10-R, /^ S ,y )  = / B(p„ Iai t b.) , for i = 1, 2,

w here
a\ = ci\+nn , b* =bx + nn,

Cl1 = O-I +^22/ ^2 = ^2 ^"^21/

and

» v= X k sm = m s t =ih
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—  p ( a 2 \e _ a2/ h ,S , x j )  = f IC{ a 2 \v 'u v'2) ,  

w here

T
W  = 2 +V1' v2 = 2 v2

-1

-  f°r * ® v W
1/n  ifi IA  / O’ A"1 ) / ( ^  < 1)I(R2 < 2) for MSSV (<p)

w here

p. = A7l {azA 0p  o + W' In ft), A- = a 2 A, + W ’W, ln /i = (In , In /z2 In h , )’, 

and

W  =

1 1(S,= 2) ln h 0 

1 I{S2 = 2) ln/ij

1 I(ST = 2) lnhj..!

for MSSV (ji),

W  =

1 / ( ^  = l ) l n /;0 /(S1 =2)ln/z0

1 I(S2 = l ) l n V  I(S2 = 2) lnfy

1 7(Sr = l ) l n / i r_1 I(ST =2)  In /zr_,

p(h, \ e,h_nS,y)<=c-l-ex^
K

w here
for the MSSV(//) model:

/ 2 A
J L
2h,

exp

for MSSV ((p) ;

- i a n ^ - w , ) 2
2cr,

for t = 1/ 2, T - l:  a 2 = O'2 _  Vs, ~ W s ,+i + l ( ln ht+i + ln K i )
l  + <p2 '2 ' I f ,  =

1 + ( P 2

for t = T: 

for the MSSV(^) model:

O j -  a 2, w T = (i St + (p ln hT_j ;

for I = 1, 2, T -l: g> = —  ay -  + ^  Inh,_, + . ^ ,  ln l.,,,
f . -1 , 2 * * ■ - , 2 : »1 + <pt 1+<pL

for t = T: <J2 = o 2 xuT = /j. + <pSt lnhT_r
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W ith regard to the conditional posterior distribution of vector S we only 
note here that it can be decomposed as:

p ( S \0 ,h / y) = p(ST \ d ,h / y ) f [ p ( S l ISM / 0 / ht, y 1)
'=1 . ' , ' ' . 

where y f and h‘. denotes the history of the observable process .and the volatility 
process, respectively, up  to m om ent t. The idea has been suggested by Carter 
and Kohn (1994) and it is there that we refer for further details.

T h e  M C M C  s a m p l i n g  p r o c e d u r e

A full single cycle of the MCMC algorithm requires sampling each quantity of 
interest from its conditional posterior distribution. We employ the Gibbs pro
cedure to sample the m odel param eters and vector S. For sampling the con
ditional volatilities, ht's, we adapt the Metropolis-Hastings algorithm used by 
Pajor (2003) in the case of non-switching SV models.

Let denote the outcome on a  from the q-th iteration30 (q = 1, 2, ..., M, 
M +l, ..., M  + N), and o)_a — a vector consisting of the elements of co without 
its component a . U nder this notation, a single full step of the sampling scheme 
proceeds as follows:

Step 1: sample S(<7 + 1̂ fromp(S \6 (q),h {q),S i'q),y)
Note: For a detailed description of the algorithm of sampling from 
p(S I 0, h, y) — see Carter and Kohn (1994);

Step 2: sample p ^ +1) from p(pa I 0 ^ , / z ('7),S ('7+1),i/) , i =  1, 2;

Step 3: sample + from p(fi l(cr2)(‘,),p ^ +1),p ^ +1),/j(‘,),S ('7+1),t/);
Step 3* — only for the MSSV(£>) model31 (permutation sampler, see 
Fruhwirth-Schnatter, 2001):
-» if (p\q+1) < (p^+l) is violated, then :32

30 For q = 0 we obtain the set of starting values of the algorithm.
31 A note should be made here on sampling the model-specific parameters, P, when conside

ring the MSSV(^>) model, i.e. Step 3* in the sampling scheme. In Section 2.2 the indentifiability con
straint ipx < ip1 is imposed. To guarantee that the restriction holds an additional step, called the 
permutation sampler (see Fruhwirth-Schnatter, 2001), is introduced to the Gibbs procedure. Once 
a new  P  has been sampled from its full conditional posterior distribution, we check whether the 
inequality q>{ < <p\ is violated. If so, the subscripts '1 ' and '2 ' are simply interchanged so that the 
restriction is valid again. Since prior to sampling P  all the state variables, S/s, and the transition 
probabilities are generated, they must be 'updated' (if <0, and <p2 required switching), that is all the 
ones and twos in vector S as well as the subscripts of the probabilities need to be interchanged. 
Relevant assumptions, theorems and proofs of the validity of such an algorithm are found in 
Fruhwirth-Schnatter (2001).

21 By we denote the substitution operator.
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<pS'?+1) := <P2 +}), <P2 +:'> := (p\q+X} (so ^ a t  (p\l,+:) < (p^+l) is guaranteed), 

S(,,+1) := 3iT -  S(,,+1) where iT ’ = (1, 1,..., l)(lxT), 

-i for i, j  = 1 , 2 ;

Step 4: sample (ct2) ^  from p(cr2 1 / x (<7>,S (<7+1),j /) ;

Step 5: (the Metropolis-Hastings step): sample each from

p(ht \ e ^ \ h \ ^ y hlf+VTyS(̂ \ y ) ,  where his:t)=(hs,hs+,  ht)‘

with s < t.


