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Abstract

Acidithiobacillus thiooxidans CLST is an extremely acidophilic gamma-proteobacteria that was isolated from the Gorbea
salt flat, an acidic hypersaline environment in northern Chile. This kind of environment is considered a terrestrial analog of
ancient Martian terrains and a source of new material for biotechnological applications. A. thiooxidans plays a key role in
industrial bioleaching; it has the capacity of generating and maintaining acidic conditions by producing sulfuric acid and
it can also remove sulfur layers from the surface of minerals, which are detrimental for their dissolution. CLST is a strain of
A. thiooxidans able to tolerate moderate chloride concentrations (up to 15 g L−1 Cl−), a feature that is quite unusual in
extreme acidophilic microorganisms. Basic microbiological features and genomic properties of this biotechnologically
relevant strain are described in this work. The 3,974,949 bp draft genome is arranged into 40 scaffolds of 389 contigs
containing 3866 protein-coding genes and 75 RNAs encoding genes. This is the first draft genome of a halotolerant A.
thiooxidans strain. The release of the genome sequence of this strain improves representation of these extreme acidophilic
Gram negative bacteria in public databases and strengthens the framework for further investigation of the physiological
diversity and ecological function of A. thiooxidans populations.

Keywords: Acidithiobacillaceae, Halotolerance, Osmotolerance, Sulfur oxidization, Flexible gene complement, Bioleaching,
Mars analog, Salar de Gorbea

Introduction
The genus Acidithiobacillus comprises a group of obligatory
acidophilic, Gram negative, rod shaped bacteria that derive
energy from the aerobic oxidation of reduced sulfur com-
pounds (RISCs) to support autotrophic growth. In the
process of oxidizing RISCs, these bacteria produce sulfuric
acid and contribute to the bioleaching of ores. Currently, the
genus comprises seven described species, A. thiooxidans
ATCC 19377, Acidithiobacillus ferrooxidans ATCC2327,
Acidithiobacillus albertensis ATCC35403, Acidithiobacillus

caldus DSM 8584 [1], Acidithiobacillus ferrivorans [2],
Acidtithiobacillus ferridurans [3] and Acidithiobacillus ferri-
philus [4]. Despite being the first acidophile ever isolated [5],
A. thiooxidans investigation lags behind other members of
the genus, especially when compared to the iron oxidizer A.
ferrooxidans, for which extensive knowledge on its basic eco-
physiology and biotechnological use has been gathered [6].
The draft genomes of ten isolates of A. thiooxidans are

available: the type strain ATCC 19377 obtained from the
Kimmeridge clay formation in England [7], the strain
DSM 17318 named Licanantay isolated from a copper
mine in northern Chile [8], the A01 strain isolated from
wastewater of a coal dump in China [9] and seven other
isolates obtained from copper mines (BY-02, DXS-W,
GD1-3, TYC-17, ZBY) and coal heaps (A02, DMC) in
China [10].
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The A. thiooxidans type strain (ATCC 19377) is
motile, grows on elemental sulfur, thiosulfate or tetra-
thionate, and has temperature optimum of 30 °C and a
pH optimum of 2.0 to 3.0 [1]. Members of the species
have been found to occur in a variety of natural-acidic
and man-made environments, including sulfidic caves
[11], shales [12], fresh water [13], sea water [14], sewer
pipes [15], mineral leaching heaps [16], mine dumps [17]
and mine wastes [18] from different parts of the world.
With the exception of A. thiooxidans strain SH isolated
from sea water, which has a confirmed requirement of
NaCl (2%; 0.35 M) for growth in synthetic media [14],
all characterized A. thiooxidans strains are inhibited by
even moderate NaCl concentrations [19].
A. thiooxidans CLST is a new NaCl tolerant strain

(15 g L−1 Cl−) isolated from the Gorbea salt flat in the
Central Andean plateau (Bolivia, Chile and Argentina,
between 19° and 27° S latitude). This salt flat is located
in an endorheic basin displaying strongly acidic brines
(with a pH between 2 and 4 and a salinity ranging
between 1.7 - 76.9 g L−1 NaCl) and one of the few acid
saline systems known worldwide [20–22]. These uncom-
mon types of natural extreme environments are consid-
ered terrestrial analogs to certain ancient Martian
terrains and a source of new material for biotechno-
logical applications [23, 24].
This work reports the microbiological properties of this

NaCl-tolerant acidophilic sulfur-oxidizing Acidithiobacil-
lus from the saline environment in northern Chile, to-
gether with its draft genomic sequence and annotation.
The release of the genome of the CLST strain will contrib-
ute to a better understanding of the ecophysiology of

extreme acidophiles inhabiting saline environments
and of sodium-requiring processes (e.g. symport, anti-
port, flagellar rotation, etc.), in acidophilic chemo-
lithotrophic bacteria. Knowledge derived from the
study may also provide new opportunities in biotech-
nological and astrobiological endeavors.

Organism information
Classification and features
A. thiooxidans CLST was isolated at the Biotechnol-
ogy Center (CBAR-UCN) from a sulfur enrichment
culture designed to select acidophilic bacteria that
could oxidize RISCs under saline conditions. Briefly,
salt-water samples obtained from the Gorbea salt flat
were inoculated in a batch reactor containing minimal
medium [25] and elemental sulfur as energy source.
Phylogenetic analysis of the 16S rRNA sequence indi-
cated that the CLST strain (DSM 103717) is related
to A. thiooxidans (Fig. 1). CLST cells are Gram-
negative, rod-shaped (0.4 μm× 1-1.5 μm) and motile
(Fig. 2). Optimal growth occurs at 28 °C and pH 1.7.
It grows autotrophically using sulfur as electron
donor and oxygen as the electron acceptor. It is also
a facultative anaerobe capable of using RISCs as elec-
tron donors and ferric iron as an electron acceptor.
Strain CLST forms small white colonies when grown
autotrophically on solid medium containing RISCs. It
differs from closely related strains, Licanantay and
A01 (JMEB00000000 and FJ154514, respectively), in
its capacity to grow in 15 g L−1 of chloride. The
microorganism information is presented in Table 1.

Fig. 1 Phylogenetic tree based on the 16S rRNA gene sequences highlighting the position of Acidithiobacillus thiooxidans strain CLST relative to other type
and non-type strains of the genus Acidithiobacillus. The GenBank database accession codes are indicated between brackets. The evolutionary history was
inferred by using the Maximum Parsimony and the Subtree-Pruning-Regrafting (SPR) algorithm with search level 1 [52]. The initial trees were obtained by
the random addition of sequences. The analysis involved 16 nucleotide sequences and a total of 1307 non-ambiguous positions in the final dataset.
Evolutionary analyses were conducted in MEGA version 6.22 [53]. Tree construction used a bootstrapping process repeated 1000 times to generate a
majority consensus tree. A sequence from Thermithiobacillus tepidarius was used as outgroup. The tree is drawn to scale, with branch lengths calculated
using the average pathway method [53]; the scale bar corresponds to the number of changes over the whole sequence
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Extended feature descriptions
The growth rate of A. thiooxidans type strain ATCC
19377 undergoes a significant decrease (μ from 0.76 to
0.52 day−1) at NaCl concentration of 325 mM compared
with growth on culture medium without the salt
(Additional file 1: Figure S1). Meanwhile there is not a
significant change in the growth rate of A. thiooxidans
CLST in the same conditions. In addition A. thiooxidans
CLST precipitates CuS when it is grown aerobically in
culture medium amended with CuSO4 (Additional file 2:
Figure S2). This feature has been already observed in E.
coli associated to the heterologous expression of the
enzyme cysteine desulfhydrase [26]. We identified the
gene for a previously described cysteine desulfhydrase
(CdsH) in the genome of A. thiooxidans CLST strain. CdsH
appears to be the major cysteine-degrading and sulfide-
producing enzyme aerobically but not anaerobically [27].

Fig. 2 Scanning electron microscopy image of Acidithiobacillus
thiooxidans strain CLST

Table 1 Classification and general features of A. thiooxidans CLST

MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [44]

Phylum Proteobacteria TAS [45]

Class Acidithiobacillia TAS [46]

Order Acidithiobacillales TAS [38]

Family Acidithiobacillaceae TAS [39, 47]

Genus Acidithiobacillus TAS [1]

Species Acidithiobacillus thiooxidans TAS [1, 5]

Strain: CLST (DSM 103717) IDA

Gram stain Negative IDA

Cell shape Rod IDA

Motility Motile IDA

Sporulation Not reported IDA

Temperature range 25 -35 °C IDA

Optimum temperature 28 °C IDA

Optimum pH 1.7 IDA

Carbon source CO2 TAS [25]

MIGS-6 Habitat Brine, acidic hypersaline environment IDA

MIGS-6.3 Salinity 10 -15 gL−1 chloride IDA

MIGS-22 Oxygen requirement Aerobic and facultative anaerobic IDA

MIGS-15 Biotic relationship Free-living TAS [48]

MIGS-14 Pathogenicity Non-pathogen NAS

MIGS-4 Geographic location Gorbea salt flat, Antofagasta region, Chile IDA

MIGS-5 Sample collection 11/20/2007 IDA

MIGS-4.1 Latitude 25°25′72.2´´S IDA

MIGS-4.2 Longitude 68°41′53.2´´W IDA

MIGS-4.4 Altitude 4000 m.a.s.l. IDA
aEvidence codes - IDA Inferred from Direct Assay, TAS Traceable Author Statement (i.e., a direct report exists in the literature), NAS Non-traceable Author Statement
(i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence
codes are from the Gene Ontology project [49]. Data is in compliance with MIGS version 2.0 [50] and the NamesforLife database [51]
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Genome sequencing information
Genome project history
The organism was selected for sequencing on the basis
of its phylogenetic position and 16S rRNA similarity to
members of the genus Acidithiobacillus, and for its atyp-
ical origin; coming from an extreme acidic and saline
biotope. This Whole Genome Shotgun project has been
deposited at GenBank under the accession number
LGYM00000000. The version described in this paper is
the first version, LGYM00000000. The project informa-
tion is presented in Table 2.

Growth conditions and genomic DNA preparation
The culture obtained from this reactor grew at 15 g L−1

Cl− and exhibited sulfur oxidizing activity. Strain CLST
was isolated by plating the reactors culture medium
using Phytagel 1% as gelling agent. Strain CLST was
grown in minimal medium (0.4 g L−1, (NH4) 2SO4, 0.4 g
L−1, MgSO4 × 7H2O, 0.2 g L−1, K2HPO4 and 3.93 g L−1,
CuSO4, pH 1.7) containing NaCl (24.7 g L−1). After suc-
cessive subculturing (three times), DNA was isolated
using High Pure Template Preparation Kit (Roche,
Germany) according to the manufacturer instructions.

Genome sequencing and assembly
The genome of A. thiooxidans strain CLST was sequenced
at Beckman Coulter Genomics using 454 sequencing tech-
nology and mate pair libraries with insert sizes of ~500 bp
[28]. Pyrosequencing reads were assembled de novo using
Newbler (v2.0.01.14). The final draft assembly contained
389 contigs in 40 scaffolds ranging in size from 2298 bp to
409,853 bp. The total size of the genome is ~3,9 Mbp and
the final assembly is based on 82 Mbp of 454 data, which
provides an average 36× coverage of the genome.

Genome annotation
Genes were predicted using Glimmer 3.02 [29] as part of
the RAST annotation pipeline [30]. The tRNA and
tmRNA identification was achieved using ARAGORN
v1.2.36 [31] and the rRNA prediction was carried out
with HMMER3 [32]. Additional gene prediction analysis
and manual functional annotation was performed at the
Center for Bioinformatics and Genome Biology (CBGB-
FCV). The predicted CDSs were used to search the
NCBI non-redundant database, UniProt, TIGRFam,
Pfam, PRIAM, KEGG, COG and InterPro databases.

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality Draft

MIGS-28 Libraries used GS FLX Titanium paired end libraries

MIGS 29 Sequencing platforms Roche 454 GS FLX

MIGS 31.2 Fold coverage 36 ×

MIGS 30 Assemblers Newbler 2.0.01.14

MIGS 32 Gene calling method Glimmer 3.02

Genbank ID LGYM00000000

GenBank Date of Release 2017-04-05

GOLD ID Gp0136483

BIOPROJECT PRJNA291500

MIGS 13 Source Material Identifier Gorbea-A

Project relevance Territorial biodiversity, Tree of Life, Biomining, Astrobiology

Table 3 Genome statistics

Attribute Value % of Totala

Genome size (bp) 3,974,949 100.00

DNA coding (bp) 3,051,435 76.76

DNA G + C (bp) 1,939,775 48.80

DNA scaffolds 40 100.00

Total genesb 3941 100.00

Protein coding genes 3866 98.09

RNA genesc 75 1.91

Pseudo genesd n.d. n.d.

Genes in internal clusters 2118 54.78

Genes with function prediction 2468 63.38

Genes assigned to COGs 1803 46.63

Genes with Pfam domains 2634 68.13

Genes with signal peptides 292 7.55

Genes with transmembrane helices 880 22.33

CRISPR repeats 0 0.00
aThe total is based on either the size of the genome in base pairs or the total
number of genes in the annotated genome
bIncludes tRNA, tmRNA, rRNA
cIncludes 23S, 16S and 5S rRNA
dn.d.: Not determined
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Protein coding genes were analyzed for the presence of
signal peptides using SignalP v4.1 [33] and transmem-
brane helices using TMHMM v2.0 [34].

Genome properties
The draft genome contains 3,974,949 nucleotides and
has an average G + C content of 48.8% (Table 3).
From a total of 3941 genes, 3866 are predicted to be
protein coding genes and 75 are RNA genes. The
RNA genes partitioned into 1 tmRNA, 1 rRNA op-
eron and 71 tRNAs distributed in 17 scaffolds (40%
of which map to a single scaffold), suggesting the
presence of an additional complete set of tRNAs as in
the case of strain Licanantay [8] and A. ferrooxidans
type strain (ATCC 23270) [35]. Predicted protein
functional distributions follow highly similar profiles
of other A. thiooxidans sequenced strains according
to COG classification, with 36% of the genes being
related to metabolism, 26% to information flux and
15% to cellular structure maintenance. A total of

43.63% of the genes were assigned a putative function
while the remaining were annotated as hypotheticals.
The distribution of genes in COGs functional categor-
ies is presented in Table 4.

Insights from the genome sequence
A. thiooxidans CLST predicted gene complement was
compared against the genome of the type strain of the
species (ATCC 19377) and the publically available draft
genomes of nine additional strains using the sequence
based comparison tools of RAST [36, 37]. CLST shares
86% of its gene complement with the most similar strain
in the set (Licanantay) and little over 70% with the type
strain of the species (ATCC 19377T). All diagnostic fea-
tures of A. thiooxidans strains [1, 38, 39] are encoded in
the core genome, and have been described elsewhere
[7–10]. The exclusive gene complement of strain CLST
encompasses 200 protein-coding genes, 95% of which
are hypotheticals. An additional 1234 genes are partially
shared with a subset of the strains under comparison
(Fig. 3) and thus constitute the flexible gene comple-
ment. A number of these exclusive genes can be linked
to osmotolerance responses, including active uptake of
potassium (kdpFABC), synthesis of the counterion glu-
tamate (glutamate synthase), synthesis of compatible sol-
utes such as the aminoacid Proline (proQ) and possibly
also polyamines (carbamoyl-phosphate synthase). Several
genes involved in mitigation of other types of stress also
formed part of the flexible gene pool of the CLST strain,
including the ruberythrin gene cluster and a non-heme
chloroperoxidase involved in oxidative stress resistance
[40], copper and mercury resistance genes to withstand
metal toxicity [41] and genes for the export of protective
extracellular polysaccharides (kps system) [42]. Be-
sides, these functions and an extensive number of hy-
potheticals, the CLST flexible gene complement also
includes a variety of functions linked mobile genetic
elements of diverse nature [43], suggesting that many
of the differentiating features of CLST may have been
horizontally transferred from other members of the
microbial community.

Conclusions
This work reports the first draft genome and annotation
of a halotolerant acidophilic sulfur-oxidizing Acidithio-
bacillus (A. thioooxidans strain CLST), together with its
basic microbiological properties and fundamental meta-
data from the saline environment in northern Chile from
which it was isolated. The 3.9 Mbp draft genome
sequence of strain CLST is arranged in 40 high quality
scaffolds, being 24% larger than the genome of the type
strain and resembling in size other industrial isolates
recently sequenced. It encodes 75 RNAs and 3866 pre-
dicted protein-coding genes, 43% of which were assigned

Table 4 Number of genes associated with general COG
functional categories

Code Value %age Description

J 165 4.27 Translation, ribosomal structure and biogenesis

A 1 0.03 RNA processing and modification

K 102 2.64 Transcription

L 121 3.13 Replication, recombination and repair

B 0 0.00 Chromatin structure and dynamics

D 31 0.80 Cell cycle control, Cell division, chromosome
partitioning

V 59 1.53 Defense mechanisms

T 111 2.87 Signal transduction mechanisms

M 138 3.57 Cell wall/membrane biogenesis

N 69 1.78 Cell motility

U 46 1.19 Intracellular trafficking and secretion

O 88 2.28 Posttranslational modification, protein turnover,
chaperones

C 124 3.21 Energy production and conversion

G 75 1.94 Carbohydrate transport and metabolism

E 116 3.00 Amino acid transport and metabolism

F 56 1.45 Nucleotide transport and metabolism

H 103 2.66 Coenzyme transport and metabolism

I 53 1.37 Lipid transport and metabolism

P 93 2.41 Inorganic ion transport and metabolism

Q 22 0.57 Secondary metabolites biosynthesis, transport
and catabolism

R 99 2.56 General function prediction only

S 131 3.38 Function unknown

– 2063 53.36 Not in COGs

The total is based on the total number of protein coding genes in the genome
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putative functions. Over one third of the gene comple-
ment is flexible, being represented in few strains other
than CLST. Several of the exclusive genes identified in
this study can be linked to osmotolerance and other
stress responses. Further study of these and other
features will likely provide new insights into sodium-
requiring processes in acidophilic chemolithotrophic
bacteria and further understanding of the mechanisms
used by acidophilic bacteria to endure high osmotic
stress in natural and industrial saline environments. The
release of the genome sequence of this strain improves
the representation of these extreme acidophilic Gram
negative bacteria in public databases and strengthens the
framework for further investigation of the physiological
diversity and ecological function of A. thioooxidans.

Additional files

Additional file 1: Figure S1. (A, C) A. thiooxidans ATCC 19377 cell
growth and growth specific rate with and without NaCl. (B, D) A.
thiooxidans CLST cell growth and growth specific rate with and without
NaCl. (TIFF 272 kb)

Additional file 2: Figure S2. SEM image and EDS spectrum of the
precipitate obtained when A. thiooxidans was grown in a medium
supplemented with CuSO4. (TIFF 206 kb)
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