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Santiago, Chile
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Abstract. The kinematics and dynamics of deterministic physical systems have been

a foundation of our understanding of the world since Galileo and Newton. For real

systems, however, uncertainty is largely present via external forces such as friction

or lack of precise knowledge about the initial conditions of the system. In this work

we focus in the latter case and describe the use of inference methodologies in solving

the statistical properties of classical systems subject to uncertain initial conditions.

In particular we describe the application of the formalism of Maximum Entropy

(MaxEnt) inference to the problem of projectile motion given information about the

average horizontal range over many realizations. By using MaxEnt we can invert the

problem and use the provided information on the average range to reduce the original

uncertainty in the initial conditions, while also achieving additional insights based on

the shape of the posterior probabilities for the initial conditions probabilities and the

projectile path distribution itself. The wide applicability of this procedure, as well

as its ease of use, reveals a useful tool by which to revisit a large number of physics

problems, from classrooms to frontier research.
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1. Introduction

Classical mechanical systems are completely deterministic, following well-established

equations of motion such as Newton’s second law or Hamilton equations. However,

uncertainty still is introduced in the lack of control of the initial conditions of a

mechanical system. Usually mechanical systems are chaotic, that is, highly sensitive

to these initial conditions, with the corresponding loss of predictability. Given a

certain statistical distribution of initial conditions, the result is of course a (non-trivial)

statistical distribution of outcomes, obtained by propagating the system forwards in

time according to the equations of motion. This suggests the opposite situation:

given statistical properties of the outcomes of a classical system, can we obtain some

information about the initial conditions that produced these outcomes? This is an

inverse problem from the point of view of probability theory, which can in principle be

addressed using Bayes’ theorem [1] and/or information theoretical methods [2].

Since the time of Galileo Galilei, projectile motion has been a widely studied

phenomenon from a large set of different approaches. These range from including the

presence of a resisting medium [3], to highly accurate analytical functions [4]. This

particular motion presents an almost endless list of uses in different technological areas,

such as ballistics [5, 6, 7, 8], sports [9, 10], rockets among others [11, 12]. In spite of

the large body of information on projectile motion we are not aware of previous work

where it is treated as an inverse problem in which information at later times is known

and we infer the initial conditions.

In this work we propose and solve the problem of a large number of realizations of

projectile motion with known average horizontal range R̄, where we infer the most

unbiased probability distribution of initial angle θ0 and speed v0. This is achieved by

the use of the Maximum Entropy principle (MaxEnt).

Our application to projectile motion is only a guide to the proposed procedure,

and its choice is based fundamentally in strengthening statistical methods in students.

By understanding the theoretical foundations that allow the solution of this kind of

problems, students will be able to diversify their applicability to many other problems

known in physics.

2. The principle of Maximum Entropy

The principle of maximum entropy [13] (MaxEnt for short), proposed by Edwin T.

Jaynes in 1957, is extensively used as a general tool of probabilistic inference [14]

applicable to numerical data analysis, image reconstruction, and inverse problems

in general. In its modern formulation, MaxEnt establishes than the most unbiased

probability distribution P given some state of knowledge I is the one that maximizes

the Shannon-Jaynes entropy S[P ] (known also as relative entropy or the negative of the
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Kullback-Leibler divergence), given by [15]

S(I0 → I) = −

∫

dxP (x|I) ln
P (x|I)

P (x|I0)
, (1)

while being consistent with said knowledge. Here x = (x1, . . . , xN ) is the N -component

vector of continuous degrees of freedom of the system and P (x|I0) represents a prior

probability distribution, used as a starting point for the inference.

By maximizing S(I0 → I) in Eq. 1, we obtain the probabilistic model that contains

the least amount of information (i.e. the least biased) while reproducing the features

one demands of it. Consider a constraint on the known expectation f0 of a function f(x)

(this knowledge is represented by I). According to MaxEnt, the most unbiased model

is given by maximizing S in Eq. 1 with the constraint 〈f(x)〉 = f0. The constrained

maximization problem is usually implemented by means of a Lagrange multiplier λ,

which leads to the well-known maximum entropy model,

P (x|λ) =
1

Z(λ)
exp (−λf(x))P (x|I0), (2)

with

Z(λ) =

∫

dx exp (−λf(x))P (x|I0)

the partition function, and the Lagrange multiplier λ obtained by the constraint equation

−
∂

∂λ
lnZ(λ) = f0. (3)

This is a generalization of the formalism used to derive the canonical ensemble

in Statistical Mechanics [16], in which case a uniform prior P (x|I0) is considered,

f corresponds to the Hamiltonian of the system and λ is the inverse temperature

β = 1/kBT .

In this work, we use the knowledge of maximum horizontal distance (range) R of

a projectile launched many times as f0 = R̄, with f(v0, θ0) = R(v0, θ0) and by using

MaxEnt we are able to determine the most unbiased probability distribution of initial

conditions (v0, θ0) of the projectile motion. Our results determine for the first time

the most probably initial conditions based on the knowledge of the average range of a

large number of projectile throws. We check the validity of our analytical results by

comparing with Monte Carlo sampling of compatible trajectories.

The paper is organized as follows. After this introduction, in Section 3 we provide a

detailed analysis of the use of the maximum entropy principle and how this allows us

to connect our known information with a distributed set of probable projectile motions.

Section 4 presents the results of Monte Carlo simulations used to validate our exact

results. A final discussion of our results alongside insights from the techniques presented

are embodied in Section 5.
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3. Methodology

3.1. Probability density function

We consider the known two-dimensional motion of a projectile under the action of a

constant downwards acceleration, launched from the ground level (y = 0) at an initial

angle of θ0 with an initial speed v0. The trajectory y(x) of the projectile in the plane is

given by the parabola

y(x) = x tan θ0 −

(

g

2v20 cos
2 θ0

)

x2, (4)

with g = gŷ the acceleration acting on the projectile. From here, it is straightforward

that the range, i.e. the maximum value of x when touching the ground, is

R(v0, θ0) =
v20
g
sin (2θ0). (5)

For a given initial angle θ0 and speed v0 the kinematics of the projectile are of course

deterministic. However, a given horizontal range R can be realized by an infinite

combination of initial speeds and launch angles. Accordingly, we will now consider

a problem where all that is known is the individual values of R for a large number n of

throws. In fact, we will only consider their average value

R̄ =
1

n

n
∑

i=0

Ri

as known. As n becomes large we can identify R̄ with the expected value 〈R〉 according

to the law of large numbers [17, 18]. Our problem now is to find the most unbiased

estimate for the probability distribution of initial values θ0 and v0 compatible with a

given R̄, and for this we use the MaxEnt formalism.

The probability to obtain a projectile motion with initial conditions of θ0 and v0 for

a specific value of R̄ is, in accordance with Eq. 2, given by

P (v0, θ0|R̄) =
1

Z(λ)
P (v, θ|I0)e

−λR(v,θ)

= P (v, θ|λ), (6)

where P (v, θ|I0) is the prior probability distribution, that is, the probability of these

initial values without considering the average range. Please note that we will use

P (. . . |R̄) and P (. . . |λ) indistinctly, because λ = λ(R̄) by Eq. 3. The prior probability

P (v, θ|I0) is actually fixed by the geometry of the phase space, as follows. For v in

two-dimensional Euclidean space, P (vx, vy|I0) is a constant, as all points in the plane

are equivalent. By using polar coordinates v = vv̂ + θθ̂, we can determine the unique

distribution P (v, θ|I0) compatible with flat P (vx, vy|I0) as

P (v, θ|I0) = 〈δ(‖v‖ − v)δ(A(vx, vy)− θ)〉I0 ,
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where A(vx, vy) is the angle between v and the horizontal (x) axis. Due to the circular

symmetry of the polar representation, the angles are clearly equivalent. However,

as the diameter (and therefore, the number of points) increases linearly with v, the

prior probability distribution of v is not uniform. Therefore, the joint prior probability

distribution is described by

P (v, θ|I0) =
1

k

∫ vmax

0

dv′v′δ(v′ − v)

=
vΘ(vmax − v)

πv2max
, (7)

by using a maximum allowed value for v, given by vmax. As we observe in Eq. 7,

the δ functions are integrated and become Heaviside step functions Θ for v. The final

expression for the probability density is

P (v, θ|I0) =
vΘ(vmax − v)

∆v2max
Θ(θ −

π

4
+ ∆)

×Θ(θ −
π

4
−∆), (8)

where we have introduced a new parameter ∆ that allows us to constrain the values

of θ, avoiding the physical singularities at θ=0 and θ = π/2, where the horizontal

range R vanishes for any initial velocity v0. Then, by defining θ in such a way that
π
4
− ∆ < θ < π

4
+ ∆, we have that the horizontal range given by Eq. 5 is well-defined

when ∆ < π
4
. We use θ± = π

4
±∆ to simplify the notation. Using this expression in (6),

we have

P (v, θ|λ, I0) =
1

Z(λ)
Θ(v)Θ(vmax − v)Θ(θ+ − θ)

×Θ(θ − θ−)ve
−

λv2 sin(2θ)
g , (9)

with the partition function Z(λ) is given by

Z(λ) =

∫ vmax

0

dvv

∫ θ+

θ
−

dθe−
λv2 sin(2θ)

g (10)

Despite the possibility of solving these integrals by numerical methods, we will focus

primarily in the analytical forms for these equations, if they exist. To obtain the

distribution form, we should consider throws on an unlimited range for v, so we can

take the vmax → ∞ limit. By using this condition in Eq. 10, we obtain an explicit

form for the partition function,

Z(λ) =
g

4λ
ln

(

tan θ+
tan θ−

)

. (11)

The value of λ is obtained from the constraint equation (Eq. 3) as
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−
∂

∂λ
lnZ(λ) = R̄,

which leads us to λ = 1
R̄
. With this we have completely determined the probability

density function of initial conditions as a function of the average range, R̄.

By Eqs. 9 and 11, we can determine the average trajectory, from Eq. 4 and the

standard assumption of y(x) ≥ 0 for the projectile motion. Therefore, a single trajectory

with the constraint on y(x) is given by

y(x) = Θ

(

v2 sin(2θ)

g
− x

)(

tan θ0x−
g

2v20 cos
2 θ0

x2

)

. (12)

Now we can use the probability distribution in Eq. 9 to compute the average trajectory

of the projectile, which is given by

〈

y(x)
〉

R̄
=

tan θ+ − tan θ−

ln
(

tan θ+
tan θ

−

)

(

xe−x/R̄ −
1

R̄
x2Γ

(

0,
x

R̄

)

)

, (13)

where the notation Γ (a, b) corresponds to the incomplete gamma function, defined by

Γ(a, b) =

∫

∞

b

dt e−tta−1. (14)

Here we note that the average trajectory is no longer a parabola, but has long tails for

large values of x. However it becomes a parabola again in the limit R̄ → ∞. Similarly

we can determine the statistical average of the initial angle θ0, which corresponds to

〈θ0〉 =
2

ln
(

tan θ+
tan θ

−

)

∫ θ+

θ
−

dθ
θ

sin 2θ
. (15)

From here it is straightforward to obtain the probability distribution of the initial angle

θ0, as

P (θ|R̄) =
2

ln
(

tan θ+
tan θ

−

)

1

sin 2θ
. (16)

On the other hand, the statistical average of the initial velocity v0 is given by

〈v0〉 =
4

R̄g ln
(

tan θ+
tan θ

−

)

∫

∞

0

dvv2
∫ θ+

θ
−

dθe−
v2 sin(2θ)

R̄g . (17)

Despite the fact that the integral cannot be solved analytically, we are able to identify

the probability distribution of the velocity, which is given by

P (v|R̄) =
4

R̄g ln
(

tan θ+
tan θ

−

)v

∫ θ+

θ
−

dθe−
v2 sin(2θ)

R̄g . (18)

We can also compute the probability distribution of the different values of range R

given its average R̄,
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P (R|R̄) =
〈

δ
(

R −
v2 sin 2θ

g

)〉

R̄

=

∫

∞

0

dv

∫ θ+

θ
−

dθ
1

Z(λ)
ve−

v2 sin 2θ
gR̄ δ

(

R −
v2 sin 2θ

g

)

=
1

R̄
e−R/R̄, (19)

which, interestingly, is simply an exponential distribution. This result implies that the

probability of reaching or going beyond a horizontal distance r given R̄ decreases with

r as

P (R ≥ r|R̄) = exp(−r/R̄), (20)

so it is only zero at infinity. For instance, in order to have a “1 in 20 chance” (5%) of

being reached by a projectile one has to stand at a distance r20 = R̄ ln 20 ∼ 3R̄, while

r1000 ∼ 7R̄ for a “1 in 1000 chance” (0.1%).

With the distribution given by Eq. 10 and the statistical averages of the initial

conditions of the problem (Eqs. 15 to 18), we can gain some understanding and

interpretation of the problem based on this prior information. In order to validate

our analytical results, we numerically generated a large dataset of (v, θ) values following

the probability distribution in Eq. 9 by means of the Metropolis-Hasting algorithm[19].

With this we are be able to correlate

(i) angle and speed averages of the data, which we will define as the input value for

an average conditions trajectory,

(ii) determine the probability distribution of the angles and velocities, to link

simulations data with analytical distributions of these parameters, and

(iii) average all trajectories generated in the distribution.

4. Results

We present results for datasets of initial (v, θ) values that are sampled from the

probability distribution defined by Eq. 10 using the Metropolis-Hasting algorithm[19].

For all the cases, we define the known average range R̄ = 1 m and the acceleration

of gravity g = 9.8 m/s2. The Metropolis-Hastings procedure involved 8 million Monte

Carlo steps, but only the last 320,000 where considered for production. We used a

value of ∆ = 0.70, close to π/4 ∼ 0.7854, allowing a broad number of θ values in the

distribution. The samples were generated using an acceptance rate of ∼30%, as usually

imposed in Metropolis implementations.

Analysis of the probability distributions and trajectories were determined numerically,

in order to compare with the analytical forms presented in section 3. Fig. 1 presents

some of the generated trajectories in red. The blue curve corresponds to the trajectory

built from the average values of 〈θ〉 and 〈v〉, using Eq. 4. We see that the obtained range
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Figure 1. Trajectories for different realizations of projectile motion. The red lines

are a set of curves provided by equation 4 with initial conditions sampled from Eq. 9.

The blue line corresponds to Eq. 4 using the average of v0 and θ0 from the probability

distribution. The black line corresponds to the average of all curves given by Eq. 13,

meanwhile the green line corresponds to the average using the curves numerically

sampled from the distribution.

using the averages of θ0 and v0 is far from the average value R̄. Alongside this, we present

the average curve according to the distribution of trajectories. As is expected from

Eq. 13, we observe the long-tail behavior coming from the exponential and incomplete

gamma function Γ(0, x/R̄).

For the “ideal” case where the projectile hits right into R̄ the maximum y will always

occur at x = R̄/2. By using that
〈

R̄
〉

v0,θ0
∼ 1.09 we have that R̄/2 ∼ 0.55, which is

close to the mentioned numerical value. For the case of R̄ = 1, the maximum of Eqs. 13,

and 18 corresponds to 0.61 and 2.74 respectively, which are in excellent agreement with

the data provided by the simulations (0.65 and 2.72, respectively). A larger number of

curves is displayed in Fig. 2, by using a color-scale scheme. Here the curves are colored

according to their range R: if R is close to 0, R̄, and 2R̄ then the colors will be graduated

from blue, red, and green respectively.

The histogram of R compatible with R̄ according to Eq. 5 is presented in Fig. 3. We

observe a close agreement with the exponential probability distribution in Eq. 19 (solid

line).
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Figure 2. Color map for a large number of trajectories, using initial conditions

sampled from Eq. 9. Values of R near to 0, 1, and 2, are colored from blue, to

red, to green respectively.

Fig. 4 shows the histogram of the initial velocity v0, having in principle values ranged

from 0 to ∞. However it is important to notice that this quantity is still constrained

by the average range R̄, as is presented in Eq. 18. We can see a narrow and well-

defined distribution centered in 2.7 m/s. The red color line represents the analytical

distribution computed using numerical integration, given by Eq. 18. There is a good

agreement between the Monte Carlo data and the predicted numerical distribution.

As a contrast, the angle θ is more confined, for both physical and numerical reasons.

From a physics point of view, angles larger than π
2
do not make sense for the projectile

motion, and from a numerical point of view, the singularity of the solutions (Eq. 8)

is evident for the case of θ=0 and θ = π
2
. Fig. 5 presents the results of the angular

distribution. The red line corresponds to the distribution provided by Eq. 16. A good

agreement is observed in the angle distribution.

Another interesting point is to evaluate the possible correlations between initial speed

and angle, and for this we present in Fig. 6 the scatter plot of (v0, θ0) pairs. We

see that for slow speeds the angle distribution is uniform, while for high speeds it

becomes concentrated around θ=0 and θ=π/2. This is expected, as for high speeds the

requirement of a low value of R̄ constrains the angles to approach sin 2θ ≈ 0.
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Figure 3. R̄ Statistical distribution of ranges R from the data distribution. The solid

line is the exponential distribution in Eq. 19

5. Conclusions

By the use of the Maximum Entropy formalism, we have shown that the problem

of inferring the initial conditions for determistic physics problems is far from being

intractable. MaxEnt allows us to provide a concise mathematical statement of the

inverse kinematic problem, which was solved both analytically and numerically via

Monte Carlo simulation. We have described the details of the procedure to infer

the probability distribution of initial conditions using the projectile motion as an

example. Statistical sampling using Monte Carlo (Metropolis-Hastings) was made in

order to check the validity of our analytical results. Our results constitute a proof-

of-concept of the Maximum Entropy formalism applied to solve the initial conditions

of deterministic kinematic and dynamical problems, given information of quantities

measured at posterior times.
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Figure 4. v Distribution of initial velocities from the generated Monte Carlo data.

We observe a narrow and well-defined distribution centered in 2.7 m/s. The red color

line, represents the analytical distribution computed using numerical integration, given

by Eq. 18.
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θ=0 and θ=π/2.
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