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Criticality represents a specific point in the parameter space of a higher-derivative gravity theory, where 
the linearized field equations become degenerate. In 4D Critical Gravity, the Lagrangian contains a Weyl-
squared term, which does not modify the asymptotic form of the curvature. The Weyl2 coupling is chosen 
such that it eliminates the massive scalar mode and it renders the massive spin-2 mode massless. In 
doing so, the theory turns consistent around the critical point.
Here, we employ the Noether–Wald method to derive the conserved quantities for the action of Critical 
Gravity. It is manifest from this energy definition that, at the critical point, the mass is identically zero 
for Einstein spacetimes, what is a defining property of the theory. As the entropy is obtained from the 
Noether–Wald charges at the horizon, it is evident that it also vanishes for any Einstein black hole.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

General Relativity (GR) is a successful theory of gravity at a 
classical level but it lacks of consistency in a quantum regime 
because it is not renormalizable. On the other hand, in the low 
energy limit of String Theory, which should be finite to all orders, 
there appear contributions that are quadratic in the curvature. As 
a consequence, higher curvature extensions of Einstein gravity are 
expected to give rise to a gravity theory with a better ultraviolet 
behavior. Early work on the subject has suggested that this class of 
theories should be renormalizable [1].

Lower-dimensional examples have been extensively studied in 
recent literature. They are regarded as insightful toy models which 
capture essential features of 4D gravity. One of them is New 
Massive Gravity (NMG) [2], a parity-even three-dimensional the-
ory which describes two propagating massive spin-2 modes, in 
contrast to 3D Einstein gravity which is topological. Picking up 
the conventional sign of the Einstein–Hilbert action, the energy 
of the massive excitations is negative (ghost modes), while the 
mass of the Banados–Teitelboim–Zanelli (BTZ) black hole is pos-
itive. Clearly, this inconsistency persists even if one reverses the 
sign of the kinetic term. A physically reasonable theory arises at a 
specific point of parametric space, where the massive spin-2 field 
turns massless [3]. At this particular point, both the energy of the 
graviton and the mass of the BTZ black hole vanish identically [4]. 
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Furthermore, both central charges turn into zero, what leads to a 
vanishing entropy [4]. Another feature of the theory is the pres-
ence of new modes with logarithmic behavior at the critical point 
[5]. These modes are eliminated when standard Brown–Henneaux 
boundary conditions are considered. Relaxing the asymptotic con-
ditions to include log terms switches on new holographic sources 
at the boundary [6].

Another theory in three dimensions sharing similar features 
with NMG is Topologically Massive Gravity (TMG) [7]. The corre-
sponding critical point defines the concept of Chiral Gravity. How-
ever, in this case, the central charges are different from each other 
due to a parity-violating term in the action. As a consequence, 
neither mass nor entropy vanish for BTZ black holes at the chi-
ral point.

The generalization of the concept of criticality, present in these 
models, to four dimensions is given by theories which include 
quadratic terms in the curvature with particular couplings on top 
of the Einstein–Hilbert action. The most general form of a gravity 
action with quadratic-curvature corrections in 4D is given by

I = 1

16πG

∫
M

d4x
√−g

(
R − 2� + αRμν Rμν + βR2

)
, (1)

where α and β are arbitrary couplings, and � = −3/�2 is the 
cosmological constant in terms of the AdS radius �. The Riemann-
squared term is not present, as it can be always traded off by 
the Gauss–Bonnet (GB) invariant plus the curvature-squared terms 
present in the action (1). The GB term does not affect the field 
equations in the bulk but it does modify the boundary dynamics.
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This class of theories leads to equations of motion (EOM) with 
up to four derivatives in the metric. Generically, they describe 
modes that represent a massless spin-2 graviton, a massive spin-2 
field and a massive scalar. For a quadratic-curvature gravity the-
ory with arbitrary coupling constants, perturbations around a given 
background would give rise to ghosts. The problem with the sign 
of the energy of these modes can be circumvented by a sign flip of 
the constant in front of Einstein kinetic term. On the other hand, 
Einstein black holes are solutions to the theory defined by Eq. (1). 
Therefore, the change in the sign mentioned above would lead to 
a negative mass for Schwarzschild-AdS black hole. Needless to say, 
this picture is clearly unphysical as the energy of the perturbations 
around a background and the mass of a black hole carry opposite 
signs.

In view of this general obstruction to obtain a four-dimensional 
gravity theory which is free of the inconsistencies discussed above, 
it was quite surprising when the authors of Ref. [8] pointed out the 
fact that, for the particular couplings α = −3β and β = −1/2�, 
the massive scalar is eliminated and the massive spin-2 mode 
turns massless. This choice renders the theory physically sensible 
around the critical point. This fact is confirmed by using the Ostro-
gradsky method for Lagrangians with derivatives of higher order: 
the energy for the massive mode vanishes for the critical value of 
the couplings. From the point of view of the energy of the black 
holes of the theory, one can use the Abbott–Deser–Tekin (ADT) for-
mula [9,10] to evaluate the mass of Schwarzschild-AdS solution, 
what results in

M = m (1 + 2�(α + 4β)) , (2)

where m is the mass parameter in the solution.
The general formula Eq. (2), makes evident that, for the critical 

condition mentioned above, the mass for Schwarzschild-AdS black 
hole vanishes.

In the present work, as an alternative to Deser–Tekin procedure, 
we employ Noether–Wald method [11,12] to compute the charges 
in Critical Gravity. This full (non-linearized) expression derived in 
this way has a remarkable property: the energy of any Einstein 
space is identically zero, as long anticipated in Ref. [13].

2. Deser–Tekin energy in 4D quadratic-curvature gravity

As mentioned in the previous section, in Refs. [9,10], the 
authors provide a generic definition of energy for an arbitrary 
curvature-squared gravity theory. That definition of the energy is 
obtained as an extension of the Abbott–Deser method [14].

In order to obtain the ADT mass for a general asymptotically 
AdS (AAdS) solution, we need to write down the metric of the 
spacetime in the form of gμν = ḡμν +hμν , where ḡμν is the metric 
of the background and hμν is the perturbation tensor. Such con-
struction leaves the first-order variation of field equations as

δ
(
Gμν + Eμν

) = [1 + 2�(α + 4β)] G L
μν

+ α

[(
�̄ − 2�

3

)
G L

μν − 2�

3
R L ḡμν

]
+

+ (α + 2β)
[−∇̄μ∇̄ν + ḡμν�̄ + �ḡμν

]
R L , (3)

where G L
μν and R L are the linearized expression of Einstein tensor 

and Ricci scalar, respectively. The tensor Eμν is the contribution of 
fourth order in the derivatives to the field equations. The equation 
(3) has to be equal to an effective energy–momentum tensor Tμν , 
which is covariantly conserved. One can write a conserved current, 
for a set of Killing fields {ξ̄μ} that represents the isometries of the 
background
JμADT = 8πGT μνξ̄ν . (4)

In order to evaluate the mass of a gravitational object, the Killing 
vector needs to be timelike, at least, at infinity.

Whenever there is a current which is conserved, one is able to 
write down Jμ as the divergence of a 2-form prepotential, i.e.,

JμADT = ∇νFμν . (5)

One can consider a spacetime foliated by a normal (radial) direc-
tion z

ds2 = N2(z)dz2 + hij(z, x)dxidx j , (6)

where hij(z, x) is the induced metric on ∂M , and its radial evolu-
tion is defined by the unit vector nν = N(z)δz

ν .
In this coordinate frame, the conserved charge can be expressed 

as an integral on the co-dimension two surface �

Q μ
ADT [ξ̄ ] =

∫
�

dSνFμν . (7)

Here, dSν = d2x 
√−h nν is a surface normal vector that defines the 

integration for a fixed time and radius. For the case of curvature-
squared gravity in four dimensions, the conserved quantity adopts 
the form1

8πG Q μ
ADT [ξ̄ ] = [1 + 2�(α + 4β)]

∫
∂M

d3x Gμλ

L ξ̄λ

+ (α + 2β)

∫
�

dSν

(
2ξ̄ [μ∇̄ν]R L + R L∇̄μξ̄ν

)

− α

∫
�

dSν

(
2ξ̄λ∇̄[μGν]λ

L + 2Gλ[μ
L ∇̄ν]ξ̄λ

)
. (8)

3. Critical Gravity

In Ref. [8], the energy of the graviton modes in quadratic-
curvature gravity was studied. These excitations come from the 
linearized EOM (3). The choice α = −3β leads to a traceless per-
turbation (h = 0) which eliminates the massive scalar mode. Con-
sequently, the equation for the propagating mode takes the form(

�̄ − 2�

3

)(
�̄ − 2�

3
− 2�β + 1

3β

)
hμν = 0. (9)

The first factor of the equation describes the propagation of a 
massless graviton in an AdS background while the second one rep-
resents a massive spin-2 field.

It is clear that the latter becomes massless by imposing the 
critical value β = −1/2�. This particular coupling produces the 
fourth order equation

(
�̄ − 2�

3

)2

hμν = 0 , (10)

which reflects the appearance of both massless and logarithmic 
modes [8].

In order to obtain the energy of the excitations, the authors 
in Ref. [16] followed a Hamiltonian approach. For an unrestricted 
value of β , the action up to quadratic order in hμν is

1 For a generalized ADT procedure see, e.g., Ref. [15].
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I = − 1

16πG

∫
M

d4x
√−g

[
1

2
(1 + 6β�) ∇̄λhμν∇̄λhμν

+ 3

2
β�̄hμν�̄hμν + �

3
(1 + 4β�)hμνhμν

]
. (11)

Using the Ostrogradsky method for higher-derivative Lagrangians, 
one obtains the following conjugate momenta

π
μν
(1) = 1

16πG

√−g∇̄0 [
(1 + 6β�)hμν − 3β�̄hμν

]
, (12)

π
μν
(2) = 3β

16πG

√−g ḡ00�̄hμν . (13)

Due to the fact that the Lagrangian is time independent, the 
Hamiltonian can be written as its time average, that is

H = 1

16πGT

∫
M

d4x
√−g

[
(1 + 6β�) ∇̄0hμν ḣμν

− 6β

(
∂

∂t

(�̄hμν
)) ∇̄0hμν

]
− 1

T
I . (14)

Evaluating for the case of massless and massive propagating 
modes, one obtains the following expressions for the correspond-
ing on-shell energies

E(m) = − 1

16πGT
(1 + 2β�)

∫
M

d4x∇̄0hμν
m ḣm

μν , (15)

E(M) = 1

16πGT
(1 + 2β�)

∫
M

d4x∇̄0hμν
M ḣM

μν , (16)

where the subscripts m and M stand for massless graviton and 
massive spin-2 field, respectively.

In a gravity theory with quadratic terms in the curvature, where 
the couplings are related as α = −3β , there is only a specific value 
of β that kills the negative energy states. More specifically, from 
Eqs. (15), (16) it is shown that for β = −1/2�, the energy of both 
the massless and the massive modes is zero. Hence, all the ghosts 
disappear leading to a consistent theory of gravity.

Therefore, the action of Critical Gravity reads

Icritical = 1

16πG

∫
M

d4x
√−g

[(
R + 6

�2

)

− �2

2

(
Rμν Rμν − 1

3
R2

)]
. (17)

On the other hand, the generic expression for the energy of the 
black holes in this gravity theory is given by Eq. (8). For any static 
black hole, the only nonvanishing contribution comes from the 
first term on the right hand side of Eq. (8). In particular, for a 
Schwarzschild-AdS black hole, the ADT charge leads to the result 
in Eq. (2). It is easy to notice that, for the particular value of the 
couplings which define Critical Gravity (α = −3β , β = −1/2�), the 
mass of the black hole vanish.

In what follows, we provide an alternative formula of conserved 
charges in Critical Gravity, which makes manifest the fact that the 
energy for Einstein black holes is identically zero.

4. Noether–Wald charges in Critical Gravity

A general prescription to define conserved charges in an arbi-
trary theory of gravity was given in Refs. [11,12,17]. For the pur-
pose of the discussion below, we will restrict ourselves to the case 
where Lagrangian density is a functional only of the metric and the 
curvature, L(gμν, Rμναβ). For a given set of Killing vectors {ξμ}, 
the Noether current is written down as

√−g Jμ = 
μ
(
δξ g

) + 
μ
(
δξ�

) + √−gLξμ . (18)

For simplicity, we assume that the surface term 
μ is separable 
into a part that contains variations of the Christoffel symbol and 
another part that contains variations of the metric. As we are in-
terested in diffeomorphic charges for gravity, all the variations are 
replaced by a Lie derivative along the vector {ξμ}.

Using the Killing equation, δξ gμν = ∇μξν + ∇νξν = 0, one can 
notice that first term in Eq. (18) vanishes. The same relation, this 
time for the Lie derivative of the Christoffel connection, would pro-
duce a combination of double covariant derivatives and curvatures. 
This casts the current, for a generic gravity theory, in the form

Jμ = 2Eμν
αβ

(
∇ν∇αξβ + Rαβ

νσ ξσ
)

+ ξμL . (19)

Here, the tensor Eμν
αβ is the functional derivative of L with respect 

to the spacetime Riemann tensor Rμν
αβ , that is,

Eμν
αβ = δL

δRαβ
μν

. (20)

It can be shown, by means of the general form of the field equa-
tions for these class of gravity theories, that the last two terms 
on the right hand side of (19) form the EOM contracted with the 
Killing field.

Thus, on-shell, the first term on the right side of (19) is the 
only nonvanishing part.

As the tensor Eμν
αβ satisfies Bianchi identity, the conserved cur-

rent turns into a total derivative

Jμ = 2∇ν

(
Eμν
αβ∇αξβ

)
. (21)

As the Noether current Jμ can be written as Jμ = ∇νqμν , the con-
served charge is expressed as an integral on the co-dimension two 
surface �

Q μ[ξ ] =
∫
�

dSνqμν (22)

as mentioned previously in Section 2. Finally the conserved charge 
is written as

Q μ[ξ ] = 2
∫
�

dSν Eμν
αβ∇αξβ. (23)

An alternative form for the action of Critical Gravity considers the 
difference between Weyl2 and the GB term E4, as the GB invariant 
term does not alter the bulk dynamics [18]

Icritical = 1

16πG

∫
M

d4x
√−g

[(
R + 6

�2

)

+ �2

4

(
E4 − W μναβ Wαβμν

)]
. (24)

We can split the action in two parts: the first one is the 
MacDowell–Mansouri action, IMM , which is given by the Einstein–
Hilbert plus GB terms, the latter with a fixed coupling [19]. In 
Einstein gravity, this corresponds to a built-in renormalized AdS 
action [20]. The second part is minus the action of Conformal Grav-
ity IC G .
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Using the Noether–Wald formula for the current (21) for the 
first part, the functional derivative with respect to the Riemann 
tensor of the Lagrangian in IMM produces

Eμν
αβ = �2

128πG
δ
[μνσλ]
[αβγ δ]

(
Rγ δ

σλ + 1

�2
δ
[ρδ]
[γ λ]

)
, (25)

whereas, for the Conformal Gravity part IC G , we get

Ẽμν
αβ = − �2

128πG
δ
[μνσλ]
[αβγ δ] W γ δ

σλ (26)

Using the Noether–Wald formula (23), the total charge for the the-
ory

Q μ[ξ ] = �2

64πG

∫
�

dSνδ
[μνσλ]
[αβγ δ] ∇αξβ

×
[(

Rγ δ

σλ + 1

�2
δ
[γ δ]
[σλ]

)
− W γ δ

σλ

]
. (27)

By definition, the Weyl tensor is

W γ δ

σλ = Rγ δ

σλ − 1

2

(
Rγ

σ δδ
λ − Rδ

σ δ
γ
λ − Rγ

λ δδ
σ + Rδ

λδ
γ
σ

) + 1

6
Rδ

[γ δ]
[σλ].

(28)

For Einstein spaces, Rμν = −(3/�2)gμν , the Weyl tensor adopts the 
particular form

W γ δ

(E)σλ = Rγ δ

σλ + 1

�2
δ
[γ δ]
[σλ] , (29)

where the right hand side, is referred to as AdS curvature2 Using 
the above fact, the conserved quantity in Critical Gravity is identi-
cally zero for Einstein spaces.

5. Electric part of the Weyl tensor and Einstein modes in 
Conformal Gravity

CG in four dimensions is invariant under local Weyl rescalings 
of the metric (gμν → g̃μν = e2ω gμν ). Solutions to CG are Bach-flat 
geometries, which include Einstein spacetimes.

From a holographic viewpoint, asymptotically AdS space in CG 
are endowed with new sources at the conformal boundary. Indeed, 
we can set any AAdS spacetime in Fefferman–Graham (FG) form of 
the metric

ds2 = �2

z2
dz2 + 1

z2
gij(z, x)dxidx j , (30)

where the metric gij(z, x) is expanded as a power series around 
the boundary z = 0, i.e.,

gij(z, x) = g(0)i j + zg(1)i j + z2 g(2)i j + z3 g(3)i j + ... . (31)

Here, the ellipsis denotes higher-order terms which do not enter 
into the holographic description of 4D AAdS spaces.

The presence of the term zg(1)i j reflects the fact the space con-
tains a non-Einstein part. By demanding the vanishing of the linear 
term on z, one recovers the Einstein branch, with only even pow-
ers of z in the expansion. This is achieved by imposing a Neumann 
boundary condition on the metric, ∂z g |z=0= 0 [21].

On the other hand, the Noether–Wald charge for Conformal 
Gravity is proportional to the Weyl tensor, as shown by Eq. (26). 

2 The field strength for the AdS group also contains the torsion along the gen-
erators of AdS translations in Riemann–Cartan theory. For Riemannian geometry, 
Eq. (29) is the only nonvanishing part of the curvature of the AdS group.
However, it is not obvious whether, for Einstein spaces, the holo-
graphic modes of CG at the boundary are contained in the electric 
part of the Weyl tensor

Ei
j = W iμ

jν nμnν = W iz
jz , (32)

as it is the case in Einstein gravity.
As Einstein spaces are solutions of the EOM of CG in the bulk, 

we restrict the discussion to the surface term in the variation of 
IC G , that is,

δ IC G = �2

64πG

∫
∂M

d3x
√

−hδ
[μ1μ2μ3μ4]
[ν1ν2ν3ν4]

[
nμ1δ�

ν1
βμ2

gν2β W ν3ν4
(E)μ3μ4

+ nν1∇μ1 W ν2ν3
(E)μ2μ3

(
g−1δg

)ν4

μ4

]
, (33)

where W (E) is the Einstein part of the Weyl tensor (29).
The second term in the above relation can be eliminated using 

the Bianchi identity of second kind. A projection of all indices to 
the boundary can be performed by taking the explicit form of the 
normal vector nμ in Gaussian coordinates. Then, the surface term 
takes the form

δ IC G = �2

64πG

∫
∂M

d3x
√

−hδ
[i1i2i3]
[ j1 j2 j3]N(z)

[
g j1�δ�z

i1�W j2 j3
(E)i2i3

− gzzδ�
j1
i1 z W j2 j3

(E)i2i3
− 2g j2�W j3 z

(E)i2 i3
δ�

j1
�i1

]
. (34)

In Gauss normal frame (6), the relevant components of the 
Christoffel symbol are

�z
i j = 1

N
Kij ,

�i
zj = −N K i

j ,

�i
jk (g) = �i

jk (h) , (35)

where Kij = − 1
2N ∂zhi j is the extrinsic curvature at ∂M . Equipped 

with this result, the variation of the action is written as

δ IC G = �2

64πG

∫
∂M

d3x
√

−hδ
[i1i2i3]
[ j1 j2 j3]

[
2W j2 j3

i2i3
δK j1

i1

+ (
h−1δh

) j1

�
K �

i1
W j2 j3

i2i3
− 2Nδ�

j1
i1�

h� j2 W j3 z
i2 i3

]
, (36)

after some algebraic manipulation and index relabeling.
The rest of the proof relies on a power-counting argument in 

the radial coordinate z. In order to do so, it is required to expand 
the tensorial quantities which appear at the surface term.

First, we consider the FG expansion for Einstein spacetimes, 
where N(z) = �/z and hij(z, x) = gij(z, x)/z2 with the metric at the 
conformal boundary given by

gij(z, x) = g(0)i j + z2 g(2)i j + z3 g(3)i j + ... . (37)

From this form of the metric, the following expressions are 
straightforwardly derived

√
−h =

√
g(0)

z3
+O

(
z−1) , (38)

(
h−1δh

) j
�
=

(
g−1
(0)δg(0)

) j

�
+O(z2) , (39)

K i
j (h) = 1

�
δi

j − �z2 Si
j

(
g(0)

) +O(z3) , (40)
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where Si
j is the Schouten tensor defined for the boundary metric 

g(0) , i.e.,

Si
j

(
g(0)

) = Ri
j

(
g(0)

) − 1

4
δi

jR
(

g(0)

)
. (41)

In a similar fashion, one can compute the fall-off of the differ-
ent components of the spacetime Weyl tensor. Here, we just write 
down the ones which are of relevance for this holographic discus-
sion

W iz
jk = O

(
z4

)
, (42)

W ik
jm = z2W ik

jl

(
g(0)

) + 3

2

z3

�2
g[i
(3)[ jδ

k]
m] +O

(
z4

)
, (43)

where W ik
jm correspond to the boundary Weyl tensor and the in-

dices of g(3) are raised and lowered with the metric g(0) .
Replacing all the above quantities in Eq. (36), we realize that 

the first term and third terms in the integrand are of order O
(
z2

)
. 

That implies that these terms do not contribute in the limit z → 0. 
In turn, the only nonvanishing contribution comes from the second 
term in Eq. (36) as

δ IC G = �

16πG

∫
∂M

d3x
√

g(0)

3

2�2
gij
(3)

δg(0)i j , (44)

expressed in terms of the holographic Einstein modes.
One can take a few steps back in the expansion of the boundary 

quantities and appropriately covariantize the last result, in order to 
express it in terms of the subtrace of the spacetime Weyl tensor

δ IC G = �

16πG

∫
∂M

d3x
√

−hW j�
i�

(
h−1δh

)i
j . (45)

Due to the fact that the Weyl tensor is traceless (W jμ
iμ ), its subtrace 

can be traded off by the electric part of the Weyl tensor

W j�
i� = −W jz

iz . (46)

As a consequence, the variation of the Conformal Gravity action is

δ IC G = − �

16πG

∫
∂M

d3x
√

−hE j
i

(
h−1δh

)i
j , (47)

for the Einstein modes of the theory. At the same time, this means 
that the definition of conserved quantities for that sector of CG can 
be mapped to the notion of Conformal Mass in 4D [22].

6. Conclusions

In the present work, we have shown that, in Critical Gravity, 
the energy of any Einstein solution vanishes identically. This proof 
does not make use of any particular Einstein black hole, nor re-
lies on charge formulas obtained from the linearization of the field 
equations. In this respect, charge expression (27) provides the ex-
plicit realization of a claim originally stated in Ref. [13].

The holographic derivation in Section 5 confirms the fact that 
the boundary stress tensor for the total action (24) is zero, in a 
similar way as in Ref. [23].

When one goes beyond Einstein spaces, the expression (27) is 
able to capture the effects due to the presence of higher-derivative 
terms in the curvature. Indeed, as it was shown in Ref. [24], only 
the non-Einstein modes of the Weyl tensor survive in the surface 
term form the variation of the Critical Gravity action. As a matter 
of fact, the boundary contributions are expressible in terms of the 
Bach tensor, what enormously simplify the computation of holo-
graphic correlation functions at the critical point [25].

Noether–Wald charges provides the black hole entropy in a 
given gravity theory, when evaluated at the horizon r = rh ,

S = −2
∫
�h

dSν E0ν
0α∇αξ0. (48)

As the condition in the Weyl tensor (29) holds throughout the 
spacetime for Einstein solutions, it is evident from the above for-
mula that the entropy vanishes in Critical Gravity. The addition 
of topological invariants to the four-dimensional AdS gravity ac-
tion has led to energy definitions which are finite [26,27], but also 
has provided insight on the problem of holography for asymptoti-
cally AdS spaces in Einstein gravity [20]. The result presented here 
indicates that the Gauss–Bonnet term also plays a role in the holo-
graphic description of gravity beyond Einstein theory.
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