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Abstract

Clutch size (CS) and relative clutch mass (RCM) are considered important features in life history descriptions of species within 
Squamata. Variations in these two characteristics are caused by both biotic and abiotic factors. The present study provides the first 
account related to CS and RCM of Basiliscus vittatus in Mexico within a population that inhabits an open riverbed juxtapositioned 
to tropical rainforest habitat in Catemaco, Veracruz, Mexico (170 m a.s.l.). Twenty-nine gravid females were collected and kept in 
captivity under favorable conditions that promote oviposition. The CS within this population was 6.2 ± 0.2 and was correlated posi-
tively with snout vent-length (SVL); while the RCM was 0.17 ± 0.006 and was correlated positively with both CS and width of egg. 
Factors, such as female morphology and environmental conditions, should influence these reproductive traits in B. vittatus. The data 
collected in this study could provide a framework for comparisons of the life history traits across populations of B. vittatus in Mexico 
and within other species of the family Corytophanidae and provide a model for testing how abiotic and biotic factors may influence 
the CS and RCM in basilisk lizards throughout their range.
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Introduction

Reptiles vary in terms of reproductive output, such as the 
clutch size (CS), egg dimensions, time that reproduction 
occurs during their lifespan, age, and relative clutch mass 
(RCM). Normally in many species of reptiles, these life 

history traits show complex relationships to both female 
body size (Radder and Shanbhag 2003) and intra- and 
inter-population variation (Castilla and Bauwens 2000; 
Kiefer et al. 2008). Thus, when these parameters are deter-
mined, information is provided on reproductive strategies 
that are utilized by different populations of a single species 
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(Shine and Greer 1991). These variations of reproductive 
outputs have been attributed to both (1) abiotic factors that 
mainly include temperature and rainfall (Fitch 1985; Ji and 
Brana 2000), and (2) biotic factors such as body size, mor-
phology, and age (Goodman et al. 2008). Thus, the study 
of life history traits may increase our understanding of 
how individuals of each species interact with the environ-
ment and the environment’s role in reproductive output.

The relative clutch mass has been considered one of 
the most important life history traits in reptiles (Tinkle 
et al. 1970; Vitt and Price 1982), and studied as the ra-
tio of clutch mass with respect to the female mass (Pian-
ka and Parker 1975; Gerald and Miskell 2007) or as the 
proportion of energy destined for reproduction (Vitt and 
Congdon 1978), and is considered an indirect estimate 
of reproductive effort in squamates (Tinkle 1969; Seigel 
and Fitch 1984). Several hypotheses have been proposed 
from the study of life history traits in reptiles that sug-
gest that female body morphology and both clutch size 
and relative clutch mass have coevolved with foraging 
mode (Vitt and Congdon 1978). Therefore, sit-and-wait 
foragers tend to have robust bodies, high clutch size and 
relative clutch mass values, and low escape velocities; 
while active foragers show cylindrical bodies, low clutch 
size and relative clutch mass values, and high escape 
velocities (Vitt and Congdon 1978; Vitt and Price 1982; 
Rodríguez-Romero et al. 2005; Mesquita et al. 2016).

Basiliscus vittatus Wiegmann, 1828 is an oviparous 
lizard of the family Corytophanidae and is widespread in 
tropical regions of America. In Mexico, the Brown Bas-
ilisk has been recorded in Jalisco, Michoacán, Puebla, 
Tamaulipas, Veracruz, and also throughout Central Amer-
ica down to Panama (Campbell 1998; Castañeda-Hernán-
dez et al. 2011). The Brown Basilisk is also now regis-
tered in Florida as an introduced and invasive species 
(Krysko et al. 2006). For its habitat preferences, B. vit-
tatus can be semi-aquatic, terrestrial, and a semi-arboreal 
lizard. According to previous studies, B. vittatus neonates 
show a habitat preference close to water bodies, while 
juveniles and adults tend to move away from permanent 
aquatic sources and have perch sites more elevated (Hirth 
1963; Fitch 1973).

Particularly within the family Corytophanidae, studies 
about life history characteristics are scarce. In the genus 
Basiliscus, there are a few studies detailing aspects of 
natural history, which provide characteristics by habitat 
preferences, thermoregulation, and spatial movements 
(Hirth 1963; Fitch 1973; Laerm 1974), and others have 
related ecological and life history data (Van Devender 
1982; Vaughan et al. 2007; Lattanzio and LaDuke 2012; 
Hernández-Córdoba et al. 2012). Unfortunately, much of 
the information obtained in these studies does not corre-
spond to recently oviposited eggs and most samples were 
taken from different populations (Ortleb 1965; Lieber-
man 1980); in addition the limited samples size could 
promote variations in life history traits. The Brown Bas-
ilisk is classified as a type of passive forager (Cooper et 
al. 2013), however the wide range of microenvironments 

it can occupy (aquatic, terrestrial and arboreal) may pos-
sibly promote restrictions in its relative clutch mass. 
Recently, in a Mexican B. vittatus population localized 
in Ejido López Mateos, Catemaco, Veracruz, character-
istics in regard to nesting site choice and dimensions of 
eggs were recorded for the first time (Suárez-Varón et al. 
2016). It is now possible, using this new data, to make 
comparisons with populations of basilisk lizards distrib-
uted more to the south of this nesting description, for ex-
ample, in Costa Rican populations (see, Hirth 1963; Fitch 
1973), and to observe the effects of biotic/abiotic factors 
on reproductive output among different populations of 
B. vittatus in Mexico and other Central American loca-
tions. Thus, the purpose of the present study is to pro-
vide clutch traits and relative clutch mass data for a single 
population of B. vittatus that inhabits an open riverbed 
juxtapositioned to tropical rainforest habitat in Catemaco, 
Veracruz, Mexico. This study may help: (1) to elucidate 
if a relationship exists between life history traits (i.e., CS 
and RCM) and different biotic/abiotic factors (including 
morphological traits of females), (2) allow a comparison 
of these female reproductive traits within different popu-
lations of Mexican B. vittatus, and other lizards especially 
within the family Corytophanidae.

Materials and methods
Study area

The study was carried out in the community of La Selva 
del Marinero, Ejido Adolfo López Mateos, Catemaco, Ve-
racruz, Mexico (18°26'36.3"N, 94°37'81.9"W, ca. 170  m 
a.s.l.). The climate is warm-humid with a mean temperature 
of 27 °C and 4964 mm of annual precipitation; the rainy sea-
son extends from June to February and the dry season occurs 
from March to May (Ibarra-Manríquez and Sínaca 1987).

Animal collection

We sampled monthly from April to July 2016, and June 
2018 corresponding to the months in which gravid females 
(Fig. 1) were registered in earlier studies (Suárez-Varón 
2015). The females were found in areas close to the water, 
on branches, trunks, riparian vegetation, soil, and rocks in 
an open riverbed near tropical rainforest habitat. We cap-
tured females manually and with the help of a noose. To 
evaluate their reproductive condition, an abdominal pal-
pation and a visual assessment were performed, where the 
gravid females showed a contour in the abdomen region 
(Castilla and Bauwens 2000; Boretto et al. 2014). Once 
the reproductive condition of the females was determined, 
the following morphological data were recorded just for 
gravid females: snout-vent length (SVL), and inter-limb 
distance (ILD) to the nearest millimeter with a digital cal-
iper; additionally, the body weight was measured and we 
considered the total weight (equal to the female weight + 
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clutch mass, TW). Female lizards were then transported 
to the laboratory within large cotton bags.

Within the lab, each female was maintained in indi-
vidual terrariums of 1 m × 50 cm × 50 cm (length, width 
and height, respectively) made with glass and wood. 
Soil substrate from the study site was added to tanks and 
mounds of soil were formed in these terrariums. Moreo-
ver, branches and rocks were also included as refuges, as 
well as resting/basking sites for the captive females.

Laboratory conditions

To maintain a thermal gradient between 20–40 °C, incan-
descent lamps of 75 watts were placed inside the terrar-
iums to provide light and heat on one end of the tank, 
a photoperiod of 12/12 hrs (photofase/scotophase) was 
maintained respectively, the terrariums were sprayed dai-
ly with water to maintain the proper humidity. Finally, 
females were fed every third day with crickets (Acheta 
domesticus) and larvae (Tenebrio molitor), and water was 
provided ad libitum until the termination of oviposition.

The terrariums were monitored daily and the pres-
ence of eggs in the terrarium or abdominal flaccidities 
of females were observed. After the oviposition process 
(no later than 3 hours post-oviposition), the body mass 
of each female was recorded; this value was considered 
as the absolute mass of the female (AM). Next, the eggs 
morphology were measured: clutch size was calculated 
as the total number of eggs in the nest, clutch mass (CM) 
was determined from the sum of the masses of all eggs re-
cently oviposited, maximum length and width of the eggs 

was measured (ML and MW); to estimate the volume of 
the eggs (VE) we used the equation of an ellipsoid V = 
4/3 π (½ L) (½ W)2 where L is the maximum length and 
W is the maximum width (Shanbhag et al. 2000). The 
relative clutch mass index was also calculated by Tinkle’s 
method (1969), which corresponds to the ratio of the 
clutch mass to total weight.

Statistical analysis

We evaluated differences between the residuals of regres-
sion of clutch size and SVL between years. Additional-
ly, we used a normality test (Kolmogorov-Smirnov, Zar 
1999) on all variables analyzed, descriptive statistics 
were estimated (mean ± standard error, minimum and 
maximum), and the coefficient of variation (CV = stan-
dard deviation / mean × 100) was calculated as a measure 
of the variability observed for parameters of the clutch 
data to elucidate the highest percentage of variation of 
traits. To evaluate whether the female morphology con-
dition (robustness) had an effect on the clutch size and 
clutch mass, the residuals of the regression between the 
log SVL and the log absolute mass were used as inde-
pendent variables in regression analysis with clutch size 
and clutch mass as dependent variables (Shanbhag et al. 
2000). Pearson’s correlations were also used to analyze if 
there are relationships between female morphology traits 
(SVL, AM, and ILD) and their reproductive traits/effort 
(CS, CM, MW, ML, VE, and RCM). All statistical analy-
ses were performed in STATGRAPHICS (V 16.1), results 
were deemed significant if p < 0.05.

Figure 1. Gravid female of Basiliscus vittatus from La Selva del Marinero, Catemaco, Veracruz. Photo by Kevin M. Gribbins.
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Results
Clutch size and dimension of the eggs

One hundred and eighty-two eggs were analyzed from 29 
gravid females (n = 18, 2016; n = 11, 2018) of B. vitta-
tus. The dates were analyzed overall given that the resid-
uals between sampling years did not differ significantly 
(p = 0.17). The female with the smallest SVL that was 
palpated positive for the presence of eggs was 106 mm. 
The female morphology trait with the lowest variation 
was SVL (CV = 6.5%), and conversely the absolute mass 
show the highest variation (CV = 21.6%). In the case 
of reproductive traits, maximum length and maximum 
width of the eggs were the characteristics that showed 
the smallest variation (CV = 6.5 and 6.4 %, respectively), 
while relative clutch mass (CV = 20.7%) and clutch size 
(CV = 20.3%) are the traits with the most variation for 
reproductive traits. Additional information about descrip-
tive statistics related with morphology of the female and 
their reproductive traits (mean, standard error, range and 
CV) are also shown in Table 1.

With the female morphological traits, SVL was asso-
ciated with inter-limb distance (r = 0.48, p = 0.008), and 
absolute mass (r = 0.80, p = 0.001) while the regression 
analyses within reproductive traits display additional rela-
tionships: clutch size with both maximum width (r = 0.41, 
p = 0.02), and volume of eggs (r = 0.46, p = 0.01). Also, the 
comparison between female morphological traits with re-
productive traits show that SVL was correlated with clutch 
size (r = 0.58, p = 0.001; Fig. 2), and both maximum width 

(r = 0.44, p = 0.01), and volume of eggs (r = 0.54, p = 
0.002; Fig. 3), but was not correlated with other traits of the 
eggs (Table 2). Absolute mass was correlated with clutch 
size (r = 0.48, p = 0.009), maximum width (r = 0.37, p = 
0.04), and volume of the eggs (r = 0.40, p = 0.02). Robust-
ness of females was not significant in terms of both clutch 
size (r = 0.01, p = 0.92) and clutch mass (r = 0.18, p = 0.32).

Relative clutch mass

The mean of relative clutch mass was 0.17 ± 0.006 
(Table  1) and was positively correlated with clutch size 
(r = 0.51, p = 0.004), clutch mass (r = 0.52, p = 0.004), and 
maximum width of the eggs (r = 0.39, p = 0.03). Otherwise, 
when relative clutch mass was analyzed with other female 
morphology traits, no correlations were observed (Table 2).

Table 1. Statistical summary for female morphology: SVL (snout-vent length), AM (absolute mass), and ILD (inter-limb distance), 
and reproductive traits: RCM (relative clutch mass), CS (clutch size), CM (clutch mass), ML (maximum length), MW (maximum 
wide), and VE (volume of egg) in Basiliscus vittatus from La Selva del Marinero, Catemaco, Veracruz.

Trait Mean SE Min Max CV % N
SVL (mm) 126.3 1.500 106.00 144.00 6.5 29
AM (g) 46.4 1.800 26.80 67.00 21.6 29
ILD (mm) 62.7 1.000 53.90 74.70 9.3 29
RCM 0.17 0.006 0.06 0.22 20.7 29
CS 6.2 0.200 5.00 9.00 20.3 29
CM (g) 1.5 0.010 0.80 2.20 16.5 182
VE (mm3) 1331.9 15.200 827.40 1782.01 15.4 182
ML (mm) 19.7 0.090 16.50 22.70 6.5 182
MW (mm) 11.3 0.050 8.90 12.70 6.4 182

Table 2. Linear regression analysis of the relationship between female traits (SVL = snout vent length, ILD = inter-limb distance, 
AM = absolute mass), and reproductive traits (CS = clutch size, CM = clutch mass, ML = maximum length, MW = maximum wide, 
VE = volume of egg, and RCM = relative clutch mass) of Basiliscus vittatus from La Selva del Marinero, Catemaco, Veracruz. The 
* indicates a relationship between both traits.

Trait R2 p Trait R2 p Trait R2 p
SVL vs RCM 1.7 0.490 AM vs RCM 10.10 0.090 ILD vs RCM 9.500 0.100
SVL vs ILD 22.8 0.008* AM vs CS 22.60 0.009* ILD vs CS 1.600 0.500
SVL vs AM 64.5 0.001* AM vs CM 5.30 0.220 ILD vs CM 0.350 0.760
SVL vs CS 33.8 0.001* AM vs ML 0.83 0.630 ILD vs ML 0.002 0.970
SVL vs CM 5.1 0.230 AM vs MW 14.10 0.040* ILD vs MW 1.800 0.480
SVL vs ML 0.7 0.660 AM vs VE 16.30 0.020* ILD vs VE 10.400 0.080
SVL vs MW 19.2 0.010*
SVL vs VE 29.7 0.002*

Figure 2. Relationship between snout vent length (SVL) and 
clutch size (CS) in Basiliscus vittatus from La Selva del Mari-
nero, Catemaco, Veracruz.
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Discussion

The mean clutch size of B. vittatus in this study is 6.2 eggs 
(range 5–9 eggs/female), which is within the known range 
for this species (range 3.9–12 eggs), for the genus (range 
3.9–18 eggs), and for the family Corytophanidae (Table 3). 
Although in squamates clutch size varies between con-
geners distributed in regions with different requirements 
(Hamilton et al. 2008), it is also affected by strategies of 
reproduction within populations. For example, if there are 
one or more clutches per season, variation in clutch size 
should occur in later clutches (Vitt 1977). In the present 
study, we do not know if there are multiple clutches in 
our study population; however, according to previous ev-
idence B. vittatus shows multiple clutches (Fitch 1973). 
In this study, we did not consider the effect of multiple 
clutches on clutch size and relative clutch mass since we 
are unsure if multiple clutches occur in our population. 
A future study will investigate whether single or multiple 
clutches occur within our population at our study site.

Our results show that females of B. vittatus with larger 
body sizes have larger clutch sizes compared to small-
er females (Fig. 2). Although there are some lizards that 
do not show this relationship of body size to clutch size 
(Wen-San 2010; Ljubisavljević et al. 2012), this pattern 
is common in many squamates (Radder and Shanbhag 

2003), and includes other genera of tropical lizards such 
as Tropidurus (Vitt and Goldberg 1983), Eurolopho-
saurus (Galdino et al. 2003), and Emoia (Hamilton et al. 
2008). Also, the association between SVL with inter-limb 
distance is important, since larger abdominal cavities al-
low the storage of more eggs (Williams 1966; Castilla 
and Bauwens 2000; Kratochvil and Kubicka 2007). Thus, 
the body size of the female allows for an increase in 
clutch size and maximum width of the eggs (Table 2). In 
addition, the increase in body size of squamates has been 
closely related to its reproductive response; females with 
higher SVL tend to maximize their fitness by increasing 
the numbers of eggs (Rutherford 2004). However, their 
chances of reproducing in future events may be restricted 
due to their increased susceptibility to predation because 
of decreased locomotor capacity and escape velocity 
(Galdino et al. 2003). Likewise, the increase in body size 
should be an evolutionary advantage that allows females 
not only to fill the larger abdominal space, but also in-
crease the capacity to store energy reserves (e.g., food 
reserves, fat bodies) allocated towards reproduction (Wil-
liams 1966; Qualls and Shine 1995). Energy reserves in 
some reptilian species are reduced considerably during 
the gestation period by a cessation of food intake, which 
has been observed to affect growth and physical condi-
tion of the female (Shanbhag et al. 2000). In the present 
study, the effect of robustness (female body condition) on 
the variations of clutch size and clutch mass was not sup-
ported because no significant association between these 
variables was observed as recorded in previous studies of 
others lizards (Shanbhag et al. 2000). Thus, much of the 
available energy stores within reproducing females may 
be allocated immediately to reproduction (Shine 1980; 
Wilkinson and Gibbons 2005; Warner et al. 2008).

A central theory in vertebrate life histories is the trade-
off between clutch size and dimensions of eggs (Stearns 
1992). In regards to this theory, the clutch size of B. vitta-
tus was related to maximum width and volume of the eggs 
regardless of the SVL of the female. Our data suggest that 
the variations present in the dimensions of the eggs show 
limitations imposed by the clutch size supporting this 

Table 3. Clutch size in family Corytophanidae, the data correspond to mean values.

Species Clutch size Reference
Basiliscus vittatus 6.2 This study

4.2 Hirth 1963
3.9 Fitch 1973

12.0 Alvarez del Toro 1982; Guyer and Donnelly 2004
4.0 Campbell 1998
5.2 Meiri et al. 2012
5.4 Scharf et al. 2015

B. basiliscus 18.0 Ortleb 1965
6.2 Fitch 1973
8.0 Lieberman 1980
9.2 Meiri et al. 2012

B. galeritus 5.0 Almendárez and Brito 2012
Corytophanes hernandezii 3.0–4.0 Alvarez del Toro 1982
C. cristatus 6.0 Ream 1965
Laemanctus serratus 3.0–5.0 Martín 1958
L. longipes 4.0–6.0 Alvarez del Toro 1982

Figure 3. Relationship between snout vent length (SVL) and 
volume of eggs (VE) in Basiliscus vittatus from La Selva del 
Marinero, Catemaco, Veracruz.
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trade-off hypothesis. Thus, the volume of eggs is more 
variable in comparison with consistent and less variable 
measures of maximum length and width of the eggs. This 
supports the adaptative canalization hypothesis, which 
suggests that maternal investment is related to body 
size, promoting a higher clutch size, but not larger eggs 
(Brockelman 1975). In contrast, clutch mass and volume 
of egg were traits that displayed more variation within 
reproductive traits, which have been strongly correlated 
to female body size (Fig. 3) or body mass because these 
traits can limit/enhance the amount of available abdomi-
nal space for carrying eggs (Shine 1992). In contrast, egg 
size is invariant to different selective pressures, such as 
physiologic mechanisms, predation, climatic tolerance, as 
well as the agility of the females during gravidity (Shine 
and Greer 1991). Then, the size of egg is most likely lim-
ited by: 1) the length and arrangement of eggs within the 
oviduct (Ford and Seigel 1989), and 2) by the size of both 
the pelvic girdle (Congdon and Gibbons 1987) and vent 
of the females to facilitate the oviposition process.

Furthermore, clutch size is molded by environmental 
characteristics attributed to abiotic factors such as precip-
itation, seasonality, or temperature (Ji and Brana 2000; 
Lepage and Lloyd 2004) because these factors modify the 
availability of resources (e.g., food) and thus, the ener-
gy that females can acquire prior to reproductive events 
(Ballinger 1977; Seigel and Fitch 1984). Consequently, 
clutch size is a trait that has evolved as an adaptive mecha-
nism to environment pressures (Fitch 1985), especially in 
those species that are widely distributed and whose adult 
body size shows a range of variability (e.g., B. vittatus). 
Thus, changes in clutch size are expected (Fitch 1970) 
as a result of different selective pressures to local envi-
ronment constraints (Shine and Downes 1999), which is 
balanced by maintaining an optimal number of eggs that 
allows greater fitness in females (Fitch 1970; Shine and 
Greer 1991). The variation in clutch size among popula-
tions probably reflects differences in the availability of 
energy resources that females obtain and which are influ-
enced by the biotic and abiotic conditions of each local 
study area.

Within our data, female B. vittatus raise their relative 
clutch mass at the same time that their clutch size in-
creases; the inversion towards reproduction can increase 
or decrease with respect to the age, weight, and size of 
the females, in such a way that the energy available for 
reproduction is allocated in an optimum amount within 
each egg (Doughty and Shine 1998; Radder and Shan-
bhag 2004; Orrell et al. 2004).

The fact that there is no observable relationship be-
tween relative clutch mass and SVL in B. vittatus sug-
gests that larger females do not proportionally exhibit 
greater reproductive effort (Stuart-Smith et al. 2007). 
However, in B. vittatus clutch size and relative clutch 
mass are limited by body morphology (SVL and abso-
lute mass respectively) rather than by foraging mode or 
escape velocity, thus the only way females can increase 
their reproductive responses are to be larger in order to 

produce more eggs. According to the regression model 
(CS = -5.07224 + 0.089843 * SVL, Fig. 2), which esti-
mates the body size that allows the females to increase 
their clutch size; then, substituting our CS (= to 6.2 eggs) 
into this model equates to an increase in 8% female SVL 
for each egg added since the difference between our SVL 
(mean =126.3 mm) and the estimated SVL = 136.596 mm 
(for 7.2 eggs in the model equation) implies an increase 
of 10.2 mm of female SVL. This indicates that the repro-
ductive response in B. vittatus is strongly linked to the 
body morphology, which involves the SVL and absolute 
mass of the females. Future studies should incorporate 
abdominal-volume data (Shine 1992) to evaluate if body 
shape (more than inter-limb distance) restricts or pro-
motes reproductive output. This should offer a model for 
the index of available space in the abdominal cavity and 
the egg carrying capacity of the female squamates.

The relative clutch mass of B. vittatus (0.17) in the 
present population is similar to other studied species with-
in the family Corytophanidae, as reported by Scharf et 
al. (2015): genus Basiliscus (= 0.21, B. plumifrons Cope, 
1875); (= 0.18, B. galeritus Duméril, 1851); (= 0.16, B. 
basiliscus Linnaeus, 1758), and genus Laemanctus (= 
0.17, L. longipes Wiegmann, 1834), which contrast to the 
highest relative clutch mass recorded in Corytophanes 
cristatus Merrem, 1820 (= 0.27), an extreme passive for-
aging lizard (Andrews 1979). Mesquita et al. (2016) also 
obtained a lower relative clutch mass value (= 0.08) for B. 
vittatus; and it appears that the variation in relative clutch 
mass is more easily observed at the population level rather 
than at the species level (Du et al. 2005). It has also been 
hypothesized that relative clutch mass has coevolved with 
foraging mode (Vitt and Congdon 1978); however, in this 
study there is no supportive evidence for this hypothesis; 
since the value of relative clutch mass index obtained for 
B. vittatus is close to that of active foragers (RCM = 0.17, 
Mesquita et al. 2016). Therefore for this study, we suggest-
ed that both traits are under independent selective pres-
sures regarding foraging mode for B. vittatus. Although B. 
vittatus is classified as a sit and wait forager based on low 
movements per minute and percentage of activity (Coop-
er et al. 2013), it has lower values in its reproductive in-
vestment when compared with other sit and wait species, 
such as: Phrynosoma orbiculare Linnaeus, 1789 (= 0.27, 
Suárez-Rodríguez et al. 2018), Sceloporus clarkii Baird & 
Girard, 1852 (= 0.30, Shine 1992), and Sceloporus gram-
micus Wiegmann, 1828 (= 0.28, Rodríguez-Romero et al. 
2005). These lizards have been associated with high values 
in relative clutch mass, low escape velocities, and robust 
bodies (Vitt and Congdon 1978; Vitt and Price 1982). This 
contrast in B. vittatus versus other sit and wait squamates 
may be due to the fact that the relative clutch mass of B. 
vittatus is considerably limited by its body morphology, 
since it has an elongated body and tail such as those ob-
served in active foragers (Teiidae) (Ramírez-Bautista et al. 
2000) and longer posterior extremities that facilitate run-
ning to high speeds even across the surface of water (Hirth 
1963). According to this, it is suggested that B. vittatus 
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may hold an intermediate position between both foraging 
modes, which may provide information on the evolution 
of more complex adaptations, such as escape mechanisms 
(Cooper 2005). In this way, the reproductive effort in B. 
vittatus has been molded to maintain its locomotor skills 
such as: velocity of escape, attachment to branches, sub-
mersion, etc., all making the Brown Basilisk less vulner-
able to predation (Geral and Miskell 2007; Suárez-Varón 
unpublished results). Consequently, natural selection may 
favor individuals in this population of lizards with an op-
timal relative clutch mass that allows for escape perfor-
mance in different microhabitats in which these lizards oc-
cupy, but still maintains little variation in the dimensions 
of the egg, which has been associated with low values in 
relative clutch mass index (Harvey and Pagel 1991). This 
implies that an optimization of the clutch size and clutch 
mass is in play to maximize fitness. Finally, the clutch size 
and relative clutch mass may show a response to multi-
ple selective pressures caused by: 1) local environmental 
effects (Vitt 1981; Zamora-Abrego et al. 2007), 2) con-
straints associated to the body morphology (Vitt and Price 
1982), 3) microhabitat (Vitt 1981), and 4) foraging and 
escape strategies, as well as the use of crypsis (Vitt and 
Congdon 1978; Rodríguez-Romero et al. 2005), which 
limit the reproductive output and should influence both 
clutch size and relative clutch mass.
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