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1 Introduction

The investigation of the structure of superforms is an important step toward understanding

the geometry of the underlying superspace. Due to the interplay between the spinors and
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tensors in such spaces, this structure is non-trivial even in the flat case. In the flat, four-

dimensional, N = 1 superspace, this is textbook material (cf. section 4.4 of Superspace [1]

and the original ref. [2]).

In flat, four-dimensional, N = 2 harmonic superspace a systematic analysis was carried

out by Biswas and Siegel [3]. In curved superspaces or in flat superspace of dimensions

other than four, partial results may be found throughout the literature, with interesting

developments in four and five dimensions being reported as recently as last year [4–8].

Systematic studies of the closely related integral invariants in various dimensions are being

carried out by Howe and his collaborators (e.g. ref. [9–11].) Many of these results have

been extended to three, five, and six dimensions even more recently by Kuzenko and

collaborators (see e.g. ref. [12–16]). In ten dimensions, composite forms and their couplings

to supergravity in superspace were used early on to construct effective actions for massless

string states (e.g. ref. [17–19]). With the advent of covariant superstrings, a systematic

analysis for the forms arising in the pure spinor superspace was performed by Berkovits

and Howe [20] (see also [10]).

A special place in the hierarchy of superspaces is occupied by six-dimensional, N =

(1, 0) Minkowski space as it has the largest isometry group compatible with the existence of

eight real supercharges. The auxiliary field problem (that there are strictly more fermionic

auxiliary fields required for off-shell closure than bosonic ones [21]) is solved by retaining an

S2 ≃ SU(2)R/U(1)R part of the R-symmetry group in the quotient construction [22, 23].

Closely related to this “harmonic” superspace is the “projective” superspace of [24–26].

The extension of this to curved, six-dimensional superspace was presented in [27] where

certain super-Weyl-covariant field representations were defined and an action principle was

proposed.1 In this work, we continue the exploration of this superspace by analyzing the

structure of the complex of differential forms. Motivated by its interpretation as the target

space for covariant heterotic strings compactified on K3 [36], we introduce formal variables

generating an algebra isomorphic to the graded exterior algebra in section 2. This algebra

has a subalgebra corresponding to the projection of a bosonic spinor s 7→ λ⊗v to the

product of a pure spinor λα and iso-twistor variable vi. We show that the differential

forms are naturally defined on this subalgebra. In section 3, we exploit the existence of

the pure spinor subspace of differential forms to define super-Weyl covariant tensor fields

and construct an ambi-twistor-like representation of the six-dimensional conformal group

that acts on these tensor fields. The resulting superconformal field representations are

subsequently used in section 4 to derive the superspace analogue of the de Rham complex.2

In section 5 we construct composite forms by wedging the various forms from section 4. In

doing so, we are able to give a geometrical interpretation to certain multiplets constructed

in [27]. Finally, we comment on some applications of the formalism in section 6. One

of these is an attempt to reformulate the non-abelian tensor hierarchy [38–40], reviewed

1This extension to six dimensions is based on previous work in five dimensions [28–31] and below [32–35].
2This complex was described recently as the Chevalley-Eilenberg complex of p-co-chains of the super-

symmetry algebra with values in the space of superfields [8] (see also [7, 37]) where it was shown that the

components and constraints have the interpretation of co-boundaries and co-homology, respectively, of the

Chevalley-Eilenberg differential with values reduced to constant superfields.
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in appendix B, in terms of a Chern-Simons theory on the ambi-twistor-like superspace of

section 3. Additionally, since the Bianchi identity for the differential forms were solved in a

curved background, this automatically determines the couplings of the abelian part of the

tensor hierarchy to supergravity. Appendix A summarizes some results of reference [27] on

curved, six-dimensional, N = (1, 0) superspace.

A note on notation. After careful consideration, we have decided to present our anal-

ysis (mostly) in an index-free notation because we are convinced that the benefits of doing

so outweigh the risks. Firstly, this presentation most closely resembles our method of cal-

culation and discovery and is useful in proofs. Secondly, the notation simplifies comparison

to the covariant string theories and higher gauge theories to which it is closely related.

Thirdly, we will need a representation of the conformal group defined in terms of these

variables in order to build a certain differential complex of superfields in terms of which

the p-form components are defined. Fourth, it is quite possible (and in fact happens in

projective/harmonic and pure spinor theories) that some subset of these variables enters

into the solution of constraints (such as those we will find) and/or the superspace measure

when one attempts to define superinvariants by integration. Finally, the presentation of the

resulting complex is more easily compared to the results on higher gauge theory existing

in the literature. Conversely, using the more familiar, ordinary superspace notation would

significantly complicate substantial parts of the presentation.

2 Closed superforms

In this section we write down the Bianchi identities for p-forms in six dimensions. We

introduce some notation to simplify the calculations and find that the forms are supported

on a certain subspace of the full cotangent space. Some results from reference [27] used in

our calculations are summarized in appendix A.

A p-form ω is closed iff

dω = 0 (2.1)

where d is given locally by dθαi∂αi + dxa∂a. For notational convenience, we will replace

the basis forms dθαi and dxa by new variables sαi and ψa. To automatically incorporate

the super-anti-commutative nature of the wedge product, we take the {sαi} to be bosonic

spinor variables and the {ψa} to be fermionic vector variables

sαisβj = sβjsαi, sαiψa = ψasβj , ψaψb = −ψbψa. (2.2)

The super-p-form ω =
∑p

s=0 ω(s,p−s) splits up as a sum of superfield components of

degree s|(p− s)3

ω(s,p−s) := ωs...sψ...ψ := sα1i1 . . . sαsisψa1 . . . ψap−sωα1i1...αsisa1...ap−s , (2.3)

3We are borrowing a compact, index-free notation from the theory of ordinary tensor fields on manifolds

in which the subscript indicates the vector field on which the corresponding index is contracted (e.g. ∇X

for the directional derivative along the vector field X).
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where the p-form components ωα1i1...αsisa1...ap−s = ωα1i1...αsisa1...ap−s(x, θ) are ordinary N =

(1, 0) superfields. The differential d splits into two differentials ∂s and ∂ψ

d = ∂s + ∂ψ := sαi∂αi + ψa∂a := sαi
∂

∂θαi
+ ψa ∂

∂xa
, (2.4)

and the closure condition fans out into a collection of conditions respecting the grading by

number of sαi-type variables. Thus, the closure condition may be represented compactly as

s!(dω)ss...ψψ... = s∂sωs...ψψ... + (−1)s(p+ 1− s)∂ψωss...ψ... = 0 (2.5)

with the s in front of the first term denoting the total number of ss in that term and with

p denoting the total degree of the p-form ω.4

The differentials ∂s and ∂ψ do not commute with supersymmetry transformations. To

get supersymmetrically covariant p-form components, we must replace coordinate deriva-

tives by supercovariant derivatives. In terms of flat supercovariant derivativesDs andDψ =

∂ψ, the closure condition acquires a flat-space torsion term T a
ss = 2isiγasi = 2isαi(γa)αβs

β
i :

sDsωs...sψ...ψ + (−1)s(p+ 1− s)∂ψωs...sψ...ψ − i(−1)ss(s− 1)ωs...sγ(s,s)ψ...ψ = 0, (2.6)

where the notation ωγ(s,s)... is shorthand for the contraction of the null vector γa(s, s) :=

siγasi on the component ωa... (cf. (A.14)). In the curved superspace version of this closure

relation, there are additional torsion terms

sDsωs...sψ...ψ + (−1)s(p+ 1− s)Dψωs...sψ...ψ − i(−1)ss(s− 1)ωs...sγ(s,s)ψ...ψ

+ (−1)ss(p+ 1− s)Tsψ
αiωαis...sψ...ψ −

1

2
(p+ 1− s)(p− s)Tψψ

αiωαis...sψ...ψ = 0. (2.7)

These torsions, and the six-dimensional curved supergeometry in general, are reviewed in

appendix A. In section 4 we will be solving this equation for each p = 1, . . . , 6.

Superforms with no restrictions on their components yield reducible representations

of the super-Poincaré algebra. Irreducible representations result by setting to zero one or

more irreducible components. Once this is done, the closure conditions become non-trivial

consistency conditions on the other components (e.g. all components of lower dimension are

required to vanish). Following common superspace practice, we will refer to the resulting

closure conditions as “Bianchi identities”. Thus, to begin solving the Bianchi identities of

any particular p-form, we must locate the component of lowest engineering dimension that

does not vanish.

Let n denote the largest value of s such that the s|(p− s)-component of the p-form ω

is non-vanishing. Then equation (2.7) simplifies to

(n+ 1)Dsωs . . . s
︸ ︷︷ ︸

n

ψ . . . ψ
︸ ︷︷ ︸

p−n

= i(−1)s+1n(n+ 1)ωs...sγ(s,s)ψ...ψ. (2.8)

4Whenever we use the letter s for a number, we mean the number of sαi-type variables appearing in

the relevant formula. For example, the component s!(dω)αiβjγkde for a 4-form ω has s = 3 and p = 4

giving 3∂sωssψψ − 2∂ψωsssψ. We will simplify such formulæ by multiplying by symmetry factors to cancel

denominators, as we have done here.
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If we further take the projection sαi 7→ λαvi to the product of an unconstrained bosonic

spinor λ of SU(4) and an unconstrained bosonic spinor v of SU(2), then the right-hand

side vanishes and we find that

Qωλ . . . λ
︸ ︷︷ ︸

n

ψ . . . ψ
︸ ︷︷ ︸

p−n

= 0. (2.9)

Here,

Q := Dλ⊗v = λαviDαi =: λαD+
α (2.10)

stands for the projected superspace derivative.

The operator Q appears repeatedly in the analysis that follows. Its importance derives

from the fact that the condition (2.9) holds for the lowest non-vanishing component of any

p-form and, as such, it appears as a defining condition on the superfield from which all

other components are derived.5 We call the projection s 7→ λ⊗v the pure spinor projection

for reasons discussed in appendix A (cf. eq. (A.16) and the surrounding discussion).

Superfields Φ = Φ(x, θ, v) satisfying D+
αΦ = 0 are known in the projective superspace

literature as analytic superfields.6 When Φ is homogeneous of degree n in the variables v, Φ

is said to have homogeneity weight n. When we wish to indicate this explicitly, we will do so

with a superscript Φ+n. In these terms, equation (2.9) says that the pure spinor projection

ω+n
λ...λψ...ψ of the lowest-dimension, non-vanishing component of the p-form is an analytic

superfield with homogeneity weight n. The dimension of this field is d = 1
2n+p−n = p− n

2 .

It is possible for the aforementioned projection of the n|(p−n)-component to vanish.7

When this happens, the pure spinor projection of the lowest dimension (d + 1
2) Bianchi

identity is trivially satisfied. Passing to the next Bianchi identity (that with dimension

d+1) we find that it is the (n− 1)|(p−n+1)-component of ω that projects to an analytic

superfield provided this projection does not also vanish identically. If it does, we pass to

the next Bianchi identity. We proceed this way until we find a value n′ ≤ n such that the

projection of the n′|(p− n′)-component does not vanish under pure spinor projection and,

therefore, defines an analytic superfield with homogeneity weight n′.8 In our analysis, we

will find that this field is a superconformal primary field, that is, a superfield transforming

homogeneously under super-Weyl transformations as we recall in section 3.1 (cf. eq. (3.9)).

In section 3.1, we will also show that Q2 = 0 on superfields defined over the pure spinor

subspace. These superfields, graded by homogeneity weight and spin, form a complex of

spaces with differential Q. Assuming this, we conclude that differential forms restricted to

the pure spinor subspace are sourced by superconformal primary superfields in the coho-

mology of this complex. In the next section, we will study large families of such superfields.

With the lowest non-vanishing component in hand, the remaining components of the

superform can be reconstructed by the usual method. To wit, one first solves the lowest non-

trivial Bianchi identity for the dimension-(d+ 1
2) component by inverting the constant tor-

5This helps to explain the observation in reference [41] that for differential forms their “spinor cohomol-

ogy” of coincides with the pure spinor cohomology.
6We are glossing over some subtleties here that we address as needed.
7This happens, for example, for the p = 3 form H where n = 2 (i.e. Hssψ 6= 0) but Hλλψ ≡ 0 (cf.

section 4.3).
8In the p = 3 example, n = 2 but n′ = 1 (cf. section 4.3).
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sion 2i(siγasi) in equation (2.8). These components suffice to solve the next Bianchi iden-

tity (2.7) for the dimension-(d+1) component, provided certain additional constraints are

imposed on the defining field. This process continues to define the next-higher component

and, in principle, additional constraints, until we have reached the top component of dimen-

sion p. The final two Bianchi identities must now be identically satisfied [8, 37]. In section 4,

we will carry out this procedure to find the components of all the differential forms in curved

superspace and verify that the final two identities are satisfied identically in the flat limit.

3 Conformal symmetry

Consider a superfield Φβ1...βc
α1...αsk1...ff (x, θ) with c symmetric fundamental spinor indices,

s symmetric anti-fundamental spinor indices, and f symmetric isospin indices. We intro-

duce the commuting variables {λα, λ̄α, v
i} in the {(4,1), (4̄,1), (1,2)} representations of

SU(4)× SU(2) and replace the superfield with

Φ+f

λ . . . λ
︸ ︷︷ ︸

s

λ̄ . . . λ̄
︸ ︷︷ ︸

c

= vi1 . . . vifλα1 . . . λαs λ̄β1 . . . λ̄βcΦ
β1...βc

α1...αsi1...if . (3.1)

Lorentz-irreducibility requires tracelessness on pairs of fundamental and anti-fundamental

spinor indices. We impose this by requiring

λαλ̄α = 0. (3.2)

Introducing the conjugate momenta {ωα, ω̄
α, pi} allows us to rewrite the action of the

Lorentz and isospin generators as

mab = −
1

2
λγabω −

1

2
λ̄γ̃abω̄ and jij = v(ipj). (3.3)

This representation preserves the constraint (3.2). The other derivations preserving the

constraint are

pa = λ̄γ̃aω, ka = λγaω̄, ∆ =
1

2
λαωα −

1

2
λ̄αω̄

α, and q = vipi. (3.4)

Together, they generate the conformal algebra so6,2

[mab,mcd] = −2ηc[amb]d + 2ηd[amb]a, [pa, k
b] = 2δba∆− 2ma

b,

[mab, pc] = −2ηc[apb], [∆, pa] = −pa,

[mab, kc] = −2ηc[akb], [∆, ka] = ka, (3.5)

and a decoupled u2.

An irreducible (iso-)spin-tensor (3.1) is an irreducible representation of this algebra.

The derivation Q acts on such representations. In general, its square is proportional to

Lorentz and isospin generators (cf. eq. (A.18)). When acting on the representations (3.1),

however, the Lorentz M → m and isospin generators J → j are represented by (3.3).

Simple Fierz rearrangement then implies that the only remaining term is proportional to

the constraint (3.2). Therefore,

Q2 = 0 (3.6)

when acting on the family of fields of the form (3.1). Thus, these fields form a differential

complex graded by spin and isospin.

– 6 –
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3.1 Superconformal primary superfields

In this subsection, we use the pure spinor/ambi-twistor-like representation just introduced

to construct large families of superconformally covariant field representations by impos-

ing super-Weyl-invariant constraints. The ambi-twistor-like variables are not necessary to

define the constraints but they greatly simplify the proof of their super-Weyl covariance.

When the resulting representations are on shell, their dynamics are superconformally in-

variant.

In appendix A we recall the action of super-Weyl transformations (cf. eq. (A.9)–(A.12)

preserving the algebra of covariant derivatives defining the six-dimensional, N = (1, 0)

supergravity theory studied in reference [27]. These transformations are parameterized by

a real, unconstrained scalar superfield σ(z). In keeping with superspace terminology, we

define an irreducible superfield (3.1) to be a Weyl tensor of weight w provided that under

such a transformation

δΦ = wσΦ. (3.7)

On such fields, the differential transforms as

δQ =
1

2
σQ+

1

2
(3s+ c− 4f) (Qσ), (3.8)

as follows from (A.9) evaluated on the representation (3.3). Therefore, if Φ is a Weyl tensor

with weight w then QΦ will be a Weyl tensor of weight w + 1
2 provided9

w = 2f −
3

2
s−

1

2
c. (3.9)

In particular, it is consistent to constrain

QΦ = 0 provided w = 2f −
3

2
s−

1

2
c. (3.10)

Important examples are given in the following table:

p Φ (f, s, c) superfield field strength/potential w section

1 A (1, 1, 0) Aαi potential 1/2 4.1

2 W (1, 0, 1) Wαi field strength 3/2 4.2

2 V (1, 0, 1) V αi potential 3/2 4.3.1

3 C (2, 1, 1) Cabij potential 2 4.4.1

5 K (2, 0, 0) Kij field strength 4 4.5

6 L (3, 1, 0) Lαijk field strength 9/2 4.6

As we will discuss in detail in section 4, they represent, respectively, the gauge 1-form

potential A := λαviAαi, its 2-form field strengthW := λ̄αviW
αi, the gauge 2-form potential

V := λ̄αviV
αi, the gauge 3-form potential C := (λγabλ̄)vivj Cab ij , the so-called linear

9The parameter Dαiσ is the S-supersymmetry parameter. Canceling this term implies that the field Φ

is invariant under S-supersymmetry, that is, it is a superconformal primary field.

– 7 –
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multiplet K := vivjKij related to the projective Lagrangian density,10 and the 6-form field

strength L := λαvivjvkLαijk.

In addition to this family of representations, there is an infinite family of symmetric,

traceless “spin-ℓ” superfields Jc1...cℓi1...if = J(c1...cℓ)(i1...if )− traces: using k (cf. eq. (3.4)), let

J
(ℓ)
f := vi1 . . . vif kc1 . . . kcℓJc1...cℓi1...if . (3.11)

Then the condition

QJ
(ℓ)
f = 0 ⇒ w = 2f − ℓ, (3.12)

defines a Weyl superfield of weight 2f − ℓ. We will see in section 4.4 that for ℓ = 1 and

f = 2, this condition defines the weight w = 3 field Ga ij sourcing the 4-form field strength.

Finally, there are seven other families of Weyl superfields that are described naturally

in various alternative “polarizations” of the pure spinor variables. To illustrate what we

mean by this, we will explicitly work out the only example used in our analysis of differential

forms: consider a superfield with s = 0 but c and f arbitrary. Performing the canonical

transformation from {λ̄, v} variables to {ω, p} on the superfield Φ 7→ Φ† only, results in a

re-“normal”-ordering under which the conformal weight changes as w = 2vipi −
1
2 λ̄αω̄

α −
3
2λ

αωα 7→ 2[−f − 2]− 1
2 [0]−

3
2 [−c− 4]. In the new polarization, the constraint QΦ† = 0 is

equivalent to the condition11

DαiΦ
αβ1...βc−1 ij1...jf−1 = 0 ⇒ w = −2f +

3

2
c+ 2 (3.13)

on the contraction of the operator Dαi with the spin and isospin indices on Φαi.... This

constraint is compatible with the condition (3.10) when the weights agree, that is, for

c = 2f − 1 and w = f + 1
2 . As we will derive in section 4.2, the lowest-weight member

of this tower is the the gauge 1-form field strength superfield W . Note that we are not

required to impose this condition on such a weight-(f + 1
2) field. If we do not, we find that

the component QΦ† is another Weyl tensor of weight f+1. We will see in section 4.3.1 that

this observation provides the link between the description of the 2-form gauge potential

described by the supefield V and that in terms of its 3-form field strength. The latter is built

on the Weyl-weight-2, real scalar superfield Φ related to V by Φ = DαiV
αi (cf. eq. (4.34)).

4 The super-differential complex

In this section, we will explicitly go through the steps outlined at the end of section 2 for

solving the closure conditions (referred to as Bianchi identities) for p-forms with p = 1, . . . , 6

subject to the condition that certain components vanish (e.g. Fss = 0, Hsss = 0). In the

process, we will find that for each p ≤ 5, there is an additional constraint on the defining

superfield necessary for the closure of the dimension-p Bianchi identity. To pass to the

10The projective Lagrangian density [27] is a homogeneity weight-2, analytic superfield K̂++(ζ) containing

an infinite number of ordinary superfields. Of these, Kij are the first three terms in an expansion in

ζ := v2/v1 with all other superfields containing only auxiliary components.
11Equivalently, we can keep Φ and perform the transformation on Q 7→ Q†. Then Q† will act by

contraction of the form Φ on the vector Dλ⊗v.
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next p-form in the complex, we relax this last condition, thereby obstructing the closure of

the p-form field strength. In doing so, we find the defining superfield for the (p+ 1)-form.

In this sense, the entire complex is derived from the constraint Fαiβj = 0 imposed on the

2-form. The lowest non-vanishing components of the resulting forms have precisely the

dimensions found to imply superconformal invariance in section 3.1.

The result for flat forms with p = 2, . . . , 5 is represented schematically in the following

table:

p = 2 p = 3 p = 4 p = 5

Fss = 0

Fsψ = siγψWi Hsss = 0

Fψψ = Diγ̃ψψWi Hssψ = siγψsiΦ Gssss = 0

Hsψψ = siγ̃ψψDiΦ Gsssψ = 0 Ksssss = 0

Hψψψ = Diγ̃ψψψDiΦ Gssψψ = siγψψas
jGa

ij Kssssψ = 0

Gsψψψ = ∗siγψψD
jGψij Ksssψψ = 0

Gψψψψ = ∗Diγ̃ψDjG
ij
ψ Kssψψψ = siγψψψs

jKij

Ksψψψψ = ∗siγψψD
jKij

Kψψψψψ = ∗Diγ̃ψDjK
ij

D(iγ̃abWj)
(4.12)
= 0 Πb

aD(kGbij)
(4.38)
= 0 D(kKij)

(4.52)
= 0

DiW
i (4.15)

= 0 D2
a ijΦ

(4.26)
= 0 D2a

k(iGai)
k (4.41)

= i∂aGaij

In order to fit the entries into the table, we have suppressed the 1- and 6-form, are ignoring

numerical factors, and we use ∗ in the higher components of the forms of degree p = 4, 5

to schematically denote the Hodge dual.

Very roughly, going up a p-form chain corresponds to applying the operatorDiγ̃ψ∂/∂si.

Going across corresponds to finding the dimension-p component and replacing the DD

operator acting on the defining field with some field that is bilinear in s. In fact, this is

happening because the Bianchi identity has reducible Lorentz/isospin components while

the DD field strength of the p form is irreducible. Imposing that the additional irreducible

components vanish closes the p-form Bianchi identity dωp = 0. Alternatively, we can

interpret this additional irreducible part as the lowest non-trivial component of a (p+ 1)-

form ωp+1. Then the statement is that the non-vanishing of this new form is the obstruction

to the p-form Bianchi identity, that is, dωp = ωp+1.

For example, starting with Fss = 0 and working our way up to the Bianchi identity

(dF )ssψ = 0, we find that Fψψ ∝ Diγ̃ψψWi for the top component of the 2-form. However,

in that same identity, there remains uncanceled the Lorentz-irreducible termDαiW
αi which

the Bianchi identity sets to zero. Alternatively, we may decide to deform the closure
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condition by introducing a source Hssψ at this level. Then the new identity is dF = H.

Consistency requires dH = 0, which we then proceed to solve. But this is just the Bianchi

identity for the 3-form as it appears in the second column of the table.

Below the dividing line in the table are the conditions the defining superfields satisfy.

The top line represents the relation QΦ = 0 on the pure spinor cone. The line below it

denotes additional conditions required for the closure of the Bianchi identity for that partic-

ular p-form. The interpretation of the (p+1)-form as an obstruction to the p-form Bianchi

identity is reflected in the fact that the left-hand side of each condition on the bottom line

is in the same irreducible Lorentz and isospin representation as the defining field to the

right of it.12 In the following subsections, we will make all of these statements explicit.

We should mention that we are not claiming that the set of p-form representations we

obtain is complete;13 in lower dimensions, it is possible to have so-called “variant represen-

tations” [1, 3, 42]. However, the tower we obtain is uniquely determined by working our way

up from the constraint Fss = 0. Furthermore, each form has a superconformal primary field

as its lowest non-vanishing component. Taken together, it may be that the resulting com-

plex is unique. Proving this or finding counter-examples (variant representations) should be

possible by first classifying all superconformal constraints of scaling weight w ≤ p along the

lines of section 3.1 and then inspecting them for proper Lorentz and iso-spin structure.14

The complex described in this section was recently interpreted as the Chevalley-

Eilenberg complex of p-co-chains of the supersymmetry algebra with values in the space

of superfields [8], with a differential ω 7→ dCEω that is defined by the left-hand-side of

equation (2.7) or, for simplicity, its flat-space analogue (2.6).15 Let us denote the lowest-

dimension non-vanishing component of ω by φ (e.g. for the 2-form ω = F of section 4.2,

φ = W enters in eq. (4.10) as the spinor fieldstrength.) The form of φ is determined by the

Bianchi identities. Similarly, the higher Bianchi identities define the remaining components

of ω in terms of superspace derivatives on φ projected to combinations of γ-matrices (and

in curved space, covariantized with torsions) that may or may not be Lorentz-irreducible.

The projection to the complementary representations define constraints on φ.

This picture was made precise in reference [8] (see also [37]) in the following sense: when

the coefficients in the complex are taken to be constant superfields, we obtain an algebraic

complex with a reduced differential dCE0 which is essentially the contraction ψ 7→ γ(s, s)

(a.k.a. interior product with the vector defined by s and the Clifford map). Then the set

of constraints on φ is in bijection with the cohomology of this reduced differential dCE0

12For example, for p = 2 the spinor field strength has no scalar component DiW
i: this term appears in

the Bianchi identity at the same level as Fψψ but cannot be canceled by it since there is no Lorentz-invariant

way to absorb a scalar into a 2-form. This component must therefore be set to vanish if we want the Bianchi

identity for the 2-form to be satisfied. This scalar superfield is of the same form as the defining field Φ in

the 3-form to the right of it in the table.
13We thank Gabriele Tartaglino-Mazzucchelli for raising this question.
14For example, Hsss has scaling weight 3

2
. There is a representation of this dimension which we call V αi

but it cannot be used to construct this particular component Hsss since, for example, sαisβi s
γjεαβγδV

δ
j ≡ 0.

Instead, it enters into Hssψ as DαiV
αi, as explained in section 4.3.1.

15The analysis of [8, 37] was carried out for the flat five-dimensional case but the results generalize to

other dimensions.
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and the set of equations defining the components of ω in terms of φ is bijective to the

co-boundaries of the reduced Chevalley-Eilenberg complex. An immediate corollary of this

theorem is the well-known statement that there are no new constraints imposed by the last

two Bianchi identities because the reduced cohomology is empty there (since co-boundaries

must have at least two s variables). We will generally not use the results just described

(except to avoid a particularly tedious and unilluminating calculation in section 4.4) as the

analysis presented here predates that of [8, 37].

4.1 The closed 1-form

The components of a generic 1-form are (As, Aψ). The first condition for a closed 1-form

is the component of (2.7) with the most ss:

2(dA)ss = 2DsAs − 2iAγ(s,s) = 0. (4.1)

The pure spinor projection of this equation is simply (2.9)

QA = 0 (4.2)

where A = λαviAαi defines a Weyl tensor superfield provided w = 1
2 (3.10). This condition,

which is equivalent to D(α(iAβ)j) = 0, was solved in flat space in references [43] and [44]

based on the four-dimensional, N = 2 solution of Mezinçescu [45] as Aαi = DαiU +Dj
αUij .

Substituting this back into the pure spinor constraint QA = 0, we find that the isotriplet

prepotential Uij is required to satisfy Dkγ̃abcDkUij = 0. Due to the flat-space identity

Dmγ̃abcDmD4
ijkl ≡ 0, this implies that it can be written in terms of the unconstrained

Mezinçescu prepotential uij as Uij = D4
ijklu

kl.

Returning to curved space, the vector component the super-1-form is determined by

the dimension-1 Bianchi identity to be

Aψ = −
i

8
Dkγ̃ψAk. (4.3)

Substituting the curved-space analogue of the solution above

Aαi = DαiU +Dj
αUij with Dkγ̃abcDkUij + 256iN

(−)
abc Uij = 0, (4.4)

this becomes Aψ = DψU− i
8D(iγ̃ψDj)U

ij . The U part drops out of the dimension-32 Bianchi

identity

DsAψ −DψAs − Tsψ
αiAαi = 0 (4.5)

which constrains the prepotential Uij by siγψW
i
U = 0 for

Wαi
U :=

1

8
D3αijkUjk −

i

6
(γ̃a)αβDaDβjU

ij + torsion terms. (4.6)

Note that this is the form of the field strength superfield for a gauge 1-form with prepo-

tential Uij . In the next section, we will relax the condition forcing it to vanish, thereby

generating the closed 2-form field strength as an obstruction to the closure of the 1-form

being worked out here.
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Setting the field strength superfield WU = 0 is gauge equivalent to setting Uij = 0.

Doing this, we find that the closed 1-form is given by (As, Aψ) = (DsU,DψU). The

dimension-2 Bianchi identity

2DψAψ −
1

2
· 2Tψψ

αiAαi ≡ 0 (4.7)

is satisfied identically. We conclude that, as expected, the unique closed, Weyl-covariant

1-form is the exact 1-form with weight-0 (iso-)scalar potential U .

4.2 The closed 2-form

The closed 1-form A of the previous section satisfied two constraints. The first of these

was the pure spinor constraint QA = 0 (4.2). The second was the dimension-32 Bianchi

identity (4.5) constraining the prepotential U to vanish. We can deform this particular

Bianchi identity by introducing the superfield 2-form field strength Fsψ = (dA)sψ as an

obstruction to the closure of the 1-form field A. In this interpretation, continuing to

impose the pure spinor condition (4.2) corresponds to keeping Fss = 0. In fact, the two

conditions are equivalent: generally, Fαiβj = Fβjαi = F(α(iβ)j)+F[α[iβ]j] but the second term

is equivalent to εij(γ
a)αβFa which can be absorbed by a field redefinition into the vector

component Aa. The remaining term F(α(iβ)j) = D(α(iAβ)j) is precisely the combination QA.

In this section, we will solve the Bianchi identities for the closed 2-form F subject to

Fss = 0. (4.8)

We emphasize that this is the only input from section 4.1 that we will use. The lowest-level

Bianchi identity relates the components Fss and Fsψ as

3DsFss + 3 · 2iFsγ(s,s) = 0. (4.9)

By the Fierz identity (A.15), the condition Fss = 0 ⇒ Fsγ(s,s) = 0 is compatible with the

solution

Fsψ = 2i(siγψWi), (4.10)

for some positive chirality, fermionic superfield Wαi. The dimension-2 identity reads

2DsFsψ +DψFss − 2iFγ(s,s)ψ = 0. (4.11)

The pure spinor projection of this implies

QW = 0 (4.12)

in the sense of section 3.1. To see this, note that under pure spinor projection, (siγψWi) 7→

cαW
α+ where we define cα := (λγψ)α. Although this contravariant spinor is fermionic, it

satisfies λαcα ≡ 0 analogously to (3.2) so that the analysis of that section remains valid

in this special parameterization. The pure spinor condition (4.12) defines a Weyl tensor

superfield provided its weight is w = 3
2 . By condition (3.2) or, rather, its fermionic version,

it is equivalent to

D(iγ̃abWj) = 0. (4.13)
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As a practical matter, this condition says that at the level of component field strengths,

there is no triplet of 2-forms.

The pure spinor projection isolates the isospin triplet part of the dimension-2 Bianchi

identity (4.11). The remaining isospin singlet part contains a superfield 2-form term and

a scalar term. Canceling the 2-form part results in the definition of the top component of

the closed 2-form

Fψψ = −
1

4
Dkγ̃ψψW

k, (4.14)

leaving only (siγψsi)(DβjW
βj) = 0 uncanceled. Therefore, in addition to the con-

straint (4.13), we are required to impose the vanishing of the scalar term

DαiW
αi = 0. (4.15)

Note that this condition is Weyl invariant by (3.13) since w = 3
2 . Furthermore, it is required

for consistency of that part of the dimension-2 Bianchi identity that drops out of the pure

spinor projection. By contrast, the constraint (4.12) is defined by the projection to the

pure spinor subspace. In the next subsection (cf. section 4.3), we will interpret the lowest

3-form component as an obstruction to this additional condition (4.15).

The constraints (4.13) and (4.15) define the abelian 2-form field strength representation

W [46]. Its derivative can be expanded as

DαiW
βj = δjiFα

β + δβαXi
j (4.16)

for some iso-triplet superfield Xij = X(ij) whose lowest components are auxiliary fields.

The dimension-52 Bianchi identity

DsFψψ − 2DψFsψ − 2Tsψ
αiFαiψ = 0 (4.17)

serves to relate the field equations toX and imply no additional conditions onW . Likewise,

the dimension-3 identity

DψFψψ − Tψψ
αiFαiψ = 0 (4.18)

implies no new constraints. Consequently, this (5+ 3)|(4+ 4)-component representation is

off-shell.

4.3 The closed 3-form

The defining superfield W of the abelian 2-form satisfies, in addition to the pure spinor

condition (4.12), the dimension-2 constraint (4.15) as follows from the 0 = (dF )ssψ ∝

(siγψsi)(DβjW
βj) Bianchi identity. In keeping with our general philosophy, we source this

equation with

Hssψ = 2i(siγψsi)Φ (4.19)

for some Weyl tensor superfield Φ of weight w = 2 [43, 44]. This is consistent with the

dimension-2 Bianchi identity

4DsHsss − 4 · 3iHssγ(s,s) = 0. (4.20)
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provided we also impose Hsss = 0. Note that Hssψ vanishes under the pure spinor projec-

tion. This is consistent with the projection of the dimension-52 Bianchi identity

3DsHssψ −DψHsss + 3 · 2iHsγ(s,s)ψ = 0, (4.21)

from which we easily obtain

Hsψψ = −(siγψψDiΦ). (4.22)

Therefore, in the notation of section 2, n = 2 and n′ = 1. Plugging this into the dimension-3

identity

2DsHsψψ + 2DψHssψ − 2iHγ(s,s)ψψ + 4Tsψ
αiHαisψ = 0 (4.23)

and taking the pure spinor projection, we find the condition

1

8
(λγψψaλ)

(

D+γ̃aD+ + 16iCa++
)

Φ = 0. (4.24)

Here, we have defined the combination

D2
a ij :=

1

2
D(iγ̃aDj) (4.25)

which will show up repeatedly. Thus, the dimension-3 identity implies the curved 3-form

field strength constraint [27]

D2
a ijΦ+ 8iCaijΦ = 0 (4.26)

with the remaining combination defining the 3-form field strength component

Hψψψ =
i

8

(

Dkγ̃ψψψDk + 128iNψψψ

)

Φ. (4.27)

Acting on the constraint (4.26) with Ds results in the Dirac equation

iDαβDi
βΦ− iCαβ ijDβjΦ− 2iNαβDi

βΦ− 12iCαiΦ = 0 (4.28)

so this multiplet is on-shell.16 The calligraphic torsion components entering here and below

are the dimension-32 components of the supergravity torsions (A.7). They are included here

only for completeness and are not critical to the understanding of the 3-form. Similarly, we

find the covariantized Klein-Gordon equation that results from contracting with another

spinor derivative:

0 = DaDaΦ+ 8Ca
ijC

ij
a Φ+

i

6
NabcDkγ̃abcDkΦ−

3i

2
DαiC

αiΦ

− 3iCαiDαiΦ+
5i

2
NαiDαiΦ. (4.29)

The higher Bianchi identities

DsHψψψ − 3DψHsψψ − 3Tsψ
αiHαiψψ − 3Tψψ

αiHαisψ = 0

16An alternative interpretation of this formula in curved space is as a mechanism for defining geometrical

objects in the Weyl multiplet in terms of those in the tensor multiplet [47] (see also section 2.3 of [27]).
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4DψHψψψ −
1

2
· 4 · 3Tψψ

αiHαiψψ = 0 (4.30)

do not imply any new conditions on Φ beyond those following from the constraint (4.26).

Instead of presenting calculations resulting in equations implied by (4.28) and (4.29), we

will merely verify that the flat limits are identically satisfied. For the dimension-72 identity:

DsHψψψ =
1

2
(siγaγ̃ψψψDi)∂aΦ =

1

2
(siγaγ̃ψψψDi − siγ̃ψψψγ

aDi)∂aΦ

= −3∂ψ(s
iγψψDiΦ) = 3∂ψHsψψ (4.31)

where we have used the Dirac equation on the spinor of Φ. Similarly,

∂ψHψψψ = −
i

64
ǫψψψψ

ab(Diγ̃abcDi)∂
cΦ

= −
i

64
ǫψψψψ

abDi(γ̃abγ̃c − 2ηc[aγ̃b])Di∂
cΦ

= −
i

32
ǫψψψψ

abDiγ̃aDi∂bΦ =
1

4
ǫψψψψ

ab∂a∂bΦ ≡ 0, (4.32)

by using the Dirac equation in the third equality.

4.3.1 Alternative formulation

The recovery of the 3-form superfield as an obstruction to one of the two defining con-

ditions of the vector muliplet (4.15), suggests an alternative description of this form in

terms of a dimension-32 spinor superfield V αi [48]. As we are obstructing only the scalar

constraint, this field would still be required to satisfy the defining condition analogous

to (4.12) or (4.13):

QV = 0 ⇔ D(iγ̃abVj) = 0. (4.33)

It can be shown by brute force calculation that this condition is equivalent to the con-

straint (4.26) with

Φ = DαiV
αi. (4.34)

This description neatly incorporates the gauge invariance of the 3-form field strength since

Φ is invariant under δV αi = Λαi where Λ satisfies both constraints (4.13) and (4.15) defining

the vector multiplet. The condition on V implies that

DαiV
βj =

1

8
δji δ

β
αΦ+

1

4
δjiBα

β + δβαYi
j (4.35)

for a scalar Φ, 2-form potential B, and an auxiliary triplet Y . Under the gauge transfor-

mation, the 2-form gauge field transforms into the field strength of a 1-form λ as δB = dλ.

4.4 The closed 4-form

The closure constraint (4.24) on the 3-form can be obstructed with a 4-form, the lowest

non-trivial component of which is given by

Gssψψ = (siγψψas
j)Ga

ij . (4.36)
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This is consistent with the dimension-72 Bianchi identity

3DsGssψψ + 3 · 2iGsγ(s,s)ψψ = 0 (4.37)

under the pure spinor projection, provided

(γabc)(αβDγ)(kG
c
ij) = 0 ⇔ Πcγ

aαDγ(kGc ij) = 0 (4.38)

where Π is the projector onto the γ-traceless subspace of the spinor-vector representa-

tion (A.8). To see this, note that the pure spinor projection of (4.36) is proportional to

(cγ̃ac)G++
a . The condition that this be annihilated by Q then becomes equivalent to the

Weyl-invariant constraint (3.12) for ℓ = 1 (⇒ w = 3). The remaining part of the Bianchi

identity (4.37) is, then, easily solved for the dimension-72 component

Gsψψψ = −
i

12
ǫψψψ

abc(siγabD
j)Gcij . (4.39)

The dimension-4 Bianchi identity is

2DsGsψψψ + 3DψGssψψ − 2iGγ(s,s)ψψψ + 2 · 3Tsψ
αiGαisψψ = 0. (4.40)

The pure spinor projection gives three conditions:

D2
a k(iG

a
j)
k + 24iCa k(iG

a
j)
k + 8iDaG

a
ij = 0, (4.41)

D2
(a k(iGb) j)

k − 4iD(aGb) ij + · · · − trace = 0, (4.42)

D2
[a k(iGb] j)

k − 4iD[aGb] ij −
1

8
Dkγ̃abcDkG

c
ij + . . . = 0, (4.43)

where the ellipses stand for unilluminating torsion corrections. The second and third

condition follow from the constraint (4.38) by contraction with (Dkγ̃b)
α. Indeed, the com-

bination D2
a k(iGb j)

k − 4iDaGb ij = −3
4D

kγ̃aD(kGb ij). Since Π is γ-traceless, we get no

condition upon contraction with ηab. Therefore, the only condition not already implied by

the lower Bianchi identities is the condition (4.41) on the trace. It is this condition that

we will source to get the 5-form (cf. section 4.5).

The remaining terms in (4.40) determine the dimension-4 component

Gψψψψ = −
1

24
ǫψψψψ

ab
(

D2
a ij − 40iCa ij

)

Gb
ij . (4.44)

In this calculation, there are no irreducible components beyond this 4-form that need to

be canceled so we do not generate any additional constraints on Ga ij at this level.

The remaining identities are the dimension-92 identity

DsGψψψψ − 4DψGsψψψ − 4Tsψ
αiGαiψψψ −

1

2
· 4 · 3Tψψ

αiGαisψψ = 0 (4.45)

and the dimension-5 identity

5DψGψψψψ −
1

2
· 5 · 4Tψψ

αiGαiψψψ = 0. (4.46)
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They should be satisfied identically in the flat limit. This calculation, however, turns out

to be particularly tedious. Instead of checking it explicitly, we cite the corollary in [8, 37]

stating that the this identity is required to hold due to the vanishing cohomology of a

certain algebraic complex. In the flat limit, (∗G)ab = 1
12D

2
[a
ijGb] ij and thus it must be

that ∂b(∗G)ab ≡ 0: the closure of the top component implies that the dual 2-form ∗G is

divergenceless up to torsion terms.

4.4.1 Alternative formulation

In section 4.3.1 we explored the alternative “potential” formulation of the gauge 2-form.

There, the condition defining the representation was expressed as QV = 0 (4.33) instead

of the condition (4.26) in terms of its field strength Φ. Similarly, one expects to be able to

obstruct the closure condition in this potential-type formulation by taking

QV = C. (4.47)

Since V = λ̄αviV
αi is a field with (f, s, c) = (1, 0, 1) and Q is an operator of type (1, 1, 0),

C is of type (2, 1, 1), that is, C := (λγabλ̄)vivj Cab ij .
17 Consistency then implies

QC = 0 ⇒ w = 2 (4.49)

where the weight, again, follows from the general formula (3.10).

Recall that the vector multiplet field strengthW obeys two conditions (4.12) and (4.15).

Relaxing (4.15) introduces the potential V for the 3-form field strength which still

obeys (4.33). We are now relaxing this second condition by introducing the potential C for

the 4-form field strength G = dC. The constraints on G imply that Cssψ = siγψ
absjCab ij

is the lowest non-vanishing component of this potential. The pure spinor projection of this

component with Cab ij :=
1
8D(iγ̃abVj) gives back equation (4.47).

4.5 The closed 5-form

The obstruction to closure of the 4-form is the left-hand side of (4.41). Our procedure, then,

implies that the lowest component of the closed 5-form is given in terms of a superfield Kij

by

Kssψψψ = siγψψψs
jKij . (4.50)

This is consistent with the dimension-92 Bianchi identity

3DsKssψψψ − 3DψKsssψψ + 3 · 2iKsγ(s,s)ψψψ = 0 (4.51)

in the pure spinor projection provided

QK = 0 ⇔ Dγ(kKij) = 0. (4.52)

17For purposes of illustration we mention that, in terms of the field strength Φ, the flat-space version of

equation (4.47) implies

D2
a ijΦ = D2

abcC
bc
ij + 4i∂bCab ij . (4.48)
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This condition is Weyl invariant when w = 4 (3.9) in agreement with the engineering

dimension of Kssψψψ. This analyticity constraint implies that

D2
a(i

kKj)k + 24iCa(i
kKj)k + 4iDaKij = 0 (4.53)

and

Dkγ̃abcDkKij − 128iN
(−)
abc Kij = 0. (4.54)

The remaining part of the Bianchi identity defines the dimension-92 component of K to be

Ksψψψψ = −
i

12
ǫψψψψ

ab(siγabD
j)Kij . (4.55)

The dimension-5 Bianchi identity

2DsKsψψψψ + 4DψKssψψψ − 2iKγ(s,s)ψψψψ − 8(Tsψ
iγψψψs

j)Kij = 0 (4.56)

is identically satisfied in the pure spinor limit due to the constraint (4.54) and cancelation

of the Dψ terms. The remaining part determines the top component of K to be

Kψψψψψ =
1

24
ǫψψψψψ

a
(

D2
a ij − 48iCaij

)

Kij . (4.57)

The dimension-112 identity is

DsKψψψψψ − 5DψKsψψψψ − 5Tsψ
αiKαiψψψψ −

1

2
· 5 · 4Tψψ

αiKαisψψψ = 0. (4.58)

It serves only to define the θ3-terms in K in terms of space-time derivatives acting on the

lower components and is otherwise unilluminating.

The dimension-6 identity is

6DψKψψψψψ −
1

2
· 6 · 5Tψψ

αiKαiψψψψ = 0. (4.59)

It tells us that, in the flat limit, the bosonic projection of the top component of the 5-form

K is closed in the bosonic sense. We may check this explicitly by using the flat covariant

derivative identity ∂aD2
a ij =

i
12D

3α
ijk D

k
α. It implies that the dual form ∗Ka is divergenceless

∂a(∗K)a = 0 (4.60)

due to the analyticity constraint (4.52) on K.

Another way to understand this result is by comparison with the 1-form of section 4.1.

In the flat limit, the constraint (4.54) agrees with the defining condition (4.4) of a (gauge)

1-form prepotential. This implies that there is a 1-form at the θ2-level of K. Since K is

a field strength, and due to the dimension of this component, this vector must be a field

strength. That this component is divergenceless where that of the vector multiplet was not

is a consequence of the stronger constraint (4.52) (from which (4.54) follows).
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4.6 The closed 6-form

The top component of the 5-form K defined in (4.57) solves the dimension-5 Bianchi iden-

tity with no additional requirements on the superfield Kij beyond the defining pure spinor

condition (4.52). As there is no obstruction to the closure of the 5-form, our procedure

does not generate a non-vanishing 6-form at this level. (The Chevalley-Eilenberg complex

with constant coefficients is exact at this level.)

One possibility is to proceed with the proposal by Drummond and Howe [49] which

corresponds to sourcing equation (4.53). (This also suggests the alternative co-dimension

0-form with based on sourcing (4.54).) An action constructed from such an obstruction is

of “superaction” type [50]. Alternatively, we may force the violation of the 5-form Bianchi

identity by obstructing the defining relation and attempting to interpret the result as a

closed 6-form. (This alternative is also suggested by the composite 6-form of section 5.2.3.)

This corresponds to the Ansatz

Lsssψψψ = (siγψψψs
j)sαkLαijk (4.61)

in terms of the weight w = 9
2 superfield Lαijk.

18 Upon pure spinor projection, this gives19

Lsssψψψ 7→ λα(λγψψψλ)v
ivjvkLαijk. (4.62)

The projection of the lowest-dimension Bianchi identity (dimension 5)

4DsLsssψψψ − 4 · 3iLssγ(s,s)ψψψ = 0, (4.63)

as usual, requires QL = 0 which is again a condition of type (3.10). Explicitly,

QL = 0 ⇔ D(α(iLβ)jkl) = 0 ⇒ w =
9

2
. (4.64)

The remaining terms can be solved to find the dimension-5 component of the six form

Lssψψψψ =
i

48
ǫψψψψ

ab(siγab)
αsβj

(

3Dk
αLβijk −Dk

βLαijk

)

. (4.65)

The dimension-112 Bianchi identity is

3DsLssψψψψ − 4DψLsssψψψ + 3 · 2iLsγ(s,s)ψψψψ − 3 · 4Tsψ
αiLαissψψψ = 0. (4.66)

The constraints following from the pure spinor projection at this, and at any other level in

the Bianchi identities, can be obtained by hitting (4.64) with derivatives.20 We solve this

Bianchi identity for the next component to find

Lsψψψψψ =
1

192
ǫψψψψψ

asαi
(

3D2
a
jk + 164i Ca

jk
)

Lαijk

−
1

192
ǫψψψψψ

a(siγab)
α
(

D2b jk + 44i Cb jk
)

Lαijk. (4.67)

18Note that this field is of the form of the gauge parameter superfield for supergravity (cf. ref. [43]).

Similar observations were made concerning the appearance of superconformal gauge parameter multiplets

in the de Rham cohomology in five dimensions in [7, 8] and even in F-theory superspace in [51].
19Note the similarity of this expression with the pure spinor 0-mode normalization 〈λ3θ5〉 = 1 [52].
20This is because (4.64) does not project out any irreducible component of Q acting on L. Note that this

is in contrast to (4.38) which projects out the γ-trace of Dγ(kGa ij).
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The dimension-6 Bianchi

2DsLsψψψψψ + 5DψLssψψψψ − 2iLγ(s,s)ψψψψψ

+2 · 5Tsψ
αiLαisψψψψ −

1

2
· 5 · 4Tψψ

αiLαissψψψ = 0, (4.68)

can be solved for the top component of the 6-form to give

Lψψψψψψ = ǫψψψψψψ

[

i

192

(

D3αijk − 12iCαijk
)

Lαijk −
1

9
Cij
a (Dkγ̃aLijk)

]

, (4.69)

where D3α
ijk := 1

4!ε
αβγδ{Dδ(i, [Dγj ,Dβk)]}. The dimension-132 Bianchi

DsLψψψψψψ − 6DψLsψψψψψ − 6Tsψ
αiLαiψψψψψ −

1

2
· 6 · 5Tψψ

αiLαisψψψψ = 0. (4.70)

does not define any new components and serves only to define the θ4-terms in L in terms

of derivatives acting on its lower components. Similarly, the dimension-7 Bianchi

7DψLψψψψψψ −
1

2
· 7 · 6Tψψ

αiLαiψψψψψ = 0 (4.71)

provides the bosonic closure condition (up to torsion) for the six form.

We can solve the condition (4.64) analogously to what was done in section 4.1 by

taking

Lαijk = Dα(iLjk) +Dl
αLijkl (4.72)

and plugging it back in. Note that the first term is Q-exact and is therefore not constrained

by (4.64). However, precisely analogously to the case of the constrained prepotential Uij

of the gauge field (4.4), the field Lijkl must satisfy the condition

Dmγ̃abcDmLijkl − 384iN
(−)
abc Lijkl = 0 (4.73)

for the constraint (4.64) to hold. In flat space, then, the analogue of Mezinçescu’s un-

constrained prepotential uij for the 6-form would be an unconstrained, dimension-2 scalar

field ℓ such that Lijkl = D4
ijklℓ.

5 Composite forms

In the previous section, we constructed the de Rham complex of differential forms by

sequentially obstructing the closure condition with a form of degree 1 higher. In this

section, we investigate the alternative method of building higher-degree forms by wedging

forms of lower degree. Analogously to how solving the seemingly trivial closure conditions

dω = 0 resulted in the elucidation of the superspace representations of superconformally

covariant p-form fields and their coupling to gravity, here we will similarly gain insight into

the structure of interactions in superconformal N = (1, 0) models and their Lagrangians.

In the process, we will derive relations between certain types of composite forms that we

compare in section 6.2 to explicit formulæ appearing in the non-abelian tensor hierarchy.
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We will refer to the forms obtained by wedging lower-degree forms as composite forms

to distinguish them from the forms above. To minimize additional notation, we will use

the same letters in bold font to denote the composite forms. Consider the the composite

p-form ωp = ωq ∧ ωp−q. For simplicity of exposition, we mostly focus on the product of

only two forms. Then

ωs1...ssψ1...ψp−s
=

∑

r+t=s

csrt ωs1...srψ1...ψq−r
ωs1...stψ1ψp−q−t

(5.1)

for some rational coefficients csrt. These are computed by first counting inequivalent permu-

tations of indices and then normalizing the result to 1. For example, the Gssψψ component

of G = F ∧ F is gotten by writing down the terms FssFψψ and FsψFsψ and realizing that

there are two inequivalent configurations of the indices on the second term, namely FαaFβb

and FβaFαb whereas on the first Fαβ is equal to Fβα and similarly for Fab. Therefore these

3 terms are weighted as 1
3FssFψψ and 2

3FsψFsψ. They get a relative sign from the odd

permutation ssψψ → sψsψ. Finally, Fss = 0 so Gssψψ = −2
3FsψFsψ.

5.1 The composite p-form with p = 2 and 3

In the abelian limit F := A ∧A ≡ 0 so that a single 1-form does not generate a composite

2-form. Given a collection of such forms and a bilinear, skew-symmetric map f, however,

one can construct Fss := f(As, As) and its higher components. If, in addition, f maps

back into the collection of forms, we can use this composite 2-form as a deformation of the

collection of abelian field strengths dA. If one further requires that these maps satisfy the

Jacobi identity f(f(As, As), As) = 0 then this component can be absorbed into a connection

∇ = D+f(A, ·) and we recover the usual formulation of the non-abelian gauge field strength.

The condition Fss = 0 is equivalent to ∇2
s = i∇γ(s,s), defining the vector connection in

terms of the spinor connection. With this, the first Bianchi identity becomes equivalent to

the associativity of the spinor connection: 0 = ∇s(∇s∇s) − (∇s∇s)∇s = i[∇s,∇γ(s,s)] =

iFsγ(s,s). The rest of the analysis proceeds as in section 4.2.

A composite 3-form is easily constructed as H = A ∧ F .21 The properly normalized

components

Hsss = AsFss = 0

Hssψ =
2

3
AsFsψ +

1

3
AψFss =

2

3
AsFsψ

Hsψψ =
1

3
AsFψψ −

2

3
AψFsψ

Hψψψ = AψFψψ (5.2)

satisfy the Bianchi identities provided A and F satisfy theirs. That is, H is closed provided

both A and F are. When dF = 0 but dA 6= 0, a short calculation

2(dH)ssψψ = 2DsHsψψ + 2∂ψHssψ − 2iHγ(s,s)ψψ

21In the non-abelian case, this can be extended to the full Chern-Simons 3-form. For simplicity of

exposition, we work in the abelian limit but allow A and F to be independent fields.
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=
2

3
DsAsFψψ −

2

3
AsDsFψψ −

4

3
DsAψFsψ −

4

3
AψDsFsψ

+
4

3
∂ψAsFsψ +

4

3
As∂ψFsψ −

2i

3
Aγ(s,s)Fψψ +

4i

3
AψFγ(s,s)ψ

= −
2

3
As (DsFψψ − 2∂ψFsψ)−

4

3
(DsAψ − ∂ψAs)Fsψ

−
2

3
Aψ

(

DsFsψ − 2iFγ(s,s)ψ

)

= −
4

3
(dA)sψFsψ (5.3)

shows that (dH)ssψψ = Gssψψ where G = dA ∧ F .

On the pure spinor subspace, this form is represented simply by the abelian Chern-

Simons super-3-form field C = AW . This is a composite analogue of the alternative

description of the exact 4-form obstruction (4.47). We will use this form in section 6.2 to

obstruct the defining condition (4.33) of the gauge 2-form potential V as

QV = α tr(AW ) (5.4)

for some parameter α. This equation was proposed in flat space in the form D(iγ̃abVj) =

αA(iγ̃abWj) in reference [48]. There, it was explained that this deformation is consistent

since both sides obey the constraint D
(i
(γσ

jk)α
β) − traces = 0 where σ stands for the DV

and AW combinations on the left-hand side and the right-hand side, respectively. In the

pure spinor notation, this observation reduces to the fact that Q2 = 0 on V and that

Q(AW ) = (QA)W +AQW = 0 by the defining equations (4.2) and (4.12).

5.2 The composite p-form with p = 4, 5, and 6

Let Zαi denote a positive chirality Weyl tensor of weight 3
2 and define its weight-2 field

strength

Φ(Z) := DαiZ
αi. (5.5)

Recall that when Z satisfies the condition QZ = 0 (4.33), its associated field strength Φ

satisfies the condition (4.26). Additionally, restricting Φ = 0, implies that Z describes the

vector multiplet of section 4.2.

For any two such spinor superfields Z̃ and Z, define the bilinear

Gaij(Z̃, Z) := Z̃(iγaZj). (5.6)

When Z̃, Z satisfy the condition (4.33), as we will henceforth assume, this bilinear satis-

fies (4.38) and defines a composite version of the 4-form of section 4.4. To see this, let

Bab(Z) := Diγ̃abZ
i denote the 2-form superfield associated to Z in analogy to the defini-

tion of the fundamental 2-form (4.35). The composite 4-form has as its lowest non-trivial

component Gssψψ = −2
3B̃sψBsψ. In the pure spinor projection this component becomes

proportional to (λγψψaλ)v
ivjGa

ij .

In section 4.4 we found that the top component of the 4-form is given by (4.44).

Consider the composite version in the flat limit

(∗G)ab := D2
[aijGb]

ij , (5.7)
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the bosonic part of which evaluates to

G|bose = −
3

16

[

Φ̃ ∗B+Φ ∗ B̃+ 6B̃ ∧B
]

. (5.8)

In general, this form is not closed. Indeed, straightforward D-algebra gives

∂b(∗G)ab =
1

8
D2

aij

(

Kij + K̃ij
)

(5.9)

where we have defined the bilinear Kij := iDα(iΦ̃Zα
j) +

i
4Φ̃Dα(iZ

α
j) and the K̃ that follows

from switching Z̃ ↔ Z. This combination, or its curved version

Kij = iDα(iΦ̃Zα
j) +

i

4
Φ̃Dα(iZ

α
j), (5.10)

is a composite analogue of the defining field of the 5-form multiplet of section 4.5. It is

analytic (i.e. it satisfies equation (4.52)) because Φ̃ satisfies (4.26) [27]. Since K(Z̃, Z) 6=

K(Z, Z̃) is not symmetric as a function of Z̃ and Z, the divergenceless vector superfield

D2
aijK

ij =
3

2
Φ̃

↔

∂ aΦ−
3

2
∂b

(

Φ̃Bab

)

−
3

4
H̃

(−)
abc B

bc + fermions (5.11)

gives rise to two conserved currents when there are at least two tensor fields present.

This will be important when we relate our complex to the non-abelian tensor hierarchy in

section 6.2.

The composite 4-form superfield (5.6) can be used to obstruct the defining constraint

on the fundamental (i.e. not composite) 3-form field strength superfield Φ:

D(iγ̃aDj)Φ+ 16iCaijΦ = αGaij . (5.12)

where α is a coupling constant. We now turn to the analysis of this deformation in the

case where Z̃ and Z are some combination of vector and tensor multiplets.

5.2.1 The composite 4-form

Specializing Z̃ = Z = W to a single vector multiplet, Gaij becomes the usual supercur-

rent [43, 53].22 In this special case, the composite 4-form (5.8) reduces to G ∼ F ∧F . It is

closed (the 4-form Bianchi identities are not obstructed) since Φ ≡ 0 and, therefore also,

K ≡ 0. The construction is off-shell as there are no tensors present to put it on-shell.

If we couple this form to a fundamental tensor, we recover the fact that the obstructed

closure condition (5.12) is the superspace analogue of the Green-Schwarz anomaly equa-

tion [48]

dH = αF ∧ F. (5.13)

22In six dimensions, this current is analytic only on-shell as Dγ(kG
a
ij) is proportional to the derivative of

the vector multiplet auxiliary field Xij .
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5.2.2 The composite 5-form

In this section, we take Z̃ = V and Z = W to describe a tensor multiplet and a vector

multiplet, respectively. The composite Gaij still describes a 4-form (5.8) but now in terms

of a gauge 2-form B̃ → B and a field strength 2-form B → F . The associated composite

field strength K is sourced by the analytic vector-tensor multiplet Lagrangian −iKij =

ΦXij +D(iΦWj) (5.10).

This linear multiplet has an interpretation as a composite version of the super-5-form:

consider the lowest component of the composite form K = F ∧H,

Kssψψψ =
1

10
FssHψψψ −

6

10
FsψHsψψ +

3

10
FψψHssψ

= −
3

5
FsψHsψψ +

3

10
FψψHssψ. (5.14)

In the pure spinor projection, this reduces to

Kλλψψψ =
2i

5
λγψψψλ v

ivj Kij +Q-exact, (5.15)

that is, the pure spinor projection of the lowest component of the super-5-form is propor-

tional to Kij up to a Q-exact term.23 The top component of the 5-form Kψψψψψ is given

in terms of Kij in equation (4.57). Here, we will explicitly compute its flat-space dual

∗Ka = 1
48DaijK

ij . The bosonic part evaluates to

Ka

∣

∣

∣

bose
= −

1

8
∂b (ΦFab)−

1

16
H

(−)
abc F

bc (5.16)

where we used the off-shell version of the Maxwell equation

D2
aijX

ij = 6i∂bFab. (5.17)

For the fermionic part, we need the equation

DαiFβ
γ = 2i∂αβW

γ
i +

2

3
δγαD

j
βXij −

1

3
δγβD

j
αXij (5.18)

and its consequence

D2
aijW

γj = 6i∂aW
γ
i − (γ̃a)

γδDδjXi
j . (5.19)

With this,

Ka

∣

∣

∣

fermi
=

1

8
DkΦ

↔

∂ aW
k +

1

8
DkΦγ̃aγb∂

bW k (5.20)

where we have used the fact that the tensor multiplet is on shell (4.28). It is also due to

this condition that K is divergenceless: algebraically,

∂aKa = −
1

16
∂aH

(−)
abc F

bc −
1

8
Dk�ΦW k +

1

8
∂aDkΦγ̃aγb∂

bW k

and these terms are all proportional to the equations of motion (4.28), (4.29), (4.32) of the

tensor multiplet.

23This is not surprising since QKλλψψψ ∝ QFλψHλψψ + FλψQHλψψ = 0 by Bianchi identities and the

combination Kij was originally constructed in reference [27] to satisfy specifically this condition.
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5.2.3 The composite 6-form

Finally, we consider the case where both Z̃ and Z describe tensor multiplets Ṽ and V .

The composite 5-form density resulting from this double-tensor can be understood along

the lines of the vector-tensor construction of the previous section by replacing F → B̃. In

particular, K = B̃ ∧H and the current (5.16), (5.20) gets modified to the form

D2
aijK

ij ∼ Φ̃
↔

∂ aΦ+ ∂b
(

ΦB̃ab

)

+H
(−)
abc B̃

bc

+DkΦγ̃aDkΦ̃ +DkΦ
↔

∂ aV
k +DkΦγ̃aγb∂

bV k. (5.21)

Note that this composite is not gauge invariant. It also does not generate a gauge invariant

6-form since the current is conserved. Conservation uses the equations of motion of both

multiplets and the fact that H ∧ H̃ ≡ 0 for any two anti-self-dual forms H and H̃. In the

case Φ̃ = Φ, the first term on each line vanishes. We will return to this form in section 6.2.

The fact that we do not generate a closed 6-form with this bilinear is the composite

analogue of the observation in section 4.6 that there is no obstruction to the closure of the

5-form Kij once it satisfies the defining relation QK = 0 (4.52). Similarly to the analysis of

that section, we can nevertheless define such a composite provided we go beyond bilinears

and construct the analogue of F ∧ F ∧ F :

Lsssψψψ =
3 · 3

15
FssFsψFψψ −

3!

15
FsψFsψFsψ = −

2

5
FsψFsψFsψ. (5.22)

(Other possibilities include B ∧ F ∧ F and A∧ F ∧H.) In the pure spinor projection, this

becomes

Lsssψψψ 7→
16i

5
c3αvivjvk(W 3)αijk (5.23)

giving the composite analogue Lαijk of the closed 6-form field strength of section 4.6.

Note that the Weyl weight of this composite is w = 3 · 3
2 = 9

2 in agreement with the

condition (4.64).

6 Applications

In the previous sections we studied the structure of differential forms in six-dimensional,

N = (1, 0) superspace. In this section, we present a selection of applications of these re-

sults. Topics we have refrained from discussing include applications to covariant superstring

compactifications [36, 54, 55] and related superspace gauge theories (e.g. ref. [56]), the new

ambi-twistor strings of [57], the construction of superconformal theories with a second, non-

linearly realized supersymmetry [40], superspaces with boundaries [58], and the comparison

to interesting recent lower-dimensional results (e.g. ref. [4, 59, 60]). Instead, we restrict our

attention to the two applications that most overlap with the results already derived. These

are intended only to motivate the use of superforms and do not represent complete analyses.
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6.1 Ectoplasm

This work has its origin in failed attempts to construct the density projection formula [61–

63] for curved, six-dimensional, N = (1, 0) projective superspace action [27]

S =
1

2π

∮

C

(vidv
i)

∫

M

d6x

∫

d8θEΘ(−4)L++ (6.1)

(L++ is a weight-4 analytic superfield). Generally, the Bianchi identities are solved in

curved superspace for a p-form with p equal to the dimension of the bosonic space-time.

By an extension of Noether’s argument defining conserved charges from conserved currents,

the components of this form can be shown to define a curved supersymmetric invariant ex-

tending the flat-space component action [67]. This invariant is, then, a natural candidate for

the component action in curved superspace.24 Six-dimensional, N = (1, 0) superspace has

the peculiar property of disallowing the straightforward construction of a natural 6-form.

The näıve generalization of two known approaches immediately fails for trivial reasons.

One of these extends the observation that it is sometimes possible to construct the top

form by wedging two middle-dimensional forms [68]. Applied to six dimensions, we expect

to obtain the top form corresponding to the projective measure defined in [27] from the

wedge of the 3-form with itself. This fails, however, since the 3-form is self-dual so that

the associated 6-form vanishes identically in the flat limit. In curved superspace, it fails

to produce the D4 part of the analytic measure. An attempt to construct a 6-form from

other composites (e.g. three 2-forms) does not generate a forth-order operator acting on a

scalar Lagrangian and, therefore, also does not represent the curved analytic measure.

A second attempt to guess the 6-form directly may be made by using Berkovits’ Ansatz

for the structure of the lowest component of the top form [69]. The proposed component

is of the form Lαβγabc ∼ (γabc)(αβfγ) with D(αfβ) = 0. However, this component is pure

gauge when interpreted as a Weyl tensor superfield as described in section 4.1. In flat

superspace, the Berkovits conjecture can be modified in the Biswas-Siegel approach to p-

forms in harmonic superspace [3] by constructing a 7-form with one leg in the harmonic

sphere CP 1: L α−β−γ− abc = (γabc)(αβD
−
γ)L

++. The superfield L++ is required to be

analytic D+
αL

++ and the top component ∗K ∝ D−4L++ reproduces the flat limit of the

projective measure of [27]. Somewhat surprisingly, however, the curved superspace Bianchi

identities cannot be satisfied for this choice of 6-form: the non-trivial isospin structure of

L++ forces the dimension-1 torsions to vanish. (For example, already the first Bianchi

identity implies 0 = D+
(αD

−
β)L

++ ∝ (γabc)αβNabcL
++.)

While it is beyond the scope of this work to investigate the question of integration in

projective/harmonic superspace in any depth, the application of our results on differential

forms already suggests some preliminary insights. For example, the analysis of section 4.5

suggests that the action for a linear multiplet in curved superspace reduces to the compo-

nent result
∫

N

d5x ena

{

(

D2
a ij − 48iCa ij

)

Kij +
4i

5
Ψb

i γ̃abDjK
ij +

6

5
Ψb

i γ̃abcΨ
c
jK

ij

}

(6.2)

24For more recent investigations into the general theory of integration on supermanifolds, we refer the

reader to [64–66].
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with the integral taken over some 5-dimensional bosonic subspace N of M with normal

vector n. The full analysis of the four-dimensional analogue of this was carried out in

reference [6].

In section 4.6, we found that the correct Ansatz for the 6-form was Lsssψψψ =

siγψψψs
jsγkLαijk. Together with the other components derived in that section, we can

write down a supersymmetric invariant that, schematically, is given by
∫

d6x e
{

D3L+ΨD2L+ΨΨDL+ΨΨΨL
}

. (6.3)

If one further solves the constraint (4.64) on the dimension-92 component as in (4.72), one

obtains a formula for covariantizing the component D4
ijklL

ijkl. The method used in [31, 70]

to obtain the analogous density projection formula starts with precisely such a term and

successively constructs the higher components in the gravitino expansion in a Noether-

type procedure based on the invariance under projective SL(2;C) transformations of the

projective superspace action (6.1). Therefore, if the component result from ectoplasm can

be checked to be SL(2;C)-invariant, it should correspond to the density projection formula

for the projective superspace action.

6.2 Abelian tensor hierarchy

The non-abelian tensor hierarchy [38–40] is an attempt to construct a non-abelian gauge

theory of forms of degree p > 1 by obstructing the closure of the standard Yang-Mills field

strength.25 As we review in appendix B, one introduces a collection of p-form potentials

(BI , Cr, Dα, Eµ) for p = 2, 3, 4, 5, respectively, extending the standard Yang-Mills potential

Ar. A collection of linear maps (hrI , g
rI , kαr ) is introduced to obstruct the closure of the p-

form field strength with a (p+1)-form potential. Consistency of this deformation in the non-

abelian case requires the extension of the Yang-Mills structure constants ftrs by a collection

of constants denoted by (dIrs, bIrs, cαIJ , c
′s
αr). Finally, superpartners are introduced and the

whole model is shown to be superconformally invariant.

The first step in this program is the obstruction of the Bianchi identity of a p-form field

strength with a (p + 1)-form field strength. This is precisely the procedure carried out in

section 4 to derive the complex of differential forms. Thus, the linearized part of the non-

abelian tensor hierarchy is just the construction of this complex. Consider, for example,

the case of the vector multiplet field strength W . Shifting W → W + h(V ) obstructs

the Bianchi identity (4.15) by the term (4.34). As explained in section 4.3.1, this is the

superfield defining the 3-form field strength of section 4.3. It satisfies the condition (4.26)

which can, in turn, be obstructed by g(G) using the 4-form field of section 4.4.

This interpretation of the differential complex refers only to the linearized part of the

hierarchy. We see from equation (5.12), however, that certain non-linear parts are captured

by introducing the composite deformations from section 5 alongside the fundamental ones.

Indeed, if, after constructing the non-abelian tensor hierarchy, one takes the abelian limit

f → 0, one is apparently left with a non-linear theory.26 It seems to be the case, then, that

25See also [71, 72] for details on the tensor hierarchy algebra and applications and [73] for extensions to

four dimensions.
26There is a subtlety concerning the non-triviality of this limit that we address in footnote 30.
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the non-linear but abelian part of the hierarchy is precisely the entire differential complex

augmented with composite obstructions. In this sense, one may think of the non-abelian

tensor hierarchy as a non-abelian deformation of this complex or “non-abelian ectoplasm”

in the terminology of section 6.1. Such structures should be closely related to the gravita-

tional tensor hierarchies of references [74, 75] appearing in gauged supergravity. For recent

applications to self-dual non-gravitational theories and their actions, see also [76–79]. Al-

though demonstration of the complete equivalence of the two sides and the non-abelian

extension of them is beyond the scope of this paper, some non-trivial comparisons can be

made with the results already worked out. The obstructed closure condition (5.13) is cen-

tral to the construction of the non-abelian tensor hierarchy in which it appears in the form

dH = d(F ,F) + g(G). (6.4)

Here,

• d is the symmetric bi-linear form (extended to act by wedge product on forms) on

the space of vector multiplets valued in the space of tensor multiplets,

• F = F + h(B) is a deformation of the non-abelian 2-form field strength F = dA by

a gauge 2-form B,

• H = H + g(C), is a deformation of the 3-form field strength H = dB by a gauge

3-form C, and

• G = G+k(D), is a deformation of the 4-form field strength G = dC by a gauge 4-form

D although this term does not enter into the hierarchy at this level since g ◦ k = 0.

As we have seen in section 4.4 and 5.2.1, this condition results from sourcing the defining

equation of the tensor superfield strength (5.12). Therefore, provided we shift the pure

spinor superfields W → W = W + h(V ), we can capture the b, c, c′ = 0 sector of the

hierarchy in curved superspace with the constraint

(

D(iγ̃aDj) + 16iCaij

)

Φ = d(W(iγaWj)) + g(Gaij) (6.5)

defining the deformed 3-form H.

It was shown in reference [77] that the p-form field strengths with p ≥ 4 are all

composite. Therefore, at least when formulated in terms of field strengths, it is possible

that this constraint already encodes the entire abelian hierarchy. In fact, the composite

“current” (5.6) has a natural extension by the associative ∗-product of appendix B to

Gaij ∼ b(W,V ) + k ◦ c(V, V ). Associated to this field is a composite linear superfield

Kij (5.10). An important set of constraints (cf. eq. (3.7) of ref. [38]) in the non-abelian

tensor hierarchy is given in superspace by setting

b(Kij) = 0. (6.6)

In the context of section 5.2, this equation implies that the 4-form Bianchi identities are

satisfied when the composite obstruction is mapped to the space of 4-forms by b. Equa-

tions (5.16) and (5.20) then imply the deformed closure condition (cf. eq. (3.39) and (3.43)
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of reference [77])

dG = b(F,H) + k(K), (6.7)

where K stands for the terms given in equation (5.21). These terms make up the composite

5-form of the tensor hierarchy (cf. eq. (3.43) and (3.49) of reference [77]) in the c′ → 0

limit.27 Thus, we have found that this level of the hierarchy is compactly described by

equation (6.5).

By (a deformation of) the discussion in section 4.3.1, the condition (5.13) is equivalent

to

QV = d(A,W ), (6.8)

provided we describe the tensor Φ in terms of its potential V [48]. Using our shifted fields,

we can attempt to write the analogous expression for (6.5) in pure spinor superspace. The

näıve guess is QV = d(A,W ) + g(C) for the 3-form potential C described in section 4.4.1.

However, according to [77], the associated field strength G ∼ dC is composite. In fact, it is

precisely the composite appearing because the Bianchi identities of dimension ≥ 3 do not

close. Therefore, it may even be that an equation of the form

DA+ A ∗ A = 0 with D = Q+ ∂ and A ∈ Ω• ⊗K• (6.9)

by itself already describes the entire hierarchy in the abelian limit.28 Work is currently

underway to investigate this idea and extend it to the full non-abelian hierarchy. For recent

closely-related work on such a construction for the bosonic part of the non-abelian tensor

hierarchy, see [80, 81] and references therein.

7 Conclusion

In this work we have augmented the curved six-dimensional, N = (1, 0) superspace [27]

(reviewed in appendix A) with a supercommutative ring of variables (2.2) and exploited

its structure to reformulate the superspace analogue of the de Rham complex of differen-

tial forms.29 The augmented complex has a “pure spinor” subcomplex (cf. section 3) that

is preserved by a second conformal algebra. This construction, roughly speaking, can be

interpreted as extending the six-dimensional projective superspace to a super-CR manifold

the Lagrangian distribution of which is generated by (3.5). On this subspace the curved

superspace spinor derivative reduces to a differential (3.6). Tensor superfields on this sub-

space that are in the cohomology of this differential define large classes of superconformal

primary superfields. They are classified by their Dynkin labels, in terms of which one

trivially computes their scaling weights.

27As we have restricted ourselves to quadratic bilinears in section 5.2, we will not generate the c
′ contri-

butions of the full tensor hierarchy here.
28It may be of interest to recall here that the complex of p-forms was determined uniquely by applying

the obstruction procedure to the condition Fss = 0. At the beginning of section 4.2, it was explained that

this condition is equivalent to the formula QA = 0.
29The flat superspace version of this was recognized in [8] as (a “free resolution” of) the Chevalley-

Eilenberg complex of the super-translation algebra with values in superfields.
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Certain such superconformal primary superfields are the defining superfields from

which de Rham forms are constructed in section 4. Roughly, each of these is the lowest-

weight member of its respective family. Some forms have alternative representations which

also fit naturally into the classification. Composite forms are gotten by multiplying the

fundamental forms together. On the pure spinor subcomplex this induces the structure of

a differential graded superalgebra. Peculiarities of the superfield structure of certain forms

are elucidated by this observation (cf. e.g. section 5.2.2 for the geometrical origin of the pro-

jective Lagrangian for systems of tensor and vector multiplets in projective superspace [27]).

Finally, we singled out two particular examples for applications of our results, the full

investigations of which are beyond the scope of this work. The first of these is an initial

attempt at finding the density projection formula for the projective superspace integral

which was the original motivation to consider the differential forms investigated in this

work. The second application is to the theory of superconformal models in six dimensions

with (at least) N = (1, 0) supersymmetry. Specifically, we make a superficial attempt

marry the DG algebra structure of the pure spinor subcomplex to the algebraic structure

of the non-abelian tensor hierarchy [38–40] (reviewed in appendix B).

Throughout this work, we have relied rather heavily on the notational and calculational

simplifications afforded us by the use of auxiliary variables. Stripping off the original super-

commutative variables reduces the results to ordinary superspace formulæ. Passing first to

the pure spinor subspace and then stripping off only the pure spinor variables, one recovers

the analogous results in projective superspace. In this sense, the use of the auxiliary vari-

ables is purely a convenience. Nevertheless, we have found the additional structure of such

augmented superspaces to be very useful in the theoretical and computational analyses of

problems in curved superspace. We hope that our presentation was effective in conveying

these, what we perceive to be, significant advantages.
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A Curved six-dimensional superspace

In this appendix, we collect the results on six-dimensional, N = (1, 0) supergravity used in

our analysis of superforms in curved space-time. A detailed understanding of this material

is not absolutely necessary to follow the discussion in the main text and serves mainly to

fix some notation and introduce the supergravity torsion fields. For additional details, see

references [27] and [82].

We denote the local coordinates on curved, six-dimensional, N = (1, 0) superspace by

(zM ) = (θµi, xm). The covariant derivative (DA) = (Dαi,Da) expands out to

DA = EA +ΩA +ΦA (A.1)

where

EA = EA
M∂M , ΩA =

1

2
ΩA

bcMbc, ΦA = ΦA
ijJij (A.2)

are the coframe, spin connection, and SU(2) connection, respectively. The generators of

the superalgebra spin(5, 1)⊕sp(1) ⊂ osp(6, 2|1) are defined by their action on the spinors as

[Mab,Dγk] = −
1

2
(γab)γ

δDδk and [Jij ,Dγk] = −εk(iDγj). (A.3)

The graded commutation relations of the covariant derivatives define torsions, curvatures,

and field strengths

[DA,DB} = TAB
CDC +

1

2
RAB

cdMcd + FAB
ijJij . (A.4)

We will work with the supergeometry defined by the relations

{Dαi,Dβj} = 2iεij(γ
a)αβDa + 2iCa ij(γ

abc)αβMbc + 4iεijN
abc(γa)αβMbc

− 6iεijC
kl
a (γa)αβJkl −

8i

3
Nabc(γabc)αβJij

[Dγk,Da] = Cbl
k (γab)γ

δDδl +Nabc(γ
bc)γ

δDδk +
1

2
Rγka

bcMbc

+

(

(γa)γδC
δ ij
k − 6δikCa γ

j + 5δik(γa)γδ

[

Cδj −
1

3
N δj

])

Jij . (A.5)

The curvature term of dimension-32 is an unilluminating function of the dimension-32 torsion

so we do not reproduce it here. The dimension-32 torsion components C and N appear in

the higher components of the p-forms. Their definitions are as the irreducible components

DγkCa ij = Ca γk ij + (γa)γδC
δ
ijk + εk(iCa γj) + εk(i(γa)γδC

δ
j)

DγkNαβ = Nγk αβ + Ňγk αβ

DγkN
αβ = Nγk

αβ + δ(αγ N
β)
k . (A.6)
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These components are constrained by the supergravity Bianchi identities to be [27, 82]

Ca γk ij = 0 Nγk αβ = 0

Cδ
ijk = −

1

6
(γ̃b)δβDβ(kCb ij) Ňγk αβ = −

3

4
(γa)γ(αCa β)k

Ca βj =
2

3
Πc γ

a βD
i
γCa ij Nγk

αβ = DγkN
αβ −

2

5
δ(αγ DδkN

β)δ

Cγk = −
1

9
DδlC

δγ lk Nαi =
2

5
Di

βN
βα,

(A.7)

where

Πbβ
aα = δbaδ

β
α +

1

6
(γaγ̃

b)α
β (A.8)

is the projector onto the γ-traceless subspace of the spinor-vector representation:

Πbβ
aα(γb)βγ ≡ 0 and (γa)γαΠbβ

aα ≡ 0.

Super-Weyl transformations preserving this geometry are generated by a real, uncon-

strained, scalar superfield σ(z). The transformations that preserve the covariant derivative

algebra act as

δDαi =
1

2
σDαi − 2(Dβiσ)Mα

β + 4(Dα
jσ)Jij (A.9)

δDa = σDa −
i

2
(Dkσ)γ̃aDk − (Dbσ)Mab −

i

8
(Diγ̃aD

jσ) Jij (A.10)

on the covariant derivatives and as

δCa ij = σCa ij +
i

8
(D(iγ̃cDj)σ) (A.11)

δNabc = σNabc −
i

32
(Dkγ̃abcDkσ) (A.12)

on the dimension-1 torsions.

In section 2 we introduce a commuting spinor sαi that plays the role of dθαi in the

algebra of exterior superforms. The product of two of such basis elements decomposes into

two parts

sαisβj = −
1

8
εij(γ̃a)

αβγa(s, s) +
1

48
(γ̃abc)αβωij

abc(s, s) (A.13)

where we have defined the vector and self-dual 3-form components

γa(s, s) := skγask and ωij
abc(s, s) := s(iγabcs

j). (A.14)

The vector γa(s, s) is null as follows from the general identity

(siγasi)(s
jγaξj) ≡ 0 (A.15)

which holds for any chiral spinor ξ (because (γa)αβ(γa)γδ = 2εαβγδ whereas the isospin

indices range only over 2 values). It is also orthogonal to the triplet of 3-forms

γa(s, s)ωij
abc(s, s) ≡ 0. Many Fierz identities can be derived from these basic relations

by polarizing on s (i.e. replacing s → s+ t+ u, expanding, and collecting like powers).
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Projecting s 7→ λ⊗v to the product of a commuting chiral spinor λα and isotwisor vi

kills the vector part and isolates the self-dual 3-form part of the bilinear. A chiral spinor

with the property

λαλβ =
1

3!23
(γ̃abc)αβλγabcλ (A.16)

is called pure (see e.g. reference [83]) so we will refer to this projection as the pure spinor

projection.

The constant, commuting spinor s combines with the covariant derivative to define the

odd derivation Ds = sαiDαi which squares to

D2
s = iDγ(s,s) + 2iNγ(s,s)abM

ab − 3iCij

γ(s,s)Jij

+ iωabc
ij (s, s)

(

Cij
c Mab −

4

3
NabcJ

ij

)

. (A.17)

In section 2, we define the projected derivation Q = Dλ⊗v. Its square reduces to

Q2 = i(λγabcλ)vivj
(

Cc ijMab −
4

3
NabcJij

)

. (A.18)

In section 3, we introduce a complex of spaces on which this square vanishes, thereby

promoting Q to a differential.

B The non-abelian tensor hierarchy

In section 6.2, we describe an application of the results on the structure of fundamental and

composite p-forms to the (abelian part of the) non-abelian tensor hierarchy [38–40]. In this

appendix, we review very briefly the underlying cohomological structure of this hierarchy

and propose a reformulation of it in terms of a generalized field strength satisfying a

Maurer-Cartan equation.

The non-abelian tensor hierarchy is built on a collection of p-form gauge fields

(Ar, BI , Cr, Dα, Eµ) where p = 1, 2, 3, 4, 5, respectively. The representation indices take

values in a collection of vector spaces that fit into a chain complex

K• = . . . −→ K3
∂

−→ K2
∂

−→ K1
∂

−→ K0 −→ 0. (B.1)

Here the representation space of a gauge p-form is denoted by Kp−1. The first few terms

of the differential are denoted by (∂1, ∂2, ∂3) = (h, g, k).

Introduce the de Rham complex

Ω• = 0 −→ Ω0 d
−→ Ω1 d

−→ Ω2 d
−→ Ω3 −→ . . . (B.2)

and consider the double complex Ω• ⊗ K• with differential D = d + ∂. Let A denote

an element of total degree 1 so that A represents the collection (Ar, BI , Cr, Dα, Eµ) of

bi-degrees (1, 0), (2,−1), (3,−2), (4,−3), (5,−4), respectively. Then

F := DA (B.3)
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is a form of total degree 2 representing (F r, HI , Gr,Kα, Lµ) = (dAr + hrIB
I , dBI +

gIrCr, dCr + kαrDα, dDα + l
µ
αEµ, dEµ). Then

DF = 0 ⇔



































dF r = hrIH
I

dHI = gIrGr

dGr = kαrKα

dKα = l
µ
αLµ

dLµ = 0.

(B.4)

Analogously to the algebra structure given to the de Rham complex by the wedge prod-

uct, it turns out that K• can be given an algebra structure by defining a collection of maps

∗ : Kp ×Kq → Kp+q+1. (B.5)

When we wish to distinguish them, we will denote the non-vanishing restrictions of the

product by (dIrs, bIrs, cαIJ , c
′s
αr) [38]. Together with the tensors defining the differential on

K•, these define an action

⊲ : K0 ×K• −→ K•

(X, a) 7→ ⊲Xa (B.6)

of K• on itself shown in reference [84] to make the ∗-product associative (a∗b)∗c = a∗(b∗c)

and the action ⊲X a derivation ⊲X(a ∗ b) = (⊲Xa) ∗ b+ a ∗ (⊲Xb) of the resulting algebra

∀a, b, c ∈ K•. Here, we will extend this product to the double complex by wedge, that is,

we interpret ∗ on the double complex to mean ∗ on K• together with ∧ on Ω•.

We are now in a position to use the ∗-product to deform the closure condition (B.4) on

F. To do this, one should first extend the differential on the double complex to a connection

∇ = D + ⊲A. With this, one can define the non-abelian field strength F := ∇2. Finally,

one writes ∇F+ F ∗ F = 0.

The non-abelian tensor hierarchy appears to have a non-linear abelian limit obtained

by setting f → 0 after deforming the complex with the ∗-product.30 For simplicity, we

will work in this limit. Then the deformed version of the closure condition (B.4) may be

postulated to be the Maurer-Cartan equation

DF+ F ∗ F = 0. (B.7)

This equation expands out to

dF r = hrIH
I (B.8a)

dHI = gIrGr + dIrsF
r ∧ F s (B.8b)

30The näıve limit appears to be non-trivial but we have not completed the analysis required to show the

existence of non-trivial solutions to all the conditions this limit affects. Irrespective of this, the consistency

of the resulting, perhaps formal, structure is a prerequisite to the extension to the full non-abelian hierarchy.

The latter has been explicitly checked to have non-trivial solutions [38]. We thank Robert Wimmer for

emphasizing these important points to us.
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dGr = kαrKα + bIrsF
s ∧HI (B.8c)

dKα = lµαLµ + cαIJH
I ∧HJ + c′sαrF

r ∧Gs (B.8d)

dLµ = 0. (B.8e)

In section 6.2 we connect this construction to the sourced and composite p-form complices

of sections 4 and 5. For recent work in this direction, see [80, 81].
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[33] S.M. Kuzenko, U. Lindström, M. Roček and G. Tartaglino-Mazzucchelli, On conformal

supergravity and projective superspace, JHEP 08 (2009) 023 [arXiv:0905.0063] [INSPIRE].

– 36 –

http://dx.doi.org/10.1007/JHEP02(2015)111
http://arxiv.org/abs/1410.8682
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.8682
http://dx.doi.org/10.1007/JHEP02(2016)132
http://arxiv.org/abs/1511.06582
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.06582
http://dx.doi.org/10.1016/0370-2693(86)91229-3
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B173,52"
http://inspirehep.net/record/243451
http://dx.doi.org/10.1016/0550-3213(87)90470-6
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B291,172"
http://dx.doi.org/10.1088/1126-6708/2008/06/046
http://arxiv.org/abs/0803.3024
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.3024
http://dx.doi.org/10.1016/0370-2693(81)90887-X
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B105,275"
http://dx.doi.org/10.1088/0264-9381/1/5/004
http://inspirehep.net/search?p=find+J+"Class.Quant.Grav.,1,469"
http://dx.doi.org/10.1017/CBO9780511535109
http://inspirehep.net/record/570842
http://dx.doi.org/10.1016/0370-2693(84)90120-5
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B147,297"
http://dx.doi.org/10.1007/BF01238851
http://inspirehep.net/search?p=find+J+"Comm.Math.Phys.,115,21"
http://dx.doi.org/10.1007/BF02097052
http://inspirehep.net/search?p=find+J+"Comm.Math.Phys.,128,191"
http://dx.doi.org/10.1007/JHEP08(2012)075
http://arxiv.org/abs/1204.4195
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.4195
http://dx.doi.org/10.1016/j.nuclphysb.2007.06.014
http://arxiv.org/abs/0704.1185
http://inspirehep.net/search?p=find+EPRINT+arXiv:0704.1185
http://dx.doi.org/10.1016/j.physletb.2008.01.055
http://arxiv.org/abs/0710.3440
http://inspirehep.net/search?p=find+EPRINT+arXiv:0710.3440
http://dx.doi.org/10.1088/1126-6708/2008/04/032
http://arxiv.org/abs/0802.3953
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.3953
http://dx.doi.org/10.1088/1126-6708/2008/02/004
http://arxiv.org/abs/0712.3102
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.3102
http://dx.doi.org/10.1088/1126-6708/2008/09/051
http://arxiv.org/abs/0805.4683
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.4683
http://dx.doi.org/10.1088/1126-6708/2009/08/023
http://arxiv.org/abs/0905.0063
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.0063


J
H
E
P
0
5
(
2
0
1
6
)
0
1
6

[34] G. Tartaglino-Mazzucchelli, 2D N = (4, 4) superspace supergravity and bi-projective

superfields, JHEP 04 (2010) 034 [arXiv:0911.2546] [INSPIRE].

[35] G. Tartaglino-Mazzucchelli, On 2D N = (4, 4) superspace supergravity,

Phys. Part. Nucl. Lett. 8 (2011) 251 [arXiv:0912.5300] [INSPIRE].

[36] O. Chand́ıa, W.D. Linch, III and B.C. Vallilo, The covariant superstring on K3,

arXiv:1109.3200 [INSPIRE].

[37] S. Randall, The structure of superforms, arXiv:1412.4448 [INSPIRE].

[38] H. Samtleben, E. Sezgin and R. Wimmer, (1, 0) superconformal models in six dimensions,

JHEP 12 (2011) 062 [arXiv:1108.4060] [INSPIRE].

[39] H. Samtleben, E. Sezgin, R. Wimmer and L. Wulff, New superconformal models in six

dimensions: gauge group and representation structure, PoS(CORFU2011)071

[arXiv:1204.0542] [INSPIRE].

[40] H. Samtleben, E. Sezgin and R. Wimmer, Six-dimensional superconformal couplings of

non-Abelian tensor and hypermultiplets, JHEP 03 (2013) 068 [arXiv:1212.5199] [INSPIRE].

[41] M. Cederwall, B.E.W. Nilsson and D. Tsimpis, Spinorial cohomology and maximally

supersymmetric theories, JHEP 02 (2002) 009 [hep-th/0110069] [INSPIRE].

[42] S.J. Gates, Jr. and W. Siegel, Variant superfield representations,

Nucl. Phys. B 187 (1981) 389 [INSPIRE].

[43] P.S. Howe, G. Sierra and P.K. Townsend, Supersymmetry in six-dimensions,

Nucl. Phys. B 221 (1983) 331 [INSPIRE].

[44] J. Koller, A six-dimensional superspace approach to extended superfields,

Nucl. Phys. B 222 (1983) 319 [INSPIRE].
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