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Resumen 

El cáncer es uno de los mayores retos que afronta la humanidad, pues comprende 

algunas de las patologías más graves que afectan a la salud a nivel mundial. Aunque se 

están realizado grandes esfuerzos y se han logrado avances significativos en investigación 

básica, clínica y traslacional durante las últimas décadas, el desarrollo de nuevas 

estrategias terapéuticas en oncología, más globales y a la vez precisas y eficientes, está 

limitado por la enorme heterogeneidad y complejidad de esta enfermedad. Para 

enfrentarse a dichas dificultades, Hanahan y Weinberg propusieron en el año 2000 y 

actualizaron en 2011 un grupo de alteraciones comunes compartidas por la mayoría de 

los tipos de cáncer a diferentes niveles, que se conocen como hallmarks o pilares del 

cáncer. Algunos de estos hallmarks están relacionados con la señalización hormonal, que 

se considera un componente importante en el control de la malignidad tumoral. En este 

contexto, la presente Tesis se ha enfocado fundamentalmente en el estudio de cánceres 

relacionados con el sistema endocrino, como el cáncer de próstata (CaP), fuertemente 

dependiente de la regulación hormonal, y distintos tipos de tumores neuroendocrinos 

(TNEs). El CaP es una de las patologías tumorales de mayor incidencia en hombres y una 

de las causas de muerte más comunes relacionadas con el cáncer en la población mundial. 

Por su parte, los TNEs son un grupo de neoplasias marcadamente heterogéneo, que surgen 

del sistema neuroendocrino difuso y se ha clasificado habitualmente según la localización 

del tumor. Concretamente, esta Tesis se enfoca en los tumores pancreáticos (PanNETs). 

Por último, analizaremos también un tipo tumoral estrechamente relacionado, los tumores 

neuroendocrinos hipofisarios (PitNETs). 

Uno de los sistemas hormonales clásicamente relacionados con distintos tipos de 

tumores y que ha centrado el interés de nuestro grupo es el formado por la somatostatina 

y sus receptores (SST1-SST5). En particular, este sistema se ha relacionado con tumores 

neuroendocrinos (NET, PitNET), en los que los agonistas sintéticos de la somatostatina 

se emplean ampliamente para actuar sobre varios de sus receptores (ej. SST2, SST5) que 

sirven como efectivas dianas terapéuticas en esas patologías. En este contexto, destaca el 

reciente protagonismo del SST5 como posible diana de tratamiento con nuevos análogos 

de SST, y por la existencia de variantes de splicing truncadas del mismo (ej. SST5TMD4) 

relacionadas con agresividad tumoral en varios tipos de cáncer. Sin embargo, se conoce 

muy poco acerca de la biogénesis del SST5 a partir de su gen SSTR5, así como del papel 

de otros receptores de somatostatina en patologías tumorales endocrinas. 
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El creciente descubrimiento de variantes de splicing anómalas que, como la 

mencionada SST5TMD4, se sobreexpresan en distintos tipos de cáncer apoya la idea de 

que la alteración del proceso de splicing puede estar involucrada en el desarrollo y la 

agresividad tumoral, a través de la desregulación del perfil normal de splicing alternativo 

y de la generación de variantes oncogénicas. De hecho, en los últimos años, la alteración 

del proceso de splicing se empieza a considerar como un nuevo hallmark transversal del 

cáncer, pues afecta a todos los hallmarks ya descritos. No obstante, los datos disponibles 

sobre el splicing y su desregulación son aún escasos en muchas patologías tumorales, 

entre las que se incluyen los NETs. 

Por todo lo expuesto, el objetivo general de esta Tesis ha sido determinar el papel 

que desempeñan los receptores de somatostatina y la maquinaria de splicing en distintos 

tipos de cánceres hormono-dependientes y tumores neuroendocrinos, así como los 

mecanismos de regulación subyacentes, con el fin último de descubrir nuevos 

biomarcadores y dianas farmacológicas con potencial para mejorar las aproximaciones 

diagnósticas y terapéuticas en esas patologías. 

En este contexto, la primera sección experimental de esta Tesis se centró en el 

estudio del papel del SST1 en CaP, explorando su presencia, alteración y posible papel 

funcional en esta patología. Los resultados mostraron una clara sobreexpresión de SST1 

en muestras de CaP con respecto a las de próstata normal. Además, en las muestras 

tumorales, la expresión de SST1 se correlacionó con la del receptor de andrógenos (AR). 

Estudios in vitro con la línea celular de CaP 22Rv1 demostraron que el tratamiento con 

un agonista específico del SST1, BIM-23926, disminuyó la proliferación celular y la 

secreción de PSA de estas células. Asimismo, el silenciamiento de la expresión del SSTR1 

incrementó, mientras que su sobreexpresión disminuyó, la proliferación de dicha línea 

celular. Mediante el uso de este agonista selectivo, estudiamos además las rutas de 

señalización implicadas en la función de SST1. El tratamiento con BIM-23926 disminuyó 

la fosforilación de AKT tras 30 min, mientras que no se observaron cambios en la 

activación de otras proteínas importantes, como ERK, AR o JNK, ni tampoco en los 

niveles de [Ca2+]i, un segundo mensajero clásico en la señalización hormonal. Un 

tratamiento prolongado (24 h) con este agonista disminuyó la expresión de ARNm de 

KLK3, el gen que codifica el PSA, y CCND3, un importante regulador del ciclo celular, 

así como la expresión del propio SSTR1, lo que parece indicar una autorregulación a 

través de un bucle negativo. Ese tratamiento también provocó cambios en rutas de 
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señalización que se han relacionado con el AR; en concreto, la activación de SST1 inhibió 

la expresión de varios oncogenes (como ADAMTS1, VIPR) y estimuló la del supresor 

tumoral IGFBP5. Finalmente, análisis in silico revelaron que la expresión de SSTR1 

podría estar regulada por varios miRNAs que correlacionan inversamente con este 

receptor en la base de datos The Cancer Genome Atlas (TCGA). Así, el tratamiento in 

vitro con uno de esos miRNAs, el miR-24, disminuyó los niveles proteicos y de ARNm 

de SST1 en las células 22Rv1, observándose además una correlación de la expresión de 

ambos genes en la base de datos Memorial Sloan Kettering Cancer Center (MSKCC), que 

incluye muestras de metástasis. 

La segunda sección experimental de esta Tesis se centró en el estudio de la 

regulación de la expresión del gen SSTR5 en NETs, incluyendo PitNETs (especialmente 

somatotropinomas) y PanNETs. En primer lugar, aproximaciones in silico revelaron que 

existe un transcrito natural antisentido (TNA) que se superpone al gen SSTR5 en el 

genoma, llamado SSTR5-AS1, y que hay cuatro islas CpG, regiones genómicas con una 

alta proporción de citosina-guanina, susceptibles de ser metiladas, entre esos dos genes. 

Aunque no se encontraron diferencias relevantes en la expresión de SSTR5-AS1 en 

PitNETs respecto a hipófisis normal, se observó que el gen SSTR5 sí se sobreexpresa en 

esa patología y, lo que es más interesante, que existe una marcada correlación directa 

entre la expresión de ambos genes (SSTR5/SSTR5-AS1) tanto en muestras de hipófisis 

normal como de somatotropinomas. Adicionalmente, descubrimos que la metilación de 

ADN en tres de las zonas CpG analizadas estaba alterada en somatotropinomas respecto 

a hipófisis normal. Es más, la metilación de una de dichas zonas, la que solapa con el 

centro del gran exón del gen SSTR5, incluyendo su zona de splicing alternativo, se 

correlacionó inversamente con la expresión tanto del receptor como de su antisentido en 

las muestras de somatotropinomas, pero no en las de hipófisis normal. En los PanNETs, 

observamos que el gen SSTR5-AS1 se sobreexpresa en muestras tumorales respecto a su 

tejido adyacente no tumoral, mostrando esta expresión una correlación directa con la de 

SSTR5 en ambos tejidos. Estos hallazgos nos impulsaron a realizar estudios in vitro, en la 

línea celular modelo de NETs BON-1, en las que observamos que el silenciamiento de 

SSTR5-AS1 disminuía, a su vez, la expresión de SSTR5, que, de nuevo, mostraba una 

correlación directa con la de su TNA. Más aún, dicho silenciamiento aumentó la 

proliferación celular y la formación de colonias, apoyando la idea de que este antisentido 

podría contribuir a la agresividad de las células de NETs. El efecto inhibidor del 
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tratamiento con pasireotide, un análogo de somatostatina cuya diana predominante es el 

SST5, en los parámetros celulares citados, también se vio alterado por el silenciamiento 

de SSTR5-AS1. De hecho, el silenciamiento del TNA disminuyó la activación de ERK y 

AKT y, llamativamente, potenció el efecto del tratamiento con pasireotide sobre la 

fosforilación de dichas proteínas, apoyando la probable relevancia de SSTR5-AS1 en el 

control de la acción de SST5. 

En la tercera sección experimental de esta Tesis, nuestro objetivo fue estudiar la 

desregulación de la maquinaria de splicing y su posible papel funcional en PanNETs, 

buscando nuevos biomarcadores y/o dianas terapéuticas para esta patología. Primero, 

medimos la expresión de un grupo de 45 componentes de la maquinaria de splicing en 

muestras de PanNETs, comparadas con el tejido adyacente no tumoral, utilizando un 

array de PCR cuantitativa basado en microfluídica. Aproximadamente, el 50 % de los 

genes medidos, incluyendo algunos ARN nucleares pequeños que conforman el núcleo 

de la maquinaria, se observó que estaban sobreexpresados en las muestras tumorales, 

mientras que solo un factor se encontró infraexpresado. Un análisis de componentes 

principales y otros ensayos bioinformáticos seleccionaron cinco de los genes medidos 

como aquellos con las mejores características de agrupamiento para distinguir entre 

muestras tumorales y no tumorales; dichos genes fueron: NOVA1, PRPF8, RAVER1, 

SRSF5 y SNW1. Además, observamos que los niveles de expresión de estos factores están 

asociados a importantes parámetros cínicos, como el índice Ki-67, necrosis, recidiva de 

la enfermedad, funcionalidad, pérdida de peso o invasión vascular. Uno de estos genes, 

NOVA1, mostró una curva ROC con un área mayor de 0,85 y su sobreexpresión en el 

tejido tumoral se confirmó a nivel proteico mediante inmunohistoquímica. Por ello, 

decidimos evaluar el posible papel funcional de este factor en las células de PanNETs. 

Así, descubrimos que la sobreexpresión de NOVA1 aumentó la tasa de proliferación in 

vitro de dos líneas celulares modelo de PanNETs, BON-1 y QGP-1, y estimuló el 

crecimiento de tumores xenotrasplantados de células BON-1 en ratones. En cambio, el 

silenciamiento de NOVA1 indujo en ambas líneas celulares una disminución de la 

proliferación, que estaba asociada a una reducción en la expresión de CCND1 y un 

aumento de la de CASP3. Del mismo modo, el silenciamiento de NOVA1 disminuyó la 

activación de ERK, PTEN y PDK1, sin alterar AKT, lo que sugiere que este factor puede 

actuar a través de acciones complejas y aparentemente contrapuestas. Curiosamente, el 

silenciamiento de NOVA1 aumentó la fosforilación de p53 solo en las células QGP-1, en 
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las cuales, al mismo tiempo, disminuyó la expresión de la isoforma oncogénica 

Δ133TP53, sin alterar la canónica TP53. Estos resultados, junto con los expuestos sobre 

señalización, sugieren que NOVA1 puede desempeñar un papel relevante en la regulación 

de la ruta de senescencia, involucrando a p53 y ERK, de manera célula-específica. Por 

otro lado, la disminución génica de NOVA1 inhibió los niveles proteicos de ATRX y 

DAXX, así como la expresión de la isoforma truncada de TERT, lo que podría implicar a 

NOVA1 en la regulación de la ruta de remodelación de la cromatina, particularmente 

relevante en PanNETs. Es más, en la línea celular QGP-1 el silenciamiento de este factor 

de splicing mejoró el efecto antiproliferativo de everolimus, un inhibidor de mTOR 

ampliamente usado en el tratamiento de PanNETs. 

Por todo lo anterior, las principales conclusiones del trabajo presentado en esta 

Tesis son: 

1. El gen SSTR1 se sobreexpresa en CaP, donde podría ejercer relevantes acciones y 

estar regulado por miRNAs específicos. En concreto, SST1 media la inhibición de la 

proliferación celular y la secreción de PSA en la línea celular de CaP 22Rv1, 

probablemente a través de rutas y mediadores relacionados con el AR, PI3K/AKT-

CCND3. 

2. La expresión de SSTR5 en somatotropinomas y PanNETs puede estar controlada 

por mecanismos epigenéticos, que incluyen tanto metilación del ADN como procesos 

postranscripcionales, como la regulación mediada por un antisentido. En concreto, 

SSTR5-AS1 podría contribuir a la regulación de características tumorales clave, tales 

como la proliferación, migración y formación de colonias, y en la respuesta al tratamiento 

con pasireotide, un análogo selectivo para SST5. 

3. Los componentes de la maquinaria de splicing están profundamente alterados, en 

general sobreexpresados, en PanNETs. Los niveles de algunos de ellos están asociados a 

importantes parámetros clínicos y permiten distinguir con alta eficiencia entre muestras 

tumorales y no tumorales. En especial, altos niveles del factor de splicing NOVA1 

provocan un aumento de la proliferación celular y la ruta de senescencia en modelos 

celulares de PanNETs, alterando rutas de señalización clave y comprometiendo la 

respuesta a everolimus. 

Como conclusión general, los estudios presentados en esta Tesis permiten 

avanzar y profundizar en el conocimiento de las bases moleculares de la regulación 
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fisiopatológica de cánceres hormono-dependientes y tumores neuroendocrinos por dos 

receptores específicos de somatostatina y por la maquinaria de splicing. Concretamente, 

nuestros resultados demuestran que SSTR1 en el caso de CaP, SSTR5 en NETs y el factor 

de splicing NOVA1 en PanNETs, constituyen puntos relevantes de regulación en estos 

tumores y como tales pueden servir como herramientas para el desarrollo de nuevos 

biomarcadores de diagnóstico y/o dianas terapéuticas para mejorar el futuro tratamiento 

de dichas patologías. 
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Summary 

Cancer represents one of the main challenges for the human being, in that it 

encompasses some of the most severe and health-threatening pathologies worldwide. 

Although great efforts are being implemented and significant advances are being reached 

in basic, translational and clinical research over the last decades, the development of novel 

and more global and useful therapeutic strategies in Oncology is hampered by the 

heterogeneity and complexity of this disease. In order to tackle these difficulties, Hanahan 

and Weinberg proposed in 2000 and updated in 2011 a group of common alterations 

shared by most cancer types, which were defined as the hallmarks of cancer. Some of 

those cancer hallmarks are related with hormonal signaling, which is considered an 

important element in the control of malignant features. In this context, this Thesis has 

been mainly focused in the study of diverse endocrine-related cancers, such as prostate 

cancer (PCa), which is strongly influenced by the hormonal milieu, and different types of 

neuroendocrine tumors (NETs). Indeed, PCa is one of the tumor pathologies with highest 

incidence in men and one of the most common causes of cancer-related deaths among 

worldwide population. On the other hand, NETs comprise a markedly heterogeneous 

group of neoplasia originated from the diffuse neuroendocrine system that have been 

typically classified by their location. Among them, this Thesis have been focused on 

pancreatic tumors (PanNETs). Finally, we will also analyze a tumor type closely related, 

as it is the case of pituitary neuroendocrine tumors (PitNETs). 

One of the hormonal axes classically related to different types of tumors and that 

has represented the central interest of our group is the system comprised by somatostatin 

and its receptors (SST1-SST5). Particularly, this system has been classically linked to 

neuroendocrine tumors (NETs, PitNETs), wherein synthetic somatostatin agonists are 

widely used to act on several of its receptors (e.g. SST2, SST5), which represent useful 

therapeutic targets in these pathologies. In this context, it is remarkable the growing 

relevance of SST5 as putative therapeutic target of novel somatostatin analogs, and due 

to the discovery of novel truncated splicing variants (e.g. SST5TMD4), which are related 

with the aggressiveness of several cancer types. Nonetheless, very little is known about 

the biogenesis of SST5 from its gene, SSTR5, and about the role of other SST receptors in 

endocrine-related tumors. 
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The growing identification of abnormal splicing variants that, similar to the above 

mentioned SST5TMD4, are overexpressed in different cancer types reinforces the idea 

that the alteration of the splicing process may be involved in the development and 

aggressiveness of tumor pathologies, through the dysregulation of the normal alternative 

splicing pattern and the generation of aberrant isoforms with oncogenic potential. In fact, 

over the last years, the alteration of the splicing process is being considered as a novel 

and transversal cancer hallmark, in that it seems to be affecting to all the hallmarks 

previously described. However, the information regarding the splicing process and its 

dysregulation is still scarce in some tumor pathologies, including NETs. 

Thus, for all the reasons indicated above, the general aim of this Thesis was to 

determine the role of somatostatin receptors and splicing machinery in different types of 

endocrine-related cancers and neuroendocrine tumors, as well as the underlying 

regulatory mechanisms, with the final purpose of discovering novel biomarkers and 

pharmacologic targets with potential to improve the diagnostic and therapeutic 

approaches in these pathologies. 

In this context, the first experimental section of this Thesis was focused on the 

study of SST1 in PCa, by exploring its presence, alteration and putative functional role in 

this disease. The results showed an evident overexpression of this receptor in PCa 

samples, compared to normal prostate samples. Additionally, in PCa samples, its 

expression was correlated with androgen receptor (AR) expression. In vitro studies with 

the PCa cell line 22Rv1 demonstrated that treatment with a specific agonist of SST1, BIM-

23926, decreased cell proliferation and PSA secretion of these cells. Likewise, the 

silencing of SSTR1 expression increased, while its overexpression decreased, cell 

proliferation of this cell line. Through the treatment with the mentioned agonist, we next 

studied the signaling pathways implicated in the actions of SST1. The treatment with 

BIM-23926 decreased the phosphorylation of AKT after 30 min, but no changes were 

observed in the activation of other important pathways, such as ERK, AR or JNK, or in 

the levels of [Ca2+]i, a classic second messenger associated to hormone signaling. A 

prolonged treatment (24 h) with this agonist decreased mRNA expression of KLK3, the 

gene encoding PSA, and CCND3, an important regulator of the cell cycle, as well as the 

proper SSTR1 expression, which could mean a self-regulation of the receptor through a 

negative feedback. This treatment also changed AR-related signaling pathways; 

specifically, SST1 inhibited the expression of several oncogenes (e.g. ADAMTS1, VIPR) 
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and increased the expression of the tumor suppressor IGFBP5. Finally, in silico analyses 

revealed that the expression of SSTR1 may be regulated by several miRNAs, which were 

inversely correlated with SSTR1 expression in The Cancer Genome Atlas (TCGA) 

database. The in vitro treatment with one of those miRNAs, miR-24, decreased the protein 

and mRNA expression of SST1 in 22Rv1 cells, and a correlation between the expression 

of both genes was also observed in Memorial Sloan Kettering Cancer Center (MSKCC) 

database, which includes metastatic samples. 

The second experimental section of this Thesis was aimed to study the regulation 

of the expression of SSTR5 gene in NETs, including PitNETs (specially, 

somatotropinoma) and PanNETs. First, in silico approaches revealed that there is a natural 

antisense transcript (NAT) overlapping with the SSTR5 gene in the genome, named 

SSTR5-AS1, and that there are four CpG islands, which are genomic regions with high 

proportion of cytosine-guanine that may be methylated, shared by these two genes. 

Although there were no changes in the expression of SSTR5-AS1 in PitNETs compared 

to normal pituitary, SSTR5 was overexpressed in this pathology and, more interestingly, 

there was a significant direct correlation between the expression of these two genes 

(SSTR5/SSTR5-AS1) in both normal pituitary and somatotropinoma samples. 

Furthermore, we found that the DNA methylation of three of the analyzed CpG islands 

was altered in somatotropinomas, compared to normal pituitary. Indeed, the methylation 

of the CpG island that overlaps with the center of the big SSTR5 gene exon, which 

includes the region of alternative splicing, inversely correlated with the expression of the 

receptor and its NAT in somatotropinomas, but not in normal pituitary samples. In 

PanNETs, it was found that the SSTR5-AS1 gene was overexpressed in tumor samples 

compared to non-tumor adjacent tissue, showing a direct correlation with the expression 

of the SSTR5 in both tissues. These results led us to perform in vitro studies in the BON-

1 NET cell line, wherein the silencing of SSTR5-AS1 induced a decrease in SSTR5 

expression, which was again directly correlated with the expression of the NAT. 

Moreover, SSTR5-AS1 silencing increased cell proliferation and colony formation, 

supporting a role of this antisense gene in the aggressiveness of NETs cells. The effect 

exerted by pasireotide, an analog of somatostatin that predominantly targets SST5, in 

these cellular parameters was also altered after the silencing of SSTR5-AS1. In fact, NAT 

silencing decreased the activation of ERK and AKT proteins and, interestingly, enhanced 
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the effect of pasireotide on the phosphorylation of these two proteins, suggesting that the 

presence of SSTR5-AS1 may be relevant in the action of SST5. 

In the third experimental section of this Thesis our aim was to study the 

dysregulation of the splicing machinery and its possible functional role in PanNETs, in 

order to identify novel biomarkers and/or therapeutic targets for this pathology. First, we 

measured the expression of 45 components of the splicing machinery in PanNETs 

samples, compared to non-tumor adjacent tissues, using a microfluidic qPCR array. 

Approximately, 50 % of the measured genes, including some small nuclear RNAs that 

comprise the core of the splicing machinery, were upregulated in tumor samples, while 

only one splicing factor was found downregulated. Principal component analysis and 

other bioinformatical tools served to select five of the measured genes (NOVA1, PRPF8, 

RAVER1, SRSF5 and SNW1) as the best clustering features to distinguish between tumor 

and non-tumor samples. In addition, these factors were found to be associated to 

important clinical parameters, such as Ki-67 index, necrosis, disease relapse, 

functionality, weight loss and vascular invasion. One of these genes, NOVA1, exhibited 

an area under the ROC curve higher than 0.85 and its overexpression in tumor tissue was 

confirmed at protein levels through immunohistochemistry assays. Thus, we wanted to 

ascertain if this factor exerts a functional role in NETs cells. Interestingly, we discovered 

that the overexpression of NOVA1 increased the proliferation rate of two PanNETs model 

cell lines, BON-1 and QGP-1, and the tumor growth of BON-1 xenografted tumors in 

mice. Moreover, silencing of this splicing factor decreased cell proliferation in those cell 

lines, which was associated to a decrease in CCND1 and an increase in CASP3 mRNA 

expression. In the same way, NOVA1 silencing decreased the activation of ERK, PTEN 

and PDK1, without alteration of AKT phosphorylation, which suggests that this factor 

may act through complex and apparently opposed actions. Intriguingly, NOVA1 silencing 

increased the phosphorylation of p53 only in QGP-1 cells, in which, at the same time, 

decreased the expression of Δ133TP53 oncogenic isoform, without alteration of canonical 

TP53. These results, together with the previously mentioned in protein signaling, suggest 

a possible role of NOVA1 in senescence pathway, involving p53 and ERK, in a cell-

specific manner. On the other hand, genetic downregulation of NOVA1 decreased ATRX 

and DAXX protein expression, as well as inhibited TERT truncated isoform, which 

suggests an implication of NOVA1 in the regulation of the chromatin remodeling 

pathway, which is particularly important in PanNETs. Moreover, silencing of this splicing 
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factor in QGP-1 cell line improved the antiproliferative effect of everolimus, a mTOR 

inhibitor widely used in the treatment of PanNETs. 

For all the above mentioned, the main conclusions of the work presented in this 

Thesis are: 

1. The SSTR1 gene is overexpressed in PCa, where it may be regulated by specific 

miRNAs and could have relevant functional implications. Specifically, SST1 is directly 

related with the inhibition of cell proliferation and PSA secretion in 22Rv1 cell line, 

probably by the modulation of pathways and mediators linked to AR and PI3K/AKT-

CCND3 pathways. 

2. The expression of the SSTR5 in somatotropinomas and PanNETs may be 

controlled by epigenetic mechanisms, including DNA methylation and post-

transcriptional events, such as antisense-mediated regulation. In particular, SSTR5-AS1 

may be participating in the control of key tumor features, including proliferation, 

migration and colony formation, and in the effect of pasireotide treatment, a selective 

analog for SST5. 

3. The components of the splicing machinery are profoundly dysregulated, generally 

overexpressed in PanNETs. The levels of some of them are associated with important 

clinical parameters and could distinguish between tumor and non-tumor samples with a 

high efficiency. Specifically, the augmented level of the splicing factor NOVA1 promotes 

an increase of cell proliferation and senescence pathway in PanNETs models, by altering 

key signaling pathways, and it is able to compromise the effectiveness of everolimus 

treatment. 

As a general conclusion, the studies implemented in the present Thesis allow to 

expand and advance in the knowledge of the molecular basis of the pathophysiological 

regulation of endocrine-related cancers and neuroendocrine tumors by two specific 

somatostatin receptors and the splicing machinery. Specifically, our results demonstrate 

that SSTR1 in the case of PCa, SSTR5 in NETs and splicing factor NOVA1 in PanNETs, 

represent relevant points of regulation for these tumors and, thus, they could be useful 

tools for the develop of novel diagnostic biomarkers and/or therapeutic targets to improve 

the future treatment of those pathologies. 
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1. Introduction 

Cancer represents one of the most challenging threats for human health, as it 

comprises some of the most severe and complex pathologies affecting the population 

around the globe [1]. For that reason, great efforts have been developed in the last decades 

in basic, translational and clinical research specifically aimed to fight cancer. However, 

the remarkable heterogeneity and complexity that characterize the diverse group of 

pathologies commonly referred to as cancer, hinder the discovery of novel, more precise 

and efficacious approaches to fight them, and thus cancer remains a real challenge for the 

biomedical research community [2]. It is well known that tumoral pathologies exhibit a 

wide number of intricate alterations, at different layers of complexity, from molecular to 

cellular and organismal levels; however, they all share also a discrete number of common 

features, which Hanahan and Weinberg systematized and defined as the hallmarks of 

cancer, in an attempt to provide a common conceptual framework to help improve the 

study of this disease by the scientific community [3, 4]. 

In addition to the key contribution of growth factors and immune/inflammatory 

systems mediators to the dysfunction of cancer cells, hormones of multiple kinds 

comprise a diverse critical regulatory component in cancer, wherein the endocrine 

molecular elements provide a selective, valuable window of intervention for diagnostics 

and therapy. In this context, among the different types of endocrine-related tumor 

pathologies [5, 6], the present Thesis will be focused on the study of some of the 

molecular underpinnings governing neuroendocrine tumors (NETs) a relevant hormone-

dependent cancer, prostate cancer (PCa). This latter represents the second most common 

cancer among men worldwide, just after lung cancer, being their fifth leading cause of 

death by cancer [7, 8]. On the other hand, NETs are tumors that arise from neuroendocrine 

cells, which are distributed widely throughout the body. These tumors are characterized 

for their great heterogeneity and are classically classified by their location; in particular, 

we will focus on pituitary (PitNETs) and pancreatic NETs (PanNETs) [9, 10]. 

Neuropeptides and their receptors comprise multiple sets of interrelated, widely 

distributed regulatory molecular systems that, besides their primary physiologic 

regulatory roles, can be involved in the control of hormone-dependent tumors. Our group 

has been classically interested in studying the role of one of these systems, namely, that 

constituted by somatostatin and its receptors (SST1-SST5) [11], in the development and 
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progression of different endocrine-related tumors.  Particularly, some of the elements of 

this system have provided highly valuable tools for the diagnosis and treatment of these 

tumors [12, 13]. In line with this, results from our team have unveiled the relevance of 

somatostatin receptor subtype 5 (SST5) in PitNETs, where it may serve as a biomarker 

for treatment resistance [14]. In fact, we discovered two truncated, aberrantly spliced 

variants of SST5 derived from the SSTR5 gene, termed SST5TMD4 and SST5TMD5, 

which display specific, distinct features. In particular, SST5TMD4 has been shown to be 

overexpressed in PitNETs, PanNETs, PCa and other tumoral pathologies, where its 

presence is related with oncogenesis and aggressiveness features [15-18]. 

Notwithstanding, the precise regulation and biogenesis of this receptor and the functional 

role of this and other SSTs are still very poorly known in several endocrine-related 

tumors. Accordingly, this will be one of the main subjects of this thesis. 

In this scenario, and prompted by our discovery of these splicing variants, we 

came to realize, and decided to further explore, the emerging body evidence indicating 

that the alteration of the splicing process was not just an anecdotical observation in our 

setting, but, in fact, represents a frequent feature in many tumors and cancers, which has 

led some authors to propose that altered splicing should be considered as a novel cancer 

hallmark [19]. Indeed, its relevance is highly increasing in several tumoral pathologies as 

an underlying cause of tumoral heterogeneity and malignancy features, through the 

dysregulation of alternative splicing altering the normal profile of variants and generating 

aberrant isoforms [20-23]. However, unfortunately, the knowledge of alternative splicing 

and its (dys)regulation in many tumors and cancers, including NETs, is still very 

insufficient. 

1.1 Cancer 

Cancer is not considered nowadays as a single disease, but as a collection of 

diseases that can affect the whole body, in which cells start to proliferate uncontrolledly 

and spread into surrounding tissues and organs (National Cancer Institute, NCI, United 

States). This group of diseases is one of the major health problems for the human 

population worldwide. In fact, one out of each six deaths are currently caused by a tumoral 

pathology, which accounts for approximately 9.6 million deaths in 2017, being the second 

leading cause of death, just after cardiovascular diseases [1]. In terms of prevalence, 100 

million people exhibited any type of cancer worldwide in 2017, more than the double in 

1990, with percentages ranged between 0.4 and 5.5 % in each country (Figure I1). 
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Particularly in Spain, there is a 5-year prevalence of almost 800,000 patients, 

where more than 250,000 new cases were detected and more than 100,000 died in 2018 

(source: Asociación Española Contra el Cáncer [AECC]). Actually, in 2030, cancer is 

predicted to become the leading cause of death, ahead of cardiovascular diseases, with a 

dramatic grow of mortality (source: American Society of Clinical Oncology, [24]). These 

data clearly reflect the importance of this problem in the society and the necessity of 

developing new approaches to fight it with higher effectiveness in the future. 

The current increase in incidence of tumor pathologies has been related to several 

environmental factors, such as smoking or pollution, but also to an increased wealth, 

better medical services and associated extended life span, that also lead to an improved 

access to diagnostic techniques enabling to better detect these pathologies [25]. However, 

the associated increase in mortality implies the necessity of developing specific, sensitive 

and useful biomarkers for the diagnostic and prognostic of these pathologies, as well as 

new tools for the generation of therapeutic targets. For those reasons and in order to 

improve the study of cancer, the scientific community have adopted a group of common 

hallmarks for most types of cancers (Figure I2), which were defined and proposed by 

Figure I1. Percentage of population with any type of cancer by country. 

Portion of the population with any type of cancer measured as age-standardized percentage in 

2017. Adapted from GBD2016, Lancet 2017, and Institute for Health Metrics and Evaluation. 
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Hanahan and Weinberg and include: sustained proliferative signaling, evasion of growth 

suppressors, avoiding of immune destruction, enabling replicative immortality, tumor-

promoting inflammation, genome instability, deregulating cellular energetics, resistance 

to cell death, angiogenesis, and activation of invasion and metastasis [3, 4]. 

One of the major problems that cancer research has to face is the remarkable 

heterogeneity and complexity that intrinsically characterize this group of pathologies. 

Indeed, even within a same “cancer type”, individual tumors exhibit a wide number of 

intricate alterations at diverse levels, encompassing from molecular, cellular, genetic, 

epigenetic, and metabolic features, to clinical, anatomical, functional and pathological 

characteristics, which not only differ among the distinct types of cancer but, also, within 

the same type of cancer, among different patients, and even with a given tumor [2, 26]. 

As pointed out previously, this is due to the fact that  cancer may arise from almost any 

cell type in the body, independently of its origin, localization or metabolic status, and thus 

give rise to a wide variety of malignancies with a variable etiology and pathology, which, 

in turn, evolve within a unique, specific microenvironment, an additional key factor to 

Figure I2. Hallmarks of cancer. 

Graphic representation of the update of hallmarks of cancer. Source: Hallmarks of Cancer: The 

Next Generation, Hanahan and Weinberg, Cell 2011. 
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take in account [27-30]. In any case, it is nowadays clear that oncogenesis and tumor 

progression is closely linked to the metabolic and endocrine alterations taking place in 

each patient, which is especially relevant in the so-called endocrine-related cancers [30-

33]. 

1.2 Endocrine-related cancer 

The terms endocrine-related cancer and hormone-dependent cancer have been 

classically used to refer to tumor pathologies that produce hormones, like pituitary and 

other neuroendocrine tumors (NETs), thyroid and adrenal cancers, etc., and also those 

that are strongly related to and responsive to endocrine signals, like peptide hormones 

and sex steroids, such as prostate, breast, ovary, endometrium, testis, etc. [34, 35]. 

Nevertheless, the definition of this term has been revised several times over the last years, 

since it has been observed that components of different additional hormonal systems are 

commonly dysregulated in tumor pathologies and exhibit tumorigenic potential, thus less 

classical hormone-sensitive cancers have been included in the endocrine-related cancer 

category, when they show certain sensitivity, at least at some stage, to hormonal systems. 

Therefore, the currently accepted meaning of endocrine-related cancers is ample and 

comprises those tumor pathologies that either develop in endocrine glands or in endocrine 

target tissues [5, 6]. In fact, the presence, importance and (dys)regulation of key endocrine 

signals, such as insulin or IGF-1 is a common feature in tumor pathologies [36, 37]; 

however, the knowledge about their role is still limited and there are multiple factors with 

unknown function in cancer. In this Thesis, we will focus on PCa and NETs, two types 

of endocrine-related cancers. 

1.2.1 Prostate cancer 

Prostate cancer (PCa) represents the third most common cancer when considering 

both sexes combined worldwide, and the second most common among men, just after 

lung cancer, and is the fifth leading cause of death by cancer in that group, according to 

GLOBOCAN 2018 and other studies (Figure I3). Almost 1.3 million new cases of PCa 

and 359,000 associated deaths worldwide were estimated for 2018 [7, 8]. In Spain, PCa 

is the most incident cancer and the third cause of death by tumor pathology in men 

population, with 31,728 new cases and 6,061 deaths in 2018 (source: AECC). 
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The relevance and severity of PCa has prompted a number of leading biomedical 

research groups worldwide to focus their work on the generation of novel knowledge to 

understand this disease. This has provided significant advances in diagnostic and 

therapeutic tools, which have enabled to achieve survival rates close to 100 % after 5 

years when the tumor is localized [38-40]. Nonetheless, the available diagnostic tools are 

far from being as specific and sensitive as they should, and therapeutic strategies, 

including surgery, chemical castration, chemotherapy and androgen deprivation, have 

considerable associated side effects [41], which complicates options and choices for 

clinicians and patients. In addition, when PCa is detected at advances stages or the disease 

progresses, the prognosis prediction declines dramatically.  

Currently, PCa is graded following the Gleason score, which measures the 

aggressiveness grade of the tumor based on its structure under the microscope and 

provides a valuable assessment of the disease [42]. On the other hand, the most commonly 

used biomarker for the detection and prediction of PCa, PSA, in spite of having provided 

Figure I3. Cancer statistics of 2018 in male population. 

Incidence (blue) and mortality (red) rates of the 15 most common types of tumors in men 

population worldwide, in two groups of countries by Human Development Index (HDI), 

standardized by age. Source: GLOBOCAN 2018 study. 
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a helpful resource for general screening, is still very limited in the clinical practice [43]. 

PSA, or Prostate Specific Antigen, is a kallikrein serine-protease, expressed in the 

epithelial cells of the prostate gland, whose function consists in the dissolution of seminal 

clot. This biomarker is extensively used in the PCa diagnostic and it has a low cost [43]. 

However, PSA presents some problems in the diagnostic: it exhibits a high number of 

false positive and negative values and it does not segregate correctly between different 

aggressiveness groups [43-45]. This molecule is specific of the prostatic tissue but its 

secretion may be also increased in response to other pathologies, like benign prostatic 

hyperplasia, or activities, such as sex practice or bike cycling, which increase PSA blood 

levels and result in false positives [44]. On the other hand, there has been controversy in 

the last years about the cutoff of the PSA test, since it may exhibit false negatives when 

too high level is taken as reference [46]. Additionally, and although its levels are highly 

increased in case of metastasis, PSA it is not a good tumor progression marker, an 

information that is much needed to decide how to treat the patients [47]. For all these 

reasons, the biopsy represents the most extended and safe diagnostic practice to detect 

PCa. Therefore, there is a clear need to identify novel biomarkers that can help to avoid 

unnecessary biopsies, and to reduce their undesirable effects. 

The therapeutic approaches to treat PCa are also still limited, particularly in 

advances states of the disease, despite the recent advances in the field [41]. In this context, 

it is worth noting that PCa has a marked endocrine nature, with its development and 

progress being closely influenced by sex steroid milieu, especially androgens [48, 49]. 

Moreover, other non-sex hormones, such as somatostatin, have also been related with 

normal prostate and PCa development [16, 50, 51]. However, the potential role of the 

somatostatin system and its underlying mechanisms in PCa are still poorly understood. 

1.2.1 Neuroendocrine tumors 

Neuroendocrine tumors (NETs) are a very heterogeneous group of neoplasms with 

rising incidence over the last years. This type of tumors arises from neuroendocrine cells, 

which share endocrine and nervous cell features, particularly the synthesis and secretion 

of hormones and neurotransmitters. Cells form the diffuse neuroendocrine system are 

distributed widely throughout the body, with higher presence in the gastrointestinal and 

respiratory tracts [9]. For this reason, NETs most commonly appear in respiratory (22-

27 %) and gastroenteropancreatic tracts (62-67 %) (Figure I4) [52]. 
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In spite of their high heterogeneity, these tumors were grouped together under the 

name carcinoid, coined by the pathologist Siegfried Obendorfer at the beginning of XX 

century, and they were classified, based the localization of the primary tumor [10, 53], 

into foregut NETs, tumors developed in the respiratory tract, thymus, stomach, 

duodenum and pancreas; midgut NETs, NETs from jejunum, ileum and appendix; and 

hindgut NETs, comprising tumors from large intestine, where more frequently appear in 

the rectum, and rarely, from presacral region. However, it was soon found that there are 

several types of NETs that are not included in those groups created in a first classification. 

Among them, NETs can be found in the thyroid [54], parathyroid, autonomic paraganglia 

or adrenal medulla [55, 56]. Moreover, in addition to these locations where NETs develop 

most frequently, these tumors can arise in, virtually, any type of tissue with 

neuroendocrine cells. Thus, NETs have been described in the literature in prostate [57], 

ureter [58], urinary bladder [59], ovary [60], cervix [61], breast [62], skin [63], testis [64], 

kidney [65], sublingual gland [66], gall-bladder [67] or sinonasal tract [68]. 

On the other hand, and in a different context, tumors derived from the anterior 

pituitary have been classically termed as pituitary adenomas, as they are considered as a 

benign pathology, because of their non-metastatic behavior. However, based on their 

frequent aggressiveness and associated morbimortality, the International Pituitary 

Pathology Club recently proposed a reclassification of this pathology and named it as 

pituitary neuroendocrine tumors or pitNETs [69]. 

Figure I4. NETs main locations. 

Representation of the main localizations where NETs arise and the most common mutations; 

extracted from Crona and Skogseid, EJE 2016. 
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In this Thesis, we will focus our studies on pancreatic NETs (PanNETs) and 

pituitary NETs (PitNETs). 

PanNETs are one of the most common types and with a highest increase in the 

incidence in the last years (Figure I5) [70]. These tumors derive from hormone producing 

cells of the pancreas, which are grouped in the Langerhans islets [71], embedded in the 

exocrine part of the organ. 

Due to the inaccuracy of the term carcinoid, which includes very diverse types of 

tumors with different prognosis and management, its use has been revised. Accordingly, 

the World Health Organization (WHO) and the European Neuroendocrine Tumors 

Society (ENETS) have proposed improved, novel classification systems for these tumors. 

In particular, gastroenteropancreatic NETs, based on the cellular differentiation and Ki-

67 index, widely used in the study of these pathologies [72] are classified as follows: 

1. Grade 1 neuroendocrine tumor: well differentiated cells and Ki-67 index 

lower than 3 %. 

2. Grade 2 neuroendocrine tumor: well differentiated cells and Ki-67 index 

between 3 and 20 %. 

3. Grade 3 neuroendocrine tumor: well differentiated cells and Ki-67 index 

higher than 20 %. 

Figure I5. NETs incidence by location. 

Incidence of different types of NETs by location, showing their increase over the last decades and 

the recent rise in panNETs (grey circles). Source: Dasari et al., JAMA Oncol. 2017. 
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4. Grade 3 neuroendocrine carcinoma: poorly differentiated cell and Ki-67 

index higher than 20 %. 

Ki-67 is a heavy protein (395 kD, approximately) present in all the stages of the 

cell cycle, but not in quiescent cells in G0 stage. Accordingly, its immunodetection allows 

to identify and count cells with active cell cycle, providing a valuable index of tumor cell 

proliferation [73]. 

In addition to those classifications, PanNETs may be divided, following their 

capacity to produce and secrete hormones and/or amines, in functioning and non-

functioning tumors. Functioning NETs are characterized by the production of one or more 

types of peptides and are typically linked to secondary syndromes due to the 

hypersecretion. They represent almost the half of PanNETs and are subdivided according 

to the peptide secreted, such as insulinoma, gastrinoma, glucagonoma, somatostatinoma 

and VIPoma. On the other hand, non-functioning PanNETs are non-hormone producing 

tumors and are commonly found in the head and neck of pancreas [74-76]. 

Over the last years, a number of genetic alterations that contribute to the 

tumorigenesis of PanNETs has been identified, particularly as mutations usually present 

in this kind of tumors, which may help in their characterization and study [77]. Mutually 

exclusive mutations in ATRX and DAXX, that lead to alternative lengthening of telomeres 

phenotype, have been found in a high percentage of panNETs [78], where they are related 

to the tumor development and progression [79]. In line with this, alterations in the 

telomerase gene (TERT) have also been related with length of telomeres and 

aggressiveness in cancer, where not only expression or mutations, but also alternative 

splicing has been linked to its activity [80, 81]. 

The diagnosis and clinical management of NETs is difficult due to their frequent 

lack of symptoms and the intrinsic high heterogeneity of this type of tumors (Figure I6). 

Until symptoms derived from hormonal hypersecretion or pain induced by mass effect 

appear, these tumors are very difficult to diagnose, being their finding often incidental, 

and thus, tumors are often detected when they have already acquired a high malignancy 

grade. The currently available biomarkers for the diagnosis and prognosis of these tumors 

are related with their secretion, such as chromogranin A, synaptophysin, serotonin or 

specific enolase [82, 83]. However, these biomarkers are not specific and powerful 

enough and the NETs heterogeneity hampers their suitability in several cases. 
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Although heterogeneity also hinders the treatment of PanNETs, it may also 

provide a tool to personalize their medical and investigative approach [84]. Whenever 

feasible, surgery is the first therapeutic approach for PanNETs, whereas synthetic 

somatostatin analogs (SSAs) are the first line and most widely used pharmacological 

treatment [85-87]. Additionally, over the last years, novel treatments targeting 

specifically altered pathways have arisen, such as AKT/mTOR or tyrosine-kinase 

receptors, as is the case of everolimus and sunitinib, respectively [88, 89]. As well, greatly 

original therapeutic approaches have been developed, such as Peptide Receptor 

Radionuclide Therapy (PRRT), which allows the destruction of tumoral cells with 

radioactive isotopes [90, 91]. Nevertheless, the efficiency and suitability of these 

treatments is still insufficient and thus, it is clear that novel markers and therapeutic 

targets are necessary to improve the diagnostic and treatment of PanNETs. 

On a different scenario, PitNETs have been classically considered a rare tumor 

pathology based on their low incidence, which, as is the case of other pathologies, may 

have been underestimated due to an impaired diagnosis. In fact, recent studies based on 

autopsy and imaging have revealed that these tumors are the most common intracranial 

neoplasms, with a prevalence between 10 and 22 % [92, 93]. As in the case of PanNETs, 

Figure I6. Levels of heterogeneity of NETs. 

Representation of the different layers of this heterogeneity interrelated and affecting each other. 

The left panel underscores some of the different approaches to address it. Source: Pedraza-

Arévalo et al., Rev Endocr Metab Disord 2018. 
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their associated hypersecretion of pituitary hormones and the mass effect cause severe 

comorbidities, including growth alterations, hypogonadism, hypopituitarism, sexual 

dysfunction, infertility, and emotional disturbance, among others [94, 95]. Although these 

tumors rarely metastasize, they may invade and infiltrate local structures producing 

lesions and may cause complications derived from metabolic dysregulation, increasing 

their lethality [96]. 

Although the primary cause that initiates a PitNET is still unclear, it is widely 

accepted that these tumors arise from a monoclonal expansion of genetically altered cells, 

that are also potentiated by hypothalamic and/or peripheral factors [97, 98]. As in other 

tumors, there are different factors that increase cell proliferation which lead to tumor 

formation and growth, including genetic and epigenetic events, growth factors and even 

the microenvironment of the gland [98, 99], and research models have shown that 

disruption of cell cycle regulator is sufficient to promote pituitary tumorigenesis [100, 

101]. However, as in the case of PanNETs, classic oncogenes and tumor suppressor genes 

are not frequently mutated in PitNETs [102]. In line with this, a growing set of PitNETs-

specific disruptors has been described to be linked to their tumorigenesis, including 

MEN1, AIP, GNAS or WNT-catenin pathway components, the great majority of PitNETs 

being sporadic [98, 103]. 

PitNETs are primarily classified according to the hormonal hypersecretion that 

they show, namely growth hormone (GH), prolactin (PRL), follicle-stimulating (FSH)/ 

luteinizing hormone (LH), adrenocorticoropin (ACTH), and thyroid-stimulating hormone 

(TSH), with some tumors having plurihormonal nature, and other group do not show 

significant secretion and are termed non-functioning tumors [104, 105]. Particularly, GH-

secreting tumors or somatotropinomas arise from GH-secreting cell or somatotropes, and 

cause gigantism or acromegaly, depending on the age of onset [106]. The excess of GH 

secretion causes growth acceleration if it starts before puberty ends, but in adults it causes 

extremity enlargement, facial and skeletal changes, and metabolic, gastrointestinal, 

cardiovascular and respiratory complications [107]. In the case of PitNETs, surgery is the 

first line treatment and the only curative approach to date; nevertheless, SSAs are 

frequently used either before surgery to control hormone secretion, or in persistent and 

recurrent disease in the case of GH-secreting tumors [108]. 
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1.3 Somatostatin system 

Somatostatin was originally isolated from ovine hypothalamus in 1973 and was 

called somatotropin release-inhibiting factor (SRIF), due to its capacity to inhibit GH 

secretion [109]. The human somatostatin gene (SST) encodes for a 116 aminoacidic 

precursor, named pre-pro-somatostatin, which is proteolytically  processed to generate 

two different bioactive peptide isoforms: somatostatin-14, the most abundant, and 

somatostatin-28, which may be further cleaved to somatostatin-14 [110-112]. 

Additionally, differential processing of the same pre-pro-peptide can give rise to another 

non-cyclic 13-amino acids peptide, called neuronostatin [113]. 

Somatostatin exerts a wide number of pleiotropic actions throughout the body, 

especially in the central nervous system but also in peripheral tissues. The main functions 

of this peptide include modulation of neurotransmission, inhibition of pituitary hormone 

secretion, regulation of gastrointestinal tract including its endocrine and exocrine 

secretions, gut motility, blood flow, growth, pancreatic secretions, and, with rising 

evidence over the last years, regulation of the cell proliferation of normal and tumoral 

cells [12, 13, 114, 115]. 

In addition, cortistatin is another peptide with very similar sequence, structure and 

actions to somatostatin, likely due to their probable shared evolutionary origin from a 

common ancestral gene [116]. This peptide was discovered two decades after 

somatostatin, as a somatostatin-related peptide in the brain cortex, where it is expressed, 

thus its name. The cortistatin gene (CORT) also encodes for a pre-pro-peptide that is 

further processed to cortistatin-17 or cortistatin-29 definitive peptides [117, 118]. 

Although at first cortistatin was supposed to be a functional analog of SST, several studies 

have demonstrated that it carries out unique, even opposite, endocrine and non-endocrine 

actions than those from somatostatin, such as the modulation of sleep, neuronal activity 

and immune system regulation [118-121]. 

1.3.1 Somatostatin receptors 

To exert their actions, both somatostatin and cortistatin bind to a family of 5 

classic 7-transmembrane G protein-coupled receptors (GPCRs) class A, or rhodopsin-

like, named SST1 to SST5, following the chronological order of their discovery and 

publication, which are encoded by 5 independent genes, SSTR1-5 (Figure I7) [11]. 

Although there are no available crystal structures for any somatostatin receptor, it is 
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known that their sequences range in length is between 364 amino acids for SST5 to 418 

for SST3. As in the case of other GPCRs, these receptors include a DRY motif that is 

involved in the coupling to G proteins. Studies of comparative genetics have shown that 

mammalian somatostatin receptors may have a common ancestral antecessor gene that 

was duplicated, resulting in two ancestral types of SSTs, that, later, give two groups of 

the current receptors: type 1, including SST2, SST3 and SST5; and type 2, with SST1 and 

SST4 [11, 122, 123].  

 

 

 

 

 

 

 

 

 

 

 

Since their discovery, evidence has accumulated demonstrating that this family of 

receptors is far more complex than originally envisioned, in that several of these receptors 

may be simultaneously present in the same cells and, additionally, are able to functionally 

and physically interact with each other or other GPCR, forming homo- or hetero-dimer 

complexes, which modulate the signaling pathways they activate and, thus, the actions 

that they can regulate [124]. 

Studies from our group have long been focused in the characterization of the 

somatostatin-SST1-5 system in various physiological and pathological settings. In this 

Figure I7. Components of the somatostatin system. 

Peptides derived from SST gene and binding receptors for SST peptides. 
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context, we discovered that the gene SSTR5 not only encodes the canonical, full-length 

SST5 but also generates distinct splicing variants, in several species (human, pig and 

rodents), which are functional despite being truncated, as they lack some transmembrane 

domains (TMD) [125-127]. In particular, the two human variants result from an 

alternative splicing event that eliminates a cryptic intron in the exon of SSTR5 mRNA 

and have only 4 and 5 TMD, and therefore, we named them SST5TMD4 and SST5TMD5, 

respectively [125-127]. Additionally, the two truncated variants exhibit exclusive ligand-

selective signaling properties, distinct distribution in normal tissues and different 

subcellular localization than the originally identified, long SST5 isoform [125-127]. 

1.3.2 Somatostatin system and cancer 

Somatostatin mostly exerts inhibitory functions in cells, particularly on hormonal 

secretion but also on cell proliferation and other fundamental processes. Somatostatin can 

exert these actions in both normal cells and tissues, as well as in tumoral cells, as it has 

been demonstrated in different tumor types [128]. In fact, it has been shown that 

somatostatin receptors are broadly and abundantly expressed in many cancers, especially 

in endocrine-related tumors, such as NETs or PCa. In general, SST2 is the most expressed 

receptor in tumors, followed by SST5, with a high tumor-specificity, SST1, SST3 and, 

finally, SST4 [129, 130]. Further, the truncated SST5 variant, mainly SST5TMD4, has 

been also found to be highly expressed in several endocrine-related tumors, such as NETs 

[17, 18], thyroid cancer [131], breast cancer [132] or PCa [133], where it has been 

associated with tumorigenesis and malignancy features, likely by playing an inhibitory 

role over SST2 and canonical SST5, related to receptor interaction and intracellular 

retention [17, 126, 134]. This observation is particularly important in NETs and other 

endocrine-related cancers, given the key role of SST2 and SST5 in the tumor response to 

treatment with SSAs such as octreotide, lanreotide or pasireotide. 

Indeed, most NETs, including PanNETs and PitNETs, express various SSTs at 

relatively high levels, which makes them responsive to somatostatin action, which 

decreases hormonal secretion and can also inhibit cell proliferation [135-137]. However, 

the clinical use of somatostatin is very limited due to its short half-life that reaches a 

maximum of three minutes [138]. For this reason, synthetic SSAs were developed with 

similar effects to those of natural somatostatin but with a longer half-life. The first 

generation of these compounds, octreotide and lanreotide, clinically used since 1988 and 

2007, respectively, exhibit a preferential targeting for SST2, with less affinity to SST5 
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and, in the case of octreotide, for SST3, and almost negligible binding for the other SSTs. 

These treatments have been widely used in the treatment of GH- and TSH-secreting 

PitNETs and also in PanNETs, to reduce hormonal secretion, control tumor volume and 

improve symptoms of the patients [86, 87, 139-142]. Nonetheless, a substantial 

proportion of patients are or become resistant to these treatments [135, 143]. For this 

reason, a second generation of SSAs was developed, with a multireceptor binding affinity, 

based on the idea that targeting more than one somatostatin receptor at the same time, as 

in the case of natural SST, could have more effectiveness in those poorly or non-

responsive patients. From this group, the most widely used compound is pasireotide (or 

SOM230), approved in 2014, which exhibits a high affinity to SST5, SST2, SST3 and 

SST1, and accordingly referred to as a pan-SST agonist [144, 145]. However, data 

gathered in both experimental and clinical research has unveiled that the effect of these 

SSAs not only depends on their differential binding capacities to the various SSTs. On 

the contrary, it has been shown that, in the case of GH-secreting tumors, although the 

complete set of factors affecting SSA responsiveness is not fully defined, there are 

specific tumor features and molecular markers that relevantly influence the tumor 

response to SSAs, including granulation pattern, AIP and GNAS mutations, β-arresting, 

filamin A and e-cadherin expression, and, interestingly, SSTR2/SSTR5 expression balance 

and the presence of SST5 truncated variant SST5TMD4 [11, 14]. Thus, it is important to 

understand the mechanisms underlying and governing the expression of the SSTR5 gene 

and its resultant receptor variants SST5, SST5TMD4 and SST5TMD5, since it may affect 

NETs response to SSAs. 

Gene expression is known to be regulated by a number of factors, among which 

extrinsic factors, such as epigenetic mechanisms, have gained great attention in recent 

years. Epigenetics involve the study of heritable changes in gene transcription through 

altering chromatin, without affecting the primary DNA sequence [146], and is emerging 

as a critical regulator of cell function, since its action controls multiple processes [147]. 

One of the main epigenetic modifications is DNA methylation, which is based on the 

addition of a methyl group to a cytosine preceding a guanine (CpG). CpG residues are 

enriched at CpG islands, regions of the genome that are frequently associated with 

promoter and enhancer function. Beside this, noncoding RNAs, may act as modular 

epigenetic regulators [148]. A particular type of noncoding RNAs, natural antisense 

transcripts (NATs), was described years ago [149], defined as transcripts derived from 
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the opposite strand to a protein-coding or sense gene, which can regulate the transcription 

of their corresponding sense genes, including at the chromatin level. The importance of 

NATs is arising as sequencing technologies improve, and, recent studies are deciphering 

the role of these NATs in some pathologies, including those of pituitary [150], where they 

show different roles, such as AFAP1-AS1, which seems to play a role PitNETs growth; 

or C5orf66-AS1, related to invasive PitNETs. Recently [151], the presence of a NAT for 

SSTR5 was reported in laryngeal squamous cell carcinoma, where it may act as a tumor 

suppressor. Nevertheless, its role in PitNETs and PanNETs has not been explored yet. 

In the case of PCa, its main hormonal regulation is exerted by androgens and other 

steroid hormones, which are tightly related with the appearance and progression of the 

disease [48, 152, 153]. However, prostate biology is also regulated by other 

neuroendocrine systems, in both normal and pathological circumstances [154, 155]. In 

particular, the components of the somatostatin axis are expressed in normal prostate, 

where they can regulate, as in other tissues, hormonal secretion and cell proliferation; 

interestingly, somatostatin receptors exhibit higher expression in hyperplasic and tumoral 

prostate [156-159]. This overexpression suggests a clinical opportunity for the treatment 

of PCa by targeting these receptors, whereas loss of their expression or presence of 

alternative splicing variants have been proposed as diagnostic and prognosis tools [16, 

51, 160]. In this context, it is worth noting that SSAs have been employed in the treatment 

of PCa, where they exhibited limited effects as monotherapy but had more positive results 

when administered in combination with other PCa treatments, such as bromocriptine, 

triptorelin, dexamethasone or total androgen blockade; nevertheless, it seems clear that 

further studies with higher number of patients are needed in order to better understand the 

real benefits of SSAs treatment in PCa [161, 162]. 

Among the different SSTs, SST1 (encoded by SSTR1 gene) is not one of the best 

studied receptors, however, it has been shown to play important roles in some types of 

tumors, such as colon, breast, pancreas or lung cancer, where it has been related with 

malignancy features [163-166]. Interestingly, the SSTR1 gene is also overexpressed in 

PCa and it has been related with aggressiveness features in this cancer [167, 168]. 

However, the knowledge about the role of SST1 in PCa is still very limited, and its 

therapeutic potential remains unknown. 
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1.4 Splicing 

The discovery of aberrantly spliced variants of SST5 generated through a non-

canonical splicing mechanism, coupled to their capacity to enhance aggressiveness in 

different types of tumors [16-18, 131], prompted us to study in more detail the process of 

splicing and to explore the growing evidence linking alterations in splicing with cancer 

and tumoral pathologies. Splicing is a process of pre-RNA maturation, by which introns 

are removed and exons are pasted together, resulting in mature RNA. This process is 

based fundamentally in two reactions of transesterification, whose targets are the 

phosphodiester bonds in the intron. The first of these reactions occurs in the so-called 

branch point, and the second in the binding with the previous exon (Figure I8) [169]. The 

process of splicing is carried out by the spliceosome, a macromolecular complex formed 

by five small nuclear ribonucleoproteins (snRNPs) that make up the core of the complex, 

and other associated proteins that facilitate the procedure [170]. Moreover, a set of 

approximately 300 auxiliary proteins act as splicing trans-regulator factors, participating 

in the regulation of the different steps of the process [171]. In the case of mammalians, 

there are two types of spliceosome: the first of them is the major spliceosome, composed 

by snRNPs U1, U2, U4, U5 and U6, which processes 99 % of the introns, named as U2-

type (also U2-dependent, or GT-AT). The remaining 1 % of the introns (U12-type, U12-

dependent, or AT-AC) are processed by the minor spliceosome, with a similar structure 

and analogous but distinct snRNPs, with the exception of U5, that is shared between both 

spliceosomes; the minor snRNPs are U11, U12, U4atac and U6atac [170, 172]. 

Figure I8. Splicing process. 

Simplified representation of the splicing process (A) and the conserved important sequences to 

carry out the procedure (B). Adapted from Will and Lührmann, Cold Spring Harb Perspect Biol 

2011. 
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The splicing process, especially the pioneering studies, has been mainly 

investigated in laboratory research models that are easier to approach than mammals, like 

yeast, but it has been later shown that the key steps are very well conserved across species. 

Summarizing the classic explanation by Matera and Wang in 2014 [171] and other studies 

[21, 172] (Figure I9), U1 and U2 recognize and bind to 5’ and 3’ splice sites, respectively. 

Next, U2 recognizes sequences in the branch point and interacts with U1, forming the 

pre-spliceosome. Then, the preassembled U4-U5-U6 complex is recruited and several 

conformational changes take place to form a catalytically active complex, resulting in the 

U2/U6 structure that catalyzes splicing reaction. In addition, in this step U1 and U4 are 

released from the complex. At this moment, the first catalytic step is carried out, cutting 

the binding between the first exon and the intron-exon lariat intermediate. Finally, after 

some conformational changes, the second catalytic step leads to the separation of the 

intron and the second exon and the subsequent binding of both exons, leaving the post-

spliceosomal complex with the intron lariat free. Finally, U2, U5 and U6 are released. All 

the described steps are firmly regulated by several spliceosome proteins, which ensure 

that the cuts and bindings are correct, make possible the sequence recognition, and put 

together and separate the other components. 

Figure I9. Spliceosome and splicing process. 

Schematic picture of the function of the spliceosome during the different steps of splicing process. 

Source: Will and Lührmann, Cold Spring Harb Perspect Biol 2011. 
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1.4.1 Alternative splicing 

The basic splicing process, known as canonical or constitutive splicing, excises 

all introns and bind all exons from the pre-mRNA to generate mature RNA molecules. 

However, the vast majority of the genes (95 % approximately) undergo a more complex 

process known as alternative splicing, that comprises on or more of the following events, 

which alter the constitutive splicing process: 1) cassette exon skipping, an exon is 

excluded together with the two flanking introns; 2) alternative 5’ splice site and 3) 

alternative 3’ splice site, the exon is not fully included in the final RNA, but it is cut in a 

different site; 4) intron retention, there is no cutting of the intron, which is included in the 

mature RNA; and 5) mutually exclusive exons, two exons that cannot be included 

together, one of each is excluded in two different isoforms (Figure I10) [173-176]. As a 

result of this alternative splicing process, different mature RNA molecules, known as 

splicing variants or isoforms, are obtained from the same pre-mRNA, thereby conferring 

a great variety and depth to the genome, inasmuch as a single gene can give rise to several 

(even thousands) RNA variants, which, in turn, are translated into distinct  proteins that 

may perform similar, different, or even opposite functions. 

Figure I10. Alternative splicing. 

Graphic representation of the canonical splicing process (A) and the different types of alternative 

splicing that a molecule of RNA may suffer (B). Source: Sen, Hepatoma Res 2018. 
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Alternative splicing is tightly controlled by the action of cis- and trans-regulatory 

elements. The cis-regulatory elements consist in RNA sequences classified following 

their localization and function in the splicing process, as: ESE (exonic splicing enhancer), 

ISE (intronic splicing enhancer), ESS (exonic splicing silencer), and ISS (intronic 

splicing silencer) (Figure I11) [170]. On the other hand, the trans-regulatory elements 

are composed of proteins, the splicing factors, that regulate the process and (recognize?) 

the splice sites [170]. These elements are typically classified in two families, following 

the function they exert in the splicing process: serine-arginine proteins (SR-proteins) and 

heterogeneous nuclear ribonucleoproteins (hnRNPs) [177]. The first group, SR proteins, 

are usually enhancers of exon splicing, binding to ESE and recruiting the spliceosome 

components [178, 179], although some of them are also involved in other processes of 

the RNA biology, such as maturation, decay, transport or translation [180, 181]. Likewise, 

components of the hnRNPs family are also involved, besides the splicing process, in 

additional functions related to RNA, such as trafficking, stability and translation [182]. 

These hnRNPs proteins usually bind to splicing silencing sequences, which may be 

induced by competition against SR proteins for the binding sites or by altering the 

structure of the RNA, making specific zones inaccessible for the spliceosome [183, 184]. 

Moreover, there are many splicing factors, including NOVA1, that could act as inhibitors 

or as enhancers of the process, depending on their binding to silencing or enhancer 

elements. Thus, the function of these proteins will be determined by the nature of the 

sequence of interaction [171]. Therefore, the mature RNA variant generated from a given 

gene in a particular cellular environment represents the ultimate consequence from the 

dynamic interaction among splicing enhancers and silencers in order to define their 

precise assembling. 
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1.4.2 Splicing and cancer 

As a pivotal process for the precise and reliable transmission of information from 

DNA to RNA, the mechanism of splicing has to be under an exhaustive regulation. In 

fact, there is mounting evidence that the wrong functioning of alternative splicing, which 

can alter the normal proportion of the variants and the appearance of aberrant ones, can 

be the base of several pathologies [22, 185, 186]. This is particularly the case of tumor 

pathologies, which are so increasingly linked to the dysregulation of splicing landscape, 

that an altered splicing process is becoming recognized as one common hallmark for 

tumor development and progression [19, 187-189]. Is well known that tumor cells 

progress by developing mechanisms that allow them to adapt to the microenvironment; 

thus, alternative splicing can provide an increased genetic plasticity that would enable 

cancer cells to grow, become malignant, and take advantage against normal cells through 

the generation of oncogenic splicing profiles. Over the last years, many altered splicing 

profiles have been shown associated with tumoral pathologies in the literature [23, 190-

193]. Specifically, a wide number of alternative splicing variants have been directly 

related with tumorigenesis, tumor progression and aggressiveness (Figure I12). One of 

the most representative examples of this is the case of androgen receptor variant 7 (AR-

V7), characteristic in PCa [194]. This isoform results from an aberrant splicing that leads 

to the loss of exons 4-8 and the inclusion of the cryptic exon 3 in the mRNA of the AR 

Figure I11. Regulation of the alternative splicing. 

This picture represents the regulatory actions of splicing factors over the alternative splicing 

process. A. Selection of the splicing site through cis sequences and splicing factors. B. Action of 

the splicing factors based on the context of the cis sequences they bind to. Source: Matera and 

Wang, Nat Rev Mol Cell Biol 2014. 
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[195]. This mRNA is translated to an androgen receptor protein lacking its regulatory 

domain, which confers constitutive activity to the molecule, even in the absence of 

androgens, with the resulting increase in the growth of prostate tumors, which become 

resistant to treatments against these tumors, such as abiraterone or enzalutamide, and 

comprise the most aggressive PCa phenotype, known as castration resistant [196-198]. 

Another example is the alternative splicing of TERT mRNA. The alteration in its splicing 

leads to the appearance of an aberrant variant without the regulatory motif, that leads to 

a constitutive activity and an altered lengthening of the telomeres, accompanied by an 

increase in the aggressiveness features of non-small cell lung cancer [80, 199]. 

 

 

 

 

 

 

 

 

 

 

The information regarding splicing and its alterations in NETs, and more 

specifically PanNETs and PitNETs is still limited, with only few examples of splicing 

dysregulation related with these tumors. Specifically, as described above, it has been 

shown that the truncated variant of the SST5, SST5TMD4, is overexpressed in NETs and 

related to aggressiveness features [17]. Additionally, our group also discovered in these 

tumors that a variant of the ghrelin hormone that retains the intron 1 (thus called In1-

ghrelin) is overexpressed in NETs and other tumors and it related to higher aggressiveness 

[200, 201]. 

Figure I12. Alternative splicing and the hallmarks of cancer. 

Relationship between alternative splicing and the hallmarks of cancer, with several examples of 

dysregulated variants with each one of the hallmarks. Source: Sveen et al., Oncogene 2015. 
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In this scenario, high efforts have been dedicated in recent years to elucidate the 

causes underlying the dysregulation of alternative splicing process in cancer. One of this 

causes is mutations in the regulatory sequences of splicing, such as the branch point, 3’ 

and 5’ splice sites or splicing factors binding motifs, that may hinder their recognition by 

adequate molecules. These mutations have been linked to several pathologies, including 

cystic fibrosis [202], and cancer [203, 204]. In addition, a most interesting potential cause 

for splicing dysregulation in pathologic conditions is the alteration of splicing machinery 

components, including their mutations, and altered expression levels or functionality 

(activity and/or subcellular location). Indeed, a growing list of studies are linking 

mutations in splicing machinery components and tumorigenesis, and, among those, it is 

of particular relevance the study of the SF3B1 factor [205-207]. With the application of 

next-generation sequencing techniques, various mutations have been identified in this 

factor that may represent some of the most common splicing-related mutations in several 

types of cancer, as liver cancer [208, 209], and other tumor types, such as melanoma [210, 

211], leukemia [212] or breast cancer [213]. Furthermore, recent publications show that 

components of the core of the spliceosome may be also mutated in cancer, as is the case 

of RNU1, mutated in several cancer types, where it is related with poor prognosis and 

could be a novel therapeutic target [214, 215]. 

In this context, the dysregulation of the expression of splicing machinery 

components has been widely studied in tumoral pathologies [216, 217]. In fact, splicing 

factors are starting to be considered as oncogenes and tumor suppressor genes [21]. There 

are many examples of SRs and hnRNPs altered in cancer. For instance, SRSF1 has been 

shown to be overexpressed in colon and breast cancer, where it has a pro-tumorigenic 

role [218-220]; SRSF6 acts as an oncogene in lung and colon cancer, where it is 

overexpressed [221]; SRSF2 is also overexpressed in hepatocellular carcinoma, where it 

has been related to tumorigenesis and tumor development [222]. On the other hand, 

PTBP1 (also known as hnRNP I) seems to act as a tumoral suppressor in colorectal cancer 

[223, 224], but it is overexpressed and promotes tumor growth and invasion in breast 

cancer [225], and causes gemcitabine resistance in pancreatic cancer [226]. Similarly, 

other splicing factors can also play distinct roles in different cancers, as occurs in the case 

of NOVA1, which has been related to tumor growth in non-small cell lung cancer through 

the alternative splicing of TERT [80], an event that can also be observed in other cancer 

cells [199], and has also been described as an oncogene in melanoma [227] and 
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osteosarcoma [228], whereas its downregulation is associated to poor prognosis and 

tumor progression in gastric cancer [229]. Thus, when viewed together, these results 

reveal that splicing alterations are strongly context-dependent and should not be regarded 

simplistically in the study of cancer, thus highlighting the importance of studying this 

process in each particular type of tumors. In this regard, there are very few studies about 

the dysregulation of splicing machinery in NETs, and have been mainly focused in lung 

high grade tumors [230, 231]. Recently, our group reported that the splicing machinery 

is profoundly altered in the most relevant types of PitNETs [232]. However, the splicing 

process and its potential alteration is poorly known in PanNETs and there are no studies 

addressing the general expression profile of the machinery implicated in this process. 
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2. Objectives 

The general aim of this Thesis was to determine the role performed by 

somatostatin receptors and the splicing machinery in different types of endocrine-related 

cancers and neuroendocrine tumors, as well as the regulation mechanisms underlying, 

with the final purpose of discover novel biomarkers and pharmacologic targets with 

potential to improve diagnostic and therapeutic approaches in those pathologies. 

To fulfill this general aim, we proposed the following specific objectives: 

Objective 1: To investigate the presence and possible dysregulation of 

somatostatin receptor subtype 1, SSTR1, in PCa, as well as to elucidate its functional role 

in this pathology in terms of tumorigenesis and malignancy features. Additionally, we 

will aim to look for important associations of this receptor with clinical parameters and 

factors that may be regulating its expression in this type of cancer, to have a bigger picture 

of the hormonal regulation of PCa.  

Objective 2: To increase the poor understanding of the underlying mechanisms 

controlling the expression of the somatostatin receptor subtype 5, SSTR5, in NETs, 

specifically, those from pituitary and pancreas, besides to describe the functional 

implications of those mechanisms in the aggressiveness of these tumors, in order to better 

discern the real importance of this receptor. 

Objective 3: To make a profile of the splicing machinery in panNETs and to 

evaluate the potential associations of the altered factors with relevant clinical parameters. 

From this point, we will aim to elucidate the functional role of the splicing machinery 

dysregulation in models of this neuroendocrine disease, regarding its relevant 

aggressiveness features. 
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3. Materials and methods 

3.1 Patients and samples 

In this Thesis, samples from different cohorts of patients with endocrine-related 

tumoral pathologies have been included. All the studies presented herein were approved 

by the corresponding Hospital/University Ethics Committees and conducted in 

accordance with ethical standards of the Helsinki Declaration of the World Medical 

Association. Written informed consents from patients were obtained through the 

Andalusian Biobank (Servicio Andaluz de Salud). Patients were managed following 

current recommendations and guidelines. Data regarding physical examination, medical 

history, demography and laboratory work-up were obtained from routine visits using 

information available in clinical records. 

First, fresh PCa samples (n = 52) were included, obtained by core needle biopsies, 

following NCCN guidelines [47]. To use as control, non-tumoral prostate samples were 

collected from patients after cystoprostatectomy due to bladder cancer but without PCa 

(n = 12). The appropriate classification of the samples as tumor or non-tumor was 

confirmed by expert pathologists and it is summarized in Table 1. Additionally, 

demographic and clinical parameters regarding tumor aggressiveness and metabolic 

status were collected. Briefly, included individuals exhibited a median of age of 76 years 

old at diagnosis. Regarding PCa cohort, all the samples had at least a Gleason score of 7, 

with a 65 % of higher grade. Additionally, a 33 % of the patients suffered extraprostatic 

extension and a 52 % perineural infiltration. 

Regarding NETs, human PitNET samples were collected during transsphenoidal 

surgery from 27 acromegaly patients, and 11 normal pituitaries by autopsy from healthy 

donors. On the other hand, formalin fixed paraffin-embedded samples (FFPE, n = 20) 

were obtained from primary PanNETs; non-tumoral adjacent tissue, used as control, was 

extracted from the same piece and both tissues were separated by expert pathologists 

(patient features summarized in Table 2). The mean age of patients of PitNETs were 43-

year old, while those with panNETs were 55-year old. 
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Parameter Overall Control PCa 

Patients, number. 64 12 52 

Age; Median (IQR) 76 (67.5-81.25) 70 (62.2-80.7) 78 (69-81.7) 

PSA level, ng/ml; Median (IQR) 
  

54.5 (37.2-212) 

Gleason score       

7 - - 18/52 (35%) 

>7 - - 34/52 (65%) 

Extraprostatic extension  - - 17/52 (33%) 

Perineural infiltration - - 27/52 (52%) 

Table 1. Clinical and demographic parameters of patients with high risk of PCa. 

Overall clinical and demographic data of patients with high risk PCa in fresh normal 

prostates (control; obtained from cystoprostatectomy) and prostate cancer (PCa; obtained by 

core needle biopsies) samples. 

 

Parameter PitNETs PanNETs 

Number of samples 27 20 

Age (years, mean ± SEM) 43 ± 11  55 ± 14  

Body Mass Index (kg/m2, mean ± SEM) 31.01 ± 6.83  28.00 ± 3.48  

Gender (female, %) 63.2  57.1  

Gender (male, %) 36.8  42.9 

Smoking (%) N/A 68.8 

Family history of neoplasia (%) N/A 12.5 

Table 2. Summary of clinical parameters of the NETs patients. 

Overall clinical and demographic data of patients with these diseases that participated in 

the study. 

 

3.2 Cell culture 

In order to explore the functional aspects of the different molecules studied in this 

Thesis, we used several cell lines, as models for the pathologies of interest. Specifically, 

three PCa cell lines (22Rv1, DU145 and PC-3) and two panNETs cell lines (BON-1 and 

QGP-1) were used. PCa cell lines were previously validated by analysis of STRs 

(GenePrint® 10 System, Promega, Barcelona, Spain), while there is no STR profile for 

panNETs cell lines; all of them were checked for mycoplasma contamination by PCR, as 
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previously reported [233]. Cell lines were grown at 37 ºC, in a humidified atmosphere 

with 5.0 % of CO2. 

3.2.1 Cell lines 

PCa cell lines were obtained from the American Type Culture Collection (ATCC). 

The 22Rv1 cell line was developed from a xenograft of CWR22R cells serially 

propagated in mice after castration-induced regression. The donor patient was diagnosed 

with primary prostatic carcinoma with Gleason score of 9 advanced to osseous metastasis. 

These cells are androgen-independent but sensitive to them, they express prostate specific 

antigen (PSA) and androgen receptor (AR) and their growth is weakly stimulated by 

dihydrotestosterone [234, 235]. The DU145 cell line was generated in 1975 from a PCa 

metastasis in the brain, and represented and important advance in PCa research, since 

previous cell lines came from mixtures of benign tumors and moderate adenocarcinoma. 

DU145 cells are androgen-independent and do not express PSA and AR [236, 237]. The 

PC-3 cell line was obtained from bone metastasis of a high grade PCa in 1979. These 

cells are similar to DU145, in that they are also resistant to androgen effects and do not 

express PSA and AR, but PC-3 cells are more aggressive than DU145 [236, 238]. 

On the other hand, in order to evaluate functional effects in NETs, we used the 

two most widely used model cell lines, BON-1 and QGP-1. BON-1 is a cell line derived 

from a metastasis in a peripancreatic lymph node of a non-functioning carcinoid tumor of 

the pancreas in 1986, and is considered as an aggressive model cell line. These cells 

secrete some markers that can be used to assess their behavior, such as serotonin (5-

hidroxitriptamine or 5-HT), chromogranin A or neurotensin [239, 240]. The QGP-1 cell 

line was obtained from a primary pancreatic somatostatin-producing tumor, or 

somatostatinoma, that also secrete serotonin, in 1980. These cells exhibit a cluster and 

slow growth and a lower aggressiveness than BON-1 cells [241, 242]. 

DU145, PC3 and QGP-1 were cultured in RPMI 1640 (Lonza, Basel, 

Switzerland), while BON-1 cells were cultured in Dulbecco’s Modified Eagles Medium 

complemented with F12 (DMEM-F12; Life Technologies, Barcelona, Spain), both 

supplemented with 10 % fetal bovine serum (FBS, Sigma-Aldrich, Madrid, Spain), 1 % 

glutamine (Sigma-Aldrich) and 0.2 % antibiotic (Gentamicin/Amphotericin B, Gibco, 

Thermo Fisher, Waltham, MA, USA). 
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3.2.2 Freezing/Thawing and maintenance of cells in culture 

For freezing, aliquots of 106 cells were resuspended in FBS with 5 % of dimethyl 

sulfoxide (DMSO) in cryotubes and maintained in a pre-warmed isopropanol bath that 

was then stored at -80ºC at least 24 h. After that, the cryotubes were cryopreserved under 

liquid nitrogen conditions. 

For thawing, cryotubes containing 106 cells were fast warmed in a water bath until 

ice disappeared, followed by resuspension of cells in pre-warmed complete medium. 

DMSO was removed by centrifugation and supernatant elimination. Then, cells were 

resuspended in the appropriate medium and seeded in 25 cm2 flasks. 

3.2.3 Reagents 

SST1 agonist BIM-23926 was provided by IPSEN (Milford, MA, USA). It was 

administered at 1 µM and 10 nM for proliferation and free cytosolic calcium 

concentration ([Ca2+]i) assays, and at 1 µM for the rest of the experiments. Pasireotide 

was provided by Novartis (Basel, Switzerland) and administered at 100 nM, as previously 

reported in other studies [243]. Everolimus was obtained from Sigma-Aldrich and used 

at 100 nM. Dilutions were made in corresponding media, depending on assay performed 

in each case. 

3.2.4 Transfections 

During this Thesis, several genetic alterations were performed through different 

transfection assays that are described as follow. 

3.2.4.1 Stable and transient transfections with plasmids and shRNA 

Cell lines were transfected with commercial overexpression plasmids and 

shRNAs using Lipofectamine-2000 (Invitrogen, Thermo Fisher Scientific, Waltham, 

MA, USA) following the manufacturer’s instructions, as previously reported [16]. 

Briefly, between 100,000 – 200,000 cells, depending on cell line used, were seeded in 6-

well plates and incubated for two days at 37 ºC and 5 % CO2. Then, cells medium was 

retired and 500 μl of Opti-MEM (Thermo Fisher Scientific) were added. At the same 

time, 1 μg of each plasmid or shRNA of interest (containing SSTR1 or NOVA1 genes, or 

SSTR5-AS1 silencing vector) or an empty vector, used as control and named as “mock” 

for overexpression and “scramble” for silencing, were mixed with 3 μl of Lipofectamine-

2000 in 100 μl Opti-MEM and incubated for 30 min at room temperature. Next, those 
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transfection mixtures were added to the cells and incubated for 8 h. Finally, cell medium 

was replaced by 2 ml of complemented cell-specific medium. Success of transfections 

was validated by qPCR and/or western blot, comparing the expression of transcripts of 

interest with mock plasmid or scramble shRNA transfected cells. For subsequent studies, 

after transient transfection cells were incubated 48 h in order to allow plasmids to achieve 

the appropriate levels of gene expression. 

For SSTR1-stably transfected cells, we treated them with geneticin in the medium, 

which selectively eliminates non-transfected cells. After two weeks of treatment, with 

successive plate changes, cells grew normally and experiments could start. In the case of 

SSTR5-AS1 shRNA stable transfection, the protocol was similar, but the antibiotic used 

was puromycin. 

3.2.4.2 Transfections with siRNA and miRNA 

Cell lines were transfected with specific siRNAs (targeting SSTR1 and NOVA1 

genes; Ambion, Thermo Fisher Scientific and Origene, Rockville, MD, USA), which 

were validated in our laboratory. Specifically, cells were seeded in 6-well culture plates 

and transfected with SSTR1 or NOVA1 siRNAs and scramble siRNA, used as control, at 

100 nM, using Lipofectamine RNAiMAX Transfection Reagent (Invitrogen), following 

manufacturer instructions. Briefly, between 100,000 – 200,000 cells, depending on cell 

line used, were seeded in 6-well plates and incubated for two days. Then, cells medium 

was removed and replaced by 850 μl of 10 % FBS medium without antibody. At the same 

time 9 μl of lipofectamine were mixed with 300 μl of Opti-MEM and the appropriate 

amount of each siRNA and incubated for 5 min at room temperature. Finally, those 

transfection mixtures were added to the cells and incubated for 48 h, previous to 

subsequently studies, in order to allow siRNAs to achieve the appropriate inhibition of 

gene expression. Success of the silencing was validated by qPCR and/or western blot.  

Additionally, 22Rv1 cells were transfected with miRNA mimics of miR-24, miR-

27, miR-383, miR-488 or with a negative control (20 nM; GenePharma, Shanghai, China) 

for 48 h, following a protocol similar to that applied for siRNAs. RNA was extracted 

using TRIzol reagent and 2 μl of extracted RNA were retrotranscribed with the Taqman 

microRNA Reverse transcriptase kit (Thermo Fisher Scientific) following the 

manufacturer’s instructions. Taqman probes for hsa-miR-24-3p, hsa-miR-27b-3p, hsa-

miR-383-5p, hsa-miR-488-3p, and RNU6 (used as housekeeping) were purchased 
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(Thermo Fisher Scientific). The validation of successful miRNA mimic transfection was 

determined by TaqMan Universal PCR Master Mix (Thermo Fisher Scientific) in the 

BioRad CFX PCR instrument (BioRad). 

3.3 Functional assays 

3.3.1 Proliferation and colony formation assays 

We have used two different assays to measure cell proliferation. First, Alamar 

Blue fluorescent assay (Life Technologies, Thermo Fisher Scientific) was used to 

determine cell proliferation, as previously reported [244, 245]. Specifically, cells were 

seeded in 96-well plates at a density of 5,000 cells per well. After 24 h of starving, cell 

viability was analyzed at 0 h (basal), 24 h, 48 h and 72 h after transfection or treatment 

by measurement of fluorescent signal exciting at 560 nm and reading at 590 nm with Flex 

Station 3 device (Molecular Devices, Sunnyvale, CA, USA). More precisely, the day of 

the measurement, Alamar blue reduction was measured after cells were incubated for 3 h 

with 10 % Alamar blue/serum free medium. This reduction is proportional to the number 

of cells, so that the comparison between days is a relative reference of the cell 

proliferation. Medium was replaced by fresh 5 % FBS-medium immediately after each 

measurement (every 24 h), including treatment as appropriate. In all instances, cells were 

seeded per quadruplicate and all assays were repeated a minimum of three times. 

Second, we used a variety of the colony formation assay, as it has been previously 

reported in the literature, to assess cell proliferation. This assay is based on the size that 

arising colonies reach, since this is a relative quantification of cell proliferation. 

Specifically, we seeded cell lines in a very low density (1,000 cells per well) in 6-well 

plates for 10 days. Treatment was added 24 h after seeding and refreshed it each 2-3 days. 

Next, cells were fixed and stained with a combination of violet crystal (0.5 %) and 

glutaraldehyde (6 %) for 30 min. Finally, cells were washed with tap water and pictures 

were taken for every well. Quantification of the area covered by cells was made using 

ImageJ software (National Institutes of Health). 

Additionally, colony formation assay is based on the difficulties that cells find to 

grow up and proliferate when they are isolated, without other cells close to them. The 

genes that regulate this feature are expressed early when cells are seeded. For that reason, 

we treated cell lines during 24 h before the plating and seeded them at low density (1,000 

cells per well) in 6-well plates for 10 days, without adding more treatments. The protocol 



Materials and Methods 

57 
 

for staining and quantification is similar to that described above; however, in this case we 

did not quantify the area covered by the cells, but the number of colonies formed in each 

well. 

3.3.2 Migration assay 

Cell migration was evaluated by wound healing assay, based on the capacity of 

the cells to cover a wound made in a well with a high cell density, as previously reported 

[244]. Briefly, cells were seeded in 24-well plates and cultured them until they reached 

maximum confluence. Then, we made a wound in the middle on the well with a 200 μl 

sterile pipette tip. Cells were next incubated for 24 h in medium without FBS, in order to 

minimize cell proliferation effects on wound recovery, with the treatments as required. 

At least three random pictures were taken per well at 0 and 24 h after the wound was 

made. Wound healing was calculated as the uncovered area 24 h after the wound 

compared to the uncovered area just after wounding, which were all quantified with 

ImageJ software. 

3.3.3 Xenograft model 

Animal maintenance and experiments were carried out following the European 

Regulation for Animal Care and under the approval of the University of Córdoba 

Research Ethics Committee. Seven-week-old male athymic BALB/cAnNRj-Foxn1nu 

mice (Janvier Labs, Le Genest-Saint-Isle, France; n = 6 mice), were subcutaneously 

grafted in the flank with 3x106 BON-1 cells transfected with mock and NOVA1 plasmids 

in each flank, resuspended in 100 µl of basement membrane extract [16]. Tumor growth 

was monitored twice per week for 5 weeks, by using a digital caliper. After euthanasia of 

mice, each tumor was dissected, fixed, and sectioned for histopathologic examination 

after hematoxylin and eosin staining for the examination by expert pathologists. 

Additionally, a piece from each tumor was frozen for further RNA extraction with TRIzol 

reagent. 

3.4 Molecular assays 

3.4.1 Nucleic acids 

3.4.1.1 Genomic DNA and total RNA from fresh human samples 

Genomic DNA (gDNA) and total RNA from human fresh samples were extracted 

using the “AllPrep DNA/RNA/Protein Mini Kit” (Qiagen, Madrid, Spain) following 
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manufacturer’s instructions. Next, quantification of nucleic acids recovered was assessed 

with Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific), and its quality was 

measured with the same device, using the Absorbance Ratio A260/280 and A260/230 and 

requiring a minimum of 1.8 in both. Samples were homogenized with an IKA T25 Ultra-

Turrax (Gemini BV laboratory, Apeldoorn, Netherlands) in the recommended RLT 

Buffer, allowing an accurate purification of gDNA and total RNA. Then, the 

homogenized samples were passed through two columns that retain firstly the gDNA and 

then total RNA, that were eluted with RNase- and DNase-free water, respectively. 

3.4.1.2 Total RNA from FFPE human samples 

Regarding FFPE human samples, RNA was isolated using RNeasy FFPE Kit 

(Qiagen), according to the manufacturer’s protocol. Briefly, FFPE sample slides were 

deparaffined with xylol and lysed with proteinase K, followed by heat treatment. Then, 

supernatant was treated with DNase and passed through a column that retain total RNA. 

Finally, RNA was eluted with RNase free water. The amount of RNA recovered and its 

quality was determined as described in the previous section. 

3.4.1.3 Total RNA from cell lines samples 

Total RNA was extracted from different cell lines using TRIzol reagent (Sigma-

Aldrich), according to manufacturer’s protocol, as previously reported [244-246]. Briefly, 

cells were incubated until confluence in 6-well or 12-well plates until 70-80 % of 

confluence. Then, wells were rinsed with PBS and, subsequently, 1/0.6 ml TRIzol was 

added, collected and re-added several times, to lyse cells appropriately, and finally 

collected with lysed cells in 1.5 ml tubes. RNA isolation was carried out by adding 

chloroform and collecting the aqueous phase. RNA was precipitated, concentrated and 

washed with isopropanol and 70 % ethanol washing steps. Next, samples were dried and 

resuspended with 8 μl of DEPC-treated water. Subsequently, samples were treated with 

1 U of DNase (Promega) and incubated for 30 min at 37 ºC, stopping the reaction by 

adding a Stop Solution and incubating at 65 ºC for 5 min. The amount of RNA recovered 

and its quality was determined as described above. 

3.4.1.4 Total RNA retrotranscription to cDNA 

Retrotranscription of total RNA to cDNA was performed with the cDNA First 

Strand Synthesis kit (MRI Fermentas, Thermo Fisher Scientific), using random hexamers 

primers and following manufacturer’s instructions, independently of the origin of the 
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samples. Specifically, 1 μg of total RNA from each sample was mixed with random 

hexamers and water, to match their concentrations, and incubated at 65 ºC for 5 min. 

Subsequently, appropriate buffers, dNTPs and reverse-transcriptase were added, and the 

mix incubated for 1 h at 42 ºC, stopping the reaction with an incubation of 5 min at 70 ºC. 

3.4.1.5 Conventional PCR 

Conventional PCR has been used along this work with two aims: to study 

differential alternative splicing isoforms expression and to validate qPCR primers, both 

using PCR Master Mix (Thermo Fisher Scientific), that includes Taq DNA polymerase, 

reaction buffer, MgCl2 and dNTPs. All conventional PCRs were carried out in a 

thermocycler T100 Thermal-cycler (BioRad). The thermal profile followed for 

conventional PCR was: 

Initial denaturalization 95 ºC 30 s 

30-35 cycles 

 95 ºC 30 s 

 45-65 ºC 30 s 

 72 ºC 1 min/kb of amplicon 

Final extension 72 ºC 5 min 

Hold 4-10 ºC - 

 

Duration of the extension step depended on the length of each amplicon, where 1 

min was needed per kb. Annealing temperature was adapted to each pair of primers, since 

we tried to design them to have around 60 ºC, but it was not always possible. 

3.4.1.6 Quantitative Real-Time PCR (qRT-PCR or qPCR) 

Quantitative real-time PCR (qPCR) was used to perform relative quantification of 

cDNA derived from retrotranscription of RNA from human samples or cells lines. qPCR 

was performed using Brilliant III SYBR Green Master Mix in the Stratagene Mx3000p 

instrument (both from Agilent, La Jolla, CA, USA) as previously described [244-246]. 

Briefly, for each reaction, 10 µl of master mix, 0.3 µl of each primer, 8.4 µl of distilled 

H2O and 1 µl of cDNA (50 ng, when it was possible) in a 20 µl total volume were mixed. 

The thermal profile used for qPCR was: 
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Initial denaturalization 95 ºC 30 s 

40 cycles 

 95 ºC 20 s 

 60 ºC 20 s 

Melting curve 0.5 ºC/30 s  

 

Results were adjusted with a normalization factor, calculated from values of 

different combinations of ACTB, GAPDH, HPRT or RNA18S1 housekeeping genes, 

depending on their suitability in each case, using Genorm Software, wherein the 

expression of the housekeeping genes did not differ between experimental groups. 

3.4.1.7 Quantitative PCR Dynamic Array 

A Dynamic Array (Fluidigm, South San Francisco, CA, USA), based on 

microfluidic technique for gene expression analysis, was employed to measure the 

expression of a custom set of genes in 48 samples simultaneously. Specific primers for 

human transcripts of interest (Table 3) were designed in the same way than those for 

conventional PCR and qPCR, as explained in the next section. This custom array included 

components of the major spliceosome (n = 13), minor spliceosome (n = 4), associated 

splicing factors (n = 27) and the ACTB, GAPDH and HPRT as housekeeping genes. The 

array was prepared and measured following the manufacturer’s instructions. Briefly, 

12.5 ng of cDNA of each sample was preamplified using 1 µl of PreAmp Master Mix 

(Fluidigm) and 0.5 µl of a mix with all primers together (500 nM) in a T100 Thermal-

cycler (BioRad), following the program: 

Initial denaturalization 95 ºC 2 min 

14 cycles 

 95 ºC 15 s 

 60 ºC 4 min 

 

After preamplification, samples were treated with 2 µl of a 4 U/µl Exonuclease I 

(New England BioLabs, Ipswich, MA, USA) solution for 30 min at 37 ºC and 15 min at 

80 ºC to remove the excess of primers. Then, samples were diluted with 18 µl of TE 

Buffer at pH 8.3 (Thermo Scientific). Next, 2.7 µl were mixed with 3 µl of EvaGreen 

Supermix (BioRad) and 0.3 µl of DNA Binding Dye Sample Loading Reagent 20X 
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(Fluidigm); primers were diluted to 5 μM with 2X Assay Loading Reagent (Fluidigm). 

Control line fluid was charged in the chip and Prime script program was run into the IFC 

controller MX. Finally, 5 µl of each primer and 5 µl of each sample were pipetted into 

their respective inlets on the chip and the Load Mix script in the IFC controller software 

was run. After this program, the chip is put in the Biomark System following the 

manufacturer’s protocol (Fluidigm). Data were processed with Real-Time PCR Analysis 

Software 3.0 (Fluidigm). 

3.4.1.8 DNA methylation evaluation 

The DNA methylation levels of CpG islands overlapping SSTR5 and SSTR5-AS1 

genes were evaluated in the cohort of pitNETs samples and normal pituitary samples. 

Genomic DNA, extracted as described above, was used to this end, following a protocol 

previously reported by de la Rica and collaborators [247]. Specifically, we performed 

bisulfite conversion of the gDNA samples, converting unmethylated cytosines to uracil, 

while the methylated ones remain as cytosines. Methylation validation was performed by 

comparing enzyme restriction cuts, Hha I (GCGC) and Msp I (CCGG), on bisulfite 

transformed and not transformed samples. Once methylation was validated, we performed 

8 PCR reactions per sample, one for each selected CpG zone (PCR1, FigureM1), with 

specific couples of primers that were modified with nucleotidic adaptors. Subsequently, 

we performed a second PCR (PCR2, FigureM1) pooling all the PCR1 products of each 

sample, using barcoded primers targeting adaptors of the PCR1, which allowed us to 

identify each sample in the following sequencing reaction. Finally, we pooled all the 

transcripts, making a single library with all the amplicons from all the samples, and 

performed a high throughput sequencing reaction (HTS). 

3.4.1.9 Gene expression profile microarray 

Three independent passages from 22Rv1 cells stably-transfected with SSTR1 in a 

pCDNA3.1 vector and the empty vector, as control, were used to measure a microarray 

Human Androgen Receptor Signaling Targets PCR Array PAHS-142Z (Qiagen). 

Expression profile array was measured using RT² qPCR SYBR Green ROX (Qiagen) in 

the Stratagene Mx3000p system. Total RNA of high quality was used, extracted using 

AllPrep DNA/RNA/Protein Mini Kit (Qiagen) and retrotranscribed using RT² First 

Strand Kit (Qiagen). Specific analysis of the results was performed with Data Analysis 
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Center (Qiagen, http://www.qiagen.com/shop/genes-and-pathways/data-analysis-center-

overview-page/), following the manufacturer’s instructions. 

3.4.1.10 Primers design 

Primers used during the present work for PCR and qPCR have been designed 

using the bioinformatics tool Primer Blast and Primer3 software 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/ and http://bioinfo.ut.ee/primer3-

0.4.0/), using as template the mRNA sequences from NCBI database. All the primers used 

in this Thesis are described in Table 3, including the sequences, their application and the 

length of the amplicon in base pairs (bp). 

In order to standardize the methodology, basic requirements of the primers for 

qPCR were fixed in a Tm range of 59-61 ºC, and an amplified sequence of 80-200 pb. 

Additionally, in order to prevent genomic amplification, each primer, forward and 

reverse, was designed in different exons and, when possible, they were designed in the 

middle of an exon junction. Primers for alternative splicing analysis were less restrictive, 

since they amplified longer sequences. Designed primers were synthesized by Integrated 

DNA technologies (Madrid, Spain). Subsequently, primers were validated by 

conventional PCR using cDNAs from different cell lines as template; PCR products were 

isolated with FavorPrep™ GEL/PCR Purification Kit (Favorgen, Vienna, Austria) and 

Figure M1. Workflow for DNA methylation assay of pituitary samples. 

PCR1 uses primers with a target-specific portion as well as part of the adaptors needed for HTS; 

PCR2, which is target independent, completes the adaptors and adds a barcode that allows sample 

pooling. After PCR1 all amplicons from the same sample can be pooled, reducing the scale of the 

sample-indexing PCR2; after indexing all samples can be pooled into a single tube and sequenced. 
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sequenced using the genomic services of the University Core Facilities, SCAI (Servicio 

Centralizado de Apoyo a la Investigación, University of Córdoba, Spain). 

Finally, we also designed the primers for the PCR involving the DNA methylation 

assay (Table 3B). Those primers were designed using PyroMark software (Qiagen), 

applying special requirements: 300 bp amplicon; 58-60 ⁰C Tm; 22 nucleotides of length; 

including a high number of CG sites in the amplicon, but avoiding CG sites in the primer 

sequence, in order to include the maximum number of possible methylation but without 

affecting the primers efficiency; and including recognition sites for Hha I (GCGC) and 

Msp I (CCGG) restriction enzymes, to allow the methylation validation. Those primers 

were modified with target adaptors for the second PCR, as described in the original 

article. The primers for that second PCR were provided by the group that created the 

protocol and they targeted the adaptors of the first PCR primers and included barcodes to 

identify each sample. 

Table 3A 

Transcript 
Primers 

application 
Forward Reverse Size (bp) 

RNA18S1 qPCR CCCATTCGAACGTCTGCCCTATC TGCTGCCTTCCTTGGATGTGGTA 136 

ACTB qPCR ACTCTTCCAGCCTTCCTTCCT CAGTGATCTCCTTCTGCATCCT 176 

GAPDH qPCR AATCCCATCACCATCTTCCA AAATGAGCCCCAGCCTTC 122 

HPRT qPCR CTGAGGATTTGGAAAGGGTGT TAATCCAGCAGGTCAGCAAAG 157 

SSTR1 qPCR CACATTTCTCATGGGCTTCCT ACAAACACCATCACCACCATC 165 

TP53 qPCR AAGGAAATTTGCGTGTGGAG CCAGTGTGATGATGGTGAGG 180 

CCND3 qPCR GAGCTGCTGTGTTGCGAAG TGCACGCACTGGAAGTAGGA 143 

KLK3 qPCR GTGCTTGTGGCCTCTCGT CAGCAAGATCACGCTTTTGT 108 

ADAMTS1 qPCR CTCATCTGCCAAGCCAAAG GCACACAGACAGAGGTGGAA 100 

IRS2 qPCR TTAGATGAGGCACCAACAAGG AAGGCCAATGAAAACATCCA 157 

LIFR qPCR CATCATCAGCGTAGTGGCTAAA CCTTTCCCATCCCAACAAC 116 

NDRG1 qPCR ATTATTGGCATGGGAACAGG GGGTTCACGTTGATAAGGACA 101 

IGFBP5 qPCR TGTGACCGCAAAGGATTCTAC AAAGTCCCCGTCAACGTACTC 129 

SLC45A3 qPCR CCGGAGACACTATGATGAAGG CAGAGAGAAGACCAGGGAGATG 82 

TSC22D3 qPCR TGATGTATGCTGTGAGAGAGGAG ACGCTCTAGCTGGGAGTTCTT 83 

VIPR1 qPCR TGATCCCCCTGTTTGGAGT CACCACAAAACCCTGGAAAG 116 

SSTR5 qPCR CTGGTGTTTGCGGGATGTT GAAGCTCTGGCGGAAGTTGT 183 

SSTR5-AS1 qPCR AGCACAGGTGTTTCTGCTTCT CCCTGCTCTGTCTTTCTCGT 116 

ATRX qPCR TGTTTTCAGCCAGTCCCTCA GCCACTTCCCCTCACCTTTA 118 

DAXX qPCR AAGCCTCCTTGGATTCTGGT CTGCTGCTGCTTCTTCCTCT 237 

MKI67 qPCR GACATCCGTATCCAGCTTCCT GCCGTACAGGCTCATCAATAAC 139  

CCND1 qPCR CCTCGGTGTCCTACTTCAAAT TCCTCCTCGCACTTCTGTTC 108 

CASP3 qPCR TTTTTCAGAGGGGATCGTTG GTCTCAATGCCACAGTCCAGT 97 
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CELF1 qPCR AACAGAAGAGAATGGCCCAGC TGCTGAAGGAGTGCTAAATACTG 121 

ESRP1 qPCR TTTTGGGATCACTGCTGGGG TGTCCCACCTTCTTGTTGGC 108 

ESRP2 qPCR AGAGCCCAGCAGTCAATTGTT GTCTCACTGTCCACCACATCAG 96 

KHDRBS1 qPCR GAGCGAGTGCTGATACCTGTC CACCAGTCTCTTCCTGCAGTC 106 

MAGOH qPCR GCCAACAACAGCAATTACAAGA TTATTCTCTTCAGTTCCTCCATCAC 88 

NOVA1 qPCR TACCCAGGTACTACTGAGCGAG CTGGTTCTGTCTTGGCCACAT 124 

PTBP1 qPCR TGGGTCGGTTCCTGCTATT CAGATCCCCGCTTTGTAC 111 

RAVER1 qPCR GTAACCGCCGCAAGATACTG  CGAAGGCTGTCCCTTTGTATT  126 

RBM17 qPCR CAAAGAGCCAAAGGACGAAA TACATGCGGTGGAGTGTCC 107 

RBM3 qPCR AAGCTCTTCGTGGGAGGG  TTGACAACGACCACCTCAGA  98 

RBM45 qPCR CCCATCAAGGTTTTCATTGC TTCCCGCAGATCTTCTTCTG 123 

SFPQ qPCR TGGTAGGGGGTGAAAGTG TTAAAAACAAGAAATGGGGAAATG 125 

SND1 qPCR ACTACGGCAACAGAGAGGTCC GAAGGCATACTCCGTGGCT 101 

SNW1 qPCR ATGCGTGCCCAAGTAGAGAG TCCCCATCCTCTTTTTCCA 134 

SRRM1 qPCR GTAGCCCAAGAAGACGCAAA TGGTTCTGTGACGGGGAG 108 

SRRM4  qPCR CCTTCACCACCTCCTCAC TTCGGCACATTCCAGACA 113 

SRSF1 qPCR TGTCTCTGGACTGCCTCCA TGCCATCTCGGTAAACATCA 98 

SRSF10 qPCR CTACACTCGCCGTCCAAGAG CCGTCCACAAATCCACTTTC 103 

SRSF2 qPCR TGTCCAAGAGGGAATCCAAA GTTTACACTGCTTGCCGATACA 113 

SRSF3 qPCR TAACCCTAGATCTCGAAATGCATC  CATAGTAGCCAAAAGCCCGTT  117 

SRSF4 qPCR GGAACTGAAGTCAATGGGAGAA     CTTCGAGAGCGAGACCTTGA     110 

SRSF5 qPCR GCAAAAGGCACAGTAGGTCAA   TTTGCGACTACGGGAACG  92 

SRSF6 qPCR AGACCTCAAAAATGGGTACGG CTTGCCGTTCAGCTCGTAA 82 

SRSF9 qPCR CCCTGCGTAAACTGGATGAC AGCTGGTGCTTCTCTCAGGA 87 

TIA1 qPCR TAAATCCCGTGCAACAGCAGA TATGCAGGAACTTGCCAACCA 124 

TRA2A qPCR TCAAAGGAGGCTATGGAAAGG TGTGTGCGCTCTCTTGGTTA 90 

TRA2B qPCR GATGATGCCAAGGAAGCTAAAG AGGTAGGTCTCCCCATGTAAATTC 130 

PRPF40A qPCR GCTCGGAAGATGAAACGAAA  TGTCCTCAAATGCTGGCTCT  130 

PRPF8 qPCR TGCCCACTACAACCGAGAA  AGGCCCGTCCTTCAGGTA  139 

RBM22 qPCR CTCTGGGTTCCAACACCTACA GGCACAGATTTTGCATTCCT 137 

SNRNP70 qPCR TCTTCGTGGCGAGAGTGAAT     GCTTTCCTGACCGCTTACTG     114 

RNU11 qPCR AAGGGCTTCTGTCGTGAGTG     CCAGCTGCCCAAATACCA     108 

RNU12 qPCR ATAACGATTCGGGGTGACG     CAGGCATCCCGCAAAGTA     106 

RNU2 qPCR CTCGGCCTTTTGGCTAAGAT  TATTCCATCTCCCTGCTCCA  116 

RNU4 qPCR TCGTAGCCAATGAGGTCTATCC  AAAATTGCCAGTGCCGACTA  103 

RNU4ATAC qPCR GTTGCGCTACTGTCCAATGA CAAAAATTGCACCAAAATAA 85 

RNU6 qPCR CGCTTCGGCAGCACATATA  AAAATATGGAACGCTTCACGAA  101 

RNU6ATAC qPCR TGAAAGGAGAGAAGGTTAGCACTC  CGATGGTTAGATGCCACGA  112 

SF3B1 qPCR CAGTTCCGTCTGTGTGTTCG GCTGCCTTCTTGCCTTGA 101 

SF3B1 tv1 qPCR GCAGACCGGGAAGATGAATA TTTTCCCTCCATCTGCAAAA 88 

SNRNP200 qPCR GGTGCTGTCCCTTGTTGG  CTTTCTTCGCTTGGCTCTTCT  103 

TCERG1 qPCR GAGGAGCCCAAAGAAGAGGA CACCAGTCCAAACGACACAC 112 

U2AF1 qPCR GAAGTATGGGGAAGTAGAGGAGATG TTCAAGTCAATCACAGCCTTTTC 120 

U2AF2 qPCR CTTTGACCAGAGGCGCTAAA TACTGCATTGGGGTGATGTG 130 

Δ133TP53 PCR From Bernard et al., Oncogene 2013 
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TERT PCR 
From Mavrogiannou et al., Clin Chem 2007 

TERT tv1 PCR 

 

 

Table 3B 

CpG Zone DNA METHYLATION PRIMERS 

ZONE 1 Fw ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGTTGGGGGATGAAGAGT 

ZONE 1 Rv TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTAAACTCCCCAAACCCAACAAATAAA 

ZONE 2 Fw ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGGATGTTAGGGTATTTTGTGTTTT 

ZONE 2 Rv TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCCCCAACAACCTACAAATATTC 

ZONE 3 Fw ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGGTTATTGTTAGTGGGATTAGG 

ZONE 3 Rv TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACACAAAATAAAACCCCCAATAAAAAT 

ZONE 4.1 Fw ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGTAGTAGTATTGTAGGGTAGGT 

ZONE 4.1 Rv TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACATACAAACATTCCTTCCTCCTAAA 

ZONE 4.2 Fw ACACTCTTTCCCTACACGACGCTCTTCCGATCTTGTATGTGTTGGTTTAGGGATTTATTA 

ZONE 4.2 Rv TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACCAAAAAAAACAACCCCAACATAT 

ZONE 4.3 Fw ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGAGTTTTTAGAAGGTTTTGTGTTTT   

ZONE 4.3 Rv TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCTAACTTCAACCAACTCTATCC 

Table 3. Details of primers used for quantitative and traditional PCR (Table 3A), as well as 

methylation assays (Table 3B). 
 

3.4.2 Proteins 

3.4.2.1 Western blot 

Proteins from cell lines were extracted with SDS-DTT buffer, composed by 

62.5 mM Tris-HCl, 2 % SDS, 20 % glycerol, 100 mM DTT and 0.005 % bromophenol 

blue. Cells were seeded in 6-well or 12-well plates and incubated at 37 ºC, 5 % CO2 until 

70-80 % of confluence. Then, proteins were extracted by using 200 µl pre-warmed SDS-

DTT buffer and denaturalized by sonication during 10 s and boiling for 5 min at 95 ºC. 

Proteins were separated by SDS-PAGE electrophoresis and transferred to 

nitrocellulose membranes (Millipore, Billerica, MA, USA). Membranes were blocked 

with 5 % non-fat dry milk in Tris-buffered saline/0.05 % Tween-20 and incubated with 

the specific antibodies overnight at 4 ºC, followed by 1 h of incubation with the 

appropriate secondary antibodies (detailed antibodies are represented in Table 4, 

including the source, the reference, the dilution and the technique they were used for). 

Finally, proteins were detected using an enhanced chemiluminescence detection system 

(GE Healthcare, Madrid, Spain), following manufacturer’s instructions, with dyed 

molecular weight markers. A densitometry analysis of the bands obtained was carried out 
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with ImageJ software. For normalization, we used a housekeeping protein, the Ponceau’s 

red or total protein of the corresponding phosphorylated protein. 

3.4.2.2 Immunohistochemistry 

Immunohistochemical staining was performed to study the protein expression 

levels of NOVA1 in FFPE panNETs samples, using standard procedures [16, 154], 

including a heat-induced antigen retrieval step. Tissue sections were deparaffinized using 

xylol and a series of less concentrated ethanol solutions, and then treated with 10 mM 

sodium citrate pH 6 for 10 min in a microwave. Then, they were incubated with primary 

antibody overnight at 4 °C, followed by incubation with the appropriate peroxidase-

conjugated secondary antibody (antibody descriptions are included in Table 4). Finally, 

staining was developed with 3,39-diaminobenzidine (Envision system 2-Kit Solution 

DAB) and counterstained with hematoxylin. Negative controls of both primary and 

secondary antibodies were used in parallel, omitting them in separate samples. 

Particularly, NOVA1 protein expression was assessed in the total of 20 FFPE panNETs 

samples, including tumoral and non-tumoral adjacent tissue. An expert pathologist carried 

out a histopathologic analysis of the sections, following a blinded protocol, indicating +, 

++ and +++ as low, moderate and high staining intensity of both tumoral and non-tumoral 

adjacent tissue. 

Antibody Reference Source Technique Dilution 

Rabbit anti-human ERK1/2 sc-154 Santa Cruz Biotech Western 1:1000 

Rabbit anti-human p-ERK1/2 #4370S Cell Signaling Western 1:1000 

Rabbit anti-human AKT #9272S Cell Signaling Western 1:1000 

Rabbit anti-human p-AKT #4060S Cell Signaling Western 1:1000 

Rabbit Anti-human AR ab133273 Abcam Western 1:1000 

Rabbit Anti-human p-AR ab71948 Abcam Western 1:1000 

Rabbit Anti-human JNK AF1387 R&D systems Western 1:1000 

Rabbit Anti-human p-JNK AF1205 R&D systems Western 1:1000 

Rabbit Anti-human p-PDK1 #3061 Cell Signaling Western 1:1000 

Rabbit Anti-human p-PTEN #9551 Cell Signaling Western 1:1000 

Rabbit Anti-human p-p53 #9284 Cell Signaling Western 1:1000 

Rabbit Anti-human ATRX HPA001906 Sigma Aldrich Western 1:1000 

Rabbit Anti-human DAXX HPA008736 Sigma Aldrich Western 1:1000 

Goat Anti-human NOVA1 #PA5-18895 Thermo Fisher Western/IHC 1:1000/250 

Goat anti-rabbit IgG HRP-linked #7074s Cell Signaling Western 1:2000 

Rabbit anti-goat IgG HRP-linked #31753 Thermo Fisher Western/IHC 1:2000/500 

Table 4. Details of antibodies used for the different protein experimental assays. 
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3.4.2.3 Evaluation of PSA secretion by ELISA 

PSA secretion by 22Rv1 cell line was measured after treatment with the SST1 

agonist, BIM-23926. Briefly, cells were seeded in 12-well plates until 70-80 % of 

confluence. Then, they were FBS starved for 1 h and incubated with treatment (BIM-

23926 at 1 µM or vehicle as control) for 24 h in absence of FBS. After that, media were 

collected and stored at -20 °C until PSA measurement, using commercial ELISA 

(#RAB0331, Sigma-Aldrich), following manufacturer’s instructions. All the information 

about the assay can be accessed at the company website. 

3.5 Bioinformatic analyses 

3.5.1 In silico studies of SSTR1 and possible regulatory miRNAs 

Prediction of miRNAs that could regulate SSTR1 expression was assessed in silico 

with three different software packages, freely available, including TargetScan, miRanda 

and DIANA. We followed several criteria in order to choose candidate miRNAs for 

further studies: I) predicted to bind the 3´UTR region in conserved sites among species; 

II) miRNA appears in, at least, two different software packages; III) number of poorly 

conserved sites among species; IV) good score in the different software packages (Total 

Context score and Aggregate PCT in Target Scan, mirSVR score and PhastCons score in 

Miranda, miTG score in Diana); and V) miRNA already published showing functional 

effect (http://www.mirbase.org/). In order to know and analyze the normalized expression 

levels of SSTR1 and previously selected miRNAs in publicly available PCa cohorts, 

processed RNA-seq data from The Cancer Genome Atlas (TCGA, https://gdc-

portal.nci.nih.gov/) and Memorial Sloan Kettering Cancer Center (MSKCC, 

https://www.mskcc.org/) were compiled. Using those data, we performed comparisons 

between PCa and control samples and correlations in tumoral samples with available 

clinical data. 

3.5.2 Study of SSTR5 gene context in silico 

We performed an in silico study of the SSTR5 gene through the USCS Genome 

Browser website (https://genome.ucsc.edu). We were looking for possible regulatory 

elements that may control SSTR5 transcription and splicing, including NATs, CpG 

islands, histone markers and previous data that could help to further explore those 

findings, such as massive sequencing or probes in cell lines. The information obtained 

revealed the existence of an overlapping gene or NAT, SSTR5-AS1, which encodes a long 
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intergenic non-coding RNA. As well, there are 4 CpG-rich regions or CpG islands along 

both genes. Finally, there are several zones with histone markers, typically associated to 

promoter and/or enhancer sequences. Although all those findings could regulate SSTR5 

expression, we focused on NAT and CpG islands for further studies, as described above. 

3.6 Statistical analysis 

First, data were evaluated for parametric distribution with Kolmogorov–Smirnov 

test and were expressed as mean ± SEM (Standard Error of Mean). Statistical 

comparisons between groups were performed by unpaired parametric t-test and non-

parametric Mann-Whitney U test, according to normality of included groups. Multiple 

comparisons of more than two groups were performed for analysis of variance (one-way 

ANOVA) followed by Dunnett’s test. Pearson’s or Spearman’s bivariate correlations 

were performed for quantitative variables, in case they were parametric or not, 

respectively. The Receiver operating characteristic (ROC) curves were used to evaluate 

the suitability of genes to distinguish different groups of samples. Additionally, some 

analyses were performed in order to check the ability of several factors for distinguish 

between tumoral and non-tumoral samples. Random forest and simple logistic regression 

analyses were carried out with R language and followed by cross-validation in order to 

select a group of factors with a good ability to make clusters with samples. The heat map, 

principal component analysis and VIP score were performed through Metaboanalyst 

software (https://www.metaboanalyst.ca; McGill University, Montreal, Canada). 

In vitro experiments were performed, at least, three times, as separate and 

independent experiments, carried out in different days and with different cell 

preparations. Statistical analyses were assessed using GraphPad Prism 7 (GraphPad 

Software, La Jolla, CA, USA) and correlations were carried out using SPSS 22 (IBM 

SPSS Statistics Inc., Chicago, IL, USA). The p-values were two-sided and statistical 

significance was considered when p < 0.05, data is presented making specification for 

p < 0.05, p < 0.01 and p < 0.001. 
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4. Results 

The aim of this Doctoral Thesis is to determine the role of somatostatin receptors 

and splicing machinery in different types of endocrine-related cancers and 

neuroendocrine tumors, and to explore their underlying regulatory mechanisms, with the 

final purpose of discovering novel biomarkers and pharmacologic targets. To better 

present how this global aim was pursued and for the sake of clarity, results have been 

subdivided in three experimental sections that will be presented separately. 

4.1 Experimental section I: Somatostatin receptor subtype 1 (SST1) as a 

biomarker and therapeutic target in prostate cancer 

The somatostatin-SST1-5 system comprises a complex and pleiotropic regulatory 

axis, which provides a relevant source of useful biomarkers and therapeutic targets for 

different pathologies, including endocrine-related tumors, as it has been shown for NETs 

and, especially, PitNETs [14, 248]. In this context, SST2 and SST5 have been the most 

valued targets, to which different SSAs were developed; however, in the case of PCa, the 

clinical findings regarding SSTs and the use of SSAs have been largely disappointing 

[249, 250]. Nevertheless, previous studies have demonstrated that other SSTs (e.g., SST3) 

could also represent useful targets to develop therapeutic alternatives in some pathologies 

[251, 252]. In line with this, it has been shown that SST1 could also be a relevant molecule 

in determining the response to SSAs [253]. Bearing this idea in mind, we decided to assess 

the expression levels of SSTR1 in PCa samples and to investigate its regulation, functional 

implications, and potential utility as biomarker and/or therapeutic target in this pathology. 

4.1.1 Overexpression of SSTR1 in PCa and its association with relevant markers 

As a first step, we evaluated, by qPCR, the expression levels of SSTR1 in a cohort 

of fresh samples from patients with PCa (n = 52) and control samples without tumoral 

features (n = 12), whose clinical and demographic characteristics are summarized above 

(Table 1; Material and Methods). Interestingly, results from qPCR showed that SST1 was 

expressed in a higher proportion of PCa samples than in control tissues (91 % in PCa vs. 

75 % in non-tumoral samples), and also, that expression levels were markedly higher in 

PCa samples than in controls (Figure R1). 

This initial analysis already suggested that SST1 could be a valuable molecule in 

PCa, in that receptor overexpression would support its use as a putative treatment target. 

On the other hand, its potential as a biomarker in PCa required additional investigation. 
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Thus, we performed a ROC curve analysis showing that SSTR1 expression was able to 

significantly (p = 0.048) discriminate tumoral from control samples (AUC = 0.68; Figure 

R1). These results pointed SSTR1 as a possible biomarker for PCa, although additional 

analysis with more numerous patient cohorts would be needed to corroborate it. 

 

 

 

 

 

 

To further examine the potential importance of SST1 in PCa patients, we analyzed 

in more detail the clinical features recorded in the database of this patient cohort. 

Interestingly, this revealed that SSTR1 expression correlated directly and significantly 

with AR expression in PCa patients, whereas, in clear contrast, mRNA levels of these two 

molecules did not correlate in control samples (Figure R2). This observation is important 

because AR is a highly relevant molecule in PCa, where it is overexpressed in pathological 

conditions, as it also occurs in our cohort (Figure R2). 

 

 

Figure R1. SSTR1 is overexpressed in PCa and can discriminate tumor vs. non-tumor tissue. 

Left panel: Comparison of SSTR1 expression in PCa biopsy samples compared to non-tumor 

control samples, adjusted by normalization factor (NF), calculated from the expression levels of 

three housekeeping genes (ACTB, GAPDH and HPRT). Right panel: Receiver operating 

characteristic (ROC) curve analysis, performed with the expression levels of SSTR1 to determine 

the ability of its expression to discriminate between PCa patients and controls. Asterisk (*, 

p < 0.05) indicates values that significantly differ from controls. Data represent mean ± SEM. 
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4.1.2 SST1 exerts a functional role in PCa cell lines 

The intense research activity in the field of PCa over the last decades has 

facilitated the development of a number of cell models amenable for experimental and 

preclinical studies. For that reason, and in order to select the best cell models to explore 

in detail the functional role of SST1 and the regulation of the SSTR1 gene in PCa, we first 

screened the expression of this receptor in a panel of PCa cell lines previously used in our 

laboratory (Figure R3). 

 

 

 

 

 

 

Results showed that the cell line with the highest expression was the androgen 

sensitive 22Rv1, with 1751 mRNA copies (adjusted by NF), which was considerably 

higher than PC3 and DU145 cell lines, that exhibited 14 and 1 mRNA copies (adjusted 

by NF), respectively. Additionally, the mRNA levels of SSTR1 found in 22Rv1 cell lines 

Figure R3. SSTR1 expression levels in various PCa model cell lines. 

Levels of SSTR1 gene expression were measured by qPCR in three PCa model cell lines, 

including the androgen-sensitive cell line 22Rv1 and the androgen-independent cell lines PC3 

and DU145. Data are expressed in normalized copy number and are mean ± SEM of 3 

independent cell passages. 

Figure R2. SSTR1 is associated with AR in PCa. 

Correlations between SSTR1 and AR expression in tissues from control individuals (left panel) 

and PCa patients (middle panel). Comparison of AR mRNA levels between PCa and control 

samples (right panel). Asterisks (***, p < 0.001) indicate values that significantly differ between 

groups. Data represent mean ± SEM. 
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were closely similar to those found in fresh PCa samples. For those reasons, we selected 

22Rv1 as the main model to further explore the functional role of SSTR1 in PCa. 

Having selected 22Rv1 as model cell line, our next aim was to assess the 

functional impact of SST1 on key tumoral features. Specifically, we first measured the 

proliferation capacity of these cells in response to treatment with an SST1 specific agonist, 

BIM-23926, at two different concentrations, 1 µM and 10 nM, during 72 h. Additionally, 

PSA secretion by this cell line was measured after 24 h of agonist treatment at 1 µM. 

Interestingly, treatment with 1 µM, but not 10 nM, of this SST1 agonist significantly 

decreased cell proliferation at 48 h and 72 h, compared with their non-treated controls 

(Figure R4A). Moreover, this same concentration promoted a reduction in PSA secretion 

after 24 h (Figure R4B). 

To further confirm and explore this initial evidence for a possible functional role 

of SST1 in PCa cells, the expression of SSTR1 gene was genetically modified in the 22Rv1 

cell line. Surprisingly, stable overexpression of SSTR1 with a specific pCDNA3.1 plasmid, 

without any additional exogenous treatment, cause a marked decrease in the proliferation 

rate of these cells over the 48 and 72 h after the seeding (Figure R5A), compared to cells 

transfected with a mock plasmid. In striking contrast, genetic silencing with a specific 

siRNA promoted a clear increase in cell proliferation at 24, 48 and 72 h (Figure R5B). 
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Figure R4. Treatment with the SST1 agonist BIM-23926 inhibits cell proliferation and PSA 

secretion in 22Rv1 cells. 

A. Proliferation rate of 22Rv1 cells measured after 24, 48 and 72 h treatment with the SST1 

agonist BIM-23926, at two different concentrations, 10 nM and 1 µM, compared with the 

corresponding non-treated controls. B. PSA secretion from 22Rv1 cells after 24 h of treatment 

with 1 µM of the SST1 agonist BIM-23926. Asterisks (*, p < 0.05; **, p < 0.01) indicate values 

that significantly differ from controls. In all cases, data are expressed as percentage of control and 

represent mean ± SEM of at least 3 independent experiments. 
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Both transfections were adequately validated as depicted in Figure R5. These results 

support and expand those obtained with the SST1 agonist and provide further evidence 

that this receptor could have an antitumoral role in the PCa model cell line 22Rv1, which 

could potentially involve a relevant degree of constitutive activity for SST1 in this cell 

line. 

 

 

 

 

 

 

 

 

 

Figure R5. Altering SSTR1 expression modifies proliferation rate of 22Rv1 PCa cell line. 

Cell proliferation rate of 22Rv1 line after (A) SSTR1 stable overexpression and (B) SSTR1 

silencing, compared with their respective controls, mock plasmid and scramble siRNA, at 24, 48 

and 72 h, expressed as percentage of control. Transfection was validated in parallel and it is 

presented in the corresponding lower panel. Asterisks (*, p < 0.05; **, p < 0.01; ***, p < 0.001) 

indicate values that significantly differ from controls. In all cases, data represent mean ± SEM of 

n ≥ 3 independent experiments. 

4.1.3 SST1 alters important signaling pathways in PCa cells 

To better understand the mechanisms underlying the effects caused by ligand-

induced SST1 activation and SSTR1 expression modifications in 22Rv1 cells, we next 

investigated the status of key signaling pathways for PCa. First, the concentration of free 

cytosolic calcium ([Ca2+]i), an important second messenger typically linked to SSTs 

inhibition of hormone release [254], was measured in response to treatment with the SST1 

agonist BIM-23926 at 1 µM and 10 nM in 22Rv1 cells. This revealed that only a low 

proportion of 22Rv1 cells responded to SST1 agonist (Figure R6) and, moreover, that 

they showed a very limited response, thus suggesting that SST1 signaling would not be 

primarily mediated through calcium as second messenger in PCa cells. 
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[Ca2+]i n PRC (%) PMR (%) 

SST1 Agonist 1 µM 0/4 
  

SST1 Agonist 10 nM 1/4 20 118 ± 5.4 

Figure R6. Free cytosolic calcium concentration [Ca2+]i kinetics in response to SST1 agonist. 

Results from the [Ca2+]i kinetics assay after treatment with SST1 agonist at two different 

concentrations (1 µM and 10 nM); n, experiments with responsive cells/total experiments 

analyzed; PRC, proportion of responsive cells (considering the total number of cells analyzed in 

which a response was observed); PMR, percentage of maximum response. 

We next focused on activation of key proteins from core cancer signaling 

pathways, such as AKT, ERK or JNK, and more specifically with PCa, like AR. To this 

end, we evaluated changes in their phosphorylation in response to 1 µM of the SST1 

agonist BIM-23926 at three different times, as determined by western blot (Figure R7). 

Results from western blot revealed that SST1 agonist treatment decreased AKT 

phosphorylation at 30 min after treatment, whereas no similar changes were observed in 

the levels of phosphorylated ERK, AR or JNK. These results suggest that SST1 operates 

through AKT, but not the other pathways assessed, to exert its functions in 22Rv1 cells. 

We further evaluated the potential links between SST1 activation and molecular 

targets typically altered in tumoral pathologies and, especially, in PCa, which could 

ultimately mediate the actions of this receptor, as, for example, transcription factors or 

cell cycle modulators. Specifically, we measured mRNA levels of KLK3 (the gene than 

Figure R7. Downstream activation of signaling protein after SST1 activation. 

Levels of phosphorylation of key proteins of core cancer signaling pathways, including AKT, 

ERK, AR and JNK, under BIM-23926 SST1 agonist treatment (1 µM) at 5, 10 and 30 min, 

compared with non-treated control. Protein activation was normalized with the respective total 

protein in each case and expressed as percentage of control. Asterisks (*, p < 0.05) indicate values 

that significantly differ from controls. Data represent mean ± SEM of n ≥ 3 independent 

experiments. 
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encodes PSA protein), cyclin CCND3, the widely known TP53, and SSTR1 itself, by 

qPCR, after 24 h of treatment with the SST1 agonist BIM-23926 (Figure R8). 

 

 

 

 

 

 

Interestingly, treatment with the SST1 agonist BIM-23926 decreased expression 

of KLK3 and CCND3, which agrees with and further support our previous finding, in that 

the inhibition of PSA secretion found earlier is accompanied by a downregulation of its 

coding gene, while the BIM-23926-induced decrease in proliferation is paralleled by a 

reduction in the expression of a key cyclin, CCND3, which regulates cell cycle. On the 

other hand, TP53 expression was not altered by BIM-23926 treatment, suggesting that 

this receptor may not require this molecule to exert its actions. Of note, we also observed 

that treatment with the SST1 agonist downregulated the expression of the SSTR1 gene 

itself, implying that this receptor is self-regulated by a negative feedback when it is 

ligand-activated. 

To explore in more detail the mechanisms underlying SST1 effects and to focus 

our analysis more precisely in PCa, we carried out a PCR Array of Human Androgen 

Receptor Signaling Pathways, which is based on the measurement of mRNA levels for 

an ample but selected set of key genes involved in AR signaling and, thus, in PCa 

pathogenesis and aggressiveness. The array was measured in mRNA samples from 22Rv1 

cells stably transfected with SSTR1 plasmid, compared to those transfected with mock 

Figure R8. Levels of expression of key intracellular functional markers after SST1 activation. 

Levels of mRNA for KLK3, CCND3, TP53 and SSTR1 genes after 24 h of SST1 agonist treatment 

at 1 µM, were measured by qPCR and compared with non-treated control. The mRNA levels 

were adjusted by normalization factor (NF) calculated from the expression levels of three 

housekeeping genes (ACTB, GAPDH and HPRT) and expressed as percentage of control. 

Asterisks (*, p < 0.05; **, p < 0.01) indicate values that significantly differ from controls. Data 

represent mean ± SEM of n ≥ 3 independent experiments. 
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plasmid. Results obtained showed that overexpression of SSTR1 altered the expression of 

several genes, mainly related with tumoral progression (Figure R9).  

 

 

 

 

 

 

 

 

 

Specifically, we considered relevant those changes where genes exhibited 

differences higher than 2-fold. As shown in Figure R9, the genes overexpressed more 

than 2-fold between SSTR1 and mock transfections were IGFBP5, KLK3 and NDRG1, 

and are represented in yellow. In contrast, the downregulated genes included ADAMTS1, 

IRS2, VIPR1, SLC45A3, LIFR and TSC22D. However, since this PCR array did not enable 

to establish comparisons based on a statistical analysis, we decided to validate those 

results with a separate qPCR. This confirmed the upregulation of IGFBP5 and the 

downregulation of ADAMTS1, IRS2, VIPR1, SLC45A3 and LIFR (Figure R10). 

Figure R9. Effect of SSTR1 overexpression on AR-related Signaling Pathways in 22Rv1 cells. 

A PCR Array of Human Androgen Receptor Signaling Pathways was measured in mRNA derived 

from 22Rv1 cells stably-transfected with SSTR1 or mock plasmids. Scatter plot represents the 

changes observed between the respective mRNA levels when differences were over 2-fold.  

Upregulated genes are represented in yellow at the top of the image and downregulated genes at 

the bottom, in blue. 
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4.1.3 SSTR1 expression in PCa can be regulated by microRNAs 

In addition to examining the signaling pathways altered by SSTR1 presence and 

those involved in mediating ligand-activated SST1 actions, we interrogated the 

mechanisms that may be involved in regulating the expression of SSTR1 itself in PCa, 

which may help to understand its overexpression in this pathology. To achieve this, we 

performed several in silico and in vitro assays aimed to identify possible miRNAs that 

may target SSTR1 mRNA and regulate its expression. A first in silico approach revealed 

a number of miRNAs that could potentially recognize and bind the SSTR1 mRNA, 

especially in the 3’UTR, with a high affinity (Table 3). 

 

 

 

  

Figure R10. Validation by qPCR of changes found in the AR Signaling Pathways PCR Array. 

Validation of alterations in genes found in the array was performed by qPCR. Absolute mRNA 

levels were adjusted by normalization factor (NF), calculated from the expression levels of three 

housekeeping genes (ACTB, GAPDH and HPRT). Asterisks (*, p < 0.05; **, p < 0.01; ***, 

p < 0.001) indicate values that significantly differ from controls. Data are presented as percentage 

of control and represent mean ± SEM of n ≥ 3 independent experiments. 
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To reduce and refine the high number of hits obtained in this analysis, which could 

not be studied in full, we performed a further in silico screening of PCa samples data 

included in the publicly accessible database The Cancer Genome Atlas (TCGA). 

Quantitative correlations between the expression of SSTR1 and that of the different 

miRNA revealed that only four of them (miR-24, miR-27b, miR-383, miR-488) were 

negatively and significantly correlated with SSTR1 expression (Figure R11).  

Table 5. Prediction of potential miRNAs that could bind SSTR1 mRNA and regulate its expression. 

Classification of miRNA that could regulate expression of SSTR1, based in three different software 

programs (packages): TargetScan, miRanda and DIANA. The miRNAs that were further in silico 

correlated with SSTR1 mRNA expression are marked in gray. The upper situation in the table means 

a higher possibility of regulating SSTR1 mRNA expression. 
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Figure R11. Correlations between miRNAs and SSTR1 expression levels in PCa public cohort. 

Correlations between SSTR1 mRNA expression levels and expression of 4 different miRNAs 

(miR-24, miR-488, miR-383 and miR-27b) in PCa patients, from TCGA database. 
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When those miRNAs were transfected using mimics in 22Rv1 cells, only one of 

them, miR-24, was able to significantly decrease SSTR1 expression, as it is shown in 

Figure R12, at both mRNA and protein levels. 

An additional, more detailed analyses was then implemented in silico by using 

another PCa cohort available from the Memorial Sloan Kettering Cancer Center 

(MSKCC) dataset. Interestingly, we also found that miR-24 was clearly downregulated 

in PCa samples, compared with normal prostate (Figure R13). Moreover, the expression 

of this miRNA was lower in metastatic samples compared with primary tumor and normal 

prostate tissue. Of note, the pattern found in the expression of miR-24 was completely 

inverse to that from SSTR1 expression, which was overexpressed in primary PCa samples 

and was expressed at even higher levels in metastatic tissue. These results agree with and 

support the data obtained from in vitro assays and further reinforce the idea that miR-24 

can be a relevant player within the mechanisms regulating SSTR1 expression in PCa. 

 

 

 

Figure R12. Changes in SSTR1 expression and SST1 protein levels after miR-24 transfection. 

The mRNA levels of SSTR1 (left panel) and those of the SST1 protein, (center and right panels), 

were reduced in 22Rv1 PCa cell line after transfection with miR-24, as compared with the 

corresponding negative controls (NC). Absolute mRNA levels were adjusted by normalization 

factor (NF), calculated from the expression levels of three housekeeping genes (ACTB, GAPDH 

and HPRT). Protein level was normalized by ß-tubulin (BTUB). Asterisks (*, p < 0.05; ***, 

p < 0.001) indicate values that significantly differ from controls. Data are expressed as percentage 

of control and represent mean ± SEM of n ≥ 3 independent experiments. 
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4.2 Experimental section II: Epigenetic and post-transcriptional 

regulation of somatostatin receptor subtype 5 (SST5) in NETs 

The pathophysiological relevance and clinical utility of the somatostatin-SSTs 

system is most prominent in NETs and, particularly, in PitNETs [14, 248]. Among the 

five SSTs, the main receptor in this context is undoubtedly SST2, both because it is, 

overall, the SST with wider and higher expression in most NETs and also, for this same 

reason, because the most used and effective SSAs primarily target SST2 [11]. However, 

over the last years SST5 is emerging as a very attractive receptor in this field, in that it is 

also widely expressed in these tumors and, besides binding the first generation SSAs, 

octreotide and lanreotide, is the primary target for new generation SSA pasireotide. 

Nevertheless, the precise functioning and regulation of SST5 is less well known than that 

of SST2. Thus, whereas there is ample evidence that SST5 primarily acts as an inhibitory 

receptor, other data suggest that it may play a more complex role [11]. In line with this, 

it has been described that SST5 can be a biomarker in PitNETs, where SST2/SST5 balance 

and the presence of SST5 truncated variant, SST5TMD4, have been proposed as markers 

of SSAs responsiveness in somatotropinomas [11].  

Yet, in spite of the growing interest in SST5, the available knowledge on the 

mechanisms underlying the biogenesis of this receptor and the regulation of its expression 

is still limited. Interestingly, a recent report suggests that SSTR5 expression may be 
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Figure R13. Expression of SSTR1 and miR-24 in a PCa cohort from the MSKCC dataset. 

Data on the expression of SSTR1 (left) and miR-24 (right) in normal prostate, primary PCa and 

metastatic tissue were obtained from the MSKCC dataset and statistical differences were 

assessed. Asterisks (***, p < 0.001) indicate values that significantly differ between the indicated 

groups. 
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regulated through DNA methylation and by a NAT, called SSTR5-AS1, in laryngeal 

squamous cell carcinoma [151]; however, there is still no information about this processes 

in NETs. Accordingly, in this experimental section we aimed to improve our 

understanding of the mechanisms controlling SSTR5 gene expression and SST5 

biogenesis in PanNETs and PitNETs. 

4.2.1 DNA methylation and natural antisense transcript (NAT) regulates SSTR5 

transcription in somatotropinomas 

As an initial approach, we performed an in silico study of the structure of the 

SSTR5 gene (Figure R14). The information obtained from the UCSC Genome Browser 

(version GRCh37/hg19) revealed the existence of an overlapping gene in humans, SSTR5-

AS1, which encodes a long intergenic non-coding RNA, that could regulate SSTR5 

expression, as it has been shown for other NAT. Moreover, there are four CpG-rich 

regions or CpG islands, named heretofore as Zones 1-4, which are susceptible zones of 

methylation, along both genes, which could also regulate their expression. 

Those CpG islands are located in sites of interest, for they could be important in 

the control of the expression of these genes. Thus, Zone 1 overlaps with the last exon of 

the NAT and Zone 2 falls on the big intron of NAT, two intergenic zones that have been 

related to expression regulation previously. Zone 3 coincides with the first exon of the 

SSTR5 gene, partially overlapping with its promoter, and also with another part of the 

larger intron of the SSTR5-AS1. Finally, Zone 4 was the largest region identified ans was 

subdivided into three subzones for the purpose of the study: Zone 4.1 overlaps with the 

start of the NAT, possibly with its promoter, and the intron of SSTR5; Zone 4.2 falls in 

the exon of SSTR5 and coincides with the CDS of the canonical SST5; Zone 4.3 overlaps 

with the center of the big exon of SSTR5 gene, including its zone of alternative splicing, 

and the zone immediately previous to the SSTR5-AS1 gene. 
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In the first experimental assay, we evaluated the RNA expression levels of the two 

genes of interest, SSTR5 and SSTR5-AS1, in a cohort of 11 normal pituitary (NP) samples 

and 27 samples of somatotropinoma tumors causing acromegaly (Figure R15). 

Interestingly, SSTR5 was clearly overexpressed in somatotropinoma samples 

compared to normal pituitary tissue, whereas expression levels of SSTR5-AS1 gene 

showed a similar trend but did not exhibit a significant change (Figure R15A). On the 

other hand, it is worth noticing that the expression of both genes showed a clear direct 

correlation in both NP and somatotropinoma samples (Figure R15B), which could 

suggest a putative functional association between these two genes. 

As a next step, we measured the methylation levels of these four zones in the same 

cohorts of somatotropinoma and NP samples. The results showed that three of the zones 

examined exhibit significantly distinct levels in somatotropinoma and NP samples 

(Figure R16). 

Figure R16. Methylation levels of CpG islands from SSTR5 context. 

Comparison of methylation levels between somatotropinoma (SOMAT) and normal pituitary 

(NP) samples, expressed as percentage, of the CpG islands, renamed as zones, around SSTR5 and 

its NAT genomic context. Asterisks (*, p < 0.05; ***, p < 0.001) indicate values that significantly 

differ from control. Data represent mean ± SEM. 

Figure R15. Relationship between expression levels of SSTR5-AS1 and SSTR5 in 

somatotropinomas. 

Expression levels of SSTR5 and SSTR5-AS1 (A) and correlations between (B) them in 

somatotropinomas (SOMAT) and NP, normalized by ACTB and measured by qPCR. Asterisks 

(***, p < 0.001) indicate values that significantly differ from control. Data represent mean ± 

SEM. 
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  Specifically, Zone 1 was more intensely methylated in somatotropinomas 

(almost double) than in NP. In contrast, Zone 3, which exhibited very low levels of 

methylation in all the samples, exhibited a lower degree of methylation in 

somatotropinoma than in NP samples. In Zones 4.1 and 4.2, methylation levels were low, 

but no significant differences were observed; whereas, in Zone 4.3 methylation levels 

were lower in somatotropinomas than in NP, but displayed very high levels in both cases. 

Similarly, Zone 2 showed high methylation levels, although no significant differences 

were observed between groups. 

Next, we compared the expression of SSTR5 and SSTR5-AS1 genes with the 

methylation levels of the CpG islands overlapping them in the genome. Remarkably, we 

found that the expression of both genes was tightly and inversely correlated with 

methylation levels of Zone 4.3 (Figure R17) in somatotropinoma but not in NP samples, 

whereas they did not show any similar significant correlation with methylation levels of 

any of the other zones examined. 

These results reveal that DNA methylation in Zone 4.3, which overlaps with the 

area of the big exon of SSTR5 where non-canonical alternative splicing would take place 

and with the zone immediately previous to SSTR5-AS1 gene, is related with the expression 

of these two genes, in a manner that might be related with the pathological context, as it 

was present in somatotropinomas but did not occur in healthy, normal pituitary. 

Figure R17. Correlations between gene expression levels of SSTR5 and SSTR5-AS1 and the DNA 

methylation levels 

Correlations between percentage of DNA methylation levels in Zone 4.3 and RNA expression 

levels of SSTR5 and SSTR5-AS1 in NP (left) and somatotropinoma (right) samples. 
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4.2.2 Relationship between SSTR5 and its NAT is also present in panNETs 

In order to investigate whether the relationship between SSTR5 and its NAT 

SSTR5-AS1 is also present in other tumors where the somatostatin-SST system is 

important, we extended our study to PanNETs. To this end, we measured the expression 

of both genes in a cohort of 15 panNETs, comparing tumoral tissue with their paired non-

tumoral adjacent tissue (NTAT), used as reference. Results from this analysis revealed 

that, while SSTR5 expression did not differ between both regions, the levels of SSTR5-

AS1 mRNA were significantly higher in tumoral samples (Figure R18A). On the other 

hand, the expression levels of these genes were directly and strongly associated in both 

tumoral and non-tumoral tissue, reinforcing the idea of a functional link between them. 

Unfortunately, the methylation levels of these samples could not be measured due to the 

poor quality of the DNA from formalin fixed paraffin-embedded samples. 

4.2.3 SSTR5-AS1 silencing decreases SSTR5 expression and alters pasireotide effects 

In an attempt to better understand the potential functional roles of SSTR5-AS1 in 

NETs, we performed a stable silencing of SSTR5-AS1 using a specific shRNA, which 

could help to decipher the possible link between this NAT and the SSTR5 gene. For these 

and the ensuing assays, the PanNET model cell line BON-1 was used, also due to the lack 

of suitable human cell models for PitNETs. After silencing, cells were treated with 

pasireotide, a second generation SSA with high affinity for SST5, in order to test if SSTR5-

AS1 may impact in the cell response to this treatment. Interestingly, the first observation 

was that SSTR5-AS1 silencing by 30 %, concomitantly decreased SSTR5 expression in 

BON-1 cells (Figure R19A). 

Figure R18. Relationship between the expression levels of SSTR5 and SSTR5-AS1 in PanNETs. 

Expression levels of SSTR5 and SSTR5-AS1 (A) and correlations between (B) them in tumoral 

and paired non-tumoral adjacent tissue from 15 PanNET samples, measured by qPCR and 

normalized by RNA18S1. Asterisks (*, p < 0.05; ***, p < 0.001) indicate values that significantly 

differ from control. Data represent mean ± SEM. 



Results 

88 

 

Treatment with pasireotide (100 nM; 24 h) increased the expression levels of both 

SSTR5 and SSTR5-AS1, suggesting the existence of a positive feedback regulatory 

mechanism linking SST5 activation and the expression of this receptor, which may also 

involve NAT. Intriguingly, whereas silencing of SSTR5-AS1 abrogated the stimulatory 

effect of pasireotide on the expression of this NAT, the same did not occur with SSTR5, 

in that pasireotide also tended to elevate SSTR5 expression under NAT silencing. 

Moreover, mRNA levels of SSTR5 and its NAT again correlated directly in SSTR5-AS1 

silenced and control conditions, showing mixed in Figure R19B. 

4.2.3 Decrease in SSTR5-AS1 expression promotes aggressiveness features in vitro 

To further examine the functional role of SSTR5-AS1, we next tested whether the 

presence of this NAT influences tumor aggressiveness features in the BON-1 cells in vitro 

model. Specifically, we measured proliferation, colony formation and migration of these 

cells under SSTR5-AS1 silencing and pasireotide treatment. This approach first showed 

that NAT silencing significantly increased cell proliferation under basal culture 

conditions. In contrast, the effect of pasireotide in proliferation was not evident, since its 

Figure R19. Silencing of SSTR5-AS1 decreases SSTR5 expression in BON-1 cells. 

Expression levels of SSTR5-AS1 and SSTR5 (A) and correlations between them (B) were 

evaluated in the BON-1 cell line after SSTR5-AS1 silencing (striped bars) and 24 h treatment with 

pasireotide 100 nM (black), and were adjusted by normalization factor (NF) with ACTB, GAPDH 

and HPRT housekeeping genes. Asterisks (*, p < 0.05; **, p < 0.01; ***, p < 0.001) indicate 

values that significantly differ between groups under one-way ANOVA analysis; # symbol 

indicates values that significantly differ from control under t test. In all cases, data represent 

mean ± SEM of n ≥ 3 independent experiments. 
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treatment did not induce any significant change under control conditions or after NAT 

silencing (Figure R20A). 

Interestingly, colony formation was also elevated after SSTR5-AS1 silencing, as 

compared to its scramble control, further supporting a role of this NAT in enhancing 

malignancy features of these NET cells. Conversely, no changes were observed with 

pasireotide treatment (Figure R20B). In contrast with the above, SSTR5-AS1 silencing 

did not increase but decreased cell migration, compared to scramble shRNA, thus 

suggesting a disconnection between the actions of SSTR5-AS1 on the distinct functional 

cell features. Of note, while pasireotide, as in the previous parameter measured did not 

affect migration under control conditions (scramble shRNA), but surprisingly increased 

migration when SSTR5-AS1 was silenced (Figure R20C). These observations highlight 

the relevance of the consequences that alteration of the NAT may affect the function of 

SSTR5 gene and the response of SST5 to drug treatment. 

Figure R20. Alteration of aggressive features after SSTR5-AS1 silencing in BON-1. 

A. Proliferative rate of BON-1 cell line after 10 days of silencing (striped bars) and/or pasireotide 

treatment (black), represented as the area covered in the well. B. Capacity to form colonies under 

SSTR5-AS1 silencing (striped bars) and/or 24 h of pre-treatment with pasireotide (black), 

measured by number of colonies after 10 days of incubation. C. Migration rate under SSTR5-AS1 

silencing (striped bars) and/or pasireotide treatment (black), after 24 h of the wound, represented 

by healed area. Asterisks (*, p < 0.05; **, p < 0.01; ***, p < 0.001) indicate values that 

significantly differ between groups under one-way ANOVA analysis; # symbols indicate values 

that significantly differ from control under t test. In all cases, data are presented as percentage of 

control and represent mean ± SEM of n ≥ 3 independent experiments. 
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In line with this, we finally evaluated the impact of SSTR5-AS1 on the activation 

of key proteins within typical signaling pathways regulated by SST5. Thus, activation of 

AKT and ERK were assessed after SSTR5-AS1 silencing and 10 min of pasireotide 

treatment. Results obtained showed that NAT silencing decreased both AKT and ERK 

activation, compared to scramble shRNA (Figure R21). Interestingly, pasireotide 

treatment did not alter these proteins under control conditions (scramble shRNA), and 

was similarly unable to modify their decreased levels after SSTR5-AS1 silencing.  

4.3 Experimental section III: The splicing machinery is dysregulated in 

pancreatic neuroendocrine tumors: role of NOVA1 overexpression in 

enhancing tumor aggressiveness and malignancy 

It is now widely accepted that tumor cells frequently express splice variants of 

proteins that carry out different, or even opposite, functions than the canonical ones. In 

this context, our group discovered the truncated variant of SST5, SST5TMD4 [17], and 

showed its presence and pathological implications in PitNETs and PanNETs [17, 18]. 

Likewise, we identified a novel variant of the ghrelin gene, named In1-ghrelin, and also 

found its association with aggressiveness in PitNETs [255] and PanNETs [201]. These 

findings, coupled to the increasing evidence linking alteration of the splicing process with 

cancer prompted us to explore this issue in more detail in PanNETs. Accordingly, in the 

present section of the Thesis we aimed at obtaining novel information on the molecular 

Figure R21. Silencing of SSTR5-AS1 alters key SST5-related signaling pathways in BON-1 cells. 

Protein phosphorylation of AKT and ERK in BON-1 cell line after SSTR5-AS1 silencing (striped 

bars) and 10 min of pasireotide treatment (black). This activation was measured by western blot 

and normalized with Ponceau. Asterisks (*, p < 0.05; **, p < 0.01) indicate values that 

significantly differ between groups one-way ANOVA analysis; # symbol indicates values that 

significantly differ from control under t test. In all cases, data represent mean ± SEM of n ≥ 3 

independent experiments. 
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profile of the splicing machinery in PanNETs and to examine the functional role of 

specific components of this machinery that could be dysregulated in NETs, with the 

ultimate goal of finding novel, promising biomarkers and/or therapeutic targets to 

improve diagnosis and treatment of this pathology. 

4.3.1 Splicing machinery is dysregulated in panNETs in association with clinical 

features 

To assess the expression profile of a selected set of components of the splicing 

machinery, we employed a qPCR Array based on microfluidics, and measured their 

mRNA levels in a cohort of 20 primary tumors from patient with panNETs, comparing 

the tumor tissue with the non-tumoral adjacent tissue, used as reference/control. As 

described in Materials and Methods, the set of components measured included all major 

spliceosome (n = 13), and minor spliceosome (n = 4) elements, and a group of associated 

splicing factors (n = 27) that were selected based on the literature. This approach 

revealed, for the first time, that seven components of major spliceosome, two of the minor 

spliceosome, and ten splicing factors were upregulated, whereas only one splicing factor, 

ESRP2, was downregulated, in tumoral samples compared to control tissue (Figure R22). 

The changes observed include both small nuclear RNAs (snRNAs), which comprise the 

core of the spliceosome, and associated proteins of this core and auxiliary splicing factors, 

and, altogether, account for nearly half of the components measured, thus highlighting 

that the splicing machinery is severely altered in panNETs. 
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Figure R22. The pattern of expression of the splicing machinery components is severely 

dysregulated in PanNETs. 

Expression levels of key components of the splicing machinery in PanNETs Tumoral samples as 

compared to their paired non-tumoral Adjacent tissue used as reference/control. The RNA levels 

were determined by qPCR and adjusted by HPRT housekeeping gene. Asterisks (*, p < 0.05; **, 

p < 0.01; ***, p < 0.001) indicate values that significantly differ from control. Data represent 

mean ± SEM of n = 20 independent samples. 
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Interestingly, the potential relationship between the factors whose expression was 

found here to be altered is supported by the information already available in the literature, 

as it was shown by a STRING analysis (Figure R23A). This observation suggests that 

the components of this machinery may be altered together in response to shared 

mechanisms and with a common aim of appropriately regulating the alternative splicing 

process. 

Given the high number of altered components, we sought to classify them 

attending to their features as possible biomarkers, by using a systematic statistical 

approach. To this end, we performed a Principal Component Analysis (Figure R23B), 

and a random forest and simple logistic regression analyses, which indicated the 

molecules that combinedly presented with highest changes and better clustering features. 

Specifically, this approach identified five genes that stand out among all those measured: 

NOVA1, PRPF8, RAVER1, SRSF5 and SNW1. Of note, these five splicing machinery 

components were found to correlate significantly and positively with each other in our 

cohort (Figure R23C), further reinforcing the contention, already suggested by the 

STRING analysis, that a functional link may be in place among them and that a complex, 

interrelated functional network may likely exist within the splicing machinery. A more 

detailed analysis of these five factors revealed that they are, overall, highly overexpressed 

in tumoral tissue with respect to the non-tumoral adjacent reference tissue, and, 

interestingly, that the increased gene expression level was consistently observed in the 

vast majority of samples analyzed (Figure R23D). 
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Figure R23. Classification, selection and interrelationship of splicing machinery components 

altered in PanNETs. 

A. STRING analysis of relationships among altered components based on the information 

available in the literature. B. Principal component analysis of all the altered components 

identified. C. Correlations between NOVA1, PRPF8, RAVER1, SRSF5 and SNW1 splicing 

machinery components. The upper panel represents the scatter plot of the correlations and the 

lower panel represents the R of each correlation, the higher the size the better the correlation 

obtained. D. Paired comparison of these five components between tumoral and adjacent tissue. 

Asterisks (**, p < 0.01; ***, p < 0.001) indicate values that significantly differ from control. 
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Having selected a limited number of elements, we next examined in further detail 

the potential association of the levels of expression of these molecules with relevant 

clinical features recorded in the patient database. This approach revealed that four out of 

the five altered splicing machinery components selected displayed significant correlations 

with key parameters related to tumor functionality and patient prognosis, which may 

provide additional information on the importance of these alterations (Figure R24). 

Specifically, high levels of NOVA1 gene expression showed a strong association 

with several parameters, namely weight loss, necrosis of the primary tumor and Ki-67 

index, this latter being typically linked to the proliferative status of the tumoral cells. 

Interestingly, this Ki-67 index was also associated with expression levels RAVER1 and 

SNW1, suggesting a notable relationship between cell proliferation and altered splicing. 

Moreover, a high expression of SNW1 was related also to relapse of the disease. Finally, 

a higher expression of SRSF5 was linked to a higher presence of functionality but lower 

vascular invasion. 
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Figure R24. Associations between expression levels of the splicing machinery components in 

tumoral tissue and relevant clinical parameters. 

Associations between clinically relevant parameters of patient and tumors and the expression 

levels of the altered splicing machinery components selected on the basis of their higher changes 

in tumoral samples. Asterisks (*, p < 0.05; **, p < 0.01) indicate values that significantly differ 

from control. Data represent mean ± SEM of n = 20 independent samples. 
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4.3.2 The splicing factor NOVA1 as a putative biomarker for panNETs 

The next step in our study was to assess the potential value of the five selected 

splicing machinery components as biomarkers for PanNETs, by testing their ability to 

accurately discriminate between tumor/non-tumor tissue and separately cluster these 

tissue samples. To this end, we made ROC curves for each component (Figure R25). 

These analyses showed that NOVA1 expression exhibited the highest area under 

the curve (AUC), above 0.86, whereas the other four factors yielded AUC ranging 

between 0.65-0.75. These results indicate that NOVA1 would be the best candidate for 

biomarker in PanNETs from those we have considered in this study, which prompted us 

to study this factor in more detail. 

Accordingly, we first tested whether the overexpression of NOVA1 observed in 

our cohort at the mRNA level could be validated at the protein level. To this end, we 

applied an immunohistochemical analysis by expert pathologists, who confirmed the 

higher presence on NOVA1 protein in tumor tissue, compared with non-tumoral adjacent 

tissue (Figure R26). As can be observed in the representative picture shown in this figure, 

the staining of NOVA1 protein is clearly more prominent in the tumoral gland than in the 

non-tumoral adjacent tissue (NTAT), particularly in the endocrine tissue of the normal 

pancreas (Langerhans islets). This is a key observation, inasmuch as Langerhans islets 

provide the most appropriate control tissue for PanNETs, since the rest of the normal 

pancreas is predominantly comprised by exocrine tissue. Actually, this is one of the main 

limitations in the use of reference tissue in the study of PanNETs, and the results from 

immunohistochemistry help to overcome it. 
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Figure R25. ROC curves of the five selected splicing machinery components. 

Receiver operating characteristic (ROC) curve analysis was developed to determine the accuracy 

of NOVA1, PRPF8, RAVER1, SRSF5 and SNW1 expression to discriminate between tumoral and 

non-tumoral samples. Data represent n = 20 independent samples. 
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4.3.3 Overexpression of NOVA1 increases cell proliferation and tumor growth 

After uncovering the overexpression and accompanying biomarker potential of 

the splicing factor NOVA1 in PanNETs, we next aimed to explore the possible functional 

role and mechanisms of action of this factor in PanNETs cells. To this end, we first tested 

the expression of NOVA1 in two PanNETs model cell lines, QGP-1 and BON-1. We 

observed that both cell lines exhibited appreciable mRNA levels of NOVA1, which were 

high enough to perform silencing assays to examine the effect of NOVA1 loss, but 

sufficiently moderate to also allow overexpression studies of this factor (Figure R27A). 

Since we had observed that NOVA1 was overexpressed in PanNETs, we initially 

overexpressed it in the two cell lines, and assessed functional features that could inform 

about tumor cell aggressiveness. Interestingly, in line with the previous results, NOVA1 

overexpression increased cell proliferation in both cell lines, as measured by Alamar Blue 

assay, at different time points (24, 48, 72 h) after transfection (Figure R27B). 

Overexpression was adequately validated (Figure R27C). 

 

 

Figure R26. Immunohistochemical analysis of NOVA1 protein in PanNETs. 

Immunohistochemistry of NOVA1 protein was carried out in tissue section from PanNETs, and 

staining in tumoral versus non-tumoral adjacent tissue was evaluated and scored by expert 

pathologists (Left). Right: A representative picture of a NOVA1 immunohistochemistry showing 

tumor and non-tumoral adjacent tissue (NTAT). Arrow heads point tumoral glands. Asterisks (*, 

p < 0.05) indicate values that significantly differ. Data represent mean ± SEM of n = 20 

independent samples. 
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To test whether the functional ability of NOVA1 to enhance cell proliferation in 

vitro could also occur in a more clinically relevant experimental setting, we developed a 

preclinical model of PanNET xenograft tumors in mice. To this end, we selected BON-1 

rather than QGP-1 cells, because the first exhibit a more aggressive phenotype (they 

derive from a metastasis), and also, because there is far more reported experience using 

BON-1 xenografted tumors in the literature. Thus, BON-1 cells transfected with NOVA1-

or a mock-plasmid were transfected xenografted in nude mice. As shown in Figure R28, 

BON-1 cells overexpressing NOVA1 exhibited a higher growth rate over time than mock-

control cells, producing larger tumors at the end of the experimental period. 

Figure R27. NOVA1 overexpression augments proliferation in PanNET cell lines QGP-1 and 

BON-1. 

A. NOVA1 expression levels in QGP-1 and BON-1 PanNETs cell lines as measured by qPCR. 

B. Proliferation rate of QGP-1 (light) and BON-1 (dark) at 48 and 72 h or 24 and 48 h, 

respectively, after NOVA1 overexpression compared with mock plasmid transfection, used as 

control (100 %), marked as tick line. C. Validation of NOVA1 overexpression by plasmid 

transfection in QGP-1 and BON-1 cell lines. Asterisks (*, p < 0.05; **, p < 0.01) indicate values 

that significantly differ from control. Data are expressed as percentage of control and represent 

mean ± SEM of n ≥ 3 independent experiments. 

Figure R28. NOVA1 overexpression in BON-1 cells increases tumor growth in xenografted mice. 

A. BON-1 xenografted tumor growth in nude mice with NOVA1 overexpression compared to 

mock. B. Comparison of tumor size at time of euthanasia; tumor volume is expressed as mm3. C. 

Validation of NOVA1 overexpression in tumor xenografts after euthanasia, represented as mRNA 

levels adjusted by normalization factor (NF; with ACTB, GAPDH and HPRT housekeeping 

genes). D. Picture of paired xenografted tumors with mock and NOVA1 overexpression. Asterisks 

(*, p < 0.05) indicate values that significantly differ from control. Data represent mean ± SEM of 

n ≥ 3 independent experiments. 
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Taken together, these and the previous results strongly support the idea that the 

splicing factor NOVA1 is directly related with cell proliferation in PanNETs and that 

increased levels of this factor may contribute to tumor aggressiveness. 

4.3.4 NOVA1 as putative therapeutic target in panNETs 

Having demonstrated that NOVA1 is overexpressed in PanNETs and has the 

functional capacity to enhance PanNET cell proliferation in vitro and in vivo, our next 

aim was focused on the study of its potential as a therapeutic target in these tumors. Given 

that this gene was overexpressed in the PanNETs samples, our experimental approach 

was to silence NOVA1 expression in QGP-1 and BON-1 cell lines using a specific siRNA 

(Figure R29). Remarkably, this revealed that NOVA1 silencing (validated both at mRNA 

and protein levels, Figs R29B and C, respectively) consistently decreased proliferation 

rate in both cell lines, compared to scramble siRNA, used as control (Figure R29A). 

To investigate the mechanisms underlying the cellular alterations caused by 

changes in NOVA1 gene expression, we assessed the mRNA levels of markers commonly 

related to key cell functions in cancer. In keeping with the results presented hitherto, 

NOVA1 silencing decreased, in both cell lines, the expression of CCND1, a well-known 

regulator of cell cycle tightly linked to cell proliferation. Likewise, NOVA1 silencing 

Figure R29. NOVA1 silencing decreases cell proliferation in QGP-1 and BON-1 cell lines.  

A. Proliferation rate of QGP-1 (light; left) and BON-1 (dark; right) at 48 and 72 h or 24 and 48 h, 

respectively, after NOVA1 silencing, compared with scramble siRNA used as control. B. 

Validation of NOVA1 silencing by qPCR and C by western blot in both cell lines. Absolute mRNA 

levels were determined by qPCR and adjusted by normalization factor with ACTB, GAPDH and 

HPRT housekeeping genes and protein by Ponceau. Data are represented as percentage of control 

(100 %; marked as a tick line). Asterisks (*, p < 0.05; **, p < 0.01; ***, p < 0.001) indicate values 

that significantly differ from control. In all cases, data represent mean ± SEM of n ≥ 3 

independent experiments. 
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increased the expression of CASP3, a key positive regulator for apoptosis. In contrast, no 

changes were found in MKI67, the gene encoding the protein measured for Ki-67 index 

(Figure R30). 

 

 

 

 

 

 

We next interrogated how NOVA1 silencing would affect activation of major 

signaling pathways typically involved in PanNETs. This showed that NOVA1 silencing 

decreased ERK activation, which suggest that MAPK pathways may mediate NOVA1 

actions on cell proliferation. On the other hand, NOVA1 silencing decreased 

phosphorylation of both PTEN and PDK1 proteins, two pivotal mediators that play 

opposite roles in the activation of PI3K/AKT pathway, while AKT activation was not 

altered. These results suggest a complex role for NOVA1, whose expression may lead to 

seemingly opposite effects is some signaling pathways. In this sense, whereas both cell 

types showed a similar response in most cases, NOVA1 silencing increased the 

phosphorylation of p53 in QGP-1 but did not alter it in BON-1 (Figure R31). 

 

 

Figure R30. Expression levels of three key cell markers MKI67, CCND1 and CASP3 under 

NOVA1 silencing in two PanNETs cell lines. 

Expression levels of MKI67, CCND1 and CASP3 in QGP-1 (light; left) and BON-1 (dark; right) 

cell lines were measured under NOVA1 silencing, compared with scramble siRNA. Absolute 

mRNA levels were determined by qPCR and adjusted by normalization factor with ACTB, 

GAPDH and HPRT housekeeping genes. Data are represented as percentage of control (100 %, 

marked as a tick line). Asterisks (*, p < 0.05) indicate values that significantly differ from control. 

Data represent mean ± SEM of n ≥ 3 independent experiments. 
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The pivotal role of p53 in cancer and its distinct response to NOVA1 silencing in 

the two cell types prompted us to explore this molecule in more detail. In particular, we 

evaluated the expression of two different isoforms of TP53, the gene encoding p53 

protein, in order to study if NOVA1 silencing exerts any effect on TP53 transcription, 

since previous results revealed controversial effects in these cell lines. Interestingly, we 

observed that this silencing clearly decreased the expression of Δ133TP53 isoform 

without altering that of the canonical TP53 in QGP-1, whereas, in contrast, both variants 

were significantly decreased in BON-1 (Figure R32). These results fit nicely with the 

changes in protein activation shown above and can be functionally relevant, since 

Δ133p53 protein isoform has been linked to canonical p53 inhibition [256], which 

happened in QGP-1 but no in BON-1 cell line. 

 

 

 

 

Figure R31. Effects of NOVA1 silencing in the phosphorylation of key signaling proteins. 

Protein phosphorylation of ERK, AKT, PTEN, PDK-1 and p53 in QGP-1 (light; left) and BON-

1 (dark; right) cell lines after NOVA1 silencing, compared with scramble siRNA. This activation 

was measured by western blot and normalized with total protein or with Ponceau. Data are 

represented as percentage of control that was marked as a tick line. Asterisks (*, p < 0.05; **, 

p < 0.01; ***, p < 0.001) indicate values that significantly differ from control. Data represent 

mean ± SEM of n ≥ 3 independent experiments. 
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4.3.5 Chromatin remodeling pathway is altered under NOVA1 downregulation 

Chromatin remodeling is a universally relevant process in normal and tumoral 

cells. However, this pathway has been shown to play a particularly relevant role in 

PanNETs, where mutations and/or dysregulation of some of its components have been 

identified as informative biomarkers in panNETs, especially ATRX, DAXX and the 

related telomerase (encoded by TERT gene). Therefore, we studied how alterations in 

NOVA1 may cause changes in these biomarkers. In an initial approach, we found that 

both ATRX and DAXX were overexpressed in our cohort of tumors, compared to non-

tumoral adjacent tissue (Figure R33A). In line with this, silencing of NOVA1 led to a 

decrease in ATRX and DAXX protein levels in both cell lines (Figure R33B). 

Figure R32. NOVA1 may regulate the transcription of TP53 gene in PanNETs cells. 

TP53 (open bars) and Δ133TP53 (striped bars) mRNA expression levels in QGP-1 (light; left) 

and BON-1 (dark; right) under NOVA1 downregulation, compared with scramble. The lower 

panel shows a schematic representation of the two TP53 isoforms evaluated in this study. Green 

boxes represent exon skipped and orange alternative exon start in Δ133TP53 isoform. Data are 

represented as percentage of control (100 %; marked as a tick line). Asterisks (*, p < 0.05; **, 

p < 0.01) indicate values that significantly differ from control. Data represent mean ± SEM of 

n ≥ 3 independent experiments. 
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These results were somewhat unexpected and their functional implications are 

difficult to interpret, since most of the information related to these genes and their 

prognostic importance has been related to their mutations rather than their expression 

levels. Nevertheless, although further studies will be required to clarify these findings, 

they seem to be of relevance in that both ATRX, DAXX are considered as tumor suppressor 

genes, and therefore, the changes observed directly link NOVA1 to this important pathway 

in PanNETs. Moreover, in support of this notion, we observed that NOVA1 silencing 

decreased the expression of the oncogenic splicing variant of TERT gene (named as tv1), 

without altering the expression of the canonical one (Figure R34). 

 

 

 

 

 

Figure R33. NOVA1 silencing alters expression of ATRX and DAXX genes in PanNETs cells. 

A. ATRX and DAXX mRNA levels were measured in our cohort of PanNETs samples compared 

to non-tumoral adjacent tissue, used as control. Absolute mRNA levels were determined by qPCR 

and adjusted by RNA18S1 housekeeping gene. B. ATRX and DAXX protein levels after NOVA1 

silencing. Protein levels were measured by western blot, normalized with Ponceau and 

represented as percentage of control. Asterisks (*, p < 0.05; **, p < 0.01) indicate values that 

significantly differ from control. In all cases, data represent mean ± SEM of n ≥ 3 independent 

samples or experiments. 

Figure R34. NOVA1 silencing differentially regulates the splicing of the TERT gene. 

Expression levels of TERT (open bars) and TERT tv1 (striped bars) under NOVA1 silencing, 

compared to scramble control, in QGP-1 (light; left) and BON-1 (dark; right). Absolute mRNA 

levels were determined by qPCR and adjusted by normalization factor with ACTB, GAPDH and 

HPRT housekeeping genes. Asterisks (*, p < 0.05; **, p < 0.01) indicate values that significantly 

differ from control. Data are presented as percentage of control and represent mean ± SEM of 

n ≥ 3 independent samples or experiments. 
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4.3.6 Expression of NOVA1 can influence treatment effectiveness in panNETs 

The associations found earlier between dysregulated NOVA1 expression and key 

clinical parameters in our cohort of panNETs, coupled to the functional findings described 

hitherto, invited to explore whether alteration of NOVA1 could influence the 

responsiveness of PanNETs to the main medical treatments available for this disease. To 

test this notion, NOVA1-silenced cells were treated with everolimus, lanreotide, 

octreotide and sunitinib, four currently used clinical treatments of panNETs, as compared 

with scramble-silenced cells. This revealed that NOVA1 downregulation significantly 

improved the antiproliferative effect of everolimus in QGP-1 cells at 72 h of treatment, 

whereas no additive effect was observed in BON-1 cell line (Figure R35). 

In contrast, the other treatments tested in this experimental approach did not 

change their effects after NOVA1 silencing in these cells (Figure R36). 

Figure R35. NOVA1 silencing enhances everolimus antiproliferative effect in PanNETs cells. 

Proliferation rate of QGP-1 (light; left) and BON-1 (dark, right) cell lines after NOVA1 silencing 

(striped bars) plus treatment with everolimus, compared with the non-treated scramble siRNA 

(open bars), used as control. Asterisks and & symbols (*/&, p < 0.05; **/&&, p < 0.01; 

***/&&&, p < 0.001) indicate significant differences against the control or between groups, 

respectively. Data are presented as percentage of control and represent mean ± SEM of n ≥ 3 

independent experiments. 
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These results indicate that NOVA1 expression may influence selectively the 

effectiveness of some current treatments, as it is the case of everolimus, but not others on 

QGP-1 and BON-1 cells, at least at the times and doses tested. Nevertheless, this type of 

interaction is not simple, seems to be dependent on the cell type considered and may be 

related to the specific pathways linked to this splicing factor and the action of everolimus. 

  

Figure R36. Effect of NOVA1 silencing on the effect of different PanNETs treatments. 

Proliferation rate with combination of NOVA1 silencing and PanNETs classical treatments: 

lanreotide (A), octreotide (B) and sunitinib (C), in QGP-1 (grey, left) and BON-1 (black, right). 

Asterisks and & symbols (*/&, p < 0.05; **/&&, p < 0.01; ***, p < 0.001) indicate significant 

differences against the control or between groups, respectively. Data are presented as percentage 

of control and represent mean ± SEM of n ≥ 3 independent experiments. 
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5. Discussion 

Cancer and tumor pathologies represent one of the main problems for human 

health worldwide, as they comprise the second leading cause of death in industrialized 

countries. Despite the efforts of the scientific community and the resources invested in 

studying these pathologies to improve our knowledge and seek novel clinical approaches 

to combat them, their remarkable heterogeneity and complexity, derived from both 

genetic and environmental factors, hinder the finding of solutions, and pose a big 

challenge to the society [1]. Tumor heterogeneity pervade all levels of tumor biology, 

from clinical to molecular, and impacts all cancers, being also present among patients 

with the same type of cancer and even within a single tumor of a given patient [2, 26]. To 

address this challenge, the scientific community adopted a common theoretical 

framework, proposed by Hanahan and Weinberg [refs], in the form of a group of common 

hallmarks that characterize virtually all type of cancers, and comprise a set of shared 

features that allow to study all cancers from a complex but common point of view (Figure 

I2) [3, 4]. Of note, a relevant proportion of these hallmarks are tightly related to 

metabolic-endocrine axes, as it has long been known that dysregulations in this 

homeostatic systems can severely impact, at various points, in the appearance, 

development and malignancy of the tumors [34]. Those effects are particularly important 

in the so-called hormone-dependent or endocrine-related tumors, in which tumor genesis 

and evolution is profoundly conditioned by metabolic-endocrine dysregulations [6]. 

Within this group, the present Thesis is focused in the study of prostate cancer (PCa) and 

neuroendocrine tumors (NETs). The first, PCa, is second most common cancer among 

men worldwide, after lung cancer, being their fifth leading cause of death by cancer [7, 

8]. The second, NETs, are often dismissed due to their underestimated frequency, but 

represent a major challenge due to their great heterogeneity, even within a same pathology 

[10]. In this case, we focused on PitNETs and, particularly, on PanNETs. 

Over the last years, our group has studied several endocrine axes in the quest for 

novel biomarkers and therapeutic targets for endocrine-related tumors. In this context, 

some components of the somatostatin-SST system have been shown to be linked to 

development, progression and aggressiveness of these tumors, and have been proposed 

as biomarkers and/or therapeutic targets [252]. In fact, our group described the relative 

abundance of SST5 in pitNETs as a biomarker for SSA treatment resistance [14]. 

Moreover, we discovered two aberrantly-spliced truncated variants of SST5, SST5TMD4 
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and SST5TMD5, that are present in different endocrine-related tumors, including PitNETs 

[18, 257], PanNETs [17], PCa [16] and other tumoral pathologies [15, 131, 132], where, 

especially SST5TMD4, has been related with oncogenesis and aggressiveness features. 

However, the knowledge on the regulation and biogenesis of this receptor, and on the 

functional role of other SSTs, are still poorly known in endocrine-related tumors. 

The discovery of the existence and pathophysiological relevance of the splice 

variants of SST5 (and those of ghrelin) pointed to the splicing process, an in particular to 

its underlying machinery, as an opportunity to better understand these pathologies, and 

also, as a source of potential biomarkers and therapeutic targets. Actually, alteration of 

the splicing process is increasingly considered as a novel cancer hallmark, as its relevance 

is emerging in tumor pathologies, as a cause of malignancy and, also, heterogeneity. 

However, little is known on the implications of splicing dysregulation in endocrine 

related tumors, particularly NETs. 

For all these reasons, the main aim of this Thesis was to determine the role of 

SSTs and splicing machinery in different types of endocrine-related cancers and NETs, 

as well as the underlying regulatory mechanisms, in order to find novel biomarkers and 

pharmacologic targets with potential to improve the diagnostic and therapeutic 

approaches in these pathologies. 

5.1 Novel biomarker and therapeutic target in prostate cancer: the role 

of SSTR1 

PCa represents, as pointed out earlier, the third most common cancer with both 

sexes combined worldwide, and the second most common in men, just after lung cancer, 

being the fifth leading cause of death by cancer in that group [8]. For 2018, it was 

estimated that there were almost 1.3 million new cases of PCa and 359,000 associated 

deaths around the world [7]. In this sense, and despite the intrinsic difficulties of studying 

tumoral pathologies, over the last years research in this field has helped to increase the 

therapeutic options to treat PCa, which currently include surgery, chemotherapy, 

radiotherapy and chemical castration or androgen-deprivation [41]. In addition, valuable 

biomarkers, such as prostate specific antigen (PSA), have allowed to increase the 

proportion of patient survival with localized tumor, which now approaches 100 % [38]. 

Nevertheless, current clinical strategies entail important side effects and there is still a 

lack of tools to guide the selection of the correct treatment, which, altogether, complicate 
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the work of clinicians and the life of patients [45, 258]. Therefore, it is necessary to 

deepen our knowledge of PCa, in order to find novel biomarkers to improve diagnosis 

and prognosis, and to develop new therapeutic targets for the management of this disease. 

In this scenario, it is worth noting that PCa has a relevant endocrine facet, as it is 

strongly influenced by androgens [48, 49] and other steroid hormones [153] in its genesis 

and progression, as well as by other neuroendocrine systems that are involved in both, 

normal prostate function and tumor development [155]. In line with this, it has been 

documented that the main components of the somatostatin-SST system are present in 

normal and tumoral prostate, where they can regulate different cell functions, including 

proliferation, as it happens in other tissues [157]. In fact, this neuroendocrine system is 

known to play a primary regulatory role in a number of endocrine-related tumors, 

especially PitNETs and PanNETs, where it represents a significant source of biomarkers 

and therapeutic targets [17, 18, 257]. In particular, SST2 and SST5 are valuable therapeutic 

targets for the use of SSAs in the treatment of NETs [86, 139, 140, 259]. Nevertheless, in 

spite of the promising initial experimental studies [260], results from clinical trials have 

been disappointing in other cancer types, such as lung, breast or non-endocrine 

gastrointestinal cancers [161]. In the specific case of PCa, early efforts were made to test 

the clinical use of SST2- and SST5-targeted SSAs, but the results were not positive in 

relation to relapse of the disease, or even negative, with worsening of tumor development 

[249, 261]. Nonetheless, as mentioned above, these first generation SSAs are mainly 

targeted to SST2 and SST5, with very low, almost ineffective binding to other SSTs, 

whereas different studies have revealed that other SSTs may play also a relevant role in 

diverse tumoral pathologies [251, 252]. In particular, some studies have shown that SST1 

may significantly modulate the response to SSAs by inhibiting cell proliferation through 

the interaction with tyrosine phosphatases [253]. Accordingly, we decided to explore the 

role of SST1 in PCa, evaluating its presence, potential functional role and clinical 

relevance. 

Our initial approach revealed that SSTR1 mRNA is present in a high proportion of 

samples of PCa, where this receptor is overexpressed as compared to normal prostate in 

this cohort. This finding compares favorably with previous reports [167], where SST1 

appeared overexpressed in PCa and was regarded as a prominent candidates to provide 

information about the prognosis of this pathology. However, the mechanisms regulating 

SSTR1 expression were poorly known. Interestingly, in this Thesis we have discovered 
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that the expression of SSTR1 in PCa could be regulated by mechanisms involving non-

coding RNAs. Specifically, we identified four miRNAs (miR-24, miR-488, miR-383 and 

miR-27b) that were likely related to the SSTR1 gene, in that they exhibited a high 

probability to bind the mRNA of this receptor and, more importantly, their expression 

was inversely correlated with that of the SSTR1 gene in the TCGA public cohort of PCa 

samples. Further studies led us to demonstrate that one of them, miR-24, was able to 

directly regulate the mRNA levels of SSTR1 in the 22Rv1 PCa cell line. Moreover, 

expression of this miRNA is clearly and inversely correlated with SSTR1 expression in 

the MSKCC PCa database, where, notably, miR-24 expression was progressively reduced 

while that of SSTR1 concomitantly increased from normal prostate to PCa and, finally, to 

metastatic samples. Taken together, these results reinforced the notion that SSTR1 may 

be involved in PCa physiopathology, possibly under the regulation of miR-24, and thus, 

that it deserved to be studied further as a possible biomarker and/or therapeutic target for 

this disease. 

Indeed, our subsequent work clearly demonstrated that SST1 exerts a profound 

antiproliferative effect in PCa cells, consistent with results reported for other tumoral 

pathologies, including glioma or pancreatic cancer [262, 263]. To generate these data, we 

performed proliferation assays in response to treatment with a selective SST1 agonist, 

BIM-23926, and also after genetically altering SSTR1 expression in 22Rv1 PCa cells. 

This revealed not only that ligand-induced SST1 activation is able to decrease PCa 

proliferation, which is a significant observation, but also, that the levels of expression of 

this receptor clearly influence the proliferation rate of PCa cells as well, which suggests 

that SST1 may sustain a certain degree of autonomous, constitutive inhibitory activity. 

Notwithstanding this, it remains to be established whether these situations also operate in 

vivo, in prostate tumor cells. 

To explore the mechanisms underlying these effects, we assessed the status of 

different signaling pathways in response to SST1 agonist treatment or after altering SSTR1 

expression in 22Rv1 PCa cells. The first approach showed that treatment with the SST1 

agonist did not alter [Ca2+]i kinetics, implying that the actions mediated by this  receptor 

may be independent of this second messenger. Likewise, western blot assays indicated 

that ERK or JNK activation was not altered either. In striking contrast, BIM-23926 

treatment clearly decreased phosphorylation of AKT, a classic, well-known effector 

involved in activation of cell proliferation [264]. These observations suggest that SST1 
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activation leads to a decrease in cell proliferation through an inhibition of the PI3K 

pathway, which has been previously linked to other components of the somatostatin-SST 

system [244, 265]. Similarly, activation of SST1 with the selective agonist inhibited the 

expression of CCND3, the gene that encodes cyclin D3, an important regulator in the 

progression of the cell cycle through G1 phase, which has been previously associated to 

promotion of cell proliferation in cancer [266, 267], and which, interestingly, can be also 

regulated by the activation of AKT [268]. Consequently, our results invite to propose that 

activation of SST1 by the BIM-23926 agonist in 22Rv1 PCa cells reduces cell 

proliferation though a mechanism that would involve the inhibition of the 

PI3K/AKT/CCND3 pathway. On the other hand, our findings may also imply that the 

effects caused by SST1 activation would not involve the promotion of apoptosis of 22Rv1 

cells through altered p53, since expression of TP53 was unchanged, although, further 

studies would be necessary to unequivocally support this conclusion. 

In addition to its direct role in regulating PCa cell proliferation, our study reveals 

that SST1 may play relevant functions in PCa by interacting with the AR. Indeed, mRNA 

levels of SSTR1 were tightly and directly associated with those of AR in our cohort of 

PCa samples, whereas such correlation was not found in non-tumoral samples. This 

observation highlights the interesting features of SSTR1 as a target in PCa, since AR is 

one of the key molecules in the pathophysiology of this cancer. To examine this notion 

in further detail, we analyzed the involvement of AR and its associated pathways in the 

action of SST1 in the 22Rv1 PCa cell line, using, as model, the overexpression of SST1 

in these cells. Consistent with our predictions, the increase of SSTR1 expression induced 

important alterations in a number of molecules involved in AR function and signaling. 

These changes included upregulation of IGFBP5 gene expression and downregulation of 

ADAMTS1, IRS2, VIPR1, SLC45A3 and LIFR expression. The gene IGFBP5 codes for 

insulin-like growth factor binding protein 5, an interesting molecule that plays a relevant 

role in the regulation of cell growth, differentiation and behavior, by binding and 

regulating IGF-1, and acting as a tumor suppressor in different cancers, such as melanoma 

or ovarian cancer [269, 270]. Accordingly, our results, coupled to the previous findings 

from other groups, further reinforce the idea that SST1 may play a valuable role in PCa 

by activating tumor suppression systems.  

In support of this contention, we found that the genes that were downregulated 

after SSTR1 overexpression have been linked to tumor progression in the literature. Thus, 
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it has been shown that ADAMTS1 is overexpressed in tumor tissues in relation with the 

activity of TGF-β [271] or even metastasis of breast cancer, where it may serve as a 

biomarker of prognosis [272]. IRS2 is a very well-known oncogene that encodes for 

insulin receptor substrate 2, which participates in the transduction of insulin and IGF-1 

signaling; this gene has been related to the inhibition of apoptosis in non-small cell lung 

cancer [273, 274]. Also, VIPR1, the receptor of the vasoactive intestinal peptide (VIP), is 

overexpressed in some types of tumors, where it can play antiapoptotic, proangiogenic 

and pro-proliferative functions [275, 276]. The potential relevance of this last gene is 

reinforced by the evidence gathered for other growth factors, such as growth hormone 

releasing hormone [277, 278] of gastrin-releasing peptide, which have been proposed and 

tested as therapeutic targets in PCa, where they act as tumor inducers [279]. Similarly, 

SLC45A3, also known as prostein, a molecule implicated in several cell processes 

including lipid metabolism, has previously been reported to be abundantly present in PCa 

tissue, where it has been used as biomarker due to its high expression [280, 281]. Finally, 

the LIFR gene regulates various cellular processes, including proliferation, differentiation 

and survival, and has been proposed as a negative prognosis biomarker in melanoma, as 

well as linked to treatment resistance in breast cancer, where it was explored as 

therapeutic target [282-284]. Altogether, these results provide compelling evidence to 

support an antitumoral role for SST1 in PCa.  

Intriguingly, despite the strong connection between SSTR1 overexpression and 

AR-related signaling, we observed that activation of SST1 with BIM-23926 did not alter 

AR protein phosphorylation, suggesting that the relationship AR-SST1 may not involve a 

direct activation of AR itself but could require additional mechanisms to establish the 

observed functional link. In relation with this, a 24 h treatment with the SST1 agonist 

inhibited PSA secretion in 22Rv1 cells, suggesting that the functional role of this receptor 

in PCa can involve a reduction of PSA over-secretion [285], which is closely associated 

to AR activity in these tumors [286]. Clearly, the precise nature of the interrelation 

between SST1 and AR signaling warrants further investigation. 

When viewed together, the results from the first part of this Thesis revealed that 

SSTR1 is overexpressed in PCa with respect to non-tumoral prostate samples and that its 

expression may be regulated by specific miRNAs, particularly miR-24, which could play 

a relevant role in this pathology. In addition, we demonstrate that SST1 is able to inhibit 

two key features of PCa cells, proliferation and PSA secretion, in the 22Rv1 cells model, 
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likely by modulating a signaling pathway integrating PI3K/AKT-CCND3 and also, 

through alteration of AR signaling. Therefore, our results demonstrate that SST1 may 

represent in the future a novel biomarker and therapeutic target in the fight against PCa. 

5.2 Regulation of SSTR5 expression by epigenetic and post-

transcriptional mechanisms in neuroendocrine tumors 

There is now ample evidence that the somatostatin-SST system plays a key 

pathophysiological role in various tumors, particularly in NETs, where detection of 

specific SSTs and use of synthetic SSAs provide valuable diagnostic and therapeutic tools 

[11]. Actually, SSAs are currently employed to control tumor growth and/or associated 

symptoms in somatotropinomas (PitNETs) and in PanNETs, when surgery, the first line 

treatment and only curative approach to date, is not fully effective or cannot be applied 

[86, 139, 287, 288]. The basis for SSA action in these tumors is the abundant expression 

SSTs, and in particular SST2, the primary molecular target of first generation SSAs, 

lanreotide and octreotide [11]. Unfortunately, an appreciable proportion of patients are 

unresponsive to SSA or develop resistance during treatment [11, 143, 289]. However, 

NETs also express high levels of other SSTs, especially SST5, which would enable the 

use of alternative pharmacological approaches to treat these tumors. Indeed, although 

SST5 also binds with high affinity first generation SSAs, it is even a better target for the 

second generation SSA pasireotide [290]. In fact, this novel SSA is being used (or tested) 

already for the treatment of different types of NETs [291-294], which supports the present 

and future potential of SST5 as a target in these diseases.  

On the other hand, the biology of SST5 seems to differ substantially from that of 

SST2 or the other SSTs, and is still far from being fully understood [11, 295]. Thus, for 

example, high SST5 expression, in relation to that of SST2, has been linked to SSAs 

resistance in acromegaly, instead of being associated to a good response [14]. Likewise, 

human SSTR5 is the only gene of the SSTR family that, despite lacking typical introns in 

its coding sequence, can give rise to aberrant splice variants, e.g. SST5TMD4, which are 

overexpressed in NETs and have been linked to oncogenic processes and SSA resistance 

[11, 14, 17]. These and other reasons support the importance to advancing in our 

understanding of the mechanisms regulating the expression of SSTR5 and the biogenesis 

of SST5 and to identify putative factors controlling its functioning in NETs.  
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In this scenario, we initially applied an in silico analysis of the SSTR5 gene region 

that revealed the existence of a natural antisense transcript (NAT) overlapping in the 

genome with SSTR5 gene, which had already been named, accordingly, SSTR5-AS1, but 

whose role or regulation had not been still reported at that time. Furthermore, a closer 

analysis revealed that, distributed along the loci of these two genes, there are four CpG 

islands susceptible of being methylated. We then decided to analyze in detail these two 

original features of SSTR5 in NETs. Specifically, presence and relative abundance of 

SSTR5-AS1 with respect to SSTR5 was examined in somatotropinomas and PanNETs, 

whereas methylation levels of the different islands were measured in the cohort of 

somatotropinomas. Results from this latter approach revealed, for the first time, that some 

of these CpG islands were differentially methylated in somatotropinoma samples, 

compared with normal pituitary (NP). Specifically, the CpG island overlapping the last 

exon of the NAT gene SSTR5-AS1 was more methylated in somatotropinomas than in NP, 

whereas the one overlapping the first exon of SSTR5 and its putative promoter was 

hypomethylated in somatotropinomas compared to NP, and the most distant zone, 

overlapping the area where alternative splicing is presumed to occur, in the middle of the 

large exon of SSTR5 and previous to the NAT, was significantly less methylated in 

somatotropinomas than in NP. The potential importance of these observations resides in 

the widely accepted role of DNA methylation in the control of gene expression, as well 

as its relation with other actions regulating DNA biology, including splicing [296-298]. 

In fact, methylation levels of this later area, referred to as Zone 4.3 in our study, was 

tightly associated with SSTR5 and SSTR5-AS1 expression in somatotropinomas, where 

lower levels of methylation were linked to higher expression of these genes, but not in 

NP samples. These findings clearly suggest that methylation of this CpG island can be 

related to the expression of these two genes in a pathologically relevant context, which is 

in agreement with results from a recent study where this SSTR5 context was examined in 

laryngeal carcinoma [151]. The lack of association between methylation Zone 4.3 and 

SSTR5/SSTR5-AS1 expression in NP is intriguing, and could suggest a differential 

regulatory role of this interaction in normal somatotropes, or perhaps a distinct 

contribution of the heterogeneous cell population comprising healthy pituitary tissue, as 

compared to the monoclonal population of tumoral somatotropes found in GH-secreting 

tumors. Nonetheless, the present findings provide original evidence that methylation of 

intragenic CpG island in the SSTR5 gene can influence the expression of this gene and its 

NAT, thereby providing a novel avenue to further explore and understand the regulation 
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of SSTR5 expression, not only in tumor somatotropes, but also in normal pituitary cells, 

as well as in other tumor cell types.  

There is increasing interest in NATs given their ability to regulate the expression 

of their sense genes [149]. Consequently, we analyzed the expression of SSTR5-AS1 and 

its relationship with that of SSTR5 on the same cohort of somatotropinoma samples as 

well as in an additional set of PanNETs. Interestingly, SSTR5-AS1 expression in PanNETs 

was higher in tumor tissue as compared to the non-tumoral adjacent tissue. In contrast, 

no such differences were found in somatotropinomas compared to NP. However, in both 

PitNETs and PanNETs, as well as in their respective control tissues, we discovered an 

interesting common behavior: there was a marked, direct association between the 

expression of SSTR5-AS1 and that of SSTR5. These results are in agreement with the 

findings reported in laryngeal carcinoma [151], and support a close relationship between 

the control of both genes, which may involve a regulation by common factors, but also a 

direct interaction of the two genes during their expression. This latter mechanism is likely 

to be in place, in that our results proved that silencing of SSTR5-AS1 with a specific 

shRNA caused a marked decrease in SSTR5 expression in vitro in BON-1 cells.  

We next sought to further understand the precise functional role of SSTR5-AS1 

gene in NETs, by evaluating different mechanistic endpoints on the PanNETs BON-1 cell 

model after silencing this NAT. This approach revealed that SSTR5-AS1 silencing had a 

profound functional impact, as increased cell proliferation and colony formation in BON-

1 cells. The reason for these actions may relate to the inhibition of SSTR5 expression 

mentioned above, since this receptor can exert antitumoral functions and has been shown 

to have ligand-independent constitutive activity [11, 254, 299]. In contrast, SSTR5-AS1 

silencing caused a decrease in cell migration, which would apparently imply that this 

NAT, either directly or through SST5 could contribute to sustain the migratory capacity 

of BON-1 cells under basal culture conditions. These observations unveil an apparent 

disconnection between two typical tumoral features, in that a reduction in the expression 

of this NAT would concomitantly increase proliferation but increase migration. 

Obviously, it would be of interest to explore whether these actions caused by the partial 

loss of SSTR5-AS1 bear similar consequences in vivo, particularly in tumors. Nonetheless, 

these seemingly contradictory actions (given the antitumoral role of SSTR5), may be 

mediated through a distinct ability of SSTR5-AS1 to influence downstream signaling, as 

its silencing decreased activation of AKT and ERK, two key players in pathways 
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controlling a wide number of cell functions and with a complex cross-talking regulatory 

network. Typically, AKT and ERK inhibition are related with antitumoral actions [300, 

301], which would be in keeping with the downregulation of migration observed after 

SSTR5-AS1 silencing. In fact, these pathways have been previously related with SSTR5 

in the literature [11]. However, these reductions would not similarly fit with the increased 

proliferation and colony forming assays, thus suggesting that additional mechanisms must 

be in place underlying these actions and therefore, that further studies are necessary to 

fully understand the mechanisms mediating SSTR5-AS1 function. 

A final set of studies was aimed to ascertain whether SSTR5-AS1 may influence 

the response of BON-1 cells to the SSA pasireotide, which preferentially targets SST5. 

Interestingly, this revealed, for the first time, that pasireotide treatment increases SSTR5 

expression in PanNET cells, similar to that previously reported by our group in tumor 

pituitary cells [302]. But, most importantly, pasireotide also increased SSTR5-AS1 

expression, which could imply that the positive feedback between the activation of SST5 

and the expression of this receptor may involve or, at least be related to, that of the NAT 

itself. In fact, the presence of SSTR5-AS1 shRNA impeded pasireotide to increase NAT 

expression, whereas it did not seem to fully abrogate its ability to upregulate SSTR5 

expression. On the other hand, in keeping with our previous findings in PanNET cell lines 

[243], the functional and signaling actions of pasireotide in BON-1 cells were somewhat 

limited, as it did not alter most of the parameters measured, nor was able to overcome the 

reduction in AKT and ERK activation caused by SSTR5-AS1 silencing. Oddly enough, 

under this silencing pasireotide stimulated cell migration as indicated by the wound 

healing assay. These results confirm the unexpected limited ability of pasireotide to 

influence key functional parameters in PanNETs bearing SST5 and, at the same time, 

unveil an association between SST5 activation, expression of SSTR5 and its NAT, SSTR5-

AS1, and the actions of pasireotide on a key feature in cancer cells, migration, which 

would therefore warrant further investigations in PanNETs cells. 

In sum, our study uncovers two novel mechanisms that can contribute to the 

regulation of SSRT5 expression in cells from PanNETs and somatotropinomas, namely, 

epigenetic modulation by differential methylation of intragenic regions, and post-

transcriptional events mediated by a natural antisense of SSTR5, SSTR5-AS1. The results 

presented herein reveal that methylation of specific SSTR5 gene CpG regions can be the 

associated to the upregulation of both SSTR5 and SSTR5-AS1 expression. Similarly, 
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SSTR5-AS1 may influence SSTR5 and SSTR5-AS1 expression as well, but in addition can 

influence thereby NET cell aggressiveness features, including proliferation, migration 

and colony formation, and can be involved in the limited response of PanNET cells to 

pasireotide. The precise contribution of these new regulatory mechanisms of SST5 

biology to the clinical behavior and pharmacological response of pituitary and pancreatic 

NETs as well as other tumors awaits future elucidation. 

5.3 The splicing machinery is dysregulated in pancreatic 

neuroendocrine tumors: role of NOVA1 overexpression in enhancing 

tumor aggressiveness and malignancy 

Alteration of alternative splicing is increasingly regarded as a novel, transversal 

cancer hallmark, as it pervades all the individual hallmarks defined previously by 

disrupting the normal pattern of splicing and generating new, aberrant protein isoforms 

[19, 187, 303]. Thus, splicing dysregulation has been associated to many types of tumors 

[188], but also to other diseases, including major endocrine pathologies [304]. In line with 

this, there is also mounting evidence that defects in splicing also affect endocrine-related 

tumors, such as PitNETs [232] or lung NETs [305]. As explained in detail earlier, our 

original discoveries of novel isoforms of SST5 [248] and ghrelin [200] and their 

contribution to tumor aggressiveness in NETs [17, 201] led us to hypothesize that the 

splicing machinery, as the core engine generating splice variants, could be involved in 

these events. However, although some studies had shown alterations in isolated splicing 

factors in NETs [306], a complete description of the splicing machinery had not been 

reported hitherto. Hence, our team decided to systematically characterize the pattern of 

expression of a representative set of components of the splicing machinery, including the 

core of the spliceosome and a group of selected splicing factors. This approach has 

recently widened our knowledge of the dysregulation of this machinery in PitNETs [232] 

as well as in prostate cancer [307]. Accordingly, in this section of the Thesis we aimed to 

obtain, for the first time, a similar panoramic view of the pattern of expression of the 

splicing machinery in PanNETs and to study its potential dysregulation.  

Comparison of the expression profile of the splicing machinery between tumor 

tissue and non-tumor adjacent tissue (used as a reference), revealed that mRNA levels of 

nearly 50 % of the genes measured was upregulated, whereas only one component, 

ESRP2, was downregulated in tumor samples. These results indicate that the expression 

of the splicing machinery, a core macromolecular complex that plays a central functional 
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role in the cell, is profoundly altered in the tumor tissue, thereby disclosing a previously 

unrecognized dysregulation that most likely would entail patho-functional consequences 

in tumor cells. In close agreement with these findings, application of a similar 

experimental approach in the four major classes of PitNETs (non-functioning tumors, 

somatotropinomas, corticotropinomas and prolactinomas) [232], as well as in prostate 

cancer [307], has recently evidenced comparable levels of alteration (around 50 %) in the 

expression of the components of the splicing machinery. Therefore, dysregulation of this 

machinery seems to be a conserved feature across different types of endocrine-related 

tumors, which is in line with the growing list of studies linking defects in splicing factors 

and spliceosome components as a source of tumor development [205, 214, 222, 308]. 

Altogether, this information provides both new avenues for oncological research and a 

plethora of novel points of intervention to identify novel biomarkers and treatment 

targets. However, it seems mandatory to select among those altered factors the ones with 

most probable functional relevance and potential clinical value. 

In line with this idea, we applied a detailed bioinformatic and statistical analysis 

of our results, which enabled to identify five genes, NOVA1, PRPF8, RAVER1, SRSF5 

and SNW1, that stand out over the rest, both because of their overexpression in virtually 

every single paired sample, and for their clustering ability to separate tumoral from non-

tumoral samples. In keeping with the latter, generation of ROC curves showed that, 

despite the very limited number of samples employed, these factors were able to 

significantly discriminate tumoral from adjacent tissues, thus inviting to explore their 

potential as putative biomarkers in the future. Moreover, the possible relevance of 

changes in these factors in NETs was further supported by the observation that their 

increased levels were associated with important clinical parameters, such as vascular 

invasion, disease relapse or Ki-67 index, a widely used score for tumor cell proliferation 

with prognostic and clinical value. Among these five factors, NOVA1 was selected for 

further studies based, initially, on its best fitted ROC curve (AUC > 0.86), but 

subsequently on a specific immunohistochemical analysis. This approach served not only 

to confirm at the protein level the mRNA overexpression observed in the tumor tissue, 

but also illustrated the intense confinement of NOVA1 immunostaining on the 

neuroendocrine tumor cells, as compared to the low levels present in normal endocrine 

cells of the non-tumoral surrounding tissue, further pointing at this gene as a putative 

novel biomarker for PanNETs. Moreover, the close association of NOVA1 expression 
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levels with Ki-67 index and tumor necrosis strongly suggested that this splicing factor 

could be functionally linked to key tumor cell features such as cell proliferation and death 

[309, 310]. These data, coupled to the rising evidence indicating that NOVA1 plays 

relevant, even oncogenic roles in different tumors [80, 199, 227] led us to focus our efforts 

in ascertaining the functional and mechanistic underpinnings of this factor through in 

vitro and in vivo studies. 

Initial in vitro studies using two PanNET model cell lines, BON-1 and QGP-1 

cells, proved that the predicted association of NOVA1 upregulation in NETs with cell 

proliferation is likely to have a direct functional basis. Thus, NOVA1 overexpression by 

plasmid transfection in two cell lines with quite distinct intrinsic expression levels of the 

factor caused a similar, significant increase in the basal proliferation rate of the two cell 

types in culture. Furthermore, a preclinical model based on an immunodeficient mice with 

xenografted tumors indicated that BON-1 cells overexpressing NOVA1 also display a 

higher proliferation rate than mock-transfected cells in vivo, thereby producing larger 

tumors. On the contrary, NOVA1 silencing in these cells decreased their proliferation rate, 

which is also in line with that found in other tumors, like astrocytoma, melanoma, non-

small cell lung cancer and osteosarcoma [80, 227, 228, 311], where the signaling 

pathways mediating NOVA1 actions may differ depending on the type of cancer studied. 

In PanNETs, our results reveal that NOVA1 silencing increases ERK phosphorylation and 

CCND1 mRNA levels, suggesting that it increases cell proliferation through activation of 

the MAPK pathway, and the subsequent involvement of CCND1, which are known to 

interact in pediatric brain tumors [312] . However, the increase in CASP3 expression 

suggests that an involvement of cell apoptosis should not be discarded in this context. In 

addition, the lack of changes in MKI67 expression after altering NOVA1 expression does 

not seem to agree with the association observed in tumors between NOVA1 mRNA levels 

and Ki67 index in NETs, which invites to speculate an indirect relationship of these two 

molecular markers. Nevertheless, by and large, the present data provide original, 

compelling evidence that NOVA1 is a plausible enhancer of cell proliferation in PanNETs 

that deserve further study. 

Inasmuch as NOVA1 is a pre-mRNA binding factor known for its role in splicing, 

we sought to ascertain possible splicing-related mechanisms that may underlie its 

functional effects on NET cells. To this end, we tested whether NOVA1 silencing could 

alter the splicing of the telomerase gene, TERT, in BON-1 and QGP-1 cells, which, 
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indeed, was the case, as it decreased TERT transcript variant 1 (tv1) without altering the 

total expression of the gene. These results demonstrate that NOVA1 silencing alters the 

selection of the TERT variants during splicing process, favoring the decrease of the 

truncated variant, which is known to exert a constitutive action that increases the length 

of telomeres and enhances tumor cell aggressiveness features in non-small cell lung 

cancer [80]. Actually, in support of our present findings, in that study NOVA1 also 

increases tumor growth and promotes survival advantage of tumor cells by favoring the 

generation of a high proportion of TERT truncated variant during the splicing process 

[80]. Intriguingly, and possibly in relation to the above, NOVA1 silencing in the NET cell 

lines also decreased mRNA and protein levels of ATRX and DAXX, two genes related to 

chromatin remodeling and lengthening of telomeres [313] that are considered tumor 

suppressors, as their mutations/loss are linked to NET aggressiveness and bad disease 

prognosis [78, 314]. Unfortunately, available knowledge on the meaning and regulation 

of ATRX and DAXX expression in NETs is not as advanced as that on their mutations, 

which prevent us to understand the significance of their overexpression in the tumor tissue 

of our NET cohort and of their decrease after NOVA1 silencing. This notwithstanding, 

our results certainly suggest that NOVA1 may be involved in the regulation of the 

expression of these factors and, together with telomerase results, link NOVA1 with the 

chromatin remodeling and lengthening of telomeres pathways, which are known to play 

a central role in NETs. 

To gain further insight into the signaling pathways mediating NOVA1 function, 

we next focused on those linked to cell proliferation and PanNETs oncogenesis. This 

revealed that activation of PTEN and PDK1, two key components of the PI3K/AKT 

pathway, essential in PanNETs, was inhibited under NOVA1 silencing. This finding is 

apparently contradictory in that these proteins are functional antagonist in the activation 

of this pathway, where PTEN is a key inhibitor and PDK1 an important activator, closely 

related to AKT protein [315, 316]. In fact, AKT activation itself was not altered after 

NOVA1 silencing, suggesting that, to exert its actions, NOVA1 may distinctly regulate 

specific components of this complex signaling network, which may even play opposite 

roles. Of note, PTEN inhibition has been shown to increase cell senescence, without 

changes in AKT, through direct interaction with the mTOR-p53 pathway [317]. 

Interestingly, we found that NOVA1 silencing promoted p53 activation in QGP-1 but not 

in BON-1, a difference that may be related to the CDKN2A inactivating mutation found 
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in BON-1 [239], which would impede p53 activation, as it is its main driver in the context 

of senescence. In line with the above, and supporting the idea that NOVA1 silencing can 

activate senescence, we observed that in QGP-1 cells this silencing also downregulated 

selectively the Δ133TP53 isoform, without altering full TP53 gene expression, a relevant 

finding because truncated Δ133TP53 acts as a direct inhibitor of full-length, canonical 

p53, especially in senescence context. As expected, in BON-1 cells responded differently 

in this context, where NOVA1 silencing inhibited the expression of both Δ133TP53 and 

TP53. Taken together, these results suggest that the favorable actions of NOVA1 silencing 

in NET cells could be exerted by increasing cell senescence, through the activation of 

PTEN/p53 pathway and the accompanying biasing of TP53 transcription against the 

truncated Δ133TP53 isoform. It remains to be elucidated whether NOVA1, through its 

pre-mRNA binding capacity, can interact directly with TP53 transcripts to modulate their 

processing balance.  

The modulation of NOVA1 may also entail clinically relevant implications, in that 

NOVA1 silencing increased the antiproliferative effect of everolimus, an mTOR inhibitor 

a widely used in NETs, in QGP-1 cells, whereas no such additive effect was found in 

BON-1 cells. These differential, cell line-dependent results might be in consonance with 

our previous findings and support a role of NOVA1 on senescence, given that, in parallel 

and for the same reason exposed above, the additive effect was observed in QGP-1 cells 

but no in BON-1 cells. Although, our present findings also suggest that the action of 

NOVA1 in MAPK pathway may not be independent of mTOR, because its silencing in 

BON-1 cells has an effect in the activation of ERK, in spite of it not being additive to 

everolimus action. These complex differences between cell lines could be attributable to 

distinct mutations in specific components of the AKT/mTOR pathway that are 

differentially present in one cell line and not in the other one. This is, for example, the 

case of TSC2, one of the most important inhibitors of mTOR [318], that is mutated in 

BON-1 but not in QGP-1 [239], a divergence that could distinctly influence the effect of 

everolimus and its combined action with NOVA1 silencing. Thus, because the set of 

specific mutations substantially differs in each PanNET patient and may even evolve over 

time in a given tumor [319-321] our results suggest that further research on NOVA1 may 

guide to identify novel relevant targets with therapeutic potential in a personalized 

manner.  
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When viewed together, our results reveal, for the first time, that the splicing 

machinery is profoundly altered in PanNETs, most of its components being upregulated. 

Expression of some components is associated with clinical parameters and can efficiently 

discriminate between tumoral and non-tumoral samples. Importantly, in vitro and in vivo 

studies revealed that the factor NOVA1 can modulate proliferation and senescence in 

PanNETs cell lines, where it alters key signaling pathways and splicing mechanisms, and 

may alter the response to everolimus. These data support the splicing factor NOVA1 as a 

promising candidate to develop novel biomarkers and therapeutic target in PanNETs. 
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6. Conclusions 

The main conclusions of the work presented in this Thesis are: 

1. The SSTR1 gene is overexpressed in PCa, where it may be regulated by specific 

miRNAs and could have relevant functional implications. Specifically, SST1 is directly 

related with the inhibition of cell proliferation and PSA secretion in 22Rv1 cell line, 

probably by the modulation of pathways and mediators linked to AR and PI3K/AKT-

CCND3 pathways. 

2. The expression of the SSTR5 in somatotropinomas and PanNETs may be 

controlled by epigenetic mechanisms, including DNA methylation and post-

transcriptional events, such as antisense-mediated regulation. In particular, SSTR5-AS1 

may be participating in the control of key tumor features, including proliferation, 

migration and colony formation, and in the effect of pasireotide treatment, a selective 

analog for SST5. 

3. The components of the splicing machinery are profoundy dysregulated in 

PanNETs, generally overexpressed. The levels of some of them are associated with 

important clinical parameters and could distinguish between tumor and non-tumor 

samples with a high efficiency. Specifically, the augmented level of the splicing factor 

NOVA1 promotes the increase of cell proliferation and senescence pathway in PanNETs 

models, by altering key signaling pathways, and it is able to compromise the effectiveness 

of everolimus treatment. 

GLOBAL COROLLARY 

As a general conclusion, the studies implemented in the present Thesis allow to 

expand and advance in the knowledge of the molecular basis of the pathophysiological 

regulation of endocrine-related cancers and neuroendocrine tumors by two specific 

somatostatin receptors and splicing machinery. Specifically, our results demonstrate that 

SSTR1 in the case of PCa, SSTR5 in NETs and splicing factor NOVA1 in PanNETs, 

represent relevant points of regulation for these tumors and, thus, they could be useful 

tools for the develop of novel diagnostic biomarkers and/or therapeutic targets to improve 

the future treatment of those pathologies. 
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