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1 Introduction

During the last decade there was a great improvement in the understanding of N = 4
super Yang-Mills theory due to integrability techniques, culminating in a proposal where
the anomalous dimension of any operator can be computed at any coupling [1]. The crucial
point of this advance was the realization that the computations of anomalous dimensions
could be systematically done by studying the dilatation operator of the theory [2, 3]. For a
general review and an extensive list of references, we recommend [4]. An alternative to the
TBA approach not covered in [4], the Quantum Spectral Curve, was developed in [5, 6].
For some of its applications, including high loops computations, see [7—12]

On the string theory side it is that known the world sheet sigma-model is classically
integrable [13, 14]. However, it is not yet known how to fully quantize the theory, identifying



all physical vertex operators and their correlation functions. In the case of the pure spinor
string it is known that the model is conformally invariant at all orders of perturbation
theory and that the non-local charges found in [14] exist in the quantum theory [15].
In a very interesting paper, [16] showed how to obtain the Y-system equations from the
holonomy operator.

Another direction in which the pure spinor formalism was used with success was the
quantization around classical configurations. In [17] it was shown that the semi-classical
quantization of a large class of classical backgrounds agrees with the Green-Schwarz for-
malism. This was later generalized in [18, 19]. Previously, Mazzucato and one of the
authors [20] attempted to use canonical quantization around a massive string solution to
calculate the anomalous dimension of a member of the Konishi multiplet at strong coupling.
Although the result agrees with both the prediction from integrability and Green-Schwarz
formalism, this approach has several issues that make results unreliable [21].!

An alternative and more desirable approach is to use CET techniques to study vertex
operators and correlation functions since scattering amplitudes are more easily calculated
using this approach. A first step is to identify physical vertex operators. Since the pure
spinor formalism is based on BRST quantization, physical vertex operators should be in the
cohomology of the BRST charge. For massless states, progress has been made in [22-25].
For massive states the computation of the cohomology in a covariant way is a daunting
task even in flat space [26].

A simpler requirement for physical vertices is that they should be primary operators
of dimension zero for the unintegrated vertices and primaries of dimension (1,1) in the
integrated case. Massless unintegrated vertex operators in the pure spinor formalism are
local operators with ghost number (1, 1) constructed in terms of zero classical conformal
dimension fields [27]. So for them to remain primary when quantum corrections are taken
into account, their anomalous dimension should vanish. Massless integrated vertices have
zero ghost number and classical conformal dimension (1,1). Therefore they will also be
primaries when their anomalous dimension vanishes. Operators of higher mass level are
constructed using fields with higher classical conformal dimension. For general mass level
n (where n = 1 corresponds to the massless states) the unintegrated vertex operators have
classical conformal dimension (n—1,n—1). If such vertex has anomalous dimension ~, the
condition for it to be primary is 2n — 2 + v = 0. The case for integrated vertex operators
is similar. For strings in flat space ~ is always %’“2, which is the anomalous dimension of
the plane wave ¢”*X. This reproduces the usual mass level formula.

This task of computing v can be made algorithmic in the same spirit as the four
dimensional SYM case [2, 3]. However, here we are interested in finding the subset of
operators satisfying the requirements described above. The value of the energy of the
corresponding string state should come as the solution to an algebraic equation obtained
from this requirement. However we do not expect the energy to be simply one of the
parameters in the vertex operator. The proper way to identify the energy is to compute
the conserved charge related to it and apply it to the vertex operator.

The authors would like to thank Martin Heinze for discussions on the subject.



In this paper we intend to systematize the computation of anomalous dimensions in
the worldsheet by computing all one-loop logarithmic short distance singularities in the
product of operators with at most two derivatives. To find the answer for operators with
more derivatives one simply has to compute the higher order expansion in the momentum
of our basic propagator. We used the method applied by Wegner in [28] for the O(n)
model, but modified for the background field method. This was already used with success
in [29, 30] for some Zg-super-coset sigma models. The pure spinor string is a Z, coset and
it has an interacting ghost system. This makes it more difficult to organize the dilatation
operator in a concise expression and to find a solution to

D-0=0. (1.1)

We can select a set of “letters” {¢”'} among the basic fields of the sigma model, e.g.
the AdS coordinates, ghosts and derivatives of these fields. Unlike the case of N' =4 SYM,
the worldsheet derivative is not one of the elements of the set, so fields with a different
number of derivatives correspond to different letters. Then ® is of the form

o_lore_ O (1.2)
2 OO ’
Local worldsheet operators are of the form
O =Vpqrsr-¢" ¢ %" -, (1.3)

the problem is to find V4 g p p... such that O satisfy (1.1). Another important difference
with the usual case is that the order of letters does not matter, so O is not a spin chain.

The problem of finding physical vertices satisfying this condition will be postponed to
a future publication. Here we will compute © and apply it to some local operators in the
sigma model which should have vanishing anomalous dimension. The search for vertex oper-
ators in AdS using this approach was already discussed in [31] but without the contribution
from the superspace variables. The author used the same “pairing” rules computed in [28].

This paper is organized as follows. In section 2 we describe the method used by Wegner
in [28] for the simple case of the principal chiral field. This method consists of solving a
Schwinger-Dyson equation in the background field expansion. In section 3 we explain how
to apply these aforementioned method to the pure spinor AdS string case. The main
derivation and results are presented in the appendix B. Section 4 contains applications,
where we use our results to compute the anomalous dimension of several conserved currents.
Conclusions and further applications are in section 5.

2 Renormalization of operators in the principal chiral model

The purpose of this section is to review the computation of logarithmic divergences of
operators in principal chiral models using the background field method. Although this is
standard knowledge, the approach taken here is somewhat unorthodox so we include it
for the sake of completeness. Also, the derivation of the full propagators in the case of
AdS5 x S° is analogous to what is done in this section, so we omit their derivations.



Consider a principal model in some group G, with corresponding Lie algebra g, in two
dimensions. The action is given by

1

S=-—
2mar?

/dQZ Tr 99~ 'dg, (2.1)

where « is the coupling constant and g € G. Using the left-invariant currents J = ¢g~'dg
and defining vA = 1/a? we can also write

\ _
S = VA d*zTr JJ. (2.2)
27

The full one-loop propagator is derived from the Schwinger-Dyson equation

(0:50(y)) = (3:0(y)), (2.3)

where 0, is an arbitrary local variation of the fundamental fields and O(y) is a local
operator. This equation comes from the functional integral definition of (- - - ). In order to be
more explicit, let us consider a parametrization of g in terms of quantum fluctuations and a
classical background ¢ = goeX, where g is the classical background, X = X*J, and J, € g
are the generators of the algebra. Then a variation of ¢ is given by dg = ¢gd X, and §.X =
0 X3, where we have the variation of the independent fields X . Also, the variation of some

general operator O is 6O = 5@2 0X® Then we can write the Schwinger-Dyson equation as

(20 = (s 2

and now it is clear that this is a consequence of the identity

/[DX] 5Xi(z) (e50(y)) = 0. (2.5)

In the case that O(y) = X (y) we get the Schwinger-Dyson equation for the propagator

(o 0 ) = 8202 = 2. (26)

This is a textbook way to get the equation for the propagator in free field theories
and our goal here is to solve this equation for the interacting case at one loop order.
The perturbative expansion of the action is done using the background field method. A
fixed background gg is chosen and the quantum fluctuation is defined as g = goe™. The
expansion of the current is given by

J=eXJeX + e X0eX, (2.7)

where J = gy 19go is the background current. At one loop order only quadratic terms in
the quantum field expansion contribute and, as usual, linear terms cancel by the use of the
background equation of motion. This means that we can separate the relevant terms action



in two pieces S = S(g) + S(2). Furthermore, S(,) contains the kinetic term plus interactions
with the background. So we have

S = S(0) + Skin + Sint- (2.8)

If we insert this into (2.6) the terms that depend purely on the background cancel and
we are left with

5Skin b 5Sint b b2
(s X0 + s X4(0) ) = 820y — 2) (2.9
Since 6(;?111(%2) = —2—\/585X *(z) and (gﬁir(‘;) is linear in quantum fields we can write
\/X 3 a b 2 52511113 c b ad ab 2
- L200:X0 X)) + [ Pus et (X)X ) =y 2). (210)

Finally, this is the equation that we have to solve. It is an integral equation for
(X(2)X"(y)) = G®(z,y) which is the one-loop corrected propagator. The interacting
part of the action is

Sint = \2/5 / iz {—;Tr([c?X, X]7) - %Tr([éX, x17)| (2.11)

where the boldface fields stand for the background fields.
Now we calculate?

S Q[a 6% (w — 2)Tr([Te, Ta)J) + 0u0?(w — 2)Tr([Te, To) )], (2.12)
5Xc<u))(5Xa(z> - 27T w cy +a w cy+a 9 N
which is symmetric under exchange of (a, z) and (¢, w), as expected. We define f2° = fé’dnda.

So we get the following equation for the propagator

Y ™ cae c T€ 3 c e
0.0.G™(z,y) = —ﬁnabfsz(y —2)+ 5 ((‘LG Pz, y)J° + 0-G(z,y)T ) - (213)

Performing the Fourier transform
G*(z,k) = /dee_ik'(z_y)Gac(z,y), (2.14)

we finally get

ab 3
ab _n m O ab Q ab Q ab
G (z,k)——ﬁ—|k|2+—’k|2G (z,k:)—{—sz (z,k:)—l—sz (2, k)

a F€ i z cb a ge i 72 cb
- 4,6 - iy 08 . 2.1
o <2k 2|I<:]2> G?(z, k) — foJ (k 2k|2) G?(z,k) (2.15)

The dependence on one of the coordinates remains because the presence of background
fields breaks translation invariance on the worldsheet. We can solve the equation above
iteratively in inverse powers of k. The first few contributions are given by

ab . a je J¢
Gab z, k) = LL - 1T ce cb (_ + )
( ) \A‘MQ 2\F/\|/€’2n 2 k

2Using the equation of motion for the background 9J + 9.J = 0.




1
db eqf f f egf
—s JJ +J°g JJ J°J
4f cefdf ‘k’2 <‘k"2( + )+k‘ +k‘ >
m Udbfdf f
+ 07" + - an ) 2.16
T (m (210
With this solution we can finally do the inverse Fourier transform,
G*(z,y) = / k- NG (2, k), (2.17)
’ 4n2© ’

to calculate G%(z,y). If we are only interested in the divergent part of the propagator we
can already set z = y. Furthermore, selecting only the divergent terms in the momentum
integrals we get

I

XY 2)X(2)) = —=n*°, 2.18
(X*(2)X(2)) 7 (2.18)
(X9(2)0X°(2)) = ——yle 3. J* (2.19)
2\/X77 de* > .
_ I _
X%(2)0X (2)) = ——=n™f.J", 2.20
(XH(2)0X5(2)) = =3 e (2.20)
XO(2)00X"(2)) = o ge pa (g3t + T4 2.21
(XU (IX1() = T Fip S (9707 + 0T (2:21)
(XU2)00X"(2)) = — I —n® an@+1—” dbfa go ge g/, (2.22)
2v/A a/n " Teeldr
(X9(2)0X°(2)) = — Ty o 53¢ 4 1Ty dbpa e ge s (2.23)
2\/X77 ce 4\577 cel df ’ :
where 2te k(o)
1 d*te ehle—y
I=——=1i — 2.24
2me xg%/ 472 |k|? (2:24)
in d = 2 + ¢ dimensions, using the standard dimensional regularization [28]. Since

I{X40XC) = (0X20XC) + (X*9?X®) we can further compute

OX*(:)0X"(2)) = T ™" 7)), (2.25)
_ Im cb ra B Te Im ¢ ra /F€ 3 e
(OX* (200X () = == 1200 = e e (T + 7T, (2:20)

From now on (-) will mean only the logarithmically divergent part of the expectation
value. A simple way to extract this information is by defining

2
(0) = 5 [ Pty s (XX ) (227)

for any local operator O. Furthermore, we define

(0,0 = / Pedy )f_f(z) %(xa(@xb@». (2.28)




Following [31] we will call it “pairing” rules. For local operators these two definitions always
give two delta functions, effectively setting all fields at the same point. So the computation
of (-) can be summarized as

_ 1 ayb 0 —
where
D= 1(X“Xb>872 (2.30)
2 dXe9XP '
is the dilatation operator. We can also define (-,-) as
00 o0’
AN avyvb
<(9,O>—<XX>6XaaXb. (2.31)

With the above definitions, the divergent part of any product of local operators at the
same point can be computed using.

(00") = (0)0' + 0(0') + (0, 0'). (2.32)

Several known results can be derived using this simple set of rules. Following this procedure
in the case of the symmetric space SO(N + 1)/SO(N) gives the same results obtained by
Wegner [28] using a different method.

3 Dilatation operator for the AdSs x S° superstring

In this section we will apply the same technique to the case of the pure spinor AdS string.
We begin with a review of the pure spinor description, pointing out the differences be-
tween this model and the principal chiral model, and then describe the main steps of the
computation.

3.1 Pure spinor AdS string

The pure spinor string [14, 15, 26] in AdS has the same starting point as the Metsaev-
Tseyltin [32]. The maximally supersymmetric type IIB background AdSs x S° is described

by the supercoset
G PSU(2,2[4)

- = . 3.1
H SO(1,4) x SO(5) (3.1)
The pure spinor action is given by
R [, 1 - 1. . 3. - .
Sps = o d*zSTr §J2J2+ZJ1J3+ZJ1J3+WV)\+OJV)\—NN , (3.2)
where
V-=09 +[Jo, ], N = {w, A}, N = {&, A}. (3.3)

There are several difference between the principal chiral model action and (3.2). First,
the model is coupled to ghosts. The pure spinor action also contains a Wess-Zumino term,



and the global invariant current J belongs to the psu(2,2[4) algebra, which is a graded
algebra, with grading 4. Thus we split the current as J = A+ J; + Jo + J3, where A = Jy
belongs to the algebra of the quotient group H = SO(1,4) x SO(5). The notation that we
use for currents of different grade is

Jo=JTi; T =Jd0Ta;  Jo=Jy Ty J3=J{Ts. (3.4)
The ghosts fields are defined as
A= M\Ty; w= —wAnAATA; )\:)\ATA; oﬁ::cDBnBBTB. (3.5)

Note that A and A’ indices on the ghosts mean a and &, but we will use a different letter
in order to make it easier to distinguish which terms come from ghosts and which come
from the algebra. The pure spinor condition can be written as

{MNAY={\ A =o0. (3.6)

Following the principal chiral model example, we expand g around a classical back-
ground go using the g = goeX parametrization. It is worth noting that X = xq+x1 +xo+23
belongs to the psu(2,2|4) algebra, but we can use the coset property to fix o = 0. With
this information the quantum expansion of the left invariant current is

3

& 1
A=A+ Z <[Jz'7 Ta—i] + 5 [Vﬂcz‘,mi]) + Z ([Jis25], w8—ij]

i1 ij—1
3 . 3
Jy=J;+ Vo + Z ([Jz', Taqi—i| + 5 [Vfﬂi,$4+5—i]> + Z [Jisz5] 5 x81—i—j]
i=1 i,j=1 (37)
A=A+ oA,
w=w + dw,
A= X+,
w=w+ow.

Where we take xg = 0 as mentioned before, and we used go_lago =J =A+J1+Jo+Js.
The boldface terms stand for the background term, both for the currents and for the ghost
fields. Using all this information inside the action we get

R2

L o i »
Sps =5 / &2z [zvx?w%mn — Va§Va§naa + 0wadoAt + 600001 | + Sine. (3.8)

The full expansion can be found in the appendix C. In order to compute the logarithmic
divergences, we need to generalize the method explained in section 2 for a coset model with
ghosts. The following subsection is devoted to explain this generalization.



3.2 General coset model coupled to ghosts

In this subsection we generalize the method of section 2 to the case of a general coset
G/H and then specialize for the pure spinor string case. We will denote the corresponding
algebras g and b, where h should be a subalgebra of g. The generators of g — h will be
denoted by T, where a = 1 to dimy — dimy, and the generators of h will be denoted by T;
where i = 1 to dimy. We also include a pair of first order systems (A, wp) and A &pr)
transforming in two representations (I''% ,Fiﬁ,' ) of h. We will assume that the algebra g
has the following commutation relations

[T, T) = foTe+ f4Th,  [To, T = foTy, [T Ty = f5Th, (3.9)

where f # 0 for a general coset and fS, = 0 if there is a Zy symmetry, i.e., G/H is a sym-
metric space. As in the usual sigma model g € G/H and the currents J = g~ 'dg are invari-
ant by left global transformations in G. We can decompose J = JT,, + A'T; where J°T, €
g—h and A'T; € h. With this decomposition K transforms in the adjoint representation of h
and A transforms as a connection. We will also allow a quartic interaction in the first order
sector. Defining N* = )\Afiﬁwg and Nt = ;\A/Fiﬁ,/djgr, the interaction will be BNiJ\AfZ- where
5 is a new coupling constant that in principle is not related with the sigma model coupling.
The total action is given by

S = / 42z (Tr (J = A)(J — A) + waVAd + o0 VA + mw’Ni) , (3.10)

where (V,V) = (0 — AT, ,0 — AT;}) are the covariant derivatives for the first order
system ensuring gauge invariance.

The background field expansion is different if we are in a general coset or a symmetric
space. Since we want to generalize the results to the case of AdS5x S®, we will use a notation
that keeps both types of interactions. Again, the quantum coset element is written as
g = goe™ where g is the classical background and X = X°T, are the quantum fluctuations.
Up to quadratic terms in the quantum fluctuation the expansion of the action is

S=S+ / d?z (nabvxaﬁxb — Zape T XV X = Zpe T X PV X+ Rapeg T T XX (3.11)

+0wABEN + 60 OINY + AN+ AN+ ({5, w}+{A, 0w})’ ({08, 0} +{X,60}) )

i

where the covariant derivatives on X are (0 — [A, - ],0 — [A, - ]). The tensors
(Zabe, Zabes Rapeqd) appearing above are model dependent. In the case of a symmetric space
Z =2 =0and Rypeqg = féb fica- In the general coset case Zype = Zape = % fabe- If there is a
Wess-Zumino term, the values of Z,;. and Zg,. can differ. Since we want to do the general
case, we will not substitute the values of these tensor until the end of the computations.

In the action above the quantum connections have the following expansion

. . . 1 . .
A= A"+ LT X0 + 3 fVXeXb L Wi JIX X 4 - (3.12)



IV L 1 . _ .
A= A [T X0 4 S f VXX W JO XX (3.13)

where Wébc = % fgb fflc for a general coset and vanishes for a symmetric space.

To proceed, we have to compute the second order variation of the action with respect
to the quantum fields. The difference this time is that there are many more couplings, so
we expect a system of coupled Schwinger-Dyson equations, corresponding to each possible
corrected propagator. For example, in the free theory approximation there is no propagator
between the sigma model fluctuation and the first order system, but due to the interactions
there we may have corrected propagators between them.

Since a propagator is not a gauge invariant quantity, it can depend on gauge dependent
combinations of the background gauge fields (A%, A?). Furthermore, since we have chiral
fields transforming in two different representations of h it is possible that the quantum
theory has anomalies. In the case of the AdSs x S° string sigma-model it was argued by
Berkovits [15] that there is no anomaly for all loops. An explicit one loop computation was
done in [33]. Therefore it is safe to assume that the background gauge fields only appear
in physical quantities in a gauge invariant combination. The simplest combination of this
type is Tr[V, V]?. Since the classical conformal dimension of this combination is four and
so far we are interested in operators of classical conformal dimension 0 and 2, we can safely
ignore all interactions with (A*, A%).

We will assume a linear quantum variation of the first order system, e.g., A4 — A4+
dA4. Instead of introducing more notation and a cumbersome interaction Lagrangian, we
will simply compute the variations of these fields in the action and set to their background
values the remaining fields.

With all these simplifications and constraints in mind, let us start constructing the
Schwinger-Dyson equations. First we compute all possible non-vanishing second variations
of the action

2
% = 52(z—w) chd(Rcdab+Rcdba) +NijC(Wgab+Wciba)+NiJC(Wciab+nga)i|
— 0002 (z=W)[Zeap T+ [, Ni| — 000% (2—w) [ Zean T+ f1, N3], (3.14a)
2
5(;551;:3 = 0%(z — w)BL'E N, (3.14b)
2
% = 0%(z = w) (Tiw)a fi ", (3.14c)
G _ 0*(z — w)B(Mw) a(Li@) B, (3.14d)
SAAGAB'
0% Sint — 52 i AT\ B’
3isoy — 0 ¢~ wBIIwW) AL, (3.14e)
& = §%(z — w)BN'T; 5 (3.14f)
SAA 86 A ‘
ﬁ—ﬁ(z—w)(fw) frad® (3.14g)
SAGXa A b e
ﬂ = 6%(z — w) BT B(T3@) ar (3.14h)
A dwp ’

,10,



6251nt

T atn = 52(z — w)Y(ALY) B L T° (3.14i)
_PSim §%(z — w)(ALY) P fi Jb 3.14j
5Xa($(2)B/ - (z 'LU)( Z) fba ’ ( . _])
8w _ 5%(z — w) BATHA(AL) P (3.14k)
Sw A0 Yo ’

We are going to denote these second order derivatives generically as Isz(z,w) where
a A

Y and A can be any of the indices (*, 4, g, Al p). Also, the quantum fields will be denoted
by ®*(z). With this notation the Schwinger-Dyson equations are
5Skin % 9 62 Sint T 5 b
) dW———r— (P ) =0y0(z —v). 1
(a0 + [ ot S @ ) ) = Koz =) (319

Note that the only non-vanishing components of Jy are n, 5§ and 6§:. Since the
type and the position of the indices completely identity the field, the propagators are
going to be denoted by G¥A(z,1) = (®>(2)®"(y)). Since we five different types of fields,
we have fifteen coupled Schwinger-Dyson equations to solve. Again we have to make a
simplification. Interpreting (A%, A\?’) as left and right moving ghosts and knowing that in
the pure spinor superstring unintegrated vertex operators have ghost number (1,1) with
respect to (G, @), we will concentrate on only four corrected propagators (X%(z)X"(y)),
(XA (), (X2(2)AY (y)) and (A(2)AY (y)). As in the principal chiral model case we
are going to solve the Schwinger-Dyson equations first in momentum space. It is useful to
note that since we will solve this equations in inverse powers of k, the first contributions
to the corrected propagators will have the form
cya n B oy ~ 3B 55'/
<XX>%W, (wWaA )%?, (WarA”) = e (3.16)

Regarding (A, A’) as one type of index we can arrange the whole Schwinger-Dyson

equation into a matrix notation with three main blocks. Doing the same Fourier transform
as before we get a matrix equation that can be solved iteratively

G5, = Iff + (Fsr + Axr)G', (3.17)
where
%0 0
Lk
A
=10 o —i% |, (3.18)
0 % o
k — —
52 @EHig i 00
int .
Fyr = <ossor Ayp = 0 —i2 0 |- (3.19)
0 0 i2

All elements of the interaction matrix Fxr are shown in appendix C. As in section 2, the
solution to equation (3.17) is computed iteratively

GO =rf,  aWE=FrIf, (3.20)

and so on for higher inverse powers of k.

— 11 —



3.3 Pairing rules

As discussed in the introduction and section 2, the computation of the divergent part of
any local operator can be summarized by the pairing rules of a set of letters {¢”'}. The
complete set of these pairing rules can be found in the appendix C. If we choose a set of
letters such that (¢’) = 0, then the divergent part of the product of two letters is simply

(#7p9) = (6", ¢%). (3.21)

We computed the momentum space Green function up to quartic inverse power of
momentum so we must restrict our set of letters to fundamental fields up to classical

dimension one. The convenient set of letter we will use is
(0T} = {23, 2, 2§, J9, J0, IS, Jo, Jo, T2, J5 Jos M wa, ML @4, NY N (3.22)

If we extend the computation to take into account operators with more than two deriva-
tives the set of letters has to be extended to include them. The matrix elements of the
dilation operator D7 ¢ = (oF, ¢Q> are the full set of pairings described in appendix C.4. To
avoid cumbersome notation, the pairing rules are written contracting with the correspond-
ing psu(2,2|4) generator. The computations done in next section are a straightforward
application of the differential operator
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1
D= _oFe
2
on a a local operator of the form O = VPQRST...¢P¢Q¢R¢S¢T cee

4 Applications

In this section we use our results to prove that certain important operators in the pure
spinor sigma model are not renormalized. The operators we choose are stress energy tensor,
the conserved currents related to the global PSU(2,2|4) symmetry and the composite b-
ghost. All these operators are a fundamental part of the formalism and it is a consistency
check that they are indeed not renormalized. All the computations bellow are an application
of the differential operator (3.23). We use the notation (O) =9 - O.

4.1 Stress-energy tensor

The holomorphic and anti-holomorphic stress-energy tensor for (3.2) are given by
T = STr (;JQJQ + iJs + wVA) , (4.1)
T — STy (;Jm T+ wv&) . (4.2)
For the holomorphic one

(T) = STr <;<J2, Ta) + (1, Jg) — N<J0)>

— 12 —



= STI' <;[N7 Tm] [N, Tn]nmn - [Nv TCY] [N7 Td]na&

1 ad ad mn
N (N Tl T = (N Tl T + [N, Tl T
= 0. (4.3)
We used the results in (C.101), (C.126) and the identity (B.5). A similar computations

happens to the antiholomorphic T, where now we use the results in (C.102), (C.127) and
the identity (B.6).

4.2 Conserved currents

The string sigma model is invariant under global left-multiplications by an element of
psu(2,2|4), 6g = Ag. We can calculate the conserved currents related to this symmetry
using standard Noether method. The currents are given by

, 3 1 i _
J:9<J2+2J3+2J1—2N>9 L=gAg™, (4.4)
= R R 7\ -1 i.—1
J=9 J2+§J3+§J1—2N g =gAg . (4.5)

They should be free of divergences. To see that this is the case, it is easier to compute
by parts:

G) = (9)Agy ™t + (9, Agy " + (9 A, g7 + 90(A, g7 + goAlg ™) + go(Agy ' (4.6)

We have defined (AB, C) as usual, but taking B as a classical field, thus (AB,C) =
(A, BC). From (C.100) we get (A) = 0, and using (C.99) we obtain

() Agy" + {94, 97") + a0 Alg™") = Joo(([4, X, X])gp"
= 200 (AT Tuli™ + {4, Ta), Tuh
~{A, T, Tah™) g (4.7)

For the currents, using the results (C.105)—(C.110),

90 (9, T+ (1,97 g0 = —{[J2, Tal, Ta 30 —{[J3, Tal, Ta 30" +{[N, Ta], Ta}n%, (4.8)
90 9, J2)+(J2, 9~ g0 = —[[T3, Ton), Tuln™ + [N, T, To]n™, (4.9)
90 9, J3)+(Js, 97 g0 = —{[N, To], Ta }n™?, (4.10)
90 (9: N)+(N, g~ ")go =0, (4.11)

but we already know that {[J13,T.],Tp} g** = 0, for a = {i,m, o, &}, see (B.7). Thus,

g5 g0 = —5 (IN.Tal To) + {IN, ] Ta}) ™
45 (72 Tl T — (102, Tl Tad ) (112)

,13,



By lowering all the terms in the structure coefficients, we can see that the first term is
just (f,,, 5 fiap — fiap fja 3)770“3‘17/3/3 , and the second term is proportional to the dual coxeter
number, see (B.5), (B.6), which is 0. Thus, summing everything, we get

(j) = 0. (4.13)

For the antiholomorphic current we just obtain, using the same results as before,

9o (g, T+ (T g™ Dgo = ([N, Tal, Ta}n?, (4.14)
9o (9, J2) + (2, 97 ) go = ([T 1. Tl Tl i™ + [N, Ton], Tul™, (4.15)
90 (9, J3)+(T5. g g0 = {[T 1, Ta], Tayn®® +{[ T2, Tu], Tayn™® —{[N, Tn], Ta}n*®, (4.16)

and using {[J13,Tu],Th} g*° = 0 we see that doing the same as j, we arrive at (j) = 0.

4.3 b ghost

The pure spinor formalism does not have fundamental conformal ghosts. However, in
a consistent string theory, the stress-energy tensor must be BRST exact T = {Q,b}. So
there must exist a composite operator of ghost number —1 and conformal weight 2. The flat
space b-ghost was first computed in [34] and a simplified expression for it in the AdSs x S°
background was derived in [35]. In our notation, the left and right moving b-ghosts can be

written as
b= (A\\)"IST (X[Jg, J] + {w, A}, Jl]) ~ ST (wlh), (4.17)
b= (A\\)"ISTr (A[jQ, J] + L@ A, Jg]) — STy (@J3) (4.18)
where (AA) = A3y 4.
Let us first compute the divergent part of the left moving ghost; we will need the
results from (C.142) to (C.152):
(b) = (AN)TISTr(A[Ja, Js] + {w, A} 1)) — (AX) "2(AN)STr (X[Jg, Js] + {w, AJ[A, Jﬂ)
— (AN (M), STr (X[JQ, Js] + {w, AV, Jl])) — STr(wh), (4.19)
The (A)) term is easy,
(ON) = =AAX 242 g = 0 (4.20)
where we have used (B.7). The (w.J;) term is also 0. The other terms are
STr(AL o, Ja]) = =STr ([A T[T, T, To) + T2, [T5, )9 ") (4.21)
= =STx (I\ T, 12, allg) = ST (I[A 1] T]192, T3] ) =0,

we used fmﬁfjaﬁgijno‘d =0, see (B.7). The next term is

STr({w, A}[A, J1]) = —STr (Hw,Tz’]’ AT T ]+ {w, N TN T3, T4

— 14 —



o, AT 1. 3]) g7

= =STr ({w, A TIHT D T+ TN T 3] + A [ T ) 6

=0, (4.22)
which comes from the Jacobi identity, see appendix B. The remaining terms are computed
using A A

ML Tng 4 = =W T, = 0 AW g3, (4.23)
thus

((AN), STt (&[JZ, Jg]) )=STr ([5\, A A [Jo, Jg]) +STr (:\[[JQ, T3, ;\}]) —0, (4.24)
((AR), ST ({u, AL, B])=STr ({e, [A A AYHA 1] = {fw, DA A} LA, 4]
+{w, AL A AN 1))
=28Tr ({w, [\, (A AMHA, 1)) =0, (4.25)

which is true due to the pure spinor condition.
For (b) one needs to use the same relations from above.

5 Conclusions and further directions

In this paper we outlined a general method to compute the logarithmic divergences of local
operators of the pure spinor string in an AdSs x S background. In the text we derived
in detail the case for operators up to classical dimension two, but the method extends to
any classical dimension. Although the worldsheet anomalous dimension is not related to
a physical observable, as in the case of N=4 SYM, physical vertex operators should not
have quantum corrections to their classical dimension. The main application of our work
is to systematize the search for physical vertex operators. We presented some consistency
checks verifying that some conserved local operators are not renormalized.

The basic example is the radius operator discussed in [35]. It has ghost number (1,1)
and zero classical dimension. In our notation it can be written as

V = Str(AN), (5.1)
If we apply the pairing rules to compute (V') we obtain
(V) = =Ig"str([\, T\, T5)) = 0, (5.2)

where in the last equality we replaced the structure constants and used one of the identities
in the appendix A. This can be generalized to other massless and massive vertex operators.
We plan to return to this problem in the future.

A more interesting direction is to try to organize the dilatation operator including the
higher derivative contributions. As we commented in the introduction, the difficulty here
is that the pure spinor action is not an usual coset action as in [29, 30]. However, it might
still be possible to obtain the complete one loop dilatation operator restricting to some
subsector of the psu(2,2|4) algebra, in a way similar as it was done for super Yang-Mills
dilatation operator [2].
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A Notation and conventions

Here we collect the conventions and notation used in this paper. We work with euclidean
world sheet with coordinates (z, z).

We split the current as J = A+ K. We define K = J; + Jo + J3 € psu(2,2|4) and
A = Jy belongs to the stability group algebra.? The notation that we use for the different
graded generators is given by

Jo = J4Ty; Jy = J0Ty Jo = J8 T, ; J3 = J4Ty. (A1)
The ghosts fields are defined as
A=MTy;  w=—wa™Ty; A=MT 0 =0m"PTs. (A.2)

The only non-zero Str of generators are

gij = STYT; T}, (A.3)
Nmn = STrT T, (A.4)
Naa = STYTQT&. (A5)

For the raising and lowering of fermionic indices in the structure constants we use

fmaﬁ = Uaafgm and fm@B = —TNaa gm’ (Aﬁ)

and for the f,4; the rule is the same. For the bosonic case we use the standard rais-

ing/lowering procedure.

B Some identities for psu(2,2|4)

Let A, B and C be bosons, X, Y and Z fermions, then, the generalized Jacobi Identities are

[A,[B, Ol + [B,[C, A]] + [C, [A, B]] = 0, (B.1)
[4,[B, X]] + [B, [X, A]] + [X, [4, B]] = 0, (B.2)
{X, VAl +{Y, [ X, A]} + [A,{X,Y}] =0, (B.3)
(X AY, 2} + [V A{Z, X} + [2,{X, Y} =0 (B4)

3 Although we did not use the K term in the main text, it will be useful from now on to use this term
in order to pack several results.
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In this theory the dual-coxeter number is 0, this implies

[A T), Tjlg" — {[A, Ta), Ta}n®® + [[A, Tl Tl™ + {[A, Ta), Ta}n®® = 0, (B.5)
[[XaTiLTj]gij - [{X’ Ta}7Toz]77&d + [[X7Tm]7Tn]77mn + [{X7T&}7Ta]nad = 0. (B'G)

The Jacobi identity yields frnas/f,,4 617"”"”77"‘0‘ =0and f, 5 fiapg” n®® = 0. This implies
that

[[J13. T3], Tjlg” = [[ 1.3 T, Ton™ = {[J1.3, Tu), Ta 0 = {[J1.3, Ts], Ta}n** = 0, (B.7)
[wH+A+0+NT],Tlg7 = [[w+ A +&+ X\ T, TnJy™ =0, (B.8)
Hw+ A+ 4+ NTo}, Taln™ = Hw+ A+ 0+ X, Tat, To)n®® = 0.

Another useful property of this theory is the pure spinor condition eq. (3.6). Using it,
it is easy to prove that

[X, [X,A} iL = L nAL] =o. (B.10)

C Complete solution of the SD equation for the AdS5 X S® pure spinor
string

In this appendix we apply the method explained in section 2, and generalized in section 3,
to the AdSs x S° superstring. Step by step, the procedure is as follows:

X

1. Using an expansion around a classical background, g = goe”, we compute all the

currents up to second order in X,
2. Expand the action (3.2) up to second order in X,

3. Write down the Schwinger-Dyson equation for the model and compute the interaction
matrix,

4. Compute the Green functions in powers of %,
5. Compute (@', ¢7).

The expansion of the currents was already done in (3.7). The remaining subsections
are devoted, each one, to each of the steps listed above.

We will drop the use of the boldface notation for the background fields in this section.
All the quantum corrections come from either an z-term or a <5w, oM, 0w, (55\> -term. Thus,
every field in Siyt, the F-terms, the Green’s functions and in the r.h.s. of the pairing rules
should be treated as classical.

C.1 Action

In (3.8) we showed the kinetic part of the expansion of (3.2) and we promised to show the

interaction part later, here we fulfil our promise. Up to second order in X the interaction

part is
R2

Sint = 7— [ daf anfmaﬂ +

- . 1 _ _
o S008I fraaf 39" + g (327008 —50277) J{ fruas

2
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1 B o L B . L .
+ gaz?x’zn (_ajffmozﬁ =+ [BJ;J?? + 5‘];']??‘] fi&afjmng” +3 [JZnJ?? - JZnJ??jI fnaﬁfmganﬁ6>

1 ~ B N A A _ -3 ..
— Jafag ([Jf]f - JfJ?ﬂ FrmapFapn™ + [Jstﬁ + 3Jf<f§} fiapfiap9"”

m n 3 1 &8 m 1 .8 a7 ij
+J2 J2 {fmozﬁfnéz[? - fnozﬁfmézé} nﬁﬁ) + 58933 Ig‘]Q fmaB + 523 Ig']l Jlﬁfmé‘fjﬁég ’

2
- %w?ﬂcé‘ ([078 = T2 5] Frnap o™ + JE T fiom Fiang™ ) + % (302525
—525' 0z ) jffm&[g + %x?ﬂcg (—5J§fm&5
+3[J2Jg — TR TS fmas gzt + [BIET8 + 5IF T fiaa fjmngij)
— O (N'NT)giy — af (ON'TG + ON'IS ) frag+ 25" (SNTF + SNI) fomn
—af (ONUT 4 ORI Fraa — gt (NUE 4 MU Fa fisgn'
— SaiTy (Nijlﬁ + NZJ{?) (fipmFaapnP? + fiop fmpun™")
+ 5 (050 — 22025) N fias + 505 (BSNT + 025K fimn

xgnxg“ (szg + NZJ:?) (fipqudgnpq - fmufmg,ﬂ“ﬂ)

F NI RN N

&b i Tm i Tm (i L5 a, & ay, & i
+§x3x§ (N‘J2 + N'Jg )fm@,;fwgn“’ + 3 (Ox§a§ — x0x8) N fm@} ,

with

N’ = —WA)\BUABf;Ba
L
SN = (bwalP + wA(S)\B)UABféBa
SN = (504 AP + @ oAB )M p
A(N'NT) = SN'ON? — GwadNEyAB LN 4 Niow ;65PnPAfT

The lack of covariant derivatives is, as explained previously, because the pure spinor
sigma model is anomaly free. This means that physical quantities only appear in gauge
invariant expressions, thus the interchange 0 <> V can be done at any moment in our

computation. A more detailed explanation can be found in subsection 3.2.

C.2 Schwinger-Dyson equation and the interaction matrix

The Schwinger-Dyson equation in momentum space for (3.2) reads

2m nh = A 1 SA
G = 4 (kD + k0 + 0) G — L FyaG
RE ]2 + \k|2(l +iko + 0O) e 50 ;
2 pm™A 1, - = e SA
G = 2L (ikD + ik0 + O0)GN — T FyaGPA,
RZ k]2 " [k[2 Lk
i o1 20
aA n . . ah | T TA
=5 + = (ikd + ik0 + O)G* + — FoqG™",
RZ (k]2 [k[2 |2
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A 2T

GH= R2kaA+ 8GA —%F wAGEA, (C.10)
2w 1
BA BA B ZA
= F 11
G R2k53A+kaG +1<; Ba (C.11)
2m 1 7
A A A YA
GA R2 de %aGA - %FEAG ) (C.12)

L RBGE, (C.13)

N 2 y N
GBA — _11531\—}_ %8GBA+ -

R?k
where A = {a,m,d,A,A,A,A}.
The interaction matrix is given by

% 0Sm

b o%(y) 09U x)’

The directional derivative means that we compute the functional derivative of Sy, with

Fyo(x,y) = (C.14)

respect to ®> acting from right to left. Because we are working in momentum space is
useful to write also F' in momentum space, for that reason the equation we work with is

%
Frale0f() = [ Py O 0% n(iky) f(w). (C.15)

5 o5 (y) 099 ()

Note that the f(y) stands for the previous Green’s function and the exponential came from
the Fourier Transform. The directional derivative has the same meaning as above.

We organize the interaction matrix by the Z4 charge of its indices, and in the end we
add the ghosts contributions.

The first we compute the F,z terms of the matrix:

Fag = ~J5GE 4 0) s — 5075 Fmas — 5 I35 (Fioif 05— Fisad o) 6°
+ % (Nijén + NiJé”) (fmapfisa — fmﬁufmﬂ) n, (C.16)
F = J¢ (zk+8) o + = (ajl +30J7) Fa (3J§J§‘ + 528 Fiaafimng?  (C.1T)
3 (Jélj:? — J3J3) fnaﬁfméa”w +5 (NZJﬂ NiJf) (fipm faap? + fiap fmpun™")

Faa = =N fiaa (ik +8) = N'fiaa (K +0) + <J1 g5 P jf) Frasfras™

3 (77 + 370 fasfass” + 75T (Fmesfuas — Frosfuas) 0 (C18)
Fop = —waAJSAS o = —Fga, (C.19)
EA= - NBJSAs o= —F2, (C.20)
Faé =48 AG wa = —Faa (C.21)
= 3Bjoas = _FA (C.22)

The terms of the F;,a kind are

Fma J (Zk + 6) fmaﬂ + = (Nljl + Nl*]l ) (fipquaﬂnpq + fiaﬂfMﬁunuﬂ)
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1 =4 24 3 & T ora 3
+ g (3J§LJ§‘ + 5J2n<]?) fiézafjmng” + é (J;J? - J;J?) fnaﬁfmﬁ@nﬁﬁ
1 _ _
+3 (507 = 07 ) finas: (C.23)

1 a T T 7& 3 1 T ij
-3 (JT5 — 7 5) (fmaﬂfnaBJffnanmaB)??M—§J§J§(fipmqun+fipnqum)9 7, (C.24)

Fois = B Ty Gk 4 0) ¢ (50 00 fa 2 (83 = I T5) Fmeshyain™  (C.25)
5 BIPTE 4TI fuaaSimng™ + 5 (NT] + NI ) (Fiom S = Fianf ™)
Fop = —waJy A . = Fpm, (C.26)
EA=-\BjpAd —=FB (C.27)
F 5=0J0A% 0 =Fp., (C.28)
FA=\BjpAs A (C.29)

The last contribution from the non-ghost terms is given by the Fj;5 elements:
, o . . 1 5 4
Faa = =N'fiaa (ik +9) = N'fiaa ik +9) = 7 (0T = T T ) fmas fuasn™

- i (ijf + 3ij§) fiapfiap9” — iJ;”j; (fmaﬁfndB - fnaﬁfmdg) e, (C.30)
Faom = T8 fa 0k 4 0) 4 < (305 +00) froay = = (JTE = J2T8) Fnasfuain®  (C:31)
% (Nij?{§ + NZJ:?) (fipqu&énpq - fiaufmgﬂnuﬂ> ;
Fap=—J3" (ik+0) frna5 — %aj;nfmdg - %J?jlﬁ (fmdfj/gg - fw&fjag) 9"
1

1 a n T TN 17
- g (3J1 J2 + 5J1 J2 ) fiozdfjmngj -

-3 (Nijgn + ]\71;];”> (fm&ﬁfm _ fms,;fmd) ey (C.32)
Fap = —waJ{ AR oa = —Fba, (C.33)
FA=-\BJeAd o =—F4, (C.34)
Fop =047 AR as = —Fpa (C.35)
Fsp = MNJCAL o =—FB. (C.36)

Finally we compute the pure ghost terms, and we save some trees by not adding the
symmetric terms already listed:

Ff' =N = F4, (C.37)
Fit =wahPadd = p, (C.38)
Fpp=wab AM = Fp 4, (C.39)
FA = 2B A% = A (C.40)
PAY = \BAB ALY = pAA, (C.41)
FA=NA=PA (C.42)



where we have defined

AA%} — nACnCAfi éfécng (043)
NB = wAABAgg, (C.44)
Nf = wAABAgg. (C.45)

C.3 Green functions

With all the previous results, we begin the computation of the Green’s Functions as a
power series in 1/k. We follow the prescription given in (3.17). The Green functions are
presented order by order, which makes the reading easier.

The only contributions of order 1/k come from the ghosts propagators

21 1

G i = T kaA ~GP 4, (C.46)
G,p Z; ;55 e (C.47)
For the 1/k? terms, we have a contribution from the non-ghosts propagators

G5 = Z;“;na& = —G3*, (C.48)

GTn = Z; ’]{:1‘2 7 (C.49)

and another from the ghost interactions

Gl = —1 (FLGP) = o NE =GB, (C50)

Goaa = _% (FAC’G?A) = Z; “3‘2“’3 BAAA Goiar (C.51)

G, B = —% (FAC’G1 Cf?) - ]2;“3‘2(,‘)3%4 =G5, (C.52)

Gy 4= % (Fees ;) = 12; |,:,2AA@AA§E = Gz (C.53)

GBE — % (FBOG CB> - _Z;“:’zmmgg e (C.54)

a,P = —% (F e, k)= Z; ]:2 — Gl (C.55)

At order 1/k® we have interaction between the non-ghost fields. We organize these
terms in the same order as in the previous section, when Gprq = cGqp, with ¢ = £1 we
only list the first term.

Using the given prescription, we find that the G%A terms are

ap _ 1 58 2m i ad, 58
G5’ =~ (F3a65") = =75 Ik:|2 2 f a5 (C.56)
Gg" = ’kP (FrnaGy™) = “R2 ’k‘g 3 f ap'l 77 = -Gz, (C.57)
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~ ¢ A 27[ ) i Ai A
ad Ui L& Q N N aB B& _ yaa
G3 = —— (F Ne ) = =T (k‘ + ) 115577 n G3 ) (0'58)

"2 ) = R ip ;
ad - 78
o n B 27 4 Jl B ak a
3AT TR (FBaGY 4) = ?W?WBAA gan"" = —Gs4', (C.59)
N na or i JP oi .
657 =~ (FAGLD) = EWT” ALsan® =GB, (C.60)
o« 7]0‘5‘ B 27r i J1 o o
wB (A B\ 2T i S i B aa e
For the GQ”A terms we find
o n™mP " 27 q Nt NZ n
Gy = R (FpGY") = TRRP ( fipgn™ 0™, (C.63)
mé 77mn < aol) _ 2 4 ad mn _ am
— T 7.9 Fom - no - .64
G3 |,I€|2 G2 R2 ’k}‘Q L f B G3 (C 6 )
m nm" 2 i JY m
34— — |k}|2 (FBnGlBA) = R2 Wé BAA npn == _G3A s (065)
mn 2 i JP
apP = - (FAG, P ZNAS = apr C.66
3 |]€|2 ( aY1A ) R2 |k‘|2 3 ( )
m o " B 2r 4 Jy . B m
GY4= T (FpaG?s) = 5 TE AL = G (C.67)
mB_ N As B\ 2T 0 JYSA B i Bm
The Gg‘A terms computed are
55 27r i Jan
Gy = o fmagn™® o C.69
ak - 76
& Ul B 2r i Jy B . ad &
3A— W (FB&Gl A) = 7@@70\)3/1*’4 Baﬁ = 7G3A’ (C?O)
ad - iBA
aB _ " A~ By _ 270 @ J5 a0 B aa Ba
G5 = e (FaGi4) = Rk Al = -G53, (C.71)
& 77““ B 2r 1 J3 R &
% 4 = fip (P 1) = g oA L™ = 61 (c72)
GaB 770”5‘ FAG B _ QJLJQAAA B ab __ _GB& (C 73)
\k|2 1A R2|k]2 k Agal T 3 0 )
The G35 with only ghost indices are
G 2 01 AA ABCADB ABBADC C.74
BAC = TR R PPN WB [Fadfee T Factea (C79)
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21 i = 27 i
GgAB: T (5 5_ }?) NB+77TL7 )\C}\A ADBABC ADCABB , (C.75)

R2 3 RZ kP2 K ACCA AL e

Ggpaa = Z; ’]j|2 2 <5 0~ NA) waBAgﬁ i; |]j‘2 ;wB BNfAﬁg, (C.76)
Gy P = Z; |]j|2 - (5 d— NA> wB)‘AADA - Z;U:P;WBAANgAﬁg’ )
Gy = 1y (050 + NE) 8B+ |,§|2 FupACiday [ARCABE - APBAC) | (C.19)
GEP = TN AT g [AR5ADE - 4B2AZS]. (.19

4= JQ%Z;\kIQ (5 3+NDB) A ABB + ]2%7;“;2“* Nngg, (C.80)
GPP — —%% P (650 + NE) xIAABE 4 Z;Vj’Qk)\A)\ANgAEQ, (C.81)
Gyin = Z; ‘;’2 = (—000+ NP ) wpwp AL ]2; ’;‘2 linoﬁ:B DaBs, (C.82)
Gyi® = -5 !le2 *(-920+ ND) MozanE - 2 \lj|2 TN, NEASE, (C.83)
Ggie = Z; |]j|2 ;waD)‘ B [Aingg Angig} (C.84)
Goa” = ~ g (030 NE) NE+ T pp O 4R AR aSRALE] . (C.85)
Gy, = 12;';'% (650 + NE) wphaB 4 Z;';Pk sANGABE, (C.86)
GpP = Z;“;Qk (670 + NE) XAAABD 4 ?;“Ci’Qk)\A)\AN ACB (C.87)
af =2t (580 + NE) NP - i;‘QkaDACAA [4G2APD — 4P2A%H] | (C39)
GE = B AN (455422 — 25A52). €59

The 1/k* terms are needed when we compute terms with two derivatives. Since we
are not computing anything with two derivatives and at least one ghost field, we don’t list
those Green’s functions. The G§* terms are:

¥ = REE (075" frnas + T8N [ finafip = FispFmia) %+ TE TS Frma o™ ) 0
%ﬁ <;3J§nfm&,@ + %ijfgij (fm&fjl,g - fiv&fjué)
45 [N BN (Fuo s = il 77’”‘) 0, (€.90)
i = Z;Wlkg [Wffmg + BN (fpagfmqnpq + fnﬂgfi,tan"ﬂ)] "y
12; |k1|4 { (38*]3 + 8J3) foap — %(3Nij:§§ + NS (fipnfngﬁpq - fiaufngﬂn“ﬂ>

=3 _ . 1 _ _
-kkag+wwﬂm¢ww—8Pﬁ£+wwﬂnmmthwwn (C.o1)

— 23 —



5 2 1 )
ad i i aﬁ B4
Y= e [_aN Fipp = N'N £y, fipan” }n 1
2 1 .y L
+E|k‘|TT€2 |:—6N fzﬁﬁ_NN f,uﬁfjﬂ nll}naﬂn,@a
2r 1

+R2|k|4{— (N’Nj—kNjNi) Fiplinpnt ™+ J;" o (3fmﬂﬁfnﬁ~ﬂ+fwﬂfmm) i (C.92)

1 T mn ij 12y oa mn « &
+1J{LJZ{; (5fm#5fn,l/§n _fmgfjﬂﬁg J)_Z {ng (fmuﬁfnﬂgn +3fuﬁfjﬂﬁg )] n ﬁnﬁ

The G7** Green’s functions are

mn 27 1 ANTE \7% NTJ rs ng,. m
G4 = ﬁ“ﬂ‘z/_@ [8N fipq -N N]firpfj&‘qn }77 q"7 P
2r 1 i P .
+ ﬁ|k|2k2 [8]\/' fipg = N*N? firp fisqn }77 in™mr
27T 1 mp,,ng inTd NG rs 1 r Ts i
TR T (N N7+ N'N ) firnFisa™ + 5J3J3 (firpfisa + firafisn) 9
—*(J“j&4-j“J@)(f Frap + foagfyas ) 177 (C.93)
5 \J173 193 qaBtpap paBleap ) ) .
am 2m 1 B B ari pq i mn, a&
4 = ﬁr{‘zkz |:—8J1 fnaﬁ + Jl N (fipnfqaﬁn + fnu,@fiﬂan ):| n n
27 1 1 /5.8 - 1 - ; - i
=T |5 (307 + 077 ) fuas + 5 (N'TY +3NI7) (Fipn faas + Fioi fusyin™)

1 78 T 3 ij 78 T 3 (i ad, nm
b5 (ST 45 IE) Faplis” — & (527 +3J§J£)fpaufngﬂnﬂﬂ}n L (C.94)

Finally, we list the G&B term

aB 2 QL v m g 3
45 R2 |k|2k2 [a‘]gnfmaﬁ + JQMNZ (fmauflﬁu fmﬁufiaﬂ) 77/“ + J{ijl fmaufnﬁun m] UWUB’B
o 1 [1: .., 1o
ﬁ@ [23.]2 fmaﬁ + §J§LJ3 (fiﬂafjl?ﬁ - fiﬂﬁfjﬁag J)
1 i Tm i Tm L ad&
"‘5 (N J2 - N J2 ) (fmﬂufiaﬂ - fmaufiﬁﬂ) 77} A n 77’% (095)

The reason we don’t compute terms such as G¢™ is that we can deduce their contri-
bution from the relation (0X0X) = 0(X0X) — (X00X), as explained in section 2.

C.4 Pairing rules
We split the current in its gauge part Jy and the vielbein K:

J=Jo+K, (C.96)
K=J+Jo+Js (C.97)

We also join the quantum fluctuations into a single term

X =21+ 29+ x3. (0.98)
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The following is the list of all divergent parts up to two derivatives. The order of
the results is: first terms with no derivatives, then the currents, then one X with one
current, and finally two currents. Finally, we list the pairing rules involving ghost fields.
The definition of I in this appendix is I = —1/(2R2¢).

The non-vanishing terms with no derivatives are the ones given by the first term in
the Schwinger-Dyson equation:

(1, 23) = —TTan®® and (x9,x9) = T/ Tym™". (C.99)

Now we show the divergent part of the currents:

(K) = (K) = (N) = (N) =0, (C.100)
<J0> % <{[Na T&]? Ta}nad - {[Nv Ta]a Td}nad + [[N7 Tm]7 Tn]nmn> ) (C.lOl)
(Jo) = —% ({[N,Td],Ta}n"‘d AN, Ta), T + [[N,Tm],:rn]nm") . (C.102)

For one X with one current, we find that the simplest current is Jy

(X, Jo) = =K, Tj|Trg’", (C.103)
(X, Jo) = —1[K, )] Trg"", (C.104)

for the other currents we find

(w1, 1) = —1[Jo, Ta]Tan™, (w2, 1) = 1[Js5, Ta]Tan (x3,J1) = I[N, Ta]T.n™®,  (C.105)
(x1,J1) =0, (w9, J1) =0, (3, J1) = I[N, Ta]Ton™®,  (C.106)
(w1, Jo) = =1[J3, T | Ton™", (w2, J2) = I[N, T, |T,n™", (xs,J2) =0, (C.107)
(11, J5) =0, (wa, Jo) = I[N, T Ton™, (x3,J2) = 1[J1, T,n]Tun™, (C.108)
(1, J3) = —1[N, T, )Tan™*,  (x2,J3) =0, (z3,J3) = 0, (C.109)
(x1,J3) = =[N, To]Tan™, (2, J3) = 1[J1,Ta]Tan (w3, J3) = 1[Jo, T Tan™®.  (C.110)

Now we show the divergent part of two currents. The first group are the (Jy, ) terms:

<J07J0> [le ][‘]37 ] [J37 HJ17 ]Uw +I[J2> ][‘]2? ] n’ (C'lll)
(Jo, J1) = =1[Jy, Ta) [N, Toln®® = 11Js, Ta][J2, Taln™® + 1Jo, Tl [Js, Tuln™,  (C.112)
(o i) = —11, TR Taln® (C.113)
(Jo. J2) = —1[J5, To][Js, Taln ‘m—I[Jz, m] [N, T] (C.114)
(Jo, J2) = 1[Iy, Tal[J1, Taln™® = 1[Ja, T) [N, ToJn™ (C.115)
(Jo, J3) = 1[J3, TR ][N, Ta|n™ (C.116)
<J0, 73> = I[Jg,T ][N T ]naa + I[Jl, HJQ, ]naa =+ I[JQ, HJl, ] i (0117)
The (Jy,-) terms are

<']1a']1> ([']2’ HN T ] [NvTOé][JQ’T”]) [']35 ][']3’ ] -, (0118)
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(1, ) = (C.119)

(Jl,j1>: [(’)JQ Ta]Ton™ ([Jl T)[J1, Ty) + [J1, T) [, Tj)) gV (C.120)
% (<o, Tal N, o] = [, TAJIN, To] 4 31N, Tl Ta] — [N, Tl 2, Tl ) ™,

(1) = =502, TalTan™ + 5 (W TR T + U1 T T (C.121)

+§(4J2, Tal[N, Ta)] = [, Tal [N, 7o) + 3N, Tol o, Tol = [N, Tl Tl ) 7°%,

(J1,J2) = 1IN, To][J2, Taln™ + [J5, Tin][J3, Tan™", (C.122)
(J1,Ja) =0 (C.123)
(J1, o) = é[56j3—8j3 Tyn)Ton™ +;(11[J2 W[ J1, Ta] + 5[J2, Ta][J1, Tal) n™*
+é( 5[0y, TiJa, Ty] + 3[J1, Ti][J2, T5]) g% —%([ »Ta][j&Toz]+[N7To¢][J3,Ta]> n*e
45 (315, Tl N, T3] = s, Tl T30 (C.124)
(1, ) = =307 + 0o, Tal ™ + 5 (U2, Tal U, Tal = 2 Talln Tal)
+ é (51J1, Til[J2, Ty) + 3[, T o, T]) g — % (3[1\7’ To)[J5, Ta] — [N,Ta][Jg,T&]) n™®
g (Tl V-T2 + 0 Tl T3] ™ (C.125)
(J1,J3) = —I[N, TW][N, Ta]n® (C.126)
(1, J5) = —1[N, T, ][N Taln® (C. 127)
(i, J) = ~1(IN,T, VTN, Ta)) 1%+ (312, T, ol + 512, Tal U Tl o
i( 31 Tl 1.5 + 30, Tl T 0™ + 5 (10 T, T3]+ 31, T, T31)
(C.128)
(o ds) = 1 ([N, T[N Do) + [N, TV, 7)) nad—iw ]l To) — o T o T )
7 (BTl Tl = U Tl Tal) ™+ 5 (U T T3]+ 310, i, 7).

(C.129)

We present the (J3,-) terms before the (Ja,-) due to their similarity with the (Jq,-)
terms:

(J3,J2) =0, (C.130)
(J, Jo) = =I[N, Ts][J1, Ta|n®® = I[Jy, Tu)[N, T, ]0n™ (C.131)
s, o) = 5[50 = 01, T ™ (ul,TmM L] = 311, Tl (8. T,0) 1

+%([MT&HJhTa]+[NaTa][j17Ta]) Ua&+é(3[J3 T\ Ja, Tj] + 5[5, T;][J2, T5]) 9"
Bl L) T Ta) + 1L T T) (C.132)

(Jss o) = —S[80J) + 0.1 Tl L™ + 3 (10, Tl T+ [0, T[N, T3] ) o™
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b5 (3R a0, Tl = [N, Tl Tal) 1+ 5 (30 Tl T3] + 513, T, Ty ) 7

2
2 (U Tl o, Tl = U Tl o) ™, (C.133)
(Js, J3) = 0, (C.134)
(s J3) = (wz, W, Ta] - [N TAML’T])WH[JM )l Toln™, (C.135)
<j3aJ3>——*[3J2’ To]Tan™ ([J?n A5, Ty) + [Js, Th][Js, T5]) g™
+%(—[N Tﬂ][Jg,T] [N, Ta][Jo, Ta) +3[J2, To][N, Ta] — [Ja, T, ][NT]) @, (C.136)

(J3, J3) = [3J27 TolTan™® + - ([J37T][j37Tj]+[j3aTi][J3,Tj])9ij

+%(—3[]\7,T@][jg,Ta]+[]\7,T@][Jz,Ta]+[j2,Ta][ Ts)+[J2, T, ][NT]) & (C.37)

Finally, the remaining (.Jo, ) terms:

I[N, T][N, T ™", (C.138)
I[N, T[N, Ty, (C.139)
(Ja, Jo) = 1 ([N TN, T + (N, TN T3]) 0 4 5 (1o, T T3] 4 [, T, T3)) 6
([Jh o) T3, Tal =33, Tal [J1, Tal +3[J1, Tl [Js, Ta] = [T, Tal[J2, Ta]) n¢, (C.140)
(Ja. J2) = ([NTMN,TnmN,TmMN,Tn])n = (o T, T + (o, T, 1)

(s, Tal[ 1, To) = 3[J1, Tal[J3, Tal +3[J1, Tal[J3, Ta] = [J1, Tal[J3, Ta]) n°*. (C.141)

l\')\»—<

The terms involving ghost fields that have vanishing anomalous dimension are

(X,N) = (X,N) = (w,\) = (@A) =0, (C.142)
(W, J) = (A J) = (@,]) = (A, J) =0, (C.143)
(W, Jo) = (A, Jo) = (@, Jo) = (A, Jo) =0, (C.144)
(w,N) = (\,N) = (&,N) = (\,N) =0, (C.145)
(J,N) = (J,N)=0 (C.146)

The expressions involving two ghosts and no derivatives are
(w,A) = ~Tlw, T][A, Tylg" (A, @) = ~I\ Ti]@, T)g”, (C.147)
(w, @) = ~Ilw, Ti][@, Tj]g" (AA) = I\ T, Thlg (C.148)

For one ghost and one current, including the ghost currents
(w, K) = 1w, T[K, Ty]g", (@, K) = ~1&, T[K. Tlg", (C.149)
(A K) = I\ TH[K, T]g", (A K) = —1[\, T [K. Tj]g", (C.150)
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A

<W’N> = _I[waTiHN?Tj]gijv (@,N) = -l[w, ][N7T]']gija (C.151)

T;
(A N) = —I\ T[N, T]g", (A, N) = —I[X, T[N, T;]g". (C.152)

Finally, the terms with two currents, with at least one ghost current:

<K7N> = _I[K7Ti][N7Tj]gijv (C.153)
(K,N) = ~I[K, T}][N, Tj]g", (C.154)
(N,N) = —I[N, T;][N, T;]g". (C.155)
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