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ABSTRACT
The Psychrobacter genus is a cosmopolitan and diverse group of aerobic, cold-adapted,
Gram-negative bacteria exhibiting biotechnological potential for low-temperature
applications including bioremediation. Here, we present the draft genome sequence
of a bacterium from the Psychrobacter genus isolated from a sediment sample from
King George Island, Antarctica (3,490,622 bp; 18 scaffolds; G + C = 42.76%). Using
phylogenetic analysis, biochemical properties and scanning electron microscopy the
bacterium was identified as Psychrobacter glacincola BNF20, making it the first genome
sequence reported for this species. P. glacincola BNF20 showed high tellurite (MIC
2.3 mM) and chromate (MIC 6.0 mM) resistance, respectively. Genome-wide nu-
cleotide identity comparisons revealed thatP. glacincolaBNF20 is highly similar (>90%)
to other uncharacterized Psychrobacter spp. such as JCM18903, JCM18902, and P11F6.
Bayesian multi-locus phylogenetic analysis showed that P. glacincola BNF20 belongs to
a polyphyletic clade with other bacteria isolated from polar regions. A high number
of genes related to metal(loid) resistance were found, including tellurite resistance
genetic determinants located in two contigs: Contig LIQB01000002.1 exhibited five
ter genes, each showing putative promoter sequences (terACDEZ), whereas contig
LIQB1000003.2 showed a variant of the terZ gene. Finally, investigating the presence
and taxonomic distribution of ter genes in the NCBI’s RefSeq bacterial database (5,398
genomes, as January 2017), revealed that 2,623 (48.59%) genomes showed at least one
ter gene. At the family level, most (68.7%) genomes harbored one ter gene and 15.6%
exhibited five (including P. glacincola BNF20). Overall, our results highlight the diverse
nature (genetic and geographic diversity) of the Psychrobacter genus, provide insights
into potential mechanisms of metal resistance, and exemplify the benefits of sampling
remote locations for prospecting new molecular determinants.
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INTRODUCTION
The bacterial genus Psychrobacter was first described by Juni & Heym (1986) and
includes a group of non-motile, oxidase positive, psychrotolerant, Gram-negative rods or
coccobacilli isolated from animals and processed foods (Bozal et al., 2003). Bacteria from
thePsychrobacter genus have also been isolated fromnatural environments such as Antarctic
ornithogenic soils, sea ice, deep-sea, and sea water from the Pacific Ocean and other
locations (Bowman, Nichols & McMeekin, 1997; Romanenko et al., 2002). Antarctic isolates
belonging to the genus Psychrobacter have been described and identified as P. inmobilis, P.
glacincola, P. luti and P. fozzi (Bozal et al., 2003).

The Antarctic territory is the coldest and driest environment on the planet and is
exposed to high levels of UV radiation, which favors the production of intracellular
ReactiveOxygen Species (ROS) (D’Amico et al., 2006; Potts, 1994). Consequently,microbial
communities residing in the Antarctica are unique and some possess diverse strategies to
cope with the deleterious effects of ROS and other extreme conditions. In agreement,
several microorganisms resistant to antibiotics and other toxicants including tellurite have
been isolated from this environment (Arenas et al., 2014; De Souza et al., 2006; Lo Giudice
et al., 2013). Many of these organisms can grow at low temperatures and tolerate/resist
different compounds, making them ideal candidates for biotechnological applications
such as the production of polyunsaturated fatty acids, bioremediation, or as source of
industrially useful enzymes (e.g., proteases, lipases) (Brenchley, 1996; Denner et al., 2001).

Tellurite is extremely harmful to most microorganisms, and its toxicity has been
associated with the establishment of an oxidative stress status, including ROS generation
(Chasteen et al., 2009; Pérez et al., 2007). These ROS are produced as a byproduct of tellurite
reduction to its elemental form by either enzymatic or non-enzymatic mechanisms, as
visualized by the accumulation of black deposits near the bacterialmembrane (Amoozegar et
al., 2008; Chasteen & Bentley, 2003; Taylor et al., 1988). Other metal(oid) resistance mecha-
nisms commonly found in bacteria include global cellular responses, cell grouping, uptake
control and oxidative stress response, among others (Lemire, Harrison & Turner, 2013).

Some of the genes implicated in tellurite resistance include trgAB from Rhodobacter
sphaeroides (unknown function, encoding likely membrane-associated proteins) (O’Gara,
Gomelsky & Kaplan, 1997), tmp fromPseudomonas syringae (encoding a thiopurinemethyl-
transferase, involved in tellurium alkylation) (Prigent-Combaret et al., 2012), lpdA from
Aeromonas caviae ST (encoding dihydrolipoamide dehydrogenase, involved in tellurite
reduction) (Castro et al., 2008) and gor from Pseudomonas sp. (encoding glutathione
reductase, involved in tellurite reduction) (Arenas et al., 2016; Pugin et al., 2014). Tellurite
resistance genes were also identified in the ter operon (terZABCDEF) from Escherichia
coli and other pathogenic species (Taylor, 1999; Whelan, Sherburne & Taylor, 1997).
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Interestingly, the ter operon is not only associated with tellurite resistance but also
with resistance to bacteriophage infections and to antimicrobial compounds like colicins
(Whelan, Colleran & Taylor, 1995). Themechanism of action of the proteins encoded by the
ter operon remains to be elucidated; however, it is known that they form a multi-subunit
complex associated with the inner surface of the bacterial membrane (Anantharaman, Iyer
& Aravind, 2012). Likewise, only terB, terC, terD and terE have been shown to be directly
involved in tellurite resistance (Taylor et al., 2002).

During the Chilean Antarctic expedition ECA-48 in 2012, a bacterium—later identified
as P. glacincola BNF20—was isolated and characterized; although P. glacincola BNF20
was highly resistant to tellurite (MIC 2.3 mM), it did not show increased ROS levels
or tellurite reductase activity when exposed to the toxicant (Arenas et al., 2014). In
this work, we determined for the first time the genome sequence of a member of the
P. glacincola species. To gain insight into the potential mechanism(s) of tellurite resistance,
we conducted a comparative genomics analysis using available Psychrobacter genome
sequences. Specifically, we tested if P. glacincola BNF20 was phylogenetically related to
other Psychrobacter Antarctic isolates, and if it harbors ter genes. Finally, the ter gene
taxonomic distribution was assessed using a reference database containing over 5,000
bacterial genomes.

MATERIALS AND METHODS
Strain isolation and culture conditions
P. glacincola BNF20 was isolated from a sediment sample collected at King George
Island, Antarctica (S62◦11′37.6′′; W58◦56′14.9′′) during the ECA-48 Chilean Antarctic
Expedition (January 2012). Bacteria were grown at 25 ◦C as described previously (Arenas
et al., 2014) in Lysogenic Broth (LB) medium (Sambrook & Russell, 2001) supplemented
with tellurite (200 µg/ml). Strains were identified by sequencing the 16S rRNA gene
(accession MF806171) and determining the fatty acid profile. The 16S rRNA gene was
sequenced at Pontificia Universidad Católica de Chile using Sanger sequencing with
the primers 8F (5′-AGAGTTTGATCCTGGCTCAG-3′) (Turner et al., 1999) and 1492R
(5′-ACGGCTACCTTGTTACGACTT-3′) (Lane, 1991). Fatty acid analyses were carried
out at DSMZ, Braunschweig, Germany (Kämpfer & Kroppenstedt, 1996). The strain was
deposited at DMSZ (Germany), accession # 102806.

To determine the minimal inhibitory concentration (MIC), bacteria were grown
overnight in LB medium with shaking at 25 ◦C. Subsequently, saturated cultures were
diluted 1:100 with fresh medium and grown to OD600 ∼ 0.4–0.5. Then, 10 µl were added
to 990 µl of LB medium containing serial dilutions of defined toxicants in 48-well culture
plates. The plates were incubated with constant shaking for 24 h at 25 ◦C. Assayed toxicants
included K2TeO3, K2CrO4, CdCl2, ZnCl2, CuSO4, HAuCl4, AgNO3, NiSO4, NaAsO2 and
Na2HAsO4.

16S rRNA gene phylogenetic analysis
Aphylogenetic tree ofP. glacincolaBNF20—based on the partial 16S rRNAgene sequence—
was constructed with bootstrap values based on 1,000 replications (Felsenstein, 1985). The
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nearly complete 16S rRNA gene sequence (1,516 nt) was obtained by merging the PCR
sequenced amplicons (accession MF806171) and the sequence obtained by whole genome
shotgun sequencing (accession AMK37_RS07000). Sequence alignments, assembly and
comparisons, along with best model calculation and construction of the phylogenetic
tree were carried out using the MEGA software version 6.0 (Tamura et al., 2013). As
outcome, Jukes Cantor model and Pairwise Deletions for gaps treatment was the best
fitting model for these sequence data. Nucleotide sequence positions from 16 to 1,535 were
considered, according to the E. coli K-12 16S rRNA gene sequence numbering (accession
AP012306). Scale bar represents 0.01 substitutions per-nucleotide positions. Moraxella
osioensisDSM 6998T (JN175341) was used as outgroup. The following 16S rRNA sequences
from Psychrobacter strains were collected from GenBank (accession numbers are given in
parentheses): P. glacincolaDSM12194T (AJ312213); P. adeliensisDSM15333T (AJ539105);
P. urotivorans DSM 14009T (AJ609555); P. arcticus DSM 17307T (AY444822); P. cibarius
DSM 16327T (AY639871); P. cryohalolentis DSM 17306T (AY660685); P. frigidicola DSM
12411T (AJ609556); P. fozii NF23T (AJ430827); P. inmobilis DSM 7229T (U39399);
P. namhaensis DSM 16330T (AY722805); P. aquimaris DSM 16329T (AY722804); P. luti
NF11T (AJ430828); P. alimentarius DSM 16065T (AY513645); P. fulvigenes JCM 15525
(AB438958); P. piscatorii JCM 15603 (AB453700); P. jeotgalli JCM 11463T (AF441201);
P. arenosus DSM 15389T (AJ609273) and P. okhotskensis JCM 11840 (AB094794).

Preparation of genomic DNA
P. glacincolaBNF20was grown in LBmedium at 25 ◦C for 24 hwith constant shaking. DNA
was extracted using the Wizard Genomic R© DNA Purification Kit (Promega, Madison,
WI, USA). The quality and integrity of gDNA was determined by agarose gel (1%)
electrophoresis and by determining the 260/280 nm absorbance ratio in a microplate
multireader equipment (Tecan Infinite R©PRO; Tecan, Männedorf, Switzerland).

Genome sequencing and annotation
The draft genome sequence of P. glacincola BNF20 was determined by a whole-genome
shotgun strategy using the Illumina HiSeq 2000 platform with a mate-pair library of 3 kb
(Macrogen R©). A total of 10.89 million reads were quality filtered and assembled using the
A5 pipeline (Tritt et al., 2012). Open reading frame prediction and annotation was carried
out using standard operational procedures (Tanenbaum et al., 2010). Gene models were
predicted using Glimmer 3.02 (Salzberg et al., 1998) and predicted coding sequences were
annotated by comparison with public databases (COG, PFAM, TIGRFAM, UNIPROT,
and NR-NCBI). P. glacincola BNF20 predicted proteome completeness was assessed by the
presence/absence of bacterial orthologs according to the OrthoDB database using BUSCO
(Simão et al., 2015). The circular genome map was assembled from P. glacincola BNF20
GenBank formatted file (NZ_LIQB00000000.1) using the plotMyGBK wrapper script
(https://github.com/microgenomics/plotMyGBK); plotMyGBK uses BioPython and the R
platform with the packages rSamTools, OmicCircos, and data.table to produce a vector
image of a circular map (Cock et al., 2009; R Development Core Team, 2011; Morgan et al.,
2016; Hu et al., 2014; https://github.com/Rdatatable/data.table).
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Nucleotide sequence accession and culture collection number
Raw sequence data from P. glacincola BNF20 are available online under the BioProject
#PRJNA293364, and Gold ID Gp0145575. The genome project has been deposited at
GenBank, accession number NZ_LIQB00000000. The strain was deposited at the DSMZ
culture collection, ID number DSM 102806.

Psychrobacter genome dataset
A total of 35 Psychrobacter genomes including P. glacincola BNF20 were retrieved from
NCBI’s Genome and JGI GOLD databases (as of February 2017), where 10 and 24 genomes
were annotated to the species and genus level, respectively.

Phylogenetic relationships and whole-genome nucleotide identity
The average nucleotide identity (ANI) was calculated for the 35-genome dataset using
the pyani Python3 module (Pritchard et al., 2016) and the results were visualized using
the data.table and pheatmap R packages (https://github.com/Rdatatable/data.table;
https://cran.r-project.org/web/packages/pheatmap/index.html). Thirty-one phylogenetic
marker genes corresponding to widespread housekeeping genes dnaG, nusA, rplA, rplD,
rplK, rplN, rplT, rpsB, rpsI, rpsM, tsf, frr, pgk, rplB, rplE, rplL, rplP, rpmA, rpsC, rpsJ, rpsS
infC, pyrG, rplC, rplF, rplM, rplS, rpoB, rpsE, rpsK, and smpB were identified in each
Psychrobacter genome (AMPHORA2; Wu & Eisen, 2008). Each gene was translated
under standard genetic code to perform a protein-coding-guided multiple nucleotide
sequence alignment, using TranslatorX MUSCLE for the multiple sequence alignment
(Abascal, Zardoya & Telford, 2010; Edgar, 2004). Alignments were concatenated using
the alignment editor tool Seqotron (Fourment & Holmes, 2016) and the best partition
scheme and substitution model was evaluated by PartitionFinder2 (Lanfear et al., 2016).
Finally, the software MrBayes v3.2 was used for phylogenetic reconstruction (Ronquist
et al., 2012), and the resulting tree was plotted and annotated using FigTree v1.4.3
(http://tree.bio.ed.ac.uk/software/figtree/). Phylogenetic tree annotation was based on the
geographic location, according to BioSample database information for each Psychrobacter
genome.

Search for metal resistance ortholog genes
To identify metal resistance genes, especially ter genes, a bidirectional Blast analysis was
performed using the CRB-BLAST method (https://github.com/cboursnell/crb-blast). The
BacMet Metal Resistance database (Pal et al., 2014) was used as target and the 35-genome
dataset as query. In addition, each genomewas re-annotated using the samemethodology to
identify syntenic genes based onBacMet and Prokka annotationwithout the bias of different
annotation labels as implemented in Prokka v1.12 (Seemann, 2014). Finally, the results
were visualized in their genomic context using the in-house script multiGenomicContext
(https://github.com/Sanrrone/multiGenomicContext).

Promoter search
To elucidate if ter genes were under the control of one or more promoters, two
promoter prediction tools were used on specific contigs where ter genes were found

Muñoz-Villagrán et al. (2018), PeerJ, DOI 10.7717/peerj.4402 5/23

https://peerj.com
http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA293364
https://www.ncbi.nlm.nih.gov/nucleotide?term=NZ_LIQB00000000
https://github.com/Rdatatable/data.table
https://cran.r-project.org/web/packages/pheatmap/index.html
http://tree.bio.ed.ac.uk/software/figtree/
https://github.com/cboursnell/crb-blast
https://github.com/Sanrrone/multiGenomicContext
http://dx.doi.org/10.7717/peerj.4402


(LIQB01000002.1, position 189803-204267; LIQB01000003.2, position 286133-301767):
PromPredict algorithm and the online program BPROM (Rangannan & Bansal, 2010; http:
//www.softberry.com/berry.phtml?topic=bprom&group=programs&subgroup=gfindb).
Both results were jointly analyzed.

Taxonomic classification of ter genes
To investigate if the presence and number of ter genes was restricted to certain
taxonomic levels, we downloaded all the bacterial reference genomes from the NCBI’s
RefSeq database (January 2017; ftp://ftp.ncbi.nlm.nih.gov/refseq/release/bacteria/) and
performed a bidirectional Blast searches (crb-blast) against the protein sequences
of all ter genes in the BactMet database. Then, the in-house script fetchMyLineage
(https://github.com/Sanrrone/fetchMyLineage) was employed to obtain the complete
lineage of each bacterial genome with at least one ter gene match. The results were
finally visualized using the R packages: ggplot2, RColorBrewer, devtools, ggjoy purr
andreshape2 packages (R Development Core Team, 2011; http://ggplot2.org; https://cran.r-
project.org/web/packages/RColorBrewer/index.html; https://github.com/hadley/devtools;
https://cran.r-project.org/web/packages/ggjoy/index.html;Wickham, 2007).

RESULTS
A new Psychrobacter species from the Chilean Antarctic territory
P. glacincola BNF20 was isolated from Antarctic sediments and is a Gram-negative, non-
motile, aerobic, oxidase positive, rod-shaped bacterium with an average dimension of
1.66 µm length and 1.09 µm width (Table 1, Fig. 1A). The fatty acid composition was
determined at the DSMZ Institute (Germany) and showed that the major fatty acid was
cis-9 octadecenoic acid C18:1 ω9c (63.78%). The morphology description and major fatty
acid component agrees with previous studies of Antarctic Psychrobacter isolates (Bozal et
al., 2003). Initially, BNF20 was erroneously identified as P. inmobilis, based on a partial
16S rRNA gene sequence (Arenas et al., 2014). However, re-sequencing and a phylogenetic
analysis of the partial 16S rRNA gene revealed that it is related to the P. glacincola species,
family Pseudomonadaceae from the Gammaproteobacteria class (Fig. 1B). Altogether,
morphology (electron microscopy), biochemical properties, partial (Sanger) and full
length (NGS) 16 S rRNA gene sequence analysis, and fatty acid composition suggest that
isolate BNF20 is member of the P. glacincola species.

P. glacincola BNF20 tolerates high tellurite and chromate
concentrations
Several tests were carried out to determine if BNF20 was resistant to multiple metals.
Besides tellurite (used in the initial selection), P. glacincola BNF20 was 4 times more
resistant to chromate than the sensitive strain E. coli BW25113 under optimal growth
conditions (Table 2). However, P. glacincola BNF20 growth was impaired in the presence
of all other metal(loid)s tested, including Cu2+, Cd2+, Hg2+, Zn2+, AuCl1−4 , Ni2+, AsO2−

4 ,
AsO1−

3 , and Ag1+.
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Table 1 Classification and general features of P. glacincola BNF20.

MIGS ID Property Term

Classification Domain: Bacteria
Phylum: Proteobacteria
Class: Gammaproteobacteria
Order: Pseudomonadales
Family:Moraxellaceae
Genus: Pychrobacter
Species: Psychrobacter glacincola
(Type) strain: BNF20

Gram stain Negative
Cell shape Rod
Motility Non-Motile
Sporulation Non-sporulating
Temperature range Psychrotolerant
Optimum temperature 25 ◦C
pH range; Optimum Not tested; 7.4
Carbon source Citrate, acetate, pyruvate

MIGS-6 Habitat Antarctic sediment
MIGS-6.3 Salinity 0–10% NaCl (w/v)
MIGS-22 Oxygen requirement Aerobic
MIGS-15 Biotic relationship Free-living
MIGS-14 Pathogenicity Potentially pathogenic
MIGS-4 Geographic location King George Island, Antarctica
MIGS-5 Sample collection January, 2012
MIGS-4.1 Latitude 62◦11′S
MIGS-4.2 Longitude 58◦56′W
MIGS-4.4 Altitude Not registered

First draft genome of Psychrobacter glacincola BNF20
Previous studies showed that P. glacincola BNF20 was highly resistant to tellurite (MIC
∼2.3 mM, Arenas et al., 2014). Although tellurite reduction is often accompanied by the
formation of black deposits of elemental tellurium in resistant organisms, this phenotype
was not observed inP. glacincolaBNF20. To further investigate themechanism(s) of tellurite
resistance in P. glacincola BNF20, we sequenced the whole genome in search for genetic
determinants implicated in metal(loid) resistance. The assembled genome of P. glacincola
BNF20 consisted of 3,490,622 bp, 18 scaffolds, with an average G + C content of 42.76%
(Fig. 1C; NCBI Reference Sequence: NZ_LIQB00000000.1). The predicted proteome
scored 100% completeness according to the presence of highly conserved ortholog genes
in bacteria (BUSCO analysis). A set of 47 tRNA genes and one copy of the rRNA operon
were also identified. From a total of 2,968 predicted CDS, 2,872 (96.7%) ORFs matched
coding sequences available in public databases, of which 2,515 were assigned (84.7%) or
not (352 CDS, 19.31%) to COG categories (NZ_LIQB00000000.1).
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Figure 1 Phylogenetic, morphological and genomic characteristics of P. glacincola BNF20. (A) Scan-
ning electron micrograph showing the morphology and dimensions of P. glacincola BNF20. Samples were
stained with uranyl acetate (0.5% w/v) and examined using a low-voltage electron microscope (Delong In-
struments, LVEM5), with a nominal operating voltage of 5 kV. Bar represents 10 µm. (B) Phylogenetic
tree of P. glacincola BNF20 based on the partial 16S rRNA gene sequence (Accession number MF806171).
Psychrobacter ingroup was rooted usingMoraxella osloensis DSM 6978T as outgroup. (C) Circular map
of the 18-scaffold draft genome with coding sequences colored by COG categories. Inner circles represent
GC Skew and GC content.

Full-size DOI: 10.7717/peerj.4402/fig-1

P. glacincola BNF20 is evolutionarily divergent from other Antarctic
Psychrobacter isolates
The genome sequence of P. glacincola BNF20 was compared to other 34 available genomic
sequences by estimating ANI values and performing a multi-locus phylogenetic analysis
(Fig. 2). Besides P. glacincola BNF20, the full dataset was composed of 10 named and 24
unnamed Psychrobacter species, respectively. P. glacincola BNF20 exhibited an average
nucleotide identity >95% and an alignment fraction of over 80% with 3 isolates designated
as Psychrobacter sp. JCM18903 (GCA_000586475.1), Psychrobacter sp. JCM 18902
(GCA_000586455.1) (Kudo et al., 2014) and Psychrobacter sp. P11F6 (GCA_001435295.1)
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Table 2 Minimal inhibitory concentrations (mM) of different metal(loid)s for P. glacincola BNF20,
and E. coli BW25113 (reference).

Metal BNF20 BW25113

TeO2−
3 2.3 0.004

Cu2+ 3.12 6
Cd2+ 0.062 1
Hg2+ 0.0039 0.01
Zn2+ 0.5 2
CrO2−

4 6 1.5
AuCl1−4 0.015 0.16
Ni2+ 1.25 5
AsO2−

4 40 80
AsO1−

2 5 10
Ag1+ 0.015 0.063

(Moghadam et al., 2016), of which none was isolated from Antarctica. We did not find
any genome comparison against BNF20 of >96.5% ANI and >60% alignment fraction,
which has been suggested as a ‘‘genomic boundary’’ for bacterial species (Fig. 2A; Varghese
et al., 2015). While some of the available genomes come from Antarctic isolates, none
of them showed high ANI values (>90%): P. aquaticus (85%; GCA_000471625.1);
P. alimentarius (85%; GCA_001606025.1); P. urativorans (85%; GCA_001298525.1);
TB15 (84%, GCA_000511655.1), G (86%, GCA_000418305.1); PAMC 21119 (86%,
GCA_000247495.2); TB2 (84%, GCA_000508345.1); TB47 (86%, GCA_000511045.1);
TB67 (86%, GCA_000511065.1) and AC24 (86%, GCA_000511635.1).

Supporting our previous results, multi-locus phylogenetic analysis showed that
P. glacincola BNF20 is more related to P11F6 (isolated from Tunicate ascidians from
the Arctic, Moghadam et al., 2016), JCM 18902 and 18903 (isolated from frozen porpoise
Neophocaena phocaenoides, Kudo et al., 2014). Antarctic isolates PAMC21119 and G (from
King George Island, Moghadam et al., 2016; Che et al., 2013) belong to a polyphyletic
group and do not form a monophyletic clade with P. glacincola BNF20, highlighting the
heterogeneous nature of the Psychrobacter genus (Fig. 2B). All nodes of the phylogeny were
well supported (posterior probability > 0.99).

P. glacincola BNF20 encodes multiple metal resistance determinants
As P. glacincola BNF20 was isolated from King George Island sediments, a place where
heavy metal contamination has not been previously reported, we searched for genes known
to be involved in metal resistance that could explain the observed tellurite and chromate
resistance of strain BNF20 (BacMet database; Pal et al., 2014). Type and gene copy number
distribution was not uniform in the 35-genome Psychrobacter dataset (Table S3).

Specifically, ∼100 genes possibly conferring metal resistance were identified in the
genome of P. glacincola BNF20, of which some are related to chromate resistance, including
chrL (BAC0361; regulatory protein, involved in chromate resistance), chrR (BAC0538;
chromate reductase), mdrL/yfmO (BAC0209; multidrug efflux protein yfmO) and ruvB
(BAC0355; ATP-dependent DNA helicase), and some to tellurite resistance—the so-called

Muñoz-Villagrán et al. (2018), PeerJ, DOI 10.7717/peerj.4402 9/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.4402#supp-3
http://dx.doi.org/10.7717/peerj.4402


Psychrobacter lutiphocae D
SM

 21542
Psychrobacter phenylpyruvicus N

BR
C

 102152
Psychrobacter phenylpyruvicus D

SM
 7000

Psychrobacter sp TB2
Psychrobacter sp TB15
Psychrobacter sp AntiM

n−1
Psychrobacter pacificensis
Psychrobacter sp C

 20−9
Psychrobacter piscatorii
Psychrobacter glacincola BN

F20
Psychrobacter sp JC

M
 18903

Psychrobacter sp JC
M

 18902
Psychrobacter sp P11F6
Psychrobacter sp AC

24
Psychrobacter sp TB67
Psychrobacter sp TB47
Psychrobacter sp C

m
f 22−2

Psychrobacter sp EN
N

N
9 III

Psychrobacter sp JC
M

 18900
Psychrobacter sp P11G

3
Psychrobacter sp B29−1
Psychrobacter sp JC

M
 18901

Psychrobacter arcticus 273−4
Psychrobacter cryohalolentis K5
Psychrobacter sp G
Psychrobacter urativorans
Psychrobacter sp PAM

C
 21119

Psychrobacter aquaticus C
M

S56
Psychrobacter sp P2G

3
Psychrobacter sp P11G

5
Psychrobacter sp PR

w
f−1

Psychrobacter alim
entarius

Psychrobacter sp R
d 27−2

Psychrobacter sp 1501 2011
Psychrobacter sp SH

U
ES1

Psychrobacter lutiphocae DSM 21542
Psychrobacter phenylpyruvicus NBRC 102152
Psychrobacter phenylpyruvicus DSM 7000
Psychrobacter sp TB2
Psychrobacter sp TB15
Psychrobacter sp AntiMn−1
Psychrobacter pacificensis
Psychrobacter sp C 20−9
Psychrobacter piscatorii
Psychrobacter glacincola BNF20
Psychrobacter sp JCM 18903
Psychrobacter sp JCM 18902
Psychrobacter sp P11F6
Psychrobacter sp AC24
Psychrobacter sp TB67
Psychrobacter sp TB47
Psychrobacter sp Cmf 22−2
Psychrobacter sp ENNN9 III
Psychrobacter sp JCM 18900
Psychrobacter sp P11G3
Psychrobacter sp B29−1
Psychrobacter sp JCM 18901
Psychrobacter arcticus 273−4
Psychrobacter cryohalolentis K5
Psychrobacter sp G
Psychrobacter urativorans
Psychrobacter sp PAMC 21119
Psychrobacter aquaticus CMS56
Psychrobacter sp P2G3
Psychrobacter sp P11G5
Psychrobacter sp PRwf−1
Psychrobacter alimentarius
Psychrobacter sp Rd 27−2
Psychrobacter sp 1501 2011
Psychrobacter sp SHUES1

0.85

0.9

0.95

1

100%

95%

90%

85%

Alignment fraction > 80% with
P. glacincola BNF20 genome

Psychrobacter lutiphocae DSM 21542
Psychrobacter phenylpyruvicus NBRC 102152
Psychrobacter phenylpyruvicus DSM 7000
Psychrobacter sp TB2
Psychrobacter sp TB15
Psychrobacter sp AntiMn-1
Psychrobacter pacificensis
Psychrobacter sp C 20-9
Psychrobacter piscatorii
Psychrobacter glacincola BNF20
Psychrobacter sp JCM 18903
Psychrobacter sp JCM 18902
Psychrobacter sp P11F6
Psychrobacter sp AC24
Psychrobacter sp TB67
Psychrobacter sp TB47
Psychrobacter sp Cmf 22-2
Psychrobacter sp ENNN9 III
Psychrobacter sp JCM 18900
Psychrobacter sp P11G3
Psychrobacter sp B29-1
Psychrobacter sp JCM 18901
Psychrobacter arcticus 273-4
Psychrobacter cryohalolentis K5
Psychrobacter sp G
Psychrobacter urativorans
Psychrobacter sp PAMC 21119
Psychrobacter aquaticus CMS56
Psychrobacter sp P2G3
Psychrobacter sp P11G5
Psychrobacter sp PRwf-1
Psychrobacter alimentarius
Psychrobacter sp Rd 27-2
Psychrobacter sp 1501 2011
Psychrobacter sp SHUES1Psychrobacter lutiphocae D

SM
 21542

Psychrobacter phenylpyruvicus N
BR

C
 102152

Psychrobacter phenylpyruvicus D
SM

 7000
Psychrobacter sp TB2
Psychrobacter sp TB15
Psychrobacter sp AntiM

n-1
Psychrobacter pacificensis

Psychrobacter piscatorii
Psychrobacter sp C

 20-9

Psychrobacter glacincola BN
F20

Psychrobacter sp JC
M

 18903
Psychrobacter sp JC

M
 18902

Psychrobacter sp P11F6
Psychrobacter sp AC

24
Psychrobacter sp TB67
Psychrobacter sp TB47
Psychrobacter sp C

m
f 22-2

Psychrobacter sp EN
N

N
9 III

Psychrobacter sp JC
M

 18900
Psychrobacter sp P11G

3
Psychrobacter sp B29-1
Psychrobacter sp JC

M
 18901

Psychrobacter arcticus 273-4
Psychrobacter cryohalolentis K5
Psychrobacter sp G
Psychrobacter urativorans
Psychrobacter sp PAM

C
 21119

Psychrobacter aquaticus C
M

S56
Psychrobacter sp P2G

3
Psychrobacter sp P11G

5
Psychrobacter sp PR

w
f-1

Psychrobacter alim
entarius

Psychrobacter sp R
d 27-2

Psychrobacter sp 1501 2011
Psychrobacter sp SH

U
ES1

A)

Psychrobacter lutiphocae strain DSM 21542

Psychrobacter sp. PRwf-1

Psychrobacter sp. 1501 2011

Psychrobacter phenylpyruvicus strain DSM 7000

Psychrobacter phenylpyruvicus strain NBRC 102152

Psychrobacter sp. TB15

Psychrobacter sp. TB2

Psychrobacter sp. Rd 27-2

Psychrobacter sp. SHUES1

Psychrobacter sp. Cmf 22-2

Psychrobacter sp. ENNN9 III

Psychrobacter sp. P11G5

Psychrobacter sp. P2G3

Psychrobacter aquaticus strain CMS56

Psychrobacter alimentarius

Psychrobacter sp. C 20-9

Psychrobacter piscatorii

Psychrobacter pacificensis

Psychrobacter sp. AntiMn-1

Psychrobacter sp. B29-1

Psychrobacter sp. P11G3

Psychrobacter sp. JCM 18900

Psychrobacter sp. JCM 18901

Psychrobacter sp. PAMC 21119

Psychrobacter sp. AC24

Psychrobacter sp. TB47

Psychrobacter sp. TB67

Psychrobacter urativorans

Psychrobacter arcticus 273-4

Psychrobacter cryohalolentis strain K5

Psychrobacter sp. G

Psychrobacter glacincola BNF20

Psychrobacter sp. P11F6

Psychrobacter sp. JCM 18902

Psychrobacter sp. JCM 18903

Soil, King George Island

King George Island

Soil

Soil

Rock, Rocky Desert

Sediment, Marine Hydrothermal Vent, East Pacific Rise

Deep-sea sediment

Host-associated, Human, Digestive system, Germany

Host-associated, Skin, Human, Off the coast, northeastern Puerto Rico

Alkaline soil, Shangai, China

Soil

Aquatic

Seawater, Indian Ocean

Seawater

Estuarine water, Aveiro, Portugal

Host-associated, Sponge

Host-associated, Sponge

Host-associated, Sponge

Host-associated, Sponge

Host-associated, Sponge

Mats, McMurdo Dry Valley

Host-associated, Tunicates ascidians, Marine

Host-associated, Tunicates ascidians, Marine

Host-associated, Tunicates ascidians, Marine

Host-associated, Tunicates ascidians, Marine

Host-associated, Frozen marine animals, Nagasaki

Host-associated, Frozen marine animals, Nagasaki

Host-associated, Frozen marine animals, Nagasaki

Host-associated, Frozen marine animals, Nagasaki

Host-associated, Human, Circulatory system

Host-associated, Human, Circulatory system

Host-associated, Human, Circulatory system

Host-associated, Ruditapes decussatus, Galicia

Host-associated, Ruditapes decussatus, Galicia

Host-associated, Ruditapes decussatus, Galicia

• Antarctica

• Arctic

• Japan

• Pacific Ocean

• Siberian permafrost

• Spain

Geographic location

B)

Figure 2 Whole genome nucleotide identity andmulti-locus phylogenetic analysis. (A) Average nu-
cleotide identity (ANI) in the 35-genome Psychrobacter dataset. P. glacincola BNF20 forms a cluster with
other three Psychrobacter genomes with an alignment fraction over 80%. (B) Bayesian multi-locus phylo-
genetic analysis of the genomic sequences from the indicated Psychrobacter members. Taxa are colored by
geographic location. Node values correspond to posterior probabilities, and the phylogeny was mid-point
rooted.
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ter genes (Whelan & Colleran, 1992), including terA (BAC0386), terC (BAC0388), terD
(BAC0389), terE (BAC0390) and terZ (BAC0392) (Fig. 3, Table S3). Two other genes
apparently involved in tellurite resistance, ruvB (BAC0355; ATP-dependent DNA helicase)
and pitA (BAC0312; low-affinity inorganic phosphate transporter 1), were also identified.

Organization of ter genes in P. glacincola BNF20
Given that (i) tellurite is by far more toxic for bacteria than other metals (Taylor, 1999)
and (ii) it is scarce in the Earth’s crust (Turner, Borghese & Zannoni, 2012), finding tellurite
resistance determinants in P. glacincola BNF20 was somewhat unexpected. Since to date
the presence of ter genes in Antarctic microorganisms has not been reported, we focused
the following analyses our study on them.

The ter genes were originally described as part of an E. coli operon exhibiting the
terZABCDE structure (Taylor et al., 2002). P. glacincola BNF20 harbors terA, terZ, terE,
terC and terD orthologs, but not terB (Fig. 3A); terA shows the opposite transcriptional
orientation than the rest of the ter genes, while terZ is duplicated and is contained
in different contigs (Fig. 3B). In addition, the expression of all ter genes in P. glacincola
BNF20 seems to be regulated by individual promoters (PromPredict and BPROManalyses),
suggesting that they are organized as a gene cluster rather than as an operon.

Three members of the Psychrobacter genus contained one ter gene (P. phenylpyruvicus
(terZ, GCA_000685805.1), P. lutiphocae (terZ, GCA_000382145.1) and P. sp. ENNN9 III
(terD, GCA001462175.1)), while the rest had different combinations of them (Fig. S1).

In P. glacincola BNF20, the context of the ter gene cluster is similar to other isolates like
Psychrobacter sp. JC18902 (GCA_00058655.1), Psychrobacter sp. G (GCA_000418305.1),
Psychrobacter sp. TB67 (GCA_000511065.1), Psychrobacter sp. AC24 (GCA_000511635.1),
Psychrobacter sp. TB47 (GCA_00051045.1) and P. arcticus 273-4 (GCA_000012305.1).
Interestingly, in all analyzed Psychrobacter genomes the ter gene cluster also contains a
gene encoding a protein of the TIGR00266 family (unknown function, Fig. S1).
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ter genes are distributed over several bacterial Phyla
To determine the frequency of ter genes in known bacterial genomes, their taxonomic
distribution was evaluated. In general, ter genes are more commonly found in Gram-
positive than in Gram-negative bacteria. Using NCBI’s RefSeq database (>5,000 genomes;
accessed January 2017), we found that 48.59% of them contained ter genes (26 out of
30 bacterial Phyla). While, at the genus level, most genomes had one ter gene (67.95%)
(Table S4, Fig. 4), others harbor two (2.31%), three (0.69%), four (5.24%), six (4.61%) or
seven (1.15%) ter genes. Interestingly, the second most abundant combination of ter genes
in genomes was five (18.04%), which could suggest evolutionary constrains.

At the phylum level most Proteobacteria contain one ter gene, with a few exceptions
showing up to 7, including Yersiniacee, Morganellaceae, Enterobacteriaceae and Erwiniaceae.
A similar pattern is observed in other Phyla, except for Firmicutes where genomes exhibit
a defined array of ter genes (Fig. 4). Interestingly, while members belonging to the best
represented family in RefSeq, i.e., Streptomycetaceae (149 genomes) exhibit five or six
ter genes, in other well-represented families such as Flavobactericidae only 26 out of 114
genomes exhibit five ter genes (23%). Within the Moraxelaceae family, nine out of 45
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genomes show five ter genes (20%, including BNF20), which agrees with the complete
family database distribution (∼18% with 5 ter genes).

DISCUSSION
Here we show for the first time the genome sequence of a P. glacincola species isolated from
Antarctica, which can tolerate high concentrations of tellurite and chromate. P. glacincola
BNF20 showed to be 4- and 500-fold more resistance to chromate and the tellurium
oxyanion tellurite than E. coli BW25113 (Table 2).

Previous studies showed that defined toxicants can trigger common responses or repair
mechanisms (Miranda et al., 2005), suggesting that tellurite and chromate resistance could
be related. Besides tellurite and chromate, P. glacincola BNF20 genome encodes resistance
determinants associated to a number of other heavy metal(loid)s such as arsenic, cadmium,
copper andmercury (Table S3). Interestingly, tellurite resistance in P. glacincola BNF20 did
not correlate with a strong tellurite reduction, as previously reported (Arenas et al., 2014),
which prompted us to search for genes associated with tellurite resistance in its genome.
Identifying these genetic resistance determinants could be useful as the Psychrobacter
genus has been proposed as good candidate for biotechnological applications including
bioremediation (Lasa & Romalde, 2017).

Members of the Psychrobacter genus are versatile and have been isolated from different
places with low temperatures—including Antarctica—as well as from some animal hosts
including skin, fish gills and guts and human blood, among others (Bowman, Nichols &
McMeekin, 1997; Bozal et al., 2003; Romanenko et al., 2002). However, isolates from similar
environments show high genomic variability, as evidenced by ANI analysis (Table S2).
A multi-locus phylogenetic analysis revealed that Antarctic Psychrobacter isolates do not
form a monophyletic group (Fig. 2). In this context, the presence of ter genes is correlated
to some extent with their genomic structure. In fact, higher ANI values reflected a more
similar ter gene organization. Thus, P. glacincola BNF20 exhibited a very close ter gene
organization with the three closest members Psychrobacter sp. P11F6, JCM18902 and
JCM18903 (Fig. 2, Fig. S1).

Psychrophilic and psychrotolerant microorganisms require several genes to increase
their phenotypic flexibility to survive in extreme environments such as cold habitats. Thus,
in addition to genes associated with cold shock proteins, membrane fluidity, among others,
the presence of metal(loid) resistance genes seems to favor their adaptation (Dziewit &
Bartosik, 2014; Rodríguez-Rojas et al., 2016). This is also the case of P. glacincola BNF20,
which harbors over 100 putative metal resistance genes (Table S2). In principle and even
though this high number of genes predicted bacterial resistance to a number ofmetal(loid)s,
MIC determinations showed that P. glacincola BNF20 was only resistant to chromate and
tellurite (MIC 6 and 2.3 mM, respectively). Chromate resistance genes included chrI
(regulatory protein of Ralstonia metallidurans CH34; Juhnke et al., 2002), chrR (encoding a
chromate reductase; Park et al., 2000),mdrL/yfmO (multidrug efflux transporter in Listeria
monocytogenes; Mata, Baquero & Pérez-Díaz, 2000) and ruvB, encoding a DNA helicase
involved in both chromate and tellurite resistance in P. aeruginosa PAO1 (Miranda et al.,
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2005). Genes related to tellurite resistance identified in P. glacincola BNF20 included the
phosphate transporter pitA (Elías et al., 2012) and a cluster of ter genes (Whelan, Colleran
& Taylor, 1995), composed of terA, terZ, terC, terD and terE, which exhibit a different
organization as compared to other ter gene clusters previously described (Fig. 3). Although
ter refers to tellurite resistance, the same genes participate in resistance to phages, colicins
(Whelan, Sherburne & Taylor, 1997) and to other oxidative stress-generating antimicrobials
(Taylor, 1999), which could be the result of transcriptional control by a common regulator,
OxyR (Ni et al., 2014).

A number of reasonsmay explain the observed discordances amongMIC values (i.e., Hg,
Cu, As, etc.) and the respective resistance genes identified in this bacterium. For instance,
P. glacincola BNF20 sensitivity to mercury could be a result of the absence of some genes
(i.e., merT) belonging to the mer operon, which could render it non-functional (Boyd
& Barkay, 2012). Similarly, the absence of the cusS gene (Cu sensor) in the P. glacincola
BNF20 genome could be responsible for its copper sensitivity, in spite the presence of other
genes that participate in Cu homeostasis (Rensing & Grass, 2003).

Tellurite resistance-associated ter genes are grouped in three different families: (i)
TerC, encompassing transmembrane proteins, (ii) TerD, which includes the cytoplasmatic
paralogs TerD, TerA, TerE, TerF and TerZ (Anantharaman, Iyer & Aravind, 2012), and
(iii) TerB, representing proteins that are directly associated with the inner surface of the cell
membrane, although they also have a cytoplasmatic localization (Alekhina, Valkovicova &
Turna, 2011). As mentioned, TerC interacts with TerD, TerB and other proteins showing
different cell functions (Turkovicova et al., 2016).

Most bacteria carrying ter genes display a similar transcriptional organization. Thus
terZABCDEF, terZABCDE and TerABD present in E. coli O157:H7, Proteus sp. and D.
radiodurans, respectively, are operons (Makarova et al., 2001; Toptchieva et al., 2003; Taylor
et al., 2002). The Psychrobacter genus represents an exception to this rule, with terA lying
in the opposite transcriptional orientation (Fig. S1).

Transcriptomic and proteomic assays have shown that terB is expressed when E. coli
or D. radiodurans are exposed to tellurite (Anaganti et al., 2015; Taylor et al., 2002). TerB
seems to be essential for tellurite resistance and interacts with some cytoplasmatic proteins
such as the alpha subunit of ATP synthase, G subunit of the NADH-dependent quinone
oxidoreductase and DnaK chaperone, among others (Alekhina, Valkovicova & Turna,
2011). Given that P. glacincola BNF20 lacks terB, we hypothesize that there must be another
gene product that mediates tellurite resistance.

Based on their genetic background, ter genes have also been classified into different
groups (I–IV) (Anantharaman, Iyer & Aravind, 2012). In this context and given its
similitude with the ter genes found in Psychrobacter sp. PRwf-1, P. glacincola BNF20
would belong to group I, which contains a gene encoding a protein exhibiting the AIM24
domain, also found in the P. glacincola BNF20 TIGR00266 protein. Although no role has
been ascribed to it in prokaryotes, in higher organisms it is an internal membrane protein
related to mitochondrial biogenesis which is required for yeast respiration (Deckers et al.,
2014). The AIM24 domain exhibits a double beta-helix folding, which is frequently found
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in genes neighboring TerD, suggesting that both proteins could interact (Anantharaman,
Iyer & Aravind, 2012).

Deciphering the origins of bacterial operons is not straightforward, and there are
some hypotheses that try to explain their formation. An interesting example is the
piecewise model, which states that the his operon (hisGDCBHAFIE) was gradually formed.
Phylogenetic analyses of the Proteobacterial phylum his genes showed their progressive
grouping, which suggests that they were located in nearby zones of the chromosome in
closely related microorganisms. Following, new events ended with the formation of the
hisBHAF central core and the whole operon (Fani, Brilli & Liò, 2005). A future hypothesis
to test is whether the ter operon has a similar evolutionary origin.

To evaluate the taxonomical distribution of ter genes in the Bacterial kingdom, the
5,398 genomes retrieved from the NCBI’s RefSeq bacterial database were screened. About
48.6% of them (2,623 genomes) were found to contain ter genes. While at the family level
most (68.7%) harbored one ter gene (chiefly terC) and 15.6% exhibited five (including
P. glacincola BNF20), at the class level the number of genomes exhibiting at least one ter
gene was Gammaproteobacteria (379), Alphaproteobacteria (253) and Bacilli (247). Finally
and regarding phyla, Proteobacteria, Actinobacteria and Firmicutes had 867, 854 and 361
genomes containing at least one ter gene, respectively (Fig. 4, Table S4).

Within the Proteobacteria phylum, most families had only one ter gene, while others up
to 7 (Morganellaceae, Yersiniaceae), 6 (Chromatiacceae, Budviciaceae), 5 (Moraxellceae,
Burkholderiaceae), 4 (Erythrobacteraceae), etc. (Fig. 4). In this context, it would be
interesting to carry out phylogenetic analyses to understand the evolution of these ter
genes and how the currently known terZABCDEF operon was formed (Taylor, 1999;
Whelan, Sherburne & Taylor, 1997).

Finally, it was found that—in general—Gram-positive microorganisms contain more
ter genes than Gram-negative bacteria (Table S4). This is interesting because it is generally
accepted that they also show higher tellurite resistance (Taylor, 1999). For instance,
Streptomyces and Bacillus genera comprise 137 and 65 genomes carrying up to 5–6 ter
genes, respectively, suggesting that ter gene copy number could be related to the high
resistance to tellurite observed in S. coelicolor and Geobacillus stearothermophilus (Moscoso
et al., 1998; Sanssouci et al., 2011).

CONCLUSIONS
A new species of Antarctic bacteria exhibiting high tellurite resistance was isolated and
identified as P. glacincola BNF20. Although within the genus the percent of sequence
coverage is low, its genomic sequence is similar to other uncharacterized genomes and
contains a large number of genes implicated in metal(loid) resistance, especially chromate
and tellurite. The transcriptional orientation of tellurite resistance (ter) genes inP. glacincola
BNF20 is different to that described in other microorganisms and most likely do not
function as an operon. The wide distribution of ter genes in the bacterial world suggests
that they play an important physiological role.
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