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1 Introduction

During the last decade there was a great improvement in the understanding of N = 4

super Yang-Mills theory due to integrability techniques, culminating in a proposal where

the anomalous dimension of any operator can be computed at any coupling [1]. The crucial

point of this advance was the realization that the computations of anomalous dimensions

could be systematically done by studying the dilatation operator of the theory [2, 3]. For a

general review and an extensive list of references, we recommend [4]. An alternative to the

TBA approach not covered in [4], the Quantum Spectral Curve, was developed in [5, 6].

For some of its applications, including high loops computations, see [7–12]

On the string theory side it is that known the world sheet sigma-model is classically

integrable [13, 14]. However, it is not yet known how to fully quantize the theory, identifying
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all physical vertex operators and their correlation functions. In the case of the pure spinor

string it is known that the model is conformally invariant at all orders of perturbation

theory and that the non-local charges found in [14] exist in the quantum theory [15].

In a very interesting paper, [16] showed how to obtain the Y-system equations from the

holonomy operator.

Another direction in which the pure spinor formalism was used with success was the

quantization around classical configurations. In [17] it was shown that the semi-classical

quantization of a large class of classical backgrounds agrees with the Green-Schwarz for-

malism. This was later generalized in [18, 19]. Previously, Mazzucato and one of the

authors [20] attempted to use canonical quantization around a massive string solution to

calculate the anomalous dimension of a member of the Konishi multiplet at strong coupling.

Although the result agrees with both the prediction from integrability and Green-Schwarz

formalism, this approach has several issues that make results unreliable [21].1

An alternative and more desirable approach is to use CFT techniques to study vertex

operators and correlation functions since scattering amplitudes are more easily calculated

using this approach. A first step is to identify physical vertex operators. Since the pure

spinor formalism is based on BRST quantization, physical vertex operators should be in the

cohomology of the BRST charge. For massless states, progress has been made in [22–25].

For massive states the computation of the cohomology in a covariant way is a daunting

task even in flat space [26].

A simpler requirement for physical vertices is that they should be primary operators

of dimension zero for the unintegrated vertices and primaries of dimension (1, 1) in the

integrated case. Massless unintegrated vertex operators in the pure spinor formalism are

local operators with ghost number (1, 1) constructed in terms of zero classical conformal

dimension fields [27]. So for them to remain primary when quantum corrections are taken

into account, their anomalous dimension should vanish. Massless integrated vertices have

zero ghost number and classical conformal dimension (1, 1). Therefore they will also be

primaries when their anomalous dimension vanishes. Operators of higher mass level are

constructed using fields with higher classical conformal dimension. For general mass level

n (where n = 1 corresponds to the massless states) the unintegrated vertex operators have

classical conformal dimension (n−1, n−1). If such vertex has anomalous dimension γ, the

condition for it to be primary is 2n− 2 + γ = 0. The case for integrated vertex operators

is similar. For strings in flat space γ is always α′k2

2 , which is the anomalous dimension of

the plane wave eik·X . This reproduces the usual mass level formula.

This task of computing γ can be made algorithmic in the same spirit as the four

dimensional SYM case [2, 3]. However, here we are interested in finding the subset of

operators satisfying the requirements described above. The value of the energy of the

corresponding string state should come as the solution to an algebraic equation obtained

from this requirement. However we do not expect the energy to be simply one of the

parameters in the vertex operator. The proper way to identify the energy is to compute

the conserved charge related to it and apply it to the vertex operator.

1The authors would like to thank Martin Heinze for discussions on the subject.
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In this paper we intend to systematize the computation of anomalous dimensions in

the worldsheet by computing all one-loop logarithmic short distance singularities in the

product of operators with at most two derivatives. To find the answer for operators with

more derivatives one simply has to compute the higher order expansion in the momentum

of our basic propagator. We used the method applied by Wegner in [28] for the O(n)

model, but modified for the background field method. This was already used with success

in [29, 30] for some Z2-super-coset sigma models. The pure spinor string is a Z4 coset and

it has an interacting ghost system. This makes it more difficult to organize the dilatation

operator in a concise expression and to find a solution to

D · O = 0. (1.1)

We can select a set of “letters” {φP } among the basic fields of the sigma model, e.g.

the AdS coordinates, ghosts and derivatives of these fields. Unlike the case of N = 4 SYM,

the worldsheet derivative is not one of the elements of the set, so fields with a different

number of derivatives correspond to different letters. Then D is of the form

D =
1

2
DP Q ∂2

∂φP∂φQ
. (1.2)

Local worldsheet operators are of the form

O = VP QRS T ···φ
PφQφRφSφT · · · , (1.3)

the problem is to find VABC DE··· such that O satisfy (1.1). Another important difference

with the usual case is that the order of letters does not matter, so O is not a spin chain.

The problem of finding physical vertices satisfying this condition will be postponed to

a future publication. Here we will compute D and apply it to some local operators in the

sigma model which should have vanishing anomalous dimension. The search for vertex oper-

ators in AdS using this approach was already discussed in [31] but without the contribution

from the superspace variables. The author used the same “pairing” rules computed in [28].

This paper is organized as follows. In section 2 we describe the method used by Wegner

in [28] for the simple case of the principal chiral field. This method consists of solving a

Schwinger-Dyson equation in the background field expansion. In section 3 we explain how

to apply these aforementioned method to the pure spinor AdS string case. The main

derivation and results are presented in the appendix B. Section 4 contains applications,

where we use our results to compute the anomalous dimension of several conserved currents.

Conclusions and further applications are in section 5.

2 Renormalization of operators in the principal chiral model

The purpose of this section is to review the computation of logarithmic divergences of

operators in principal chiral models using the background field method. Although this is

standard knowledge, the approach taken here is somewhat unorthodox so we include it

for the sake of completeness. Also, the derivation of the full propagators in the case of

AdS5 × S5 is analogous to what is done in this section, so we omit their derivations.

– 3 –
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Consider a principal model in some group G, with corresponding Lie algebra g, in two

dimensions. The action is given by

S = − 1

2πα2

∫

d2zTr ∂g−1∂̄g, (2.1)

where α is the coupling constant and g ∈ G. Using the left-invariant currents J = g−1∂g

and defining
√
λ = 1/α2 we can also write

S =

√
λ

2π

∫

d2zTr JJ̄. (2.2)

The full one-loop propagator is derived from the Schwinger-Dyson equation

〈δzSO(y)〉 = 〈δzO(y)〉, (2.3)

where δz is an arbitrary local variation of the fundamental fields and O(y) is a local

operator. This equation comes from the functional integral definition of 〈· · · 〉. In order to be

more explicit, let us consider a parametrization of g in terms of quantum fluctuations and a

classical background g = g0e
X , where g0 is the classical background, X = XaJa and Ja ∈ g

are the generators of the algebra. Then a variation of g is given by δg = gδX, and δX =

δXaJa where we have the variation of the independent fieldsXa. Also, the variation of some

general operator O is δO = δO
δXa δXa. Then we can write the Schwinger-Dyson equation as

〈

δS

δXa(z)
O(y)

〉

=

〈

δO(y)

δXa(z)

〉

, (2.4)

and now it is clear that this is a consequence of the identity

∫

[DX]
δ

δXa(z)

(

e−SO(y)
)

= 0. (2.5)

In the case that O(y) = X(y) we get the Schwinger-Dyson equation for the propagator

〈

δS

δXa(z)
Xb(y)

〉

= δbaδ
2(y − z). (2.6)

This is a textbook way to get the equation for the propagator in free field theories

and our goal here is to solve this equation for the interacting case at one loop order.

The perturbative expansion of the action is done using the background field method. A

fixed background g0 is chosen and the quantum fluctuation is defined as g = g0e
X . The

expansion of the current is given by

J = e−XJeX + e−X∂eX , (2.7)

where J = g−1
0 ∂g0 is the background current. At one loop order only quadratic terms in

the quantum field expansion contribute and, as usual, linear terms cancel by the use of the

background equation of motion. This means that we can separate the relevant terms action

– 4 –
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in two pieces S = S(0)+S(2). Furthermore, S(2) contains the kinetic term plus interactions

with the background. So we have

S = S(0) + Skin + Sint. (2.8)

If we insert this into (2.6) the terms that depend purely on the background cancel and

we are left with
〈

δSkin

δXa(z)
Xb(y) +

δSint

δXa(z)
Xb(y)

〉

= δbaδ
2(y − z). (2.9)

Since δSkin

δXa(z) = −
√
λ

2π ∂∂̄X
a(z) and δSint

δXa(z) is linear in quantum fields we can write

−
√
λ

π
∂z∂̄z̄〈Xa(z)Xb(y)〉+

∫

d2w
δ2Sint

δXc(w)δXd(z)
〈Xc(w)Xb(y)〉ηad = ηabδ2(y− z). (2.10)

Finally, this is the equation that we have to solve. It is an integral equation for

〈Xa(z)Xb(y)〉 = Gab(z, y) which is the one-loop corrected propagator. The interacting

part of the action is

Sint =

√
λ

2π

∫

d2z

[

−1

2
Tr([∂X,X]J̄)− 1

2
Tr([∂̄X,X]J)

]

, (2.11)

where the boldface fields stand for the background fields.

Now we calculate2

δ2Sint

δXc(w)δXa(z)
=

√
λ

2π
[∂wδ

2(w − z)Tr([Tc, Ta]J̄) + ∂̄wδ
2(w − z)Tr([Tc, Ta]J)], (2.12)

which is symmetric under exchange of (a, z) and (c, w), as expected. We define fab
c = f b

cdη
da.

So we get the following equation for the propagator

∂z∂̄zG
ab(z, y) = − π√

λ
ηabδ2(y − z) +

fa
ce

2

(

∂zG
cb(z, y))J̄

e
+ ∂̄zG

cb(z, y)Je
)

. (2.13)

Performing the Fourier transform

Gac(z, k) =

∫

d2ye−ik·(z−y)Gac(z, y), (2.14)

we finally get

Gab(z, k) =
ηab√
λ

π

|k|2 +
�

|k|2G
ab(z, k) + i

∂

k
Gab(z, k) + i

∂̄

k
Gab(z, k)

− fa
ceJ̄

e

(

i

2k̄
+

∂z
2|k|2

)

Gcb(z, k)− fa
ceJ

e

(

i

k
+

∂̄z
2|k|2

)

Gcb(z, k). (2.15)

The dependence on one of the coordinates remains because the presence of background

fields breaks translation invariance on the worldsheet. We can solve the equation above

iteratively in inverse powers of k. The first few contributions are given by

Gab(z, k) =
ηab√
λ

π

|k|2 − iπfa
ce

2
√
λ|k|2

ηcb
(

J̄
e

k̄
+

Je

k

)

2Using the equation of motion for the background ∂J̄ + ∂̄J = 0.
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− π

4
√
λ
fa
cef

c
dfη

db 1

|k|2
(

1

|k|2 (J
eJ̄

f
+ J̄

e
Jf ) +

1

k̄2
J̄

e
J̄

f
+

1

k2
JeJf

)

+
π

2
√
λ

ηdbfa
df

|k|2
(

1

k̄2
∂̄J̄

f
+

1

k2
∂Jf

)

+ . . . (2.16)

With this solution we can finally do the inverse Fourier transform,

Gac(z, y) =

∫

d2k

4π2
eik·(z−y)Gac(z, k), (2.17)

to calculate Gac(z, y). If we are only interested in the divergent part of the propagator we

can already set z = y. Furthermore, selecting only the divergent terms in the momentum

integrals we get

〈Xa(z)Xc(z)〉 = Iπ√
λ
ηac, (2.18)

〈Xa(z)∂Xc(z)〉 = − Iπ

2
√
λ
ηdcfa

deJ
e, (2.19)

〈Xa(z)∂̄Xc(z)〉 = − Iπ

2
√
λ
ηdcfa

deJ̄
e
, (2.20)

〈Xa(z)∂∂̄Xb(z)〉 = Iπ

4
√
λ
ηdbf c

dff
a
ce

(

JeJ̄
f
+ J̄

e
Jf

)

, (2.21)

〈Xa(z)∂∂Xb(z)〉 = − Iπ

2
√
λ
ηcbfa

ce∂J
e +

Iπ

4
√
λ
ηdbfa

cef
c
dfJ

eJf , (2.22)

〈Xa(z)∂̄∂̄Xc(z)〉 = − Iπ

2
√
λ
ηcbfa

ce∂̄J̄
e
+

Iπ

4
√
λ
ηdbfa

cef
c
df J̄

e
J̄

f
, (2.23)

where

I = − 1

2πǫ
= lim

x→y

∫

d2+ǫ

4π2

ǫik(x−y)

|k|2 (2.24)

in d = 2 + ǫ dimensions, using the standard dimensional regularization [28]. Since

∂〈Xa∂Xc〉 = 〈∂Xa∂Xc〉+ 〈Xa∂2Xc〉 we can further compute

〈∂Xa(z)∂Xb(z)〉 = − Iπ

4
√
λ
(fa

cef
c
dfη

dbJeJf ), (2.25)

〈∂̄Xa(z)∂Xb(z)〉 = − Iπ

2
√
λ
ηcbfa

ce∂̄J
e − Iπ

4
√
λ
ηdbf c

dff
a
ce(J̄

e
Jf + J̄

f
Je). (2.26)

From now on 〈·〉 will mean only the logarithmically divergent part of the expectation

value. A simple way to extract this information is by defining

〈O〉 = 1

2

∫

d2zd2y
δ2O

δXa(z)δXb(y)
〈Xa(z)Xb(y)〉, (2.27)

for any local operator O. Furthermore, we define

〈O ,O′〉 =
∫

d2zd2y
δO

δXa(z)

δO′

δXb(y)
〈Xa(z)Xb(y)〉. (2.28)

– 6 –
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Following [31] we will call it “pairing” rules. For local operators these two definitions always

give two delta functions, effectively setting all fields at the same point. So the computation

of 〈·〉 can be summarized as

〈O〉 = 1

2
〈XaXb〉 ∂2

∂Xa∂Xb
O = DO, (2.29)

where

D =
1

2
〈XaXb〉 ∂2

∂Xa∂Xb
(2.30)

is the dilatation operator. We can also define 〈· , ·〉 as

〈O ,O′〉 = 〈XaXb〉 ∂O
∂Xa

∂O′

∂Xb
. (2.31)

With the above definitions, the divergent part of any product of local operators at the

same point can be computed using.

〈OO′〉 = 〈O〉O′ +O〈O′〉+ 〈O ,O′〉. (2.32)

Several known results can be derived using this simple set of rules. Following this procedure

in the case of the symmetric space SO(N + 1)/SO(N) gives the same results obtained by

Wegner [28] using a different method.

3 Dilatation operator for the AdS5 × S5 superstring

In this section we will apply the same technique to the case of the pure spinor AdS string.

We begin with a review of the pure spinor description, pointing out the differences be-

tween this model and the principal chiral model, and then describe the main steps of the

computation.

3.1 Pure spinor AdS string

The pure spinor string [14, 15, 26] in AdS has the same starting point as the Metsaev-

Tseyltin [32]. The maximally supersymmetric type IIB background AdS5×S5 is described

by the supercoset
G

H
=

PSU(2, 2|4)
SO(1, 4)× SO(5)

. (3.1)

The pure spinor action is given by

SPS =
R2

2π

∫

d2zSTr

[

1

2
J2J̄2 +

1

4
J1J̄3 +

3

4
J̄1J3 + ω∇̄λ+ ω̂∇λ̂−NN̂

]

, (3.2)

where

∇· = ∂ ·+[J0, ·], N = {ω, λ}, N̂ = {ω̂, λ̂}. (3.3)

There are several difference between the principal chiral model action and (3.2). First,

the model is coupled to ghosts. The pure spinor action also contains a Wess-Zumino term,

– 7 –
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and the global invariant current J belongs to the psu(2, 2|4) algebra, which is a graded

algebra, with grading 4. Thus we split the current as J = A+ J1 + J2 + J3, where A = J0
belongs to the algebra of the quotient group H = SO(1, 4)× SO(5). The notation that we

use for currents of different grade is

J0 = J i
0Ti ; J1 = Jα

1 Tα ; J2 = Jm
2 Tm ; J3 = J α̂

3 Tα̂. (3.4)

The ghosts fields are defined as

λ = λATA ; ω = −ωAη
AÂT

Â
; λ̂ = λ̂ÂT

Â
; ω̂ = ω̂

B̂
ηBB̂TB. (3.5)

Note that A and A′ indices on the ghosts mean α and α̂, but we will use a different letter

in order to make it easier to distinguish which terms come from ghosts and which come

from the algebra. The pure spinor condition can be written as

{λ, λ} = {λ̂, λ̂} = 0. (3.6)

Following the principal chiral model example, we expand g around a classical back-

ground g0 using the g = g0e
X parametrization. It is worth noting that X = x0+x1+x2+x3

belongs to the psu(2, 2|4) algebra, but we can use the coset property to fix x0 = 0. With

this information the quantum expansion of the left invariant current is

A = A+
3

∑

i=1

(

[J i, x4−i] +
1

2
[∇xi, x4−i]

)

+
3

∑

i,j=1

[[J i, xj ] , x8−i−j ] ,

Jl = J l +∇xl +
3

∑

i=1

(

[J i, x4+l−i] +
1

2
[∇xi, x4+l−i]

)

+
3

∑

i,j=1

[[J i, xj ] , x8+l−i−j ] ,

λ = λ+ δλ,

ω = ω + δω,

λ̂ = λ̂+ δλ̂,

ω̂ = ω̂ + δω̂.

(3.7)

Where we take x0 = 0 as mentioned before, and we used g−1
0 ∂g0 = J = A+J1+J2+J3.

The boldface terms stand for the background term, both for the currents and for the ghost

fields. Using all this information inside the action we get

SPS =
R2

2π

∫

d2z

[

1

2
∇xm2 ∇̄xn2ηmn −∇xα1 ∇̄xα̂3 ηαα̂ + δωA∂̄δλ

A + δω̂
Â
∂δλ̂Â

]

+ Sint. (3.8)

The full expansion can be found in the appendix C. In order to compute the logarithmic

divergences, we need to generalize the method explained in section 2 for a coset model with

ghosts. The following subsection is devoted to explain this generalization.

– 8 –
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3.2 General coset model coupled to ghosts

In this subsection we generalize the method of section 2 to the case of a general coset

G/H and then specialize for the pure spinor string case. We will denote the corresponding

algebras g and h, where h should be a subalgebra of g. The generators of g − h will be

denoted by Ta where a = 1 to dimg − dimh and the generators of h will be denoted by Ti

where i = 1 to dimh. We also include a pair of first order systems (λA, ωB) and (λ̂A′

, ω̂B′)

transforming in two representations (ΓiB
A ,Γ

iB′

A′ ) of h. We will assume that the algebra g

has the following commutation relations

[Ta, Tb] = f c
abTc + f i

abTi, [Ta, Ti] = f b
aiTb, [Ti, Tj ] = fk

ijTk, (3.9)

where f c
ab 6= 0 for a general coset and f c

ab = 0 if there is a Z2 symmetry, i.e., G/H is a sym-

metric space. As in the usual sigma model g ∈ G/H and the currents J = g−1∂g are invari-

ant by left global transformations in G. We can decompose J = JaTa+AiTi where J
aTa ∈

g−h and AiTi ∈ h. With this decompositionK transforms in the adjoint representation of h

and A transforms as a connection. We will also allow a quartic interaction in the first order

sector. Defining N i = λAΓiB
AωB and N̂ i = λ̂A′

ΓiB′

A′ ω̂B′ , the interaction will be βN iN̂i where

β is a new coupling constant that in principle is not related with the sigma model coupling.

The total action is given by

S =

∫

d2z
(

Tr (J −A)(J̄ − Ā) + ωA∇̄λA + ω̂A′∇λA′

+ βN iN̂i

)

, (3.10)

where (∇, ∇̄) = (∂ − AiΓi
A′

B′ , ∂̄ − ĀiΓi
A
B) are the covariant derivatives for the first order

system ensuring gauge invariance.

The background field expansion is different if we are in a general coset or a symmetric

space. Since we want to generalize the results to the case of AdS5×S5, we will use a notation

that keeps both types of interactions. Again, the quantum coset element is written as

g = g0e
X where g0 is the classical background andX = XaTa are the quantum fluctuations.

Up to quadratic terms in the quantum fluctuation the expansion of the action is

S=S0+

∫

d2z
(

ηab∇Xa∇̄Xb−ZabcJ
aXb∇̄Xc−Z̄abcJ̄

a
Xb∇Xc+RabcdJ

aJ̄
b
XcXd (3.11)

+δωA∂̄δλ
A+δω̂A′∂δλ̂A′

+Ā
i
Ni+AiN̂i+β ({δλ,ω}+{λ, δω})i

(

{δλ̂, ω̂}+{λ̂, δω̂}
)

i

)

,

where the covariant derivatives on X are (∂ − [A, · ], ∂̄ − [Ā, · ]). The tensors

(Zabc, Z̄abc, Rabcd) appearing above are model dependent. In the case of a symmetric space

Z = Z̄ = 0 and Rabcd = f i
abficd. In the general coset case Zabc = Z̄abc =

1
2fabc. If there is a

Wess-Zumino term, the values of Zabc and Z̄abc can differ. Since we want to do the general

case, we will not substitute the values of these tensor until the end of the computations.

In the action above the quantum connections have the following expansion

Ai = Ai + f i
abJ

aXb +
1

2
f i
ab∇XaXb +W i

abcJ
aXbXc + · · · (3.12)
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Āi = Ā
i
+ f i

abJ̄
a
Xb +

1

2
f i
ab∇̄XaXb +W i

abcJ̄
a
XbXc + · · · (3.13)

where W i
abc =

1
2f

d
abf

i
dc for a general coset and vanishes for a symmetric space.

To proceed, we have to compute the second order variation of the action with respect

to the quantum fields. The difference this time is that there are many more couplings, so

we expect a system of coupled Schwinger-Dyson equations, corresponding to each possible

corrected propagator. For example, in the free theory approximation there is no propagator

between the sigma model fluctuation and the first order system, but due to the interactions

there we may have corrected propagators between them.

Since a propagator is not a gauge invariant quantity, it can depend on gauge dependent

combinations of the background gauge fields (Ai, Āi). Furthermore, since we have chiral

fields transforming in two different representations of h it is possible that the quantum

theory has anomalies. In the case of the AdS5 × S5 string sigma-model it was argued by

Berkovits [15] that there is no anomaly for all loops. An explicit one loop computation was

done in [33]. Therefore it is safe to assume that the background gauge fields only appear

in physical quantities in a gauge invariant combination. The simplest combination of this

type is Tr[∇, ∇̄]2. Since the classical conformal dimension of this combination is four and

so far we are interested in operators of classical conformal dimension 0 and 2, we can safely

ignore all interactions with (Ai, Āi).

We will assume a linear quantum variation of the first order system, e.g., λA → λA +

δλA. Instead of introducing more notation and a cumbersome interaction Lagrangian, we

will simply compute the variations of these fields in the action and set to their background

values the remaining fields.

With all these simplifications and constraints in mind, let us start constructing the

Schwinger-Dyson equations. First we compute all possible non-vanishing second variations

of the action

δ2Sint

δXaδXb
= δ2(z−w)

[

JcJ̄
d
(Rcdab+Rcdba)+N iJ̄

c
(W i

cab+W i
cba)+N̂ iJ

c(W i
cab+W i

cba)
]

− ∂wδ
2(z−w)[Z̄cabJ̄

c
+f i

abN̂ i]−∂̄wδ
2(z−w)[ZcabJ

c+f i
abN i], (3.14a)

δ2Sint

δλAδωB

= δ2(z − w)βΓiB
AN̂ i, (3.14b)

δ2Sint

δλAδXa
= δ2(z − w)(Γiω)Af

i
baJ̄

b
, (3.14c)

δ2Sint

δλAδλ̂B′
= δ2(z − w)β(Γiω)A(Γ̂iω̂)B′ , (3.14d)

δ2Sint

δλAδω̂B′

= δ2(z − w)β(Γiω)A(λ̂Γ̂i)
B′

, (3.14e)

δ2Sint

δλ̂A′δω̂B′

= δ2(z − w)βN iΓ̂i
B′

A′ , (3.14f)

δ2Sint

δλ̂A′δXa
= δ2(z − w)(Γ̂iω̂)A′f i

baJ
b, (3.14g)

δ2Sint

δλ̂A′δωB

= δ2(z − w)β(λΓi)B(Γ̂iω̂)A′ , (3.14h)
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δ2Sint

δXaδωB

= δ2(z − w)(λΓi)
Bf i

baJ̄
b
, (3.14i)

δ2Sint

δXaδω̂B′

= δ2(z − w)(λ̂Γ̂i)
B′

f i
baJ

b, (3.14j)

δ2Sint

δωAδω̂B′

= δ2(z − w)β(λΓi)A(λ̂Γ̂i)
B′

. (3.14k)

We are going to denote these second order derivatives generically as IΣΛ(z, w) where

Σ and Λ can be any of the indices (a,A,B,
A′

,B′). Also, the quantum fields will be denoted

by ΦΣ(z). With this notation the Schwinger-Dyson equations are

〈 δSkin

δΦΛ(z)
ΦΣ(y)〉+

∫

d2w
δ2Sint

δΦΥ(w)δΦΛ(z)
〈ΦΥ(w)ΦΣ(y)〉 = δΣΛδ(z − y). (3.15)

Note that the only non-vanishing components of δΣΛ are ηab, δAB and δA
′

B′ . Since the

type and the position of the indices completely identity the field, the propagators are

going to be denoted by GΣΛ(z, y) = 〈ΦΣ(z)ΦΛ(y)〉. Since we five different types of fields,

we have fifteen coupled Schwinger-Dyson equations to solve. Again we have to make a

simplification. Interpreting (λA, λ̂A′

) as left and right moving ghosts and knowing that in

the pure spinor superstring unintegrated vertex operators have ghost number (1, 1) with

respect to (G, Ĝ), we will concentrate on only four corrected propagators 〈Xa(z)Xb(y)〉,
〈Xa(z)λA(y)〉, 〈Xa(z)λ̂A′

(y)〉 and 〈λA(z)λ̂A′

(y)〉. As in the principal chiral model case we

are going to solve the Schwinger-Dyson equations first in momentum space. It is useful to

note that since we will solve this equations in inverse powers of k, the first contributions

to the corrected propagators will have the form

〈XcXa〉 ≈ ηca

|k|2 , 〈ωAλ
B〉 ≈ δBA

k̄
, 〈ω̂A′ λ̂B′〉 ≈ δB

′

A′

k
. (3.16)

Regarding (A,A′) as one type of index we can arrange the whole Schwinger-Dyson

equation into a matrix notation with three main blocks. Doing the same Fourier transform

as before we get a matrix equation that can be solved iteratively

GΥ
Σ = IΥΣ + (FΣΓ +∆ΣΓ)G

ΓΥ, (3.17)

where

IΥΣ =









δa
b

|k|2 0 0

0 0 −i
δA
B

k

0 i
δB
A

k
0









, (3.18)

FΣΓ =
δ2Sint

δΦΣδΦΓ
, ∆ΣΓ =







∂∂̄
|k|2 + i∂

k
+ i ∂̄

k̄
0 0

0 −i∂
k

0

0 0 i∂
k






. (3.19)

All elements of the interaction matrix FΣΓ are shown in appendix C. As in section 2, the

solution to equation (3.17) is computed iteratively

G(0)Υ
Σ = IΥΣ , G(1)Υ

Σ = FΓ
ΣI

Υ
Γ , (3.20)

and so on for higher inverse powers of k.
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3.3 Pairing rules

As discussed in the introduction and section 2, the computation of the divergent part of

any local operator can be summarized by the pairing rules of a set of letters {φP }. The

complete set of these pairing rules can be found in the appendix C. If we choose a set of

letters such that 〈φP 〉 = 0, then the divergent part of the product of two letters is simply

〈φPφQ〉 = 〈φP , φQ〉. (3.21)

We computed the momentum space Green function up to quartic inverse power of

momentum so we must restrict our set of letters to fundamental fields up to classical

dimension one. The convenient set of letter we will use is

{φP } = {xa2, xα1 , xα̂3 , Ja
2 , J

α
1 , J

α̂
3 , J

i
0, J̄

a
2 , J̄

α
1 , J̄

α̂
3 , J̄

i
0, λ

A, ωA, λ̂
Â, ω̂

Â
, N i, N̂ i}. (3.22)

If we extend the computation to take into account operators with more than two deriva-

tives the set of letters has to be extended to include them. The matrix elements of the

dilation operator DP Q = 〈φP , φQ〉 are the full set of pairings described in appendix C.4. To

avoid cumbersome notation, the pairing rules are written contracting with the correspond-

ing psu(2, 2|4) generator. The computations done in next section are a straightforward

application of the differential operator

D =
1

2
DP Q ∂2

∂φP∂φQ
(3.23)

on a a local operator of the form O = VP QRS T ···φPφQφRφSφT · · · .

4 Applications

In this section we use our results to prove that certain important operators in the pure

spinor sigma model are not renormalized. The operators we choose are stress energy tensor,

the conserved currents related to the global PSU(2, 2|4) symmetry and the composite b-

ghost. All these operators are a fundamental part of the formalism and it is a consistency

check that they are indeed not renormalized. All the computations bellow are an application

of the differential operator (3.23). We use the notation 〈O〉 = D · O.

4.1 Stress-energy tensor

The holomorphic and anti-holomorphic stress-energy tensor for (3.2) are given by

T = STr

(

1

2
J2J2 + J1J3 + ω∇λ

)

, (4.1)

T̄ = STr

(

1

2
J̄2J̄2 + J̄1J̄3 + ω̂∇̄λ̂

)

. (4.2)

For the holomorphic one

〈T 〉 = STr

(

1

2
〈J2, J2〉+ 〈J1, J3〉 −N〈J0〉

)

– 12 –
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= STr

(

1

2
[N , Tm][N , Tn]η

mn − [N , Tα][N , Tα̂]η
αα̂

+
1

2
N

(

{[N , Tα̂], Tα}ηαα̂ − {[N , Tα], Tα̂}ηαα̂ + [[N , Tm], Tn]η
mn

)

)

= 0. (4.3)

We used the results in (C.101), (C.126) and the identity (B.5). A similar computations

happens to the antiholomorphic T̄ , where now we use the results in (C.102), (C.127) and

the identity (B.6).

4.2 Conserved currents

The string sigma model is invariant under global left-multiplications by an element of

psu(2, 2|4), δg = Λg. We can calculate the conserved currents related to this symmetry

using standard Noether method. The currents are given by

j = g

(

J2 +
3

2
J3 +

1

2
J1 − 2N

)

g−1 = gAg−1, (4.4)

j̄ = g

(

J̄2 +
1

2
J̄3 +

3

2
J̄1 − 2N̂

)

g−1 = gĀg−1. (4.5)

They should be free of divergences. To see that this is the case, it is easier to compute

by parts:

〈j〉 = 〈g〉Ag−1
0 + 〈g,A〉g−1

0 + 〈gA, g−1〉+ g0〈A, g−1〉+ g0A〈g−1〉+ g0〈A〉g−1
0 . (4.6)

We have defined 〈AB, C〉 as usual, but taking B as a classical field, thus 〈AB, C〉 =
〈A,BC〉. From (C.100) we get 〈A〉 = 0, and using (C.99) we obtain

〈g〉Ag−1
0 + 〈gA, g−1〉+ g0A〈g−1〉 = 1

2
g0〈[[A, X] , X]〉g−1

0

=
1

2
g0

(

[[A, Tm] , Tn]η
mn + {[A, Tα̂], Tα}ηαα̂

−{[A, Tα], Tα̂}ηαα̂
)

g−1
0 . (4.7)

For the currents, using the results (C.105)–(C.110),

g−1
0 〈g, J1〉+〈J1, g−1〉g0 = −{[J2, Tα̂], Tα}ηαα̂−{[J3, Tα̂], Tα}ηαα̂+{[N , Tα̂], Tα}ηαα̂, (4.8)

g−1
0 〈g, J2〉+〈J2, g−1〉g0 = −[[J3, Tm], Tn]η

mn + [[N , Tm], Tn]η
mn, (4.9)

g−1
0 〈g, J3〉+〈J3, g−1〉g0 = −{[N , Tα], Tα̂}ηαα̂, (4.10)

g−1
0 〈g,N〉+〈N, g−1〉g0 = 0, (4.11)

but we already know that {[J1,3, Ta] , Tb} gab = 0, for a = {i,m, α, α̂}, see (B.7). Thus,

g−1
0 〈j〉g0 = −1

2
({[N , Tα̂] , Tα}+ {[N , Tα] , Tα̂}) ηαα̂

+
1

2

(

{[J2, Tm] , Tn} ηmn − {[J2, Tα] , Tα̂} ηαα̂
)

. (4.12)
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By lowering all the terms in the structure coefficients, we can see that the first term is

just (f
iαβ̂

fjα̂β − fiα̂βfjαβ̂)η
αα̂ηββ̂, and the second term is proportional to the dual coxeter

number, see (B.5), (B.6), which is 0. Thus, summing everything, we get

〈j〉 = 0. (4.13)

For the antiholomorphic current we just obtain, using the same results as before,

g−1
0 〈g, J̄1〉+〈J̄1, g−1〉g0 = {[N̂ , Tα̂], Tα}ηαα̂, (4.14)

g−1
0 〈g, J̄2〉+〈J̄2, g−1〉g0 = −[[J̄1, Tm], Tn]η

mn + [[N̂ , Tm], Tn]η
mn, (4.15)

g−1
0 〈g, J̄3〉+〈J̄3, g−1〉g0 = {[J̄1, Tα], Tα̂}ηαα̂+{[J̄2, Tα], Tα̂}ηαα̂−{[N̂ , Tα], Tα̂}ηαα̂, (4.16)

and using {[J1,3, Ta] , Tb} gab = 0 we see that doing the same as j, we arrive at 〈j̄〉 = 0.

4.3 b ghost

The pure spinor formalism does not have fundamental conformal ghosts. However, in

a consistent string theory, the stress-energy tensor must be BRST exact T = {Q, b}. So

there must exist a composite operator of ghost number −1 and conformal weight 2. The flat

space b-ghost was first computed in [34] and a simplified expression for it in the AdS5×S5

background was derived in [35]. In our notation, the left and right moving b-ghosts can be

written as

b = (λλ̂)−1STr
(

λ̂[J2, J3] + {ω, λ̂}[λ, J1]
)

− STr (ωJ1) , (4.17)

b̄ = (λλ̂)−1STr
(

λ[J̄2, J̄1] + {ω̂, λ}[λ̂, J̄3]
)

− STr
(

ω̂J̄3
)

, (4.18)

where (λλ̂) = λAλ̂Âη
AÂ

.

Let us first compute the divergent part of the left moving ghost; we will need the

results from (C.142) to (C.152):

〈b〉 = (λλ̂)−1STr〈λ̂[J2, J3] + {ω, λ̂}[λ, J1]〉 − (λλ̂)−2〈λλ̂〉STr
(

λ̂[J2, J3] + {ω, λ̂}[λ, J1]
)

− (λλ̂)−2〈(λλ̂), STr
(

λ̂[J2, J3] + {ω, λ̂}[λ, J1]
)

〉 − STr〈ωJ1〉, (4.19)

The 〈λλ̂〉 term is easy,

〈(λλ̂)〉 = −λAλ̂
Â
fB
Aif

B̂

Âj
gijη

BB̂
= 0; (4.20)

where we have used (B.7). The 〈ωJ1〉 term is also 0. The other terms are

STr〈λ̂[J2, J3]〉 = −STr
(

[λ̂, Ti]([[J2, Tj ],J3] + [J2, [J3, Tj ]])g
ij
)

(4.21)

= −STr
(

[λ̂, Ti][Tj , [J2,J3]]g
ij
)

= −STr
(

[
[

λ̂, Ti

]

, Tj ][J2,J3]g
ij
)

= 0,

we used f
iαβ̂

fjα̂βg
ijηαα̂ = 0, see (B.7). The next term is

STr〈{ω, λ̂}[λ, J1]〉 = −STr
(

{[ω, Ti], [λ̂, Tj ]}[λ,J1] + {ω, [λ̂, Ti]}[[λ, Tj ] ,J1]

– 14 –
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+{ω, [λ̂, Ti]}[λ, [J1, Tj ]]
)

gij

= −STr
(

{ω, [λ̂, Ti]}([Tj , [λ,J1]] + [[λ, Tj ],J1] + [λ, [J1, Tj ]])
)

gij

= 0, (4.22)

which comes from the Jacobi identity, see appendix B. The remaining terms are computed

using

λA[λ̂Â, Ti]ηAÂ
= −[λA, Ti]λ̂

Âη
AÂ

= {λ, λ̂}jgij , (4.23)

thus

〈(λλ̂), STr
(

λ̂[J2, J3]
)

〉=STr
(

[λ̂, {λ, λ̂}][J2,J3]
)

+STr
(

λ̂[[J2,J3], {λ, λ̂}]
)

=0, (4.24)

〈(λλ̂), STr
(

{ω, λ̂}[λ, J1]
)

〉=STr
(

{ω, [λ̂, {λ, λ̂}]}[λ,J1]− {[ω, {λ, λ̂}], λ̂}[λ,J1]

+[{ω, λ̂}, {λ, λ̂}][λ,J1]
)

=2STr
(

{ω, [λ̂, {λ, λ̂}]}[λ,J1]
)

= 0, (4.25)

which is true due to the pure spinor condition.

For 〈b̄〉 one needs to use the same relations from above.

5 Conclusions and further directions

In this paper we outlined a general method to compute the logarithmic divergences of local

operators of the pure spinor string in an AdS5 × S5 background. In the text we derived

in detail the case for operators up to classical dimension two, but the method extends to

any classical dimension. Although the worldsheet anomalous dimension is not related to

a physical observable, as in the case of N=4 SYM, physical vertex operators should not

have quantum corrections to their classical dimension. The main application of our work

is to systematize the search for physical vertex operators. We presented some consistency

checks verifying that some conserved local operators are not renormalized.

The basic example is the radius operator discussed in [35]. It has ghost number (1, 1)

and zero classical dimension. In our notation it can be written as

V = Str(λλ̂), (5.1)

If we apply the pairing rules to compute 〈V 〉 we obtain

〈V 〉 = −IgijStr([λ, Ti][λ̂, Tj ]) = 0, (5.2)

where in the last equality we replaced the structure constants and used one of the identities

in the appendix A. This can be generalized to other massless and massive vertex operators.

We plan to return to this problem in the future.

A more interesting direction is to try to organize the dilatation operator including the

higher derivative contributions. As we commented in the introduction, the difficulty here

is that the pure spinor action is not an usual coset action as in [29, 30]. However, it might

still be possible to obtain the complete one loop dilatation operator restricting to some

subsector of the psu(2, 2|4) algebra, in a way similar as it was done for super Yang-Mills

dilatation operator [2].
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A Notation and conventions

Here we collect the conventions and notation used in this paper. We work with euclidean

world sheet with coordinates (z, z̄).

We split the current as J = A + K. We define K = J1 + J2 + J3 ∈ psu(2, 2|4) and

A = J0 belongs to the stability group algebra.3 The notation that we use for the different

graded generators is given by

J0 = J i
0Ti ; J1 = Jα

1 Tα ; J2 = Jm
2 Tm ; J3 = J α̂

3 Tα̂. (A.1)

The ghosts fields are defined as

λ = λATA ; ω = −ωAη
AÂT

Â
; λ̂ = λ̂ÂT

Â
; ω̂ = ω̂

B̂
ηBB̂TB. (A.2)

The only non-zero Str of generators are

gij = STrTiTj , (A.3)

ηmn = STrTmTn, (A.4)

ηαα̂ = STrTαTα̂. (A.5)

For the raising and lowering of fermionic indices in the structure constants we use

fmαβ = ηαα̂f
α̂
βm and f

mα̂β̂
= −ηαα̂f

α

β̂m
, (A.6)

and for the fαα̂i the rule is the same. For the bosonic case we use the standard rais-

ing/lowering procedure.

B Some identities for psu(2, 2|4)

Let A, B and C be bosons, X, Y and Z fermions, then, the generalized Jacobi Identities are

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0, (B.1)

[A, [B,X]] + [B, [X,A]] + [X, [A,B]] = 0, (B.2)

{X, [Y,A]}+ {Y, [X,A]}+ [A, {X,Y }] = 0, (B.3)

[X, {Y, Z}] + [Y, {Z,X}] + [Z, {X,Y }] = 0. (B.4)

3Although we did not use the K term in the main text, it will be useful from now on to use this term

in order to pack several results.
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In this theory the dual-coxeter number is 0, this implies

[[A, Ti], Tj ]g
ij − {[A, Tα], Tα̂}ηαα̂ + [[A, Tm], Tn]η

mn + {[A, Tα̂], Tα}ηαα̂ = 0, (B.5)

[[X,Ti], Tj ]g
ij − [{X,Tα}, Tα̂]η

αα̂ + [[X,Tm], Tn]η
mn + [{X,Tα̂}, Tα]η

αα̂ = 0. (B.6)

The Jacobi identity yields fmαβfnα̂β̂η
mnηαα̂ = 0 and f

iαβ̂
fjα̂βg

ijηαα̂ = 0. This implies

that

[[J1,3, Ti], Tj ]g
ij=[[J1,3, Tn], Tm]ηmn={[J1,3, Tα], Tα̂}ηαα̂={[J1,3, Tα̂], Tα}ηαα̂ = 0, (B.7)

[[ω + λ+ ω̂ + λ̂, Ti], Tj ]g
ij = [[ω + λ+ ω̂ + λ̂, Tn], Tm]ηmn = 0, (B.8)

[{ω + λ+ ω̂ + λ̂, Tα}, Tα̂]η
αα̂ = [{ω + λ+ ω̂ + λ̂, Tα̂}, Tα]η

αα̂ = 0. (B.9)

Another useful property of this theory is the pure spinor condition eq. (3.6). Using it,

it is easy to prove that
[

λ̂,
[

λ̂, A
]

±

]

∓
=

[

λ, [λ,A]±
]

∓ = 0. (B.10)

C Complete solution of the SD equation for the AdS5 × S5 pure spinor

string

In this appendix we apply the method explained in section 2, and generalized in section 3,

to the AdS5 × S5 superstring. Step by step, the procedure is as follows:

1. Using an expansion around a classical background, g = g0e
X , we compute all the

currents up to second order in X,

2. Expand the action (3.2) up to second order in X,

3. Write down the Schwinger-Dyson equation for the model and compute the interaction

matrix,

4. Compute the Green functions in powers of 1
k
,

5. Compute 〈φi, φj〉.

The expansion of the currents was already done in (3.7). The remaining subsections

are devoted, each one, to each of the steps listed above.

We will drop the use of the boldface notation for the background fields in this section.

All the quantum corrections come from either an x-term or a
(

δω, δλ, δω̂, δλ̂
)

-term. Thus,

every field in Sint, the F -terms, the Green’s functions and in the r.h.s. of the pairing rules

should be treated as classical.

C.1 Action

In (3.8) we showed the kinetic part of the expansion of (3.2) and we promised to show the
interaction part later, here we fulfil our promise. Up to second order in X the interaction
part is

Sint =
R2

2π

∫

d2z

[

1

2
∂̄xα

1
xβ
1
Jm
2
fmαβ +

1

2
xα
1
xβ
1
J α̂
3
J̄ β̂
3
fiαα̂fjββ̂g

ij +
1

8

(

3xα
1
∂̄xm

2
− 5∂̄xα

1
xm
2

)

Jβ
1
fmαβ

– 17 –
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+
1

8
xα
1
xm
2

(

−∂J̄β
1
fmαβ +

[

3Jn
2
J̄ α̂
3
+ 5J̄n

2
J α̂
3

]

fiα̂αfjmng
ij + 3

[

Jn
2
J̄ α̂
3
− J̄n

2
J α̂
3

]

fnαβfmβ̂α̂
ηββ̂

)

− 1

4
xα
1
xα̂
3

([

J̄β
1
J β̂
3
− Jβ

1
J̄ β̂
3

]

fmαβfnα̂β̂η
mn +

[

Jβ
1
J̄ β̂
3
+ 3J̄β

1
J β̂
3

]

fiα̂βfjαβ̂g
ij

+Jm
2
J̄n
2

[

fmαβfnα̂β̂ − fnαβfmα̂β̂

]

ηββ̂
)

+
1

2
∂xα̂

3
xβ̂
3
J̄m
2
f
mα̂β̂

+
1

2
xα̂
3
xβ̂
3
Jα
1
J̄β
1
fiαα̂fjββ̂g

ij

− 1

2
xm
2
xn
2

(

[

Jα
1
J̄ α̂
3
− J̄α

1
J α̂
3

]

fmαβfnα̂β̂η
ββ̂ + Jp

2
J̄q
2
fipmfjqng

ij
)

+
1

8

(

3∂xm
2
xα̂
3

−5xm
2
∂xα̂

3

)

J̄ β̂
3
f
mα̂β̂

+
1

8
xm
2
xα̂
3

(

−∂̄J β̂
3
f
mα̂β̂

+3
[

J̄α
1
Jn
2
− Jα

1
J̄n
2

]

fmαβfnα̂β̂η
ββ̂ +

[

3Jα
1
J̄n
2
+ 5J̄α

1
Jn
2

]

fiαα̂fjmng
ij
)

− δ2(N iN̂ j)gij − xα
1

(

δN iJ̄ α̂
3
+ δN̂ iJ α̂

3

)

fiαα̂ + xm
2

(

δN iJ̄n
2
+ δN̂ iJn

2

)

fimn

− xα̂
3

(

δN iJ̄α
1
+ δN̂ iJα

1

)

fiαα̂ − 1

2
xα
1
xβ
1

(

N iJ̄m
2

+ N̂ iJm
2

)

fmαµfiβµ̂η
µµ̂

− 1

2
xα
1
xm
2

(

N iJ̄β
1
+ N̂ iJβ

1

)

(

fipmfqαβη
pq + fiαµ̂fmβµη

µµ̂
)

+
1

2

(

∂xα
1
xα̂
3
− xα

1
∂xα̂

3

)

N̂ ifiαα̂ +
1

2
xm
2

(

∂̄xn
2
N i + ∂xn

2
N̂ i

)

fimn

− 1

2
xm
2
xα̂
3

(

N iJ̄ β̂
3
+ N̂ iJ β̂

3

)(

fipmf
qα̂β̂

ηpq − fiα̂µfmβ̂µ̂
ηµµ̂

)

+
1

2
xα̂
3
xβ̂
3

(

N iJ̄m
2

+ N̂ iJm
2

)

fmα̂µ̂fiµβ̂η
µµ̂ +

1

2

(

∂̄xα
1
xα̂
3
− xα

1
∂̄xα̂

3

)

N ifiαα̂

]

, (C.1)

with

N i = −ωAλ
BηAB̂f i

BB̂
, (C.2)

N̂ i = ω̂
Â
λ̂B̂ηAÂf i

BB̂
, (C.3)

δN i = (δωAλ
B + ωAδλ

B)ηAB̂f i

BB̂
, (C.4)

δN̂ i = (δω̂
Â
λ̂B̂ + ω̂

Â
δλ̂B̂)ηAÂf i

BB̂
, (C.5)

δ2(N iN̂ j) = δN iδN̂ j − δωAδλ
BηAB̂f i

BB̂
N̂ j +N iδω̂

Â
δλ̂B̂ηBÂf j

BB̂
. (C.6)

The lack of covariant derivatives is, as explained previously, because the pure spinor

sigma model is anomaly free. This means that physical quantities only appear in gauge

invariant expressions, thus the interchange ∂ ↔ ∇ can be done at any moment in our

computation. A more detailed explanation can be found in subsection 3.2.

C.2 Schwinger-Dyson equation and the interaction matrix

The Schwinger-Dyson equation in momentum space for (3.2) reads

GαΛ =
2π

R2

ηαΛ

|k|2 +
1

|k|2 (ik∂̄ + ik̄∂ +�)GαΛ − ηαΩ

|k|2 FΣΩG
ΣΛ, (C.7)

GmΛ =
2π

R2

ηmΛ

|k|2 +
1

|k|2 (ik∂̄ + ik̄∂ +�)GαΛ − ηmΩ

|k|2 FΣΩG
ΣΛ, (C.8)

Gα̂Λ = − 2π

R2

ηα̂Λ

|k|2 +
1

|k|2 (ik∂̄ + ik̄∂ +�)GαΛ +
ηΩα̂

|k|2 FΣΩG
ΣΛ, (C.9)
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G Λ
A =

2π

R2

i

k̄
δΛA +

i

k̄
∂̄G Λ

A − i

k̄
FΣAG

ΣΛ, (C.10)

GBΛ = − 2π

R2

i

k̄
δBΛ +

i

k̄
∂̄GBΛ +

i

k̄
F B
Σ GΣΛ, (C.11)

G Λ
Â

=
2π

R2

i

k
δΛ
Â
+

i

k
∂G Λ

Â
− i

k
FΣÂ

GΣΛ, (C.12)

GB̂Λ = − 2π

R2

i

k
δ
B̂Λ +

i

k
∂GB̂Λ +

i

k
F B̂
Σ GΣΛ, (C.13)

where Λ = {α,m, α̂,A,A,
Â,

Â
}.

The interaction matrix is given by

FΣΩ(x, y) =

←−
δ

←−
δ ΦΣ(y)

δSint

δΦΩ(x)
. (C.14)

The directional derivative means that we compute the functional derivative of Sint with

respect to ΦΣ acting from right to left. Because we are working in momentum space is

useful to write also F in momentum space, for that reason the equation we work with is

FΛΩ(x, k)f(x) =

∫

d2y

←−
δ

←−
δ ΦΣ(y)

δSint

δΦΩ(x)
exp(iky)f(y). (C.15)

Note that the f(y) stands for the previous Green’s function and the exponential came from

the Fourier Transform. The directional derivative has the same meaning as above.

We organize the interaction matrix by the Z4 charge of its indices, and in the end we

add the ghosts contributions.

The first we compute the FαΛ terms of the matrix:

Fαβ = −Jm
2
(ik̄ + ∂̄)fmαβ − 1

2
∂̄Jm

2
fmαβ − 1

2
J α̂
3
J̄ β̂
3

(

fiαα̂fjββ̂ − fiβα̂fjαβ̂

)

gij

+
1

2

(

N iJ̄m
2

+ N̂ iJm
2

)

(fmαµfiβµ̂ − fmβµfiαµ̂) η
µµ̂, (C.16)

Fαm = Jβ
1

(

ik̄ + ∂̄
)

fmαβ +
1

8

(

∂J̄β
1
+ 3∂̄Jβ

1

)

fmαβ − 1

8

(

3Jn
2
J̄ α̂
3
+ 5J̄n

2
J α̂
3

)

fiα̂αfjmng
ij (C.17)

− 3

8

(

Jn
2
J̄ α̂
3
− J̄n

2
J α̂
3

)

fnαβfmβ̂α̂
ηββ̂ +

1

2

(

N iJ̄β
1
− N̂ iJβ

1

)

(

fipmfqαβη
pq + fiαµ̂fmβµη

µµ̂
)

Fαα̂ = −N ifiαα̂
(

ik̄ + ∂̄
)

− N̂ ifiαα̂ (ik + ∂) +
1

4

(

J̄β
1
J β̂
3
− Jβ

1
J̄ β̂
3

)

fmαβfnα̂β̂η
mn

+
1

4

(

Jβ
1
J̄ β̂
3
+ 3J̄β

1
J β̂
3

)

fiα̂βfjαβ̂g
ij +

1

4
Jm
2
J̄n
2

(

fmαβfnα̂β̂ − fnαβfmα̂β̂

)

ηββ̂ , (C.18)

FαB = −ωAJ̄
α̂
3
AA

B αα̂ = −FBα, (C.19)

F A
α = −λB J̄ α̂

3
AA

B αα̂ = −FA
α, (C.20)

FαB̂ = ω̂ÂJ
α̂
3
AA

B αα̂ = −FB̂α, (C.21)

F Â
α = λ̂B̂J α̂

3
AA

B αα̂ = −F Â
α. (C.22)

The terms of the FmΛ kind are

Fmα = Jβ
1

(

ik̄ + ∂̄
)

fmαβ +
1

2

(

N iJ̄β
1
+ N̂ iJβ

1

)

(

fipmfqαβη
pq + fiαµ̂fmβµη

µµ̂
)
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+
1

8

(

3Jn
2
J̄ α̂
3
+ 5J̄n

2
J α̂
3

)

fiα̂αfjmng
ij +

3

8

(

Jn
2
J̄ α̂
3
− J̄n

2
J α̂
3

)

fnαβfmβ̂α̂
ηββ̂

+
1

8

(

5∂̄Jβ
1
− ∂J̄β

1

)

fmαβ , (C.23)

Fmn = N ifimn

(

ik̄ + ∂̄
)

+ N̂ ifimn (ik + ∂)

− 1

2

(

Jα
1
J̄ α̂
3
− J̄α

1
J α̂
3

)

(fmαβfnα̂β̂+fnαβfmα̂β̂
)ηββ̂− 1

2
Jp
2
J̄q
2
(fipmfjqn+fipnfjqm)gij , (C.24)

Fmα̂ = J̄ β̂
3
f
mα̂β̂

(ik + ∂) +
1

8

(

5∂J̄ β̂
3
− ∂̄J β̂

3

)

f
mα̂β̂

+
3

8

(

J̄α
1
Jn
2
− Jα

1
J̄n
2

)

fmαβfnα̂β̂η
ββ̂ (C.25)

+
1

8

(

3Jα
1
J̄n
2
+ 5J̄α

1
Jn
2

)

fiαα̂fjmng
ij +

1

2

(

N iJ̄ β̂
3
+ N̂ iJ β̂

3

)(

fipmf
qα̂β̂

ηpq − fiα̂µfmβ̂µ̂
ηµµ̂

)

,

FmB = −ωAJ̄
n
2
AA

B mn = FBm, (C.26)

F A
m = −λB J̄n

2
AA

B mn = FB
m, (C.27)

FmB̂ = ω̂ÂJ
n
2
AA

B mn = FB̂m, (C.28)

F Â
m = λB̂Jn

2
AA

B mn = F Â
m. (C.29)

The last contribution from the non-ghost terms is given by the Fα̂Λ elements:

Fα̂α = −N ifiαα̂
(

ik̄ + ∂̄
)

− N̂ ifiαα̂ (ik + ∂)− 1

4

(

Jβ
1
J β̂
3
− Jβ

1
J̄ β̂
3

)

fmαβfnα̂β̂η
mn

− 1

4

(

Jβ
1
J̄ β̂
3
+ 3J̄β

1
J β̂
3

)

fiα̂βfjαβ̂g
ij − 1

4
Jm
2
J̄n
2

(

fmαβfnα̂β̂ − fnαβfmα̂β̂

)

ηββ̂ , (C.30)

Fα̂m = J̄ β̂
3
f
mα̂β̂

(ik + ∂) +
1

8

(

3∂J̄ β̂
3
+ ∂̄J β̂

3

)

f
mα̂β̂

− 3

8

(

J̄α
1
Jn
2
− Jα

1
J̄n
2

)

fmαβfnα̂β̂η
ββ̂ (C.31)

− 1

8

(

3Jα
1
J̄n
2
+ 5J̄α

1
Jn
2

)

fiαα̂fjmng
ij − 1

2

(

N iJ̄ β̂
3
+ N̂ iJ β̂

3

)(

fipmf
qα̂β̂

ηpq − fiα̂µfmβ̂µ̂
ηµµ̂

)

,

F
α̂β̂

= −J̄m
2

(ik + ∂) f
mα̂β̂

− 1

2
∂J̄m

2
f
mα̂β̂

− 1

2
Jα
1
J̄β
1

(

fiαα̂fjββ̂ − fiβα̂fjαβ̂

)

gij

− 1

2

(

N iJ̄m
2

+ N̂ iJm
2

)(

fmα̂µ̂fiµβ̂ − f
mβ̂µ̂

fiµα̂

)

ηµµ̂, (C.32)

Fα̂B = −ωAJ̄
α
1
AA

B αα̂ = −FBα̂, (C.33)

F A
α̂ = −λB J̄α

1
AA

B αα̂ = −FA
α̂, (C.34)

Fα̂B̂ = ω̂ÂJ
α
1
AA

B αα̂ = −FB̂α̂, (C.35)

Fα̂B = λÂJα
1
AA

B αα̂ = −F B̂
α̂. (C.36)

Finally we compute the pure ghost terms, and we save some trees by not adding the

symmetric terms already listed:

F A
B = N̂B

A = FA
B, (C.37)

F Â
B = ωAλ̂

B̂AAÂ

BB̂
= F Â

B, (C.38)

F
BB̂

= ωAω̂Â
AAÂ

BB̂
= F

BÂ
, (C.39)

FA

B̂
= λBω̂

Â
AAÂ

BB̂
= F A

B̂
, (C.40)

FAÂ = λBλ̂B̂AAÂ

BB̂
= F ÂA, (C.41)

F Â

B̂
= N Â

B̂
= F Â

B̂
, (C.42)
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where we have defined

AAÂ

BB̂
= ηAĈηCÂf i

BĈ
f j

B̂C
gij , (C.43)

N̂B
A = ω̂

Â
λ̂B̂AAÂ

BB̂
, (C.44)

N B̂

Â
= ωAλ

BAAÂ

BB̂
. (C.45)

C.3 Green functions

With all the previous results, we begin the computation of the Green’s Functions as a

power series in 1/k. We follow the prescription given in (3.17). The Green functions are

presented order by order, which makes the reading easier.

The only contributions of order 1/k come from the ghosts propagators

G B
1A =

2π

R2

i

k̄
δBA = −GB

1 A, (C.46)

G B̂

1Â
=

2π

R2

i

k
δB̂
Â
= −GB̂

1 Â
. (C.47)

For the 1/k2 terms, we have a contribution from the non-ghosts propagators

Gαα̂
2 =

2π

R2

1

|k|2 η
αα̂ = −Gα̂α

2 , (C.48)

Gmn
2 =

2π

R2

1

|k|2 η
mn, (C.49)

and another from the ghost interactions

G B
2A = − i

k̄

(

F C
A G B

1C

)

=
2π

R2

1

k̄2
N̂B

A = GB
2 A, (C.50)

G2AÂ
= − i

k̄

(

F
AĈ

GĈ

1 Â

)

= − 2π

R2

1

|k|2ωBω̂B̂
ABB̂

AÂ
= G2ÂA

, (C.51)

G B̂
2A = − i

k̄

(

F Ĉ
A G B̂

1Ĉ

)

=
2π

R2

1

|k|2ωBλ̂
ÂABB̂

AÂ
= GB̂

2 A, (C.52)

GB

2 Â
=

i

k̄

(

FB

Ĉ
GĈ

1 Â

)

=
2π

R2

1

|k|2λ
Aω̂

B̂
ABB̂

AÂ
= GB

2Â
, (C.53)

GBB̂
2 =

i

k̄

(

FBĈG B̂

1Ĉ

)

= − 2π

R2

1

|k|2λ
Aλ̂ÂABB̂

AÂ
= GB̂B

2 , (C.54)

G B̂

2Â
= − i

k

(

F Ĉ

Â
G B̂

1Ĉ

)

=
2π

R2

1

k2
N B̂

Â
= GB̂

2 Â
. (C.55)

At order 1/k3 we have interaction between the non-ghost fields. We organize these

terms in the same order as in the previous section, when GΛΩ = cGΩΛ, with c = ±1 we

only list the first term.

Using the given prescription, we find that the GαΛ
3 terms are

Gαβ
3 = −ηαα̂

|k|2
(

F
β̂α̂

Gβ̂β
2

)

= − 2π

R2

i

|k|2
J̄m
2

k̄
f
mα̂β̂

ηαα̂ηββ̂ , (C.56)

Gαm
3 = −ηαα̂

|k|2 (Fnα̂G
nm
2 ) = − 2π

R2

i

|k|2
J̄ β̂
3

k̄
f
nα̂β̂

ηαα̂ηmn = −Gmα
3 , (C.57)
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Gαα̂
3 = −ηαβ̂

|k|2
(

F
ββ̂
Gβα̂

2

)

=
2π

R2

i

|k|2

(

N i

k
+

N̂ i

k̄

)

f
iββ̂

ηαβ̂ηβα̂ = Gα̂α
3 , (C.58)

Gα
3 A = −ηαα̂

|k|2
(

FBα̂G
B
1 A

)

=
2π

R2

i

|k|2
J̄β
1

k̄
ωBA

B
A βα̂η

αα̂ = −G α
3A , (C.59)

GαB
3 = −ηαα̂

|k|2
(

FA
α̂G

B
1A

)

= − 2π

R2

i

|k|2
J̄β
1

k̄
λAA B

A βα̂η
αα̂ = −GBα

3 , (C.60)

Gα

3 Â
= −ηαα̂

|k|2
(

F
B̂α̂

GB̂

1 Â

)

= − 2π

R2

i

|k|2
Jβ
1

k
ω̂
B̂
A B̂

Â βα̂
ηαα̂ = −G α

3Â
, (C.61)

GαB̂
3 = −ηαα̂

|k|2
(

F Â
α̂G

B̂

1Â

)

=
2π

R2

i

|k|2
Jβ
1

k
λ̂ÂA B̂

Â βα̂
ηαα̂ = −GB̂α

3 . (C.62)

For the GmΛ
3 terms we find

Gmn
3 = −ηmp

|k|2 (FqpG
qn
2 ) = − 2π

R2

i

|k|2

(

N i

k
+

N̂ i

k̄

)

fipqη
mpηnq, (C.63)

Gmα̂
3 = −ηmn

|k|2
(

FαnG
αα̂
2

)

= − 2π

R2

i

|k|2
Jβ
1

k
fnαβη

αα̂ηmn = −Gα̂m
3 (C.64)

Gm
3 A = −ηmn

|k|2
(

FBnG
B
1 A

)

= − 2π

R2

i

|k|2
J̄p
2

k̄
ωBA

B
A npη

mn = −G m
3A , (C.65)

GmB
3 = −ηmn

|k|2
(

FA
α̂G

B
1A

)

=
2π

R2

i

|k|2
J̄p
2

k̄
λAA B

A npη
mn = GBm

3 , (C.66)

Gm

3 Â
= −ηmn

|k|2
(

F
B̂α̂

GB̂

1 Â

)

=
2π

R2

i

|k|2
Jp
2

k
ω̂
B̂
A B̂

Â np
ηmn = −G m

3Â
, (C.67)

GmB̂
3 = −ηmn

|k|2
(

F Â
α̂G

B̂

1Â

)

= − 2π

R2

i

|k|2
Jp
2

k
λ̂ÂA B̂

Â np
ηmn = −GB̂m

3 . (C.68)

The Gα̂Λ
3 terms computed are

Gα̂β̂
3 = − 2π

R2

i

|k|2
Jm
2

k
fmαβη

αα̂ηββ̂ (C.69)

Gα̂
3 A =

ηαα̂

|k|2
(

FBα̂G
B
1 A

)

= − 2π

R2

i

|k|2
J̄ β̂
3

k̄
ωBA

B

A β̂α
ηαα̂ = −G α̂

3A , (C.70)

Gα̂B
3 =

ηαα̂

|k|2
(

FA
α̂G

B
1A

)

=
2π

R2

i

|k|2
J̄ β̂
3

k̄
λAA B

A β̂α
ηαα̂ = −GBα̂

3 , (C.71)

Gα̂

3 Â
=

ηαα̂

|k|2
(

F
B̂α̂

GB̂

1 Â

)

=
2π

R2

i

|k|2
J β̂
3

k
ω̂
B̂
A B̂

Â β̂α
ηαα̂ = −G α̂

3Â
, (C.72)

Gα̂B̂
3 =

ηαα̂

|k|2
(

F Â
α̂G

B̂

1Â

)

= − 2π

R2

i

|k|2
J β̂
3

k
λ̂ÂA B̂

Â β̂α
ηαα̂ = −GB̂α̂

3 , (C.73)

The G3 with only ghost indices are

G3AC = − 2π

R2

i

|k|2
1

k̄
ωBωDλ̂

Âω̂
B̂

[

ABĈ

AÂ
ADB̂

CĈ
−ABB̂

AĈ
ADĈ

CÂ

]

, (C.74)
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G3A
B =

2π

R2

i

k̄3

(

δDA ∂̄ − N̂D
A

)

N̂B
D +

2π

R2

i

|k|2
1

k̄
ωDλ

C λ̂Âω̂
B̂

[

ADB̂

AĈ
ABĈ

CÂ
−ADĈ

AÂ
ABB̂

CĈ

]

, (C.75)

G3AÂ
= − 2π

R2

i

|k|2
1

k̄

(

δDA ∂̄ − N̂D
A

)

ωBω̂B̂
ABB̂

DÂ
− 2π

R2

i

|k|2
1

k
ωBω̂B̂

N D̂

Â
ABB̂

AD̂
, (C.76)

G B̂
3A =

2π

R2

i

|k|2
1

k̄

(

δDA ∂̄ − N̂D
A

)

ωBλ̂
ÂABB̂

DÂ
− 2π

R2

i

|k|2
1

k
ωBλ̂

ÂN B̂

D̂
ABD̂

AÂ
, (C.77)

GB
3 A =

2π

R2

i

k̄3

(

δBD∂̄ + N̂B
D

)

N̂D
A +

2π

R2

i

|k|2
1

k̄
ωDλ

C λ̂Âω̂
B̂

[

ADĈ

AÂ
ABB̂

CĈ
−ADB̂

AĈ
ABĈ

CÂ

]

, (C.78)

GBD
3 =

2π

R2

i

|k|2
1

k̄
λAλC λ̂Âω̂

B̂

[

ABĈ

AÂ
ADB̂

CĈ
−ABB̂

AĈ
ADĈ

CÂ

]

, (C.79)

GB

3 Â
=

2π

R2

i

k̄

1

|k|2
(

δBD∂̄ + N̂B
D

)

λAω̂
B̂
ABB̂

AÂ
+

2π

R2

i

|k|2
1

k
λAω̂

B̂
N D̂

Â
ABB̂

AD̂
, (C.80)

GBB̂
3 = − 2π

R2

i

k̄

1

|k|2
(

δBD∂̄ + N̂B
D

)

λAλ̂ÂABB̂

AÂ
+

2π

R2

i

|k|2
1

k
λAλ̂ÂN B̂

D̂
ABD̂

AÂ
, (C.81)

G3ÂA
=

2π

R2

i

|k|2
1

k

(

−δD̂
Â
∂ +N D̂

Â

)

ωBω̂B̂
ABB̂

AÂ
− 2π

R2

i

|k|2
1

k̄
ωBω̂B̂

N̂D
A ABB̂

DÂ
, (C.82)

G3Â
B = − 2π

R2

i

|k|2
1

k

(

−δD̂
Â
∂ +N D̂

Â

)

λAω̂
B̂
ABB̂

AÂ
− 2π

R2

i

|k|2
1

k̄
λAω̂

B̂
N̂B

C ACB̂

AÂ
, (C.83)

G3ÂĈ
=

2π

R2

i

|k|2
1

k
ω̂
B̂
ω̂
D̂
λAωB

[

ACB̂

AÂ
ABD̂

CĈ
−ABB̂

CÂ
ACD̂

AĈ

]

, (C.84)

G3Â
B̂ = − 2π

R2

i

k3

(

−δD̂
Â
∂+N D̂

Â

)

N B̂

D̂
+
2π

R2

i

|k|2
1

k
ω̂
D̂
λ̂ĈλAωB

[

ABD̂

CÂ
ACB̂

AĈ
−ACD̂

AÂ
ABB̂

CĈ

]

, (C.85)

GB̂
3 A =

2π

R2

i

|k|2
1

k

(

δB̂
D̂
∂ +N B̂

D̂

)

ωBλ̂
ÂABD̂

AÂ
+

2π

R2

i

|k|2
1

k̄
ωBλ̂

ÂN̂C
AABB̂

CÂ
, (C.86)

GB̂B
3 = − 2π

R2

i

|k|2
1

k

(

δB̂
D̂
∂ +N B̂

D̂

)

λAλ̂ÂABD̂

AÂ
+

2π

R2

i

|k|2
1

k̄
λAλ̂ÂN̂B

AACB̂

AÂ
, (C.87)

GB̂
3 Â

=
2π

R2

i

k3

(

δB̂
D̂
∂ +N B̂

D̂

)

N D̂

Â
− 2π

R2

i

|k|2
1

k
ω̂
D̂
λ̂ĈλAωB

[

ACB̂

AĈ
ABD̂

CÂ
−ABB̂

CĈ
ACB̂

AÂ

]

, (C.88)

GB̂D̂
3 =

2π

R2

i

|k|2
1

k
λ̂Âλ̂ĈλAωB

[

ACB̂

AÂ
ABD̂

CĈ
−ABB̂

CÂ
ACD̂

AĈ

]

. (C.89)

The 1/k4 terms are needed when we compute terms with two derivatives. Since we

are not computing anything with two derivatives and at least one ghost field, we don’t list

those Green’s functions. The GαΛ
4 terms are:

Gαβ
4

=
2π

R2

1

|k|2k̄2
(

∂̄J̄m
2
f
mα̂β̂

+ J̄m
2
N̂ i

[

fiµα̂fmµ̂β̂
− f

iµβ̂
fmµ̂α̂

]

ηµµ̂ + J̄ µ̂
3
J̄ ν̂
3
fmα̂µ̂fnβ̂ν̂η

mn
)

ηαα̂ηββ̂

+
2π

R2

1

|k|4
(

1

2
∂J̄m

2
f
mα̂β̂

+
1

2
Jµ
1
J̄ν
1
gij

(

fiµα̂fjνβ̂ − fiνα̂fjµβ̂

)

+
1

2

[

−J̄m
2
N i + Jm

2
N̂ i

] (

fmα̂µ̂fiµβ̂ − f
mβ̂µ̂

fiµα̂

)

ηµµ̂
)

ηαα̂ηββ̂ , (C.90)

Gαm
4

=
2π

R2

1

|k|2k̄2
[

∂̄J̄ β̂
3
f
nα̂β̂

+ J̄ β̂
3
N̂ i

(

f
pα̂β̂

finqη
pq + f

nµ̂β̂
fiµα̂η

µµ̂
)]

ηmnηαα̂

+
2π

R2

1

|k|4
[

1

8

(

3∂J̄ β̂
3
+ ∂̄J β̂

3

)

f
nα̂β̂

− 1

2
(3N iJ̄ β̂

3
+ N̂ iJ β̂

3
)
(

fipnfqα̂β̂η
pq − fiα̂µfnβ̂µ̂η

µµ̂
)

−1

8

[

5J̄β
1
Jp
2
+ 3Jβ

1
J̄p
2

]

fiβα̂fjnpg
ij − 1

8

[

3J̄β
1
Jp
2
+ 5Jβ

1
J̄p
2

]

fnβµfpα̂µ̂η
µµ̂

]

ηαα̂ηmn, (C.91)
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Gαα̂
4

=
2π

R2

1

|k|2k2
[

−∂N if
iββ̂

−N iN jf
iµβ̂

fjβµ̂η
µµ̂

]

ηαβ̂ηβα̂

+
2π

R2

1

|k|2k̄2
[

−∂̄N̂ if
iββ̂

− N̂ iN̂ jf
iµβ̂

fjβµ̂η
µµ̂

]

ηαβ̂ηβα̂

+
2π

R2

1

|k|4
[

−
(

N iN̂ j+N jN̂ i
)

f
iµβ̂

fjµ̂βη
µµ̂+

1

4
Jm
2
J̄n
2

(

3fmµβfnβ̂µ̂+fnµβfmβ̂µ̂

)

ηµµ̂ (C.92)

+
1

4
Jµ
1
J̄ µ̂
3

(

5fmµβfnµ̂β̂η
mn−f

iµβ̂
fjµ̂βg

ij
)

− 1

4
J̄µ
1
J µ̂
3

(

fmµβfnµ̂β̂η
mn+3f

iµβ̂
fjµ̂βg

ij
)

]

ηαβ̂ηβα̂.

The GmΛ
4 Green’s functions are

Gmn
4

=
2π

R2

1

|k|2k̄2
[

∂̄N̂ ifipq − N̂ iN̂ jfirpfjsqη
rs
]

ηnqηmp

+
2π

R2

1

|k|2k2
[

∂N ifipq −N iN jfirpfjsqη
rs
]

ηnqηmp

+
2π

R2

1

|k|4 η
mpηnq

[

−
(

N iN̂ j +N jN̂ i
)

firpfjsqη
rs +

1

2
Jr
2
J̄s
2
(firpfjsq + firqfjsp) g

ij

−1

2

(

Jα
1
J̄ α̂
3
+ J̄α

1
J α̂
3

)

(

fqαβfpα̂β̂ + fpαβfqα̂β̂

)

ηββ̂
]

, (C.93)

Gα̂m
4

=
2π

R2

1

|k|2k2
[

−∂Jβ
1
fnαβ + Jβ

1
N i

(

fipnfqαβη
pq + fnµβfiµ̂αη

µµ̂
)

]

ηmnηαα̂

+
2π

R2

1

|k|4
[

−1

8

(

3∂̄Jβ
1
+ ∂J̄β

1

)

fnαβ +
1

2

(

N iJ̄β
1
+ 3N̂ iJβ

1

)

(

fipnfqαβη
pq + fiαµ̂fnβµη

µµ̂
)

+
1

8

(

3Jp
2
J̄ β̂
3
+ 5J̄p

2
J β̂
3

)

f
iαβ̂

fjnpg
ij − 1

8

(

5Jp
2
J̄ β̂
3
+ 3J̄p

2
J β̂
3

)

fpαµfnβ̂µ̂η
µµ̂

]

ηαα̂ηnm. (C.94)

Finally, we list the Gα̂β̂
4 term

Gα̂β̂
4

=
2π

R2

1

|k|2k2
[

∂Jm
2
fmαβ + Jm

2
N i (fmαµfiβµ̂ − fmβµfiαµ̂) η

µµ̂ + Jµ
1
Jν
1
fmαµfnβνη

mn
]

ηαα̂ηββ̂

+
2π

R2

1

|k|4
[

1

2
∂̄Jm

2
fmαβ +

1

2
J µ̂
3
J̄ ν̂
3

(

fiµ̂αfjν̂β − fiµ̂βfjν̂αg
ij
)

+
1

2

(

N iJ̄m
2

− N̂ iJm
2

)

(fmβµfiαµ̂ − fmαµfiβµ̂) η
µµ̂

]

ηαα̂ηββ̂ . (C.95)

The reason we don’t compute terms such as Gα̂m
4 is that we can deduce their contri-

bution from the relation 〈∂X∂X〉 = ∂〈X∂X〉 − 〈X∂∂X〉, as explained in section 2.

C.4 Pairing rules

We split the current in its gauge part J0 and the vielbein K:

J = J0 +K, (C.96)

K = J1 + J2 + J3. (C.97)

We also join the quantum fluctuations into a single term

X = x1 + x2 + x3. (C.98)
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The following is the list of all divergent parts up to two derivatives. The order of

the results is: first terms with no derivatives, then the currents, then one X with one

current, and finally two currents. Finally, we list the pairing rules involving ghost fields.

The definition of I in this appendix is I = −1/(2R2ǫ).

The non-vanishing terms with no derivatives are the ones given by the first term in

the Schwinger-Dyson equation:

〈x1, x3〉 = −TαTα̂η
αα̂ and 〈x2, x2〉 = TmTnη

mn. (C.99)

Now we show the divergent part of the currents:

〈K〉 = 〈K̄〉 = 〈N〉 = 〈N̂〉 = 0, (C.100)

〈J0〉 = − I

2

(

{[N,Tα̂], Tα}ηαα̂ − {[N,Tα], Tα̂}ηαα̂ + [[N,Tm], Tn]η
mn

)

, (C.101)

〈J̄0〉 = − I

2

(

{[N̂ , Tα̂], Tα}ηαα̂ − {[N̂ , Tα], Tα̂}ηαα̂ + [[N̂ , Tm], Tn]η
mn

)

. (C.102)

For one X with one current, we find that the simplest current is J0

〈X, J0〉 = −I[K,Tj ]Tkg
jk, (C.103)

〈X, J̄0〉 = −I[K̄, Tj ]Tkg
jk, (C.104)

for the other currents we find

〈x1, J1〉 = −I[J2, Tα̂]Tαη
αα̂, 〈x2, J1〉 = I[J3, Tα̂]Tαη

αα̂, 〈x3, J1〉 = I[N,Tα̂]Tαη
αα̂, (C.105)

〈x1, J̄1〉 = 0, 〈x2, J̄1〉 = 0, 〈x3, J̄1〉 = I[N̂ , Tα̂]Tαη
αα̂, (C.106)

〈x1, J2〉 = −I[J3, Tm]Tnη
mn, 〈x2, J2〉 = I[N,Tm]Tnη

mn, 〈x3, J2〉 = 0, (C.107)

〈x1, J̄2〉 = 0, 〈x2, J̄2〉 = I[N̂ , Tm]Tnη
mn, 〈x3, J̄2〉 = I[J̄1, Tm]Tnη

mn, (C.108)

〈x1, J3〉 = −I[N,Tα]Tα̂η
αα̂, 〈x2, J3〉 = 0, 〈x3, J3〉 = 0, (C.109)

〈x1, J̄3〉 = −I[N̂ , Tα]Tα̂η
αα̂, 〈x2, J̄3〉 = I[J̄1, Tα]Tα̂η

αα̂, 〈x3, J̄3〉 = I[J̄2, Tα]Tα̂η
αα̂. (C.110)

Now we show the divergent part of two currents. The first group are the 〈J0, ·〉 terms:

〈J0, J0〉 = I[J1, Tα̂][J3, Tα]η
αα̂ − I[J3, Tα][J1, Tα̂]η

αα̂ + I[J2, Tm][J2, Tn]η
mn, (C.111)

〈J0, J1〉 = −I[J1, Tα̂][N,Tα]η
αα̂ − I[J3, Tα][J2, Tα̂]η

αα̂ + I[J2, Tm][J3, Tn]η
mn, (C.112)

〈J0, J̄1〉 = −I[J1, Tα̂][N̂ , Tα]η
αα̂, (C.113)

〈J0, J2〉 = −I[J3, Tα][J3, Tα̂]η
αα̂ − I[J2, Tm][N,Tn]η

mn, (C.114)

〈J0, J̄2〉 = I[J1, Tα̂][J̄1, Tα]η
αα̂ − I[J2, Tm][N̂ , Tn]η

mn, (C.115)

〈J0, J3〉 = I[J3, Tα][N,Tα̂]η
αα̂, (C.116)

〈J0, J̄3〉 = I[J3, Tα][N̂ , Tα̂]η
αα̂ + I[J1, Tα̂][J̄2, Tα]η

αα̂ + I[J2, Tm][J̄1, Tn]η
mn. (C.117)

The 〈J1, ·〉 terms are

〈J1, J1〉 = −I ([J2, Tα̂][N,Tα]− [N,Tα][J2, Tα̂]) η
αα̂ + [J3, Tm][J3, Tn]η

mn, (C.118)
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〈J̄1, J̄1〉 = 0, (C.119)

〈J1, J̄1〉 =
I

2
[∂J2, Tα̂]Tαη

αα̂ +
I

2

(

[J1, Ti][J̄1, Tj ] + [J̄1, Ti][J1, Tj ]
)

gij (C.120)

+
I

2

(

−[J̄2, Tα̂][N,Tα]− [J2, T α̂][N̂ , Tα] + 3[N,Tα][J̄2, Tα̂]− [N̂ , Tα][J2, Tα̂]
)

ηαα̂,

〈J̄1, J1〉 = − I

2
[∂J2, Tα̂]Tαη

αα̂ +
I

2

(

[J1, Ti][J̄1, Tj ] + [J̄1, Ti][J1, Tj ]
)

gij (C.121)

+
I

2

(

−[J̄2, Tα̂][N,Tα]− [J2, Tα̂][N̂ , Tα] + 3[N̂ , Tα][J2, Tα]− [N,Tα][J̄2, Tα̂]
)

ηαα̂,

〈J1, J2〉 = I[N,Tα][J2, Tα̂]η
αα̂ + [J3, Tm][J3, Tn]η

mn, (C.122)

〈J̄1, J̄2〉 = 0, (C.123)

〈J1, J̄2〉 =
I

8
[5∂J̄3 − ∂̄J3, Tm]Tnη

mn +
I

8

(

11[J2, Tα̂][J̄1, Tα] + 5[J̄2, Tα̂][J1, Tα]
)

ηαα̂

+
I

8

(

5[J̄1, Ti][J2, Tj ] + 3[J1, Ti][J̄2, Tj ]
)

gij − I

2

(

[N,Ta][J̄3, Tα̂] + [N̂ , Tα][J3, Tα̂]
)

ηαα̂

+
I

2

(

3[J̄3, Tm][N,Tn]− [J3, Tm][N̂ , Tn]
)

ηmn, (C.124)

〈J̄1, J2〉 = − I

8
[3∂J̄3 + ∂̄J3, Tm]Tnη

mn +
3I

8

(

[J2, Tα̂][J̄1, Tα]− [J̄2, Tα̂][J1, Tα]
)

ηαα̂

+
I

8

(

5[J̄1, Ti][J2, Tj ] + 3[J1, Ti][J̄2, Tj ]
)

gij − I

2

(

3[N,Ta][J̄3, Tα̂]− [N̂ , Tα][J3, Tα̂]
)

ηαα̂

+
I

2

(

[J̄3, Tm][N,Tn] + [J3, Tm][N̂ , Tn]
)

ηmn, (C.125)

〈J1, J3〉 = −I[N,Tα][N,Tα̂]η
αα̂, (C.126)

〈J̄1, J̄3〉 = −I[N̂ , Tα][N̂ , Tα̂]η
αα̂, (C.127)

〈J1, J̄3〉 = −I
(

[N,Tα][N̂ , Tα̂] + [N̂ , Tα][N,Tα̂]
)

ηαα̂ +
I

4

(

3[J̄2, T α̂][J2, Ta] + 5[J2, Tα̂][J̄2, Tα]
)

ηαα̂

+
I

4

(

5[J̄3, Tm][J1, Tn] + 3[J3, Tm][J1, Tn]
)

ηmn +
I

4

(

[J1, Ti][J̄3, Tj ] + 3[J̄1, Ti][J3, Tj ]
)

gij ,

(C.128)

〈J̄1, J3〉 = −I
(

[N,Tα][N̂ , Tα̂] + [N̂ , Tα][N,Tα̂]
)

ηαα̂ − I

4

(

[J̄2, T α̂][J2, Ta]− [J2, Tα̂][J̄2, Tα]
)

ηαα̂

+
I

4

(

[J̄3, Tm][J1, Tn]− [J3, Tm][J1, Tn]
)

ηmn +
I

4

(

[J1, Ti][J̄3, Tj ] + 3[J̄1, Ti][J3, Tj ]
)

gij .

(C.129)

We present the 〈J3, ·〉 terms before the 〈J2, ·〉 due to their similarity with the 〈J1, ·〉
terms:

〈J3, J2〉 = 0, (C.130)

〈J̄3, J̄2〉 = −I[N̂ , Tα̂][J̄1, Tα]η
αα̂ − I[J̄1, Tm][N̂ , Tn]η

mn, (C.131)

〈J3, J2〉 =
I

8
[5∂̄J1 − ∂J̄1, Tm]Tnηmn − I

2

(

[J̄1, Tm][N,Tn]− 3[J1, Tm][N̂ , Tn]
)

ηmn

+
I

2

(

[N̂ , Tα̂][J1, Tα] + [N,Tα̂][J̄1, Tα]
)

ηαα̂ +
I

8

(

3[J̄3, Ti][J2, Tj ] + 5[J3, Ti][J̄2, Tj ]
)

gij

− I

8

(

5[J2, Tα][J̄3, Tα̂] + 11[J̄2, Tα][J3, Tα̂]
)

ηαα̂, (C.132)

〈J3, J2〉 = − I

8
[3∂̄J1 + ∂J̄1, Tm]Tnη

mn +
I

2

(

[J̄1, Tm][N,Tn] + [J1, Tm][N̂ , Tn]
)

ηmn
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+
I

2

(

3[N̂ , Tα̂][J1, Tα]− [N,Tα̂][J̄1, Tα]
)

ηαα̂ +
I

8

(

3[J̄3, Ti][J2, Tj ] + 5[J3, Ti][J̄2, Tj ]
)

gij

+
3I

8

(

[J2, Tα][J̄3, Tα̂]− [J̄2, Tα][J3, Tα̂]
)

ηαα̂, (C.133)

〈J3, J3〉 = 0, (C.134)

〈J̄3, J̄3〉 = I
(

[J̄2, Tα][N̂ , Tα̂]− [N̂ , Tα̂][J̄2, Tα]
)

ηαα̂ + I[J̄1, Tm][J̄1, Tn]η
mn, (C.135)

〈J̄3, J3〉 = − I

2
[∂̄J2, Tα]Tα̂η

αα̂ +
I

2

(

[J3, Ti][J̄3, Tj ] + [J̄3, Ti][J3, Tj ]
)

gij

+
I

2

(

−[N,Tα̂][J̄2, Tα]−[N̂ , Tα̂][J2, Tα]+3[J̄2, Tα][N,Tα̂]−[J2, Tα][N̂ , Tα̂]
)

ηαα̂, (C.136)

〈J3, J̄3〉 =
I

2
[∂̄J2, Tα]Tα̂η

αα̂ +
I

2

(

[J3, Ti][J̄3, Tj ] + [J̄3, Ti][J3, Tj ]
)

gij

+
I

2

(

−3[N,Tα̂][J̄2, Tα]+[N̂ , Tα̂][J2, Tα]+[J̄2, Tα][N,Tα̂]+[J2, Tα][N̂ , Tα̂]
)

ηαα̂. (C.137)

Finally, the remaining 〈J2, ·〉 terms:

〈J2, J2〉 = I[N,Tm][N,Tn]η
mn, (C.138)

〈J̄2, J̄2〉 = I[N̂ , Tm][N̂ , Tn]η
mn, (C.139)

〈J̄2, J2〉 = −I
(

[N,Tm][N̂ , Tn] + [N̂ , Tm][N,Tn]
)

ηmn +
I

2

(

[J2, Ti][J̄2, Tj ] + [J̄2, Ti][J2, Tj ]
)

gij

− I

2

(

[J1, Tα][J̄3, Tα̂]−3[J̄3, Tα̂][J1, Tα]+3[J̄1, Tα][J3, Tα̂]−[J3, Tα̂][J̄1, Tα]
)

ηαα̂, (C.140)

〈J2, J̄2〉 = −I
(

[N,Tm][N̂ , Tn] + [N̂ , Tm][N,Tn]
)

ηmn +
I

2

(

[J2, Ti][J̄2, Tj ] + [J̄2, Ti][J2, Tj ]
)

gij

+
I

2

(

[J̄3, Tα̂][J1, Tα]−3[J1, Tα][J̄3, Tα̂]+3[J1, Tα][J̄3, Tα̂]−[J̄1, Tα][J3, Tα̂]
)

ηαα̂. (C.141)

The terms involving ghost fields that have vanishing anomalous dimension are

〈X,N〉 = 〈X, N̂〉 = 〈ω, λ〉 = 〈ω̂, λ̂〉 = 0, (C.142)

〈ω, J〉 = 〈λ, J〉 = 〈ω̂, J̄〉 = 〈λ̂, J̄〉 = 0, (C.143)

〈ω, J̄0〉 = 〈λ, J̄0〉 = 〈ω̂, J0〉 = 〈λ̂, J0〉 = 0, (C.144)

〈ω,N〉 = 〈λ,N〉 = 〈ω̂, N̂〉 = 〈λ̂, N̂〉 = 0, (C.145)

〈J,N〉 = 〈J̄ , N̂〉 = 0. (C.146)

The expressions involving two ghosts and no derivatives are

〈ω, λ̂〉 = −I[ω, Ti][λ̂, Tj ]g
ij , 〈λ, ω̂〉 = −I[λ, Ti][ω̂, Tj ]g

ij , (C.147)

〈ω, ω̂〉 = −I[ω, Ti][ω̂, Tj ]g
ij , 〈λ, λ̂〉 = −I[λ, Ti][λ̂, Tj ]g

ij . (C.148)

For one ghost and one current, including the ghost currents,

〈ω, K̄〉 = −I[ω, Ti][K̄, Tj ]g
ij , 〈ω̂,K〉 = −I[ω̂, Ti][K,Tj ]g

ij , (C.149)

〈λ, K̄〉 = −I[λ, Ti][K̄, Tj ]g
ij , 〈λ̂,K〉 = −I[λ̂, Ti][K,Tj ]g

ij , (C.150)
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〈ω, N̂〉 = −I[ω, Ti][N̂ , Tj ]g
ij , 〈ω̂, N〉 = −I[ω̂, Ti][N,Tj ]g

ij , (C.151)

〈λ, N̂〉 = −I[λ, Ti][N̂ , Tj ]g
ij , 〈λ̂, N〉 = −I[λ̂, Ti][N,Tj ]g

ij . (C.152)

Finally, the terms with two currents, with at least one ghost current:

〈K̄,N〉 = −I[K̄, Ti][N,Tj ]g
ij , (C.153)

〈K, N̂〉 = −I[K,Ti][N̂ , Tj ]g
ij , (C.154)

〈N, N̂〉 = −I[N,Ti][N̂ , Tj ]g
ij . (C.155)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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