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1 Introduction

The investigation of the structure of superforms is an important step toward understanding
the geometry of the underlying superspace. Due to the interplay between the spinors and



tensors in such spaces, this structure is non-trivial even in the flat case. In the flat, four-
dimensional, N = 1 superspace, this is textbook material (cf. section 4.4 of Superspace [1]
and the original ref. [2]).

In flat, four-dimensional, N = 2 harmonic superspace a systematic analysis was carried
out by Biswas and Siegel [3]. In curved superspaces or in flat superspace of dimensions
other than four, partial results may be found throughout the literature, with interesting
developments in four and five dimensions being reported as recently as last year [4-8].
Systematic studies of the closely related integral invariants in various dimensions are being
carried out by Howe and his collaborators (e.g. ref. [9-11].) Many of these results have
been extended to three, five, and six dimensions even more recently by Kuzenko and
collaborators (see e.g. ref. [12-16]). In ten dimensions, composite forms and their couplings
to supergravity in superspace were used early on to construct effective actions for massless
string states (e.g. ref. [17-19]). With the advent of covariant superstrings, a systematic
analysis for the forms arising in the pure spinor superspace was performed by Berkovits
and Howe [20] (see also [10]).

A special place in the hierarchy of superspaces is occupied by six-dimensional, N =
(1,0) Minkowski space as it has the largest isometry group compatible with the existence of
eight real supercharges. The auxiliary field problem (that there are strictly more fermionic
auxiliary fields required for off-shell closure than bosonic ones [21]) is solved by retaining an
5% ~ SU(2)g/U(1)g part of the R-symmetry group in the quotient construction [22, 23].
Closely related to this “harmonic” superspace is the “projective” superspace of [24-26].
The extension of this to curved, six-dimensional superspace was presented in [27] where
certain super-Weyl-covariant field representations were defined and an action principle was
proposed.! In this work, we continue the exploration of this superspace by analyzing the
structure of the complex of differential forms. Motivated by its interpretation as the target
space for covariant heterotic strings compactified on K3 [36], we introduce formal variables
generating an algebra isomorphic to the graded exterior algebra in section 2. This algebra
has a subalgebra corresponding to the projection of a bosonic spinor s — A®v to the
product of a pure spinor A® and iso-twistor variable v'. We show that the differential
forms are naturally defined on this subalgebra. In section 3, we exploit the existence of
the pure spinor subspace of differential forms to define super-Weyl covariant tensor fields
and construct an ambi-twistor-like representation of the six-dimensional conformal group
that acts on these tensor fields. The resulting superconformal field representations are
subsequently used in section 4 to derive the superspace analogue of the de Rham complex.?
In section 5 we construct composite forms by wedging the various forms from section 4. In
doing so, we are able to give a geometrical interpretation to certain multiplets constructed
in [27]. Finally, we comment on some applications of the formalism in section 6. One
of these is an attempt to reformulate the non-abelian tensor hierarchy [38-40], reviewed

!This extension to six dimensions is based on previous work in five dimensions [28-31] and below [32-35].

2This complex was described recently as the Chevalley-Eilenberg complex of p-co-chains of the super-
symmetry algebra with values in the space of superfields [8] (see also [7, 37]) where it was shown that the
components and constraints have the interpretation of co-boundaries and co-homology, respectively, of the
Chevalley-Eilenberg differential with values reduced to constant superfields.



in appendix B, in terms of a Chern-Simons theory on the ambi-twistor-like superspace of
section 3. Additionally, since the Bianchi identity for the differential forms were solved in a
curved background, this automatically determines the couplings of the abelian part of the
tensor hierarchy to supergravity. Appendix A summarizes some results of reference [27] on
curved, six-dimensional, N = (1,0) superspace.

A note on notation. After careful consideration, we have decided to present our anal-
ysis (mostly) in an index-free notation because we are convinced that the benefits of doing
so outweigh the risks. Firstly, this presentation most closely resembles our method of cal-
culation and discovery and is useful in proofs. Secondly, the notation simplifies comparison
to the covariant string theories and higher gauge theories to which it is closely related.
Thirdly, we will need a representation of the conformal group defined in terms of these
variables in order to build a certain differential complex of superfields in terms of which
the p-form components are defined. Fourth, it is quite possible (and in fact happens in
projective/harmonic and pure spinor theories) that some subset of these variables enters
into the solution of constraints (such as those we will find) and/or the superspace measure
when one attempts to define superinvariants by integration. Finally, the presentation of the
resulting complex is more easily compared to the results on higher gauge theory existing
in the literature. Conversely, using the more familiar, ordinary superspace notation would
significantly complicate substantial parts of the presentation.

2 Closed superforms

In this section we write down the Bianchi identities for p-forms in six dimensions. We
introduce some notation to simplify the calculations and find that the forms are supported
on a certain subspace of the full cotangent space. Some results from reference [27] used in
our calculations are summarized in appendix A.
A p-form w is closed iff
dw =10 (2.1)

where d is given locally by d§*0,; + dx®0,. For notational convenience, we will replace
the basis forms df** and dz® by new variables s and 1% To automatically incorporate
the super-anti-commutative nature of the wedge product, we take the {5} to be bosonic
spinor variables and the {1} to be fermionic vector variables

s¥ighi = gBigei  goiya — aghi payb — by (2.2)

The super-p-form w = > F_, W(s,p—s) SPlits up as a sum of superfield components of
degree s|(p — s)3

. NGRS Qsls /a1 ap—s ) )
W(s,p—s) *— Ws..sp.p *—= S e "Wayi...asisar...ap—gs (23)

3We are borrowing a compact, index-free notation from the theory of ordinary tensor fields on manifolds
in which the subscript indicates the vector field on which the corresponding index is contracted (e.g. Vx
for the directional derivative along the vector field X).



where the p-form components wa,i;..aica1..ap—s = Wayi...anisar...ap—s (z,0) are ordinary N =
(1,0) superfields. The differential d splits into two differentials 0, and 0y

o 0
g TV g

and the closure condition fans out into a collection of conditions respecting the grading by

d=0s+ Gd, = s‘”@ai + Y0, = s (2.4)

number of s%-type variables. Thus, the closure condition may be represented compactly as
s dw) ss..app... = 80sWs. ... + (=1)°(p + 1 — 5)Oypwss..qp... = 0 (2.5)

with the s in front of the first term denoting the total number of ss in that term and with
p denoting the total degree of the p-form w.?

The differentials 05 and dy, do not commute with supersymmetry transformations. To
get supersymmetrically covariant p-form components, we must replace coordinate deriva-
tives by supercovariant derivatives. In terms of flat supercovariant derivatives Ds and Dy, =

Oy, the closure condition acquires a flat-space torsion term T, = 2isiy%s; = 2is°‘i(7a)a/gsf:

SDsws...szp...zp + (_1)S(p +1- S)awws...st/)...v,/) - i(_l)ss(s - 1)ws...s~/(s,s)w...w =0, (26)

where the notation w, (s ... is shorthand for the contraction of the null vector v (s, 8) :=
s'y%s; on the component w,. . (cf. (A.14)). In the curved superspace version of this closure
relation, there are additional torsion terms

SDSWS...31/J...w + (_l)s(p +1- S)Ddyws...sw...d} - i<_1)ss(s - 1)“5...57(5,5)1/}...1&

. 1 .
+ (=1)%s(p+ 1 = 5)Tsp " wais...stp..0 — E(p +1—5)(p— 8)Typy ' wais...sp.p = 0. (2.7)

These torsions, and the six-dimensional curved supergeometry in general, are reviewed in
appendix A. In section 4 we will be solving this equation for each p=1,...,6.

Superforms with no restrictions on their components yield reducible representations
of the super-Poincaré algebra. Irreducible representations result by setting to zero one or
more irreducible components. Once this is done, the closure conditions become non-trivial
consistency conditions on the other components (e.g. all components of lower dimension are
required to vanish). Following common superspace practice, we will refer to the resulting
closure conditions as “Bianchi identities”. Thus, to begin solving the Bianchi identities of
any particular p-form, we must locate the component of lowest engineering dimension that
does not vanish.

Let n denote the largest value of s such that the s|(p — s)-component of the p-form w
is non-vanishing. Then equation (2.7) simplifies to

. s+1
(n+ 1)Dsws...s¢...d) =i(-1) * n(n + 1)”3...37(3,3)1{1...@[)- (2.8)

n p—n

4Whenever we use the letter s for a number, we mean the number of s*‘-type variables appearing in
the relevant formula. For example, the component s!(dw)aigjykde for a 4-form w has s = 3 and p = 4
giving 30swssypy — 20pwsssy. We will simplify such formulee by multiplying by symmetry factors to cancel
denominators, as we have done here.



If we further take the projection s +— A\*v' to the product of an unconstrained bosonic
spinor A of SU(4) and an unconstrained bosonic spinor v of SU(2), then the right-hand
side vanishes and we find that

=0. 2.9
Qwx.. . Ay...p (2.9)
n p—n

Here,
Q := Drgy = X' Dy =: \*D} (2.10)

stands for the projected superspace derivative.

The operator () appears repeatedly in the analysis that follows. Its importance derives
from the fact that the condition (2.9) holds for the lowest non-vanishing component of any
p-form and, as such, it appears as a defining condition on the superfield from which all
other components are derived.> We call the projection s — A®v the pure spinor projection
for reasons discussed in appendix A (cf. eq. (A.16) and the surrounding discussion).

Superfields ® = ®(z, 0, v) satisfying DI ® = 0 are known in the projective superspace
literature as analytic superfields. When ® is homogeneous of degree n in the variables v, ®
is said to have homogeneity weight n. When we wish to indicate this explicitly, we will do so
with a superscript ®”. In these terms, equation (2.9) says that the pure spinor projection

w;t?wmw of the lowest-dimension, non-vanishing component of the p-form is an analytic

superfield with homogeneity weight n. The dimension of this field is d = %n +p—n=p—3.

It is possible for the aforementioned projection of the n|(p — n)-component to vanish.”
When this happens, the pure spinor projection of the lowest dimension (d + %) Bianchi
identity is trivially satisfied. Passing to the next Bianchi identity (that with dimension
d+ 1) we find that it is the (n —1)|(p — n+ 1)-component of w that projects to an analytic
superfield provided this projection does not also vanish identically. If it does, we pass to
the next Bianchi identity. We proceed this way until we find a value n’ < n such that the
projection of the n/|(p — n’)-component does not vanish under pure spinor projection and,
therefore, defines an analytic superfield with homogeneity weight n’.® In our analysis, we
will find that this field is a superconformal primary field, that is, a superfield transforming
homogeneously under super-Weyl transformations as we recall in section 3.1 (cf. eq. (3.9)).

In section 3.1, we will also show that Q2 = 0 on superfields defined over the pure spinor
subspace. These superfields, graded by homogeneity weight and spin, form a complex of
spaces with differential Q). Assuming this, we conclude that differential forms restricted to
the pure spinor subspace are sourced by superconformal primary superfields in the coho-
mology of this complex. In the next section, we will study large families of such superfields.

With the lowest non-vanishing component in hand, the remaining components of the
superform can be reconstructed by the usual method. To wit, one first solves the lowest non-
trivial Bianchi identity for the dimension-(d + %) component by inverting the constant tor-

5This helps to explain the observation in reference [41] that for differential forms their “spinor cohomol-
ogy” of coincides with the pure spinor cohomology.

SWe are glossing over some subtleties here that we address as needed.

"This happens, for example, for the p = 3 form H where n = 2 (i.e. Hesy # 0) but Hary = 0 (cf.
section 4.3).

8In the p = 3 example, n = 2 but n’ = 1 (cf. section 4.3).



sion 2i(s'y%s;) in equation (2.8). These components suffice to solve the next Bianchi iden-
tity (2.7) for the dimension-(d + 1) component, provided certain additional constraints are
imposed on the defining field. This process continues to define the next-higher component
and, in principle, additional constraints, until we have reached the top component of dimen-
sion p. The final two Bianchi identities must now be identically satisfied [8, 37]. In section 4,
we will carry out this procedure to find the components of all the differential forms in curved
superspace and verify that the final two identities are satisfied identically in the flat limit.

3 Conformal symmetry

Consider a superfield @51"'@2&1,“% kr...fy (x,0) with ¢ symmetric fundamental spinor indices,
s symmetric anti-fundamental spinor indices, and f symmetric isospin indices. We intro-
duce the commuting variables {\%, \,, v} in the {(4,1),(4,1),(1,2)} representations of
SU(4) x SU(2) and replace the superfield with

S U LIRS CLP L) VAN PR R (3.1)
A=

Lorentz-irreducibility requires tracelessness on pairs of fundamental and anti-fundamental
spinor indices. We impose this by requiring
ANy = 0. (3.2)
Introducing the conjugate momenta {w,,@%, p;} allows us to rewrite the action of the
Lorentz and isospin generators as
1 <. _ .
Mgy = —5)\%1;00 - ikfyabw and  jij = v(;py)- (3.3)

This representation preserves the constraint (3.2). The other derivations preserving the
constraint are

Po = M'w, €=M, A= %)\awa — %XO@Q? and q = v'p;. (3.4)
Together, they generate the conformal algebra sog o
[Maby Mea] = —20e[aMp)q + 27d[aMpas [pa, €] = 200A — 2m,",
[Mab, Pe] = —2n(aby), [A,pal = —Pas
[Map, Ec] = =20ty (A, 8] = ¢, (3.5)

and a decoupled us.

An irreducible (iso-)spin-tensor (3.1) is an irreducible representation of this algebra.
The derivation ) acts on such representations. In general, its square is proportional to
Lorentz and isospin generators (cf. eq. (A.18)). When acting on the representations (3.1),
however, the Lorentz M — m and isospin generators J — j are represented by (3.3).
Simple Fierz rearrangement then implies that the only remaining term is proportional to
the constraint (3.2). Therefore,

Q*=0 (3.6)
when acting on the family of fields of the form (3.1). Thus, these fields form a differential
complex graded by spin and isospin.



3.1 Superconformal primary superfields

In this subsection, we use the pure spinor/ambi-twistor-like representation just introduced
to construct large families of superconformally covariant field representations by impos-
ing super-Weyl-invariant constraints. The ambi-twistor-like variables are not necessary to
define the constraints but they greatly simplify the proof of their super-Weyl covariance.
When the resulting representations are on shell, their dynamics are superconformally in-
variant.

In appendix A we recall the action of super-Weyl transformations (cf. eq. (A.9)-(A.12)
preserving the algebra of covariant derivatives defining the six-dimensional, N = (1,0)
supergravity theory studied in reference [27]. These transformations are parameterized by
a real, unconstrained scalar superfield o(z). In keeping with superspace terminology, we
define an irreducible superfield (3.1) to be a Weyl tensor of weight w provided that under
such a transformation

0P = wod. (3.7)
On such fields, the differential transforms as
1 1
0Q = §O'Q+§(3S+C—4f> (Qo), (3.8)

as follows from (A.9) evaluated on the representation (3.3). Therefore, if ® is a Weyl tensor
with weight w then Q® will be a Weyl tensor of weight w + % provided?

wfo—%s—%c. (3.9)
In particular, it is consistent to constrain
QP =0 provided w=2f— gs — éc. (3.10)
Important examples are given in the following table:
p|® (f,s,c) superfield field strength/potential w section
114 (1,1,0) Au potential 1/2 4.1
2|W (1,0,1) W field strength 3/2 4.2
2|V (1,0,1) VvV« potential 3/2 4.3.1
3|1C (2,1,1)  Capij potential 2 441
5|K (2,0,0) K field strength 4 45
6| L (3,1,0) Lajk field strength 9/2 4.6

As we will discuss in detail in section 4, they represent, respectively, the gauge 1-form
potential A := A0’ A,;, its 2-form field strength W := A\ v; W, the gauge 2-form potential
V o= AV, the gauge 3-form potential C' := (AMy*™\)viv’ Capij, the so-called linear

9The parameter Dq;o is the S-supersymmetry parameter. Canceling this term implies that the field ®
is invariant under S-supersymmetry, that is, it is a superconformal primary field.



multiplet K := viv? K;; related to the projective Lagrangian density,'? and the 6-form field
strength L := )\avivjvkLaijk.
In addition to this family of representations, there is an infinite family of symmetric,

traceless “spin-£” superfields Je, _¢i,..i; = J( —traces: using £ (cf. eq. (3.4)), let

crecg)(i1iy)
J(Z) — i et g o (3.11)
fo= C1...CoU1... 0" :

Then the condition
QI =0 = w=2f-¢ (3.12)

defines a Weyl superfield of weight 2f — . We will see in section 4.4 that for / = 1 and
f = 2, this condition defines the weight w = 3 field G ;; sourcing the 4-form field strength.

Finally, there are seven other families of Weyl superfields that are described naturally
in various alternative “polarizations” of the pure spinor variables. To illustrate what we
mean by this, we will explicitly work out the only example used in our analysis of differential
forms: consider a superfield with s = 0 but ¢ and f arbitrary. Performing the canonical
transformation from {\, v} variables to {w,p} on the superfield ® — & only, results in a
re- “normal”-ordering under which the conformal weight changes as w = 2v'p; — %S\Q(DO‘ —
SN > 2[—f — 2] — $[0] — 3[—c — 4]. In the new polarization, the constraint Q®T = 0 is
equivalent to the condition!!

o 3
Dm@aﬁl..ﬂcﬂ ULedi-t =0 = w=-—2f+ 50—{— 2 (3.13)

on the contraction of the operator D,; with the spin and isospin indices on ®“*. This
constraint is compatible with the condition (3.10) when the weights agree, that is, for
c=2f—-1land w = f + % As we will derive in section 4.2, the lowest-weight member
of this tower is the the gauge 1-form field strength superfield W. Note that we are not
required to impose this condition on such a weight-(f + %) field. If we do not, we find that
the component Q®' is another Weyl tensor of weight f+ 1. We will see in section 4.3.1 that
this observation provides the link between the description of the 2-form gauge potential
described by the supefield V' and that in terms of its 3-form field strength. The latter is built
on the Weyl-weight-2, real scalar superfield ® related to V by ® = D,;V* (cf. eq. (4.34)).

4 The super-differential complex

In this section, we will explicitly go through the steps outlined at the end of section 2 for
solving the closure conditions (referred to as Bianchi identities) for p-forms withp =1,...,6
subject to the condition that certain components vanish (e.g. Fss = 0, Hgss = 0). In the
process, we will find that for each p < 5, there is an additional constraint on the defining
superfield necessary for the closure of the dimension-p Bianchi identity. To pass to the

'9The projective Lagrangian density [27] is a homogeneity weight-2, analytic superfield K+t (¢) containing
an infinite number of ordinary superfields. Of these, K;; are the first three terms in an expansion in
¢ =02 / v! with all other superfields containing only auxiliary components.

HEquivalently, we can keep ® and perform the transformation on Q — Q. Then QT will act by
contraction of the form ® on the vector Digy .



next p-form in the complex, we relax this last condition, thereby obstructing the closure of
the p-form field strength. In doing so, we find the defining superfield for the (p + 1)-form.
In this sense, the entire complex is derived from the constraint Fn;z; = 0 imposed on the
2-form. The lowest non-vanishing components of the resulting forms have precisely the
dimensions found to imply superconformal invariance in section 3.1.

The result for flat forms with p = 2,...,5 is represented schematically in the following
table:
p=2 p=3 p=4 p=>5
Fss=0

Fop = sy W; Hys =0
Fpp = D'3pyp Wi Hggy = 8'yp5:® Gosss =0
Hgyypp = 5"y Di®  Gygep =0 Kssss =0
Hyyyp = D'y Di® Gospyp = Va8’ Gy Kisssp =0
Goppy = *8" Yy DI Gyij Kssspp =0
Gy = *DiFy DGl Kasppy = 8" pups? Kij
Ky = #8150 D Ky
Kyypppy = *Diy DKV

N (4.12) (4.38) (4.52)
DiAaWy =70 DGy = 0 DKy =70
pwi 42 D7 ;@ 429 DGaiy® “42b 10" Gaij

In order to fit the entries into the table, we have suppressed the 1- and 6-form, are ignoring
numerical factors, and we use % in the higher components of the forms of degree p = 4,5
to schematically denote the Hodge dual.

Very roughly, going up a p-form chain corresponds to applying the operator D;7,,0/0s;.
Going across corresponds to finding the dimension-p component and replacing the DD
operator acting on the defining field with some field that is bilinear in s. In fact, this is
happening because the Bianchi identity has reducible Lorentz/isospin components while
the DD field strength of the p form is irreducible. Imposing that the additional irreducible
components vanish closes the p-form Bianchi identity dw, = 0. Alternatively, we can
interpret this additional irreducible part as the lowest non-trivial component of a (p + 1)-
form wp11. Then the statement is that the non-vanishing of this new form is the obstruction
to the p-form Bianchi identity, that is, dw, = wp1.

For example, starting with Fgs = 0 and working our way up to the Bianchi identity
(dF)ssy = 0, we find that Fy,, o Di'~y¢¢Wi for the top component of the 2-form. However,
in that same identity, there remains uncanceled the Lorentz-irreducible term D; W which
the Bianchi identity sets to zero. Alternatively, we may decide to deform the closure



condition by introducing a source Hgy at this level. Then the new identity is dFf = H.
Consistency requires dH = 0, which we then proceed to solve. But this is just the Bianchi
identity for the 3-form as it appears in the second column of the table.

Below the dividing line in the table are the conditions the defining superfields satisfy.
The top line represents the relation Q® = 0 on the pure spinor cone. The line below it
denotes additional conditions required for the closure of the Bianchi identity for that partic-
ular p-form. The interpretation of the (p+ 1)-form as an obstruction to the p-form Bianchi
identity is reflected in the fact that the left-hand side of each condition on the bottom line
is in the same irreducible Lorentz and isospin representation as the defining field to the
right of it.!? In the following subsections, we will make all of these statements explicit.

We should mention that we are not claiming that the set of p-form representations we
obtain is complete;!3 in lower dimensions, it is possible to have so-called “variant represen-
tations” [1, 3, 42]. However, the tower we obtain is uniquely determined by working our way
up from the constraint Fss = 0. Furthermore, each form has a superconformal primary field
as its lowest non-vanishing component. Taken together, it may be that the resulting com-
plex is unique. Proving this or finding counter-examples (variant representations) should be
possible by first classifying all superconformal constraints of scaling weight w < p along the
lines of section 3.1 and then inspecting them for proper Lorentz and iso-spin structure.'*

The complex described in this section was recently interpreted as the Chevalley-
Eilenberg complex of p-co-chains of the supersymmetry algebra with values in the space
of superfields [8], with a differential w — dopw that is defined by the left-hand-side of
equation (2.7) or, for simplicity, its flat-space analogue (2.6).'® Let us denote the lowest-
dimension non-vanishing component of w by ¢ (e.g. for the 2-form w = F' of section 4.2,
¢ = W enters in eq. (4.10) as the spinor fieldstrength.) The form of ¢ is determined by the
Bianchi identities. Similarly, the higher Bianchi identities define the remaining components
of w in terms of superspace derivatives on ¢ projected to combinations of y-matrices (and
in curved space, covariantized with torsions) that may or may not be Lorentz-irreducible.
The projection to the complementary representations define constraints on ¢.

This picture was made precise in reference [8] (see also [37]) in the following sense: when
the coefficients in the complex are taken to be constant superfields, we obtain an algebraic
complex with a reduced differential dcpg which is essentially the contraction 1 — (s, s)
(a.k.a. interior product with the vector defined by s and the Clifford map). Then the set
of constraints on ¢ is in bijection with the cohomology of this reduced differential depgg

12For example, for p = 2 the spinor field strength has no scalar component D;W?*: this term appears in
the Bianchi identity at the same level as F;y but cannot be canceled by it since there is no Lorentz-invariant
way to absorb a scalar into a 2-form. This component must therefore be set to vanish if we want the Bianchi
identity for the 2-form to be satisfied. This scalar superfield is of the same form as the defining field ® in
the 3-form to the right of it in the table.

13We thank Gabriele Tartaglino-Mazzucchelli for raising this question.

MFor example, H,ss has scaling weight % There is a representation of this dimension which we call V¢
but it cannot be used to construct this particular component Hsss since, for example, s"‘isi s"’jsagm;Vj‘s =0.
Instead, it enters into Hysy as DMV‘”, as explained in section 4.3.1.

5The analysis of [8, 37] was carried out for the flat five-dimensional case but the results generalize to
other dimensions.
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and the set of equations defining the components of w in terms of ¢ is bijective to the
co-boundaries of the reduced Chevalley-FEilenberg complex. An immediate corollary of this
theorem is the well-known statement that there are no new constraints imposed by the last
two Bianchi identities because the reduced cohomology is empty there (since co-boundaries
must have at least two s variables). We will generally not use the results just described
(except to avoid a particularly tedious and unilluminating calculation in section 4.4) as the
analysis presented here predates that of [8, 37].

4.1 The closed 1-form

The components of a generic 1-form are (As, Ay). The first condition for a closed 1-form
is the component of (2.7) with the most ss:

2(dA)ss = 2Ds A5 — 2iA, (5,5 = 0. (4.1)
The pure spinor projection of this equation is simply (2.9)
QA=0 (4.2)

where A = A0’ A,; defines a Weyl tensor superfield provided w = 3 (3.10). This condition,
which is equivalent to D, ;Ag);) = 0, was solved in flat space in references [43] and [44]
based on the four-dimensional, N = 2 solution of Mezingescu [45] as An; = Do;U + DLU;;.
Substituting this back into the pure spinor constraint QA = 0, we find that the isotriplet
prepotential U;; is required to satisfy DkﬁabchUij = 0. Due to the flat-space identity
Dm:yabcDmD?jkl = 0, this implies that it can be written in terms of the unconstrained
Mezincescu prepotential u/ as Uij = ijklukl.

Returning to curved space, the vector component the super-1-form is determined by
the dimension-1 Bianchi identity to be

i s
Ay = —gpkWAk. (4.3)

Substituting the curved-space analogue of the solution above
Awi = DoiU + DLUs;  with  D*9 DUy + 256N, U = 0, (4.4)

this becomes Ay, = DyU — %D(ﬂij)(] . The U part drops out of the dimension—% Bianchi
identity
DAy — Dy As — Top® Api = 0 (4.5)

which constrains the prepotential U;; by si’mWZ} =0 for
. 1 y ; g
Wyt = gpgmijjk - é(:y“)aﬁDaDmU” + torsion terms. (4.6)

Note that this is the form of the field strength superfield for a gauge 1-form with prepo-
tential U;;. In the next section, we will relax the condition forcing it to vanish, thereby
generating the closed 2-form field strength as an obstruction to the closure of the 1-form
being worked out here.
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Setting the field strength superfield Wy = 0 is gauge equivalent to setting U;; = 0.
Doing this, we find that the closed 1-form is given by (As, Ay) = (DU, DyU). The
dimension-2 Bianchi identity

1 .
QD,[Z,Aw — 5 . 2Twwalz4ai =0 (47)

is satisfied identically. We conclude that, as expected, the unique closed, Weyl-covariant
1-form is the exact 1-form with weight-0 (iso-)scalar potential U.

4.2 The closed 2-form

The closed 1-form A of the previous section satisfied two constraints. The first of these
was the pure spinor constraint QA = 0 (4.2). The second was the dimension—% Bianchi
identity (4.5) constraining the prepotential U to vanish. We can deform this particular
Bianchi identity by introducing the superfield 2-form field strength Fyy, = (dA)gy as an
obstruction to the closure of the 1-form field A. In this interpretation, continuing to
impose the pure spinor condition (4.2) corresponds to keeping Fgs = 0. In fact, the two
conditions are equivalent: generally, Fuigj = Fajai = Fla(ip);j) T Flajig)j) Put the second term
is equivalent to €;;(7*)agF, which can be absorbed by a field redefinition into the vector
component A,. The remaining term F,(i5)j) = D(a(i4p)j) is precisely the combination QA.

In this section, we will solve the Bianchi identities for the closed 2-form F' subject to

Fys = 0. (4.8)

We emphasize that this is the only input from section 4.1 that we will use. The lowest-level
Bianchi identity relates the components Fs and Fy,, as

(s5) = 0 (4.9)

By the Fierz identity (A.15), the condition Fis = 0 = Fy () = 0 is compatible with the
solution

3D,Fy, + 3 - 2iF,

st = 2i(si7¢Wi), (4.10)

for some positive chirality, fermionic superfield W*. The dimension-2 identity reads
QDSF&/, + DwFss — QiF’y(s,s)w = 0. (411)
The pure spinor projection of this implies
QW =0 (4.12)

in the sense of section 3.1. To see this, note that under pure spinor projection, (sifwai) —
caWet where we define ¢, := (AMp)a- Although this contravariant spinor is fermionic, it
satisfies A%c, = 0 analogously to (3.2) so that the analysis of that section remains valid
in this special parameterization. The pure spinor condition (4.12) defines a Weyl tensor
superfield provided its weight is w = % By condition (3.2) or, rather, its fermionic version,
it is equivalent to

D(z‘:Yaij) — O (413)
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As a practical matter, this condition says that at the level of component field strengths,
there is no triplet of 2-forms.

The pure spinor projection isolates the isospin triplet part of the dimension-2 Bianchi
identity (4.11). The remaining isospin singlet part contains a superfield 2-form term and
a scalar term. Canceling the 2-form part results in the definition of the top component of
the closed 2-form ]

Fyy=— 4DWWW’“, (4.14)

leaving only (s'yys;)(DgjW¥57) = 0 uncanceled. Therefore, in addition to the con-
straint (4.13), we are required to impose the vanishing of the scalar term

D W = 0. (4.15)

Note that this condition is Weyl invariant by (3.13) since w = % Furthermore, it is required
for consistency of that part of the dimension-2 Bianchi identity that drops out of the pure
spinor projection. By contrast, the constraint (4.12) is defined by the projection to the
pure spinor subspace. In the next subsection (cf. section 4.3), we will interpret the lowest
3-form component as an obstruction to this additional condition (4.15).

The constraints (4.13) and (4.15) define the abelian 2-form field strength representation
W [46]. Its derivative can be expanded as

DoiWh = §1F, + 60X, (4.16)

for some iso-triplet superfield X;; = X(;;) whose lowest components are auxiliary fields.
The dimension—% Bianchi identity

DyFyy — 2Dy Fap — 2Tup ™ Foiy = 0 (4.17)

serves to relate the field equations to X and imply no additional conditions on W. Likewise,
the dimension-3 identity
Dy Fyy — Ty Fiy =0 (4.18)

implies no new constraints. Consequently, this (5+ 3)|(4 + 4)-component representation is
off-shell.

4.3 The closed 3-form

The defining superfield W of the abelian 2-form satisfies, in addition to the pure spinor
condition (4.12), the dimension-2 constraint (4.15) as follows from the 0 = (dF')ssy
(sifywsi)(D/ijﬁj ) Bianchi identity. In keeping with our general philosophy, we source this
equation with

Hggp = 2i(5'vy58:)® (4.19)

for some Weyl tensor superfield ® of weight w = 2 [43, 44]. This is consistent with the
dimension-2 Bianchi identity

AD Hyss — 4 3iH g (s.6) = 0. (4.20)

sv(s,s
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provided we also impose Hgss = 0. Note that H,,y vanishes under the pure spinor projec-
tion. This is consistent with the projection of the dimension—% Bianchi identity

3DsHsp — Dy Hsss + 3 - 2iH gy (5. 6y = 0, (4.21)
from which we easily obtain
Hopy = —(s"7gy Di®). (4.22)

Therefore, in the notation of section 2, n = 2 and n’ = 1. Plugging this into the dimension-3
identity
2D H gy + 2Dy Hygy — 2iH7(87s)¢¢ + 4Tsmeais¢ =0 (4.23)

and taking the pure spinor projection, we find the condition
1
5 (M) (D*3*D +16iC*T) © = 0. (4.24)

Here, we have defined the combination

atj

1
Dgij = 5P(%Dj) (4.25)

which will show up repeatedly. Thus, the dimension-3 identity implies the curved 3-form
field strength constraint [27]
D2, &+ 8iCy;;® =0 (4.26)

aij

with the remaining combination defining the 3-form field strength component
Hypp = é (D" 5 Dr + 128iNyy ) @. (4.27)
Acting on the constraint (4.26) with Dy results in the Dirac equation
iD*"Dh® — iCP Dy ® — 2IN*Dd — 12iC™'® = 0 (4.28)

so this multiplet is on-shell.'® The calligraphic torsion components entering here and below
are the dimension—% components of the supergravity torsions (A.7). They are included here
only for completeness and are not critical to the understanding of the 3-form. Similarly, we
find the covariantized Klein-Gordon equation that results from contracting with another
spinor derivative:

g ; 3 .
0= DD, + 8CELCH D + %N“bc DFF Dy — gDaiC‘“fb
: 5 .
— 3iC* Dy ® + %N‘WDQ,@. (4.29)

The higher Bianchi identities

DsH oy — 3Dy Hpy — 3Ty Haipy — 3Ty Haisyy = 0

16 An alternative interpretation of this formula in curved space is as a mechanism for defining geometrical
objects in the Weyl multiplet in terms of those in the tensor multiplet [47] (see also section 2.3 of [27]).
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1 .
ADyHypy — 5 + 4+ 3Typyp™ Haigy = 0 (4.30)

do not imply any new conditions on ® beyond those following from the constraint (4.26).
Instead of presenting calculations resulting in equations implied by (4.28) and (4.29), we
will merely verify that the flat limits are identically satisfied. For the dimension—% identity:

1., .- 1, .- .
DsHyyy = 5 (8" Ty Di)0a® = 5 ("7 Ty Di — 8" T4y 7" Di)0a®
= —38¢(8i’}/¢¢Di@) = 381/,st¢ (4.31)

where we have used the Dirac equation on the spinor of ®. Similarly,
Oy Hypyy = —éfwwzﬁ“b(D"%bCDi)ac@

o

64

i

32

€™ D (FabFe — 201ca ) Di0“®

- 1
ey’ DY D;i0p® = wawwzp“b@aabfb =0, (4.32)
by using the Dirac equation in the third equality.

4.3.1 Alternative formulation

The recovery of the 3-form superfield as an obstruction to one of the two defining con-
ditions of the vector muliplet (4.15), suggests an alternative description of this form in
terms of a dimension—% spinor superfield V' [48]. As we are obstructing only the scalar
constraint, this field would still be required to satisfy the defining condition analogous
to (4.12) or (4.13):

V=0 < DiVavVj) = 0. (4.33)

It can be shown by brute force calculation that this condition is equivalent to the con-
straint (4.26) with
o =D, V. (4.34)

This description neatly incorporates the gauge invariance of the 3-form field strength since
® is invariant under 6V = A% where A satisfies both constraints (4.13) and (4.15) defining
the vector multiplet. The condition on V implies that

) 1 . 1 . .
DoV = §5§5§<I> + 15{Ba5 + 8%y (4.35)

for a scalar ®, 2-form potential B, and an auxiliary triplet Y. Under the gauge transfor-
mation, the 2-form gauge field transforms into the field strength of a 1-form X\ as 0 B = dA\.

4.4 The closed 4-form

The closure constraint (4.24) on the 3-form can be obstructed with a 4-form, the lowest
non-trivial component of which is given by

Gispw = (8"Vpyas’) G- (4.36)

,15,



This is consistent with the dimension—% Bianchi identity
3DsGssyp + 3+ 20G gy (5, 5)gpp = 0 (4.37)
under the pure spinor projection, provided
(Yabe) (s Gijy =0 & gk DyeGeijy = 0 (4.38)

where II is the projector onto the ~-traceless subspace of the spinor-vector representa-
tion (A.8). To see this, note that the pure spinor projection of (4.36) is proportional to
(c¥*c)GIT. The condition that this be annihilated by @ then becomes equivalent to the
Weyl-invariant constraint (3.12) for £ = 1 (= w = 3). The remaining part of the Bianchi

identity (4.37) is, then, easily solved for the dimension—% component

Gy = = L5 €ovn™ (YD) G- (4.39)
The dimension-4 Bianchi identity is
2DsGswww + 3D1/)Gssw1/) - 2iG7(375)¢¢¢ +2-3 TswaiGaisw¢ =0. (4.40)
The pure spinor projection gives three conditions:
D; G +24iCo 1 G + 8iDaGY; = 0, (4.41)
D%ak(iGb)j)k — 4iD Gy i + - - — trace = 0, (4.42)
. 1 4.

D[Qa kGl j)k — 4D(,Gyij — ng%bCDkij +...=0, (4.43)

where the ellipses stand for unilluminating torsion corrections. The second and third
condition follow from the constraint (4.38) by contraction with (D¥%,)®. Indeed, the com-
bination ng(iij)k — 4iD,Gyij = —%Dk%D(kalj). Since 1I is ~-traceless, we get no
condition upon contraction with 7%. Therefore, the only condition not already implied by
the lower Bianchi identities is the condition (4.41) on the trace. It is this condition that
we will source to get the 5-form (cf. section 4.5).

The remaining terms in (4.40) determine the dimension-4 component

1 ' )
Guuww = —gevp™ (Daij — 40iCaij) Gy, (4.44)

In this calculation, there are no irreducible components beyond this 4-form that need to
be canceled so we do not generate any additional constraints on Gg;; at this level.
The remaining identities are the dimension—% identity

A 1 _
DGy — 4Dy Gy — A5y ™ Gaipyyy — 5 -4+ 3Ty Gaispy = 0 (4.45)
and the dimension-5 identity

1 4
5Dy Gy — 5+ 5 ATy ™ Gaigpirs = 0. (4.46)
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They should be satisfied identically in the flat limit. This calculation, however, turns out
to be particularly tedious. Instead of checking it explicitly, we cite the corollary in [8, 37]
stating that the this identity is required to hold due to the vanishing cohomology of a
certain algebraic complex. In the flat limit, (xG)q = %Dfaij Gyij and thus it must be
that 9°(xG)a = 0: the closure of the top component implies that the dual 2-form *G is
divergenceless up to torsion terms.

4.4.1 Alternative formulation

In section 4.3.1 we explored the alternative “potential” formulation of the gauge 2-form.
There, the condition defining the representation was expressed as QV = 0 (4.33) instead
of the condition (4.26) in terms of its field strength ®. Similarly, one expects to be able to
obstruct the closure condition in this potential-type formulation by taking

QV =C. (4.47)

Since V = \qu;V is a field with (f, s,c) = (1,0,1) and @ is an operator of type (1,1,0),
C is of type (2,1,1), that is, C' := (M A)vvd Cypy;.17 Consistency then implies

QC=0 = w=2 (4.49)

where the weight, again, follows from the general formula (3.10).

Recall that the vector multiplet field strength W obeys two conditions (4.12) and (4.15).
Relaxing (4.15) introduces the potential V' for the 3-form field strength which still
obeys (4.33). We are now relaxing this second condition by introducing the potential C' for
the 4-form field strength G' = dC'. The constraints on G imply that Cygy = si'ywabsj Cabij
is the lowest non-vanishing component of this potential. The pure spinor projection of this
component with Cgpgj := %D(ﬁabvj) gives back equation (4.47).

4.5 The closed 5-form

The obstruction to closure of the 4-form is the left-hand side of (4.41). Our procedure, then,
implies that the lowest component of the closed 5-form is given in terms of a superfield K;;
by

Kosppp = gy’ Kij. (4.50)

This is consistent with the dimension—% Bianchi identity
3D3K58¢¢¢ - 3D¢Ksss¢w +3- 2iKsy(s,s)1/;ww =0 (4.51)
in the pure spinor projection provided

7For purposes of illustration we mention that, in terms of the field strength ®, the flat-space version of
equation (4.47) implies
D2;® = D2, O + 4id"Coy ;. (4.48)
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This condition is Weyl invariant when w = 4 (3.9) in agreement with the engineering
dimension of K. This analyticity constraint implies that

Dg(ikKj)k +24iCo (VK + 4D, K = 0 (4.53)
and
D" Jape D1 Kij — 128iN) Ky = 0. (4.54)

The remaining part of the Bianchi identity defines the dimension—% component of K to be

Koy = = T evwwn™ (7 D7) Kij. (4.55)
The dimension-5 Bianchi identity

2D Kapupy + 4Dy Ksyps — 20K (5,500 — 8Ty Yoss’ ) Ki = 0 (4.56)

is identically satisfied in the pure spinor limit due to the constraint (4.54) and cancelation
of the Dy, terms. The remaining part determines the top component of K to be

1 | ’
Ky = 5zvwpwn” (Paij — 48iCai) K. (4.57)

The dimension—% identity is

. 1 .
DBy = 5Dy Ky = 5Tsp™ Kaigpprp = 5+ 5+ 4Typ™ Kaispyyp = 0- (4.58)

It serves only to define the #3-terms in K in terms of space-time derivatives acting on the
lower components and is otherwise unilluminating.

The dimension-6 identity is
1 ai
6Dy Ky = 5 6+ 5Ty Kaipppry = 0. (4.59)

It tells us that, in the flat limit, the bosonic projection of the top component of the 5-form
K is closed in the bosonic sense. We may check this explicitly by using the flat covariant
derivative identity G“DZ i = ﬁDf’ﬁc DF. Tt implies that the dual form %K, is divergenceless

9% (xK )y = 0 (4.60)

due to the analyticity constraint (4.52) on K.

Another way to understand this result is by comparison with the 1-form of section 4.1.
In the flat limit, the constraint (4.54) agrees with the defining condition (4.4) of a (gauge)
1-form prepotential. This implies that there is a 1-form at the §?-level of K. Since K is
a field strength, and due to the dimension of this component, this vector must be a field
strength. That this component is divergenceless where that of the vector multiplet was not
is a consequence of the stronger constraint (4.52) (from which (4.54) follows).
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4.6 The closed 6-form

The top component of the 5-form K defined in (4.57) solves the dimension-5 Bianchi iden-
tity with no additional requirements on the superfield K;; beyond the defining pure spinor
condition (4.52). As there is no obstruction to the closure of the 5-form, our procedure
does not generate a non-vanishing 6-form at this level. (The Chevalley-Eilenberg complex
with constant coefficients is exact at this level.)

One possibility is to proceed with the proposal by Drummond and Howe [49] which
corresponds to sourcing equation (4.53). (This also suggests the alternative co-dimension
O-form with based on sourcing (4.54).) An action constructed from such an obstruction is
of “superaction” type [50]. Alternatively, we may force the violation of the 5-form Bianchi
identity by obstructing the defining relation and attempting to interpret the result as a
closed 6-form. (This alternative is also suggested by the composite 6-form of section 5.2.3.)
This corresponds to the Ansatz

Lasswws = (5" Yppps?) 5" Laviji (4.61)
in terms of the weight w = % superfield Laijk.lg Upon pure spinor projection, this gives!?
sy = A* (N rgp M0 0" L. (4.62)

The projection of the lowest-dimension Bianchi identity (dimension 5)

AD; Lssppp — 4 31 Dgsn(s sy = 05 (4.63)

~—

as usual, requires QL = 0 which is again a condition of type (3.10). Explicitly,

(4.64)

| ©

QL=0 < D(a(iLB)jkl) =0 = w=
The remaining terms can be solved to find the dimension-5 component of the six form
L _ P (siy,) 87T (3DEL DEL 4.65
syl = ggCivvp” (8 Vab)"s aLsijk — DiLaijk ) - (4.65)
The dimension-4! Bianchi identity is

3D Lsspps — 4Dy Lisssppy + 3 20 L5, 510y — 3 - 4T 5™ Laissppy = 0. (4.66)

The constraints following from the pure spinor projection at this, and at any other level in
the Bianchi identities, can be obtained by hitting (4.64) with derivatives.? We solve this
Bianchi identity for the next component to find

1 . . o
Loypyyw = 795 vvppp”s™ (3 D% + 164i CH’“) Lok

1 . . o
— @€¢ww¢wa(sl’mb)a ('D%Jk + 441 ijk) Laijk‘ (467)

8Note that this field is of the form of the gauge parameter superfield for supergravity (cf. ref. [43]).
Similar observations were made concerning the appearance of superconformal gauge parameter multiplets
in the de Rham cohomology in five dimensions in [7, 8] and even in F-theory superspace in [51].

Note the similarity of this expression with the pure spinor 0-mode normalization (A\*0°) =1 [52].

20This is because (4.64) does not project out any irreducible component of @ acting on L. Note that this
is in contrast to (4.38) which projects out the y-trace of D, G ij)-
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The dimension-6 Bianchi

2D Lgyppapipny + 5Dy Ligsappapy — 2iL’Y(S,S)TMJ¢¢¢
4 1 .
+2- 5Ts¢mLai5¢www — B -5 4T¢meaiss¢w¢ =0, (468)

can be solved for the top component of the 6-form to give

v g ey 1 .. ~
Ly = Expppng [m (D3 — 12" ) Loy = 5 CF (DM Lige) |, (4.69)

where Dfﬁg = %50‘575{275@, [Dyj, Dpyyl}- The dimension—% Bianchi

. 1 ,
DsLyppirirp = 6Dy Ly = 6Tsp™ Laipwpwpy — 5 - 6 - 5Tyyp™ Laisyyyy = 0. (4.70)

does not define any new components and serves only to define the #*-terms in L in terms
of derivatives acting on its lower components. Similarly, the dimension-7 Bianchi

1 ,
"Dy Ly = 5 T+ 6Tyy™ Laigppppp = 0 (4.71)

provides the bosonic closure condition (up to torsion) for the six form.
We can solve the condition (4.64) analogously to what was done in section 4.1 by
taking
Loijk = DoiLjr) + D! Lij (4.72)

and plugging it back in. Note that the first term is (Q-exact and is therefore not constrained
by (4.64). However, precisely analogously to the case of the constrained prepotential Uj;
of the gauge field (4.4), the field L;j;; must satisfy the condition

D™ YabeDin Lijht — 384N Lispy = 0 (4.73)

for the constraint (4.64) to hold. In flat space, then, the analogue of Mezingescu’s un-
constrained prepotential u* for the 6-form would be an unconstrained, dimension-2 scalar
field £ such that L;;, = ijklﬂ.

5 Composite forms

In the previous section, we constructed the de Rham complex of differential forms by
sequentially obstructing the closure condition with a form of degree 1 higher. In this
section, we investigate the alternative method of building higher-degree forms by wedging
forms of lower degree. Analogously to how solving the seemingly trivial closure conditions
dw = 0 resulted in the elucidation of the superspace representations of superconformally
covariant p-form fields and their coupling to gravity, here we will similarly gain insight into
the structure of interactions in superconformal N = (1,0) models and their Lagrangians.
In the process, we will derive relations between certain types of composite forms that we
compare in section 6.2 to explicit formulae appearing in the non-abelian tensor hierarchy.
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We will refer to the forms obtained by wedging lower-degree forms as composite forms
to distinguish them from the forms above. To minimize additional notation, we will use
the same letters in bold font to denote the composite forms. Consider the the composite
p-form wy, = wy A wp—y. For simplicity of exposition, we mostly focus on the product of
only two forms. Then

Wayoosatpiotbps = D Cot Wy sy ipy.otbys Wy st by gt (5.1)
r+t=s

for some rational coeflicients ;. These are computed by first counting inequivalent permu-
tations of indices and then normalizing the result to 1. For example, the Gy, component
of G = '\ F' is gotten by writing down the terms FysFyy and FyyFyy, and realizing that
there are two inequivalent configurations of the indices on the second term, namely F,,Fjp
and Fjg, I, whereas on the first I3 is equal to Fjg, and similarly for F;. Therefore these
3 terms are weighted as %FSSFW, and %FwF w.iThey get a relative sign from the odd
permutation ssy) — ssip. Finally, Fygs = 0 50 Gggyyp = —%FS¢FS¢.

5.1 The composite p-form with p = 2 and 3

In the abelian limit F := A A A = 0 so that a single 1-form does not generate a composite
2-form. Given a collection of such forms and a bilinear, skew-symmetric map f, however,
one can construct Fgs := f(As, As) and its higher components. If, in addition, f maps
back into the collection of forms, we can use this composite 2-form as a deformation of the
collection of abelian field strengths dA. If one further requires that these maps satisfy the
Jacobi identity f(f(As, As), As) = 0 then this component can be absorbed into a connection
V = D+f(A,-) and we recover the usual formulation of the non-abelian gauge field strength.

The condition Fys = 0 is equivalent to V2 = iV (s,s), defining the vector connection in
terms of the spinor connection. With this, the first Bianchi identity becomes equivalent to
the associativity of the spinor connection: 0 = V(VVy) — (ViV)Vs = i[Vs, V(s o] =
iFy(s,5)- The rest of the analysis proceeds as in section 4.2.

A composite 3-form is easily constructed as H = A A F.2! The properly normalized
components

Hsss = Asts =0
2 1 2
Hssw = gAstzp + §A1/1Fss = gAstw
1 2
Hoyy = g AsFyy — 5 ApFey
Hyyy = AypFyy (5.2)

satisfy the Bianchi identities provided A and F’ satisfy theirs. That is, H is closed provided
both A and F' are. When dF = 0 but dA # 0, a short calculation

2(dH) ssyp = 2DsHgypyp + 20y Hisyp — 20H (5 5y

2n the non-abelian case, this can be extended to the full Chern-Simons 3-form. For simplicity of
exposition, we work in the abelian limit but allow A and F' to be independent fields.
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= gDsAsFW - gAsDSFW - %DsAwst - gAstFw

+ §6¢A5Fs¢ + %As%st - %Aﬂy(s,sﬁw + %Awa(s,sw
— —%As (DsFyy — 204 Fsp) — % (DsAy — 0y As) Fyy,

- gAw (DsFyp = 20F, 5, 5)y)

= —g(dA)wa (5.3)

shows that (dH)ssyy = Gssypyy Where G = dA A F.

On the pure spinor subspace, this form is represented simply by the abelian Chern-
Simons super-3-form field C = AW. This is a composite analogue of the alternative
description of the exact 4-form obstruction (4.47). We will use this form in section 6.2 to
obstruct the defining condition (4.33) of the gauge 2-form potential V' as

QV = atr(AW) (5.4)

for some parameter a.. This equation was proposed in flat space in the form D;7.,Vj) =
a A(JapWjy in reference [48]. There, it was explained that this deformation is consistent

since both sides obey the constraint D&ij)g) — traces = 0 where o stands for the DV
and AW combinations on the left-hand side and the right-hand side, respectively. In the
pure spinor notation, this observation reduces to the fact that Q> = 0 on V and that
QAW) = (QA)W + AQW = 0 by the defining equations (4.2) and (4.12).

5.2 The composite p-form with p = 4,5, and 6

Let Z% denote a positive chirality Weyl tensor of weight % and define its weight-2 field
strength
®(Z) := Doy 2. (5.5)

Recall that when Z satisfies the condition QZ = 0 (4.33), its associated field strength ®
satisfies the condition (4.26). Additionally, restricting ® = 0, implies that Z describes the
vector multiplet of section 4.2.

For any two such spinor superfields Z and Z, define the bilinear

Ga,-j(Z, Z) = Z(i')’aZj)- (56)

When Z, Z satisfy the condition (4.33), as we will henceforth assume, this bilinear satis-
fies (4.38) and defines a composite version of the 4-form of section 4.4. To see this, let
B (Z) := DiVapZ" denote the 2-form superfield associated to Z in analogy to the defini-
tion of the fundamental 2-form (4.35). The composite 4-form has as its lowest non-trivial
component Ggyy = —%BWBW. In the pure spinor projection this component becomes
proportional to (AyyyaA)v'v! G;.

In section 4.4 we found that the top component of the 4-form is given by (4.44).
Consider the composite version in the flat limit

(¥G)ap == D},;;,Gy”, (5.7)
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the bosonic part of which evaluates to
3 - - -
G\bose:—ﬁ[¢*3+<1>*B+6B/\B}. (5.8)
In general, this form is not closed. Indeed, straightforward D-algebra gives

1 D
0(+G)ay = 502y (K + K7 (5.9)

% and the K that follows

where we have defined the bilinear K;; := iDa(iiZq + i@i)Da(iZ])

7
from switching Z <+ Z. This combination, or its curved version

‘ = i =
is a composite analogue of the defining field of the 5-form multiplet of section 4.5. It is
analytic (i.e. it satisfies equation (4.52)) because ® satisfies (4.26) [27]. Since K(Z, Z) #

K(Z, Z ) is not symmetric as a function of Z and Z, the divergenceless vector superfield

égaq) - g@b (éBab> — §ﬁ(_)Bbc + fermions (5.11)

2 .
Dy KY = 4 abe

3
aij 5
gives rise to two conserved currents when there are at least two tensor fields present.
This will be important when we relate our complex to the non-abelian tensor hierarchy in
section 6.2.
The composite 4-form superfield (5.6) can be used to obstruct the defining constraint
on the fundamental (i.e. not composite) 3-form field strength superfield ®:

’D(iﬁ/a'Dj)(I’ + 16’L'Cm'j(I’ = OéGm‘j. (5,12)

where « is a coupling constant. We now turn to the analysis of this deformation in the
case where Z and Z are some combination of vector and tensor multiplets.

5.2.1 The composite 4-form

Specializing Z = Z = W to a single vector multiplet, Gij becomes the usual supercur-
rent [43, 53].22 In this special case, the composite 4-form (5.8) reduces to G ~ FAF. It is
closed (the 4-form Bianchi identities are not obstructed) since ® = 0 and, therefore also,
K = 0. The construction is off-shell as there are no tensors present to put it on-shell.

If we couple this form to a fundamental tensor, we recover the fact that the obstructed
closure condition (5.12) is the superspace analogue of the Green-Schwarz anomaly equa-
tion [48]

dH = aF N F. (5.13)

221n six dimensions, this current is analytic only on-shell as Dv(kij) is proportional to the derivative of
the vector multiplet auxiliary field Xj;.
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5.2.2 The composite 5-form

In this section, we take Z = V and Z = W to describe a tensor multiplet and a vector
multiplet, respectively. The composite G;; still describes a 4-form (5.8) but now in terms
of a gauge 2-form B — B and a field strength 2-form B — F. The associated composite
field strength K is sourced by the analytic vector-tensor multiplet Lagrangian —iK;; =
DX + D(i(I)Wj) (5.10).

This linear multiplet has an interpretation as a composite version of the super-5-form:
consider the lowest component of the composite form K= F A H,

1 6 3
Kospypy = = FosHyppy — —FspHoypy + = FyppHgsy

10 10 10
3 3
= _ngstllﬂﬁ + 10 i Hssy- (5.14)

In the pure spinor projection, this reduces to
2i o
Konppe = TN upA v'e? Kij + Q-exact, (5.15)

that is, the pure spinor projection of the lowest component of the super-5-form is propor-
tional to K;; up to a Q-exact term.?3 The top component of the 5-form Koy 1s given
in terms of K;; in equation (4.57). Here, we will explicitly compute its flat-space dual
K, = ﬁDain"j. The bosonic part evaluates to

1 1
K,| =-—-8"(®F,)— —H)Fb 1
bose 8a ( b) 16 abe (5 6)

where we used the off-shell version of the Maxwell equation

D2, X4 = 6i0"Fy,. (5.17)

aij

For the fermionic part, we need the equation

. 2 ; 1 ;

Daing’y = 21804/3Wi’y + géngﬁX” — gngéXU (518)

and its consequence
D2, WY = 6i0, W, — (7a)"° Ds; X7 (5.19)

With this,
1 — k 1 . brrrk
Ka| = SDi@0WF + -D@iumdW (5.20)
ermi

where we have used the fact that the tensor multiplet is on shell (4.28). It is also due to
this condition that K is divergenceless: algebraically,

9K, = _liGaaH(‘)FbC - éDkDQW’“ + éaaDk@m,@bW’“

abc

and these terms are all proportional to the equations of motion (4.28), (4.29), (4.32) of the
tensor multiplet.

Z3This is not surprising since QKapypy X QF\y Hayy + FryQHapy = 0 by Bianchi identities and the
combination K;; was originally constructed in reference [27] to satisfy specifically this condition.
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5.2.3 The composite 6-form

Finally, we consider the case where both Z and Z describe tensor multiplets V and V.
The composite 5-form density resulting from this double-tensor can be understood along
the lines of the vector-tensor construction of the previous section by replacing F — B. In
particular, K = B A H and the current (5.16), (5.20) gets modified to the form

D2 K ~ $5,0 + (@Bab) +H)BY

aij

+ DF®5, Dpd + D9, VF + D370 V" (5.21)

Note that this composite is not gauge invariant. It also does not generate a gauge invariant
6-form since the current is conserved. Conservation uses the equations of motion of both
multiplets and the fact that H A H = 0 for any two anti-self-dual forms H and H. In the
case & = ®, the first term on each line vanishes. We will return to this form in section 6.2.

The fact that we do not generate a closed 6-form with this bilinear is the composite
analogue of the observation in section 4.6 that there is no obstruction to the closure of the
5-form K;; once it satisfies the defining relation QK = 0 (4.52). Similarly to the analysis of
that section, we can nevertheless define such a composite provided we go beyond bilinears
and construct the analogue of F'A F' A F:

3-3 3!

Lsssypy = 5 FssFoyFyy — 12

2
= FayFopFop = —2 FoFus Fay. (5.22)

(Other possibilities include BA FA F and AA F A H.) In the pure spinor projection, this
becomes

16 -
LssstH%C3avzvjvk(w3)az‘jk (5.23)

giving the composite analogue Lg;j; of the closed 6-form field strength of section 4.6.

[C][JN]

Note that the Weyl weight of this composite is w = 3 - % in agreement with the

condition (4.64).

6 Applications

In the previous sections we studied the structure of differential forms in six-dimensional,
N = (1,0) superspace. In this section, we present a selection of applications of these re-
sults. Topics we have refrained from discussing include applications to covariant superstring
compactifications [36, 54, 55] and related superspace gauge theories (e.g. ref. [56]), the new
ambi-twistor strings of [57], the construction of superconformal theories with a second, non-
linearly realized supersymmetry [40], superspaces with boundaries [58], and the comparison
to interesting recent lower-dimensional results (e.g. ref. [4, 59, 60]). Instead, we restrict our
attention to the two applications that most overlap with the results already derived. These
are intended only to motivate the use of superforms and do not represent complete analyses.
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6.1 Ectoplasm

This work has its origin in failed attempts to construct the density projection formula [61-
63] for curved, six-dimensional, N = (1,0) projective superspace action [27]

! Uzdv / dbz / Bope—Y ot (6.1)

27r
(LT is a weight-4 analytic superﬁeld). Generally, the Bianchi identities are solved in
curved superspace for a p-form with p equal to the dimension of the bosonic space-time.
By an extension of Noether’s argument defining conserved charges from conserved currents,
the components of this form can be shown to define a curved supersymmetric invariant ex-
tending the flat-space component action [67]. This invariant is, then, a natural candidate for
the component action in curved superspace.? Six-dimensional, N = (1,0) superspace has
the peculiar property of disallowing the straightforward construction of a natural 6-form.
The naive generalization of two known approaches immediately fails for trivial reasons.
One of these extends the observation that it is sometimes possible to construct the top
form by wedging two middle-dimensional forms [68]. Applied to six dimensions, we expect
to obtain the top form corresponding to the projective measure defined in [27] from the
wedge of the 3-form with itself. This fails, however, since the 3-form is self-dual so that
the associated 6-form vanishes identically in the flat limit. In curved superspace, it fails
to produce the D* part of the analytic measure. An attempt to construct a 6-form from
other composites (e.g. three 2-forms) does not generate a forth-order operator acting on a
scalar Lagrangian and, therefore, also does not represent the curved analytic measure.

A second attempt to guess the 6-form directly may be made by using Berkovits’ Ansatz
for the structure of the lowest component of the top form [69]. The proposed component
is of the form L apfyabe ™ (Yabe) aﬁf'y with D, fg = 0. However, this component is pure
gauge when interpreted as a Weyl tensor superfield as described in section 4.1. In flat
superspace, the Berkovits conjecture can be modified in the Biswas-Siegel approach to p-
forms in harmonic superspace [3] by constructing a 7-form with one leg in the harmonic
sphere CPY: Lo g abe = (Vabc)(aﬁD;)£++- The superfield £ is required to be
analytic DX £** and the top component *K oc D~*L£F+ reproduces the flat limit of the
projective measure of [27]. Somewhat surprisingly, however, the curved superspace Bianchi
identities cannot be satisfied for this choice of 6-form: the non-trivial isospin structure of
LT forces the dimension-1 torsions to vanish. (For example, already the first Bianchi
identity implies 0 = D&DE)EJFJF o (Y%€) 08 Nape L)

While it is beyond the scope of this work to investigate the question of integration in
projective/harmonic superspace in any depth, the application of our results on differential
forms already suggests some preliminary insights. For example, the analysis of section 4.5
suggests that the action for a linear multiplet in curved superspace reduces to the compo-
nent result

L dg
/ d5xena{(Dgw 48iCyi5) K + —
N

7 B 6 .
5 \I/b’YabID K" + 5\111711170\1/;[(”} (6'2)

Z4For more recent investigations into the general theory of integration on supermanifolds, we refer the
reader to [64-66].
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with the integral taken over some 5-dimensional bosonic subspace N of M with normal
vector n. The full analysis of the four-dimensional analogue of this was carried out in
reference [6].

In section 4.6, we found that the correct Ansatz for the 6-form was Lggspopy =
si’ywzwsj stLm-jk. Together with the other components derived in that section, we can
write down a supersymmetric invariant that, schematically, is given by

/d%e {D’L+¥D?’L + VUDL + VYVL}. (6.3)
If one further solves the constraint (4.64) on the dimension—% component as in (4.72), one

obtains a formula for covariantizing the component D?j wuL? k. The method used in [31, 70]
to obtain the analogous density projection formula starts with precisely such a term and
successively constructs the higher components in the gravitino expansion in a Noether-
type procedure based on the invariance under projective SL(2; C) transformations of the
projective superspace action (6.1). Therefore, if the component result from ectoplasm can
be checked to be SL(2; C)-invariant, it should correspond to the density projection formula
for the projective superspace action.

6.2 Abelian tensor hierarchy

The non-abelian tensor hierarchy [38—40] is an attempt to construct a non-abelian gauge
theory of forms of degree p > 1 by obstructing the closure of the standard Yang-Mills field
strength.?’> As we review in appendix B, one introduces a collection of p-form potentials
(B!,C,, Dy, E,) for p = 2,3,4,5, respectively, extending the standard Yang-Mills potential
A”. A collection of linear maps (h7, g"l k%) is introduced to obstruct the closure of the p-
form field strength with a (p+1)-form potential. Consistency of this deformation in the non-
abelian case requires the extension of the Yang-Mills structure constants f’, by a collection
of constants denoted by (dﬂs, brrs, Cars, cs.). Finally, superpartners are introduced and the
whole model is shown to be superconformally invariant.

The first step in this program is the obstruction of the Bianchi identity of a p-form field
strength with a (p 4+ 1)-form field strength. This is precisely the procedure carried out in
section 4 to derive the complex of differential forms. Thus, the linearized part of the non-
abelian tensor hierarchy is just the construction of this complex. Consider, for example,
the case of the vector multiplet field strength W. Shifting W — W + h(V') obstructs
the Bianchi identity (4.15) by the term (4.34). As explained in section 4.3.1, this is the
superfield defining the 3-form field strength of section 4.3. It satisfies the condition (4.26)
which can, in turn, be obstructed by g(G) using the 4-form field of section 4.4.

This interpretation of the differential complex refers only to the linearized part of the
hierarchy. We see from equation (5.12), however, that certain non-linear parts are captured
by introducing the composite deformations from section 5 alongside the fundamental ones.
Indeed, if, after constructing the non-abelian tensor hierarchy, one takes the abelian limit
f — 0, one is apparently left with a non-linear theory.?8 It seems to be the case, then, that

#5See also [71, 72] for details on the tensor hierarchy algebra and applications and [73] for extensions to
four dimensions.
26There is a subtlety concerning the non-triviality of this limit that we address in footnote 30.
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the non-linear but abelian part of the hierarchy is precisely the entire differential complex
augmented with composite obstructions. In this sense, one may think of the non-abelian
tensor hierarchy as a non-abelian deformation of this complex or “non-abelian ectoplasm”
in the terminology of section 6.1. Such structures should be closely related to the gravita-
tional tensor hierarchies of references [74, 75| appearing in gauged supergravity. For recent
applications to self-dual non-gravitational theories and their actions, see also [76-79]. Al-
though demonstration of the complete equivalence of the two sides and the non-abelian
extension of them is beyond the scope of this paper, some non-trivial comparisons can be
made with the results already worked out. The obstructed closure condition (5.13) is cen-
tral to the construction of the non-abelian tensor hierarchy in which it appears in the form

dH = d(F, F)+g(G). (6.4)
Here,

e d is the symmetric bi-linear form (extended to act by wedge product on forms) on
the space of vector multiplets valued in the space of tensor multiplets,

e F = F + h(B) is a deformation of the non-abelian 2-form field strength F' = dA by
a gauge 2-form B,

e H = H+ g(C), is a deformation of the 3-form field strength H = dB by a gauge
3-form C, and

e G = G+k(D), is a deformation of the 4-form field strength G = dC' by a gauge 4-form
D although this term does not enter into the hierarchy at this level since go k = 0.

As we have seen in section 4.4 and 5.2.1, this condition results from sourcing the defining
equation of the tensor superfield strength (5.12). Therefore, provided we shift the pure
spinor superfields W — W = W + h(V), we can capture the b,c,c’ = 0 sector of the
hierarchy in curved superspace with the constraint

(D7 D) + 16iCai5) © = dWivaWy)) + 8(Gaij) (6.5)

defining the deformed 3-form .

It was shown in reference [77] that the p-form field strengths with p > 4 are all
composite. Therefore, at least when formulated in terms of field strengths, it is possible
that this constraint already encodes the entire abelian hierarchy. In fact, the composite
“current” (5.6) has a natural extension by the associative x-product of appendix B to
Guij ~ b(W,V) + koc(V,V). Associated to this field is a composite linear superfield
K;; (5.10). An important set of constraints (cf. eq. (3.7) of ref. [38]) in the non-abelian
tensor hierarchy is given in superspace by setting

b(K;;) = 0. (6.6)

In the context of section 5.2, this equation implies that the 4-form Bianchi identities are
satisfied when the composite obstruction is mapped to the space of 4-forms by b. Equa-
tions (5.16) and (5.20) then imply the deformed closure condition (cf. eq. (3.39) and (3.43)
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of reference [77])

dG = b(F, H) + k(K), (6.7)

where K stands for the terms given in equation (5.21). These terms make up the composite
5-form of the tensor hierarchy (cf. eq. (3.43) and (3.49) of reference [77]) in the ¢ — 0
limit.2” Thus, we have found that this level of the hierarchy is compactly described by
equation (6.5).

By (a deformation of) the discussion in section 4.3.1, the condition (5.13) is equivalent
to

QV =d(A, W), (6.8)

provided we describe the tensor ® in terms of its potential V' [48]. Using our shifted fields,
we can attempt to write the analogous expression for (6.5) in pure spinor superspace. The
naive guess is QV = d(A, W) + g(C) for the 3-form potential C' described in section 4.4.1.
However, according to [77], the associated field strength G ~ dC' is composite. In fact, it is
precisely the composite appearing because the Bianchi identities of dimension > 3 do not
close. Therefore, it may even be that an equation of the form

DA+A*A=0 with D=Q+0 and A€Q*®K, (6.9)

by itself already describes the entire hierarchy in the abelian limit.?® Work is currently
underway to investigate this idea and extend it to the full non-abelian hierarchy. For recent
closely-related work on such a construction for the bosonic part of the non-abelian tensor
hierarchy, see [80, 81] and references therein.

7 Conclusion

In this work we have augmented the curved six-dimensional, N = (1,0) superspace [27]
(reviewed in appendix A) with a supercommutative ring of variables (2.2) and exploited
its structure to reformulate the superspace analogue of the de Rham complex of differen-
tial forms.?? The augmented complex has a “pure spinor” subcomplex (cf. section 3) that
is preserved by a second conformal algebra. This construction, roughly speaking, can be
interpreted as extending the six-dimensional projective superspace to a super-CR manifold
the Lagrangian distribution of which is generated by (3.5). On this subspace the curved
superspace spinor derivative reduces to a differential (3.6). Tensor superfields on this sub-
space that are in the cohomology of this differential define large classes of superconformal
primary superfields. They are classified by their Dynkin labels, in terms of which one
trivially computes their scaling weights.

2T As we have restricted ourselves to quadratic bilinears in section 5.2, we will not generate the ¢’ contri-
butions of the full tensor hierarchy here.

28Tt may be of interest to recall here that the complex of p-forms was determined uniquely by applying
the obstruction procedure to the condition Fss = 0. At the beginning of section 4.2, it was explained that
this condition is equivalent to the formula QA = 0.

*The flat superspace version of this was recognized in [8] as (a “free resolution” of) the Chevalley-
Eilenberg complex of the super-translation algebra with values in superfields.
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Certain such superconformal primary superfields are the defining superfields from
which de Rham forms are constructed in section 4. Roughly, each of these is the lowest-
weight member of its respective family. Some forms have alternative representations which
also fit naturally into the classification. Composite forms are gotten by multiplying the
fundamental forms together. On the pure spinor subcomplex this induces the structure of
a differential graded superalgebra. Peculiarities of the superfield structure of certain forms
are elucidated by this observation (cf. e.g. section 5.2.2 for the geometrical origin of the pro-
jective Lagrangian for systems of tensor and vector multiplets in projective superspace [27]).

Finally, we singled out two particular examples for applications of our results, the full
investigations of which are beyond the scope of this work. The first of these is an initial
attempt at finding the density projection formula for the projective superspace integral
which was the original motivation to consider the differential forms investigated in this
work. The second application is to the theory of superconformal models in six dimensions
with (at least) N = (1,0) supersymmetry. Specifically, we make a superficial attempt
marry the DG algebra structure of the pure spinor subcomplex to the algebraic structure
of the non-abelian tensor hierarchy [38-40] (reviewed in appendix B).

Throughout this work, we have relied rather heavily on the notational and calculational
simplifications afforded us by the use of auxiliary variables. Stripping off the original super-
commutative variables reduces the results to ordinary superspace formulse. Passing first to
the pure spinor subspace and then stripping off only the pure spinor variables, one recovers
the analogous results in projective superspace. In this sense, the use of the auxiliary vari-
ables is purely a convenience. Nevertheless, we have found the additional structure of such
augmented superspaces to be very useful in the theoretical and computational analyses of
problems in curved superspace. We hope that our presentation was effective in conveying
these, what we perceive to be, significant advantages.
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A Curved six-dimensional superspace

In this appendix, we collect the results on six-dimensional, N = (1, 0) supergravity used in
our analysis of superforms in curved space-time. A detailed understanding of this material
is not absolutely necessary to follow the discussion in the main text and serves mainly to
fix some notation and introduce the supergravity torsion fields. For additional details, see
references [27] and [82].

We denote the local coordinates on curved, six-dimensional, N = (1,0) superspace by
(zM) = (67, x™). The covariant derivative (D4) = (Das, Da) expands out to

Dap=FEs+Qa+ Py (A1)
where 1
Ex=EAMoy, Qa= §QAbCMbca Dy =Dy T (A.2)

are the coframe, spin connection, and SU(2) connection, respectively. The generators of
the superalgebra spin(5, 1) @sp(1) C osp(6,2|1) are defined by their action on the spinors as

1
[Map, Dyi] = *5(7ab)wépak and [Jij, Dyk] = —€k(Dsyj)- (A.3)

The graded commutation relations of the covariant derivatives define torsions, curvatures,
and field strengths

[D4,Dp} = Tap“De + %RABCdMCd + FapJij. (A.4)
We will work with the supergeometry defined by the relations
{Dai, Dp;} = 2ieij(7*)apPa + 2iCaij (V") apMpe + 4igii N (Ya)ap Moe
— 6ieg;Cy (Y )apTht — %N P (Yabe)apJij
D1y Da] = CF (Yab)r Dt + Nave(77)2° Doy, + %R'ykabchc

+ <(%)wc;§” — 605Car? + 508 (Va)s [céﬂ — 3/\/5JD Jij. (A.5)
The curvature term of dimension—% is an unilluminating function of the dimension—% torsion
3

so we do not reproduce it here. The dimension-5 torsion components C and A appear in
the higher components of the p-forms. Their definitions are as the irreducible components

DCuij = Cavkij + (Ya)v6Cijk + €r(iCang) + Erii(Ya)sC))
Dk Nap = Nykas + Nokap
DN = NP 4 5N, (A.6)
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These components are constrained by the supergravity Bianchi identities to be [27, 82]

Corkij =0 Nogas =0
Coin = —é(’?b)w DykChijy Nokap = _%(’Ya)’y(ozca )k
Capj = ;HZ%’DQCMJ' NP =Dy NP — %‘%“‘DMNW (A1)
k= —%D(;,C‘” . N = %DgNB“,
where
1), = 6004 + é(m”)aﬁ (A.8)

is the projector onto the ~-traceless subspace of the spinor-vector representation:
HZ@(%)M =0 and (’ya)wﬂgg =0.

Super-Weyl transformations preserving this geometry are generated by a real, uncon-
strained, scalar superfield o(z). The transformations that preserve the covariant derivative
algebra act as

1 ,
0Dai = 50Dai = 2(Dgio) My + 4(Dol o) Jij (A.9)
5Dy = 0Dy — %(Dko—)% Dy, — (DY) My — é(Di%Dja) Jij (A.10)
on the covariant derivatives and as

i

0Cqui5 = 0Cqi5 + 8(D(ﬁc17j)0) (A.11)
ONabe = 0 Ngpe — B%(Dk:)/abcpka) (A12)

on the dimension-1 torsions.
In section 2 we introduce a commuting spinor s that plays the role of d#® in the
algebra of exterior superforms. The product of two of such basis elements decomposes into

two parts
L 1 . 1 g
s = 3 €9(7,)P~(s, 5) + E(iabc)aﬂw” (s,5) (A.13)

abc

where we have defined the vector and self-dual 3-form components

7% (s, 8) = "%, and W (s,s) = sUrygpes?). (A.14)

abc

The vector v%(s, s) is null as follows from the general identity
(5"7"si)(s774&;) =0 (A.15)

which holds for any chiral spinor £ (because (v*)ag(7Va)ys = 2€agys Whereas the isospin
indices range only over 2 values). It is also orthogonal to the triplet of 3-forms
(s, s)w (s,s) = 0. Many Fierz identities can be derived from these basic relations

by polarizing on s (i.e. replacing s — s + ¢t + u, expanding, and collecting like powers).
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Projecting s — A®uv to the product of a commuting chiral spinor A* and isotwisor v’
kills the vector part and isolates the self-dual 3-form part of the bilinear. A chiral spinor
with the property

a L abeva
A AB = ﬁ(’}/ b ) BA’Yabc)\ (A16)

is called pure (see e.g. reference [83]) so we will refer to this projection as the pure spinor
projection.

The constant, commuting spinor s combines with the covariant derivative to define the
odd derivation Dy = s*D,; which squares to

2 ; ; ab ]
D; = ZDy(s,s) + 22ny(s,s)abM — BZC'yJ(s,s)‘]ij
- abc i 4 77
+ Zwijb (S>3) (Cc]Mab - 3Nabc<]]> . (A17)

In section 2, we define the projected derivation @) = D)yg,. Its square reduces to

o 4
QZ — Z’()\,yabC)\)'LﬂUJ <CcijMab — 3Nachij> . (A.18)

In section 3, we introduce a complex of spaces on which this square vanishes, thereby
promoting () to a differential.

B The non-abelian tensor hierarchy

In section 6.2, we describe an application of the results on the structure of fundamental and
composite p-forms to the (abelian part of the) non-abelian tensor hierarchy [38-40]. In this
appendix, we review very briefly the underlying cohomological structure of this hierarchy
and propose a reformulation of it in terms of a generalized field strength satisfying a
Maurer-Cartan equation.

The non-abelian tensor hierarchy is built on a collection of p-form gauge fields
(A", B!, C,, Dy, E,) where p = 1,2,3,4,5, respectively. The representation indices take
values in a collection of vector spaces that fit into a chain complex

Ke=...— K3 -5 Ky -5 Ky -2 Ky — 0. (B.1)

Here the representation space of a gauge p-form is denoted by K,_;. The first few terms
of the differential are denoted by (91, d2,03) = (h, g, k).
Introduce the de Rham complex

C=0—0 Lo L2 Lot (B.2)

and consider the double complex Q° ® K, with differential D = d + 9. Let A denote
an element of total degree 1 so that A represents the collection (A", B!,C;, Dy, E,) of
bi-degrees (1,0), (2,—1), (3, —2), (4, —3), (5, —4), respectively. Then

F:= DA (B.3)
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is a form of total degree 2 representing (F",H!,G,,Ks,L,) = (dA" + h7B!,dB! +
g"C,., dCy + K2 Dy, dD + I1.E,,, dE,,). Then

dFT = h7H!
dH! = g”Gr
DF=0 < dG, = koK, (B.4)
dK, = 8L,
dL, = 0.

Analogously to the algebra structure given to the de Rham complex by the wedge prod-
uct, it turns out that K can be given an algebra structure by defining a collection of maps

* Kp X Kq — Kp—‘rq—i—l‘ (B5)

When we wish to distinguish them, we will denote the non-vanishing restrictions of the
product by (df, brs,cars, /) [38]. Together with the tensors defining the differential on
K,, these define an action

> Ko X Ko — Ko
(X,a) = Dxa (B.6)

of K, on itself shown in reference [84] to make the #-product associative (a*b)*c = ax(bxc)
and the action >x a derivation >y (axb) = (D>xa)*b+ a* (>xb) of the resulting algebra
Va,b,c € Ko. Here, we will extend this product to the double complex by wedge, that is,
we interpret % on the double complex to mean x on K, together with A on Q°.

We are now in a position to use the x-product to deform the closure condition (B.4) on
F. To do this, one should first extend the differential on the double complex to a connection
V = D + D>a. With this, one can define the non-abelian field strength F := V2. Finally,
one writes VF +F x F = 0.

The non-abelian tensor hierarchy appears to have a non-linear abelian limit obtained
by setting f — 0 after deforming the complex with the *-product.®® For simplicity, we
will work in this limit. Then the deformed version of the closure condition (B.4) may be
postulated to be the Maurer-Cartan equation

DF +F«F = 0. (B.7)

This equation expands out to
dF" = h7H! (B.8a)
dH! = gI"G, +dL F" A F® (B.8b)

39The naive limit appears to be non-trivial but we have not completed the analysis required to show the
existence of non-trivial solutions to all the conditions this limit affects. Irrespective of this, the consistency
of the resulting, perhaps formal, structure is a prerequisite to the extension to the full non-abelian hierarchy.
The latter has been explicitly checked to have non-trivial solutions [38]. We thank Robert Wimmer for
emphasizing these important points to us.
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In section 6.2 we connect this construction to the sourced and composite p-form complices

dG, = kYK, + b.o S AN HY (B.8c)
dKo =1L, + coryH' N H? 4+ 5 F7 NGy (B.8d)
dL, = 0. (B.8e)

of sections 4 and 5. For recent work in this direction, see [80, 81].
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