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Abstract

In the framework of prediction with expert advice, we consider a re-

cently introduced kind of regret bounds: the bounds that depend on the

effective instead of nominal number of experts. In contrast to the Normal-

Hedge bound, which mainly depends on the effective number of experts

and also weakly depends on the nominal one, we obtain a bound that does

not contain the nominal number of experts at all. We use the defensive

forecasting method and introduce an application of defensive forecasting

to multivalued supermartingales.

1 Introduction

We consider the problem of prediction with expert advice (PEA) and its variant,
decision-theoretic online learning (DTOL). In the PEA framework (see [3] for
details, references and historical notes), at each step Learner gets decisions (also
called predictions) of several Experts and must make his own decision. Then the
environment generates an outcome and a (real-valued) loss is calculated for each
decision as a known function of decision and outcome. The difference between
cumulative losses of Learner and one of Experts is the regret to this Expert.
Learner aims at minimizing his regret to Experts, for any sequence of Expert
decisions and outcomes.

In DTOL, introduced in [8], Learner’s decision is a probability distribution
on a finite set of actions. Then each action incurs a loss (the vector of the
losses can be regarded as the outcome), and Learner suffers the loss equal to the
expected loss over all actions (according to the probabilities from his decision).
The regret is the difference between the cumulative losses of Learner and one of
the actions. One can interpret each action as a rigid Expert that always suggests
this action. A precise connection between the DTOL and PEA frameworks will
be described in Section 2.

Usually Learner is required to have small regret to all Experts. In other
words, a strategy for Learner must have a guaranteed upper bound on Learner’s
regret to the best Expert (one with the minimal loss). In this paper we deal
with another kind of bound, recently introduced in [4]. It captures the following
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intuition. Generally speaking, the more Experts (or actions, in the DTOL
terminology) Learner must take into account, the worse his performance will
be. However, assume that each Expert has several different names, so Learner
is given a lot of identical advice. It seems natural that the loss of Learner is big if
there is a real controversy between Experts (or a real difference between actions),
and small if most of the Experts agree with each other. So a competent regret
bound should depend on the real number of Experts instead of the nominal
one. Another example: assume that all the actions are different, but many of
them are good — there are many ways to achieve some goal. Then Learner has
less space to make a mistake and to select a bad action. Again it seems that
a competent regret bound should depend on the fraction of the good actions
rather than the nominal number of actions.

If the effective number of actions (Experts) is significantly less than the
nominal one, one can loosely say that the number of actions is unknown in
this setting. The following regret bound obtained in [4] for their NormalHedge
algorithm holds for this case:

LT ≤ Lǫ
T +O

(

√

T ln
1

ǫ
+ ln2 N

)

, (1)

where N is the nominal number of actions, LT is the cumulative loss of Learner
after step T and Lǫ

T is the value such that at least ǫ-fraction of actions have
smaller or equal cumulative loss after step T (or Lǫ

T can be interpreted as the
loss of ǫN -th best action). It is important that the bound holds uniformly for
all ǫ and T and the algorithm does not need to know them in advance. The
number 1

ǫ plays the role of the effective number of actions. The bound shows,
in a sense, that the NormalHedge algorithm can work even if the number of
actions is not known.

Our main result (Theorem 9) is the following bound for a new algorithm:

LT ≤ Lǫ
T + 2

√

T ln
1

ǫ
+ 7

√
T .

This bound is also uniform in T and ǫ. In contrast to (1), our bound does
not depend on the nominal number of actions, whereas (1) contains a term
O(ln2 N). So it is the first (as far as we know) bound strictly in terms of
the effective number of actions. Our bound has a simpler structure, but it is
generally incomparable to the (precise) bound for Normal Hedge from [4] (see
Subsection 4.2 for discussion of different known bounds). Also our bound can
be easily adapted to internal regret (see [12] for definition). We describe the
application to internal regret in Subsection 4.3.

Our bound is obtained with the help of the defensive forecasting method
(DF). The DF is based on bounding the growth of some supermartingale (a
kind of potential function). In [5], the DF was used to obtain bounds of the
form LT ≤ cLn

T + a, where c and a are some constants. For our form of bounds,
we need a new variation of the DF and a new sort of supermartingales. So we
introduce the notion of multivalued supermartingale and prove a boundedness
result for them (Lemmas 2 and 3). (This result is of certain independent interest:
for example, it helps to get rid of additional Assumption 3 in Theorem 3 in [5].)

The paper is organized as follows. In Section 2 we describe the setup of
prediction with expert advice and of decision-theoretic framework online learn-
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ing, and define the ǫ-quantile regret. In Section 3 we describe the Defensive
Forecasting Algorithm, define multivalued supermartingales and discuss their
properties, and introduce supermartingales of a specific form that are based
on Hoeffding inequality. In Subsection 4.1 we prove two loss bounds on the ǫ-
quantile regret, and in Subsection 4.2 we compare them with the bound for the
NormalHedge algorithm and with other known bounds. In Subsection 4.3 we
show how these bounds can be transformed into bounds on the internal regret.
In the last subsection we describe a toy example of an algorithm that guarantees
bounds for two very different loss functions simultaneously.

2 Notation and Setup

Vectors with coordinates p1, . . . , pN are denoted by an arrow over the letter:
~p = (p1, . . . , pN ). For any natural N , by ∆N we denote the standard simplex in

R
N : ∆N = {~p ∈ [0, 1]N |∑N

n=1 pn = 1}. By ~p · ~q we denote the scalar product:

~p · ~q =
∑N

n=1 pnqn.

Protocol 1 Decision-theoretic framework for learning

L0 := 0.
Ln
0 := 0, n = 1, . . . , N .

for t = 1, 2, . . . do

Learner announces ~γt ∈ ∆N .
Reality announces ~ωt ∈ [0, 1]N .
Lt := Lt−1 + ~γt · ~ωt.
Ln
t := Ln

t−1 + ωt,n, n = 1, . . . , N .
end for

The decision-theoretic framework for online learning (DTOL) was introduced
in [8]. DTOL protocol is given as Protocol 1. The Learner has N available
actions, and at each step t he must assign probability weights γt,1, . . . , γt,N to
these actions. Then each action suffers a loss ωt,n, and Learner’s loss is the
expected loss over all actions according to the weights he assigned. Learner’s
goal is to keep small his regret Rn

t = Lt − Ln
t to any action n, independent of

the losses.

Protocol 2 Prediction with Expert Advice

L0 := 0.
Ln
0 := 0, n = 1, . . . , N .

for t = 1, 2, . . . do

Expert n announces γn
t ∈ Γ, n = 1, . . . , N .

Learner announces γt ∈ Γ.
Reality announces ωt ∈ Ω.
Lt := Lt−1 + λ(γt, ωt).
Ln
t := Ln

t−1 + λ(γn
t , ωt), n = 1, . . . , N .

end for

DTOL can be regarded as a special case of prediction with expert advice
(PEA), as explained below. The PEA protocol is given as Protocol 2. The
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game is specified by the set of outcomes Ω, the set of decisions Γ and the loss
function λ : Γ × Ω → R. The game is played repeatedly by Learner having
access to decisions made by a pool of Experts. At each step, Learner is given N
Experts’ decisions and is required to come out with his own decision. The loss
λ(γ, ω) measures the discrepancy between the decision γ and the outcome ω. Lt

is Learner’s cumulative loss over the first t steps, and Ln
t is the n-th Expert’s

cumulative loss over the first t steps. The goal of Learner is the same: to keep
small his regret Rn

t = Lt −Ln
t to any Expert n, independent of Experts’ moves

and the outcomes.
As defined in [4] (for DTOL), the regret to the top ǫ-quantile (at step T ) is

the value Rǫ
T such that there are at least ǫN actions (the fraction at least ǫ of

all Experts) with Rn
T ≥ Rǫ

T . Or, equivalently, Rǫ
T = LT − Lǫ

T where Lǫ
T is a

value such that at least ǫN actions (the fraction at least ǫ of all Experts) has
the loss Ln

T less than Lǫ
T .

A uniform bound on Rǫ
T (in other words, a bound on Learner’s loss LT in

terms of Lǫ
T ) that holds for all ǫ is more general than the standard best Expert

bounds. The latter can be obtained as a special case for ǫ = 1/N . For this
reason, it is natural to call the value 1/ǫ the effective number of actions: a
bound on Rǫ

T can be considered as the best Expert bound in an imaginary
game against 1/ǫ Experts.

Let us say what games (Ω,Γ,Λ) we consider in this paper. For any game
(Ω,Γ, λ), we call Λ = {g ∈ R

Ω | ∃γ ∈ Γ ∀ω ∈ Ω g(ω) = λ(γ, ω)} the prediction
set. The prediction set captures most of the information about the game. The
prediction set is assumed to be non-empty. In this paper, we consider bounded
convex compact games only. This means that we assume that the set Λ is
bounded and compact, and the superprediction set Λ + [0,∞]Ω is convex, that

is, for any g1, . . . , gK ∈ Λ and for any p1, . . . , pK ∈ [0, 1]K ,
∑K

k=1 pk = 1, there

exists g ∈ Λ such that g(ω) ≤∑K
k=1 pkgk(ω) for all ω ∈ Ω. For such games, we

assume without loss of generality that Λ ⊆ [0, 1]Ω (we always can scale the loss
function).

For DTOL as a special case of PEA, the outcome space is Ω = [0, 1]N , the
decision space is Γ = ∆N , and the loss function is λ(~γ, ~ω) = ~γ · ~ω. Experts play
fixed strategies always choosing ~γn

t such that γn
t,n = 1 and γn

t,k = 0 for k 6= n
(see e. g. [13, Example 7] for more details about this game).

In an important sense the general PEA protocol for the bounded convex
games is equivalent to DTOL. Obviously, if some upper bound on regret is
achievable in any PEA game then it is achievable in the special case of the
DTOL game. To see how to transfer an upper bound from DTOL to a PEA
game, let us interpret the decisions γn

t of Experts and the outcome ωt in the
PEA game as the outcome ~ω′

t in DTOL: ω′
t,n = λ(γn

t , ωt). If Learner’s decision

γt satisfies λ(γt, ωt) ≤ ∑N
n=1 γ

′
t,nλ(γ

n
t , ωt), where ~γ′

t is Learner’s decision in
DTOL, then the regret (at step t) in the PEA game will be not greater than
the regret in DTOL. It remains to note that, since the game is convex, for any
~γ′
t there exists γt such that λ(γt, ω) ≤

∑N
n=1 γ

′
t,nλ(γ

n
t , ω), for any ω ∈ Ω.

However, the equivalence between DTOL and PEA is limited. In particular,
we can obtain PEA bounds that hold for specific loss functions or classes of loss
functions (such as mixable loss functions [13]), and these bounds may be much
stronger than the general bounds induced by DTOL.

In this paper, we consider PEA and DTOL in parallel for another reason.
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It is sometimes useful to consider a more general variant of Protocol 2 where
the number of Experts is infinite (and maybe uncountably infinite): then PEA
can be applied to large families of functions as Experts. With the help of our
method, we can cope either with DTOL, where the number of actions is finite,
or with PEA when Ω is finite and the number of Experts is arbitrary. So we
cannot infer a bound for infinitely many Experts from a DTOL result, but we
can obtain a PEA result directly. In the sequel, we will write about N experts,
but always allow N to be infinite in the PEA case.

Most of the presentation below is in the terms of PEA but applicable to
DTOL as well. We normally hide the difference between PEA and DTOL behind
the common notation (DTOL is considered as the game described above). When
the difference is important, we give two parallel fragments of a statement or
proof.

3 Defensive Forecasting and Supermartingales

This section contains the technical results we need to construct our prediction
algorithm. They are used in the proofs but not in the theorem statements and
discussions in the next section.

3.1 Defensive Forecasting

The general structure of the Defensive Forecasting Algorithm (DFA) is quite
simple. At step t, we define a function ft : Γ×Ω → R (with special properties —
see below) and look for γ ∈ Γ such that

∀ω ∈ Ω ft(γ, ω) ≤ ft−1(γt−1, ωt−1) , (2)

where ft−1 is the function defined at the previous step, γt−1 is Learner’s decision
at the previous step, and ωt−1 is the outcome at the previous step. Then γ with
this property is announced as the next decision of Learner γt.

The choice of ft may depend on all the previous decisions, outcomes, and on
this step Experts’ decisions (for PEA), so ft = F({γn

1 }Nn=1, γ1, ω1, . . . , {γn
t }Nn=1).

Having specified F , we call this strategy of Learner an application of the DFA
to F .

The algorithm guarantees that the values of ft do not increase, in particular,
after each step the value ft(γt, ωt) is not greater than some initial value f0. We
will choose F so that the inequality F({γn

1 }Nn=1, γ1, ω1, . . . , {γn
t }Nn=1)(γt, ωt) ≤

f0 implies a loss bound we need.
Also we need to guarantee that the algorithm always can find γ satisfying (2).

To this end we will choose F so that the sequence ft will be a (multivalued)
supermartingale as defined in the next subsection.

3.2 Multivalued Supermartingales

Let Ω be a compact metric space. Any finite set Ω is considered as a metric
space with the discrete metric. Let P(Ω) be the space of all measures on Ω
supplied with the weak topology.
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For any measurable function g ∈ R
Ω and any π ∈ P(Ω), denote

Eπg =

∫

Ω

g(ω)π(dω) .

For finite Ω, this definition reduces to the scalar product:

Eπg =
∑

ω∈Ω

g(ω)π(ω) .

Let S be an operator that to any sequence e1, π1, ω1, . . . , eT−1, πT−1, ωT−1, eT ,
where ωt ∈ Ω, πt ∈ P(Ω), t = 1, . . . , T − 1, and et, t = 1, . . . , T are some arbi-
trary values, assigns a function ST : P(Ω) → R

Ω. To simplify notation, we will
hide the dependence of ST on all the long argument sequence in the index T .
We call S a (game-theoretic) supermartingale if for any sequence of arguments,
for any π ∈ P(Ω), for gT−1 = ST−1(πT−1) and for g = ST (π) it holds

Eπg ≤ gT−1(ωT−1) . (3)

This definition of supermartingale is equivalent to the one given in [5]. We
say that supermartingale S is forecast-continuous if every ST is a continuous
function.

The main property of forecast-continuous supermartingales that makes them
useful in our context is given by Lemma 1. Originally, a variant of the lemma
was obtained by Leonid Levin in 1976. The proof is based on fixed-point con-
siderations, see [10, Theorem 16.1] or [6, Lemma 8] for details.

Lemma 1. Let Ω be a compact metric space. Let a function q : P(Ω)×Ω → R

be continuous as function from P(Ω) to R
Ω. If for all π ∈ P(Ω) it holds that

Eπq(π, ·) ≤ C ,

where C ∈ R is some constant, then

∃π ∈ P(Ω)∀ω ∈ Ω q(π, ω) ≤ C .

The lemma guarantees that for any forecast-continuous supermartingale S
we can always choose gt ∈ St such that gt(ω) ≤ gt−1(ωt−1) for all ω. This is
exactly the kind of condition we need for the DFA.

Unfortunately, for the loss bounds we want to obtain, we did not find a suit-
able forecast-continuous supermartingale. So we define a more general notion
of multivalued supermartingale, and prove an appropriate variant of Levin’s
lemma.

To get the definition of a multivalued supermartingale, we make just three
changes in the definition of supermartingale above: operator S depends ad-
ditionally on gt ∈ St(πt); ST is function from P(Ω) to non-empty subsets of
R

Ω; the condition (3) holds for any g ∈ ST (π). Namely, let S be an oper-
ator that to any sequence e1, π1, g1, ω1, . . . , eT−1, πT−1, gT−1, ωT−1, eT , where
ωt ∈ Ω, πt ∈ P(Ω), gt ∈ R

Ω, t = 1, . . . , T − 1, and et, t = 1, . . . , T are some

arbitrary values, assigns a function ST : P(Ω) → 2R
Ω

such that ST (π) is a non-
empty subset of RΩ for all π ∈ P(Ω). S is called a multivalued supermartingale

6



if for any sequence of arguments where gt ∈ St(πt), for any π ∈ P(Ω), ST (π) 6= ∅
and for all g ∈ ST (π) it holds

Eπg ≤ gT−1(ωT−1) . (4)

A multivalued supermartingale is called forecast-continuous if for every ST ,
the set {(π, g) | π ∈ P(Ω), g ∈ ST (π)} is closed and additionally for every
π ∈ P(Ω) the set ST (π)+[0,∞]Ω = {g ∈ R

Ω | ∃g′ ∈ ST (π)∀ω ∈ Ωg′(ω) ≤ g(ω)}
is convex.

Note that if S is a forecast-continuous multivalued supermartingale and
St(π) always consists of exactly one element, S is (equivalent to) a forecast-
continuous supermartingale in the former sense: closedness of the graph of ST

means that ST (π) is a continuous function of π and the convexity requirement
becomes trivial.

3.3 Levin’s Lemma for Multivalued Supermartingales

Here we prove two version of Levin’s lemma suitable for multivalued super-
martingales. The first variant (it is simpler) will be used for PEA with finite
outcome set Ω. The second variant will be used for DTOL.

Lemma 2. Let Ω be a finite set. Let X be a compact subset of R
Ω. Let

q ⊆ P(Ω) × X be a relation. Denote q(π) = {g | (π, g) ∈ q} and ran q =
∪π∈P(Ω)q(π) ⊆ X. Suppose that q is closed, for every π ∈ P(Ω) the set q(π) is
non-empty and the set q(π) + [0,∞]Ω is convex. If for some real constant C it
holds that for every π ∈ P(Ω)

∀g ∈ q(π) Eπg ≤ C ,

then there exists g ∈ ran q such that

∀ω ∈ Ω g(ω) ≤ C .

We derive the lemma from Lemma 1 similarly to the derivation of Kakutani’s
fixed point theorem for multi-valued mappings (see, e. g. [1, Theorem 11.9]) from
Brouwer’s fixed point theorem. Unfortunately, we did not find a way just to
refer to Kakutani’s theorem and have to repeat the whole construction with
appropriate changes.

Proof. Note first that P(Ω) is compact for finite Ω, hence q is compact as a
closed subset of a compact set. Let Mq = maxg∈ran q,ω∈Ω |g(ω)|.

For every natural m > 0, let us take any (1/m)-net {πm
k } on P(Ω) such that

for every π ∈ P(Ω) there is at least one net element πm
k at the distance less than

1/m from π and for every π ∈ P(Ω) there are at most 4|Ω|2 elements of the
net at the distances less than 1/m from π. (One can use here any reasonable
distance on P(Ω), for example, the maximum absolute value of the coordinates
of the difference.) For every πm

k in the net, fix any gmk ∈ q(πm
k ) (recall that

q(πm
k ) is non-empty).
Now let us define a function qm : P(Ω)×Ω → R as a linear interpolation of the

points (πm
k , gmk ). Namely, let {um

k } be a partition of unity of P(Ω) subordinate
to U1/m(πm

k ), the (1/m)-neighborhoods of πm
k (that is, um

k (π) are non-negative,
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um
k (π) = 0 if the distance between π and πm

k is 1/m or more, and the sum over
k of all um

k (π) is 1 at any π). Let qm(π, ω) =
∑

k u
m
k (π)gmk (ω).

The function qm is forecast-continuous. Let us find an upper bound on
Eπq

m(π, ·):

Eπq
m(π, ·) =

∑

k

um
k (π)Eπg

m
k

=
∑

k

um
k (π)Eπm

k
gmk +

∑

k

um
k (π)

∑

ω∈Ω

(π(ω)− πm
k (ω))gmk (ω) ≤ C +Mq|Ω|/m

(the bound on the first term holds since gmk ∈ q(πm
k ) and hence Eπm

k
gmk ≤ C).

By Lemma 1 we can find a point πm ∈ P(Ω) such that

∀ω ∈ Ω qm(πm, ω) ≤ C +Mq|Ω|/m .

Recalling that qm(πm, ω) =
∑

k u
m
k (πm)gmk (ω) and that there are at most 4|Ω|2

non-zero values among um
k (πm), we get the following statement. There exist

some αm
k ≥ 0, k = 1, . . . , 4|Ω|2, ∑k α

m
k = 1, and some gmk ∈ q(πm

k ) with πm
k at

the distance at most 1/m from πm such that

∀ω ∈ Ω

4|Ω|2
∑

k=1

αm
k gmk (ω) ≤ C +Mq|Ω|/m . (5)

Since P(Ω) is compact, we can find a limit point π∗ of πm. It will be a
limit point of πm

k as well. Since q is compact, we can find g∗k ∈ q(π∗) such that
(π∗, g∗k) are limit points of (πm

k , gmk ) for each k. Finally, since P({1, . . . , 4|Ω|2})
is compact, we can find limit points α∗

k (corresponding to the points g∗k).
Taking the limits as m → ∞ over the convergent subsequences in (5), we get

∀ω ∈ Ω

4|Ω|2
∑

k=1

α∗
kg

∗
k(ω) ≤ C .

Since q(π∗)+ [0,∞]Ω is convex, the convex combination
∑4|Ω|2

k=1 α∗
kg

∗
k belongs to

q(π∗)+[0,∞]Ω. In other words, the combination is minorized by some g∗ ∈ q(π∗)
and

g∗(ω) ≤
4|Ω|2
∑

k=1

α∗
kg

∗
k(ω) ≤ C

for all ω ∈ Ω.

Now let us prove a variant of the lemma suitable for the DTOL framework,
where the set of outcomes is infinite. Here we make a strong assumption: the
supermartingale values ST (π) depend on π in a very limited way: just on the
mean of π.

Lemma 3. Let Ω be [0, 1]N . Let X be a compact subset of RΩ. Let q ⊆ P(Ω)×X
be a relation. Denote q(π) = {g | (π, g) ∈ q} and ran q = ∪π∈P(Ω)q(π) ⊆ X.
Assume that if

∫

ωπ1(dω) =
∫

ωπ2(dω) then q(π1) = q(π2). Suppose that q is

8



closed, for every π ∈ P(Ω) the set q(π) is non-empty and the set q(π) + [0,∞]Ω

is convex. If for some real constant C it holds that for every π ∈ P(Ω)

∀g ∈ q(π) Eπg ≤ C ,

then there exists g ∈ ran q such that

∀ω ∈ Ω g(ω) ≤ C .

Proof. Since [0, 1]N is a compact metric space, the space P([0, 1]N) with weak
topology is compact too (see, e. g. [10, Prop. B.28]). Hence q is compact as a
closed subset of a compact set. Let Mq = maxg∈ran q,ω∈Ω |g(ω)|.

We consider P(Ω) as a metric space with Wasserstein distance W (π, π′) =
supf |Eπf − Eπ′f |, where the supremum is taken over 1-Lipschitz functions
(see [10, Def. B.20]). For every natural m > 0, let us construct a (1/m)-net
{πm

k } on P(Ω) with the following property. Let ωm
i be a (1/(2m))-net on Ω

such that at most 4N2 its elements are at the distance less than 1/(2m) from
any ω ∈ Ω. For any πm

k there exists ωm
i such that

∫

ωπm
k (dω) = ωm

i . (A net
with this property exists: note that for any π there is a π′ at the distance
at most 1/(2m) such that

∫

ωπ′(dω) = ωm
i ; it remains to consider a cover of

1/(2m)-neighborhoods centered in all π with the given expected values.) For
every πm

k in the net, let us take any gmk ∈ q(πm
k ).

Now let us define a function qm : P(Ω)×Ω → R as a linear interpolation of the
points (πm

k , gmk ). Namely, let {um
k } be a partition of unity of P(Ω) subordinate

to U1/m(πm
k ), the (1/m)-neighborhoods of πm

k (that is, um
k (π) are non-negative,

um
k (π) = 0 if the distance between π and πm

k is 1/m or more, and the sum over
k of all um

k (π) is 1 at any π). Let qm(π, ω) =
∑

k u
m
k (π)gmk (ω).

The function qm is forecast-continuous. Let us find an upper bound on
Eπq

m(π, ·):

Eπq
m(π, ·) =

∑

k

um
k (π)Eπg

m
k

=
∑

k

um
k (π)Eπm

k
gmk +

∑

k

um
k (π)

(
∫

Ω

gmk (ω)π(dω) −
∫

Ω

gmk (ω)πm
k (dω)

)

≤ C +Mq/m

(the bound on the first term holds since gmk ∈ q(πm
k ) and hence Eπm

k
gmk ≤ C).

By Lemma 1 we can find a point πm ∈ P(Ω) such that

∀ω ∈ Ω qm(πm, ω) ≤ C +Mq/m .

Among πm
k such that um

k (πm) is non-zero, there are at most 4N2 different ex-
pected values. Let us group all gmk corresponding to πm

k with a certain expected
value. They belong to the same set q(πm

k ), thus their convex combination is
minorized by another element g̃mi of the same set. Thus we arrive at the follow-
ing statement: there are some αm

i ≥ 0, i = 1, . . . , 4N2,
∑

i α
m
i = 1, and some

g̃mi ∈ q(πm
i ) with πm

i at the distance at most 1/m from πm such that

∀ω ∈ Ω

4N2

∑

i=1

αm
i g̃mi (ω) ≤ C +Mq/m . (6)

The rest of the proof is the same as in Lemma 2.
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3.4 Hoeffding Supermartingale

Here we introduce a specific multivalued supermartingale, or rather a family of
supermartingales, that will be used for our main results.

For technical convenience, our definition of supermartingale St consists of
two parts: a function G : P(Ω) → 2Γ, which assigns a set of decisions G(π) ⊆ Γ
to every π ∈ P(Ω), and a function ft : Γ×Ω → R. The values of St are defined
by the formula:

St(π) = {g ∈ R
Ω | ∃γ ∈ G(π)∀ω ∈ Ω g(ω) = ft(γ, ω)} . (7)

The part G(π) depends on the game (Ω,Γ, λ) only and does not change from
step to step:

G(π) = argmin
γ∈Γ

Eπλ(γ, ·) = {γ ∈ Γ | ∀γ′ ∈ Γ Eπλ(γ, ·) ≤ Eπλ(γ
′, ·)} . (8)

Lemma 4. Let (Ω,Γ, λ) be a game such that its prediction set Λ = {g ∈ R
Ω |

∃γ ∈ Γ ∀ω ∈ Ω g(ω) = λ(γ, ω)} is a non-empty compact subset of R
Ω and

Λ + [0,∞]Ω is convex. Then the set

GΛ = {(π, g) ∈ P(Ω)× Λ | ∃γ ∈ G(π)∀ω ∈ Ω g(ω) = λ(γ, ω)}

is closed and for every π ∈ P(Ω) the sets G(π) and GΛ(π) = {g | (π, g) ∈ GΛ}
are non-empty and the sets GΛ(π) + [0,∞]Ω are convex.

Proof. Since Λ is non-empty and compact, the minimum of Eπg is attained for
every π, and hence G(π) and also GΛ(π) is non-empty.

Assume that g1, g2 ∈ GΛ(π) ⊆ Λ and α ∈ [0, 1]. Then αg1+(1−α)g2 ≥ g ∈ Λ
since Λ + [0,∞]Ω is convex, and Eπg ≤ Eπ(αg1 + (1 − α)g2) = Eπg1 = Eπg2.
Hence g ∈ GΛ(π) and thus GΛ(π) + [0,∞]Ω is convex.

It remains to show that GΛ is closed. Let gi ∈ GΛ(πi) and (πi, gi) converges
to (π, g); we need to show that g ∈ GΛ(π). Indeed, g ∈ Λ since Λ is compact
and gi → g. Hence g = λ(γ, ·) for some γ ∈ Γ. To show that γ ∈ G(π), let us
take any γ′ ∈ Γ and check that Eπg ≤ Eπg

′, where g′ = λ(γ′, ·). Clearly, Eπi
g′

converges to Eπg
′ since πi → π. Also Eπi

gi converges to Eπg. Then for any
ǫ > 0 we can find sufficiently large i so that Eπg ≤ Eπi

gi+ǫ and Eπi
g′ ≤ Eπg

′+ǫ.
We have Eπi

gi ≤ Eπi
g′ since gi ∈ L(πi). These three inequalities imply that

Eπg ≤ Eπg
′ + 2ǫ. Since ǫ is arbitrary, we have Eπg ≤ Eπg

′.

Note that for convex bounded compact games the conditions of the lemma

are satisfied by definition. For DTOL, the set Λ = {g ∈ R
[0,1]N | ∃~p ∈ ∆N∀~ω ∈

[0, 1]N g(ω) = ~p · ~ω} is obviously non-empty and it is compact and convex as a
linear image of simplex ∆N .

Now consider a function H : Γ× Ω → R of the form

H(γ, ω) = eη(λ(γ,ω)−λ(γ′,ω))−η2/2 , (9)

where parameter γ′ ∈ Γ and η ≥ 0.

Lemma 5. Let (Ω,Γ, λ) be a game, the range of λ is included in [0, 1] and G(π)
is defined by (8). Then for all γ′ ∈ Γ, for all η ≤ 0, for all π ∈ P(Ω), and for
all γ ∈ G(π) it holds

Eπe
η(λ(γ,·)−λ(γ′,·))−η2/2 ≤ 1 .

10



Proof. Since λ(γ, ω) − λ(γ′, ω) ∈ [−1, 1] for any γ, γ′ and ω, the Hoeffding
inequality (see e. g. [3, Lemma A.1]) implies that

Eπe
η(λ(γ,·)−λ(γ′,·)) ≤ eηEπ(λ(γ,·)−λ(γ′,·))+η2/2 .

It remains to note that Eπ(λ(γ, ·)− λ(γ′, ·)) ≤ 0 by definition of G(π).

Now we can explain what ft will be used in (7):

ft(γ, ω) =

K
∑

k=1

pt,kHt,k(γ, ω) , (10)

where pt,k ≥ 0 are some weights and Ht,k are functions of the form (9) with
some parameters ηt,k and γt,k, cf. (11), (15), (18), (21), (22), and (23). The
sum may be infinite or it can be even an integral over some measure pt(k). As
in the definition of supermartingale, the index t may hide the dependence on a
long sequence of arguments.

Lemma 6. St defined by (7), (8), and (10) satisfies the conditions of Lemma 2
if (Ω,Γ, λ) is a bounded convex compact game with finite Ω or the conditions of

Lemma 3 if (Ω,Γ, λ) is DTOL, where St(π) is taken for q(π) and
∑K

k=1 pt,k is
taken for C.

Proof. If g ∈ St(π) then g = ft(γ, ·) for some γ ∈ G(π). Thus we have Eπg =
∑K

k=1 pt,kEπHt,k(γ, ·) ≤
∑K

k=1 pt,k by Lemma 5.
Clearly, St(π) ⊆ Λ and Λ is compact, as remarked after Lemma 4. The set

St(π) is non-empty since G(π) is non-empty by Lemma 4.

Let φt(g) =
∑K

k=1 pt,kEπe
ηt,k(g−λ(γ′

t,k,·))−η2

t,k/2. Note that g ∈ GΛ(π) if
and only if φ(g) ∈ St(π). Note also that φt is a convex (and hence continuous)
function of g. Thus, the graph of St is closed since GΛ closed and St(π)+[0,∞]Ω

is convex since GΛ(π) + [0,∞]Ω is convex.
The condition St(π1) = St(π2) when

∫

ωπ1(dω) =
∫

ωπ2(dω) for DTOL
follows from the equality Eπλ(~γ, ~ω) = Eπ(~γ · ~ω) = ~γ · Eπ~ω.

4 Loss Bounds

In this section, we consider applications of the supermartingale technique to
obtaining the loss bounds in several different settings. Let us begin with a
simple theorem that shows a clean application of the DFA.

Theorem 7. If T is known in advance then the DFA achieves the bound

LT ≤ min
n

Ln
T +

√
2T lnN

(for DTOL with N actions as well as for PEA with N experts).

Proof. Let η =
√

2(lnN)/T and

ft(γ, ω) =

N
∑

n=1

1

N
eη(Lt−1−Ln

t−1
)−η2/2 × eη(λ(γ,ω)−λ(γn

t ,ω))−η2/2 . (11)

11



At each step t, the DFA finds γt such that ft(γt, ω) ≤ ft−1(γt−1, ωt−1) for all
ω ∈ Ω. Such a γt exists due to Lemma 6 combined with Lemma 3 for DTOL or
Lemma 2 for PEA. Clearly, ft−1(γt−1, ωt−1) =

∑N
n=1

1
N exp(η(Lt−1 − Ln

t−1) −
η2/2), and we get that the DFA applied to {ft} guarantees that

ft(γT , ωT ) =

N
∑

n=1

1

N
eη(LT−Ln

T )−η2/2 ≤ 1 .

Bounding the sum from below by one additive term, we get the bound.

This bound is twice as large as the best bound obtained in [3] (see their
Theorems 2.2 and 3.7). Our bound is the same as that in Corollary 2.2 in [3].

4.1 Bounds on ǫ-Quantile Regret

The bound in Theorem 7 is guaranteed only once, at step T specified in advance.
The next bound is uniform, that is, holds for any T , and it holds for ǫ-quantile
regret for all ǫ > 0.

Theorem 8. For DTOL with N actions, the DFA achieves the bound

∫ 1/e

0

e(LT−Lǫ
T )η−Tη2/2 dη

η
(

ln 1
η

)2 ≤ 1

ǫ
, (12)

for any T and any ǫ > 0, where Lǫ
T is a value such that at least ǫ-fraction of

actions has the loss after step T not greater than Lǫ
T . In particular, (12) implies

for any δ ∈ (0, 1/4)

LT ≤ Lǫ
T +

2√
2− δ

√

T ln
1

ǫ
+

1

2
T ln

1

δ
+ 2T ln lnT +max

{

4, 400 ln
1

ǫ

}

, (13)

which can be further reduced to

Rǫ
T ≤

(

1 +
1

lnT

)

√

2T ln
1

ǫ
+ 5T ln lnT +O

(

ln
1

ǫ

)

. (14)

The bound holds also for PEA; if each of finitely or infinitely many Experts is
assigned some positive weight pn, the sum of all weights being not greater than
1, the DFA achieves (12)–(14) with Lǫ

T being a value such that the total weight
of Experts that have the loss after step T not greater than Lǫ

T is at least ǫ.

Proof. We mix all the supermartingales used in (11) over η ∈ [0, 1/e] according
to the probability measure

µ(dη) =
dη

η
(

ln 1
η

)2 , η ∈ [0, 1/e] .

We apply the DFA (that is, at each step t, find γt such that ft(γt, ω) ≤
ft−1(γt−1, ωt−1) for all ω ∈ Ω) to

ft(γ, ω) =

N
∑

n=1

1

N

∫ 1/e

0

dη

η
(

ln 1
η

)2 e
η(Lt−1−Ln

t−1
)−η2/2 × eη(λ(γ,ω)−λ(γn

t ,ω))−η2/2

(15)

12



(for PEA with weighed Experts, the term 1/N is replaced by pn) and achieve
fT (γT , ωT ) ≤ 1 for all T . Bounding the sum from below by the sum of terms
where Ln

T ≤ Lǫ
T , we get

∫ 1/e

0

eη(LT−Lǫ
T )−Tη2/2 dη

η
(

ln 1
η

)2 ≤ 1

ǫ
. (16)

Let us estimate the integral. Notice that the exponent Rη−Tη2/2 is positive
when 0 ≤ η ≤ 2R/T and attains its maximum R2/(2T ) at the mid-point of this
interval, η = R/T . Solving the quadratic inequality

Rη − Tη2/2 ≥ (1/2− δ)R2/T

gives

η ∈
[

R

T

(

1−
√
2δ
)

,
R

T

(

1 +
√
2δ
)

]

(0 < δ < 1/2) and so (16) implies

e(1/2−δ)R2/T ln(1 +
√
2δ)− ln(1−

√
2δ)

(ln(T/R)− ln(1 +
√
2δ))(ln(T/R)− ln(1−

√
2δ))

≤ 1

ǫ

when
(

1 +
√
2δ
)

R/T ≤ 1/e. If the last condition does not hold and hence R is

close to T , one can get from (16) that T < 400 ln(1/ǫ). Assuming δ < 1/4, we
can obtain

e(2−δ)R2/T ≤ 1

ǫ
√
2δ

ln2
4T

R
.

For R ≥ 4, we further obtain

(2− δ)R2/T ≤ ln
1

ǫ
+

1

2
ln

1

δ
+ 2 ln lnT ,

which finally leads to (13). Substituting δ = 1/ lnT , we get (14).

The bound (14) is not optimal asymptotically in T : it grows as O(
√
T ln lnT )

as T → ∞, instead of O(
√
T ). The next theorem gives an asymptotically

optimal bound but using a “fake” DFA.

Theorem 9. For DTOL with N actions, there exists a strategy that achieves
the bound

LT ≤ Lǫ
T + 2

√

T ln
1

ǫ
+ 7

√
T (17)

for any T and any ǫ, where Lǫ
T is a value such that at least ǫ-fraction of actions

has the loss after step T not greater than Lǫ
T .

The bound holds also for PEA; if each of finitely or infinitely many Experts is
assigned some positive weight pn, the sum of all weights being not greater than
1, the strategy achieves (17) with Lǫ

T being a value such that the total weight of
Experts that have the loss after step T not greater than Lǫ

T is at least ǫ.
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Proof. The algorithm in this theorem is not the DFA and does not use super-
martingales properly: we use values ft(γt, ωt) that may increase at some steps
and ft(γt, ωt) ≤ ft−1(γt−1, ωt−1) does not hold. Nevertheless, the increases of
ft stay bounded so that it always holds ft(γt, ωt) ≤ 1.

Let 1/c =
∑∞

i=1
1
i2 . At step T , our algorithm finds γT such that fT (γT , ω) ≤

CT for all ω, where

fT (γ, ω) =

N
∑

n=1

1

N

∞
∑

i=1

c

i2
e(i/

√
T)(LT−1−Ln

T−1
)−(i/2

√
T)

∑T−1

t=1 (i/
√
t)

× e(i/
√
T)(λ(γ,ω)−λ(γn

T ,ω))−(i/
√
T)2/2 (18)

and

CT =

N
∑

n=1

1

N

∞
∑

i=1

c

i2
e(i/

√
T)(LT−1−Ln

T−1
)−(i/2

√
T)

∑T−1

t=1 (i/
√
t) .

For PEA with weighed experts, it is sufficient to replace 1/N by pn in the
definitions of fT and CT .

Note that fT has the form (10), hence Lemma 6 applies, and due to Lemma 3
or Lemma 2 such a γT exists.

Let us prove by induction over T that CT ≤ 1. It is trivial for T = 0, since
L0 = Ln

0 = 0 and
∑0

t=1 = 0. Assume that CT ≤ 1 and prove that CT+1 ≤ 1.
By the choice of γT , we know that fT (γT , ωT ) ≤ CT ≤ 1. Since the function xα

is concave for 0 < α < 1, we have

1 ≥
(

fT (γT , ωT )
)

√
T/

√
T+1

=

(

N
∑

n=1

1

N

∞
∑

i=1

c

i2
e(i/

√
T)(LT−Ln

T )−(i/2
√
T)

∑
T
t=1(i/

√
t)

)

√
T/

√
T+1

≥
N
∑

n=1

1

N

∞
∑

i=1

c

i2

(

e(i/
√
T )(LT−Ln

T )−(i/2
√
T)

∑
T
t=1(i/

√
t)
)

√
T/

√
T+1

= CT+1 .

Now it is easy to get the loss bound. Assume that for an ǫ-fraction of
Experts their losses Ln

T are smaller than or equal to Lǫ
T . Then fT (γT , ωT ) can

be bounded from below by

ǫ

∞
∑

i=1

c

i2
e(i/

√
T)(LT−Lǫ

T )−(i/2
√
T)

∑
T
t=1(i/

√
t) .

Further, bounding the infinite sum by one of the terms, we get

e(i/
√
T)(LT−Lǫ

T )−(i/2
√
T)

∑T
t=1(i/

√
t) ≤ 1

ǫ

i2

c
.

Taking the logarithm, using
∑T

t=1

(

1/
√
t
)

≤ 2
√
T and rearranging the terms,

we get

LT ≤ Lǫ
T +

√
T

i

(

i2 + ln
1

ǫ
+ 2 ln i+ ln(1/c)

)

.
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Letting i =
⌈

√

ln(1/ǫ)
⌉

+ 1 and using the estimates i ≤
√

ln(1/ǫ) + 2, 1/i ≤ 1,

(ln i)/i ≤ 2, (ln(1/ǫ))/i ≤
√

ln(1/ǫ), and ln(1/c) = ln(π2/6) ≤ 1, we obtain the
final bound.

Remark 1. For DTOL and for PEA with the finite number of Experts, the

infinite sum over i in the proof can be replaced by the sum up to
⌈

√

lnN)
⌉

+1.

However, one should keep decreasing weights c/i2: for uniform weights the
bound will have an additional term of the form O((ln lnN)/ ln(1/ǫ)).

Remark 2. Probably, the first bound for ǫ-quantile regret was stated (implic-
itly) in [9]. More precisely, that paper considered even more general regret
notion: Theorem 1 in [9] gives a bound for PEA with weighed experts under
the logarithmic loss of the form

LT ≤
N
∑

n=1

unL
n
T +

N
∑

n=1

un ln
un

pn

for any ~u ∈ ∆N ; p1, . . . , pN are weights of Experts. Here pn are known to the
algorithm in advance, whereas un are not known and the bound holds uniformly
for all un. Taking un = 0 for Experts not from the ǫ-quantile of the best Experts,
and uniform un over Experts from the ǫ-quantile, we get the bound in terms of
Lǫ
T . It can be easily checked that the strategy in Theorem 9 also achieves the

following bound:

LT ≤
N
∑

n=1

unL
n
T + 2

√

√

√

√T

(

N
∑

n=1

un ln
un

pn

)

+ 7
√
T

for any ~u ∈ ∆N and any T . In Theorem 8 one can replace Lǫ
T by

∑N
n=1 unL

n
T

and ln(1/ǫ) by
∑N

n=1 un ln(un/pn) as well.

Remark 3. Theorem 9 can be also adapted to discounted regrets of the form
LT =

∑T
t=1(1− α)T−tλ(γt, ωt) for a known α. Then ǫ in the bound is replaced

by α, and Lǫ
T by Ln

T =
∑T

t=1(1− α)T−tλ(γn
t , ωt).

4.2 Discussion of the Bounds

For a game with N Experts, the best bound, uniform in T , is given by [3,
Theorem 2.3]:

LT ≤ Ln
T +

√
2T lnN +

√

lnN

8
. (19)

The bounds (14) and (17) with ǫ = 1/N are always worse than (19). In the
bound (17) the leading coefficient at

√
T lnN is

√
2 times as much. In the

bound (14) the coefficient at
√
T lnN is the same, but the other terms are

larger, and even the asymptotics is worse when N is fixed and T → ∞.
However, it appears that the bound (19) cannot be transferred to ǫ-quantile

regret Rǫ
T = LT −Lǫ

T . The proof of Theorem 2.3 in [3] heavily relies on tracking
the loss of only one best Expert, and it is unclear whether the existence of several
good (or identical) Experts can be exploited in this proof. The experiments
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reported in [4] show that algorithms with good best Expert bounds may have
rather bad performance when the nominal number of Experts is much greater
than the effective number of Experts.

The first (and the only, as far as we know) bound specifically formulated for
ǫ-quantile regret is proven for the NormalHedge algorithm in [4, Theorem 1]:

LT ≤ Lǫ
T +

√

(

1 + ln
1

ǫ

)(

3(1 + 50δ)T +
16 ln2 N

δ

(

10.2

δ2
+ lnN

))

, (20)

which holds uniformly for all δ ∈ (0, 1/2]. Note that this bound depends on the
effective number of actions 1/ǫ and at the same time on the nominal number
of actions N . The latter dependence is weak, but probably prevents the use of
NormalHedge with infinitely many Experts.

The main advantage of our bounds in Theorems 8 and 9 is that they are
perfectly in terms of the effective number of Experts. In a sense, the DFA does
not need to know in advance the number of Experts.

Remark 4. To obtain a precise statement about the unknown number of Ex-
pert, one can consider the setting where Experts may come at some later steps;
the regret to a late Expert is accumulated over the steps after his coming — it is
a simple time selection function (see Subsection 4.3), which switches from 0 to
1 only once. Our algorithms and bounds can be easily adapted for this setting:
we must consider infinitely many Experts almost all of which are inactive; and
then proceed similarly to Theorem 11.

Both our bounds are worse than (20) asymptotically when ǫ and N are fixed
and T → ∞. In this case, the regret term in (20) grows as

√

3T ln(1/ǫ) + 3T ,

whereas in (17) it grows as
√

4T ln(1/ǫ) + 7
√
T and in (14), the worst bound,

it grows as
√

5T ln lnT + 2T ln(1/ǫ).
On the other hand, our bounds are better when T is relatively small. The

term ln lnT is small for any reasonable practical application (e. g., ln lnT < 4 if
T is the age of the universe expressed in microseconds), and then the main term
in (14) is

√

2T ln(1/ǫ), which even fits the optimal bound (19). Bound (17)

improves over (20) for T ≤ 106 ln4 N .
Now let us say a few words about known algorithms for which an ǫ-quantile

regret bounds were not formulated explicitly, but can easily be obtained.
The Weighted Average Algorithm, which is used to obtain bound (19), can

be analysed in a manner different from [3, Theorem 2.3], see [11]. Then one can
obtain the following bound for ǫ-quantile regret:

LT ≤ Lǫ
T +

1

c

√
T ln

1

ǫ
+ c

√
T ,

where the constant c > 0 is arbitrary but must be fixed in advance. If ǫ is not
known and hence c cannot be adapted to ǫ, the leading term is O(

√
T ln 1

ǫ ),
which is worse than (17) for small ǫ (that is, if we consider a large effective
number of actions).

For the Aggregating Algorithm [13] (which can be considered as a special
case of the DFA for a certain supermartingale, as shown in [5]), the bound can
be trivially adapted to ǫ-quantile regret:

LT ≤ cLǫ
T + a ,
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where the possible constants c ≥ 1 and a depend on the loss function. However,
in the case of DTOL or arbitrary convex games, the constant c is strictly greater
that 1 and the bound may be much worse than (14) and (17) (when Lǫ

T grows

significantly faster than
√
T ). At the same time, this bound is much better

when Lǫ
T ≈ 0 (there is at least ǫ fraction of “perfect” Experts ).

For the standard setting with the known number of Experts, other “small
loss” bounds, of the form LT ≤ Ln

T + O(
√

Ln
T ), were obtained. The authors

of [4] posed an open question whether similar bounds can be obtained if the
(effective) number of actions is not known. We left the question open.

4.3 Internal Regret and Time Selection Functions

It was shown in [5] and in [7] that the loss bounds obtained by the DFA can
be easily transferred to second-guessing experts and sleeping experts models. A
second-guessing expert is a (known) function of Learner’s decision. Informally,
a second-guessing expert explains how Learner could improve (hopefully) his
performance. Sleeping experts (or specialists) introduced in [9] may be inactive
at some steps, abstaining from announcing their decision (a specialist may decide
that the current problem is outside her expertize area). The regret of Learner
to a sleeping expert is counted over the steps when the expert was active.

The models similar to second-guessing experts and sleeping experts were
studied in DTOL as internal (or wide range) regret and time selection (or activa-
tion) functions respectively (see [12] for a review). The internal regret compares
Learner’s loss not to the loss of a fixed action, but to the loss of a modification
rule of the form “Every time Learner selected action n he should have selected
n′ instead” (more formally, all the weight γt,n assigned to action n should have
been appended to γt,n′). The wide range regret deals with more general modi-
fication rules which may replace each action by some other action. Note that a
fixed action n is also a modification rule that suggests to use n instead of any
other action.

A time selection function attached to a modification rule assigns a scaling
factor from [0, 1] to each step. The regret of Learner to this rule is a sum of the
regrets at each step weighed by these factors. This weight can be regarded as
a degree of specialist’s certainty: when the rule is known to be inapplicable for
some reason, the weight is zero; and when the rule is partially relevant, the rule
agrees for some partial responsibility only.

As has been recently shown [12], an algorithm achieving in DTOL with
N action some regret bound with respect to N can be transformed into an
algorithm that achieves the same bound with respect to K for K modification
rules with attached time selection functions. This gives the best regret bound
O(

√
T lnK).

We show how to extend the results of Theorems 8 and 9 to internal regret
and time selection settings. We do not apply the general method of [12], but
directly modify our supermartingales and proofs. Remarkably, we need very
modest changes.

A modification rule is represented by N×N stochastic matrixM : the matrix
elements are non-negative and the sum of every column is 1. The (one-step)
regret of Learner’s decision ~γ ∈ ∆N to the modification rule M on the outcome
~ω ∈ [0, 1]N is ~γ ·~ω− (M~γ) ·~ω, where M~γ is the product of matrix M and vector-
column ~γ. The total regret after step T on the sequence of outcomes ~ω1, ~ω2, . . .
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of Learner predicting ~γ1, ~γ2, . . . with respect to a modification rule M(t) with
attached time selection function I(t) is

RT =

T
∑

t=1

I(t)
(

~γt · ~ωt − (M(t)~γt) · ~ωt

)

(cf. RH,I,f in [12]).

Remark 5. The definition above reflects a slightly more general notion of a
modification rule, which allows, for example, the rules that mean “instead of n
select at random n′ or n′′ equiprobably”. Khot and Ponnuswami [12] do not
discuss such rules explicitly, but it appears that their method works for them
as well (unless we miss some subtlety in the proof).

First let us obtain an analogue of Theorem 9. We formulate the bound with
respect to the effective number of modification rules. It is very probable that
the method of [12] also transforms a bound in terms of the effective number of
actions into a bound in terms of the effective number of modification rules, but
we did not check.

Theorem 10. In DTOL with N actions, let us have K modifications rules
Mk(t), each assigning a stochastic N ×N matrix to each step t, with attached
time selection functions Ik(t) assigning a number from [0, 1]. (The modification
rule numbered k may arbitrarily change in time and may depend on the whole
history, and so is the time selection function.) There is a strategy that achieves
the bound

Rǫ
T ≤ 2

√

T ln
1

ǫ
+ 7

√
T

for any T and any ǫ, where Rǫ
T is a value such that for at least ǫ-fraction of the

rules the regret Rk
T of rule k after step T is not less than Rǫ

T .

Proof. The proof is very similar to the proof of theorem 9. The only change in
the algorithm is that in (18) we replace (λ(~γ, ~ω) − λ(~γn

T , ~ω)) = ~γ · ~ω − ωn by
Ik(t)

(

~γ · ~ω − (Mk(t)~γ) · ~ω
)

and thus apply the same algorithm with

fT (γ, ω) =

K
∑

k=1

1

K

∞
∑

i=1

c

i2
e(i/

√
T)Rk

T−1
−(i/2

√
T)

∑T−1

t=1 (i/
√
t)

× e(i/
√
T)(Ik(T )(~γ·~ω−(Mk(T )~γ)·~ω))−(i/

√
T)2/2 . (21)

We need to check that the conditions of Lemma 3 are satisfied. It is enough to

observe that I(T ) ≤ 1 and that exp
((

i/
√
T
)

(Ik(T )(~γ · ~ω − (Mk(T )~γ) · ~ω))
)

is

convex in ~γ, then the proof of the Lemma 6 applies without changes. The loss
bound is obtained as in Theorem 9.

Theorem 8 can be adapted in a similar way. But we formulate another
analogue of the theorem: The bound includes the total number of modification
rules instead of the the effective number of them, but the regret of each rule k
is bounded in terms of the actual activity time (or awake time)

∑T
t=1 Ik(t) of

the rule, not the total time T . We do not know whether bounds referring to
the awake time were explicitly stated anywhere; however, a bound of this kind
can be obtained from bounds that depend on the loss of the rule (or action), as
in [2, Theorem 16] or [12, Theorem 5].
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Theorem 11. In DTOL with N actions, let us have K modifications rules
Mk(t), each assigning a stochastic N ×N matrix to each step t, with attached
time selection functions Ik(t) assigning a number from [0, 1]. The DFA achieves
the bound

∫ 1/e

0

eηR
k
T−Tk(T )η2/2 dη

η
(

ln 1
η

)2 ≤ K ,

where Tk(T ) =
∑T

t=1 Ik(t), for any T and k = 1, . . . ,K. In particular, the above
bound implies for any δ ∈ (0, 1/4)

Rk
T ≤ 2√

2− δ

√

Tk(T ) ln
1

K
+

1

2
Tk(T ) ln

1

δ
+ 2Tk(T ) ln lnTk(T )

+ max {4, 400 lnK} ,

which can be further reduced to

Rǫ
T ≤

(

1 +
1

lnTk(T )

)

√

2Tk(T ) lnK + 5Tk(T ) ln lnTk(T ) +O (lnK) .

Proof. We change the supermartingale used for Theorem 8, similarly to the
proof of Theorem 10. Namely, we apply the DFA to the supermartingale

ft(γ, ω) =

K
∑

k=1

1

K

∫ 1/e

0

dη

η
(

ln 1
η

)2 e
ηRk

t−1
−Tk(t−1)η2/2

× eηIk(T )(~γ·~ω−(Mk(T )~γ)·~ω)−(ηIk(t))
2/2 . (22)

Note that in contrast to the proof of Theorem 10, Ik(t) appears also in the

“Hoeffding correction term” e−η2/2. The rest of the proof does not change
much. To get the loss bound we observe that

∑T
t=1(Ik(t))

2 ≤ Tk(T ) since
Ik(t) ∈ [0, 1].

4.4 A Toy Example of a Multiobjective Bound

In this subsection, we discuss bounds with respect to two loss functions. In [7],
we showed how to cope with several mixable loss functions. Here we combine
a mixable loss function (the square loss) with a non-mixable one (the absolute
loss).

Let us describe an informal prediction setting where such a combination of
loss functions can make sense. We want to predict the probability of rain. We
have two groups of Experts. The first group consists of Metoffices that give the
probability and evaluate the result according to the Brier (square) loss function.
The second group is Simpletons, they give a boolean (‘rain’/‘no rain’) prediction
and count the number of errors (the simple prediction game). We must provide
a pair, a probability and a boolean prediction, and the two components of our
prediction must agree in the following sense: if we give probability of rain more
than one half, we must predict ‘rain’; if we give probability of rain less than
one half, we must predict ‘no rain’; only if we give the probability 1/2, we
may choose the boolean prediction arbitrary (so we can randomize here). In
the theorem below we bound both Learner’s Brier loss and Learner’s expected
(over the internal randomizer) number of errors.
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Theorem 12. Assume that we are given K Experts that give predictions pk ∈
[0, 1] and M Experts that give predictions bm ∈ {0, 1}. Learner is allowed to
give predictions (p, p̃) ∈ [0, 1]× [0, 1], with the following restriction: if p < 1/2
then p̃ = 0 and if p > 1/2 then p̃ = 1. Then there exists a strategy for Learner
guaranteeing for any sequence of outcomes ω1, ω2, . . . that for any T and for any
k it holds

T
∑

t=1

(pt − ωt)
2 ≤

T
∑

t=1

(pkt − ωt)
2 +

1

2
ln(K +M) ,

and for any T and for any m it holds

T
∑

t=1

|p̃t − ωt| ≤
T
∑

t=1

[bmt 6= ωt] +O(
√

T ln(K +M) + T ln lnT ) ,

where [bmt 6= ωt] = 1 if bmt 6= ωt and [bmt 6= ωt] = 0 otherwise.

Proof. Let A = {(p, p̃) ∈ [0, 1]2 | p̃ = 0 if p < 1/2 and p̃ = 1 if p > 1/2 and } =
{(p, 0) | p ∈ [0, 1/2)} ∪ {(1/2, p̃) | p̃ ∈ [0, 1]} ∪ {(p, 1) | p ∈ (1/2, 1]}. We apply
the DFA to supermatingale ST on Ω = {0, 1} defined by (7) with

fT (p, p̃, ω) =
1

K +M

K
∑

k=1

e2
∑T

t=1
((pt−ωt)

2−(pk
t −ωt)

2) × e2((p−ω)2−(pk
T−ω)2)

+
1

K +M

M
∑

m=1

∫ 1/e

0

dη

η
(

ln 1
η

)2 e
η
∑

T
t=1

(|p̃t−ωt|−[bmt 6=ωt])−η2/2×eη(|p̃−ω|−[bmT 6=ω])−η2/2

(23)

and G(π) = {(p, p̃) ∈ A | p = π(1)}. To ensure that ST is a supermartingale,
we need to check that Eπ

(

|p̃− ω| − [bmT 6= ω]
)

≤ 0 if (π(1), p̃) ∈ G(π). Then we
can refer to Lemma 6 and [5, Lemma 2].

Indeed, Eπ

(

|p̃− ω| − [bmT 6= ω]
)

= π(1)(1 − p̃− (1− bmT )) + π(0)(p̃− bmT ) =
(π(0)− π(1))(p̃− bmT ). If π(1) > 1/2 then π(0) < 1/2 and p̃ = 1 ≥ bmT . If
π(1) < 1/2 then π(0) > 1/2 and p̃ = 0 ≤ bmT . If π(1) = 1/2 then π(0) = 1/2.
Obviously, in all the cases (π(0)− π(1))(p̃− bmT ) ≤ 0.

The bound follows in the usual way (cf. Theorem 8).

Remark 6. Let us discuss how to find the numbers p and p̃ such that fT (p, p̃, 0) ≤
1 and fT (p, p̃, 1) ≤ 1. Consider x ∈ [0, 2] and two functions

p(x) =











x, if x < 1/2,

1/2, if x ∈ [1/2, 3/2],

x− 1, if x > 3/2,

and
p̃(x) = min{1,max{x− 1/2, 0}} .

Clearly, p(x) and p̃(x) are continuous functions of x. Let

g(x, ω) = fT (p(x), p̃(x), ω)− 1 .

20



It is obvious that if g(x0, 0) ≤ 0 and g(x0, 1) ≤ 0 then we can take p(x0) and
p̃(x0) as p and p̃ we are looking for. The supermartingale property of ST and
the definition of ST imply that

p(x)g(x, 1) + (1− p(x))g(x, 0) ≤ 0 .

Substituting x = 0, we get g(0, 0) ≤ 0. Substituting x = 2, we get g(2, 1) ≤ 0.
If g(0, 1) ≤ 0 or g(2, 0) ≤ 0, we can take x0 = 0 or x0 = 2 respectively.
Otherwise, consider the function φ(x) = g(x, 1) − g(x, 0). It is continuous,
φ(0) > 0 and φ(2) < 0, hence there exists x0 such that φ(x0) = 0. Clearly,
g(x0, 0) = g(x0, 1) ≤ 0.
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