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Abstract

The sensorimotor system helps to maintain functional joint stability during movement. After

anterior cruciate ligament (ACL) injury and reconstruction, several sensorimotor deficits

may arise, including altered proprioception and changes in neuromuscular control. It is still

unknown whether the type of autograft used in the reconstruction may influence knee sen-

sorimotor impairments. The aim of this study was to comparatively assess the effects of the

hamstring tendon (HT) and bone-patellar tendon-bone (BPTB) ACL reconstruction tech-

niques on knee sensorimotor control 6–12 months post-operation. A total of 83 male sub-

jects participated in this study: 27 healthy participants, 30 BPTB-operated patients and 26

HT-operated patients. Active joint position sense in 3 ranges of motion (90–60˚, 60–30˚, and

30–0˚ of knee flexion), isometric steadiness, and onset of muscle activation were used to

compare sensorimotor system function between groups. Both operated groups had a small

(< 5˚) but significant joint position sense error in the 30–0˚ range when compared to the

healthy group. No significant differences were found between the operated and the control

groups for isometric steadiness or onset of muscle activation. The results of this study sug-

gest that operated patients present knee proprioceptive deficits independently of surgical

technique. Nevertheless, the clinical implications of this impairment are still unknown. It

seems that selected surgical approach for ACL reconstruction do not affect functioning of

the sensorimotor system to a large degree.
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Introduction

The sensorimotor system encompasses all the afferent, efferent, and central integration- pro-

cessing components involved in maintaining functional joint stability during body movements

[1, 2]. Inadequate functioning of this system may predispose joint damage [3, 4], a situation

that commonly occurs after ligament injury. Following anterior cruciate ligament (ACL)

injury, various sensorimotor impairments may occur, including proprioceptive deficit [5–10],

decreased quadriceps and hamstrings strength [11–13], and alterations in muscle activation

onset patterns [14]. Moreover, an ACL injury can produce alterations in ligament afferent sig-

nals that provoke altered brain activity patterns during knee movements [15]. While some def-

icits can be compensated by a greater flow of afferent information from other somatosensory

pathways (e.g. visual feedback) [16], in some patients, these compensations are insufficient for

recovering functional joint stability.

When the conservative treatment for ACL injury is unsuccessful in restoring knee joint

functionality, ACL reconstruction (ACLR) may be indicated to restore joint stability. How-

ever, sensorimotor impairments and dynamic deficiencies may persist after surgery [17]. For

instance, muscle recruitment patterns [18] and muscle strength [19] may remain altered in

asymptomatic subjects even when some clinical indicators are within normal ranges. In an

extensive literature review, Gokeler et al. [20] indicated that proprioceptive deficits detected by

commonly used tests in ACLR patients are not conclusive in detecting sensorimotor impair-

ments. As such, a comprehensive sensorimotor evaluation is needed to assess the function of

the joint before returning to normal activities, a decision that in some cases, is based on subjec-

tive judgement or time-after-surgery criteria [21]. Assessments that evaluate the integrity and

function of sensorimotor components by measuring variables along the afferent or efferent

pathways may be used to obtain broader information about joint functionality after ACL

injury and surgery [22].

In ACLR patients, reconstruction type may be an important factor related to impaired sen-

sorimotor control [23]. For instance, during the post-operative stage, the graft used for the

reconstruction contributes to tissue and mechanoreceptors regeneration [24, 25]. Neverthe-

less, the exact time needed for mechanoreceptors to appear is unclear, as is the time needed for

other somatosensory pathways to compensate for the lower afferent signals coming from the

ligament [25, 26]. This altered afferent information results in knee sensorimotor deficits,

which may be dependent on the autograft used for ACLR [27]. While quadriceps muscle

strength/activation deficits [28], knee proprioception impairment [8], and altered muscle acti-

vation patterns [29–31], among other alterations, are present in patients who receive either a

bone patellar tendon bone (BPTB) graft or a hamstring tendon (HT) graft, some studies report

differences in sensorimotor impairments between graft types [32, 33]. Therefore, existing

knowledge on the effects of graft type on sensorimotor control of the knee is still conflicting.

The aim of this study was to comparatively assess the effects of the HT and BPTB ACL

reconstruction techniques on knee sensorimotor control in patients 6–12 months post-opera-

tion. Essential methods to assess the components of the sensorimotor system [22] were used

including: joint-position sense (JPS), muscle tension sense (steadiness), and onset time of

electromyographic (EMG) activity of knee muscles during an unexpected perturbation. These

methods evaluate the afferent and efferent components of functional joint stability [22] that

may be affected differently in each type of graft. Therefore, this information may help to estab-

lish the status of individual sensorimotor components that contributes to joint stability during

the post-operative period and recovery phase [22]. Due to the nature of the surgery, we

hypothesized that the type of graft would differentially impact at least one dimension of senso-

rimotor control.
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Materials and methods

Participants

Participants were recruited by public announcements within the clinic and by contacting

ACLR patients listed in the clinic’s database. A total of 30 healthy participants and 89 ACLR

patients were contacted within a timeframe of 18 months and were interviewed to assess clini-

cal eligibility. Subject exclusion criteria included the following: any previous surgical interven-

tion in the lower extremities (healthy subjects); acute or chronic pain in the lower extremities

within the past six months (healthy subjects); more than one concomitant injury/repair during

surgery (e.g. tibial collateral ligament injury plus meniscus repair; operated subjects); body

mass index higher than 30 (both groups); chronic ankle instability (both groups). After check-

ing for inclusion and exclusion criteria, 83 males were invited to participate in the study, and

were divided into three groups: control (n = 27), BPTB (n = 30) and HT (n = 26). Anthropo-

metric characteristics of each group are presented in Table 1. All operated patients were

assessed 6 to 12 months post-surgery (8.6 ± 2.3 months). All study participants scored between

four and seven on the Tegner scale for physical activity [34].

All reconstructed patients were rehabilitated at the same clinic with the same general aims

for each rehabilitation phase [17]. However, specific precautions were taken for each type of

graft, with excessive stress avoided over the anatomical zone where the graft was obtained. The

aims of the first six weeks of rehabilitation were to reduce inflammation, restore the knee

range of motion, favor muscle activation, and gait retraining. In the second stage, (six weeks

post-surgery), the aims were to strengthen the knee musculature and increase neuromuscular

control. In the third stage (12 weeks post-surgery), the aims were to normalize knee muscula-

ture strength and to start jogging. In the final stage (20 and 32 weeks post-surgery), the aim

was to restore functional performance (e.g. in plyometric exercises, jumping, and changes in

direction) [17]. All participants provided signed informed consent before participating in the

study, which was approved by the Ethical Committee of the Faculty of Medicine, Pontificia

Universidad Catolica de Chile and was conducted in accordance with the Declaration of

Helsinki.

Measurements

The testing order was randomized by the investigators. Grouping assignments were sorted by

the principal investigator, who was blinded to information regarding surgical method and the

post-operation time of each patient. The sensorimotor control of the knee was measured

through: (a) JPS in three distinct ranges of joint movement; (b) quadriceps muscle tension sen-

sation using the isometric steadiness technique, and; (c) EMG onset of muscle activation of

Table 1. Anthropometric characteristics, time post-surgery and activity level of each group.

Groups

Control (n = 27) BPTB (n = 30) HT (n = 26)

Age (years) 24.27 ± 3.28 25.77 ± 4.47 26.60 ± 5.74

Weight (kg) 75.90 ± 8.53 73.16 ± 7.46 78.08 ± 9.40

Height (m) 1.76 ± 0.06 1.72 ± 0.06 1.74 ± 0.06

BMI (kg/m2) 24.28 ± 2.07 24.69 ± 1.80 25.48 ± 2.42

Time Post-Surgery (months) — 7.77 ± 2.28 8.92 ± 2.30

Activity Level (Tegner Scale) 6.40 ± 1.71 5.88 ± 1.41 5.39 ± 1.99

Characteristics of each study group. Values are mean ± standard deviation. HT: hamstring tendon; BPTB: bone-tendon-bone.

https://doi.org/10.1371/journal.pone.0205658.t001
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vastus medialis, vastus lateralis, semitendinosus, and biceps femoris muscles after an unex-

pected perturbation. The test side for ACLR subjects was the reconstructed leg, whereas the

test side for control subjects was pseudorandomly selected to counterbalance the ACLR limbs.

This resulted in three groups that were used for comparisons: (i) leg of the healthy subjects

(control group); (ii) reconstructed leg of patients operated with the HT method; and (iii)

reconstructed leg of patients operated with the BPTB method.

Joint-position sense. The aim of this test was to evaluate JPS, the ability of subjects to

actively replicate a previously determined joint position [22, 35]. Angular measurements of the

knee joint were taken with a uniaxial electrogoniometer (Kinetecnics, Santiago, Chile) using

an incremental encoder (Hengstler, Aldingen, Germany) connected to a computer. The

encoder was adapted for the patient with a rod, enabling knee angle assessment (Fig 1A). This

device was shown to have a good resolution (5000 pulses, 0.072˚ of resolution) with a high

reproducibility rate (intraclass correlation coefficient = 0.999). As previously reported [36],

three ranges of movement (90–60˚, 60–30˚, and 30–0˚) were used [5, 7], with 0˚ being knee

full extension. These ranges were chosen because previous studies suggest that afferent dis-

charge of capsule-ligamentous proprioceptors is influenced by joint angle, where different dis-

charge rates occur within the knee range of motion [37]

For the test, each subject was seated on the edge of a stretcher, with the fulcrum of the elec-

trogoniometer aligned with the axis of the knee (i.e. lateral femoral condyle). For each range, a

target knee angle was first achieved using visual feedback on a computer screen to ensure that

the subject selected the target within the ranges of movement pre-established for the evalua-

tion. While the subject was extending their knee, a green light appeared on the screen if the

knee angle was within the range of movement, and a red light appeared if the knee angle was

out of range. Once a target angle was chosen, the subject pushed a button associated with the

encoder system, which saved the selected target angle in the computer. In other words, each

subject chose any angle within the range of movement as the target angle for the JPS assess-

ment, angle that was used in the consecutive repetitions. This procedure was repeated for each

Fig 1. Knee sensorimotor assessment. A Joint-position sense test with the uniaxial electrogoniometer. B Steadiness test (green line) with the load cell and paradigm set

to 15% maximum isometric voluntary contraction (red line). C Muscle activation onset test in the knee, showing the positions of the surface EMG sensors and platform.

https://doi.org/10.1371/journal.pone.0205658.g001
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of the assessed ranges (i.e., 90–60˚, 60–30˚, and 30–0˚), obtaining three different target angles

for each of the ranges [36]. Later, without visual feedback, the subject tried to reproduce the

target angle for each of the ranges. Independent of the evaluated range of movement, subjects

started from 90˚ of knee flexion towards extension. This procedure was repeated 10 times for

each extremity and for each of the defined ranges of joint movement. Therefore, a total of 30

repetitions were obtained. For each repetition, the absolute value of the difference between the

achieved angle and the target angle was calculated (e.g. error angle). Then, the differences of

the 10 repetitions were finally averaged for each range. The joint position signals from the elec-

trogoniometer were processed on Igor Pro 6.0 software (WaveMetrics Inc, Lake Oswego,

USA).

Muscle tension sensation: Steadiness. The purpose of this assessment was to evaluate the

ability of subjects to maintain a constant force at 15% of maximum voluntary isometric con-

traction, which reflects fine muscle control [38, 39]. Isometric steadiness was represented as

the coefficient of variation between the target and the force maintained by the subject. First,

the maximum voluntary isometric contraction (MVIC) was assessed. Participants were seated

in an instrumented chair with approximately 90˚ of knee flexion, with a load cell (Scottdale,

Arizona, USA) anchored to the distal end of the leg at the level of the ankle (Fig 1B). Partici-

pants were asked to exert an MVIC of the knee extensor muscles for 4 s. This procedure was

repeated three times, with a rest period of 1 min between each repetition. The signal from the

load cell was captured with a Trigno Wireless System amplifier (Delsys, Boston, USA) at a

sample frequency of 2000 Hz, where the maximum force obtained between the three repeti-

tions was selected for further analysis.

Knee isometric steadiness was evaluated with the same setup as the MVIC assessment. A

computer screen projected a trapezoidal figure (Fig 1B), where the upper part represented the

15% of the previously measured MVIC. Each subject was asked to exert knee extensor force to

reach this target, coinciding with the projected trapezoidal figure. Real-time feedback on the

exerted force was provided so that the task could be sustained for 20 s and to match the trape-

zoidal target. Subjects performed four practice trials separated by 45 seconds of rest. After

practice, subjects rested for two minutes and then performed three repetitions of the task, with

a rest period of 1 min between each repetition. Isometric steadiness was quantified as the coef-

ficient of variation between isometric strength fluctuations around the projected trapezoidal

target [38, 39]. Stabilization of the exerted force occurs normally during the first 8 seconds of

the contraction [40], therefore, a visual criteria was used to select the start of the stable signal.

A 10-second window of analysis was used thereafter, beginning from the selected start of the

stable signal. This method has been previously used to analyze the most stable part of the gen-

erated force and has been proven reliable [39, 41]. The final obtained result was the coefficient

of variation (%) of the three repetitions, which is a measure of statistical dispersion that

describes the degree of variability between measurements. Igor Pro 6.0 software was used to

calculate isometric steadiness.

Onset time of muscle activation in the knee muscles. The onset of muscle activation in

the knee muscles was estimated utilizing surface electromyography. EMG bipolar sensors

(Delsys, Boston, USA) were positioned on the vastus medialis, vastus lateralis, semitendinosus,

and biceps femoris muscles of each subject according to SENIAM recommendations [42].

EMG signals were pre-amplified in a simple differential manner, filtered in a bandwidth of

50–450 Hz, and recorded at a sampling frequency of 2000 Hz (Trigno Wireless System, Delsys,

Boston, USA). Two destabilizing platforms elicited perturbations in both lower limbs as previ-

ously reported [22, 30, 43] (Fig 1C). A sudden fall of the platforms causes 20˚ of inversion at

the ankle in a weight-bearing condition. This mechanical perturbation over the ankle causes a

generalized lower limb destabilization, inducing neuromuscular responses to overcome a loss

Knee sensorimotor and anterior cruciate ligament
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in balance [35]. The aim of this method is to stimulate the lower limb in a position that ensures

muscle activation, joint capsule compression, and stretching of the skin during the evaluation,

all of which is crucial information for central proprioception and balance control [35, 44].

The fall of the platform was detected with a triaxial accelerometer (Delsys, Boston, USA)

that was synchronized with the EMG signals. This procedure was performed six times for each

extremity, with the side of perturbation being randomly selected. Blindfolds and earplugs were

used with each participant to nullify the effects of vision and hearing in the evaluations. To cal-

culate the onset of EMG activity, the signals were fully rectified using the Average Rectified

Value (AVR) method. Then, an activation threshold was established as the average of the basal

amplitude plus five standard deviations in a window of 500 ms measured 50 ms prior to the

perturbation. Thus, the start of the muscle activation was defined as any EMG burst that

exceeds the activation threshold [45, 46]. A computational script (Igor Pro 6.0, WaveMetrics

Inc, Lake Oswego, USA) plus visual inspection allowed for the semiautomatic detection of

muscle onset time, defined as the time between the start of perturbation (i.e., stop after the fall

of the platform) and the start of EMG muscle activation. This procedure was performed for

each of the muscles evaluated. Three randomly selected repetitions were averaged, obtaining

the EMG onset latency, which was considered for further analysis.

Statistical analysis

Sample size was estimated based on a one-way analysis of variance (ANOVA) design. Using

an alpha level of 0.05 adjusted by multiple comparison tests after ANOVA, a statistical power

of 0.9 and an estimated effect size of at least 0.8 (Hedges´g) on the difference of average angle

for joint reposition, a sample size of 10 participants per group was obtained [5]. The Shapiro-

Wilk test was used to evaluate normality assumptions for all continuous variables. Thus,

according to data distribution, a one-way analysis of variance (ANOVA) test or a Kruskal-

Wallis test was used to compare JPS, steadiness, and EMG onset among study groups (i.e.:

Control, HT, BPTB). A multiple comparison post hoc test (Scheffé or Dunn’s) was used after

ANOVA. All statistical analyses were performed using the STATA 9.1 software. The level of

significance was set at α = 0.05.

Results

Joint-position sense

The BPTB and HT groups showed significantly higher error values in comparison to the con-

trol group in the 30–0˚ range (p = 0.017 and p = 0.039 respectively) (Fig 2). No other signifi-

cant differences were found when comparing JPS results between control, BPTB, and HT

groups. Details of the JPS results are provided in Fig 2.

Muscle tension sense: Steadiness

The coefficient of variation was 2.91 ± 0.45% for the control, 3.16 ± 1.32% for the BPTB, and

2.41 ± 1.21% for the HT groups. A significant difference was found between the HT and BPTB

groups (p = 0.041) but no difference was found between the HT (p = 0.061) and BPTB

(p = 0.99) vs the control group (Fig 3).

Onset of muscle activation in the knee

No significant differences were found when comparing the onset of muscle activation for the

vastus medialis, vastus lateralis, semitendinosus, and biceps femoris muscles between the Con-

trol, BPTB, and HT groups. Details of these results are presented in Table 2.

Knee sensorimotor and anterior cruciate ligament
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Discussion

The aim of this study was to determine differences in knee sensorimotor control of ACLR

patients operated with HT and BPTB techniques. Our results indicate that 6 to 12 months after

surgery, steadiness and onset of muscle activation are similar between both operated groups

and the control group. However, near full knee extension, small magnitude JPS errors can per-

sist in operated patients independently of surgical approach. While this detriment in JPS is sig-

nificant, the clinical implications of this finding remain unknown.

Joint-position sense

Both operated groups tended to present a higher JPS error than the control group near knee

full extension. Previous evidence support these findings in athletic [9] and non-athletic popu-

lations [10]. Increased errors in JPS in the reconstructed groups may be explained by two theo-

ries. Firstly, an increased error in the capacity to reproduce specific joint positions may be

interpreted as an alteration in the modulation of proprioceptive information by the muscle

Fig 2. Joint position sense results. Comparative results for JPS between the control, HT, and BPTB groups for the three

different angle ranges. Bars represent the mean ± standard deviation (error bars). � indicates significant differences (p< 0.05)

between the assessed variables. Abbreviations: JPS, joint-position sense; HT, hamstrings tendon; BPTB, bone-patellar tendon-

bone.

https://doi.org/10.1371/journal.pone.0205658.g002

Fig 3. Isometric steadiness results. Comparative results for isometric steadiness between the control, HT, and BPTB

groups. Bars represent the mean ± standard deviation (error bars). Abbreviations: HT, hamstrings tendon; BPTB,

bone-patellar tendon-bone.

https://doi.org/10.1371/journal.pone.0205658.g003
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spindle [35, 37]. It has been proposed that the muscle spindle is the final common input of sen-

sory information that the central nervous system uses as feedback for joint position [47] and

sensorimotor control. That is, most of the proprioceptive information provided by joint recep-

tors go through the same afferent pathway of the muscle spindle. The spindle contributes to

muscle force control and joint position sense through a spinal circuit known as the gamma (γ)

loop. This circuit is formed by γ-motoneurons that transmit excitatory/inhibitory pulses to α-

motoneurons via Ia afferents, reflex loop that can be modulated by afferent information [48].

Since mechanoreceptors in the ACL provide important afferent information on the relative

position and movement of the knee joint [1, 9], ACL injury and reconstruction appears to

impair proprioceptive ability through disruption of the transmission and modulation of this

sensory information. Abnormal neurologic output from the articular capsule, the collateral

and the posterior cruciate ligaments may also contribute to this abnormal spindle modulation.

Furthermore, capsuloligamentous structures seems to be more sensitive to joint position

changes near knee extension [37], which may be related with our findings of altered JPS just in

the 30–0˚ range. Therefore, the alteration of JPS in the operated subjects may indicate a

reduced joint position sense ability due to disruption in muscle spindles’ modulation of pro-

prioceptive information.

Another possible explanation for the altered JPS may be related with changes in central ner-

vous system (CNS) after injury and reconstruction. It has been demonstrated that ACL recon-

struction and subsequent rehabilitation process evoke neuroplastic changes at the level motor

cortex that are not normalized after treatment or return to activity [49]. Indeed, these modifi-

cations may elicit supraspinal inhibition of voluntary muscle activation [50], and/or altered

neuromuscular control during functional tasks [51]. Even simple cognitive and sensorimotor

tasks present higher attentional demands [52] and neurocognitive overload [51] in this kind of

patients. This supports the concept that somatosensory, neuroplastic, cognitive, and visual-

motor changes can occur after ACL injury and reconstruction [15]. Therefore, the JPS errors

in this study may result from CNS reorganization and subsequent altered processing of sen-

sory information, which according to our results, seems to be similar for the HT and BPTB

surgical techniques. Our finding of altered JPS in the operated groups can be interpreted from

a different point of view. While significant, the recorded error values for JPS were small (~3˚)

and fall below values established for the clinical relevance (5˚) of similar techniques [53]. Fur-

thermore, it seems that there is no substantial evidence of a strong relationship between joint

position sense ability and functional performance [20]. Previous studies using H-reflexes to

evaluate neuromuscular control in ACLR patients, have found that muscle spindle function

is restored within the first 6 months post-surgery [28]. Further, it has been suggested an

increased neuromuscular excitability (increased H-reflex amplitude) in patients receiving HT

grafts [54]. Therefore, our JPS findings could be considered circumstantial. However, JPS and

H-reflex evaluations when used to infer muscle spindle function are methodologically differ-

ent, thus the obtained results may be interpreted differently. For instance, it can be argued that

Table 2. Onset of muscle activation for the control and operated groups.

Vastus medialis (ms) Vastus lateralis (ms) Semitendinosus (ms) Biceps femoris (ms)

Control 97.54 ± 11.11 99.68 ± 13.70 96.85 ± 8.97 101.2 ± 9.35

BPTB 91.48 ± 11.01 90.95 ± 12.17 91.44 ± 12.12 98.75 ± 11.03

HT 93.41 ± 16.19 93.90 ± 17.29 91.38 ± 12.98 94.00 ± 13.66

Onset of muscle activation for the different muscles and groups. Values are mean ± standard deviation. HT: hamstring tendon; BPTB: bone-tendon-bone.

https://doi.org/10.1371/journal.pone.0205658.t002
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joint repositioning includes a higher proportion of descending activation/inhibition from

supraspinal centers [1, 35], in comparison to H-reflexes which are considered in essence an

estimation of spinal excitability [55]. Overall, the results of this study interpreted in light of the

current literature suggest that the altered JPS found in the operated patients may not have clin-

ical implications.

Muscle tension sense: Steadiness

Force steadiness was not altered in the HT or BPTP groups in comparison to the controls. To

our knowledge, this is the first study comparing this variable between patients with different

ACL surgical grafts. Force fluctuation is dependent on the interaction of multiple features of

motor unit behavior, which change as a function of contraction intensity [56]. Alterations in

motor unit recruitment and rate coding properties or adaptations in the activation pattern of

the motor unit population (e.g., motor unit synchronization and coherence) would affect force

variability [57]. Impairments in force steadiness have been associated with ACL injury and

ACLR [12]. Considering this, the obtained steadiness results suggest that, by 6–12 months

post-surgery, both assessed patient groups (HT and BPTP) had adequately adapted neuromo-

tor control of the knee muscles and were, therefore, able to reduce force fluctuations during

isometric contractions. While the exact mechanisms of this adaptation are unknown, several

hypotheses can be postulated. First, the post-operative period (i.e., 6–12 months) may have

been enough for muscle contraction to recover. Although ACL injury and the degree of graft

regeneration are linked to muscle weakness [16, 28], quadriceps and hamstrings strength

recovers early during the rehabilitation period after ACLR [58] regardless of the degree of graft

regeneration [23, 59] probably due to neuromuscular adaptations such as enhanced ligament-

muscular reflex arc excitability [60]. Second, neuromuscular adaptations such as increased

antagonist coactivation may increase fine muscle control and force steadiness, thus increasing

muscle stiffness and joint stability [11, 12]. Moreover, lower limb training such as within the

rehabilitation process, may improve force steadiness directly [61] or indirectly through

increased muscle coactivation [62]. Therefore, the results of the present study suggest that

commonly used rehabilitation protocols (as used with the assessed patient groups [17]) may

restore force steadiness 6 to 12 months after ACL surgery, independent of the type of graft

used in the surgery. Future studies may use prospective designs to clarify the effect of the reha-

bilitation protocols in force steadiness.

Muscle onset timing after ACLR

The patients in both operated groups presented similar muscle onset values at the moment of

evaluation. In humans, long latency muscle stretch reflex responses occur within 50–200 ms

following an external stimulus [63]. This protective reflex is a rapid muscle response that keeps

the joint stable against perturbations that put stability at risk [64]. Deficits in sensory informa-

tion could alter the latency of a reflex response, thus increasing the risk for joint instability [1].

Prior research has reported that the onset of muscle activation can be delayed in patients with

joint instability [52] and ACLR [63]. For instance, a recent study found that ACL recon-

structed knees present altered muscle onset timing after ankle perturbations while standing

[30]. The possible cause of these differences may be related with the magnitude of the destabili-

zation (30˚ of inversion, 10˚ plantarflexion in their study compared to 20˚ of inversion in this

study). However, our comprehensive rehabilitation process over a large sample size make us

believe that the onset of muscle activation, and the other components of sensorimotor control

evaluated here, may have improved 6 to 12 months post-surgery. Previous literature supports

neuroplastic changes following simple exercise, balance and resistive training, and motor task
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training [49]. These interventions may enhance neurogenesis, improve cognitive function, and

modify nervous system excitability [49], thus enhancing neuromuscular control after ACL

reconstruction. Indeed, supraspinal reorganization may contribute to the restoration of long

latency muscle stretch reflex responses [60], compensating for possible deficits in afferent

information from the joint. Specific muscle strengthening [18] and sensorimotor training can

also increase knee joint stability via enhanced reflex excitability and/or an earlier recruitment

of motoneurons [65]. Thus, the rehabilitation process that the ACLR group of this study

underwent may have partly reestablishing normal functioning of the sensorimotor system

after changes produced by injury and reconstruction. This may be related with the lack of dif-

ferences found between ACL reconstructed groups and the controls. However, these assump-

tions remain as speculations due to the cross-sectional nature of our cohort. Prospective

studies are needed to shed light on the effects of ACLR rehabilitation protocols on specific

components of the sensorimotor system.

Study limitations and future research

The results of this study should be interpreted considering some limitations. As mentioned

before, the JPS difference found between the control and HT groups was small and the clinical

importance of this change remains undetermined. Since afferent information to the muscle

spindle may be influenced in part by joint position, future studies should consider more sensi-

tive methods to asses JPS and spindle function such as the H-reflex [66]. Regarding steadiness,

the measurement of this variable at different joint positions might be desirable, since knee

position may have an effect on muscle force production and muscle activation [67]. In relation

with the measurement of muscle onset around the knee, ankle perturbations may be consid-

ered non-specific as compared to other methods proposed in the literature [63, 68]. Further-

more, the magnitude of the perturbation might not be enough to elicit a clear response in the

knee muscles [30]. However, distal perturbations in a weight bearing situation includes the

proprioceptive information of the ankle, which is crucial in the assessment of lower limb sen-

sorimotor control [35] and might be important in the modulation of muscle spindle function.

Therefore, we believe that this method contributes to assessing the efferent pathways of the

sensorimotor system related to knee stability [22]. Whereas our preliminary results included

women’s in our sample, we were unable to have similar proportions of males and females

between ACLR groups. As it there is a possibility that the male response may drive the differ-

ences with no effect in females, or there can be interactions between gender and the dependent

variables, we opted to exclude women from the final analysis. This means that our conclusions

can only be drawn for male patients. Finally, since sensorimotor impairments after ACLR have

been found at the motor cortex [16] and spine [54], future studies should assess these levels of

the sensorimotor system. Measurement techniques such as functional MRI, transcranial mag-

netic stimulation and H-reflexes among others may be needed to explore central nervous sys-

tem reorganization after ACLR.

Conclusions

ACLR individuals have an altered JPS near knee extension (30–0˚) when compared to control

subjects, independently of the surgical approach utilized. This suggest altered modulation and/

or processing of proprioceptive information. Because JPS impairment was small in magnitude

(~3˚ of error), and since no other altered sensorimotor components (e.g., force steadiness,

muscle onset) were found, the impact of this finding on knee function is arguable. Therefore,

the surgical approach used for ACLR appears to not affect the sensorimotor behavior of the

knee 6 to 12 months after surgery.
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Writing – review & editing: Cristóbal San Martı́n-Mohr, Iver Cristi-Sánchez, Patricio A.

Pincheira.

References

1. Riemann BL, Lephart SM. The sensorimotor system, part I: the physiologic basis of functional joint sta-

bility. J Athl Train. 2002; 37(1):71. PMID: 16558670

2. Riemann BL, Lephart SM. The sensorimotor system, part II: the role of proprioception in motor control

and functional joint stability. J Athl Train. 2002; 37(1):80. PMID: 16558671

3. Myers JB, Lephart SM. The role of the sensorimotor system in the athletic shoulder. J Athl Train. 2000;

35(3):351. PMID: 16558648

4. Myers JB, Wassinger CA, Lephart SM. Sensorimotor contribution to shoulder stability: effect of injury

and rehabilitation. Man Ther. 2006; 11(3):197–201. https://doi.org/10.1016/j.math.2006.04.002 PMID:

16777465

5. Angoules A, Mavrogenis A, Dimitriou R, Karzis K, Drakoulakis E, Michos J, et al. Knee proprioception

following ACL reconstruction; a prospective trial comparing hamstrings with bone–patellar tendon–

bone autograft. Knee. 2011; 18(2):76–82. https://doi.org/10.1016/j.knee.2010.01.009 PMID: 20149662

6. Lee DH, Lee JH, Ahn SE, Park MJ. Effect of Time after Anterior Cruciate Ligament Tears on Propriocep-

tion and Postural Stability. PLoS One. 2015; 10(9):e0139038. https://doi.org/10.1371/journal.pone.

0139038 PMID: 26422800. Pubmed Central PMCID: 4589391.

7. Arockiaraj J, Korula R, Oommen A, Devasahayam S, Wankhar S, Velkumar S, et al. Proprioceptive

changes in the contralateral knee joint following anterior cruciate injury. Bone Joint J. 2013; 95(2):188–

91. https://doi.org/10.1302/0301-620X.95B2.30566 PMID: 23365027

8. Cossich V, Mallrich F, Titonelli V, de Sousa EB, Velasques B, Salles JI. Proprioceptive deficit in individu-

als with unilateral tearing of the anterior cruciate ligament after active evaluation of the sense of joint

position. Rev Bras Ortop. 2014; 49(6):607–12. https://doi.org/10.1016/j.rboe.2013.07.003 PMID:

26229869

9. Relph N, Herrington L. Knee joint position sense ability in elite athletes who have returned to interna-

tional level play following ACL reconstruction: A cross-sectional study. Knee. 2016; 23(6):1029–34.

https://doi.org/10.1016/j.knee.2016.09.005 PMID: 27712856

10. Relph N, Herrington L, Tyson S. The effects of ACL injury on knee proprioception: a meta-analysis.

Physiotherapy. 2014; 100(3):187–95. https://doi.org/10.1016/j.physio.2013.11.002 PMID: 24690442

11. Telianidis S, Perraton L, Clark RA, Pua Y-H, Fortin K, Bryant AL. Diminished sub-maximal quadriceps

force control in anterior cruciate ligament reconstructed patients is related to quadriceps and hamstring

muscle dyskinesia. J Electromyogr Kinesiol. 2014; 24(4):513–9. https://doi.org/10.1016/j.jelekin.2014.

04.014 PMID: 24875460

Knee sensorimotor and anterior cruciate ligament

PLOS ONE | https://doi.org/10.1371/journal.pone.0205658 November 15, 2018 11 / 14

http://www.ncbi.nlm.nih.gov/pubmed/16558670
http://www.ncbi.nlm.nih.gov/pubmed/16558671
http://www.ncbi.nlm.nih.gov/pubmed/16558648
https://doi.org/10.1016/j.math.2006.04.002
http://www.ncbi.nlm.nih.gov/pubmed/16777465
https://doi.org/10.1016/j.knee.2010.01.009
http://www.ncbi.nlm.nih.gov/pubmed/20149662
https://doi.org/10.1371/journal.pone.0139038
https://doi.org/10.1371/journal.pone.0139038
http://www.ncbi.nlm.nih.gov/pubmed/26422800
https://doi.org/10.1302/0301-620X.95B2.30566
http://www.ncbi.nlm.nih.gov/pubmed/23365027
https://doi.org/10.1016/j.rboe.2013.07.003
http://www.ncbi.nlm.nih.gov/pubmed/26229869
https://doi.org/10.1016/j.knee.2016.09.005
http://www.ncbi.nlm.nih.gov/pubmed/27712856
https://doi.org/10.1016/j.physio.2013.11.002
http://www.ncbi.nlm.nih.gov/pubmed/24690442
https://doi.org/10.1016/j.jelekin.2014.04.014
https://doi.org/10.1016/j.jelekin.2014.04.014
http://www.ncbi.nlm.nih.gov/pubmed/24875460
https://doi.org/10.1371/journal.pone.0205658


12. Bryant AL, Clark RA, Pua YH. Morphology of hamstring torque-time curves following acl injury and

reconstruction: mechanisms and implications. J Orthop Res. 2011; 29(6):907–14. https://doi.org/10.

1002/jor.21306 PMID: 21259335

13. Bryant AL, Pua Y-H, Clark RA. Morphology of knee extension torque-time curves following anterior cru-

ciate ligament injury and reconstruction. J Bone Joint Surg Am. 2009; 91(6):1424–31. https://doi.org/10.

2106/JBJS.H.01335 PMID: 19487521

14. Williams GN, Barrance PJ, Snyder-Mackler L, Buchanan TS. Altered quadriceps control in people with

anterior cruciate ligament deficiency. Med Sci Sports Exerc. 2004; 36(7):1089–97. PMID: 15235310

15. Grooms DR, Page SJ, Nichols-Larsen DS, Chaudhari AM, White SE, Onate JA. Neuroplasticity associ-

ated with anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2017; 47(3):180–9.

https://doi.org/10.2519/jospt.2017.7003 PMID: 27817301

16. Nyland J, Gamble C, Franklin T, Caborn DNM. Permanent knee sensorimotor system changes follow-

ing ACL injury and surgery. Knee Surg Sports Traumatol Arthrosc. 2017 May; 25(5):1461–74. https://

doi.org/10.1007/s00167-017-4432-y PMID: 28154888.

17. Kvist J. Rehabilitation Following Anterior Cruciate Ligament Injury: Current Recommendations for

Sports Participation. Sports Med. 2004 February 15, 2004; 34:269–80. https://doi.org/10.2165/

00007256-200434040-00006 PMID: 15049718

18. Crow J, Pizzari T, Buttifant D. Muscle onset can be improved by therapeutic exercise: a systematic

review. Phys Ther Sport. 2011; 12(4):199–209. https://doi.org/10.1016/j.ptsp.2010.12.002 PMID:

22085715

19. Hiemstra LA, Webber S, MacDonald PB, Kriellaars DJ. Knee strength deficits after hamstring tendon

and patellar tendon anterior cruciate ligament reconstruction. Med Sci Sports Exerc. 2000; 32(8):1472–

9. PMID: 10949014

20. Gokeler A, Benjaminse A, Hewett TE, Lephart SM, Engebretsen L, Ageberg E, et al. Proprioceptive def-

icits after ACL injury: are they clinically relevant? Br J Sports Med. 2012; 46(3):180–92. https://doi.org/

10.1136/bjsm.2010.082578 PMID: 21511738

21. Barber-Westin SD, Noyes FR. Factors used to determine return to unrestricted sports activities after

anterior cruciate ligament reconstruction. Arthroscopy. 2011; 27(12):1697–705. https://doi.org/10.1016/

j.arthro.2011.09.009 PMID: 22137326

22. Riemann BL, Myers JB, Lephart SM. Sensorimotor system measurement techniques. J Athl Train.

2002; 37(1):85. PMID: 16558672

23. Takeda Y, Kashiwaguchi S, Matsuura T, Higashida T, Minato A. Hamstring muscle function after tendon

harvest for anterior cruciate ligament reconstruction. Am J Sports Med. 2006; 34(2):281–8. https://doi.

org/10.1177/0363546505279574 PMID: 16210579

24. MacLeod TD, Snyder-Mackler L, Axe MJ, Buchanan TS. Early regeneration determines long-term graft

site morphology and function after reconstruction of the anterior cruciate ligament with semitendinosus-

gracilis autograft: a case series. Int J Sports Phys Ther. 2013; 8(3):256–68. PMID: 23772342

25. Shimizu T, Takahashi T, Wada Y, Tanaka M, Morisawa Y, Yamamoto H. Regeneration process of

mechanoreceptors in the reconstructed anterior cruciate ligament. Arch Orthop Trauma Surg. 1999;

119(7):405–9.

26. Barrack RL, Lund PJ, Munn BG, Wink C, Happel L. Evidence of reinnervation of free patellar tendon

autograft used for anterior cruciate ligament reconstruction. Am J Sports Med. 1997; 25(2):196–202.

https://doi.org/10.1177/036354659702500210 PMID: 9079173

27. Ingersoll CD, Grindstaff TL, Pietrosimone BG, Hart JM. Neuromuscular consequences of anterior cruci-

ate ligament injury. Clin Sports Med. 2008 Jul; 27(3):383–404, vii. https://doi.org/10.1016/j.csm.2008.

03.004 PMID: 18503874.

28. Lepley AS, Gribble PA, Thomas AC, Tevald MA, Sohn DH, Pietrosimone BG. Quadriceps neural alter-

ations in anterior cruciate ligament reconstructed patients: A 6-month longitudinal investigation. Scand

J Med Sci Sports. 2015 Dec; 25(6):828–39. https://doi.org/10.1111/sms.12435 PMID: 25693627.

29. Dalton EC, Pfile KR, Weniger GR, Ingersoll CD, Herman D, Hart JM. Neuromuscular changes after aer-

obic exercise in people with anterior cruciate ligament–reconstructed knees. J Athl Train; 2011.

30. Pincheira PA, Silvestre R, Armijo-Olivo S, Guzman-Venegas R. Ankle perturbation generates bilateral

alteration of knee muscle onset times after unilateral anterior cruciate ligament reconstruction. Peer J.

2018; 6:e5310. https://doi.org/10.7717/peerj.5310 PMID: 30083454

31. Patras K, Ziogas G, Ristanis S, Tsepis E, Stergiou N, Georgoulis AD. ACL reconstructed patients with a

BPTB graft present an impaired vastus lateralis neuromuscular response during high intensity running. J

Sci Med Sport. 2010 Nov; 13(6):573–7. https://doi.org/10.1016/j.jsams.2009.12.001 PMID: 20227341.

32. Aune AK, Holm I, Risberg MA, Jensen HK, Steen H. Four-strand hamstring tendon autograft compared

with patellar tendon-bone autograft for anterior cruciate ligament reconstruction: a randomized study

Knee sensorimotor and anterior cruciate ligament

PLOS ONE | https://doi.org/10.1371/journal.pone.0205658 November 15, 2018 12 / 14

https://doi.org/10.1002/jor.21306
https://doi.org/10.1002/jor.21306
http://www.ncbi.nlm.nih.gov/pubmed/21259335
https://doi.org/10.2106/JBJS.H.01335
https://doi.org/10.2106/JBJS.H.01335
http://www.ncbi.nlm.nih.gov/pubmed/19487521
http://www.ncbi.nlm.nih.gov/pubmed/15235310
https://doi.org/10.2519/jospt.2017.7003
http://www.ncbi.nlm.nih.gov/pubmed/27817301
https://doi.org/10.1007/s00167-017-4432-y
https://doi.org/10.1007/s00167-017-4432-y
http://www.ncbi.nlm.nih.gov/pubmed/28154888
https://doi.org/10.2165/00007256-200434040-00006
https://doi.org/10.2165/00007256-200434040-00006
http://www.ncbi.nlm.nih.gov/pubmed/15049718
https://doi.org/10.1016/j.ptsp.2010.12.002
http://www.ncbi.nlm.nih.gov/pubmed/22085715
http://www.ncbi.nlm.nih.gov/pubmed/10949014
https://doi.org/10.1136/bjsm.2010.082578
https://doi.org/10.1136/bjsm.2010.082578
http://www.ncbi.nlm.nih.gov/pubmed/21511738
https://doi.org/10.1016/j.arthro.2011.09.009
https://doi.org/10.1016/j.arthro.2011.09.009
http://www.ncbi.nlm.nih.gov/pubmed/22137326
http://www.ncbi.nlm.nih.gov/pubmed/16558672
https://doi.org/10.1177/0363546505279574
https://doi.org/10.1177/0363546505279574
http://www.ncbi.nlm.nih.gov/pubmed/16210579
http://www.ncbi.nlm.nih.gov/pubmed/23772342
https://doi.org/10.1177/036354659702500210
http://www.ncbi.nlm.nih.gov/pubmed/9079173
https://doi.org/10.1016/j.csm.2008.03.004
https://doi.org/10.1016/j.csm.2008.03.004
http://www.ncbi.nlm.nih.gov/pubmed/18503874
https://doi.org/10.1111/sms.12435
http://www.ncbi.nlm.nih.gov/pubmed/25693627
https://doi.org/10.7717/peerj.5310
http://www.ncbi.nlm.nih.gov/pubmed/30083454
https://doi.org/10.1016/j.jsams.2009.12.001
http://www.ncbi.nlm.nih.gov/pubmed/20227341
https://doi.org/10.1371/journal.pone.0205658


with two-year follow-up. Am J Sports Med. 2001; 29(6):722–8. https://doi.org/10.1177/

03635465010290060901 PMID: 11734484

33. Heijne A, Werner S. A 2-year follow-up of rehabilitation after ACL reconstruction using patellar tendon

or hamstring tendon grafts: a prospective randomised outcome study. Knee Surg Sports Traumatol

Arthrosc. 2010; 18(6):805–13. https://doi.org/10.1007/s00167-009-0961-3 PMID: 19851754

34. Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res.

1985; 198:42–9.

35. Han J, Waddington G, Adams R, Anson J, Liu Y. Assessing proprioception: a critical review of methods.

J Sport Health Sci. 2016; 5(1):80–90. https://doi.org/10.1016/j.jshs.2014.10.004 PMID: 30356896

36. Panics G, Tallay A, Pavlik A, Berkes I. Effect of proprioception training on knee joint position sense in

female team handball players. Br J Sports Med. 2008; 42(6):472–6. https://doi.org/10.1136/bjsm.2008.

046516 PMID: 18390919

37. Proske U, Gandevia SC. The proprioceptive senses: their roles in signaling body shape, body position

and movement, and muscle force. Physiol Rev. 2012; 92(4):1651–97. https://doi.org/10.1152/physrev.

00048.2011 PMID: 23073629

38. Beck TW, DeFreitas JM, Stock MS, Dillon MA. Effects of resistance training on force steadiness and

common drive. Muscle Nerve. 2011; 43(2):245–50. https://doi.org/10.1002/mus.21836 PMID:

21254090

39. Tracy BL, Enoka RM. Older adults are less steady during submaximal isometric contractions with the

knee extensor muscles. J Appl Physiol. 2002; 92(3):1004–12. https://doi.org/10.1152/japplphysiol.

00954.2001 PMID: 11842033

40. Seynnes O, Hue OA, Garrandes F, Colson SS, Bernard PL, Legros P, et al. Force steadiness in the

lower extremities as an independent predictor of functional performance in older women. J Aging Phys

Act. 2005; 13(4):395–408. PMID: 16301752

41. Carville SF, Perry MC, Rutherford OM, Smith ICH, Newham DJ. Steadiness of quadriceps contractions

in young and older adults with and without a history of falling. Eur J Appl Physiol. 2007; 100(5):527–33.

https://doi.org/10.1007/s00421-006-0245-2 PMID: 16983499

42. Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, et al. European recommendations for

surface electromyography. Roessingh Research and Development. 1999; 8(2):13–54.

43. Hopkins JT, McLoda T, McCaw S. Muscle activation following sudden ankle inversion during standing

and walking. Eur J Appl Physiol. 2007; 99(4):371–8. https://doi.org/10.1007/s00421-006-0356-9 PMID:

17165055

44. Han J, Anson J, Waddington G, Adams R, Liu Y. The Role of Ankle Proprioception for Balance Control

in relation to Sports Performance and Injury. Biomed Res Int. 2015; 2015:842804. Pubmed Central

PMCID: https://doi.org/10.1155/2015/842804 PMID: 26583139.

45. Hodges PW, Bui BH. A comparison of computer-based methods for the determination of onset of mus-

cle contraction using electromyography. Electroencephalogr Clin Neurophysiol. 1996; 101(6):511–9.

PMID: 9020824

46. Staude G, Flachenecker C, Daumer M, Wolf W. Onset detection in surface electromyographic signals:

a systematic comparison of methods. EURASIP J Appl Signal Processing. 2001; 2001(1):67–81.

47. Needle AR, Charles BBS, Farquhar WB, Thomas SJ, Rose WC, Kaminski TW. Muscle spindle traffic in

functionally unstable ankles during ligamentous stress. J Athl Train. 2013 Mar-Apr; 48(2):192–202.

https://doi.org/10.4085/1062-6050-48.1.09 PMID: 23672383. Pubmed Central PMCID: 3600921.

48. Rice DA, McNair PJ, editors. Quadriceps arthrogenic muscle inhibition: neural mechanisms and treat-

ment perspectives. Semin Arthritis Rheum; 2010: Elsevier.

49. Needle AR, Lepley AS, Grooms DR. Central Nervous System Adaptation After Ligamentous Injury: a

Summary of Theories, Evidence, and Clinical Interpretation. Sports Med. 2017 Jul; 47(7):1271–88.

https://doi.org/10.1007/s40279-016-0666-y PMID: 28005191.

50. Urbach D, Awiszus F. Impaired ability of voluntary quadriceps activation bilaterally interferes with func-

tion testing after knee injuries. A twitch interpolation study. Int J Sports Med. 2002; 23(04):231–6.

51. Dingenen B, Janssens L, Claes S, Bellemans J, Staes FF. Lower extremity muscle activation onset

times during the transition from double-leg stance to single-leg stance in anterior cruciate ligament

reconstructed subjects. Clin Biomech (Bristol, Avon). 2016; 35:116–23.

52. Negahban H, Ahmadi P, Salehi R, Mehravar M, Goharpey S. Attentional demands of postural control

during single leg stance in patients with anterior cruciate ligament reconstruction. Neurosci Lett. 2013;

556:118–23. https://doi.org/10.1016/j.neulet.2013.10.022 PMID: 24157849

53. Burgess P, Wei JY, Clark F, Simon J. Signaling of kinesthetic information by peripheral sensory recep-

tors. Annu Rev Neurosci. 1982; 5(1):171–88.

Knee sensorimotor and anterior cruciate ligament

PLOS ONE | https://doi.org/10.1371/journal.pone.0205658 November 15, 2018 13 / 14

https://doi.org/10.1177/03635465010290060901
https://doi.org/10.1177/03635465010290060901
http://www.ncbi.nlm.nih.gov/pubmed/11734484
https://doi.org/10.1007/s00167-009-0961-3
http://www.ncbi.nlm.nih.gov/pubmed/19851754
https://doi.org/10.1016/j.jshs.2014.10.004
http://www.ncbi.nlm.nih.gov/pubmed/30356896
https://doi.org/10.1136/bjsm.2008.046516
https://doi.org/10.1136/bjsm.2008.046516
http://www.ncbi.nlm.nih.gov/pubmed/18390919
https://doi.org/10.1152/physrev.00048.2011
https://doi.org/10.1152/physrev.00048.2011
http://www.ncbi.nlm.nih.gov/pubmed/23073629
https://doi.org/10.1002/mus.21836
http://www.ncbi.nlm.nih.gov/pubmed/21254090
https://doi.org/10.1152/japplphysiol.00954.2001
https://doi.org/10.1152/japplphysiol.00954.2001
http://www.ncbi.nlm.nih.gov/pubmed/11842033
http://www.ncbi.nlm.nih.gov/pubmed/16301752
https://doi.org/10.1007/s00421-006-0245-2
http://www.ncbi.nlm.nih.gov/pubmed/16983499
https://doi.org/10.1007/s00421-006-0356-9
http://www.ncbi.nlm.nih.gov/pubmed/17165055
https://doi.org/10.1155/2015/842804
http://www.ncbi.nlm.nih.gov/pubmed/26583139
http://www.ncbi.nlm.nih.gov/pubmed/9020824
https://doi.org/10.4085/1062-6050-48.1.09
http://www.ncbi.nlm.nih.gov/pubmed/23672383
https://doi.org/10.1007/s40279-016-0666-y
http://www.ncbi.nlm.nih.gov/pubmed/28005191
https://doi.org/10.1016/j.neulet.2013.10.022
http://www.ncbi.nlm.nih.gov/pubmed/24157849
https://doi.org/10.1371/journal.pone.0205658


54. Rosenthal M, Moore J, Stoneman P, DeBerardino T. Neuromuscular excitability changes in the vastus

medialis following anterior cruciate ligament reconstruction. Electromyogr Clin Neurophysiol. 2009; 49

(1):43–51. PMID: 19280799

55. Burke D. Clinical uses of H reflexes of upper and lower limb muscles. Clinical Neurophysiology Practice.

2016; 1:9–17. https://doi.org/10.1016/j.cnp.2016.02.003 PMID: 30214954

56. Taylor AM, Christou EA, Enoka RM. Multiple features of motor-unit activity influence force fluctuations

during isometric contractions. J Neurophysiol. 2003; 90(2):1350–61. https://doi.org/10.1152/jn.00056.

2003 PMID: 12702706

57. Vila-ChãC, Hassanlouei H, Farina D, Falla D. Eccentric exercise and delayed onset muscle soreness

of the quadriceps induce adjustments in agonist–antagonist activity, which are dependent on the motor

task. Exp Brain Res. 2012; 216(3):385–95. https://doi.org/10.1007/s00221-011-2942-2 PMID:

22094715

58. Harput G, Kilinc HE, Ozer H, Baltaci G, Mattacola CG. Quadriceps and Hamstring Strength Recovery

During Early Neuromuscular Rehabilitation After ACL Hamstring-Tendon Autograft Reconstruction. J

Sport Rehabil. 2015 Nov; 24(4):398–404. https://doi.org/10.1123/jsr.2014-0224 PMID: 26633588.

59. Janssen RP, van der Velden MJ, Pasmans HL, Sala HA. Regeneration of hamstring tendons after ante-

rior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2013; 21(4):898–905.

https://doi.org/10.1007/s00167-012-2125-0 PMID: 22763570

60. Mrachacz-Kersting N, Grey MJ, Sinkjær T. Evidence for a supraspinal contribution to the human quadri-

ceps long-latency stretch reflex. Exp Brain Res. 2006; 168(4):529. https://doi.org/10.1007/s00221-005-

0120-0 PMID: 16240144
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