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Abstract

Recent advances in machine learning make it possible to design effi-
cient prediction algorithms for data sets with huge numbers of parameters.
This paper describes a new technique for “hedging” the predictions output
by many such algorithms, including support vector machines, kernel ridge
regression, kernel nearest neighbours, and by many other state-of-the-art
methods. The hedged predictions for the labels of new objects include
quantitative measures of their own accuracy and reliability. These mea-
sures are provably valid under the assumption of randomness, traditional
in machine learning: the objects and their labels are assumed to be gener-
ated independently from the same probability distribution. In particular,
it becomes possible to control (up to statistical fluctuations) the number
of erroneous predictions by selecting a suitable confidence level. Valid-
ity being achieved automatically, the remaining goal of hedged prediction
is efficiency: taking full account of the new objects’ features and other
available information to produce as accurate predictions as possible. This
can be done successfully using the powerful machinery of modern machine
learning.

1 Introduction

The two main varieties of the problem of prediction, classification and regres-
sion, are standard subjects in statistics and machine learning. The classical
classification and regression techniques can deal successfully with conventional
small-scale, low-dimensional data sets; however, attempts to apply these tech-
niques to modern high-dimensional and high-throughput data sets encounter
serious conceptual and computational difficulties. Several new techniques, first
of all support vector machines [18, 19] and other kernel methods, have been
developed in machine learning recently with the explicit goal of dealing with
high-dimensional data sets with large numbers of objects.
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A typical drawback of the new techniques is the lack of useful measures
of confidence in their predictions. For example, some of the tightest upper
bounds of the popular PAC theory on the probability of error exceed 1 even
for relatively clean data sets ([24], p. 249). This paper describes an efficient
way to “hedge” the predictions produced by the new and traditional machine-
learning methods, i.e., to complement them with measures of their accuracy
and reliability. Appropriately chosen, not only are these measures valid and
informative, but they also take full account of the special features of the object
to be predicted.

We call our algorithms for producing hedged predictions “conformal predic-
tors”; they are formally introduced in Section 3. Their most important prop-
erty is the automatic validity under the randomness assumption (to be discussed
shortly). Informally, validity means that conformal predictors never overrate the
accuracy and reliability of their predictions. This property, stated in Sections 3
and 5, is formalized in terms of finite data sequences, without any recourse to
asymptotics.

The claim of validity of conformal predictors depends on an assumption
that is shared by many other algorithms in machine learning, which we call
the assumption of randomness: the objects and their labels are assumed to be
generated independently from the same probability distribution. Admittedly,
this is a strong assumption, and areas of machine learning are emerging that
rely on other assumptions (such as the Markovian assumption of reinforcement
learning; see, e.g., [16]) or dispense with any stochastic assumptions altogether
(competitive on-line learning; see, e.g., [2, 22]). It is, however, much weaker
than assuming a parametric statistical model, sometimes complemented with a
prior distribution on the parameter space, which is customary in the statistical
theory of prediction. And taking into account the strength of the guarantees
that can be proved under this assumption, it does not appear overly restrictive.

So we know that conformal predictors tell the truth. Clearly, this is not
enough: truth can be uninformative and so useless. We will refer to various
measures of informativeness of conformal predictors as their “efficiency”. As
conformal predictors are provably valid, efficiency is the only thing we need to
worry about when designing conformal predictors for solving specific problems.
Virtually any classification or regression algorithm can be transformed into a
conformal predictor, and so most of the arsenal of methods of modern machine
learning can be brought to bear on the design of efficient conformal predictors.

We start the main part of the paper, in Section 2, with the description of an
idealized predictor based on Kolmogorov’s algorithmic theory of randomness.
This “universal predictor” produces the best possible hedged predictions but,
unfortunately, is noncomputable. We can, however, set ourselves the task of
approximating the universal predictor as well as possible.

In Section 3 we formally introduce the notion of conformal predictors and
state a simple result about their validity. In that section we also briefly describe
results of computer experiments demonstrating the methodology of conformal
prediction.

In Section 4 we consider an example demonstrating how conformal predictors
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react to the violation of our model of the stochastic mechanism generating the
data (within the framework of the randomness assumption). If the model coin-
cides with the actual stochastic mechanism, we can construct an optimal confor-
mal predictor, which turns out to be almost as good as the Bayes-optimal confi-
dence predictor (the formal definitions will be given later). When the stochastic
mechanism significantly deviates from the model, conformal predictions remain
valid but their efficiency inevitably suffers. The Bayes-optimal predictor starts
producing very misleading results which superficially look as good as when the
model is correct.

In Section 5 we describe the “on-line” setting of the problem of prediction,
and in Section 6 contrast it with the more standard “batch” setting. The notion
of validity introduced in Section 3 is applicable to both settings, but in the on-
line setting it can be strengthened: we can now prove that the percentage of the
erroneous predictions will be close, with high probability, to a chosen confidence
level. For the batch setting, the stronger property of validity for conformal
predictors remains an empirical fact. In Section 6 we also discuss limitations of
the on-line setting and introduce new settings intermediate between on-line and
batch. To a large degree, conformal predictors still enjoy the stronger property
of validity for the intermediate settings.

Section 7 is devoted to the discussion of the difference between two kinds
of inference from empirical data, induction and transduction (emphasized by
Vladimir Vapnik [18, 19]). Conformal predictors belong to transduction, but
combining them with elements of induction can lead to a significant improve-
ment in their computational efficiency (Section 8).

We show how some popular methods of machine learning can be used as un-
derlying algorithms for hedged prediction. We do not give the full description
of these methods and refer the reader to the existing readily accessible descrip-
tions. This paper is, however, self-contained in the sense that we explain all
features of the underlying algorithms that are used in hedging their predictions.
We hope that the information we provide will enable the reader to apply our
hedging techniques to their favourite machine-learning methods.

2 Ideal hedged predictions

The most basic problem of machine learning is perhaps the following. We are
given a training set of examples

(x1, y1), . . . , (xl, yl), (1)

each example (xi, yi), i = 1, . . . , l, consisting of an object xi (typically, a vector
of attributes) and its label yi; the problem is to predict the label yl+1 of a
new object xl+1. Two important special cases are where the labels are known a
priori to belong to a relatively small finite set (the problem of classification) and
where the labels are allowed to be any real numbers (the problem of regression).

The usual goal of classification is to produce a prediction ŷl+1 that is likely to
coincide with the true label yl+1, and the usual goal of regression is to produce
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a prediction ŷl+1 that is likely to be close to the true label yl+1. In the case
of classification, our goal will be to complement the prediction ŷl+1 with some
measure of its reliability. In the case of regression, we would like to have some
measure of accuracy and reliability of our prediction. There is a clear trade-
off between accuracy and reliability: we can improve the former by relaxing
the latter and vice versa. We are looking for algorithms that achieve the best
possible trade-off and for a measure that would quantify the achieved trade-off.

Let us start from the case of classification. The idea is to try every possible
label Y as a candidate for xl+1’s label and see how well the resulting sequence

(x1, y1), . . . , (xl, yl), (xl+1, Y ) (2)

conforms to the randomness assumption (if it does conform to this assumption,
we will say that it is “random”; this will be formalized later in this section). The
ideal case is where all Y s but one lead to sequences (2) that are not random;
we can then use the remaining Y as a confident prediction for yl+1.

In the case of regression, we can output the set of all Y s that lead to random
(2) as our “prediction set”. An obvious obstacle is that the set of all possible
Y s is infinite and so we cannot go through all the Y s explicitly, but we will see
in the next section that there are ways to overcome this difficulty.

We can see that the problem of hedged prediction is intimately connected
with the problem of testing randomness. Different versions of the “universal”
notion of randomness were defined by Kolmogorov, Martin-Löf and Levin (see,
e.g., [6]) based on the existence of universal Turing machines. Adapted to
our current setting, Martin-Löf’s definition is as follows. Let Z be the set of all
possible examples; as each example consists of an object and a label, Z = X×Y,
where X is the set of all possible objects and Y, |Y| > 1, is the set of all possible
labels. We will use Z

∗ as the notation for all finite sequences of examples. A
function t : Z∗ → [0, 1] is a randomness test if

1. for all ǫ ∈ (0, 1), all n ∈ {1, 2, . . .} and all probability distributions P on
Z,

Pn {z ∈ Z
n : t(z) ≤ ǫ} ≤ ǫ; (3)

2. t is upper semicomputable.

The first condition means that the randomness test is required to be valid: if,
for example, we observe t(z) ≤ 1% for our data set z, then either the data set
was not generated independently from the same probability distribution P or a
rare (of probability at most 1%, under any P ) event has occurred. The second
condition means that we should be able to compute the test, in a weak sense (we
cannot require computability in the usual sense, since the universal test can only
be upper semicomputable: it can work forever to discover all patterns in the
data sequence that make it non-random). Martin-Löf (developing Kolmogorov’s
earlier ideas) proved that there exists a smallest, to within a constant factor,
randomness test.
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Let us fix a smallest randomness test, call it the universal test, and call the
value it takes on a data sequence the randomness level of this sequence. A ran-
dom sequence is one whose randomness level is not small; this is rather informal,
but it is clear that for finite data sequences we cannot have a clear-cut division of
all sequences into random and non-random (like the one defined by Martin-Löf
[7] for infinite sequences). If t is a randomness test, not necessarily universal,
the value that it takes on a data sequence will be called the randomness level
detected by t.

Remark The word “random” is used in (at least) two different senses in the
existing literature. In this paper we need both but, luckily, the difference does
not matter within our current framework. First, randomness can refer to the
assumption that the examples are generated independently from the same dis-
tribution; this is the origin of our “assumption of randomness”. Second, a data
sequence is said to be random with respect to a statistical model if the univer-
sal test (a generalization of the notion of universal test as defined above) does
not detect any lack of conformity between the two. Since the only statistical
model we are interested in this paper is the one embodying the assumption of
randomness, we have a perfect agreement between the two senses.

Prediction with Confidence and Credibility

Once we have a randomness test t, universal or not, we can use it for hedged pre-
diction. There are two natural ways to package the results of such predictions:
in this subsection we will describe the way that can only be used in classification
problems. If the randomness test is not computable, we can imagine an oracle
answering questions about its values.

Given the training set (1) and the test object xl+1, we can act as follows:

• consider all possible values Y ∈ Y for the label yl+1;

• find the randomness level detected by t for every possible completion (2);

• predict the label Y corresponding to a completion with the largest ran-
domness level detected by t;

• output as the confidence in this prediction one minus the second largest
randomness level detected by t;

• output as the credibility of this prediction the randomness level detected
by t of the output prediction Y (i.e., the largest randomness level detected
by t over all possible labels).

To understand the intuition behind confidence, let us tentatively choose a con-
ventional “significance level”, such as 1%. (In the terminology of this paper,
this corresponds to a “confidence level” of 99%, i.e., 100% minus 1%.) If the
confidence in our prediction is 99% or more and the prediction is wrong, the
actual data sequence belongs to an a priori chosen set of probability at most 1%
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Figure 1: An example of a nested family of prediction sets (casual prediction in
black, confident prediction in dark grey, and highly confident prediction in light
grey).

(the set of all data sequences with randomness level detected by t not exceeding
1%).

Intuitively, low credibility means that either the training set is non-random
or the test object is not representative of the training set (say, in the training
set we have images of digits and the test object is that of a letter).

Confidence Predictors

In regression problems, confidence, as defined in the previous subsection, is not
a useful quantity: it will typically be equal to 0. A better approach is to choose
a range of confidence levels 1 − ǫ, and for each of them specify a prediction set
Γǫ ⊆ Y, the set of labels deemed possible at the confidence level 1 − ǫ. We will
always consider nested prediction sets: Γǫ1 ⊆ Γǫ2 when ǫ1 ≥ ǫ2. A confidence
predictor is a function that maps each training set, each new object, and each
confidence level 1 − ǫ (formally, we allow ǫ to take any value in (0, 1)) to the
corresponding prediction set Γǫ. For the confidence predictor to be valid the
probability that the true label will fall outside the prediction set Γǫ should not
exceed ǫ, for each ǫ.

We might, for example, choose the confidence levels 99%, 95% and 80%, and
refer to the 99% prediction set Γ1% as the highly confident prediction, to the
95% prediction set Γ5% as the confident prediction, and to the 80% prediction
set Γ20% as the casual prediction. Figure 1 shows how such a family of prediction
sets might look in the case of a rectangular label space Y. The casual prediction
pinpoints the target quite well, but we know that this kind of prediction can
be wrong with probability 20%. The confident prediction is much bigger. If we
want to be highly confident (make a mistake only with probability 1%), we must
accept an even lower accuracy; there is even a completely different location that
we cannot rule out at this level of confidence.
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Given a randomness test, again universal or not, we can define the corre-
sponding confidence predictor as follows: for any confidence level 1 − ǫ, the
corresponding prediction set consists of the Y s such that the randomness level
of the completion (2) detected by the test is greater than ǫ. The condition (3)
of validity for statistical tests implies that a confidence predictor defined in this
way is always valid.

The confidence predictor based on the universal test (the universal confidence
predictor) is an interesting object for mathematical investigation (see, e.g., [21],
Section 4), but it is not computable and so cannot be used in practice. Our goal
in the following sections will be to find computable approximations to it.

3 Conformal Prediction

In the previous section we explained how randomness tests can be used for
prediction. The connection between testing and prediction is, of course, well
understood and have been discussed at length by philosophers [13] and statis-
ticians (see, e.g., the textbook [3], Section 7.5). In this section we will see how
some popular prediction algorithms can be transformed into randomness tests
and, therefore, be used for producing hedged predictions.

Let us start with the most successful recent development in machine learning,
support vector machines ([18, 19], with a key idea going back to the generalized
portrait method [20]). Suppose the label space is Y = {−1, 1} (we are dealing
with the binary classification problem). With each set of examples

(x1, y1), . . . , (xn, yn) (4)

one associates an optimization problem whose solution produces nonnegative
numbers α1, . . . , αn (“Lagrange multipliers”). These numbers determine the
prediction rule used by the support vector machine (see [19], Chapter 10, for
details), but they also are interesting objects in their own right. Each αi,
i = 1, . . . , n, tells us how “strange” an element of the set (4) the corresponding
example (xi, yi) is. If αi = 0, (xi, yi) fits (4) very well (in fact so well that such
examples are uninformative, and the support vector machine ignores them when
making predictions). The elements with αi > 0 are called support vectors, and
the large value of αi indicates that the corresponding (xi, yi) is an outlier.

Taking the completion (2) as (4) (so that n = l + 1), we can find the cor-
responding α1, . . . , αl+1. If Y is different from the actual label yl+1, we expect
(xl+1, Y ) to be an outlier in (2) and so αl+1 be large as compared with α1, . . . , αl.
A natural way to compare αl+1 to the other αs is to look at the ratio

pY :=
|{i = 1, . . . , l + 1 : αi ≥ αl+1}|

l + 1
, (5)

which we call the p-value associated with the possible label Y for xl+1. In
words, the p-value is the proportion of the αs which are at least as large as the
last α.
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Table 1: Selected test examples from the USPS data set: the p-values of digits
(0–9), true and predicted labels, and confidence and credibility values.

0 1 2 3 4 5 6 7 8 9

true

label

pre-

diction

confi-

dence

credi-

bility

0.01% 0.11% 0.01% 0.01% 0.07% 0.01% 100% 0.01% 0.01% 0.01% 6 6 99.89% 100%

0.32% 0.38% 1.07% 0.67% 1.43% 0.67% 0.38% 0.33% 0.73% 0.78% 6 4 98.93% 1.43%

0.01% 0.27% 0.03% 0.04% 0.18% 0.01% 0.04% 0.01% 0.12% 100% 9 9 99.73% 100%

The methodology of support vector machines (as described in [18, 19]) is
directly applicable only to the binary classification problems, but the general
case can be reduced to the binary case by the standard “one-against-one” or
“one-against-the-rest” procedures. This allows us to define the strangeness val-
ues α1, . . . , αl+1 for general classification problems (see [24], p. 59, for details),
which in turn determine the p-values (5).

The function that assigns to each sequence (2) the corresponding p-value,
defined by (5), is a randomness test (this will follow from Theorem 1 stated in
Section 5 below). Therefore, the p-values, which are our approximations to the
corresponding randomness levels, can be used for hedged prediction as described
in the previous section. For example, if the p-value p−1 is small while p1 is not
small, we can predict 1 with confidence 1 − p−1 and credibility p1. Typical
credibility will be 1: for most data sets the percentage of support vectors is
small ([19], Chapter 12), and so we can expect αl+1 = 0 when Y = yl+1.

Remark When the order of examples is irrelevant, we refer to the data set (4)
as a set, although as a mathematical object it is a multiset rather than a set
since it can contain several copies of the same example. We will continue to
use this informal terminology (to be completely accurate, we would have to say
“data multiset” instead of “data set”!)

Table 1 illustrates the results of hedged prediction for a popular data set of
hand-written digits called the USPS data set [5]. The data set contains 9298
digits represented as a 16 × 16 matrix of pixels; it is divided into a training
set of size 7291 and a test set of size 2007. For several test examples the
table shows the p-values for each possible label, the actual label, the predicted
label, confidence, and credibility, computed using the support vector method
with the polynomial kernel of degree 5. To interpret the numbers in this table,
remember that high (i.e., close to 100%) confidence means that all labels except
the predicted one are unlikely. If, say, the first example were predicted wrongly,
this would mean that a rare event (of probability less than 1%) had occurred;
therefore, we expect the prediction to be correct (which it is). In the case of the
second example, confidence is also quite high (more than 95%), but we can see
that the credibility is low (less than 5%). From the confidence we can conclude
that the labels other than 4 are excluded at level 5%, but the label 4 itself is also
excluded at the level 5%. This shows that the prediction algorithm was unable
to extract from the training set enough information to allow us to confidently
classify this example: the strangeness of the labels different from 4 may be due
to the fact that the object itself is strange; perhaps the test example is very
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different from all examples in the training set. Unsurprisingly, the prediction
for the second example is wrong.

In general, high confidence shows that all alternatives to the predicted label
are unlikely. Low credibility means that the whole situation is suspect; as we
have already mentioned, we will obtain a very low credibility if the new example
is a letter (whereas all training examples are digits). Credibility will also be low
if the new example is a digit written in an unusual way. Notice that typically
credibility will not be low provided the data set was generated independently
from the same distribution: the probability that credibility will not exceed some
threshold ǫ (such as 1%) is at most ǫ. In summary, we can trust a prediction if
(1) the confidence is close to 100% and (2) the credibility is not low (say, is not
less than 5%).

Many other prediction algorithms can be used as underlying algorithms for
hedged prediction. For example, we can use the nearest neighbours technique
to associate

αi :=

∑k

j=1 d+
ij

∑k

j=1 d−ij
, i = 1, . . . , n, (6)

with the elements (xi, yi) of the set (4), where d+
ij is the jth shortest distance

from xi to other objects labelled in the same way as xi, and d−ij is the jth shortest
distance from xi to the objects labelled differently from xi; the parameter k ∈
{1, 2, . . .} in (6) is the number of nearest neighbours taken into account. The
distances can be computed in a feature space (that is, the distance between
x ∈ X and x′ ∈ X can be understood as ‖F (x) − F (x′)‖, F mapping the object
space X into a feature, typically Hilbert, space), and so (6) can also be used
with the kernel nearest neighbours.

The intuition behind (6) is as follows: a typical object xi labelled by, say, y
will tend to be surrounded by other objects labelled by y; and if this is the case,
the corresponding αi will be small. In the untypical case that there are objects
whose labels are different from y nearer than objects labelled y, αi will become
larger. Therefore, the αs reflect the strangeness of examples.

The p-values computed by (6) can again be used for hedged prediction. It is a
general empirical fact that the accuracy and reliability of the hedged predictions
are in line with the error rate of the underlying algorithm. For example, in the
case of the USPS data set, the 1-nearest neighbour algorithm (i.e., the one with
k = 1) achieves the error rate of 2.2%, and the hedged predictions based on (6)
are highly confident (achieve confidence of at least 99%) for more than 95% of
the test examples.

General Definition

The general notion of conformal predictor can be defined as follows. A noncon-
formity measure is a function that assigns to every data sequence (4) a sequence
of numbers α1, . . . , αn, called nonconformity scores, in such a way that inter-
changing any two examples (xi, yi) and (xj , yj) leads to the interchange of the
corresponding nonconformity scores αi and αj (with all the other nonconformity
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scores unaffected). The corresponding conformal predictor maps each data set
(1), l = 0, 1, . . ., each new object xl+1, and each confidence level 1 − ǫ ∈ (0, 1),
to the prediction set

Γǫ (x1, y1, . . . , xl, yl, xl+1) := {Y ∈ Y : pY > ǫ} , (7)

where pY are defined by (5) with α1, . . . , αl+1 being the nonconformity scores
corresponding to the data sequence (2).

We have already remarked that associating with each completion (2) the
p-value (5) gives a randomness test; this is true in general. This implies that
for each l the probability of the event

yl+1 ∈ Γǫ (x1, y1, . . . , xl, yl, xl+1)

is at least 1 − ǫ.
This definition works for both classification and regression, but in the case

of classification we can summarize (7) by two numbers: the confidence

sup {1 − ǫ : |Γǫ| ≤ 1} (8)

and the credibility
inf {ǫ : |Γǫ| = 0} . (9)

Computationally Efficient Regression

As we have already mentioned, the algorithms described so far cannot be ap-
plied directly in the case of regression, even if the randomness test is efficiently
computable: now we cannot consider all possible values Y for yl+1 since there
are infinitely many of them. However, there might still be computationally ef-
ficient ways to find the prediction sets Γǫ. The idea is that if αi are defined as
the residuals

αi := |yi − fY (xi)| (10)

where fY : X → R is a regression function fitted to the completed data set (2),
then αi may have a simple expression in terms of Y , leading to an efficient way
of computing the prediction sets (via (5) and (7)). This idea was implemented
in [9] in the case where fY is found from the ridge regression, or kernel ridge
regression, procedure, with the resulting algorithm of hedged prediction called
the ridge regression confidence machine. For a much fuller description of the
ridge regression confidence machine (and its modifications in the case where
(10) are replaced by the fancier “deleted” or “studentized” residuals) see [24],
Section 2.3.

4 Bayesian Approach to Conformal Prediction

Bayesian methods have become very popular in both machine learning and
statistics thanks to their power and versatility, and in this section we will see
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how Bayesian ideas can be used for designing efficient conformal predictors. We
will only describe results of computer experiments (following [8]) with artificial
data sets, since for real-world data sets there is no way to make sure that the
Bayesian assumption is satisfied.

Suppose X = R
p (each object is a vector of p real-valued attributes) and our

model of the data-generating mechanism is

yi = w · xi + ξi, i = 1, 2, . . . , (11)

where ξi are independent standard Gaussian random variables and the weight
vector w ∈ R

p is distributed as N(0, (1/a)Ip) (we use the notation Ip for the
unit p× p matrix and N(0, A) for the p-dimensional Gaussian distribution with
covariance matrix A); a is a positive constant. The actual data-generating
mechanism used in our experiments will correspond to this model with a set to
1.

Under the model (11) the best (in the mean-square sense) fit to a data set
(4) is provided by the ridge regression procedure with parameter a (for details,
see, e.g., [24], Section 10.3). Using the residuals (10) with fY found by ridge
regression with parameter a leads to an efficient conformal predictor which will
be referred to as the ridge regression confidence machine with parameter a.
Each prediction set output by the ridge regression confidence machine will be
replaced by its convex hull, the corresponding prediction interval.

To test the validity and efficiency of the ridge regression confidence machine
the following procedure was used. Ten times a vector w ∈ R

5 was independently
generated from the distribution N(0, I5). For each of the 10 values of w, 100
training objects and 100 test objects were independently generated from the
uniform distribution on [−10, 10]5 and for each object x its label y was generated
as w · x + ξ, with all the ξ standard Gaussian and independent. For each of the
1000 test objects and each confidence level 1 − ǫ the prediction set Γǫ for its
label was found from the corresponding training set using the ridge regression
confidence machine with parameter a = 1. The solid line in Figure 2 shows the
confidence level against the percentage of test examples whose labels were not
covered by the corresponding prediction intervals at that confidence level. Since
conformal predictors are always valid, the percentage outside the prediction
interval should never exceed 100 minus the confidence level, up to statistical
fluctuations, and this is confirmed by the picture.

A natural measure of efficiency of confidence predictors is the mean width
of their prediction intervals, at different confidence levels: the algorithm is the
more efficient the narrower prediction intervals it produces. The solid line in
Figure 3 shows the confidence level against the mean (over all test examples)
width of the prediction intervals at that confidence level.

Since we know the data-generating mechanism, the approach via conformal
prediction appears somewhat roundabout: for each test object we could instead
find the conditional probability distribution of its label, which is Gaussian, and
output as the prediction set Γǫ the shortest (i.e., centred at the mean of the
conditional distribution) interval of conditional probability 1 − ǫ. Figures 4
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Figure 2: Validity for the ridge regression confidence machine.
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Figure 3: Efficiency for the ridge regression confidence machine.
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Figure 4: Validity for the Bayes-optimal confidence predictor.

and 5 are the analogues of Figures 2 and 3 for this Bayes-optimal confidence
predictor. The solid line in Figure 4 demonstrates the validity of the Bayes-
optimal confidence predictor.

What is interesting is that the solid lines in Figures 5 and 3 look exactly
the same, taking account of the different scales of the vertical axes. The ridge
regression confidence machine appears as good as the Bayes-optimal predictor.
(This is a general phenomenon; it is also illustrated, in the case of classifica-
tion, by the construction in Section 3.3 of [24] of a conformal predictor that is
asymptotically as good as the Bayes-optimal confidence predictor.)

The similarity between the two algorithms disappears when they are given
wrong values for a. For example, let us see what happens if we tell the algorithms
that the expected value of ‖w‖ is just 1% of what it really is (this corresponds
to taking a = 10000). The ridge regression confidence machine stays valid
(see the dashed line in Figure 2), but its efficiency deteriorates (the dashed
line in Figure 3). The efficiency of the Bayes-optimal confidence predictor (the
dashed line in Figure 5) is hardly affected, but its predictions become invalid
(the dashed line in Figure 4 deviates significantly from the diagonal, especially
for the most important large confidence levels: e.g., only about 15% of labels
fall within the 90% prediction sets). The worst that can happen to the ridge
regression confidence machine is that its predictions will become useless (but at
least harmless), whereas the Bayes-optimal predictions can become misleading.

Figures 2–5 also show the graphs for the intermediate value a = 1000. Sim-
ilar results but for different data sets are also given in [24], Section 10.3. A
general scheme of Bayes-type conformal prediction is described in [24], pp. 102–
103.
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Figure 5: Efficiency for the Bayes-optimal confidence predictor.

5 On-line prediction

We know from Section 3 that conformal predictors are valid in the sense that
the probability of error

yl+1 /∈ Γǫ (x1, y1, . . . xl, yl, xl+1) (12)

at confidence level 1 − ǫ never exceeds ǫ. The word “probability” means “un-
conditional probability” here: the frequentist meaning of the statement that the
probability of (12) does not exceed ǫ is that, if we repeatedly generate many
sequences

x1, y1, . . . , xl, yl, xl+1, yl+1,

the fraction of them satisfying (12) will be at most ǫ, to within statistical fluc-
tuations. To say that we are controlling the number of errors would be an
exaggeration because of the artificial character of this scheme of repeatedly
generating a new training set and a new test example. Can we say that the
confidence level 1 − ǫ translates into a bound on the number of mistakes for
a natural learning protocol? In this section we show that the answer is “yes”
for the popular on-line learning protocol, and in the next section we will see to
what degree this carries over to other protocols.

In on-line learning the examples are presented one by one. Each time, we
observe the object and predict its label. Then we observe the label and go on
to the next example. We start by observing the first object x1 and predicting
its label y1. Then we observe y1 and the second object x2, and predict its
label y2. And so on. At the nth step, we have observed the previous examples
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(x1, y1), . . . , (xn−1, yn−1) and the new object xn, and our task is to predict yn.
The quality of our predictions should improve as we accumulate more and more
old examples. This is the sense in which we are learning.

Our prediction for yn is a nested family of prediction sets Γǫ
n ⊆ Y, ǫ ∈ (0, 1).

The process of prediction can be summarized by the following protocol:

On-line prediction protocol

Err0 := 0;
Mult0 := 0;
Emp0 := 0;
FOR n = 1, 2, . . .:

Reality outputs xn ∈ X;
Predictor outputs Γǫ

n ⊆ Y for all ǫ ∈ (0, 1);
Reality outputs yn ∈ Y;

errǫ
n :=

{

1 if yn /∈ Γǫ
n

0 otherwise,
ǫ ∈ (0, 1);

Errǫn := Errǫ
n−1 + errǫn, ǫ ∈ (0, 1);

multǫ
n :=

{

1 if |Γǫ
n| > 1

0 otherwise,
ǫ ∈ (0, 1);

Multǫ
n := Multǫ

n−1 + multǫ
n, ǫ ∈ (0, 1);

empǫ
n :=

{

1 if |Γǫ
n| = 0

0 otherwise,
ǫ ∈ (0, 1);

Empǫ
n := Empǫ

n−1 + Empǫ
n, ǫ ∈ (0, 1)

END FOR.

As we said, the family Γǫ
n is assumed nested: Γǫ1

n ⊆ Γǫ2
n when ǫ1 ≥ ǫ2. In this

protocol we also record the cumulative numbers Errǫn of erroneous prediction
sets, Multǫ

n of multiple prediction sets (i.e., prediction sets containing more than
one label) and Empǫ

n of empty prediction sets at each confidence level 1− ǫ. We
will discuss the significance of each of these numbers in turn.

The number of erroneous predictions is a measure of validity of our confi-
dence predictors: we would like to have Errǫn ≤ ǫn, up to statistical fluctuations.
In Figure 6 we can see the lines n 7→ Errǫ

n for one particular conformal predictor
and for three confidence levels 1− ǫ: the solid line for 99%, the dash-dot line for
95%, and the dotted line for 80%. The number of errors made grows linearly,
and the slope is approximately 20% for the confidence level 80%, 5% for the
confidence level 95%, and 1% for the confidence level 99%. We will see below
that this is not accidental.

The number of multiple predictions Multn is a useful measure of efficiency
in the case of classification: we would like as many as possible of our predictions
to be singletons. Figure 7 shows the cumulative numbers of errors n 7→ Err2.5%

n

(solid line) and multiple predictions n 7→ Mult2.5%
n (dotted line) at the fixed

confidence level 97.5%. We can see that out of approximately 10,000 predictions
about 250 (approximately 2.5%) were errors and about 300 (approximately 3%)
were multiple predictions.
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Figure 6: Cumulative numbers of errors for a conformal predictor (the 1-nearest
neighbour conformal predictor) run in the on-line mode on the USPS data set
(9298 hand-written digits, randomly permuted) at the confidence levels 80%,
95% and 99%.
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Figure 7: The on-line performance of the 1-nearest neighbour conformal predic-
tor at the confidence level 97.5% on the USPS data set (randomly permuted).
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Table 2: A selected test example from a data set of hospital records of patients
who suffered acute abdominal pain [4]: the p-values for the nine possible di-
agnostic groups (appendicitis APP, diverticulitis DIV, perforated peptic ulcer
PPU, non-specific abdominal pain NAP, cholecystitis CHO, intestinal obstruc-
tion INO, pancreatitis PAN, renal colic RCO, dyspepsia DYS) and the true
label.

APP DIV PPU NAP CHO INO PAN RCO DYS true label

1.23% 0.36% 0.16% 2.83% 5.72% 0.89% 1.37% 0.48% 80.56% DYS

We can see that by choosing ǫ we are able to control the number of errors.
For small ǫ (relative to the difficulty of the data set) this might lead to the
need sometimes to give multiple predictions. On the other hand, for larger ǫ
this might lead to empty predictions at some steps, as can be seen from the
bottom right corner of Figure 7: when the predictor ceases to make multiple
predictions it starts making occasional empty predictions (the dash-dot line).
An empty prediction is a warning that the object to be predicted is unusual
(the credibility, as defined in Section 2, is ǫ or less).

It would be a mistake to concentrate exclusively on one confidence level
1 − ǫ. If the prediction Γǫ

n is empty, this does not mean that we cannot make
any prediction at all: we should just shift our attention to other confidence
levels (perhaps look at the range of ǫ for which Γǫ

n is a singleton). Likewise, Γǫ
n

being multiple does not mean that all labels in Γǫ
n are equally likely: slightly

increasing ǫ might lead to the removal of some labels. Of course, taking in the
continuum of predictions sets, for all ǫ ∈ (0, 1), might be too difficult or tiresome
for a human mind, and concentrating on a few conventional levels, as in Figure
1, might be a reasonable compromise.

For example, Table 2 gives the p-values for different kinds of abdominal pain
obtained for a specific patient based on his symptoms. We can see that at the
confidence level 95% the prediction set is multiple, {cholecystitis, dyspepsia}.
When we relax the confidence level to 90%, the prediction set narrows down to
{dyspepsia} (the singleton containing only the true label); on the other hand, at
the confidence level 99% the prediction set widens to {appendicitis, non-specific
abdominal pain, cholecystitis, pancreatitis, dyspepsia}. Such detailed confi-
dence information, in combination with the property of validity, is especially
valuable in medicine (and some of the first applications of conformal predictors
have been to the fields of medicine and bioinformatics: see, e.g., [1, 15]).

In the case of regression, we will usually have Multǫ
n = n and Empǫ

n = 0,
and so these are not useful measures of efficiency. Better measures, such as the
ones used in the previous section, would, e.g., take into account the widths of
the prediction intervals.
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Theoretical Analysis

Looking at Figures 6 and 7 we might be tempted to guess that the probability
of error at each step of the on-line protocol is ǫ and that errors are made inde-
pendently at different steps. This is not literally true, as a closer examination of
the bottom left corner of Figure 7 reveals. It, however, becomes true (as noticed
in [23]) if the p-values (5) are redefined as

pY :=
|{i : αi > αl+1}| + η |{i : αi = αl+1}|

l + 1
, (13)

where i ranges over {1, . . . , l + 1} and η ∈ [0, 1] is generated randomly from the
uniform distribution on [0, 1] (the ηs should be independent between themselves
and of everything else; in practice they are produced by pseudo-random number
generators). The only difference between (5) and (13) is that the expression (13)
takes more care in breaking the ties αi = αl+1. Replacing (5) by (13) in the
definition of conformal predictor we obtain the notion of smoothed conformal
predictor.

The validity property for smoothed conformal predictors can now be stated
as follows.

Theorem 1 Suppose the examples

(x1, y1), (x2, y2), . . .

are generated independently from the same distribution. For any smoothed con-
formal predictor working in the on-line prediction protocol and any confidence
level 1− ǫ, the random variables errǫ

1, err
ǫ
2, . . . are independent and take value 1

with probability ǫ.

Combining Theorem 1 with the strong law of large numbers we can see that

lim
n→∞

Errǫn
n

= ǫ

holds with probability one for smoothed conformal predictors. (They are “well
calibrated”.) Since the number of mistakes made by a conformal predictor never
exceeds the number of mistakes made by the corresponding smoothed conformal
predictor,

lim sup
n→∞

Errǫ
n

n
≤ ǫ

holds with probability one for conformal predictors. (They are “conservatively
well calibrated”.)

6 Slow teachers, lazy teachers, and the batch

setting

In the pure on-line setting, considered in the previous section, we get an imme-
diate feedback (the true label) for every example that we predict. This makes
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practical applications of this scenario questionable. Imagine, for example, a mail
sorting centre using an on-line prediction algorithm for zip code recognition; sup-
pose the feedback about the “true” label comes from a human “teacher”. If the
feedback is given for every object xi, there is no point in having the prediction
algorithm: we can just as well use the label provided by the teacher. It would
help if the prediction algorithm could still work well, in particular be valid, if
only every, say, tenth object were classified by a human teacher (the scenario
of “lazy” teachers). Alternatively, even if the prediction algorithm requires the
knowledge of all labels, it might still be useful if the labels were allowed to be
given not immediately but with a delay (“slow” teachers). In our mail sorting
example, such a delay might make sure that we hear from local post offices
about any mistakes made before giving a feedback to the algorithm.

In the pure on-line protocol we had validity in the strongest possible sense:
at each confidence level 1 − ǫ each smoothed conformal predictor made errors
independently with probability ǫ. In the case of weaker teachers (as usual, we
are using the word “teacher” in the general sense of the entity providing the
feedback, called Reality in the previous section), we have to accept a weaker
notion of validity. Suppose the predictor receives a feedback from the teacher
at the end of steps n1, n2, . . ., n1 < n2 < · · · ; the feedback is the label of one
of the objects that the predictor has already seen (and predicted). This scheme
[14] covers both slow and lazy teachers (as well as teachers who are both slow
and lazy). It was proved in [10] (see also [24], Theorem 4.2) that the smoothed
conformal predictors (using only the examples with known labels) remain valid
in the sense

∀ǫ ∈ (0, 1) : Errǫ
n /n → ǫ in probability

if and only if nk/nk−1 → 1 as k → ∞. In other words, the validity in the
sense of convergence in probability holds if and only if the growth rate of nk is
subexponential. (This condition is amply satisfied for our example of a teacher
giving feedback for every tenth object.)

The most standard batch setting of the problem of prediction is in one respect
even more demanding than our scenarios of weak teachers. In this setting we
are given a training set (1) and our goal is to predict the labels given the objects
in the test set

(xl+1, yl+1), . . . , (xl+k, yl+k). (14)

This can be interpreted as a finite-horizon version of the lazy-teacher setting:
no labels are returned after step l. Computer experiments (see, e.g., Figure 8)
show that approximate validity still holds; for related theoretical results, see
[24], Section 4.4.

7 Induction and transduction

Vapnik’s [18, 19] distinction between induction and transduction, as applied
to the problem of prediction, is depicted in Figure 9. In inductive prediction
we first move from examples in hand to some more or less general rule, which
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Figure 8: Cumulative numbers of errors made on the test set by the 1-nearest
neighbour conformal predictor used in the batch mode on the USPS data set
(randomly permuted and split into a training set of size 7291 and a test set of
size 2007) at the confidence levels 80%, 95% and 99%.
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Figure 9: Inductive and transductive prediction.

we might call a prediction or decision rule, a model, or a theory; this is the
inductive step. When presented with a new object, we derive a prediction from
the general rule; this is the deductive step. In transductive prediction, we take
a shortcut, moving from the old examples directly to the prediction about the
new object.

Typical examples of the inductive step are estimating parameters in statistics
and finding an approximating function in statistical learning theory. Examples
of transductive prediction are estimation of future observations in statistics ([3],
Section 7.5, [17]) and nearest neighbours algorithms in machine learning.

In the case of simple (i.e., traditional, not hedged) predictions the distinction
between induction and transduction is less than crisp. A method for doing
transduction, in the simplest setting of predicting one label, is a method for
predicting yl+1 from (1) and xl+1. Such a method gives a prediction for any
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object that might be presented as xl+1, and so it defines, at least implicitly,
a rule, which might be extracted from the training set (1) (induction), stored,
and then subsequently applied to xl+1 to predict yl+1 (deduction). So any real
distinction is really at a practical and computational level: do we extract and
store the general rule or not?

For hedged predictions the difference between induction and transduction
goes deeper. We will typically want different notions of hedged prediction in
the two frameworks. Mathematical results about induction usually involve two
parameters, often denoted ǫ (the desired accuracy of the prediction rule) and δ
(the probability of achieving the accuracy of ǫ), whereas results about transduc-
tion involve only one parameter, which we denote ǫ in this paper (the probability
of error we are willing to tolerate); see Figure 9. For a review of inductive pre-
diction from this point of view, see [24], Section 10.1.

8 Inductive conformal predictors

Our approach to prediction is thoroughly transductive, and this is what makes
valid and efficient hedged prediction possible. In this section we will see, how-
ever, that there is also room for an element of induction in conformal prediction.

Let us take a closer look at the process of conformal prediction, as described
in Section 3. Suppose we are given a training set (1) and the objects in a test
set (14), and our goal is to predict the label of each test object. If we want to
use the conformal predictor based on the support vector method, as described
in Section 3, we will have to find the set of the Lagrange multipliers for each
test object and for each potential label Y that can be assigned to it. This would
involve solving k |Y| essentially independent optimization problems. Using the
nearest neighbours approach is typically more computationally efficient, but
even it is much slower than the following procedure, suggested in [11, 12].

Suppose we have an inductive algorithm which, given a training set (1) and
a new object x outputs a prediction ŷ for x’s label y. Fix some measure ∆(y, ŷ)
of difference between y and ŷ. The procedure is:

1. Divide the original training set (1) into two subsets: the proper training set
(x1, y1), . . . , (xm, ym) and the calibration set (xm+1, ym+1), . . . , (xl, yl).

2. Construct a prediction rule F from the proper training set.

3. Compute the nonconformity score

αi := ∆(yi, F (xi)), i = m + 1, . . . , l,

for each example in the calibration set.

4. For every test object xi, i = l + 1, . . . , l + k, do the following:

(a) for every possible label Y ∈ Y compute the nonconformity score
αi := ∆(yi, F (xi)) and the p-value

pY :=
#{j ∈ {m + 1, . . . , l, i} : αj ≥ αi}

l − m + 1
;
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(b) output the prediction sets Γǫ (x1, y1, . . . , xl, yl, xi) given by the right-
hand side of (7).

This is a special case of “inductive conformal predictors”, as defined in [24],
Section 4.1. In the case of classification, of course, we could package the p-
values as a simple prediction complemented with confidence (8) and credibility
(9).

Inductive conformal predictors are valid in the sense that the probability of
error

yi /∈ Γǫ (x1, y1, . . . xl, yl, xi)

(i = l + 1, . . . , l + k, ǫ ∈ (0, 1)) never exceeds ǫ (cf. (12)). The on-line version of
inductive conformal predictors, with a stronger notion of validity, is described
in [23] and [24] (Section 4.1).

The main advantage of inductive conformal predictors is their computational
efficiency: the bulk of the computations is performed only once, and what re-
mains to do for each test example is to apply the prediction rule found at the
inductive step, to apply ∆ to find the nonconformity score α for this example,
and to find the position of α among the nonconformity scores of the calibration
examples. The main disadvantage is a possible loss of the prediction efficiency:
for conformal predictors, we can effectively use the whole training set as both
the proper training set and the calibration set.

9 Conclusion

This paper shows how many machine-learning techniques can be complemented
with provably valid measures of accuracy and reliability. We explained briefly
how this can be done for support vector machines, nearest neighbours algo-
rithms, and the ridge regression procedure, but the principle is general: virtually
any (we are not aware of exceptions) successful prediction technique designed to
work under the randomness assumption can be used to produce equally success-
ful hedged predictions. Further examples are given in our recent book [24] (joint
with Glenn Shafer), where we construct conformal predictors and inductive con-
formal predictors based on nearest neighbours regression, logistic regression,
bootstrap, decision trees, boosting, and neural networks; general schemes for
constructing conformal predictors and inductive conformal predictors are given
on pp. 28–29 and on pp. 99–100 of [24], respectively. Replacing the original
simple predictions with hedged predictions enables us to control the number of
errors made by appropriately choosing the confidence level.
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