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Abstract
The Anderson localization of light in one-dimensional disordered photonic
superlattices is theoretically studied. The system is considered to be made
of alternating dispersive and nondispersive layers of different random-
thickness. Dispersive slabs of the heterostructure are characterized by
Drude-like frequency-dependent electric permittivities and magnetic per-
meabilities. Numerical results for the localization length are obtained via
an analytical model, only valid in the case of weak disorder, and also
through its general definition involving the transmissivity of the multi-
layered system. Anomalous λ4- and λ−4-dependencies of the localization
length in positive-negative disordered photonic superlattices are obtained,
in certain cases, in the long and short wavelength limits, respectively.
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Anomalous Localization of Light in One-Dimensional Disordered Photonic Superlattices

Localización anómala de la luz en superredes fotó-
nicas unidimensionales desordenadas

Resumen
La localización de Anderson de la luz en superredes fotónicas desordena-
das unidimensionales es estudiada teóricamente. El sistema se considera
compuesto de capas alternadas dispersivas y no dispersivas de diferentes
espesores aleatorios. Las capas dispersivas de la heteroestructura están ca-
racterizadas por permitividades eléctricas y permeabilidades magnéticas
tipo Drude dependientes de la frecuencia. Los resultados numéricos para
la longitud de la localización son obtenidos mediante un modelo analítico,
solo válido en caso de desorden débil, y también a través de la definición
general que involucra la transmisividad del sistema multicapas. Las de-
pendencias anómalas λ4 y λ−4 de la longitud de localización en superredes
fotónicas desordenadas son obtenidas, en ciertos casos, en los límites de
longitudes de onda larga y corta, respectivamente.

Palabras clave: localización de anderson; anomalías de brewster; super-
redes fotónicas.

1 Introduction

The Anderson localization of light in one-dimensional (1D) photonic het-
erostructures has been the subject of a considerable amount of work in the
last few years [1],[2],[3],[4],[5],[6],[7]. Disorder affects a wide variety of phys-
ical properties of the heterostructure, causes multiple light scattering, orig-
inates the extinction of coherent waves propagating through the photonic
superlattice, and leads to a dramatic change of the localization properties
of the electromagnetic modes. In this sense, the Anderson localization of
light in disordered photonic crystals has been widely studied both from
the experimental and theoretical points of view [8, 9],[10],[11],[12],[13],[14].
The advent of metamaterial, also known as left-handed material (LHM) in
allusion to the vectorial product between the electric and magnetic fields
intensities [15], has opened up the possibility of investigate new phenomena
with no counterpart in usual right-handed materials (RHM). For instance,
a study on one-dimensional (1D) heterostructures composed of alternate
layers of air and a non-dispersive LHM has evidenced strong suppression of
Anderson localization due to the lack of phase accumulation during wave
propagation [11],[16].
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The aim of the present work is to theoretically investigate the asymp-
totic behavior, in both the long and short wavelength limits, of the Ander-
son localization length in 1D heterostructures obtained by the stacking of
non-dispersive RHM (A) and Drude-like dispersive LHM (B) layers. Both
the slabs A and B are characterized by electric permittivities and magnetic
permeabilities ϵA and µA, and ϵB and µB, respectively. Here we assume
that the system is sandwiched between two semi-infinite layers of material
A. The absorption effects are not taken into account. The width aj (bj) of
the layer A (B) at the j−th site of the 1D system is defined as aj = a+ δAj
(bj = b+ δBj ), where δAj and δBj are random variables uniformly distributed
in the interval [−∆/2,∆/2]. We also suppose that there is no correlation
between the disorder of the heterostructure slabs [13]. One may note that
a = ⟨aj⟩ and b = ⟨bj⟩, where the symbol ⟨...⟩ represents the configurational
average of a given geometrical or physical variable.

2 Theoretical framework

The localization length ξ may be evaluated through the expression [4],[17]

ξ−1 = − lim
N→∞

⟨
ln(T )

2L

⟩
, (1)

where N is the number of double layers (AB) in the photonic system and
L =

∑N
j=1(aj + bj) is its corresponding length. The light-transmission co-

efficient T of the photonic heterostructure in Eq. (1) may be computed via
the transfer-matrix formalism [14],[18],[19]. For weakly disordered systems
it is possible to derive an analytical expression for ξ in terms of parameters
corresponding to a 1D finite photonic superlattice without disorder, with
slabs A and B of widths a and b, respectively. It has been shown that
[13],[14]

ξ−1 =
K

8d sin2(kd)
, (2)

where d = a+ b, k is the 1D Bloch wave vector in the perfect superlattice,

K = F 2
[
Q2

Aσ
2
A sin2(QBb) +Q2

Bσ
2
B sin2(QAa)

]
, (3)
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σ2
A = ⟨(δAj )2⟩ = ∆2/12, σ2

B = ⟨(δBj )2⟩ = ∆2/12, and

F =
fA
fB

± fB
fA

, (4)

with the functions fx (x = A, B), for transversal-electric (TE) and transversal-
magnetic (TM) polarizations, given by

fTE
x =

ux
µx

and fTM
x =

ux
ϵx

, (5)

respectively. In the above expressions one has ux =
√

ϵxµx − ϵAµA sin2 θ,
Qx = (ω/c)ux, and θ is the incidence angle relative to the semi-infinite
RHM (normal) A material.

We are interested in obtaining the frequency values at which the lo-
calization length diverges. We denote such frequency values as ωc critical
frequencies. It is then useful to rewrite Eq. (3) as

K(ω, θ) =
ω2

c2
g2(ω, θ)h(ω, θ), (6)

where

h(ω, θ) = σ2
A

sin2
(
ωb
c

√
ϵB(ω)µB(ω)− sin2 θ

)
ϵB(ω)µB(ω)− sin2 θ

+ σ2
B

sin2
(
ωa
c

√
ϵA(ω)µA(ω)− sin2 θ

)
ϵA(ω)µA(ω)− sin2 θ

(7)

and g is defined as

gX(ω, θ) = [ϵA(ω)µA(ω)− sin2 θ]RX(ω)

− [ϵB(ω)µB(ω)− sin2 θ]R−1
X (ω) (8)

for X = TE or X = TM modes, with RTE(ω) = µB(ω)/µA(ω) and
RTM(ω) = ϵB(ω)/ϵA(ω). For a given value of the incidence angle, the
critical frequencies satisfy

lim
ω→ωc

K(ω, θ) = 0. (9)
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It is possible to show that the frequency values corresponding to the zeroes
of h(ω, θ) are not critical frequencies. In this case, the critical frequencies
are the positive real values of ω satisfying the equation gX(ω, θ) = 0, with
X = TE or X = TM. Consequently, the TE (or TM) modes may be delo-
calized in such case, and delocalization may be interpreted as a Brewster
anomaly. The incidence angle may then be identified as the Brewster angle
θB at the frequency ωc. Delocalization of light in similar photonic het-
erostructures was previously studied in recent papers [14],[18] for oblique
incidence.

For normal incidence (θ = 0) the critical frequencies come from the
zeroes of g = g(ω, 0). One may see that the condition Z2

A(ωc) = Z2
B(ωc) is

fulfilled in this case, where

Zx(ω) =

√
µx(ω)√
ϵx(ω)

(10)

is the optical impedance of medium x = A or x = B. In other words,
delocalization of light for normal incidence would be due to the matching
of the square of the optical impedance throughout the heterostructure [20].

Now we consider RHM-LHM multilayered systems in which layers A
are non-dispersive RHM materials and layers B consist of dispersive LHM
metamaterials with both electric permittivity and magnetic permeability
given by the Drude model, i.e.,

ϵB(ω) = ϵ∞

(
1− ω2

e

ω2

)
(11)

and

µB(ω) = µ∞

(
1− ω2

m

ω2

)
, (12)

where ωe and ωm are the electric and magnetic plasmon frequencies, respec-
tively, and ϵ∞ and µ∞ are the positive electric permittivity and magnetic
permeability, respectively, of material B in the limit ω → ∞.

As a consequence of Eq. (2), it may be shown that, for normal incidence,
the critical frequency is given by

ωc =

√
ω2
m − ω2

eZ
2
A/Z

2
∞

1− Z2
A/Z

2
∞

(13)
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under any of the following four pair of conditions: (i) ωm < ωeZA/Z∞ and
Z∞ < ZA; (ii) ωm > ωeZA/Z∞ and Z∞ > ZA; (iii) ωm = ωeZA/Z∞ and
Z∞ ̸= ZA; and (iv) ωm ̸= ωeZA/Z∞ and Z∞ = ZA. In the above equations
we have defined Z∞ =

√
µ∞/

√
ϵ∞ as the optical impedance of layers B at

ω → ∞.
The first two cases lead to finite and nonzero values of the critical

frequency, whereas the third and fourth cases lead to critical frequencies
ωc = 0 and ωc → ∞, respectively. The asymptotic behavior of the lo-
calization length as a function of the frequency (or wavelength λ) may be
obtained by taking the corresponding limits λ → ∞ or λ → 0 in Eq. (2).
In this sense, if conditions (iii) are accomplished, Eq. (2) leads to

ξ
λ→∞−→ Λ∞ sin2

[
2π

λ
|n(λ)| d

] (
λ

d

)4

, (14)

where

Λ∞ =
d5

2π4 ϵ2A µ2
∞

(
1− Z2

A
Z2
∞

)2
σ2
B a2

, (15)

and

|n(λ)| =
nA a+ |

√
ϵB(2πc/λ)| |

√
µB(2πc/λ)| b

d
. (16)

One may note from Eq. (14) that the oscillatory part of the asymptotic
localization length is modulated by λ4.

If conditions (iv) are fulfilled, then one may obtain from Eq. (2) that

ξ
λ→0−→ Γ0G0(λ)

(
λ

d

)−2

, (17)

where

Γ0 =
32π2 c4

ϵ2A µ2
∞ d (ω2

e − ω2
m)2

, (18)

G0(λ) =
sin2

[
2π
λ n∞ d

]
σ2
A

sin2[ 2πλ b
√
ϵ∞µ∞]

ϵ∞µ∞
+ σ2

B

sin2[ 2πλ a
√
ϵAµA]

ϵAµA

, (19)

and
n∞ =

√
ϵA µA a+

√
ϵ∞ µ∞ b

d
. (20)
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Again, the localization length may be expressed as a bounded and highly
oscillatory function of λ modulated by a power-of-λ function.

2.1 Results and discussion
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Figure 1: (Color online) Localization length for normal incidence in units of
the average system length ⟨L⟩, as a function of the wavelength for N = 106

double layers in a RHM-LHM photonic system with a = b = 12 mm. Solid and
dashed lines correspond to numerical results obtained from Eq. (1) for ∆ = 1 mm
and ∆ = 12 mm, respectively, and for 100 realizations of disorder. Calculations
displayed in panel (a) were obtained for µA = ϵA = 1, ϵ∞ = 1.21, and µ∞ = 1,
whereas results depicted in panel (b) were computed for ϵA = ϵ∞ = 1.21 and
µA = µ∞ = 1. Dark (white) areas in both panels correspond to the regions of
localized (delocalized) states.

Now we compare the asymptotic behavior of the localization length, ob-
tained from the above described analytical model [cf. Eq. (2), Eq. (14),
and Eq. (17)], with the numerical results computed from the general Eq.
(1). In Figure 1 we depict the normal-incidence localization length, as
a function of the wavelength, corresponding to photonic superlattices of
N = 106 double layers with thickness a = b = 12 mm. Solid and dashed
lines correspond to numerical results obtained from Eq. (1) for ∆ = 1
mm and ∆ = 12 mm, respectively. The configurational average in Eq. (1)
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was taken for 100 realizations of disorder. Calculations shown in Figure
1(a) were computed for µA = ϵA = 1, ϵ∞ = 1.21, and µ∞ = 1, a case
which corresponds to the third pair of conditions above discussed. Results
displayed in Figure 1(b) were computed for the same set of geometrical
parameters, but for ϵA = ϵ∞ = 1.21 and µA = µ∞ = 1. Such physical sit-
uation agrees with the fourth pair of conditions already mentioned. Dark
and white areas in both Figure 1(a) and 1(b) represent the regions of lo-
calized and delocalized states, respectively. From a full statistical analysis
of the numerical results of Figure 1(a), it is apparent that the localization
length, in the long wavelength limit, follows the approximated expression
ξ/⟨L⟩ = Ξ∞ (λ/d)α∞ . For ∆ = 1 mm one may find α∞ = 4.06 ± 0.03,
and a similar result may be obtained for ∆ = 12 mm. The values of α∞
are found in good agreement with the λ4 behavior predicted by Eq. (14).
In the same way, results for the localization length shown in Figure 1(b)
may be approximated, in the short wavelength limit, by the expression
ξ/⟨L⟩ = Ξ0 (λ/d)

α0 . In this case one has α0 = −3.94 ± 0.01 for ∆ = 1
mm, and a very similar value of α0 in the case of ∆ = 12 mm is also
obtained. The asymptotic behavior of the localization length, numerically
computed from Eq. (1) in the limit λ → 0, is quantitatively different from
the λ−2 behavior predicted by Eq. (17). Discrepancies are related with
the fact that the condition of weak disorder σxQx << 1 (with x = A and
x = B) [13], used to derive Eq. (2), is violated in this case. In other
words, both σAQA and σBQB diverge in the limit ω → ∞ (or λ → 0).
The above results suggest that, even though Eq. (2) correctly predicts the
values of critical frequencies, its description of the asymptotic behavior of
the localization length in the limits of short and long wavelength is only
qualitative. Numerical results obtained from Eq. (1) indicate the existence
of ξ ∼ λ4 and ξ ∼ λ−4 asymptotic behaviors of the localization length in
the long and short wavelength limits, respectively. In the long wavelength
limit the obtained behaviors of ξ is far from the classical dependence ξ ∼ λ2

[17]. In addition, the obtained divergence of the localization length in the
short wavelength region has not been previously observed. We would like
to stress that anomalous behaviors of localization length reported here are
direct consequences of the Drude-like electric and magnetic responses of
the dispersive LHM slabs B.
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3 Conclusions

Summing up, we have investigated the asymptotic behavior of the Ander-
son localization length of electromagnetic waves in 1D disordered photonic
superlattices in which the electric permittivity and magnetic permeability
of the dispersive slabs B composing the heterostructure may depend on
the wave frequency according to the Drude model. We have carried out
a theoretical study of the localization length by using an analytical model
valid for weakly-disordered photonic heterostructures [13],[14] which pre-
dicts, under certain conditions discussed above, a λ4- and λ−2-dependence
of ξ in the limits λ → ∞ and λ → 0, respectively. Moreover, we performed
numerical calculations of the localization length by using its general defi-
nition [cf. Eq. (1)] involving the transmissivity of the heterostructure, and
a ξ ∼ λ4 (ξ ∼ λ−4) asymptotic behavior was obtained in the long (short)
wavelength limit. Present theoretical results indicate that, in spite of the
analytical model correctly predicts the critical-frequency values at which
the localization length diverges, its description of the asymptotic behavior
of the localization length is only qualitative. Our results suggest that the
asymptotic behavior of the localization length is essentially determined by
both the electric and magnetic responses characterizing the LHM slabs of
the heterostructure.
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