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Abstract

A nonnegative martingale with initial value equal to one measures the evidence
against a probabilistic hypothesis. The inverse of its value at some stopping time
can be interpreted as a Bayes factor. It can be shown that if we exaggerate the
evidence by considering the largest value attained so far by such a martingale,
the exaggeration will not be great, and there are systematic ways to eliminate it.
The inverse of the exaggerated value at some stopping time can be interpreted
as a p-value. We give a simple characterization of all increasing functions that
eliminate the exaggeration.
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Figure 1: The relationship between a Bayes factor and a p-value can be thought
of as a snapshot of the dynamic relationship between a nonnegative martingale
(Xt) with initial value 1 and the process (X∗t ) that tracks its supremum. The
snapshot could be taken at any time, but in our theorems we consider the final
values of the martingale and its supremum process.

1 Introduction

Nonnegative martingales with initial value 1, Bayes factors, and p-values can
all be regarded as measures of evidence against a probabilistic hypothesis. In
this article, we review the well-known relationship between Bayes factors and
nonnegative martingales and the less well-known relationship between p-values
and the suprema of nonnegative martingales. Figure 1 provides a visual frame
for the relationships we discuss.

Consider a random process (Xt) that initially has the value one and is a
nonnegative martingale under a probabilistic hypothesis P (the time t may be
discrete or continuous). We call such a martingale a test martingale. The
values of a test martingale measure the changing evidence against P . When Xt

becomes very large, P begins to look doubtful, but then Xu for some later time
u may be lower and make P look better.

The notion of a test martingale (Xt) is related to the notion of a Bayes
factor, which is more familiar to statisticians. A Bayes factor measures the
degree to which a fixed body of evidence supports P relative to a particular
alternative hypothesis Q; a very small value can be interpreted as discrediting
P . If (Xt) is a test martingale, then the value 1/Xτ for any stopping time τ
is a Bayes factor. (For simplicity, the reader can replace everywhere a stopping
time τ with a fixed value t.)

Suppose we exaggerate the evidence against P by considering not the current
value Xt but the greatest value so far:

X∗t := sup
s≤t

Xs.
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A high X∗t is not as impressive as a high Xt, but how should we understand the
difference? Here are two complementary answers:

Answer 1 Although X∗t is not a martingale, the final value X∗∞ ≥ X∗t still has
a property associated with hypothesis testing: for every δ ∈ [0, 1], 1/X∗∞
has probability no more than δ of being δ or less. In this sense, 1/X∗t is a
p-value (perhaps conservative).

Answer 2 As we will show, there are systematic ways of adjusting X∗t to elim-
inate the exaggeration. There exist, that is to say, functions f such that
limx→∞ f(x) =∞ and f(X∗t ) is an unexaggerated measure of the evidence
against P , inasmuch as there exists a test martingale Yt always satisfying
Yt ≥ f(X∗t ) for all t.

Answer 2 will appeal most to readers familiar with the algorithmic theory of
randomness, where the idea of treating a martingale as a dynamic measure
of evidence is well established. Answer 1 may be more interesting to readers
familiar with mathematical statistics, where the static notions of a Bayes factor
and a p-value are often compared.

As we further show in this article, Answer 1 has a converse. For any random
variable p that has the property that p has probability δ of being δ or less for
every δ ∈ [0, 1], there exists a test martingale (Xt) such that p = 1/X∗∞.

These results are probably known in one form or another to many people.
But they have received less attention than they deserve, probably because the
full picture emerges only when we bring together ideas from algorithmic ran-
domness and mathematical statistics. Readers who are not familiar with both
fields may want to read Section 2 for historical background. Others may turn
directly to the mathematical exposition in Sections 3 to 7.

Section 3 is devoted to mathematical preliminaries; in particular, it defines
test martingales and their wider conservative version, test supermartingales.
Section 4 reviews the relationship between test supermartingales and Bayes
factors, while Section 5 explains the relationship between the suprema of test
supermartingales and p-values. Section 6 explains how p-values can be adjusted
(“calibrated”) so that they are not exaggerated relative to Bayes factors, and
Section 7 explains how the maximal value attained so far by a test supermartin-
gale can be similarly adjusted so that it is not exaggerated relative to the current
value of a test supermartingale.

2 Some history

One source for the idea that a test martingale measures evidence is the work
of Jean Ville, who introduced martingales into probability theory in his 1939
thesis [23]. Ville considered only test martingales and emphasized their betting
interpretation. A test martingale under P is the capital process for a betting
strategy that starts with a unit capital and bets at rates given by P , risking
only the capital with which it begins. Such a strategy is an obvious way to test
P : you refute the quality of P ’s probabilities by making money against them.
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As Ville pointed out, the event that a test martingale tends to infinity has
probability zero, and for every event of probability zero, there is a test martin-
gale that tends to infinity if the event happens. Thus the classical idea that a
probabilistic theory predicts events to which it gives probability equal (or nearly
equal) to one can be expressed by saying that it predicts that test martingales
will not become infinite (or very large). Ville’s idea was popularized after World
War II by Per Martin-Löf [14, 16] and subsequently developed by Claus-Peter
Schnorr in the 1970s [21] and A. P. Dawid in the 1980s [5]. For details about
the role of martingales in algorithmic randomness from von Mises to Schnorr,
see [3]. For a historical perspective on the paradoxical behavior of martingales
when they are not required to be nonnegative (or at least bounded below), see
[4].

Ville’s idea of a martingale was taken up as a technical tool in probability
mathematics by Joseph Doob in the 1940s [13], and it subsequently became
important as a technical tool in mathematical statistics, especially in sequential
analysis and time series [11] and in survival analysis [1]. Mathematical statistics
has been slow, however, to take up the idea of a martingale as a dynamic measure
of evidence. Instead, statisticians emphasize a static concept of hypothesis
testing.

Most literature on statistical testing remains in the static and all-or-nothing
(reject or accept) framework established by Jerzy Neyman and Egon Pearson in
1933 [19]. Neyman and Pearson emphasized that when using an observation y
to test P with respect to an alternative hypothesis Q we should reject P for val-
ues of y for which the likelihood ratio P (y)/Q(y) is smallest or, equivalently, for
which the reciprocal likelihood ratio Q(y)/P (y) is largest.1 If the observation y
is a vector, say y1 . . . yt, where t continues to grow, then the reciprocal likelihood
ratio Q(y1 . . . yt)/P (y1 . . . yt) is a discrete-time martingale under P , but math-
ematical statisticians did not propose to interpret it directly. In the sequential
analysis invented by Abraham Wald and George A. Barnard in the 1940s, the
goal was to define an all-or-nothing Neyman-Pearson test by specifying a rule
for stopping when Q(y1 . . . yt)/P (y1 . . . yt) was large enough.

The increasing importance of Bayesian philosophy and practice starting in
the 1960s has made the likelihood ratio P (y)/Q(y) even more important. This
ratio is now often called the Bayes factor for P against Q, because by Bayes’s
theorem, we obtain the ratio of P ’s posterior probability to Q’s posterior prob-
ability by multiplying the ratio of their prior probabilities by this factor [10].

The notion of a p-value developed informally in statistics. In the late 19th
and early 20th centuries, it was widely agreed in mathematical statistics that
one should fix a threshold (subsequently called a significance level) for probabil-
ities, below which a probability would be small enough to justify the rejection
of a hypothesis. But because different people might fix this significance level
differently, it was natural, in empirical work, to report the largest significance

1Here P (y) and Q(y) represent either probabilities assigned to y by the two hypotheses
(discrete case) or, more generally, probability densities relative to a common reference measure.
In the mathematical exposition that starts in Section 3, the two probabilistic hypotheses are
represented by probability measures P and Q on a measurable space (Ω,F).
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level for which the hypothesis would still have been rejected, and the English
statisticians (e.g., Karl Pearson in 1900 [20] and R. A. Fisher in 1925 [7]) had the
habit of calling this borderline probability “the value of P”. Later, this became
“P-value” or “p-value” [2].

After the work of Neyman and Pearson, which emphasized the probabilities
of error associated with significance levels chosen in advance, mathematical
statisticians often criticized applied statisticians for merely reporting p-values,
as if a small p-value were a measure of evidence, speaking for itself without
reference to a particular significance level. This disdain for p-values has been
adopted and amplified by modern Bayesians, who have pointed to cases where
p-values diverge widely from Bayes factors and hence are very misleading from
a Bayesian point of view [22].

3 Mathematical preliminaries

In this section we define martingales, Bayes factors, and p-values. All three
notions have two versions: the narrower “precise” version and the wider “con-
servative” version; the latter are often technically more useful. The conservative
version of martingales is provided by supermartingales. As for Bayes factors and
p-values, their main definitions will be conservative, but we will also define pre-
cise versions.

Recall that a probability space is a triplet (Ω,F ,P), where Ω is a set, F is
a σ-algebra on Ω, and P is a probability measure on F . A random variable X
is a real-valued F-measurable function on Ω; we allow random variables to take
values ±∞. We use the notation E(X) for the integral of X with respect to
P (undefined unless P{X = ∞} = 0 or P{X = −∞} = 0), and E(X | G) for
the conditional expectation of X given a σ-algebra G ⊆ F . A random process
is a family (Xt) of random variables Xt; the index t is interpreted as time. We
are mainly interested in the case where t is discrete, namely t = 0, 1, 2, . . . ; in
particular, this was our assumption in Sections 1 and 2. However, our results
(Theorems 1–4) will apply to both discrete t and continuous t (namely, t ∈
[0,∞)).

Martingales and supermartingales

We will work with two standard definitions of martingales and supermartingales
in a probability space:

1. (Xt,Ft), where t ranges over an ordered set ({0, 1, . . .} or [0,∞) in this
article), is a supermartingale if (Ft) is a filtration (i.e., an indexed set of
sub-σ-algebras of F such that Fs ⊆ Ft whenever s < t), (Xt) is a random
process adapted with respect to (Ft) (i.e., each Xt is Ft-measurable), each
Xt is integrable, and

E(Xt | Fs) ≤ Xs
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when s < t. A supermartingale is a martingale if, for all t and s < t,

E(Xt | Fs) = Xs. (1)

2. A random process (Xt) is a supermartingale (resp. martingale) if (Xt,Ft)
is a supermartingale (resp. martingale) where Ft is the σ-algebra generated
by Xs, s ≤ t.

For both definitions, the class of supermartingales contains that of martingales.
In the case of continuous time we will assume that the paths of (Xt) are right-
continuous (they will then automatically have left limits a.s.: see, e.g., [18], VI.3)
and that the filtration (Ft) is right-continuous, in that, at each time t, Ft =
Ft+ := ∩s>tFs (we will, however, always indicate where this assumption is used,
and we will never need the other of the “usual assumptions”, the completeness
of the σ-algebras Ft).

We are particularly interested in test supermartingales: those that are non-
negative (Xt ≥ 0 for all t) and have initial value X0 equal to 1. A well-known
fact about test supermartingales, first proven for discrete time and test martin-
gales by Ville, is that

P{X∗∞ ≥ c} ≤ 1/c (2)

for every c ≥ 1 ([23], p. 100; [6], VI.1). We will call this the maximal inequality.
This inequality shows that Xt can take value ∞ only with probability zero.

Bayes factors

A nonnegative measurable function B : Ω → [0,∞] is called a Bayes factor for
P if

∫
(1/B)dP ≤ 1; we will usually omit “for P”. A Bayes factor B is said to

be precise if
∫

(1/B)dP = 1.
In order to relate this definition to the notion of Bayes factor discussed

informally in Sections 1 and 2, we note first that whenever Q is a proba-
bility measure on (Ω,F), the Radon-Nikodym derivative dQ/dP will satisfy∫

(dQ/dP)dP ≤ 1, with equality if Q is absolutely continuous with respect to
P. Therefore, B = 1/(dQ/dP) will be a Bayes factor for P. The Bayes factor
B will be precise if Q is absolutely continuous with respect to P; in this case B
will be a version of the Radon-Nikodym derivative dP/dQ.

Conversely, whenever a nonnegative measurable function B satisfies∫
(1/B)dP ≤ 1, we can construct a probability measure Q that has 1/B

as its Radon-Nikodym derivative with respect to P. We first construct a mea-
sure Q0 by setting Q0(A) :=

∫
A

(1/B)dP for all A ∈ F , and then obtain Q by
adding to Q0 a measure that puts the missing mass 1−Q0(Ω) (which can be 0)
on a set E (this can be empty or a single point) to which P assigns probability
zero. (If P assigns positive probability to every element of Ω, we can add a
new point to Ω.) The function B will be a version of the Radon-Nikodym
derivative dP/dQ if we redefine it by setting B(ω) := 0 for ω ∈ E (remember
that P(E) = 0).
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p-values

In order to relate p-values to supermartingales, we introduce a new concept,
that of a p-test. A p-test is a measurable function p : Ω→ [0, 1] such that

P{ω | p(ω) ≤ δ} ≤ δ (3)

for all δ ∈ [0, 1]. We say that p is a precise p-test if

P{ω | p(ω) ≤ δ} = δ (4)

for all δ ∈ [0, 1].
It is consistent with the established usage to call the values of a p-test p-

values, at least if the p-test is precise. One usually starts from a measurable
function T : Ω→ R (the test statistic) and sets p(ω) := P{ω′ | T (ω′) ≥ T (ω)};
it is clear that a function p defined in this way, and any majorant of such a p,
will satisfy (3). If the distribution of T is continuous, p will also satisfy (4). If
not, we can treat the ties T (ω′) = T (ω) more carefully and set

p(ω) := P{ω′ | T (ω′) > T (ω)}+ ξP{ω′ | T (ω′) = T (ω)},

where ξ is chosen randomly from the uniform distribution on [0, 1]; in this way
we will always obtain a function satisfying (4) (where P now refers to the overall
probability encompassing generation of ξ).

4 Supermartingales and Bayes factors

When (Xt,Ft) is a test supermartingale, 1/Xt is a Bayes factor for any value
of t. It is also true that 1/X∞, X∞ being the supermartingale’s limiting value,
is a Bayes factor. Part 1 of the following theorem is a precise statement of
the latter assertion; the former assertion follows from the fact that we can stop
the supermartingale at any point t. Part 2 of the theorem states that we can
construct a test martingale whose limiting value is reciprocal to a given precise
Bayes factor.

Theorem 1. 1. If (Xt,Ft) is a test supermartingale, then X∞ exists almost
surely and 1/X∞ is a Bayes factor.

2. Suppose B is a precise Bayes factor. Then there is a test martingale (Xt)
such that B = 1/X∞. Moreover, for any filtration (Ft) such that B is
F∞-measurable, there is a test martingale (Xt,Ft) such that B = 1/X∞
almost surely.

Proof. If (Xt,Ft) is a test supermartingale, the limit X∞ exists almost surely by
Doob’s convergence theorem (see, e.g., [18], VI.6) and the inequality

∫
X∞dP ≤

1 holds by Fatou’s lemma:∫
X∞dP =

∫
lim inf
t→∞

XtdP ≤ lim inf
t→∞

∫
XtdP = 1.

6



Now suppose that B is a precise Bayes factor and (Ft) is a filtration such
that B is F∞-measurable. We can set Xt := E(1/B | Ft) (requiring (Xt) to be
right-continuous in the case of continuous time: cf. [18], VI.4(3); it is essential
here that (Ft) should be right-continuous). Then X∞ = 1/B almost surely by
Lévy’s zero-one law ([12], pp. 128–130; [18], VI.6, corollary). If (Ft) such that
B is F∞-measurable is not given in advance, we can define it by, e.g.,

Ft :=

{
{∅,Ω} if t < 1

σ(B) otherwise

(where σ(B) is the σ-algebra generated by B).

Formally, a stopping time with respect to a filtration (Ft) is defined to be a
nonnegative random variable τ taking values in [0,∞] such that, at each time t,
the event {ω | τ(ω) ≤ t} belongs to Ft. Let (Xt,Ft) be a test supermartingale.
Doob’s convergence theorem, which was used in the proof of Theorem 1, implies
that we can define its value Xτ at τ by the formula Xτ (ω) := Xτ(ω)(ω) even
when τ =∞ with positive probability. Doob’s stopping theorem (see, e.g., [18],
VI.13) shows that the stopped process (Xτ

t ,Ft) := (Xt∧τ ,Ft) (where a ∧ b :=
min(a, b)) is also a nonnegative supermartingale. From part 1 of Theorem 1 we
can now deduce that 1/Xτ is a Bayes factor since Xτ is the final value of the
stopped process. (However, the fact that 1/Xτ is a Bayes factor also follows
directly from Doob’s stopping theorem.)

5 Supermartingales and p-values

Part 1 of the theorem that we prove in this section says that the inverse of a
supremum of a test supermartingale is a p-test. This is true when the supremum
is taken over [0, t] for some time point t (or over [0, τ ] for a stopping time τ),
but the strongest statement obtains when we consider the supremum over all
time points (i.e., for τ := ∞). Part 2 of the theorem says that when we are
given a precise p-test, we can construct a test martingale that has the inverse
of the p-test as its supremum.

In order to understand part 2, we need to keep in mind that a p-test does
not bring with it a structure indexed by time. In order to construct from the
p-test a test martingale (Xt) whose supremum is the inverse of the p-test, we
need also to construct a time scale. But the core idea can be explained more
transparently in the case of a test with discrete levels, because constructing a
time scale and a martingale is then simply a matter of constructing a sequence
of bets. For simplicity, consider a function T : Ω → {0, 1, 2, . . .} such that, for
each n = 0, 1, 2, . . ., P{T ≥ n} = 2−n. (This is a test of randomness in the sense
of Martin-Löf [15]; Martin-Löf has “ ≤ 2−n” instead of “ = 2−n” in his general
definition. The function 2−T is essentially a p-test, if we ignore small constant
factors.) The martingale X that achieves 2T (ω) as its supremum suptXt(ω) is
constructed as the capital process of the following betting strategy: start with
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capital X0 = 1; gamble everything on the event T ≥ 1, so that

X1(ω) =

{
2 if T (ω) ≥ 1

0 otherwise;

then gamble everything on the event T ≥ 2, so that

X2(ω) =

{
4 if T (ω) ≥ 2

0 otherwise;

etc. Here is our formal result:

Theorem 2. 1. If (Xt,Ft) is a test supermartingale, 1/X∗∞ = 1/ suptXt is
a p-test.

2. If p is a precise p-test, there is a test martingale (Xt) such that p = 1/X∗∞.

Proof. The inequality P {1/X∗∞ ≤ δ} ≤ δ for test supermartingales follows from
the maximal inequality (2).

In the opposite direction, let p be a precise p-test. Set Π := 1/p ∈ [1,∞].
Define a right-continuous random process (Xt), t ∈ [0,∞), by

Xt(ω) =


1 if t ∈ [0, 1)

t if t ∈ [1,Π(ω))

0 otherwise.

Since X∗∞ = Π, it suffices to check that (Xt) is a test martingale. The time
interval where this process is non-trivial is t ≥ 1; notice that X1 = 1 with
probability one.

Let t ≥ 1; we then have Xt = t I{Π>t}. Since Xt takes values in the two-
element set {0, t}, it is integrable. The σ-algebra generated by Xt consists of 4
elements (∅, Ω, the set Π−1((t,∞]), and its complement), and the σ-algebra Ft
generated by Xs, s ≤ t, consists of the sets Π−1(E) where E is either a Borel
subset of [1, t] or the union of (t,∞] and a Borel subset of [1, t]. To check (1),
where 1 ≤ s < t, it suffices to show that∫

Π−1(E)

XtdP =

∫
Π−1(E)

XsdP,

i.e., ∫
Π−1(E)

t I{Π>t} dP =

∫
Π−1(E)

s I{Π>s} dP, (5)

where E is either a Borel subset of [1, s] or the union of (s,∞] and a Borel
subset of [1, s]. If E is a Borel subset of [1, s], the equality (5) holds as its two
sides are zero. If E is the union of (s,∞] and a Borel subset of [1, s], (5) can be
rewritten as ∫

Π−1((s,∞])

t I{Π>t} dP =

∫
Π−1((s,∞])

s I{Π>s} dP,

i.e., tP{Π > t} = sP{Π > s}, i.e., 1 = 1.
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6 Calibrating p-values

An increasing (not necessarily strictly increasing) function f : [0, 1]→ [0,∞] is
called a calibrator if f(p) is a Bayes factor for any p-test p. This notion was
discussed in [24] and, less explicitly, in [22]. In this section we will characterize
the set of all increasing functions that are calibrators; this result is a slightly
more precise version of Theorem 7 in [24].

We say that a calibrator f dominates a calibrator g if f(x) ≤ g(x) for all
x ∈ [0, 1]. We say that f strictly dominates g if f dominates g and f(x) < g(x)
for some x ∈ [0, 1]. A calibrator is admissible if it is not strictly dominated by
any other calibrator.

Theorem 3. 1. An increasing function f : [0, 1] → [0,∞) is a calibrator if
and only if ∫ 1

0

dx

f(x)
≤ 1. (6)

2. Any calibrator is dominated by an admissible calibrator.

3. A calibrator is admissible if and only if it is left-continuous and∫ 1

0

dx

f(x)
= 1. (7)

Proof. Part 1 is proven in [24] (Theorem 7), but we will give another argument,
perhaps more intuitive. The condition “only if” is obvious: every calibrator
must satisfy (6) in order to transform the “exemplary” p-test p(ω) = ω on the
probability space ([0, 1],F ,P), where F is the Borel σ-algebra on [0, 1] and P
is the uniform probability measure on F , into a Bayes factor. To check “if”,
suppose (6) holds and take any p-test p. The expectation E(1/f(p)) depends
on p only via the values P{p ≤ c}, c ∈ [0, 1], and this dependence is monotonic:
if a p-test p1 is stochastically smaller than another p-test p2 in the sense that
P{p1 ≤ c} ≥ P{p2 ≤ c} for all c, then E(1/f(p1)) ≥ E(1/f(p2)). This can
be seen, e.g., from the well-known formula E(ξ) =

∫∞
c=0

P{ξ > c}, where ξ is
a nonnegative random variable. The condition (6) means that the inequality
E(1/f(p)) ≤ 1 holds for our exemplary p-test p; since p is stochastically smaller
than any other p-test, this inequality holds for any p-test.

Part 3 follows from part 1, and part 2 follows from parts 1 and 3.

Equation (7) gives a recipe for producing admissible calibrators f : take any

left-continuous decreasing function g : [0, 1] → [0,∞] such that
∫ 1

0
g(x)dx = 1

and set f(x) := 1/g(x), x ∈ [0, 1]. We see in this way, for example, that

f(x) := x1−α/α (8)

is an admissible calibrator for every α ∈ (0, 1); if we are primarily interested in
the behavior of f(x) as x→ 0, we should take a small value of α. This class of
calibrators was found independently in [24] and [22].
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The calibrators (8) shrink to 0 significantly slower than x as x → 0.
But there are evidently calibrators that shrink as fast as x ln1+α(1/x), or
x ln(1/x) ln1+α ln(1/x), etc., where α is a positive constant. For example,

f(x) :=

{
α−1(1 + α)−αx ln1+α(1/x) if x ≤ e−1−α

∞ otherwise
(9)

is a calibrator for any α > 0.

7 Calibrating the suprema of test supermartin-
gales

Let us call an increasing function f : [1,∞)→ [0,∞) a martingale calibrator if
it satisfies the following property:

For any probability space (Ω,F ,P) and any test supermartingale
(Xt,Ft) in this probability space there exists a test supermartingale
(Yt,Ft) such that Yt ≥ f(X∗t ) for all t.

There are at least 32 equivalent definitions of a martingale calibrator: we can
independently replace each of the two entries of “supermartingale” in the def-
inition by “martingale”, we can independently replace (Xt,Ft) by (Xt) and
(Yt,Ft) by (Yt), and we can optionally allow t to take value ∞. The equiva-
lence will be demonstrated in the proof of Theorem 4. Our convention is that
f(∞) := limx→∞ f(x) (but remember that X∗t =∞ only with probability zero,
even for t =∞).

As in the case of calibrators, we say that a martingale calibrator f is admis-
sible if there is no other martingale calibrator g such that g(x) ≥ f(x) for all
x ∈ [1,∞) (g dominates f) and g(x) > f(x) for some x ∈ [1,∞).

Theorem 4. 1. An increasing function f : [1,∞) → [0,∞) is a martingale
calibrator if and only if ∫ 1

0

f(1/x)dx ≤ 1. (10)

2. Any martingale calibrator is dominated by an admissible martingale cali-
brator.

3. A martingale calibrator is admissible if and only if it is right-continuous
and ∫ 1

0

f(1/x)dx = 1. (11)

Proof. We start from the statement “if” of part 1. Suppose an increasing func-
tion f : [1,∞) → [0,∞) satisfies (10) and (Xt,Ft) is a test supermartingale.
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By Theorem 3, g(x) := 1/f(1/x), x ∈ [0, 1], is a calibrator, and by Theo-
rem 2, 1/X∗∞ is a p-test. Therefore, g(1/X∗∞) = 1/f(X∗∞) is a Bayes factor,
i.e., E(f(X∗∞)) ≤ 1. As in the proof of Theorem 1, we set Yt := E(f(X∗∞) | Ft)
obtaining a nonnegative martingale (Yt,Ft) with initial value Y0 ≤ 1 satisfying
Y∞ = f(X∗∞) a.s. Since

Yt = E(f(X∗∞) | Ft) ≥ E(f(Xt) | Ft) = f(Xt)

(this includes t = ∞) and we can make (Yt,Ft) a test martingale by dividing
each Yt by Y0 ≤ 1, the statement “if” in part 1 of the theorem is proven. Notice
that our argument shows that f is a martingale calibrator in any of the 32
senses; this uses the fact that (Yt) is a test supermartingale whenever (Yt,Ft)
is a test supermartingale.

Let us now check that any martingale calibrator (in any of the senses)
satisfies (10). By any of our definitions of a martingale calibrator, we have∫
f(X∗t )dP ≤ 1 for all test martingales (Xt) and all t < ∞. It is easy to see

that in Theorem 2, part 2, we can replace X∗∞ with, say, X∗π/2 by replacing the

test martingale (Xt) whose existence it asserts with

X ′t :=

{
Xarctan t if t < π/2

X∞ otherwise.

Applying this modification of Theorem 2, part 2, to the precise p-test p(ω) := ω
on [0, 1] equipped with the uniform probability measure we obtain∫ 1

0

f(1/x)dx = E(f(X∗π/2)) ≤ E(Yπ/2) ≤ 1.

This completes the proof of part 1.
Part 3 is now obvious, and part 2 follows from parts 1 and 3.

As in the case of calibrators, we have a recipe for producing admissible
martingale calibrators f provided by (11): take any left-continuous decreasing

function g : [0, 1] → [0,∞) satisfying
∫ 1

0
g(x)dx = 1 and set f(y) := g(1/y),

y ∈ [1,∞). In this way we obtain the class of admissible martingale calibrators

f(y) := αy1−α, α ∈ (0, 1),

analogous to (8) and the class

f(y) :=

{
α(1 + α)α y

ln1+α y
if y ≥ e1+α

0 otherwise,
α > 0,

analogous to (9).
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Technical appendix

In this appendix we will mainly discuss the case of continuous time; we will see
that in this case the notion of a test martingale is not fully adequate for the
purpose of hypothesis testing (Lemma 2). Fix a filtration (Ft); in this appendix
we will only consider supermartingales (Xt,Ft), and we will abbreviate (Xt,Ft)
to (Xt), or even to Xt or X.

In discrete time, there is no difference between using test martingales and
test supermartingales for hypothesis testing: every test martingale is a test
supermartingale, and every test supermartingale is dominated by a test martin-
gale (according to Doob’s decomposition theorem, [18], VII.1); therefore, using
test supermartingales only allows discarding evidence as compared to test mar-
tingales. In continuous time, the difference between test martingales and test
supermartingales is essential, as we will see below (Lemma 2). For hypothesis
testing we need “local martingales”, a modification of the notion of martingales
introduced by Itô and Watanabe [8] and nowadays used perhaps even more often
than martingales themselves in continuous time. This is the principal reason
why in this article we use test supermartingales so often starting from Section 3.

Remember that a random process (Xt) is a local member of a class C of
random processes (such as martingales or supermartingales) if there exists a
sequence τ1 ≤ τ2 ≤ · · · of stopping times (called a localizing sequence) such
that τn → ∞ a.s. and each stopped process Xτn

t := Xt∧τn belongs to the class
C. A standard argument (see, e.g., [6], VI.29) shows that there is no difference
between test supermartingales and local test supermartingales:

Lemma 1. Every local test supermartingale (Xt) is a test supermartingale.

Proof. Let τ1, τ2, . . . be a localizing sequence, so that τn → ∞ as n → ∞ a.s.
and each Xτn , n = 1, 2, . . ., is a test supermartingale. By Fatou’s lemma for
conditional expectations, we have, for 0 ≤ s < t:

E(Xt | Fs) = E
(

lim
n→∞

Xτn
t | Fs

)
≤ lim inf

n→∞
E (Xτn

t | Fs) ≤ lim inf
n→∞

Xτn
s = Xs.

In particular, taking s = 0 we obtain E(Xt) ≤ 1.

An adapted process (At) is called increasing if A0 = 0 and its every path
is right-continuous and increasing (as usual, not necessarily strictly increasing).
According to the Doob-Meyer decomposition theorem ([6], Theorem VII.12),
every test supermartingale (Xt) can be represented as the differenceXt = Yt−At
of a local test martingale (Yt) and an increasing process (At). Therefore, for
the purpose of hypothesis testing in continuous time, local test martingales
are as powerful as test supermartingales: every local test martingale is a test
supermartingale, and every test supermartingale is dominated by a local test
martingale.

In discrete time there is no difference between local test martingales and
test martingales ([6], (VI.31.1)). In continuous time, however, the difference is
essential. A standard example ([9]; see also [18], VI.21, and [6], VI.29) of a local
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martingale which is not a martingale is Lt := 1/ ‖Wt + e‖, whereWt is Brownian
motion in R3 and e is a vector in R3 such that ‖e‖ = 1 (e.g., e = (1, 0, 0)); Lt
being a local martingale can be deduced from 1/ ‖·‖ (the Newtonian kernel)
being a harmonic function on R3 \ {0}. The random process (Lt) is a local test
martingale such that suptE(L2

t ) < ∞; nevertheless it fails to be a martingale.
See, e.g., [17] (Example 1.140) for detailed calculations.

The local martingale Lt := 1/ ‖Wt + e‖ provides an example of a test su-
permartingale which cannot be replaced, for the purpose of hypothesis testing,
by a test martingale. According to another version of the Doob-Meyer decom-
position theorem ([18], VII.31), a supermartingale (Xt) can be represented as
the difference Xt = Yt −At of a martingale (Yt) and an increasing process (At)
if and only if (Xt) belong to the class (DL). The latter is defined as follows: a
supermartingale is said to be in (DL) if, for any a > 0, the system of random
variables Xτ , where τ ranges over the stopping times satisfying τ ≤ a, is uni-
formly integrable. It is known that (Lt), despite being uniformly integrable (as
a collection of random variables Lt), does not belong to the class (DL) ([18],
VI.21 and the note in VI.19). Therefore, (Lt) cannot be represented as the dif-
ference Lt = Yt − At of a martingale (Yt) and an increasing process (At). Test
martingales cannot replace local test martingales in hypothesis testing also in
the stronger sense of the following lemma.

Lemma 2. Let δ > 0. It is not true that for every local test martingale (Xt)
there exists a test martingale (Yt) such that Yt ≥ δXt for all t.

Proof. Let Xt := Lt = 1/ ‖Wt + e‖, and suppose there is a test martingale (Yt)
such that Yt ≥ δXt for all t. Let ε > 0 be arbitrarily small. Since (Yt) is in
(DL) ([18], VI.19(a)), for any a > 0 we can find C > 0 such that

sup
τ

∫
{Yτ≥C}

YτdP < εδ,

τ ranging over the stopping times satisfying τ ≤ a. Since

sup
τ

∫
{Xτ≥C/δ}

XτdP ≤ sup
τ

∫
{Yτ≥C}

(Yτ/δ)dP < ε,

(Xt) is also in (DL), which we know to be false.
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